WorldWideScience

Sample records for linker succinimidyl 4-n-maleimidomethylcyclohexane-1-carboxylate

  1. Alkyne- and 1,6-elimination- succinimidyl carbonate – terminated heterobifunctional poly(ethylene glycol) for reversible "Click" PEGylation

    Xie, Yumei; Duan, Shaofeng; Forrest, M. Laird

    2010-01-01

    A new heterobifunctional (succinimidyl carbonate, SC)-activated poly(ethylene glycol) (PEG) with a reversible 1,6-elimination linker and a terminal alkyne for "click" chemistry was synthesized with high efficiency and low polydispersity. The α-alkyne-ω-hydroxyl PEG was first prepared using trimethylsilyl-2-propargyl alcohol as an initiator for ring-opening polymerization of ethylene oxide followed by mild deprotection with tetrabutylammonium fluoride. The hydroxy end was then modified with di...

  2. Alkyne- and 1,6-elimination- succinimidyl carbonate - terminated heterobifunctional poly(ethylene glycol) for reversible "Click" PEGylation.

    Xie, Yumei; Duan, Shaofeng; Forrest, M Laird

    2010-01-01

    A new heterobifunctional (succinimidyl carbonate, SC)-activated poly(ethylene glycol) (PEG) with a reversible 1,6-elimination linker and a terminal alkyne for "click" chemistry was synthesized with high efficiency and low polydispersity. The α-alkyne-ω-hydroxyl PEG was first prepared using trimethylsilyl-2-propargyl alcohol as an initiator for ring-opening polymerization of ethylene oxide followed by mild deprotection with tetrabutylammonium fluoride. The hydroxy end was then modified with diglycolic anhydride to generate α-alkyne-ω-carboxylic acid PEG. The reversible 1, 6-elimination linker was introduced by conjugation of a hydroxymethyl phenol followed by activation with N,N'-disuccinimidyl carbonate to generate the heterobifunctional α-alkyne-ω-SC PEG. The terminal alkyne is available for "click" conjugation to azido ligands via 1,3-dipolar cycloaddition, and the succinimidyl carbonate will form a reversible conjugate to amines (e.g. in proteins) that can release the unaltered amine after base or enzyme catalyzed cleavage of the 1,6-linker.

  3. Preparation and in vivo evaluation of novel linkers for 211At labeling of proteins

    Talanov, Vladimir S.; Yordanov, Alexander T.; Garmestani, Kayhan; Milenic, Diane E.; Arora, Hans C.; Plascjak, Paul S.; Eckelman, William C.; Waldmann, Thomas A.; Brechbiel, Martin W.

    2004-01-01

    The syntheses, radiolabeling, antibody conjugation and in vivo evaluation of new linkers for 211 At labeling of monoclonal antibodies are described. Syntheses of the N-succinimidyl esters and labeling with 211 At to form succinimidyl 4-methoxymethyl-3-[ 211 At]astatobenzoate (9) and succinimidyl 4-methylthiomethyl-3-[ 211 At]astatobenzoate (11) from the corresponding bromo-aryl esters is reported. Previously reported succinimidyl N-{4-[ 211 At]astatophenethyl}succinamate (SAPS) is employed as a standard of in vivo stability. Each agent is conjugated with Herceptin in parallel with their respective 125 I analogue, succinimidyl 4-methoxymethyl-3-[ 125 I]iodobenzoate (10), succinimidyl 4-methylthiomethyl-3-[ 125 I]iodobenzoate (12) and succinimidyl N-{4-[ 125 I]iodophenethyl}succinamate (SIPS), respectively, for comparative assessment in LS-174T xenograft-bearing mice. With 9 and 11, inclusion of an electron pair donor in the ortho position does not appear to provide in vivo stability comparable to SAPS. Variables in radiolabeling chemistry of these three agents with 211 At are notable. Sequential elimination of acetic acid and oxidizing agent, N-chlorosuccinimide (NCS), from the 211 At radiolabeling protocol for forming SAPS improves yield, product purity and consistency. NCS appears to be critical for the radiolabeling of 6 with 211 At. Formation of 11, however, is found to require the absence of NCS. Elimination of acetic acid is found to have no effect on radiolabeling efficiency or yield for either of these reactions

  4. Preparation and in vivo evaluation of linkers for 211At labeling of humanized anti-Tac

    Yordanov, A.T.; Garmestani, K.; Zhang, M.; Zhang, Z.; Yao, Z.; Phillips, K.E.; Herring, B.; Horak, E.; Beitzel, M.P.; Schwarz, U.P.; Gansow, O.A.; Plascjak, P.S.; Eckelman, W.C.; Waldmann, T.A.; Brechbiel, M.W.

    2001-01-01

    The syntheses, radiolabeling, antibody conjugation, and in vivo evaluation of new linkers for 211 At labeling of humanized anti-Tac (Hu-anti-Tac), an antibody to the α-chain of the IL-2 receptor (IL-2Rα) shown to be a useful target for radioimmunotherapy are described. Synthesis of the organometallic linker precursors is accomplished by reaction of the corresponding bromo- or iodoaryl esters with bis(tributyltin) in the presence of a palladium catalyst. Subsequent conversion to the corresponding N-succinimidyl ester and labeling with 211 At of two new linkers, N-succinimidyl 4-[ 211 At]astato-3-methylbenzoate and N-succinimidyl N-(4-[ 211 At]astatophenethyl)succinamate (SAPS), together with the previously reported N-succinimidyl 4-[ 211 At]astatobenzoate and N-succinimidyl 3-[ 211 At]astato-4-methylbenzoate, are each conjugated to Hu-anti-Tac. The plasma survival times of these conjugates are compared to those of directly iodinated ( 125 I) Hu-anti-Tac. The N-succinimidyl N-(4-[ 211 At]astatophenethyl)succinamate compound (SAPS) emerged from this assay as the most viable candidate for 211 At-labeling of Hu-anti-Tac. SAPS, along with the directly analogous radio-iodinated reagent, N-succinimidyl N-(4-[ 125 I]astatophenethyl)succinamate (SIPS), are evaluated in a biodistribution study along with directly iodinated ( 125 I) Hu-anti-Tac. Blood clearance and biological accretion results indicate that SAPS is a viable candidate for further evaluation for radioimmunotherapy of cancer

  5. Improved sensitivity of a graphene FET biosensor using porphyrin linkers

    Kawata, Takuya; Ono, Takao; Kanai, Yasushi; Ohno, Yasuhide; Maehashi, Kenzo; Inoue, Koichi; Matsumoto, Kazuhiko

    2018-06-01

    Graphene FET (G-FET) biosensors have considerable potential due to the superior characteristics of graphene. Realizing this potential requires judicious choice of the linker molecule connecting the target-specific receptor molecule to the graphene surface, yet there are few reports comparing linker molecules for G-FET biosensors. In this study, tetrakis(4-carboxyphenyl)porphyrin (TCPP) was used as a linker for surface modification of a G-FET and the properties of the device were compared to those of a G-FET device modified with the conventional linker 1-pyrenebutanoic acid succinimidyl ester (PBASE). TCPP modification resulted in a higher density of receptor immunoglobulin E (IgE) aptamer molecules on the G-FET. The detection limit of the target IgE was enhanced from 13 nM for the PBASE-modified G-FET to 2.2 nM for the TCPP-modified G-FET, suggesting that the TCPP linker is a powerful candidate for G-FET modification.

  6. Preparation and in vivo evaluation of a novel stabilized linker for 211At labeling of protein

    Talanov, Vladimir S.; Garmestani, Kayhan; Regino, Celeste A.S.; Milenic, Diane E.; Plascjak, Paul S.; Waldmann, Thomas A.; Brechbiel, Martin W.

    2006-01-01

    Significant improvement of in vivo stability of 211 At-labeled radioimmunoconjugates achieved upon employment of a recently reported new linker, succinimidyl N-2-(4-[ 211 At]astatophenethyl)succinamate (SAPS), prompted additional studies of its chemistry. The 211 At radiolabeling of succinimidyl N-2-(4-tributylstannylphenethyl)succinamate (1) was noted to decline after storage at -15 o C for greater than 6 months. Compound 1 was found to degrade via a ring closure reaction with the formation of N-2-(4-tributylstannylphenethyl)succinimide (3), and a modified procedure for the preparation of 1 was developed. The N-methyl structural analog of 1, succinimidyl N-2-(4-tributylstannylphenethyl)-N-methyl succinamate (SPEMS), was synthesized to investigate the possibility of improving the stability of reagent-protein linkage chemistry. Radiolabeling of SPEMS with 211 At generates succinimidyl N-2-(4-[ 211 At]astatophenethyl)-N-methyl succinamate (Methyl-SAPS), with yields being consistent for greater than 1 year. Radiolabelings of 1 and SPEMS with 125 I generated succinimidyl N-2-(4-[ 125 I]iodophenethyl)succinamate (SIPS) and succinimidyl N-2-(4-[ 125 I]iodophenethyl)-N-methyl succinamate (Methyl-SIPS), respectively, and showed no decline in yields. Methyl-SAPS, SAPS, Methyl-SIPS and SIPS were conjugated to Herceptin for a comparative assessment in LS-174T xenograft-bearing mice. The conjugates of Herceptin with Methyl-SAPS or Methyl-SIPS demonstrated immunoreactivity equivalent to if not superior to the SAPS and SIPS paired analogs. The in vivo studies also revealed that the N-methyl modification resulted in a superior statinated product

  7. Synthesis and 125I labeling of N-succinimidyl-3-(tri-n-butylstannyl)benzoate

    Liu Zhenfeng; Wang Yongxian; Zhou Wei; Wang Lihua; Xia Jiaoyun; Yin Duanzhi

    2005-01-01

    N-succinimidyl-3-(tri-n-butylstannyl)benzoate (ATE) and N-succinimidyl-3-iodo-benzoate (SIB) is synthesized. The structures of ATE and SIB are confirmed with 1 HNMR, MS and IR. The yields of ATE and SIB are 45.4% and 71.4%, respectively. ATE is labeled with 125 I. The labeling field is 93.0% and radiochemical purity is over 98.0%. The synthesis and the labeling of ATE have a important value for indirect label of radiopharmaceuticals. (authors)

  8. Backbone amide linker strategy

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen

    2013-01-01

    In the backbone amide linker (BAL) strategy, the peptide is anchored not at the C-terminus but through a backbone amide, which leaves the C-terminal available for various modifications. This is thus a very general strategy for the introduction of C-terminal modifications. The BAL strategy...

  9. Synthesis of radioiodinated N-succinimidyl 3-[125I] iodobenzoate

    Li Junling; Wang Lihua; Zhang Lan; Tian Haibin; Wang Yongxian

    2003-01-01

    N-Succinimidyl 3-(tri-n-butylstannyl) benzoate (ATE) was radioiodinated using Iodogen as oxidant and useful conjugate S 125 IB of labeling proteins was obtained. ATE and Iodogen affecting labeling proteins were successfully isolated from S 125 IB by Sep-Pak silica. The labeling efficiency was more than 93%. Several factors affecting labeling such as labeling time, the amount of Iodogen and the mole ratio of ATE to Na 125 I, were studied. The better labeling conditions were obtained as follows: mole ratio of ATE to Na 125 I=6:1, Iodogen=7 μg, labeling time=5 min in room temperature

  10. Indirect radioiodination of human IgG with N-succinimidyl-3-iodo[125I] benzoate

    Liu Zhenfeng; Wang Yongxian; Dong Mo; Zhou Wei; Xia Jiaoyun; Yin Duanzhi; Li Linfa

    2007-01-01

    The objective of this study was to develop an acylation method for the radioiodination of monoclonal antibodies that could decrease the loss of radioiodine in vivo. Preparation of N- succinimidyl-3-iodobenzoate(S 125 IB) from the organoth precursor, N-succinimidyl-3-(tri-n-bu- tylstannyl)benzoate(ATE) proceeds in more than 95% labelling yield, when the mass of ATE and NCS are respectively 25-100 μg and 10-20 μg, and the volume of PBS is 10-20 μL, and reaction time is 5 min. IgG is labeled using S 125 IB in up to 75% conjugation efficiency and with well retained immunoreactivity to sheep anti-human IgG. Hepama-1 is also labeled using S 125 IB in more than 75% conjugation efficiency. Paired-label biodistribution studies in normal mice demonstrate that thyroid uptake(a monitor of dehalogenation) of Hepama-1 labeled by S 125 IB method is up to 87.9 times lower than that of Hepama-1 labeled with Iodogen. This result suggests that S 125 IB offers significant advantages for labeling proteins, antibodies over other conventional methods for protein radioiodination. (authors)

  11. Synthesis of [18F]-N-succinimidyl 4-fluoromethyl benzoate and its protein labeling property in detection of malignancies

    Jalilian, A.R; Afarideh, H.; Shafiee, A.; Rafii, H.; Najafi, R.

    1998-01-01

    [ 18 F]-N-succinimidyl 4-fluoromethyl benzoate (9) is prepared through a one-step hot reaction and a four-step cold reaction. After optimizing the reaction conditions, more simple methods are suggested to be used in order to prepare substance (9). Finally, the labeled molecule is purified via an easier way in comparison to the published methods. HPLC procedure is replaced with a hand-made gel filtration column and is utilized in satisfactorily

  12. Structure and Functions of Linker Histones.

    Lyubitelev, A V; Nikitin, D V; Shaytan, A K; Studitsky, V M; Kirpichnikov, M P

    2016-03-01

    Linker histones such as variants H1, H5, and other similar proteins play an important role in regulation of chromatin structure and dynamics. However, interactions of linker histones with DNA and proteins, as well as specific functions of their different variants, are poorly studied. This is because they acquire tertiary structure only when interacting with a nucleosome, and because of limitations of currently available methods. However, deeper investigation of linker histones and their interactions with other proteins will address a number of important questions - from structure of compacted chromatin to regulation of early embryogenesis. In this review, structures of histone H1 variants and its interaction with chromatin DNA are considered. A possible functional significance of different H1 variants, a role of these proteins in maintaining interphase chromatin structure, and interactions of linker histones with other cellular proteins are also discussed.

  13. Hydroquinone–pyrrole dyads with varied linkers

    Hao Huang

    2016-01-01

    Full Text Available A series of pyrroles functionalized in the 3-position with p-dimethoxybenzene via various linkers (CH2, CH2CH2, CH=CH, C≡C has been synthesized. Their electronic properties have been deduced from 1H NMR, 13C NMR, and UV–vis spectra to detect possible interactions between the two aromatic subunits. The extent of conjugation between the subunits is largely controlled by the nature of the linker, with the largest conjugation found with the trans-ethene linker and the weakest with the aliphatic linkers. DFT calculations revealed substantial changes in the HOMO–LUMO gap that correlated with the extent of conjugation found experimentally. The results of this work are expected to open up for use of the investigated compounds as components of redox-active materials in sustainable, organic electrical energy storage devices.

  14. N-Succinimidyl guanidinomethyl iodobenzoate protein radiohalogenation agents: Influence of isomeric substitution on radiolabeling and target cell residualization

    Choi, Jaeyeon; Vaidyanathan, Ganesan; Koumarianou, Eftychia; McDougald, Darryl; Pruszynski, Marek; Osada, Takuya; Lahoutte, Tony; Lyerly, H. Kim; Zalutsky, Michael R.

    2014-01-01

    Introduction: N-succinimidyl 4-guanidinomethyl-3-[ ⁎ I]iodobenzoate ([ ⁎ I]SGMIB) has shown promise for the radioiodination of monoclonal antibodies (mAbs) and other proteins that undergo extensive internalization after receptor binding, enhancing tumor targeting compared to direct electrophilic radioiodination. However, radiochemical yields for [ 131 I]SGMIB synthesis are low, which we hypothesize is due to steric hindrance from the Boc-protected guanidinomethyl group ortho to the tin moiety. To overcome this, we developed the isomeric compound, N-succinimidyl 3-guanidinomethyl-5-[ 131 I]iodobenzoate (iso-[ 131 I]SGMIB) wherein this bulky group was moved from ortho to meta position. Methods: Boc 2 -iso-SGMIB standard and its tin precursor, N-succinimidyl 3-((1,2-bis(tert-butoxycarbonyl)guanidino)methyl)-5-(trimethylstannyl) benzoate (Boc 2 -iso-SGMTB), were synthesized using two disparate routes, and iso-[*I]SGMIB synthesized from the tin precursor. Two HER2-targeted vectors — trastuzumab (Tras) and a nanobody 5 F7 (Nb) — were labeled using iso-[ ⁎ I]SGMIB and [ ⁎ I]SGMIB. Paired-label internalization assays in vitro with both proteins, and biodistribution in vivo with trastuzumab, labeled using the two isomeric prosthetic agents were performed. Results: When the reactions were performed under identical conditions, radioiodination yields for the synthesis of Boc 2 -iso-[ 131 I]SGMIB were significantly higher than those for Boc 2 -[ 131 I]SGMIB (70.7 ± 2.0% vs 56.5 ± 5.5%). With both Nb and trastuzumab, conjugation efficiency also was higher with iso-[ 131 I]SGMIB than with [ 131 I]SGMIB (Nb, 33.1 ± 7.1% vs 28.9 ± 13.0%; Tras, 45.1 ± 4.5% vs 34.8 ± 10.3%); however, the differences were not statistically significant. Internalization assays performed on BT474 cells with 5 F7 Nb indicated similar residualizing capacity over 6 h; however, at 24 h, radioactivity retained intracellularly for iso-[ 131 I]SGMIB-Nb was lower than for [ 125 I]SGMIB-Nb (46

  15. A novel route to radioiodinated [{sup 123}I]-N-succinimidyl-3-iodobenzoate, a reagent for radioiodination of bioactive peptides

    Al-Jammaz, I.; Al-Otaibi, B.; Amartey, J.K. E-mail: amarty@kfshrc.edu.sa

    2002-11-01

    Radiolabeled peptides continue to emerge as potential radiopharmaceuticals for targeting several diseases such as cancer, infection and inflammation and even tissue and organ rejection. The classical method for labeling these molecules has been the electrophilic route. Evidence suggests that most molecules labeled via this route perturb their biological activity. Moreover, this method is not applicable to peptides lacking a tyrosine moiety in their structure. Hence, there is the need to develop alternate methods such as the prosthetic approach. We have optimized a solid-state radioiodination by exchange to produce [{sup 123}I]-metaiodobenzylguanidine ([{sup 123}I]-mIBG). The mIBG served as a precursor to obtain an activated N-succinimidyl ester for efficient coupling to amine functions in peptides, preferably the lysine group(s). The method was used to label a model chemotactic peptide and evaluated in vivo.

  16. Solid colloids with surface-mobile linkers

    Van der Meulen, Stef A J; Helms, Gesa; Dogterom, Marileen

    2015-01-01

    In this report we review the possibilities of using colloids with surface mobile linkers for the study of colloidal self-assembly processes. A promising route to create systems with mobile linkers is the use of lipid (bi-)layers. These lipid layers can be either used in the form of vesicles or as coatings for hard colloids and emulsion droplets. Inside the lipid bilayers molecules can be inserted via membrane anchors. Due to the fluidity of the lipid bilayer, the anchored molecules remain mobile. The use of different lipid mixtures even allows creating Janus-like particles that exhibit directional bonding if linkers are used which have a preference for a certain lipid phase. In nature mobile linkers can be found e.g. as receptors in cells. Therefore, towards the end of the review, we also briefly address the possibility of using colloids with surface mobile linkers as model systems to mimic cell–cell interactions and cell adhesion processes. (topical review)

  17. Water-soluble heterobifunctional fluorescent linkers

    Bartoň, Jan; Cígler, Petr

    2017-01-01

    Roč. 15, č. 1 (2017), s. 4 ISSN 2336-7202. [Mezioborové setkání mladých biologů, biochemiků a chemiků /17./. 30.05.2017-01.06.2017, Milovy] Institutional support: RVO:61388963 Keywords : fluorescent probes * heterobifunctional linkers Subject RIV: CA - Inorganic Chemistry

  18. N-succinimidyl 4-methyl-3-(tri-n-butylstannyl)benzoate: synthesis and potential utility for the radioiodination of monoclonal antibodies

    Garg, P.K.; Garg, S.; Zalutsky, M.R.

    1993-01-01

    N-Succinimidyl 4-methyl-3-(tri-n-butylstannyl)benzoate (MATE) was synthesized in two steps from 4-methyl-3-iodobenzoic acid. Radioiododestannylation of MATE proceeded more slowly than N-succinimidyl 3-(tri-n-butylstannyl)benzoate (ATE), but for reaction periods of 10 min, identical yields were obtained. Paired-label biodistribution studies were performed in mice with an intact monoclonal antibody and an F(ab') 2 fragment labeled using MATE, ATE and Iodogen. Thyroid uptake with MATE was low, comparable to that seen with ATE, and considerably lower than that observed when the Iodogen method was used. With the F(ab') 2 fragment, kidney uptake using MATE was 8-fold higher than that observed when either the ATE or Iodogen methods were used. (Author)

  19. Radiobromination of humanized anti-HER2 monoclonal antibody trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate, a potential label for immunoPET

    Mume, Eskender [Organic Chemistry, Department of Chemistry, Uppsala University, S-751 24 Uppsala (Sweden); Orlova, Anna [Affibody AB, S-161 02 Bromma (Sweden); Malmstroem, Per-Uno [Division of Urology, Department of Surgical Sciences, Uppsala University, S-751 85 Uppsala (Sweden); Lundqvist, Hans [Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala (Sweden); Sjoeberg, Stefan [Organic Chemistry, Department of Chemistry, Uppsala University, S-751 24 Uppsala (Sweden); Tolmachev, Vladimir [Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala (Sweden)]. E-mail: vladimir.tolmachev@bms.uu.se

    2005-08-01

    Combining the specificity of radioimmunoscintigraphy and the high sensitivity of PET in an in vivo detection technique could improve the quality of nuclear diagnostics. Positron-emitting nuclide {sup 76}Br (T {sub 1/2}=16.2 h) might be a possible candidate for labeling monoclonal antibodies (mAbs) and their fragments, provided that the appropriate labeling chemistry has been established. For internalizing antibodies, such as the humanized anti-HER2 monoclonal antibody, trastuzumab, radiobromine label should be residualizing, i.e., ensuring that radiocatabolites are trapped intracellularly after the proteolytic degradation of antibody. This study evaluated the chemistry of indirect radiobromination of trastuzumab using N-succinimidyl 5-(tributylstannyl)-3-pyridinecarboxylate. Literature data indicated that the use of this method provided residualizing properties for iodine and astatine labels on some antibodies. An optimized 'one-pot' procedure produced an overall labeling efficiency of 45.5{+-}1.2% over 15 min. The bromine label was stable under physiological and denaturing conditions. The labeled trastuzumab retained its capacity to bind specifically to HER2-expressing SKOV-3 ovarian carcinoma cells in vitro (immunoreactivity more than 75%). However, in vitro cell test did not demonstrate that the radiobromination of trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate improves cellular retention of radioactivity in comparison with the use of N-succinimidyl 4-bromobenzoate.

  20. Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels

    Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike

    2013-06-01

    We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.

  1. Improved tumor targeting of anti-HER2 nanobody through N-succinimidyl 4-guanidinomethyl-3-iodobenzoate radiolabeling.

    Pruszynski, Marek; Koumarianou, Eftychia; Vaidyanathan, Ganesan; Revets, Hilde; Devoogdt, Nick; Lahoutte, Tony; Lyerly, H Kim; Zalutsky, Michael R

    2014-04-01

    Nanobodies are approximately 15-kDa proteins based on the smallest functional fragments of naturally occurring heavy chain-only antibodies and represent an attractive platform for the development of molecularly targeted agents for cancer diagnosis and therapy. Because the human epidermal growth factor receptor type 2 (HER2) is overexpressed in breast and ovarian carcinoma, as well as in other malignancies, HER2-specific Nanobodies may be valuable radiodiagnostics and therapeutics for these diseases. The aim of the present study was to evaluate the tumor-targeting potential of anti-HER2 5F7GGC Nanobody after radioiodination with the residualizing agent N-succinimidyl 4-guanidinomethyl 3-(125/131)I-iodobenzoate (*I-SGMIB). The 5F7GGC Nanobody was radiolabeled using *I-SGMIB and, for comparison, with N(ε)-(3-*I-iodobenzoyl)-Lys(5)-N(α)-maleimido-Gly(1)-GEEEK (*I-IB-Mal-d-GEEEK), another residualizing agent, and by direct radioiodination using IODO-GEN ((125)I-Nanobody). The 3 labeled Nanobodies were evaluated in affinity measurements, and paired-label internalization assays were performed on HER2-expressing BT474M1 breast carcinoma cells and in paired-label tissue distribution measurements in mice bearing subcutaneous BT474M1 xenografts. *I-SGMIB-Nanobody was produced in 50.4% ± 3.6% radiochemical yield and exhibited a dissociation constant of 1.5 ± 0.5 nM. Internalization assays demonstrated that intracellular retention of radioactivity was up to 1.5-fold higher for *I-SGMIB-Nanobody than for coincubated (125)I-Nanobody or *I-IB-Mal-d-GEEEK-Nanobody. Peak tumor uptake for *I-SGMIB-Nanobody was 24.50% ± 9.89% injected dose/g at 2 h, 2- to 4-fold higher than observed with other labeling methods, and was reduced by 90% with trastuzumab blocking, confirming the HER2 specificity of localization. Moreover, normal-organ clearance was fastest for *I-SGMIB-Nanobody, such that tumor-to-normal-organ ratios greater than 50:1 were reached by 24 h in all tissues except lungs

  2. Photolabile linker for the synthesis of hydroxamic acids

    2013-01-01

    a hydroxylamine - functionalized photolabile linker, and the so produced hydroxylamine - functionalized photolabile solid support. The invention further provides a method for synthesizing a one-bead-one compound library of hydroxamic acid derivatives on a photolabile linker, as well as a method for screening...

  3. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity

    Zhang, Liang; Navaratna, Tejas; Thurber, Greg M.

    2016-01-01

    Stabilized peptides address several limitations to peptide-based imaging agents and therapeutics such as poor stability and low affinity due to conformational flexibility. There is also active research in developing these compounds for intracellular drug targeting, and significant efforts have been invested to determine the effects of helix stabilization on intracellular delivery. However, much less is known about the impact on other pharmacokinetic parameters such as plasma clearance and bioavailability. We investigated the effect of different fluorescent helix-stabilizing linkers with varying lipophilicity on subcutaneous (SC) bioavailability using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin as a model system. The stabilized peptides showed significantly higher protease resistance and increased bioavailability independent of linker hydrophilicity, and all subcutaneously delivered conjugates were able to successfully target the islets of Langerhans with high specificity. The lipophilic peptide variants had slower absorption and plasma clearance than their respective hydrophilic conjugates, and the absolute bioavailability was also lower likely due to the longer residence times in the skin. The ease and efficiency of double-click helix stabilization chemistries is a useful tool for increasing the bioavailability of peptide therapeutics, many of which suffer from rapid in vivo protease degradation. Helix stabilization using linkers of varying lipophilicity can further control SC absorption and clearance rates to customize plasma pharmacokinetics. PMID:27327034

  4. Structural Mechanisms of Nucleosome Recognition by Linker Histones.

    Zhou, Bing-Rui; Jiang, Jiansheng; Feng, Hanqiao; Ghirlando, Rodolfo; Xiao, T Sam; Bai, Yawen

    2015-08-20

    Linker histones bind to the nucleosome and regulate the structure of chromatin and gene expression. Despite more than three decades of effort, the structural basis of nucleosome recognition by linker histones remains elusive. Here, we report the crystal structure of the globular domain of chicken linker histone H5 in complex with the nucleosome at 3.5 Å resolution, which is validated using nuclear magnetic resonance spectroscopy. The globular domain sits on the dyad of the nucleosome and interacts with both DNA linkers. Our structure integrates results from mutation analyses and previous cross-linking and fluorescence recovery after photobleach experiments, and it helps resolve the long debate on structural mechanisms of nucleosome recognition by linker histones. The on-dyad binding mode of the H5 globular domain is different from the recently reported off-dyad binding mode of Drosophila linker histone H1. We demonstrate that linker histones with different binding modes could fold chromatin to form distinct higher-order structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Nanohashtag structures based on carbon nanotubes and molecular linkers

    Frye, Connor W.; Rybolt, Thomas R.

    2018-03-01

    Molecular mechanics was used to study the noncovalent interactions between single-walled carbon nanotubes and molecular linkers. Groups of nanotubes have the tendency to form tight, parallel bundles (||||). Molecular linkers were introduced into our models to stabilize nanostructures with carbon nanotubes held in perpendicular orientations. Molecular mechanics makes it possible to estimate the strength of noncovalent interactions holding these structures together and to calculate the overall binding energy of the structures. A set of linkers were designed and built around a 1,3,5,7-cyclooctatetraene tether with two corannulene containing pincers that extend in opposite directions from the central cyclooctatetraene portion. Each pincer consists of a pairs of "arms." These molecular linkers were modified so that the "hand" portions of each pair of "arms" could close together to grab and hold two carbon nanotubes in a perpendicular arrangement. To illustrate the possibility of more complicated and open perpendicular CNTs structures, our primary goal was to create a model of a nanohashtag (#) CNT conformation that is more stable than any parallel CNT arrangements with bound linker molecules forming clumps of CNTs and linkers in non-hashtag arrangements. This goal was achieved using a molecular linker (C280H96) that utilizes van der Waals interactions to two perpendicular oriented CNTs. Hydrogen bonding was then added between linker molecules to augment the stability of the hashtag structure. In the hashtag structure with hydrogen bonding, four (5,5) CNTs of length 4.46 nm (18 rings) and four linkers (C276H92N8O8) stabilized the hashtag so that the average binding energy per pincer was 118 kcal/mol.

  6. Crystallization of Galectin-8 Linker Reveals Intricate Relationship between the N-terminal Tail and the Linker

    Yunlong Si

    2016-12-01

    Full Text Available Galectin-8 (Gal-8 plays a significant role in normal immunological function as well as in cancer. This lectin contains two carbohydrate recognition domains (CRD connected by a peptide linker. The N-terminal CRD determines ligand binding specificity, whereas the linker has been proposed to regulate overall Gal-8 function, including multimerization and biological activity. Here, we crystallized the Gal-8 N-terminal CRD with the peptide linker using a crystallization condition that contains Ni2+. The Ni2+ ion was found to be complexed between two CRDs via crystal packing contacts. The coordination between Ni2+ and Asp25 plays an indirect role in determining the structure of β-strand F0 and in influencing the linker conformation which could not be defined due to its dynamic nature. The linker was also shortened in situ and crystallized under a different condition, leading to a higher resolution structure refined to 1.08 Å. This crystal structure allowed definition of a short portion of the linker interacting with the Gal-8 N-terminal tail via ionic interactions and hydrogen bonds. Observation of two Gal-8 N-terminal CRD structures implies that the N-terminal tail and the linker may influence each other’s conformation. In addition, under specific crystallization conditions, glycerol could replace lactose and was observed at the carbohydrate binding site. However, glycerol did not show inhibition activity in hemagglutination assay.

  7. High-efficiency astatination of antibodies using N-iodosuccinimide as the oxidising agent in labelling of N-succinimidyl 3-(trimethylstannyl)benzoate

    Lindegren, S.; Andersson, H.; Baeck, T.; Jacobsson, L.; Karlsson, B.; Skarnemark, G.

    2001-01-01

    Monoclonal antibodies C215, reactive with colorectal carcinomas, and MOv18, reactive with most of the ovarian carcinomas, were radiohalogenated with [ 211 At]astatine. The radiohalogen was conjugate coupled to antibodies via the intermediate labelling reagent N-succinimidyl-3-(trimethylstannyl)benzoate (m-MeATE) in a two-step, single-pot reaction. Optimisation of the labelling of the reagent was achieved using N-iodosuccinimide, NIS, as the oxidising agent. The yields ranged from 69-95% in the labelling of 0.1-1.0 nmole of the m-MeATE precursor. Subsequent conjugation to antibodies resulted in yields of 58±7%. In vitro binding to tumour cells showed that the immunoreactivity of both antibodies was retained after astatine labelling

  8. Novel mixing method for cross linker introduction into droplet emulsions

    Land, KJ

    2013-10-01

    Full Text Available the introduction of cross linker after droplet formation, together with the utilisation of topological microfluidic channel structures, allowing for the novel manufacture of particles. Flow over these structures has been simulated in order to choose the most...

  9. Linker-mediated assembly of gold nanoparticles into multimeric motifs

    Sikora, Mateusz; Cieplak, Marek [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland); Szymczak, Piotr [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ulica Hoza 69, 00-681 Warsaw (Poland); Thompson, Damien, E-mail: mc@ifpan.edu.pl [Tyndall National Institute, Lee Maltings, University College Cork, Cork (Ireland)

    2011-11-04

    We present a theoretical description of linker-mediated self-assembly of gold nanoparticles (Au-NP). Using mesoscale simulations with a coarse-grained model for the Au NPs and dirhenium-based linker molecules, we investigate the conditions under which large clusters can grow and construct a phase diagram that identifies favorable growth conditions in terms of floating and bound linker concentrations. The findings can be considered as generic, as we expect other NP-linker systems to behave in a qualitatively similar way. In particular, we also discuss the case of antibody-functionalised Au NPs connected by the C-reactive proteins (CRPs). We extract some general rules for NP linking that may aid the production of size- and shape-specific NP clusters for technology applications.

  10. Initial conformation of kinesin's neck linker

    Geng Yi-Zhao; Yan Shi-Wei; Ji Qing; Liu Shu-Xia

    2014-01-01

    How ATP binding initiates the docking process of kinesin's neck linker is a key question in understanding kinesin mechanisms. By exploiting a molecular dynamics method, we investigate the initial conformation of kinesin's neck linker in its docking process. We find that, in the initial conformation, the neck linker has interactions with β0 and forms a ‘cover-neck bundle’ structure with β0. From this initial structure, the formation of extra turns and the docking of the cover-neck bundle structure can be achieved. The motor head provides a forward force on the initial cover-neck bundle structure through ATP-induced rotation. This force, together with the hydrophobic interaction of ILE327 with the hydrophobic pocket on the motor head, drives the formation of the extra turn and initiates the neck linker docking process. Based on these findings, a pathway from ATP binding-induced motor head rotation to neck linker docking is proposed. (interdisciplinary physics and related areas of science and technology)

  11. Radiolabelling of isopeptide Nε-(γ-glutamyl)-L-lysine by conjugation with N-succinimidyl-4-[18F]fluorobenzoate

    Wuest, F.; Hultsch, C.; Bergmann, R.; Johannsen, B.; Henle, T.

    2003-01-01

    The isopeptide N ε -(γ-glutamyl)-L-lysine 4 was labelled with 18 F via N-succinimidyl-4-[ 18 F]fluorobenzoate ([ 18 F]SFB). A modified approach for the convenient synthesis of [ 18 F]SFB was used, and [ 18 F]SFB could be obtained in decay-corrected radiochemical yields of 44-53% (n=20) and radiochemical purity >95% within 40 min after EOB. For labelling N ε -(γ-glutamyl)-L-lysine with [ 18 F]SFB the effects of isopeptide concentration, temperature, and pH were studied to determine the optimum reaction conditions. The coupling reaction was shown to be temperature and pH independent while being strongly affected by the isopeptide concentration. Using the optimized labelling conditions, in a typical experiment 1.3 GBq of [ 18 F]SFB could be converted into 447 MBq (46%, decay-corrected) of [ 18 F]fluorobenzoylated isopeptide within 45 min, including HPLC purification

  12. Radiolabelling of isopeptide N{sup {epsilon}}-({gamma}-glutamyl)-L-lysine by conjugation with N-succinimidyl-4-[{sup 18}F]fluorobenzoate

    Wuest, F; Hultsch, C; Bergmann, R; Johannsen, B; Henle, T

    2003-07-01

    The isopeptide N{sup {epsilon}}-({gamma}-glutamyl)-L-lysine 4 was labelled with {sup 18}F via N-succinimidyl-4-[{sup 18}F]fluorobenzoate ([{sup 18}F]SFB). A modified approach for the convenient synthesis of [{sup 18}F]SFB was used, and [{sup 18}F]SFB could be obtained in decay-corrected radiochemical yields of 44-53% (n=20) and radiochemical purity >95% within 40 min after EOB. For labelling N{sup {epsilon}}-({gamma}-glutamyl)-L-lysine with [{sup 18}F]SFB the effects of isopeptide concentration, temperature, and pH were studied to determine the optimum reaction conditions. The coupling reaction was shown to be temperature and pH independent while being strongly affected by the isopeptide concentration. Using the optimized labelling conditions, in a typical experiment 1.3 GBq of [{sup 18}F]SFB could be converted into 447 MBq (46%, decay-corrected) of [{sup 18}F]fluorobenzoylated isopeptide within 45 min, including HPLC purification.

  13. Radiolabelling of isopeptide N epsilon-(gamma-glutamyl)-L-lysine by conjugation with N-succinimidyl-4-[18F]fluorobenzoate.

    Wüst, F; Hultsch, C; Bergmann, R; Johannsen, B; Henle, T

    2003-07-01

    The isopeptide N(epsilon)-(gamma-glutamyl)-L-lysine 4 was labelled with 18F via N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). A modified approach for the convenient synthesis of [18F]SFB was used, and [18F]SFB could be obtained in decay-corrected radiochemical yields of 44-53% (n = 20) and radiochemical purity >95% within 40 min after EOB. For labelling N(epsilon)-(gamma-glutamyl)-L-lysine with [18F]SFB the effects of isopeptide concentration, temperature, and pH were studied to determine the optimum reaction conditions. The coupling reaction was shown to be temperature and pH independent while being strongly affected by the isopeptide concentration. Using the optimized labelling conditions, in a typical experiment 1.3GBq of [18F]SFB could be converted into 447MBq (46%, decay-corrected) of [18F]fluorobenzoylated isopeptide within 45 min, including HPLC purification.

  14. A streptavidin linker layer that functions after drying.

    Xia, Nan; Shumaker-Parry, Jennifer S; Zareie, M Hadi; Campbell, Charles T; Castner, David G

    2004-04-27

    The ability of streptavidin (SA) to simultaneously bind four biotins is often used in linker layers, where a biotinylated molecule is linked to a biotin-functionalized surface via SA. For biosensor and array applications, it is desirable that the SA linker layer be stable to drying and rehydration. In this study it was observed that a significant decrease in binding capacity of a SA layer occurred when that layer was dried. For this study a SA linker layer was constructed by binding SA to a biotin-containing alkylthiolate monolayer (BAT/OEG) self-assembled onto gold. Its stability after drying was investigated using surface plasmon resonance (SPR). Approximately a quarter of the SA layer was removed from the BAT/OEG surface upon drying and rehydration, suggesting disruption of SA-biotin binding when dry. This resulted in the dried SA layer losing approximately 40% of its biotinylated ferritin (BF) binding capacity. Coating the layer with trehalose before drying was found to inhibit the loss of SA from the BAT/OEG surface. SPR showed that the trehalose-protected SA linker layer retained approximately 91% of its original BF binding capacity after drying and rehydration. Atomic force microscopy, which was used to image individual surface-bound SA and BF molecules, qualitatively confirmed these observations.

  15. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks

    Feng, Liang; Yuan, Shuai; Zhang, Liang-Liang; Tan, Kui; Li, Jia-Luo; Kirchon, Angelo; Liu, Ling-Mei; Zhang, Peng; Han, Yu; Chabal, Yves J.; Zhou, Hong-Cai

    2018-01-01

    strate-gy, linker thermolysis, to construct ultra-stable hierarchically porous metal−organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores

  16. Open and Closed: The Roles of Linker Histones in Plants and Animals

    Over, Ryan S.; Michaels, Scott D.

    2014-01-01

    Linker histones play key roles alongside core histones in the regulation and maintenance of chromatin. Here, we illustrate our current understanding of the contributions of linker histones to the cell cycle, development, and chromatin structure in plants and animals.

  17. Tracking in vivo migration and distribution of antigen-specific cytotoxic T lymphocytes by 5,6-carboxyfluorescein diacetate succinimidyl ester staining during cancer immunotherapy.

    Xu, Wei-li; Li, Suo-lin; Wen, Ming; Wen, Jun-ye; Han, Jie; Zhang, Hong-zhen; Gao, Fei; Cai, Jian-hui

    2013-08-01

    Killing of targeted tumors during adoptive cell transfer therapy is associated with cytotoxic T lymphocyte (CTL) numbers, immunophenotype, tumor-specificity, and in vivo residence time, migration, and distribution. Therefore, tracing in vivo persistence, migration, and distribution of CTLs is important for cancer immunotherapy. Optimal staining concentration for CTL proliferation was determined by cell counting kit-8 (CCK-8) assay and killing efficiencies of CTLs or carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled melanoma antigen-specific cytotoxic T lymphocytes (CFSE-CTLs) for malignant melanoma cells in vitro were compared. Additionally, CFSE-CTLs were intravenously transfused to mice receiving B16 melanoma, and their residence time, migration, and distribution in vivo were observed by measuring fluorescence intensities of CFSE-CTLs per gram of tissue (%FI/g) in various tissues and analyzing tumor/non-tumor (T/NT) values. Anti-tumor effects of transferred CTLs and correlation between %FI/g and D-value of tumor size were analyzed. Five-micromolar CFSE was optimal for labeling CTLs with minimal cytotoxicity. No significant difference occurred between CTLs and CFSE-CTLs for tumor cell killing (P = 0.849) or interleukin-2 (P = 0.318) and interferon-γ (P = 0.201) levels. Distribution of CTLs in vivo varied with time. A negative correlation between %FI/g in tumors and D-value of tumor sizes by Spearman correlation analysis was observed. CTLs were recruited to and killed tumors from 6 hours to 3 days after cell infusion. CTLs were observed up to three weeks later in the tumor, liver, kidneys, and spleen; this was related to the abundant blood supply or the nature of immune organs. CCK-8 assay is a novel method to select optimal CFSE staining concentrations. Fluorescence intensity of transferred CTLs reflects their killing efficiency of tumors. CFSE fluorescent markers can trace in vivo CTL persistence, migration, and distribution because of its stability

  18. Dipolar cross-linkers for PDMS networks with enhanced dielectric permittivity and low dielectric loss

    Bahrt, Frederikke; Daugaard, Anders Egede; Hvilsted, Søren

    2013-01-01

    -(4-((4-nitrophenyl)diazenyl)phenoxy)-prop-1-yn-1-ylium, with a synthesized silicone compatible azide-functional cross-linker by click chemistry. The thermal, mechanical and electromechanical properties were investigated for PDMS films with 0 to 3.6 wt% of dipole-cross-linker. The relative dielectric permittivity......Dipole grafted cross-linkers were utilized to prepare polydimethylsiloxane (PDMS) elastomers with various chain lengths and with various concentrations of functional cross-linker. The grafted cross-linkers were prepared by reaction of two alkyne-functional dipoles, 1-ethynyl-4-nitrobenzene and 3...

  19. The flexibility of modified-linker MIL-53 materials.

    Munn, Alexis S; Pillai, Renjith S; Biswas, Shyam; Stock, Norbert; Maurin, Guillaume; Walton, Richard I

    2016-03-14

    The flexibility of eight aluminium hydroxo terephthalates [Al(OH)(BDC-X)]·n(guest) (BDC = 1,4-benzene-dicarboxylate; X = -H, -CH3, -Cl, -Br, -NH2, -NO2, -(OH)2, -CO2H) crystallising in the MIL-53-type structure was investigated upon thermal dehydration of as-made samples, superhydration and methanol adsorption/desorption using in situ powder X-ray diffraction (PXRD). Profile fitting was used to determine lattice parameters as a function of time and/or temperature to describe their structural evolution. It has thus been shown that while methanol vapour adsorption induces an opening of all the modified frameworks, except the -NH2 material, superhydration only leads to open structures for Al-MIL-53-NO2, -Br and -(OH)2. All the MIL-53 solids, except Al-MIL-53-(OH)2 are present in the open structures upon thermal dehydration. In addition to the exploration of the breathing behavior of this MIL-53 series, the issue of disorder in the distribution of the functional groups between the organic linkers was explored. As a typical illustration, density functional theory calculations were carried out on different structures of Al-MIL-53-Cl, in which the distribution of -Cl within two adjacent BDC linkers is varied. The results show that the most energetically stable configuration leads to the best agreement with the experimental PXRD pattern. This observation supports that the distribution of the selected linker substituent in the functionalised solid is governed by energetics and that there is a preference for an ordering of this arrangement.

  20. Investigation of the Linker Swing Motion in the Zeolitic Imidazolate Framework ZIF-90

    Zheng, Bin

    2018-03-13

    The linker swing motion in the zeolitic imidazolate framework ZIF-90 is investigated by density functional theory (DFT) calculation, molecular dynamics (MD) and grand-canonical Monte Carlo (GCMC) simulations. The relation between the terminal aldehyde group rotation and the linker swing motion is revealed. The extremely high activation energy of the linker swing motion in ZIF-90 can be attributed to the asymmetric geometry and electron distribution of aldehyde groups. The change in the gate structure resulting from the linker rotation is used to understand the guest adsorption in ZIF-90. This study shows that it is possible to tune the linker swing motion and then the properties of ZIF-90 by manipulating the terminal group rotation. The results highlight the importance of considering the internal freedom effects to correctly describe the linker swing motion and the flexibility of metal-organic frameworks (MOFs).

  1. Open and closed: the roles of linker histones in plants and animals.

    Over, Ryan S; Michaels, Scott D

    2014-03-01

    Histones package DNA in all eukaryotes and play key roles in regulating gene expression. Approximately 150 base pairs of DNA wraps around an octamer of core histones to form the nucleosome, the basic unit of chromatin. Linker histones compact chromatin further by binding to and neutralizing the charge of the DNA between nucleosomes. It is well established that chromatin packing is regulated by a complex pattern of posttranslational modifications (PTMs) to core histones, but linker histone function is less well understood. In this review, we describe the current understanding of the many roles that linker histones play in cellular processes, including gene regulation, cell division, and development, while putting the linker histone in the context of other nuclear proteins. Although intriguing roles for plant linker histones are beginning to emerge, much of our current understanding comes from work in animal systems. Many unanswered questions remain and additional work is required to fully elucidate the complex processes mediated by linker histones in plants.

  2. Specific distribution of the Saccharomyces cerevisiae linker histone homolog HHO1p in the chromatin

    Freidkin, Ilya; Katcoff, Don J.

    2001-01-01

    In virtually all eukaryotic organisms, linker DNA between nucleosomes is associated with a histone termed linker histone or histone H1. In Saccharomyces cerevisiae, HHO1 encodes a putative linker histone with very significant homology to histone H1. The encoded protein is expressed in the nucleus, but has not been shown to affect global chromatin structure, nor has its deletion shown any detectable phenotype. In vitro chromatin assembly experiments with recombinant HHO1p have shown that it is...

  3. Tunable CO 2 Adsorbents by Mixed-Linker Synthesis and Postsynthetic Modification of Zeolitic Imidazolate Frameworks

    Thompson, Joshua A.

    2013-04-25

    The incorporation of accessible amine functionality in zeolitic imidazolate frameworks (ZIFs) is used to improve the adsorption selectivity for CO 2/CH4 gas separation applications. Two synthetic approaches are described in this work to introduce functionality into the ZIF: (i) mixed-linker ZIF synthesis with 2-aminobenzimidazole as a substitution linker and (ii) postsynthetic modification of a mixed-linker ZIF with ethylenediamine. Using 2-aminobenzimidazole, a linker with a primary amine functional group, substitution of the ZIF-8 linker during synthesis allows for control over the adsorption properties while maintaining the ZIF-8 structure with up to nearly 50% substitution in the mixed-linker ZIF framework, producing a material with tunable pore size and amine functionality. Alternatively, postsynthetic modification of a mixed-linker ZIF containing an aldehyde functional group produces a ZIF material with a primary amine without detrimental loss of micropore volume by controlling the amount of functional group sites for modification. Both approaches using mixed-linker ZIFs yield new materials that show improvement in adsorption selectivity for the CO 2/CH4 gas pair over ZIF-8 and commercially available adsorbents as well as an increase in the heat of adsorption for CO2 without significant changes to the crystal structure. These results indicate that tuning the surface properties of ZIFs by either mixed-linker synthesis and/or postsynthetic modification may generate new materials with improved gas separation properties, thereby providing a new method for tailoring metal-organic frameworks. © 2013 American Chemical Society.

  4. Tunable CO 2 Adsorbents by Mixed-Linker Synthesis and Postsynthetic Modification of Zeolitic Imidazolate Frameworks

    Thompson, Joshua A.; Brunelli, Nicholas A.; Lively, Ryan P.; Johnson, J. R.; Jones, Christopher W.; Nair, Sankar

    2013-01-01

    The incorporation of accessible amine functionality in zeolitic imidazolate frameworks (ZIFs) is used to improve the adsorption selectivity for CO 2/CH4 gas separation applications. Two synthetic approaches are described in this work to introduce functionality into the ZIF: (i) mixed-linker ZIF synthesis with 2-aminobenzimidazole as a substitution linker and (ii) postsynthetic modification of a mixed-linker ZIF with ethylenediamine. Using 2-aminobenzimidazole, a linker with a primary amine functional group, substitution of the ZIF-8 linker during synthesis allows for control over the adsorption properties while maintaining the ZIF-8 structure with up to nearly 50% substitution in the mixed-linker ZIF framework, producing a material with tunable pore size and amine functionality. Alternatively, postsynthetic modification of a mixed-linker ZIF containing an aldehyde functional group produces a ZIF material with a primary amine without detrimental loss of micropore volume by controlling the amount of functional group sites for modification. Both approaches using mixed-linker ZIFs yield new materials that show improvement in adsorption selectivity for the CO 2/CH4 gas pair over ZIF-8 and commercially available adsorbents as well as an increase in the heat of adsorption for CO2 without significant changes to the crystal structure. These results indicate that tuning the surface properties of ZIFs by either mixed-linker synthesis and/or postsynthetic modification may generate new materials with improved gas separation properties, thereby providing a new method for tailoring metal-organic frameworks. © 2013 American Chemical Society.

  5. Germline-specific H1 variants: the "sexy" linker histones.

    Pérez-Montero, Salvador; Carbonell, Albert; Azorín, Fernando

    2016-03-01

    The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.

  6. Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation.

    Deanne W Sammond

    Full Text Available Cellulase enzymes deconstruct cellulose to glucose, and are often comprised of glycosylated linkers connecting glycoside hydrolases (GHs to carbohydrate-binding modules (CBMs. Although linker modifications can alter cellulase activity, the functional role of linkers beyond domain connectivity remains unknown. Here we investigate cellulase linkers connecting GH Family 6 or 7 catalytic domains to Family 1 or 2 CBMs, from both bacterial and eukaryotic cellulases to identify conserved characteristics potentially related to function. Sequence analysis suggests that the linker lengths between structured domains are optimized based on the GH domain and CBM type, such that linker length may be important for activity. Longer linkers are observed in eukaryotic GH Family 6 cellulases compared to GH Family 7 cellulases. Bacterial GH Family 6 cellulases are found with structured domains in either N to C terminal order, and similar linker lengths suggest there is no effect of domain order on length. O-glycosylation is uniformly distributed across linkers, suggesting that glycans are required along entire linker lengths for proteolysis protection and, as suggested by simulation, for extension. Sequence comparisons show that proline content for bacterial linkers is more than double that observed in eukaryotic linkers, but with fewer putative O-glycan sites, suggesting alternative methods for extension. Conversely, near linker termini where linkers connect to structured domains, O-glycosylation sites are observed less frequently, whereas glycines are more prevalent, suggesting the need for flexibility to achieve proper domain orientations. Putative N-glycosylation sites are quite rare in cellulase linkers, while an N-P motif, which strongly disfavors the attachment of N-glycans, is commonly observed. These results suggest that linkers exhibit features that are likely tailored for optimal function, despite possessing low sequence identity. This study suggests

  7. Hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity in oral squamous cell carcinoma derived cells.

    Chaudhari, Pratik Rajeev; Charles, Silvania Emlit; D'Souza, Zinia Charlotte; Vaidya, Milind Murlidhar

    2017-11-15

    BPAG1e and Plectin are hemidesmosomal linker proteins which anchor intermediate filament proteins to the cell surface through β4 integrin. Recent reports indicate that these proteins play a role in various cellular processes apart from their known anchoring function. However, the available literature is inconsistent. Further, the previous study from our laboratory suggested that Keratin8/18 pair promotes cell motility and tumor progression by deregulating β4 integrin signaling in oral squamous cell carcinoma (OSCC) derived cells. Based on these findings, we hypothesized that linker proteins may have a role in neoplastic progression of OSCC. Downregulation of hemidesmosomal linker proteins in OSCC derived cells resulted in reduced cell migration accompanied by alterations in actin organization. Further, decreased MMP9 activity led to reduced cell invasion in linker proteins knockdown cells. Moreover, loss of these proteins resulted in reduced tumorigenic potential. SWATH analysis demonstrated upregulation of N-Myc downstream regulated gene 1 (NDRG1) in linker proteins downregulated cells as compared to vector control cells. Further, the defects in phenotype upon linker proteins ablation were rescued upon loss of NDRG1 in linker proteins knockdown background. These data together indicate that hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity possibly through NDRG1 in OSCC derived cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Description of a cellulose-binding domain and a linker sequence from Aspergillus fungi

    Quentin, M; Ebbelaar, M; Derksen, J; Mariani, C; van der Valk, H

    A family I cellulose-binding domain (CBD) and a serine- and threonine-rich linker peptide were cloned from the fungi Aspergillus japonicus and Aspergillus aculeatus. A glutathione S-transferase (GST) fusion protein comprising GST and a peptide linker with the CBD fused to its C-terminus, was

  9. Novel silicone compatible cross-linkers for controlled functionalization of PDMS networks

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    2013-01-01

    . In order to improve the dielectric properties of PDMS a novel system is developed where push-pull dipoles are grafted to a new silicone compatible cross-linker. The grafted cross-linkers are prepared by reaction of two different push-pull dipole alkynes as well as a fluorescent alkyne with the new azide...

  10. P-Link: A method for generating multicomponent cytochrome P450 fusions with variable linker length

    Belsare, Ketaki D.; Ruff, Anna Joelle; Martinez, Ronny

    2014-01-01

    Fusion protein construction is a widely employed biochemical technique, especially when it comes to multi-component enzymes such as cytochrome P450s. Here we describe a novel method for generating fusion proteins with variable linker lengths, protein fusion with variable linker insertion (P...

  11. Library of biphenyl privileged substructures using a safety-catch linker approach

    Severinsen, Rune; Bourne, Gregory T; Tran, Tran T

    2008-01-01

    A biphenyl privileged structure library containing three attachment points were synthesized using a catechol-based safety-catch linker strategy. The method requires the attachment of a bromo-acid to the linker, followed by a Pd-catalyzed Suzuki cross-coupling reaction. Further derivatization...

  12. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding.

    Chen, Shugui; Brier, Sébastien; Smithgall, Thomas E; Engen, John R

    2007-04-01

    The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis-interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain.

  13. Linkers, resins, and general procedures for solid-phase peptide synthesis

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen

    2013-01-01

    and linkers for solid-phase synthesis is a key parameter for successful peptide synthesis. This chapter provides an overview of the most common and useful resins and linkers for the synthesis of peptides with C-terminal amides, carboxylic acids, and more. The chapter finishes with robust protocols for general...

  14. Construction of hierarchically porous metal-organic frameworks through linker labilization

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; Li, Jialuo; Huang, Lan; Feng, Liang; Wang, Xuan; Bosch, Mathieu; Alsalme, Ali; Cagin, Tahir; Zhou, Hong-Cai

    2017-05-01

    A major goal of metal-organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. Herein, we present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragments by acid treatment. We demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.

  15. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remains unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.

  16. Charged Triazole Cross-Linkers for Hyaluronan-Based Hybrid Hydrogels

    Maike Martini

    2016-09-01

    Full Text Available Polyelectrolyte hydrogels play an important role in tissue engineering and can be produced from natural polymers, such as the glycosaminoglycan hyaluronan. In order to control charge density and mechanical properties of hyaluronan-based hydrogels, we developed cross-linkers with a neutral or positively charged triazole core with different lengths of spacer arms and two terminal maleimide groups. These cross-linkers react with thiolated hyaluronan in a fast, stoichiometric thio-Michael addition. Introducing a positive charge on the core of the cross-linker enabled us to compare hydrogels with the same interconnectivity, but a different charge density. Positively charged cross-linkers form stiffer hydrogels relatively independent of the size of the cross-linker, whereas neutral cross-linkers only form stable hydrogels at small spacer lengths. These novel cross-linkers provide a platform to tune the hydrogel network charge and thus the mechanical properties of the network. In addition, they might offer a wide range of applications especially in bioprinting for precise design of hydrogels.

  17. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks.

    Feng, Liang; Yuan, Shuai; Zhang, Liang-Liang; Tan, Kui; Li, Jia-Luo; Kirchon, Angelo; Liu, Ling-Mei; Zhang, Peng; Han, Yu; Chabal, Yves J; Zhou, Hong-Cai

    2018-02-14

    Sufficient pore size, appropriate stability, and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization, and catalysis involving large molecules. Herein, we report a powerful and general strategy, linker thermolysis, to construct ultrastable hierarchically porous metal-organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxylation process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultrasmall metal oxide nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid-catalyzed reactions. Most importantly, this work provides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on probing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.

  18. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks

    Feng, Liang

    2018-01-18

    Sufficient pore size, appropriate stability and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization and catalysis involving large molecules. Herein, we report a powerful and general strate-gy, linker thermolysis, to construct ultra-stable hierarchically porous metal−organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxyla-tion process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultra-small metal oxide (MO) nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid catalyzed reactions. Most importantly, this work pro-vides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on prob-ing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.

  19. A Traceless Aryl-Triazene Linker for DNA-Directed Chemistry

    Hejesen, Christian; Pedersen, Lars Kolster; Gothelf, Kurt Vesterager

    2013-01-01

    DNA-directed synthesis of encoded combinatorial libraries of small organic compounds most often involves transfer of organic building blocks from one DNA strand to another. This requires cleavable linkers to enable cleavage of the link to the original DNA strand from which the building block...... is transferred. Relatively few cleavable linkers are available for DNA-directed synthesis and most often they leave an amino group at the organic molecule. Here we have extended the application of 10 aryltriazenes as traceless linkers for DNA-directed synthesis. After reaction of one building block...

  20. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    Yu, Weili

    2014-08-19

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    Yu, Weili; Isimjan, Tayirjan T.; Del Gobbo, Silvano; Anjum, Dalaver Hussain; Abdel-Azeim, Safwat; Cavallo, Luigi; Garcia Esparza, Angel T.; Domen, Kazunari; Xu, Wei; Takanabe, Kazuhiro

    2014-01-01

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High-Flux Zeolitic Imidazolate Framework Membranes for Propylene/Propane Separation by Postsynthetic Linker Exchange.

    Lee, Moon Joo; Kwon, Hyuk Taek; Jeong, Hae-Kwon

    2018-01-02

    While zeolitic imidazolate framework, ZIF-8, membranes show impressive propylene/propane separation, their throughput needs to be greatly improved for practical applications. A method is described that drastically reduces the effective thickness of ZIF-8 membranes, thereby substantially improving their propylene permeance (that is, flux). The new strategy is based on a controlled single-crystal to single-crystal linker exchange of 2-methylimidazole in ZIF-8 membrane grains with 2-imidazolecarboxaldehyde (ZIF-90 linker), thereby enlarging the effective aperture size of ZIF-8. The linker-exchanged ZIF-8 membranes showed a drastic increase in propylene permeance by about four times, with a negligible loss in propylene/propane separation factor when compared to as-prepared membranes. The linker-exchange effect depends on the membrane synthesis method. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Investigation of the Linker Swing Motion in the Zeolitic Imidazolate Framework ZIF-90

    Zheng, Bin; Fu, Fang; Wang, Lian Li; Yang, Limin; Zhu, Yihan; Du, Huiling

    2018-01-01

    The linker swing motion in the zeolitic imidazolate framework ZIF-90 is investigated by density functional theory (DFT) calculation, molecular dynamics (MD) and grand-canonical Monte Carlo (GCMC) simulations. The relation between the terminal

  4. Composite materials with metal oxide attached to lead chalcogenide nanocrystal quantum dots with linkers

    Fuke, Nobuhiro; Koposov, Alexey Y; Sykora, Milan; Hoch, Laura

    2014-12-16

    Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MO.sub.x and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.

  5. LRRC45 Is a Centrosome Linker Component Required for Centrosome Cohesion

    Runsheng He

    2013-09-01

    Full Text Available During interphase, centrosomes are connected by a proteinaceous linker between the proximal ends of the centrioles, which is important for the centrosomes to function as a single microtubule-organizing center. However, the composition and regulation of centrosomal linker remain largely unknown. Here, we show that LRRC45 is a centrosome linker that localizes at the proximal ends of the centrioles and forms fiber-like structures between them. Depletion of LRRC45 results in centrosome splitting during interphase. Moreover, LRRC45 interacts with both C-Nap1 and rootletin and is phosphorylated by Nek2A at S661 during mitosis. After phosphorylation, both LRRC45 centrosomal localization and fiber-like structures are significantly reduced, which subsequently leads to centrosome separation. Thus, LRRC45 is a critical component of the proteinaceous linker between two centrioles and is required for centrosome cohesion.

  6. Identification of novel post-translational modifications in linker histones from chicken erythrocytes.

    Sarg, Bettina; Lopez, Rita; Lindner, Herbert; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-01-15

    Chicken erythrocyte nuclei were digested with micrococcal nuclease and fractionated by centrifugation in low-salt buffer into soluble and insoluble fractions. Post-translational modifications of the purified linker histones of both fractions were analyzed by LC-ESI-MS/MS. All six histone H1 subtypes (H1.01, H1.02, H1.03, H1.10, H1.1L and H1.1R) and histone H5 were identified. Mass spectrometry analysis enabled the identification of a wide range of PTMs, including N(α)-terminal acetylation, acetylation, formylation, phosphorylation and oxidation. A total of nine new modifications in chicken linker histones were mapped, most of them located in the N-terminal and globular domains. Relative quantification of the modified peptides showed that linker histone PTMs were differentially distributed among both chromatin fractions, suggesting their relevance in the regulation of chromatin structure. The analysis of our results combined with previously reported data for chicken and some mammalian species showed that most of the modified positions were conserved throughout evolution, highlighting their importance in specific linker histone functions and epigenetics. Post-translational modifications of linker histones could have a role in the regulation of gene expression through the modulation of chromatin higher-order structure and chromatin remodeling. Finding new PTMs in linker histones is the first step to elucidate their role in the histone code. In this manuscript we report nine new post-translational modifications of the linker histones from chicken erythrocytes, one in H5 and eight in the H1 subtypes. Chromatin fractionated by centrifugation in low-salt buffer resulted in two fractions with different contents and compositions of linker histones and enriched in specific core histone PTMs. Of particular interest is the fact that linker histone PTMs were differentially distributed in both chromatin fractions, suggesting specific functions. Future studies are needed to

  7. Monte Carlo analysis of neck linker extension in kinesin molecular motors.

    Matthew L Kutys

    2010-11-01

    Full Text Available Kinesin stepping is thought to involve both concerted conformational changes and diffusive movement, but the relative roles played by these two processes are not clear. The neck linker docking model is widely accepted in the field, but the remainder of the step--diffusion of the tethered head to the next binding site--is often assumed to occur rapidly with little mechanical resistance. Here, we investigate the effect of tethering by the neck linker on the diffusive movement of the kinesin head, and focus on the predicted behavior of motors with naturally or artificially extended neck linker domains. The kinesin chemomechanical cycle was modeled using a discrete-state Markov chain to describe chemical transitions. Brownian dynamics were used to model the tethered diffusion of the free head, incorporating resistive forces from the neck linker and a position-dependent microtubule binding rate. The Brownian dynamics and chemomechanical cycle were coupled to model processive runs consisting of many 8 nm steps. Three mechanical models of the neck linker were investigated: Constant Stiffness (a simple spring, Increasing Stiffness (analogous to a Worm-Like Chain, and Reflecting (negligible stiffness up to a limiting contour length. Motor velocities and run lengths from simulated paths were compared to experimental results from Kinesin-1 and a mutant containing an extended neck linker domain. When tethered by an increasingly stiff spring, the head is predicted to spend an unrealistically short amount of time within the binding zone, and extending the neck is predicted to increase both the velocity and processivity, contrary to experiments. These results suggest that the Worm-Like Chain is not an adequate model for the flexible neck linker domain. The model can be reconciled with experimental data if the neck linker is either much more compliant or much stiffer than generally assumed, or if weak kinesin-microtubule interactions stabilize the diffusing

  8. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    Chang, Keejong; Qian, Jin; Jiang, MeiSheng; Liu, Yi-Hsin; Wu, Ming-Che; Chen, Chi-Dar; Lai, Chao-Kuen; Lo, Hsin-Lung; Hsiao, Chin-Ton; Brown, Lucy; Bolen, James; Huang, Hsiao-I; Ho, Pei-Yu; Shih, Ping Yao; Yao, Chen-Wen

    2002-01-01

    Abstract Background Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT) that greatly improves the production efficiency of large transgenic animals. Results The linker protein, a monoclonal ...

  9. Lecithin-linker formulations for self-emulsifying delivery of nutraceuticals.

    Chu, Jacquelene; Cheng, Yu-Ling; Rao, A Venketeshwer; Nouraei, Mehdi; Zarate-Muñoz, Silvia; Acosta, Edgar J

    2014-08-25

    Lecithin-linker microemulsions are formulations produced with soybean lecithin in combination with a highly lipophilic (lipophilic linker) and highly hydrophilic (hydrophilic linkers) surfactant-like additives. In this work, lecithin-linker systems were formulated to produce self-emulsifying delivery systems for β-carotene and β-sitosterol. The concentration of the lipophilic linker, sorbitan monooleate, was adjusted to minimize the formation of liquid crystals. The concentration of hydrophilic linkers, decaglyceryl caprylate/caprate and PEG-6-caprylic/capric glycerides, was gradually increased (scanned) until single phase clear microemulsions were obtained. For these scans, the oil (ethyl caprate) to water ratio was set to 1. The single phase, clear microemulsions were diluted with fed-state simulated intestinal fluid (FeSSIF) and produced stable emulsions, with drop sizes close to 200 nm. Using pseudo-ternary phase diagrams to evaluate the process of dilution of microemulsion preconcentrates (mixtures of oil, lecithin and linkers with little or no water) with FeSSIF, it was determined that self-emulsifying systems are obtained when the early stages of the dilution produce single phase microemulsions. If liquid crystals or multiple phase systems are obtained during those early stages, then the emulsification yields unstable emulsions with large drop sizes. An in vitro permeability study conducted using a Flow-Thru Dialyzer revealed that stable emulsions with drop sizes of 150-300 nm produce large and irreversible permeation of β-carotene to sheep intestine. On the other hand, unstable emulsions produced without the linker combination separated in the dialyzer chamber. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger.

    Sauer, J; Christensen, T; Frandsen, T P; Mirgorodskaya, E; McGuire, K A; Driguez, H; Roepstorff, P; Sigurskjold, B W; Svensson, B

    2001-08-07

    Several variants of glucoamylase 1 (GA1) from Aspergillus niger were created in which the highly O-glycosylated peptide (aa 468--508) connecting the (alpha/alpha)(6)-barrel catalytic domain and the starch binding domain was substituted at the gene level by equivalent segments of glucoamylases from Hormoconis resinae, Humicola grisea, and Rhizopus oryzae encoding 5, 19, and 36 amino acid residues. Variants were constructed in which the H. resinae linker was elongated by proline-rich sequences as this linker itself apparently was too short to allow formation of the corresponding protein variant. Size and isoelectric point of GA1 variants reflected differences in linker length, posttranslational modification, and net charge. While calculated polypeptide chain molecular masses for wild-type GA1, a nonnatural proline-rich linker variant, H. grisea, and R. oryzae linker variants were 65,784, 63,777, 63,912, and 65,614 Da, respectively, MALDI-TOF-MS gave values of 82,042, 73,800, 73,413, and 90,793 Da, respectively, where the latter value could partly be explained by an N-glycosylation site introduced near the linker C-terminus. The k(cat) and K(m) for hydrolysis of maltooligodextrins and soluble starch, and the rate of hydrolysis of barley starch granules were essentially the same for the variants as for wild-type GA1. beta-Cyclodextrin, acarbose, and two heterobidentate inhibitors were found by isothermal titration calorimetry to bind to the catalytic and starch binding domains of the linker variants, indicating that the function of the active site and the starch binding site was maintained. The stability of GA1 linker variants toward GdnHCl and heat, however, was reduced compared to wild-type.

  11. Rational design of molecularly imprinted polymer: the choice of cross-linker.

    Muhammad, Turghun; Nur, Zohre; Piletska, Elena V; Yimit, Osmanjan; Piletsky, Sergey A

    2012-06-07

    The paper describes a rational approach for the selection of cross-linkers during the development of molecularly imprinted polymers (MIPs). As a model system for this research MIPs specific for the drug zidovudine (AZT) were designed and tested. Three cross-linkers trimethylolpropane trimethacrylate (TRIM), ethylene glycol dimethacrylate (EGDMA) and divinylbenzene (DVB) were studied. The analogue of zidovudine (AZT) ester (AZT-ES) was used as a dummy template. The imprinting factors for all of the polymers in the static adsorption experiments were calculated. The data on the AZT adsorption by control polymers (CP), which were prepared with different cross-linkers without a functional monomer, was also analyzed. DVB was found to be more inert towards zidovudine than EGDMA and TRIM, which was confirmed by both molecular modelling and adsorption experiments. It was demonstrated that DVB-based polymers had a higher imprinting factor (I = 1.85) compared with other tested cross-linked polymers. It was suggested that the selection of the cross-linker should be based on the strength of the interaction with the template: the cross-linker which displays lower binding of the template should be preferential because it generates MIPs with lower non-specific binding and a higher imprinting factor, and therefore specificity. Which cross-linker to use for the preparation of any particular MIP can be determined by analysis of the interactions between the cross-linker and template. This could be done either virtually using computational modelling or by template adsorption using a small library of polymers prepared using different cross-linkers.

  12. Novel Concepts of MS-Cleavable Cross-linkers for Improved Peptide Structure Analysis

    Hage, Christoph; Falvo, Francesco; Schäfer, Mathias; Sinz, Andrea

    2017-10-01

    The chemical cross-linking/mass spectrometry (MS) approach is gaining increasing importance as an alternative method for studying protein conformation and for deciphering protein interaction networks. This study is part of our ongoing efforts to develop innovative cross-linking principles for a facile and efficient assignment of cross-linked products. We evaluate two homobifunctional, amine-reactive, and MS-cleavable cross-linkers regarding their potential for automated analysis of cross-linked products. We introduce the bromine phenylurea (BrPU) linker that possesses a unique structure yielding a distinctive fragmentation pattern on collisional activation. Moreover, BrPU delivers the characteristic bromine isotope pattern and mass defect for all cross-linker-decorated fragments. We compare the fragmentation behavior of the BrPU linker with that of our previously described MS-cleavable TEMPO-Bz linker (which consists of a 2,2,6,6-tetramethylpiperidine-1-oxy moiety connected to a benzyl group) that was developed to perform free-radical-initiated peptide sequencing. Comparative collisional activation experiments (collision-induced dissociation and higher-energy collision-induced dissociation) with both cross-linkers were conducted in negative electrospray ionization mode with an Orbitrap Fusion mass spectrometer using five model peptides. As hypothesized in a previous study, the presence of a cross-linked N-terminal aspartic acid residue seems to be the prerequisite for the loss of an intact peptide from the cross-linked products. As the BrPU linker combines a characteristic mass shift with an isotope signature, it presents a more favorable combination for automated assignment of cross-linked products compared with the TEMPO-Bz linker. [Figure not available: see fulltext.

  13. Evaluation of an internalizing monoclonal antibody labeled using N-succinimidyl 3-[{sup 131}i]iodo-4-phosphonomethylbenzoate ([{sup 131}i]SIPMB), a negatively charged substituent bearing acylation agent

    Shankar, Sriram; Vaidyanathan, Ganesan; Affleck, Donna J.; Peixoto, Katia; Bigner, Darell D.; Zalutsky, Michael R. E-mail: zalut001@mc.duke.edu

    2004-10-01

    Monoclonal antibodies such as L8A4, reactive with the epidermal growth factor receptor variant III, internalize after receptor binding resulting in proteolytic degradation by lysosomes. Labeling internalizing mAbs requires the use of methodologies that result in the trapping of labeled catabolites in tumor cells after intracellular processing. Herein we have investigated the potential utility of N-succinimidyl-3-[{sup 131}I]iodo-4-phosphonomethylbenzoate ([{sup 131}I]SIPMB), an acylation agent that couples the corresponding negatively charged acid [{sup 131}I]IPMBA to the protein, for this purpose. Biodistribution studies demonstrated that [{sup 131}I]IPMBA cleared rapidly from normal tissues and exhibited thyroid levels {<=}0.1% injected dose, consistent with a low degree of dehalogenation. Biodistribution experiments in athymic mice bearing subcutaneous D-256 human glioma xenografts were performed to compare L8A4 labeled using [{sup 131}I]SIPMB to L8A4 labeled with {sup 125}I using both the analogous positively charged acylation agent N-succinimidyl-4-guanidinomethyl-3-[{sup 125}I]iodobenzoate ([{sup 125}I]SGMIB) and Iodogen. Tumor uptake of [{sup 131}I]SIPMB-L8A4 (41.9{+-}3.5% ID/g) was nearly threefold that of L8A4 labeled using Iodogen (14.0{+-}1.1% ID/g) after 2 days, and tumor to tissue ratios remained uniformly high throughout with [{sup 131}I]SIPMB-L8A4. Thyroid uptake increased for the Iodogen labeled mAb (3.55{+-}0.36 %ID at 5 days) whereas that of [{sup 131}I]SIPMB labeled mAb remained low (0.21{+-}0.04% ID at 5 days). In the second biodistribution, L8A4 labeled using [{sup 131}I]SIPMB and [{sup 125}I]SGMIB showed no difference in normal tissue uptake and had nearly identical tumor uptake ([{sup 131}I]SIPMB, 41.8{+-}14.2% ID/g; [{sup 125}I]SGMIB, 41.6{+-}15.8% ID/g, at 4 days). These results suggest that [{sup 131}I]SIPMB may be a viable acylation agent for the radioiodination of internalizing mAbs.

  14. Structural properties of the linkers connecting the N- and C- terminal domains in the MocR bacterial transcriptional regulators

    Teresa Milano

    2016-12-01

    Full Text Available Peptide inter-domain linkers are peptide segments covalently linking two adjacent domains within a protein. Linkers play a variety of structural and functional roles in naturally occurring proteins. In this work we analyze the sequence properties of the predicted linker regions of the bacterial transcriptional regulators belonging to the recently discovered MocR subfamily of the GntR regulators. Analyses were carried out on the MocR sequences taken from the phyla Actinobacteria, Firmicutes, Alpha-, Beta- and Gammaproteobacteria. The results suggest that MocR linkers display phylum-specific characteristics and unique features different from those already described for other classes of inter-domain linkers. They show an average length significantly higher: 31.8 ± 14.3 residues reaching a maximum of about 150 residues. Compositional propensities displayed general and phylum-specific trends. Pro is dominating in all linkers. Dyad propensity analysis indicate Pro–Pro as the most frequent amino acid pair in all linkers. Physicochemical properties of the linker regions were assessed using amino acid indices relative to different features: in general, MocR linkers are flexible, hydrophilic and display propensity for β-turn or coil conformations. Linker sequences are hypervariable: only similarities between MocR linkers from organisms related at the level of species or genus could be found with sequence searches. The results shed light on the properties of the linker regions of the new MocR subfamily of bacterial regulators and may provide knowledge-based rules for designing artificial linkers with desired properties.

  15. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  16. The measles virus phosphoprotein interacts with the linker domain of STAT1

    Devaux, Patricia; Priniski, Lauren; Cattaneo, Roberto

    2013-01-01

    The measles virus (MV) phosphoprotein (P) and V proteins block the interferon (IFN) response by impeding phosphorylation of the signal transducer and activator of transcription 1 (STAT1) by the Janus kinase 1 (JAK1). We characterized how STAT1 mutants interact with P and JAK1 phosphorylation. Certain mutants of the linker, the Src-homology 2 domain (SH2), or the transactivation domain had reduced or abolished phosphorylation through JAK1 after IFN treatment. Other mutants, mainly localized in the linker, failed to interact with P as documented by the lack of interference with nuclear translocation. Thus the functional footprint of P on STAT1 localizes mainly to the linker domain; there is also some overlap with the STAT1 phosphorylation functional footprint on the SH2 domain. Based on these observations, we discuss how the MV-P might operate to inhibit the JAK/STAT pathway. - Highlights: • Residue in the linker and SH2 domains of STAT1 are important for MV-P interaction. • Residue in the linker and SH2 domains of STAT1 are important for STAT1 phosphorylation. • Residues interferring with both functions have similar location on STAT1. • The viral P and V proteins may operate in concert to inhibit the JAK/STAT pathway

  17. The measles virus phosphoprotein interacts with the linker domain of STAT1

    Devaux, Patricia, E-mail: devaux.patricia@mayo.edu; Priniski, Lauren; Cattaneo, Roberto

    2013-09-15

    The measles virus (MV) phosphoprotein (P) and V proteins block the interferon (IFN) response by impeding phosphorylation of the signal transducer and activator of transcription 1 (STAT1) by the Janus kinase 1 (JAK1). We characterized how STAT1 mutants interact with P and JAK1 phosphorylation. Certain mutants of the linker, the Src-homology 2 domain (SH2), or the transactivation domain had reduced or abolished phosphorylation through JAK1 after IFN treatment. Other mutants, mainly localized in the linker, failed to interact with P as documented by the lack of interference with nuclear translocation. Thus the functional footprint of P on STAT1 localizes mainly to the linker domain; there is also some overlap with the STAT1 phosphorylation functional footprint on the SH2 domain. Based on these observations, we discuss how the MV-P might operate to inhibit the JAK/STAT pathway. - Highlights: • Residue in the linker and SH2 domains of STAT1 are important for MV-P interaction. • Residue in the linker and SH2 domains of STAT1 are important for STAT1 phosphorylation. • Residues interferring with both functions have similar location on STAT1. • The viral P and V proteins may operate in concert to inhibit the JAK/STAT pathway.

  18. A High-Throughput Small Molecule Screen for C. elegans Linker Cell Death Inhibitors.

    Andrew R Schwendeman

    Full Text Available Programmed cell death is a ubiquitous process in metazoan development. Apoptosis, one cell death form, has been studied extensively. However, mutations inactivating key mammalian apoptosis regulators do not block most developmental cell culling, suggesting that other cell death pathways are likely important. Recent work in the nematode Caenorhabditis elegans identified a non-apoptotic cell death form mediating the demise of the male-specific linker cell. This cell death process (LCD, linker cell-type death is morphologically conserved, and its molecular effectors also mediate axon degeneration in mammals and Drosophila. To develop reagents to manipulate LCD, we established a simple high-throughput screening protocol for interrogating the effects of small molecules on C. elegans linker cell death in vivo. From 23,797 compounds assayed, 11 reproducibly block linker cell death onset. Of these, five induce animal lethality, and six promote a reversible developmental delay. These results provide proof-of principle validation of our screening protocol, demonstrate that developmental progression is required for linker cell death, and suggest that larger scale screens may identify LCD-specific small-molecule regulators that target the LCD execution machinery.

  19. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase.

    Meiselbach, Heike; Sticht, Heinrich

    2011-08-01

    The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.

  20. Disruption of the IS6-AID linker affects voltage-gated calcium channel inactivation and facilitation.

    Findeisen, Felix; Minor, Daniel L

    2009-03-01

    Two processes dominate voltage-gated calcium channel (Ca(V)) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The Ca(V)beta/Ca(V)alpha(1)-I-II loop and Ca(2+)/calmodulin (CaM)/Ca(V)alpha(1)-C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6-alpha-interaction domain (AID) linker provides a rigid connection between the pore and Ca(V)beta/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate Ca(V)1.2 (L-type) and Ca(V)2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt Ca(V)beta/I-II association sharply decelerate CDI and reduce a second Ca(2+)/CaM/Ca(V)alpha(1)-C-terminal-mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, Ca(V)beta and the IS6-AID linker, are essential for calcium-dependent modulation, and that both Ca(V)beta-dependent and CaM-dependent components couple to the pore by a common mechanism requiring Ca(V)beta and an intact IS6-AID linker.

  1. Linker Histone Phosphorylation Regulates Global Timing of Replication Origin Firing*S⃞

    Thiriet, Christophe; Hayes, Jeffrey J.

    2009-01-01

    Despite the presence of linker histone in all eukaryotes, the primary function(s) of this histone have been difficult to clarify. Knock-out experiments indicate that H1s play a role in regulation of only a small subset of genes but are an essential component in mouse development. Here, we show that linker histone (H1) is involved in the global regulation of DNA replication in Physarum polycephalum. We find that genomic DNA of H1 knock-down cells is more rapidly replicated, an effect due at least in part to disruption of the native timing of replication fork firing. Immunoprecipitation experiments demonstrate that H1 is transiently lost from replicating chromatin via a process facilitated by phosphorylation. Our results suggest that linker histones generate a chromatin environment refractory to replication and that their transient removal via protein phosphorylation during S phase is a critical step in the epigenetic regulation of replication timing. PMID:19015270

  2. The centrosomal linker and microtubules provide dual levels of spatial coordination of centrosomes.

    Marko Panic

    2015-05-01

    Full Text Available The centrosome is the principal microtubule organizing center in most animal cells. It consists of a pair of centrioles surrounded by pericentriolar material. The centrosome, like DNA, duplicates exactly once per cell cycle. During interphase duplicated centrosomes remain closely linked by a proteinaceous linker. This centrosomal linker is composed of rootletin filaments that are anchored to the centrioles via the protein C-Nap1. At the onset of mitosis the linker is dissolved by Nek2A kinase to support the formation of the bipolar mitotic spindle. The importance of the centrosomal linker for cell function during interphase awaits characterization. Here we assessed the phenotype of human RPE1 C-Nap1 knockout (KO cells. The absence of the linker led to a modest increase in the average centrosome separation from 1 to 2.5 μm. This small impact on the degree of separation is indicative of a second level of spatial organization of centrosomes. Microtubule depolymerisation or stabilization in C-Nap1 KO cells dramatically increased the inter-centrosomal separation (> 8 μm. Thus, microtubules position centrosomes relatively close to one another in the absence of linker function. C-Nap1 KO cells had a Golgi organization defect with a two-fold expansion of the area occupied by the Golgi. When the centrosomes of C-Nap1 KO cells showed considerable separation, two spatially distinct Golgi stacks could be observed. Furthermore, migration of C-Nap1 KO cells was slower than their wild type RPE1 counterparts. These data show that the spatial organization of centrosomes is modulated by a combination of centrosomal cohesion and microtubule forces. Furthermore a modest increase in centrosome separation has major impact on Golgi organization and cell migration.

  3. A New Achiral Linker Reagent for the Incorporation of Multiple Amino Groups Into Oligonucleotides

    1997-01-01

    The present invention relates to a new functionalized achiral linker reagent for incorporating multiple primary amino groups or reporter groups into oligonucleotides following the phosphoramidite methodology. It is possible to substitute any ribodeoxynucleotide, deoxynucleotide, or nucleotide......-oxyl-2,2,5,5-tetramethylpyrrolidine), TEMPO (N-oxyl-2,2,6,6-tetramethylpiperidine), dinitrophenyl, texas red, tetramethyl rhodamine, 7-nitrobenzo-2-oxa-1-diazole (NBD), or pyrene. The present invention also relates to a solid phase support, e.g. a Controlled Pore Glass (CPG), immobilized linker reagent...

  4. A Photolabile Linker for the Solid-Phase Synthesis of Peptide Hydrazides and Heterocycles

    Qvortrup, Katrine; Komnatnyy, Vitaly V.; Nielsen, Thomas Eiland

    2014-01-01

    A photolabile hydrazine linker for the solid-phase synthesis of peptide hydrazides and hydrazine-derived heterocycles is presented. The developed protocols enable the efficient synthesis of structurally diverse peptide hydrazides derived from the standard amino adds, including those with side......-chain protected residues at the C-terminal of the resulting peptide hydrazide, and are useful for the synthesis of dihydropyrano[2,3-c]pyrazoles. The linker is compatible with most commonly used coupling reagents and protecting groups for solid-phase peptide synthesis....

  5. Linker-dependent Junction Formation Probability in Single-Molecule Junctions

    Yoo, Pil Sun; Kim, Taekyeong [HankukUniversity of Foreign Studies, Yongin (Korea, Republic of)

    2015-01-15

    We compare the junction formation probabilities of single-molecule junctions with different linker molecules by using a scanning tunneling microscope-based break-junction technique. We found that the junction formation probability varies as SH > SMe > NH2 for the benzene backbone molecule with different types of anchoring groups, through quantitative statistical analysis. These results are attributed to different bonding forces according to the linker groups formed with Au atoms in the electrodes, which is consistent with previous works. Our work allows a better understanding of the contact chemistry in the metal.molecule junction for future molecular electronic devices.

  6. A photolabile linker for the solid-phase synthesis of 4-substituted NH-1,2,3-triazoles

    Qvortrup, Katrine; Nielsen, Thomas Eiland

    2011-01-01

    A novel photolabile linker for solid-phase synthesis is presented. The linker displays an azido handle for copper-catalyzed azide–alkyne cycloaddition reactions with a variety of alkynes, remains intact under typical solid-phase reaction conditions, and enables a mild photolytic release of 4...

  7. Regulation of Cellular Dynamics and Chromosomal Binding Site Preference of Linker Histones H1.0 and H1.X.

    Okuwaki, Mitsuru; Abe, Mayumi; Hisaoka, Miharu; Nagata, Kyosuke

    2016-11-01

    Linker histones play important roles in the genomic organization of mammalian cells. Of the linker histone variants, H1.X shows the most dynamic behavior in the nucleus. Recent research has suggested that the linker histone variants H1.X and H1.0 have different chromosomal binding site preferences. However, it remains unclear how the dynamics and binding site preferences of linker histones are determined. Here, we biochemically demonstrated that the DNA/nucleosome and histone chaperone binding activities of H1.X are significantly lower than those of other linker histones. This explains why H1.X moves more rapidly than other linker histones in vivo Domain swapping between H1.0 and H1.X suggests that the globular domain (GD) and C-terminal domain (CTD) of H1.X independently contribute to the dynamic behavior of H1.X. Our results also suggest that the N-terminal domain (NTD), GD, and CTD cooperatively determine the preferential binding sites, and the contribution of each domain for this determination is different depending on the target genes. We also found that linker histones accumulate in the nucleoli when the nucleosome binding activities of the GDs are weak. Our results contribute to understanding the molecular mechanisms of dynamic behaviors, binding site selection, and localization of linker histones. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Onset of grain filling is associated with a change in properties of linker histone variants in maize kernels

    Kalamajka, R.; Finnie, Christine; Grasser, K.D.

    2010-01-01

    ) initiation of storage synthesis. Six linker histone gene products were identified by MALDI-TOF mass spectrometry. A marked shift of around 4 pH units was observed for the linker histone spot pattern after 2D-gel electrophoresis when comparing the proteins of 11 and 16 dap kernels. The shift from acidic...

  9. A Class of Rigid Linker-bearing Glucosides for Membrane Protein Structural Study

    Sadaf, Aiman; Mortensen, Jonas S; Capaldi, Stefano

    2016-01-01

    with a branched tail group and a triglucoside head group. These head and tail groups were connected via an amide or ether linkage by using a tris(hydroxylmethyl)aminomethane (TRIS) or neopentyl glycol (NPG) linker to produce TRIS-derived triglucosides (TDTs) and NPG-derived triglucosides (NDTs), respectively...

  10. Solid-phase synthesis of polyfunctional polylysine dendrons using aldehyde linkers

    Svenssen, Daniel K.; Mirsharghi, Sahar; Boas, Ulrik

    2014-01-01

    A straightforward method for the solid-phase synthesis of C-terminally modified polylysine dendrons has been developed by applying bisalkoxybenzaldehyde and trisalkoxybenzaldehyde linkers. The method has been used for the synthesis of polylysine dendrons with a variety of C-terminal ‘tail groups’...

  11. Identification of a minimal functional linker in human topoisomerase I by domain swapping with Cre recombinase

    Hougaard, Rikke Frøhlich; Juul, Sissel; Vinther, Maria

    2008-01-01

    . In this study we replace 86 amino acids including the linker domain of the cellular type IB topoisomerase, human topoisomerase I, with four, six, or eight amino acids from the corresponding short loop region in Cre recombinase. In vitro characterization of the resulting chimeras, denoted Cropos, reveals...

  12. SEVA Linkers: A Versatile and Automatable DNA Backbone Exchange Standard for Synthetic Biology

    Kim, Se Hyeuk; Cavaleiro, Mafalda; Rennig, Maja

    2016-01-01

    flexibility, and different researchers prefer and master different molecular technologies. Here, we describe a new, highly versatile and automatable standard “SEVA linkers” for vector exchange. SEVA linkers enable backbone swapping with 20 combinations of classical enzymatic restriction/ligation, Gibson...

  13. Rapid construction of mechanically- confined multi- cellular structures using dendrimeric intercellular linker.

    Mo, Xuejun; Li, Qiushi; Yi Lui, Lena Wai; Zheng, Baixue; Kang, Chiang Huen; Nugraha, Bramasta; Yue, Zhilian; Jia, Rui Rui; Fu, Hong Xia; Choudhury, Deepak; Arooz, Talha; Yan, Jie; Lim, Chwee Teck; Shen, Shali; Hong Tan, Choon; Yu, Hanry

    2010-10-01

    Tissue constructs that mimic the in vivo cell-cell and cell-matrix interactions are especially useful for applications involving the cell- dense and matrix- poor internal organs. Rapid and precise arrangement of cells into functional tissue constructs remains a challenge in tissue engineering. We demonstrate rapid assembly of C3A cells into multi- cell structures using a dendrimeric intercellular linker. The linker is composed of oleyl- polyethylene glycol (PEG) derivatives conjugated to a 16 arms- polypropylenimine hexadecaamine (DAB) dendrimer. The positively charged multivalent dendrimer concentrates the linker onto the negatively charged cell surface to facilitate efficient insertion of the hydrophobic oleyl groups into the cellular membrane. Bringing linker- treated cells into close proximity to each other via mechanical means such as centrifugation and micromanipulation enables their rapid assembly into multi- cellular structures within minutes. The cells exhibit high levels of viability, proliferation, three- dimensional (3D) cell morphology and other functions in the constructs. We constructed defined multi- cellular structures such as rings, sheets or branching rods that can serve as potential tissue building blocks to be further assembled into complex 3D tissue constructs for biomedical applications. 2010 Elsevier Ltd. All rights reserved.

  14. Low Density Lipoprotein Receptor Class A Repeats Are O-Glycosylated in Linker Regions

    Pedersen, Nis Borbye; Wang, Shengjun; Narimatsu, Yoshiki

    2014-01-01

    , which in wild-type CHO cells is glycosylated with the typical sialylated core 1 structure. The glycosites in linker regions of LDLR class A repeats are conserved in LDLR from man to Xenopus and found in other homologous receptors. O-Glycosylation is controlled by a large family of polypeptide Gal...

  15. Release of 3-methyladenine from linker and core DNA of chromatin by a purified DNA glycosylase

    Heller, E.P.; Goldthwait, D.A.

    1983-01-01

    Oligonucleosomes were isolated from [ 14 C]thymidine-labeled HeLa cells by digestion of the nuclei with micrococcal nuclease and were then alkylated with [ 3 H]methylnitrosourea. Nucleosome core particles were also prepared by further digestion of the oligonucleosomes. The distribution of 3 H-labeled methyl groups in the linker versus the core DNA was established by a determination of 3 H: 14 C ratios in oligonucleosome and core DNA. The ratios in the core DNA of 145 and 165 base pair DNA fragments were 5.2 and 5.4, respectively, while the ratio in the oligonucleosomal DNA was 8.2. Assuming an equal mixture (as determined) of 145 and 165 base pair fragments of DNA in the 185 base pair repeat, the relative concentration of 3 H methyl groups in the linker versus the core DNA was 4.2. Thus, 45% of the 3 H methyl groups were in the linker DNA, and 55% were in the core DNA. Some shielding of the DNA was evident during alkylation. The concentrations of alkyl groups on the linker and core DNA were 67 and 12% of that found on free DNA alkylated under comparable conditions. No evidence for preferential shielding of the major or minor groove was observed. The purified 3-methyladenine DNA glycosylase I of Escherichia coli released approximately 37% of the 3-methyladenine from the linker DNA and 13% from the core DNA. The limited enzymatic removal of 3-methyladenine in vitro compared to the efficient removal in vivo suggests that conformational changes of the oligonucleosome and core structure must occur for total repair

  16. SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family.

    Register, A C; Leonard, Stephen E; Maly, Dustin J

    2014-11-11

    Src-family kinases (SFKs) make up a family of nine homologous multidomain tyrosine kinases whose misregulation is responsible for human disease (cancer, diabetes, inflammation, etc.). Despite overall sequence homology and identical domain architecture, differences in SH3 and SH2 regulatory domain accessibility and ability to allosterically autoinhibit the ATP-binding site have been observed for the prototypical SFKs Src and Hck. Biochemical and structural studies indicate that the SH2-catalytic domain (SH2-CD) linker, the intramolecular binding epitope for SFK SH3 domains, is responsible for allosterically coupling SH3 domain engagement to autoinhibition of the ATP-binding site through the conformation of the αC helix. As a relatively unconserved region between SFK family members, SH2-CD linker sequence variability across the SFK family is likely a source of nonredundant cellular functions between individual SFKs via its effect on the availability of SH3 and SH2 domains for intermolecular interactions and post-translational modification. Using a combination of SFKs engineered with enhanced or weakened regulatory domain intramolecular interactions and conformation-selective inhibitors that report αC helix conformation, this study explores how SH2-CD sequence heterogeneity affects allosteric coupling across the SFK family by examining Lyn, Fyn1, and Fyn2. Analyses of Fyn1 and Fyn2, isoforms that are identical but for a 50-residue sequence spanning the SH2-CD linker, demonstrate that SH2-CD linker sequence differences can have profound effects on allosteric coupling between otherwise identical kinases. Most notably, a dampened allosteric connection between the SH3 domain and αC helix leads to greater autoinhibitory phosphorylation by Csk, illustrating the complex effects of SH2-CD linker sequence on cellular function.

  17. Isotopic variants of light and heavy L-pyroglutamic acid succinimidyl esters as the derivatization reagents for DL-amino acid chiral metabolomics identification by liquid chromatography and electrospray ionization mass spectrometry

    Mochizuki, Toshiki; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Toyo’oka, Toshimasa, E-mail: toyooka@u-shizuoka-ken.ac.jp

    2014-02-06

    Graphical abstract: -- Highlights: •Isotopic variants of chiral labeling reagents were newly synthesized. •Analysis of DL-amino acids was performed by UPLC–ESI–MS/MS. •Highly efficient enantioseparation and detection of DL-amino acids were performed. •Differential analysis of DL-amino acid was successfully performed in real samples. -- Abstract: L-Pyroglutamic acid succinimidyl ester (L-PGA-OSu) and its isotopic variant (L-PGA[d{sub 5}]-OSu) were newly synthesized and evaluated as the chiral labeling reagents for the enantioseparation of amino acids, in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. The enantiomers of amino acids were easily labeled with the reagents at 60 °C within 10 min in an alkaline medium containing triethylamine. Although all the diastereomers derived from 18 proteolytic amino acids could not be satisfactorily separated, the pairs of 9 amino acids were completely separated by reversed-phase chromatography using the small particle (1.7 μm) ODS column (Rs = 1.95–8.05). The characteristic daughter ions, i.e., m/z 84.04 and m/z 89.04, were detected from all the derivatives by the collision induced dissociation of the protonated molecular ions. A highly sensitive detection at a low-fmol level (0.5–3.2 fmol) was also obtained from the selected reaction monitoring (SRM) chromatograms. An isotope labeling strategy using light and heavy L-PGA-OSu for the differential analysis of the DL-amino acids in different sample groups is also presented in this paper. The differential analysis of biological sample (i.e., human serum) and food product (i.e., yogurt) were tried to demonstrate the efficiency of the proposed method. The ratios of the DL-amino acids in human serum samples, spiked with the different concentrations of D-amino acids, were determined by the procedures using L-PGA-OSu and L-PGA[d{sub 5}]-OSu. The D/L ratios in the two sample groups at different concentrations of

  18. Isotopic variants of light and heavy L-pyroglutamic acid succinimidyl esters as the derivatization reagents for DL-amino acid chiral metabolomics identification by liquid chromatography and electrospray ionization mass spectrometry

    Mochizuki, Toshiki; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Toyo’oka, Toshimasa

    2014-01-01

    Graphical abstract: -- Highlights: •Isotopic variants of chiral labeling reagents were newly synthesized. •Analysis of DL-amino acids was performed by UPLC–ESI–MS/MS. •Highly efficient enantioseparation and detection of DL-amino acids were performed. •Differential analysis of DL-amino acid was successfully performed in real samples. -- Abstract: L-Pyroglutamic acid succinimidyl ester (L-PGA-OSu) and its isotopic variant (L-PGA[d 5 ]-OSu) were newly synthesized and evaluated as the chiral labeling reagents for the enantioseparation of amino acids, in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. The enantiomers of amino acids were easily labeled with the reagents at 60 °C within 10 min in an alkaline medium containing triethylamine. Although all the diastereomers derived from 18 proteolytic amino acids could not be satisfactorily separated, the pairs of 9 amino acids were completely separated by reversed-phase chromatography using the small particle (1.7 μm) ODS column (Rs = 1.95–8.05). The characteristic daughter ions, i.e., m/z 84.04 and m/z 89.04, were detected from all the derivatives by the collision induced dissociation of the protonated molecular ions. A highly sensitive detection at a low-fmol level (0.5–3.2 fmol) was also obtained from the selected reaction monitoring (SRM) chromatograms. An isotope labeling strategy using light and heavy L-PGA-OSu for the differential analysis of the DL-amino acids in different sample groups is also presented in this paper. The differential analysis of biological sample (i.e., human serum) and food product (i.e., yogurt) were tried to demonstrate the efficiency of the proposed method. The ratios of the DL-amino acids in human serum samples, spiked with the different concentrations of D-amino acids, were determined by the procedures using L-PGA-OSu and L-PGA[d 5 ]-OSu. The D/L ratios in the two sample groups at different concentrations of amino

  19. Molecular dissection of the interaction between the SH3 domain and the SH2-Kinase Linker region in PTK6.

    Kim, Han Ie; Jung, Jinwon; Lee, Eun-Saem; Kim, Yong-Chul; Lee, Weontae; Lee, Seung-Taek

    2007-11-03

    PTK6 (also known as Brk) is an intracellular tyrosine kinase that contains SH3, SH2, and tyrosine kinase catalytic (Kinase) domains. The SH3 domain of PTK6 interacts with the N-terminal half of the linker (Linker) region between the SH2 and Kinase domains. Site-directed mutagenesis and surface plasmon resonance studies showed that a tryptophan residue (Trp44) in the SH3 domain and proline residues in the Linker region, in the order of Pro177, Pro175, and Pro179, contribute to the interaction. The three-dimensional modeled structure of the SH3-Linker complex was in agreement with the biochemical data. Disruption of the intramolecular interaction between the SH3 domain and the Linker region by mutation of Trp44, Pro175, Pro177, and Pro179 markedly increased the catalytic activity of PTK6 in HEK 293 cells. These results demonstrate that Trp44 in the SH3 domain and Pro177, Pro175, and Pro179 in the N-terminal half of the Linker region play important roles in the SH3-Linker interaction to maintain the protein in an inactive conformation along with the phosphorylated Tyr447-SH2 interaction.

  20. Development of Bioorthogonally Degradable Linkers and Polymers Using alpha-Azidoethers

    Rajagopalan, Chandrasekhar Ramasubramanian

    Degradable polymers have gained a lot of attention in recent years for applications in biotechnology and medicine. External control over polymer degradation can be obtained by incorporating functional groups that cleave in the presence of triggers that would normally be absent in biological environments, i.e. are bioorthogonal. This thesis explores the use of chemically cleavable alpha-azidoethers as a new method to obtain external control over the degradation behavior of polymers. My first goal is to illustrate the potential of alpha-azidoethers toward developing cleavable linkers. We have studied the relationship between alpha-azidoether structure and hydrolytic stability, to prepare linkers that withstand background hydrolytic cleavage until they are exposed to the cleaving trigger. The cleavage kinetics of the alpha-azidoether functional group was quantified. In addition to the conventionally used tris(2-carboxyethyl)phosphine (TCEP), dihydrolipoic acid (DHLA), a previously unexplored, biocompatible reducing agent, was also evaluated as a cleaving trigger. Based on these results, we have proposed design rules for utilizing alpha-azidoethers as cleavable linkers in applications that require bioorthogonal control over linker cleavage. Secondly, the alpha-azidoether cleavable linker chemistry was implemented into the development of polymeric materials. Two different types of polymers were developed. Polyamides incorporating alpha-azidoethers along the backbone were synthesized, and their physical properties and chemically triggered degradation behavior were characterized. The degradation timescale of these polymers can be tuned simply by manipulating the concentration of the externally applied chemical trigger. The alpha-azidoether functional group was then utilized to develop a unique triggered-release polymeric adhesive for potential applications in dental adhesive formulations. A methacrylamide-phosphonate adhesive monomer incorporating an alpha

  1. cis-Apa: a practical linker for the microwave-assisted preparation of cyclic pseudopeptides via RCM cyclative cleavage.

    Baron, Alice; Verdié, Pascal; Martinez, Jean; Lamaty, Frédéric

    2011-02-04

    A new linker cis-5-aminopent-3-enoic acid (cis-Apa) was prepared for the synthesis of cyclic pseudopeptides by cyclization-cleavage by using ring-closing methatesis (RCM). We developed a new synthetic pathway for the preparation of the cis-Apa linker that was tested in the cyclization-cleavage process of different RGD peptide sequences. Different macrocyclic peptidomimetics were prepared by using this integrated microwave-assisted method, showing that the readily available cis-Apa amino acid is well adapted as a linker in the cyclization-cleavage process.

  2. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle.

    Hergeth, Sonja P; Schneider, Robert

    2015-11-01

    The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications. © 2015 The Authors.

  3. Destabilization of the Outer and Inner Mitochondrial Membranes by Core and Linker Histones

    Cascone, Annunziata; Bruelle, Celine; Lindholm, Dan; Bernardi, Paolo; Eriksson, Ove

    2012-01-01

    Background Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria. Methodology/Principal Findings We have investigated the effects of histones on mitochondrial function and membrane integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of pyridine nucleotides, and mitochondrial fragmentation. Conclusions We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey genotoxic signals to mitochondria and promote apoptosis following DNA damage. PMID:22523586

  4. Linker histones: novel insights into structure-specific recognition of the nucleosome.

    Cutter, Amber R; Hayes, Jeffrey J

    2017-04-01

    Linker histones (H1s) are a primary component of metazoan chromatin, fulfilling numerous functions, both in vitro and in vivo, including stabilizing the wrapping of DNA around the nucleosome, promoting folding and assembly of higher order chromatin structures, influencing nucleosome spacing on DNA, and regulating specific gene expression. However, many molecular details of how H1 binds to nucleosomes and recognizes unique structural features on the nucleosome surface remain undefined. Numerous, confounding studies are complicated not only by experimental limitations, but the use of different linker histone isoforms and nucleosome constructions. This review summarizes the decades of research that has resulted in several models of H1 association with nucleosomes, with a focus on recent advances that suggest multiple modes of H1 interaction in chromatin, while highlighting the remaining questions.

  5. Construction of Multivalent Homo- and Heterofunctional ABO Blood Group Glycoconjugates Using a Trifunctional Linker Strategy.

    Daskhan, Gour Chand; Tran, Hanh-Thuc Ton; Meloncelli, Peter J; Lowary, Todd L; West, Lori J; Cairo, Christopher W

    2018-02-21

    The design and synthesis of multivalent ligands displaying complex oligosaccharides is necessary for the development of therapeutics, diagnostics, and research tools. Here, we report an efficient conjugation strategy to prepare complex glycoconjugates with 4 copies of 1 or 2 separate glycan epitopes, providing 4-8 carbohydrate residues on a tetravalent poly(ethylene glycol) scaffold. This strategy provides complex glycoconjugates that approach the size of glycoproteins (15-18 kDa) while remaining well-defined. The synthetic strategy makes use of three orthogonal functional groups, including a reactive N-hydroxysuccinimide (NHS)-ester moiety on the linker to install the first carbohydrate epitope via reaction with an amine. A masked amine functionality on the linker is revealed after the removal of a fluorenylmethyloxycarbonyl (Fmoc)-protecting group, allowing the attachment to the NHS-activated poly(ethylene glycol) (PEG) scaffold. An azide group in the linker was then used to incorporate the second carbohydrate epitope via catalyzed alkyne-azide cycloaddition. Using a known tetravalent PEG scaffold (PDI, 1.025), we prepared homofunctional glycoconjugates that display four copies of lactose and the A-type II or the B-type II human blood group antigens. Using our trifunctional linker, we expanded this strategy to produce heterofunctional conjugates with four copies of two separate glycan epitopes. These heterofunctional conjugates included Neu5Ac, 3'-sialyllactose, or 6'-sialyllactose as a second antigen. Using an alternative strategy, we generated heterofunctional conjugates with three copies of the glycan epitope and one fluorescent group (on average) using a sequential dual-amine coupling strategy. These conjugation strategies should be easily generalized for conjugation of other complex glycans. We demonstrate that the glycan epitopes of heterofunctional conjugates engage and cluster target B-cell receptors and CD22 receptors on B cells, supporting the

  6. Elastin-like Polypeptide Linkers for Single-Molecule Force Spectroscopy.

    Ott, Wolfgang; Jobst, Markus A; Bauer, Magnus S; Durner, Ellis; Milles, Lukas F; Nash, Michael A; Gaub, Hermann E

    2017-06-27

    Single-molecule force spectroscopy (SMFS) is by now well established as a standard technique in biophysics and mechanobiology. In recent years, the technique has benefitted greatly from new approaches to bioconjugation of proteins to surfaces. Indeed, optimized immobilization strategies for biomolecules and refined purification schemes are being steadily adapted and improved, which in turn has enhanced data quality. In many previously reported SMFS studies, poly(ethylene glycol) (PEG) was used to anchor molecules of interest to surfaces and/or cantilever tips. The limitation, however, is that PEG exhibits a well-known trans-trans-gauche to all-trans transition, which results in marked deviation from standard polymer elasticity models such as the worm-like chain, particularly at elevated forces. As a result, the assignment of unfolding events to protein domains based on their corresponding amino acid chain lengths is significantly obscured. Here, we provide a solution to this problem by implementing unstructured elastin-like polypeptides as linkers to replace PEG. We investigate the suitability of tailored elastin-like polypeptides linkers and perform direct comparisons to PEG, focusing on attributes that are critical for single-molecule force experiments such as linker length, monodispersity, and bioorthogonal conjugation tags. Our results demonstrate that by avoiding the ambiguous elastic response of mixed PEG/peptide systems and instead building the molecular mechanical systems with only a single bond type with uniform elastic properties, we improve data quality and facilitate data analysis and interpretation in force spectroscopy experiments. The use of all-peptide linkers allows alternative approaches for precisely defining elastic properties of proteins linked to surfaces.

  7. Computational engineering of cellulase Cel9A-68 functional motions through mutations in its linker region.

    Costa, M G S; Silva, Y F; Batista, P R

    2018-03-14

    Microbial cellulosic degradation by cellulases has become a complementary approach for biofuel production. However, its efficiency is hindered by the recalcitrance of cellulose fibres. In this context, computational protein design methods may offer an efficient way to obtain variants with improved enzymatic activity. Cel9A-68 is a cellulase from Thermobifida fusca that is still active at high temperatures. In a previous work, we described a collective bending motion, which governs the overall cellulase dynamics. This movement promotes the approximation of its CBM and CD structural domains (that are connected by a flexible linker). We have identified two residues (G460 and P461) located at the linker that act as a hinge point. Herein, we applied a new level of protein design, focusing on the modulation of this collective motion to obtain cellulase variants with enhanced functional dynamics. We probed whether specific linker mutations would affect Cel9A-68 dynamics through computational simulations. We assumed that P461G and G460+ (with an extra glycine) constructs would present enhanced interdomain motions, while the G460P mutant would be rigid. From our results, the P461G mutation resulted in a broader exploration of the conformational space, as confirmed by clustering and free energy analyses. The WT enzyme was the most rigid system. However, G460P and P460+ explored distinct conformational states described by opposite directions of low-frequency normal modes; they sampled preferentially closed and open conformations, respectively. Overall, we highlight two significant findings: (i) all mutants explored larger conformational spaces than the WT; (ii) the selection of distinct conformational populations was intimately associated with the mutation considered. Thus, the engineering of Cel9A-68 motions through linker mutations may constitute an efficient way to improve cellulase activity, facilitating the disruption of cellulose fibres.

  8. Bifunctional bridging linker-assisted synthesis and characterization of TiO{sub 2}/Au nanocomposites

    Žunič, Vojka, E-mail: vojka.zunic@ijs.si, E-mail: vojka13@gmail.com; Kurtjak, Mario; Suvorov, Danilo [Jožef Stefan Institute, Advanced Materials Department (Slovenia)

    2016-11-15

    Using a simple organic bifunctional bridging linker, titanium dioxide (TiO{sub 2}) nanoparticles were coupled with the Au nanoparticles to form TiO{sub 2}/Au nanocomposites with a variety of Au loadings. This organic bifunctional linker, meso-2,3-dimercaptosuccinic acid, contains two types of functional groups: (i) the carboxyl group, which enables binding to the TiO{sub 2}, and (ii) the thiol group, which enables binding to the Au. In addition, the organic bifunctional linker acts as a stabilizing agent to prevent the agglomeration and growth of the Au particles, resulting in the formation of highly dispersed Au nanoparticles. To form the TiO{sub 2}/Au nanocomposites in a simple way, we deliberately applied a synthetic method that simultaneously ensures: (i) the capping of the Au nanoparticles and (ii) the binding of different amounts of Au to the TiO{sub 2}. The TiO{sub 2}/Au nanocomposites formed with this method show enhanced UV and Vis photocatalytic activities when compared to the pure TiO{sub 2} nanopowders.Graphical Abstract.

  9. Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units

    Zhang, Lei

    2016-11-04

    We demonstrate a new method to reverse the polarity and charge transport behavior of naphthalenediimide (NDI)-based copolymers by inserting a vinylene linker between the donor and acceptor units. The vinylene linkers minimize the intrinsic steric congestion between the NDI and thiophene moieties to prompt backbone planarity. The polymers with vinylene linkers exhibit electron n-channel transport characteristics under vacuum, similar to the benchmark polymer, P(NDI2OD-T2). To our surprise, when the polymers are measured in air, the dominant carrier type switches from n- to p-type and yield hole mobilities up to 0.45 cm(2) s(-1) with hole to electron mobility ratio of three (mu(h)/mu(e), similar to 3), which indicates that the hole density in the active layer can be significantly increased by exposure to air. This increase is consistent with the intrinsic more delocalized nature of the highest occupied molecular orbital of the charged vinylene polymer, as estimated by density functional theory (DFT) calculations, which facilitates hole transport within the polymer chains. This is the first demonstration of an efficient NDI-based hole semiconducting polymer, which will enable new developments in all-polymer solar cells, complementary circuits, and dopable polymers for use in thermoelectrics.

  10. Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units

    Zhang, Lei; Rose, Bradley Daniel; Liu, Yao; Nahid, Masrur M.; Gann, Eliot; Ly, Jack; Zhao, Wei; Rosa, Stephen J.; Russell, Thomas P.; Facchetti, Antonio; McNei, Christopher R.; Bredas, Jean-Luc; Briseno, Alejandro L.

    2016-01-01

    We demonstrate a new method to reverse the polarity and charge transport behavior of naphthalenediimide (NDI)-based copolymers by inserting a vinylene linker between the donor and acceptor units. The vinylene linkers minimize the intrinsic steric congestion between the NDI and thiophene moieties to prompt backbone planarity. The polymers with vinylene linkers exhibit electron n-channel transport characteristics under vacuum, similar to the benchmark polymer, P(NDI2OD-T2). To our surprise, when the polymers are measured in air, the dominant carrier type switches from n- to p-type and yield hole mobilities up to 0.45 cm(2) s(-1) with hole to electron mobility ratio of three (mu(h)/mu(e), similar to 3), which indicates that the hole density in the active layer can be significantly increased by exposure to air. This increase is consistent with the intrinsic more delocalized nature of the highest occupied molecular orbital of the charged vinylene polymer, as estimated by density functional theory (DFT) calculations, which facilitates hole transport within the polymer chains. This is the first demonstration of an efficient NDI-based hole semiconducting polymer, which will enable new developments in all-polymer solar cells, complementary circuits, and dopable polymers for use in thermoelectrics.

  11. 5-fold increase of hydrogen uptake in MOF74 through linker decorations

    Thonhauser, T.; Zuluaga, S.; Harrison, D.; Welchman, E.; Arter, C.

    We present ab initio results for linker decorations in Mg-MOF74-i.e. attaching various metals  = Li, Na, K, Sc, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Pd, Ag, and Pt near the ring of the linker-creating new strong adsorption sites and thus maximizing small molecule uptake. We find that in most cases these decorations influence the overall form and structure of Mg-MOF74 only marginally. After the initial screening we chose metals that bind favorably to the linker and further investigate adsorption of H2, CO2, and H2O for  = Li, Na, K, and Sc. For the case of H2 we show that up to 24 additional guest molecules can be adsorbed in the MOF unit cell, with binding energies comparable to the original open-metal sites at the six corners of the channel. This leads to a 5-fold increase of the molecule uptake in Mg-MOF74, with tremendous impact on many applications in general and hydrogen storage in particular-where the gravimetric hydrogen density increases from 1 . 63 mass% to 7 . 28 mass% and the volumetric density from 15.10 g H2 L-1 to 75.50 g H2 L-1. This work was supported by NSF Grant No. DMR-1145968.

  12. Fivefold increase of hydrogen uptake in MOF74 through linker decorations

    Arter, C. A.; Zuluaga, S.; Harrison, D.; Welchman, E.; Thonhauser, T.

    2016-10-01

    We present ab initio results for linker decorations in Mg-MOF74, i.e., attaching various metals M =Li, Na, K, Sc, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Pd, Ag, and Pt near the ring of the linker, creating new strong adsorption sites and thus maximizing small-molecule uptake. We find that in most cases these decorations influence the overall form and structure of Mg-MOF74 only marginally. After the initial screening, we chose metals that bind favorably to the linker and further investigated adsorption of H2,CO2, and H2O for M =Li , Na, K, and Sc. For the case of H2 we show that up to 24 additional guest molecules can be adsorbed in the metal-organic framework (MOF) unit cell, with binding energies comparable to the original open-metal sites at the six corners of the channel. This leads to a fivefold increase of the molecule uptake in Mg-MOF74, with tremendous impact on many applications in general and hydrogen storage in particular, where the gravimetric hydrogen density increases from 1.63 to 7.28 mass % and the volumetric density increases from 15.10 to 75.50 g H2L-1 .

  13. Saccharomyces cerevisiae Linker Histone—Hho1p Maintains Chromatin Loop Organization during Ageing

    Katya Uzunova

    2013-01-01

    Full Text Available Intricate, dynamic, and absolutely unavoidable ageing affects cells and organisms through their entire lifetime. Driven by diverse mechanisms all leading to compromised cellular functions and finally to death, this process is a challenge for researchers. The molecular mechanisms, the general rules that it follows, and the complex interplay at a molecular and cellular level are yet little understood. Here, we present our results showing a connection between the linker histones, the higher-order chromatin structures, and the process of chronological lifespan of yeast cells. By deleting the gene for the linker histone in Saccharomyces cerevisiae we have created a model for studying the role of chromatin structures mainly at its most elusive and so far barely understood higher-order levels of compaction in the processes of yeast chronological lifespan. The mutant cells demonstrated controversial features showing slower growth than the wild type combined with better survival during the whole process. The analysis of the global chromatin organization during different time points demonstrated certain loss of the upper levels of chromatin compaction in the cells without linker histone. The results underlay the importance of this histone for the maintenance of the chromatin loop structures during ageing.

  14. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas

    Thompson, Joshua A.; Vaughn, Justin T.; Brunelli, Nicholas A.; Koros, William J.; Jones, Christopher W.; Nair, Sankar

    2014-01-01

    Zeolitic imidazolate framework (ZIF) materials are a promising subclass of metal-organic frameworks (MOF) for gas separations. However, due to the deleterious effects of gate-opening phenomena associated with organic linker rotation near

  15. Charged residues in the H-NS linker drive DNA binding and gene silencing in single cells.

    Gao, Yunfeng; Foo, Yong Hwee; Winardhi, Ricksen S; Tang, Qingnan; Yan, Jie; Kenney, Linda J

    2017-11-21

    Nucleoid-associated proteins (NAPs) facilitate chromosome organization in bacteria, but the precise mechanism remains elusive. H-NS is a NAP that also plays a major role in silencing pathogen genes. We used genetics, single-particle tracking in live cells, superresolution microscopy, atomic force microscopy, and molecular dynamics simulations to examine H-NS/DNA interactions in single cells. We discovered a role for the unstructured linker region connecting the N-terminal oligomerization and C-terminal DNA binding domains. In the present work we demonstrate that linker amino acids promote engagement with DNA. In the absence of linker contacts, H-NS binding is significantly reduced, although no change in chromosome compaction is observed. H-NS is not localized to two distinct foci; rather, it is scattered all around the nucleoid. The linker makes DNA contacts that are required for gene silencing, while chromosome compaction does not appear to be an important H-NS function.

  16. How to remain nonfolded and pliable: the linkers in modular α-amylases as a case study.

    Feller, Georges; Dehareng, Dominique; Lage, Jean-Luc Da

    2011-07-01

    The primary structure of linkers in a new class of modular α-amylases constitutes a paradigm of the structural basis that allows a polypeptide to remain nonfolded, extended and pliable. Unfolding is mediated through a depletion of hydrophobic residues and an enrichment of hydrophilic residues, amongst which Ser and Thr are over-represented. An extended and flexible conformation is promoted by the sequential arrangement of Pro and Gly, which are the most abundant residues in these linkers. This is complemented by charge repulsion, charge clustering and disulfide-bridged loops. Molecular dynamics simulations suggest the existence of conformational transitions resulting from a transient and localized hydrophobic collapse, arising from the peculiar composition of the linkers. Accordingly, these linkers should not be regarded as fully disordered, but rather as possessing various discrete structural patterns allowing them to fulfill their biological function as a free energy reservoir for concerted motions between structured domains. © 2011 The Authors Journal compilation © 2011 FEBS.

  17. The unstructured linker arms of Mlh1-Pms1 are important for interactions with DNA during mismatch repair

    Plys, Aaron J.; Rogacheva, Maria V.; Greene, Eric C.; Alani, Eric

    2012-01-01

    DNA mismatch repair (MMR) models have proposed that MSH proteins identify DNA polymerase errors while interacting with the DNA replication fork. MLH proteins (primarily Mlh1-Pms1 in baker’s yeast) then survey the genome for lesion-bound MSH proteins. The resulting MSH-MLH complex formed at a DNA lesion initiates downstream steps in repair. MLH proteins act as dimers and contain long (20 – 30 nanometers) unstructured arms that connect two terminal globular domains. These arms can vary between 100 to 300 amino acids in length, are highly divergent between organisms, and are resistant to amino acid substitutions. To test the roles of the linker arms in MMR, we engineered a protease cleavage site into the Mlh1 linker arm domain of baker’s yeast Mlh1-Pms1. Cleavage of the Mlh1 linker arm in vitro resulted in a defect in Mlh1-Pms1 DNA binding activity, and in vivo proteolytic cleavage resulted in a complete defect in MMR. We then generated a series of truncation mutants bearing Mlh1 and Pms1 linker arms of varying lengths. This work revealed that MMR is greatly compromised when portions of the Mlh1 linker are removed, whereas repair is less sensitive to truncation of the Pms1 linker arm. Purified complexes containing truncations in Mlh1 and Pms1 linker arms were analyzed and found to have differential defects in DNA binding that also correlated with the ability to form a ternary complex with Msh2-Msh6 and mismatch DNA. These observations are consistent with the unstructured linker domains of MLH proteins providing distinct interactions with DNA during MMR. PMID:22659005

  18. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas

    Thompson, Joshua A.

    2014-07-01

    Zeolitic imidazolate framework (ZIF) materials are a promising subclass of metal-organic frameworks (MOF) for gas separations. However, due to the deleterious effects of gate-opening phenomena associated with organic linker rotation near the limiting pore apertures of ZIFs, there have been few demonstrations of improved gas separation properties over pure polymer membranes when utilizing ZIF materials in composite membranes for CO2-based gas separations. Here, we report a study of composite ZIF/polymer membranes, containing mixed-linker ZIF materials with ZIF-8 crystal topologies but composed of different organic linker compositions. Characterization of the mixed-linker ZIFs shows that the mixed linker approach offers control over the porosity and pore size distribution of the materials, as determined from nitrogen physisorption and Horváth-Kawazoe analysis. Single gas permeation measurements on mixed-matrix membranes reveal that inclusion of mixed-linker ZIFs yields membranes with better ideal CO2/CH4 selectivity than membranes containing ZIF-8. This improvement is shown to likely occur from enhancement in the diffusion selectivity of the membranes associated with controlling the pore size distribution of the ZIF filler. Mixed-gas permeation experiments show that membranes with mixed-linker ZIFs display an effective plasticization resistance that is not typical of the pure polymeric matrix. Overall, we demonstrate that mixed-linker ZIFs can improve the gas separation properties in composite membranes and may be applicable to aggressive CO2 concentrations in natural gas feeds. © 2013 Elsevier Inc. All rights reserved.

  19. Rapid One-Pot Microwave Synthesis of Mixed-Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations.

    Hillman, Febrian; Brito, Jordan; Jeong, Hae-Kwon

    2018-02-14

    The relatively slow and complex fabrication processes of polycrystalline metal-organic framework (MOF) membranes often times restrict their way to commercialization, despite their potential for molecular separation applications. Herein, we report a rapid one-pot microwave synthesis of mixed-linker hybrid zeolitic-imidazolate framework (ZIF) membranes consisting of 2-methylimidazolate (ZIF-8 linker) and benzimidazolate (ZIF-7 linker) linkers, termed ZIF-7-8 membranes. The fast-volumetric microwave heating in conjunction with a unique counter diffusion of metal and linker solutions enabled unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes in ∼90 s, the fastest MOF membrane preparation up to date. Furthermore, we were able to tune the molecular sieving properties of the ZIF-7-8 membranes by varying the benzimidazole-to-2-methylimidazole (bIm-to-mIm) linker ratio in the hybrid frameworks. The tuning of their molecular sieving properties led to the systematic change in the permeance and selectivity of various small gases. The unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes with tunable molecular sieving properties is an important step forward for the commercial gas separation applications of ZIF membranes.

  20. Effect of linkers on the αvβ3 integrin targeting efficiency of cyclic RGD-conjugates

    Karmakar, Partha; Grabowska, Dorota; Sudlow, Gail; Ziabrev, Kostiantyn; Sanyal, Nibedita; Achilefu, Samuel

    2018-02-01

    Cyclic arginine-glycine-aspartic acid (cRGD) peptides are well known to target ανβ3 integrin expressed on cancer cells and neovasculature. Conjugation of these peptides with dyes, drugs, antibodies and other biomolecules through covalent linkers provides a facile way to deliver these products to tumor cells for targeted cancer therapy and diagnosis. Click chemistry and acid-amine couplings are widely used conjugation strategies. However, the effects of different linkers and the distance between the cRGD and the conjugates on the binding of cRGD ligand with ανβ3 has been underexplored. In this present study, we prepared cRGD-conjugates using different linkers and determined how they altered the tumor targeting efficiency in vitro and in vivo. The results demonstrate that different linkers significantly altered the pharmacokinetics of the cRGD conjugates and the tumor uptake kinetics. Unlike large antibodies, this preliminary finding shows that linkers used to attach drugs and fluorescent molecular probes to small peptides play a major role in the accuracy of tumor targeting and treatment outcomes. As a result, considerable attention should be paid to the nature of linkers used in the design of molecular probes and targeted therapeutics.

  1. ATPase Domain and Interdomain Linker Play a Key Role in Aggregation of Mitochondrial Hsp70 Chaperone Ssc1*

    Blamowska, Marta; Sichting, Martin; Mapa, Koyeli; Mokranjac, Dejana; Neupert, Walter; Hell, Kai

    2010-01-01

    The co-chaperone Hep1 is required to prevent the aggregation of mitochondrial Hsp70 proteins. We have analyzed the interaction of Hep1 with mitochondrial Hsp70 (Ssc1) and the determinants in Ssc1 that make it prone to aggregation. The ATPase and peptide binding domain (PBD) of Hsp70 proteins are connected by a linker segment that mediates interdomain communication between the domains. We show here that the minimal Hep1 binding entity of Ssc1 consists of the ATPase domain and the interdomain linker. In the absence of Hep1, the ATPase domain with the interdomain linker had the tendency to aggregate, in contrast to the ATPase domain with the mutated linker segment or without linker, and in contrast to the PBD. The closest homolog of Ssc1, bacterial DnaK, and a Ssc1 chimera, in which a segment of the ATPase domain of Ssc1 was replaced by the corresponding segment from DnaK, did not aggregate in Δhep1 mitochondria. The propensity to aggregate appears to be a specific property of the mitochondrial Hsp70 proteins. The ATPase domain in combination with the interdomain linker is crucial for aggregation of Ssc1. In conclusion, our results suggest that interdomain communication makes Ssc1 prone to aggregation. Hep1 counteracts aggregation by binding to this aggregation-prone conformer. PMID:20007714

  2. ATPase domain and interdomain linker play a key role in aggregation of mitochondrial Hsp70 chaperone Ssc1.

    Blamowska, Marta; Sichting, Martin; Mapa, Koyeli; Mokranjac, Dejana; Neupert, Walter; Hell, Kai

    2010-02-12

    The co-chaperone Hep1 is required to prevent the aggregation of mitochondrial Hsp70 proteins. We have analyzed the interaction of Hep1 with mitochondrial Hsp70 (Ssc1) and the determinants in Ssc1 that make it prone to aggregation. The ATPase and peptide binding domain (PBD) of Hsp70 proteins are connected by a linker segment that mediates interdomain communication between the domains. We show here that the minimal Hep1 binding entity of Ssc1 consists of the ATPase domain and the interdomain linker. In the absence of Hep1, the ATPase domain with the interdomain linker had the tendency to aggregate, in contrast to the ATPase domain with the mutated linker segment or without linker, and in contrast to the PBD. The closest homolog of Ssc1, bacterial DnaK, and a Ssc1 chimera, in which a segment of the ATPase domain of Ssc1 was replaced by the corresponding segment from DnaK, did not aggregate in Delta hep1 mitochondria. The propensity to aggregate appears to be a specific property of the mitochondrial Hsp70 proteins. The ATPase domain in combination with the interdomain linker is crucial for aggregation of Ssc1. In conclusion, our results suggest that interdomain communication makes Ssc1 prone to aggregation. Hep1 counteracts aggregation by binding to this aggregation-prone conformer.

  3. [Construction of cTnC-linker-TnI (P) Genes, Expression of Fusion Protein and Preparation of Lyophilized Protein].

    Song, Xiaoli; Liu, Xiaoyun; Cai, Lei; Wu, Jianwei; Wang, Jihua

    2015-12-01

    In order to construct and express human cardiac troponin C-linker-troponin I(P) [ cTnC-linker-TnI(P)] fusion protein, detect its activity and prepare lyophilized protein, we searched the CDs of human cTnC and cTnI from GenBank, synthesized cTnC and cTnI(30-110aa) into cloning vector by a short DNA sequence coding for 15 neutral amino acid residues. pCold I-cTnC-linker-TnI(P) was constructed and transformed into E. coli BL21(DE3). Then, cTnC-linker-TnI(P) fusion protein was induced by isopropyl-β-D-thiogalactopyranoside (IPTG). Soluable expression of cTnC-linker-TnI(P) in prokaryotic system was successfully obtained. The fusion protein was purified by Ni²⁺ Sepharose 6 Fast Flow affinity chromatography with over 95% purity and prepared into lyophilized protein. The activity of purified cTnC-linker-TnI(P) and its lyophilized protein were detected by Wondfo Finecare™ cTnI Test. Lyophilized protein of cTnC-linker-TnI(P) was stable for 10 or more days at 37 °C and 4 or more months at 25 °C and 4 °C. The expression system established in this research is feasible and efficient. Lyophilized protein is stable enough to be provided as biological raw materials for further research.

  4. Dynamics of Linker Residues Modulate the Nucleic Acid Binding Properties of the HIV-1 Nucleocapsid Protein Zinc Fingers

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity. PMID:25029439

  5. A Novel MS-Cleavable Azo Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS)

    Iacobucci, Claudio; Hage, Christoph; Schäfer, Mathias; Sinz, Andrea

    2017-10-01

    The chemical cross-linking/mass spectrometry (MS) approach is a growing research field in structural proteomics that allows gaining insights into protein conformations. It relies on creating distance constraints between cross-linked amino acid side chains that can further be used to derive protein structures. Currently, the most urgent task for designing novel cross-linking principles is an unambiguous and automated assignment of the created cross-linked products. Here, we introduce the homobifunctional, amine-reactive, and water soluble cross-linker azobisimidoester (ABI) as a prototype of a novel class of cross-linkers. The ABI-linker possesses an innovative modular scaffold combining the benefits of collisional activation lability with open shell chemistry. This MS-cleavable cross-linker can be efficiently operated via free radical initiated peptide sequencing (FRIPS) in positive ionization mode. Our proof-of-principle study challenges the gas phase behavior of the ABI-linker for the three amino acids, lysine, leucine, and isoleucine, as well as the model peptide thymopentin. The isomeric amino acids leucine and isoleucine could be discriminated by their characteristic side chain fragments. Collisional activation experiments were conducted via positive electrospray ionization (ESI) on two Orbitrap mass spectrometers. The ABI-mediated formation of odd electron product ions in MS/MS and MS3 experiments was evaluated and compared with a previously described azo-based cross-linker. All cross-linked products were amenable to automated analysis by the MeroX software, underlining the future potential of the ABI-linker for structural proteomics studies. [Figure not available: see fulltext.

  6. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity.

    Sindbert, Simon; Kalinin, Stanislav; Nguyen, Hien; Kienzler, Andrea; Clima, Lilia; Bannwarth, Willi; Appel, Bettina; Müller, Sabine; Seidel, Claus A M

    2011-03-02

    In Förster resonance energy transfer (FRET) experiments, the donor (D) and acceptor (A) fluorophores are usually attached to the macromolecule of interest via long flexible linkers of up to 15 Å in length. This causes significant uncertainties in quantitative distance measurements and prevents experiments with short distances between the attachment points of the dyes due to possible dye-dye interactions. We present two approaches to overcome the above problems as demonstrated by FRET measurements for a series of dsDNA and dsRNA internally labeled with Alexa488 and Cy5 as D and A dye, respectively. First, we characterize the influence of linker length and flexibility on FRET for different dye linker types (long, intermediate, short) by analyzing fluorescence lifetime and anisotropy decays. For long linkers, we describe a straightforward procedure that allows for very high accuracy of FRET-based structure determination through proper consideration of the position distribution of the dye and of linker dynamics. The position distribution can be quickly calculated with geometric accessible volume (AV) simulations, provided that the local structure of RNA or DNA in the proximity of the dye is known and that the dye diffuses freely in the sterically allowed space. The AV approach provides results similar to molecular dynamics simulations (MD) and is fully consistent with experimental FRET data. In a benchmark study for ds A-RNA, an rmsd value of 1.3 Å is achieved. Considering the case of undefined dye environments or very short DA distances, we introduce short linkers with a propargyl or alkenyl unit for internal labeling of nucleic acids to minimize position uncertainties. Studies by ensemble time correlated single photon counting and single-molecule detection show that the nature of the linker strongly affects the radius of the dye's accessible volume (6-16 Å). For short propargyl linkers, heterogeneous dye environments are observed on the millisecond time scale. A

  7. Bioinformatic Analysis Reveals Conservation of Intrinsic Disorder in the Linker Sequences of Prokaryotic Dual-family Immunophilin Chaperones.

    Barik, Sailen

    2018-01-01

    The two classical immunophilin families, found essentially in all living cells, are: cyclophilin (CYN) and FK506-binding protein (FKBP). We previously reported a novel class of immunophilins that are natural chimera of these two, which we named dual-family immunophilin (DFI). The DFIs were found in either of two conformations: CYN-linker-FKBP (CFBP) or FKBP-3TPR-CYN (FCBP). While the 3TPR domain can serve as a flexible linker between the FKBP and CYN modules in the FCBP-type DFI, the linker sequences in the CFBP-type DFIs are relatively short, diverse in sequence, and contain no discernible motif or signature. Here, I present several lines of computational evidence that, regardless of their primary structure, these CFBP linkers are intrinsically disordered. This report provides the first molecular foundation for the model that the CFBP linker acts as an unstructured, flexible loop, allowing the two flanking chaperone modules function independently while linked in cis , likely to assist in the folding of multisubunit client complexes.

  8. Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis

    Thompson, Joshua A.

    2012-05-22

    Zeolitic imidazolate frameworks (ZIFs) are a subclass of nanoporous metal-organic frameworks (MOFs) that exhibit zeolite-like structural topologies and have interesting molecular recognition properties, such as molecular sieving and gate-opening effects associated with their pore apertures. The synthesis and characterization of hybrid ZIFs with mixed linkers in the framework are described in this work, producing materials with properties distinctly different from the parent frameworks (ZIF-8, ZIF-90, and ZIF-7). NMR spectroscopy is used to assess the relative amounts of the different linkers included in the frameworks, whereas nitrogen physisorption shows the evolution of the effective pore size distribution in materials resulting from the framework hybridization. X-ray diffraction shows these hybrid materials to be crystalline. In the case of ZIF-8-90 hybrids, the cubic space group of the parent frameworks is continuously maintained, whereas in the case of the ZIF-7-8 hybrids there is a transition from a cubic to a rhombohedral space group. Nitrogen physisorption data reveal that the hybrid materials exhibit substantial changes in gate-opening phenomena, either occurring at continuously tunable partial pressures of nitrogen (ZIF-8-90 hybrids) or loss of gate-opening effects to yield more rigid frameworks (ZIF-7-8 hybrids). With this synthetic approach, significant alterations in MOF properties may be realized to suit a desired separation or catalytic process. © 2012 American Chemical Society.

  9. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    Shih Ping Yao

    2002-04-01

    Full Text Available Abstract Background Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT that greatly improves the production efficiency of large transgenic animals. Results The linker protein, a monoclonal antibody (mAb C, is reactive to a surface antigen on sperm of all tested species including pig, mouse, chicken, cow, goat, sheep, and human. mAb C is a basic protein that binds to DNA through ionic interaction allowing exogenous DNA to be linked specifically to sperm. After fertilization of the egg, the DNA is shown to be successfully integrated into the genome of viable pig and mouse offspring with germ-line transfer to the F1 generation at a highly efficient rate: 37.5% of pigs and 33% of mice. The integration is demonstrated again by FISH analysis and F2 transmission in pigs. Furthermore, expression of the transgene is demonstrated in 61% (35/57 of transgenic pigs (F0 generation. Conclusions Our data suggests that LB-SMGT could be used to generate transgenic animals efficiently in many different species.

  10. Ab initio study of hydrogen adsorption on benzenoid linkers in metal-organic framework materials

    Gao Yi; Zeng, X C

    2007-01-01

    We have computed the energies of adsorption of molecular hydrogen on a number of molecular linkers in metal-organic framework solid materials using density functional theory (DFT) and ab initio molecular orbital methods. We find that the hybrid B3LYP (Becke three-parameter Lee-Yang-Parr) DFT method gives a qualitatively incorrect prediction of the hydrogen binding with benzenoid molecular linkers. Both local-density approximation (LDA) and generalized gradient approximation (GGA) DFT methods are inaccurate in predicting the values of hydrogen binding energies, but can give a qualitatively correct prediction of the hydrogen binding. When compared to the more accurate binding-energy results based on the ab initio Moeller-Plesset second-order perturbation (MP2) method, the LDA results may be viewed as an upper limit while the GGA results may be viewed as a lower limit. Since the MP2 calculation is impractical for realistic metal-organic framework systems, the combined LDA and GGA calculations provide a cost-effective way to assess the hydrogen binding capability of these systems

  11. G-CSF receptor-binding cyclic peptides designed with artificial amino-acid linkers

    Shibata, Kenji; Maruyama-Takahashi, Kumiko; Yamasaki, Motoo; Hirayama, Noriaki

    2006-01-01

    Designing small molecules that mimic the receptor-binding local surface structure of large proteins such as cytokines or growth factors is fascinating and challenging. In this study, we designed cyclic peptides that reproduce the receptor-binding loop structures of G-CSF. We found it is important to select a suitable linker to join two or more discontinuous sequences and both termini of the peptide corresponding to the receptor-binding loop. Structural simulations based on the crystallographic structure of KW-2228, a stable and potent analog of human G-CSF, led us to choose 4-aminobenzoic acid (Abz) as a part of the linker. A combination of 4-Abz with β-alanine or glycine, and disulfide bridges between cysteins or homocysteins, gave a structure suitable for receptor binding. In this structure, the side-chains of several amino acids important for the interactions with the receptor are protruding from one side of the peptide ring. This artificial peptide showed G-CSF antagonistic activity in a cell proliferation assay

  12. A Switchable Linker-Based Immunoassay for Ultrasensitive Visible Detection of Salmonella in Tomatoes.

    Hahn, Jungwoo; Kim, Eunghee; You, Young Sang; Gunasekaran, Sundaram; Lim, Seokwon; Choi, Young Jin

    2017-10-01

    On-site detection for sensitive identification of foodborne pathogens on fresh produce with minimal use of specialized instrumentation is crucial to the food industry. A switchable linker (SL)-based immunoassay was designed for ultrasensitive on-site detection of Salmonella in tomato samples. The assay is based on large-scale aggregation of gold nanoparticles (GNPs), induced by a quantitative relationship among the biotinylated Salmonella polyclonal antibody (b-Ab) used as the SL, the functionalized GNPs, and Salmonella. Important factors such as the concentration of SLs, time required for large-scale aggregation, and selectivity of b-Ab were optimized to minimize the detection time (within 45 min with gentle agitation) and achieve the lowest limit of detection (LOD; 10 CFU/g in tomato samples) possible. This SL-based immunoassay with its relatively low LOD and short detection time may meet the need for rapid, simple, on-site analysis of pathogens in fresh produce. The novel switchable linker-based immunoassay is a rapid, specific, and sensitive method that has potential applications for routine diagnostics of Salmonella in tomato products. These advantages make it a practical approach for general use in the processing industry to detect Salmonella rapidly and to implement appropriate regulatory procedures. Furthermore, it could be applied to other fresh products including cantaloupe, strawberry, and cucumbers. © 2017 Institute of Food Technologists®.

  13. The First MS-Cleavable, Photo-Thiol-Reactive Cross-Linker for Protein Structural Studies

    Iacobucci, Claudio; Piotrowski, Christine; Rehkamp, Anne; Ihling, Christian H.; Sinz, Andrea

    2018-04-01

    Cleavable cross-linkers are gaining increasing importance for chemical cross-linking/mass spectrometry (MS) as they permit a reliable and automated data analysis in structural studies of proteins and protein assemblies. Here, we introduce 1,3-diallylurea (DAU) as the first CID-MS/MS-cleavable, photo-thiol-reactive cross-linker. DAU is a commercially available, inexpensive reagent that efficiently undergoes an anti-Markovnikov hydrothiolation with cysteine residues in the presence of a radical initiator upon UV-A irradiation. Radical cysteine cross-linking proceeds via an orthogonal "click reaction" and yields stable alkyl sulfide products. DAU reacts at physiological pH and cross-linking reactions with peptides, and proteins can be performed at temperatures as low as 4 °C. The central urea bond is efficiently cleaved upon collisional activation during tandem MS experiments generating characteristic product ions. This improves the reliability of automated cross-link identification. Different radical initiators have been screened for the cross-linking reaction of DAU using the thiol-containing compounds cysteine and glutathione. Our concept has also been exemplified for the biologically relevant proteins bMunc13-2 and retinal guanylyl cyclase-activating protein-2. [Figure not available: see fulltext.

  14. Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker.

    Yan, Qingrong; Barros, Tiago; Visperas, Patrick R; Deindl, Sebastian; Kadlecek, Theresa A; Weiss, Arthur; Kuriyan, John

    2013-06-01

    Serial activation of the tyrosine kinases Lck and ZAP-70 initiates signaling downstream of the T cell receptor. We previously reported the structure of an autoinhibited ZAP-70 variant in which two regulatory tyrosine residues (315 and 319) in the SH2-kinase linker were replaced by phenylalanine. We now present a crystal structure of ZAP-70 in which Tyr 315 and Tyr 319 are not mutated, leading to the recognition of a five-residue sequence register error in the SH2-kinase linker of the original crystallographic model. The revised model identifies distinct roles for these two tyrosines. As seen in a recently reported structure of the related tyrosine kinase Syk, Tyr 315 of ZAP-70 is part of a hydrophobic interface between the regulatory apparatus and the kinase domain, and the integrity of this interface would be lost upon engagement of doubly phosphorylated peptides by the SH2 domains. Tyr 319 is not necessarily dislodged by SH2 engagement, which activates ZAP-70 only ∼5-fold in vitro. In contrast, phosphorylation by Lck activates ZAP-70 ∼100-fold. This difference is due to the ability of Tyr 319 to suppress ZAP-70 activity even when the SH2 domains are dislodged from the kinase domain, providing stringent control of ZAP-70 activity downstream of Lck.

  15. Iminodiacetic acid as bifunctional linker for dimerization of cyclic RGD peptides

    Xu, Dong; Zhao, Zuo-Quan; Chen, Shu-Ting; Yang, Yong; Fang, Wei; Liu, Shuang

    2017-01-01

    Introduction: In this study, I2P-RGD 2 was used as the example to illustrate a novel approach for dimerization of cyclic RGD peptides. The main objective of this study was to explore the impact of bifunctional linkers (glutamic acid vs. iminodiacetic acid) on tumor-targeting capability and excretion kinetics of the 99m Tc-labeled dimeric cyclic RGD peptides. Methods: HYNIC-I2P-RGD 2 was prepared by reacting I2P-RGD 2 with HYNIC-OSu in the presence of diisopropylethylamine, and was evaluated for its α v β 3 binding affinity against 125 I-echistatin bound to U87MG glioma cells. 99m Tc-I2P-RGD 2 was prepared with high specific activity (~185 GBq/μmol). The athymic nude mice bearing U87MG glioma xenografts were used to evaluate its biodistribution properties and image quality in comparison with those of 99m Tc-3P-RGD 2 . Results: The IC 50 value for HYNIC-I2P-RGD 2 was determined to be 39 ± 6 nM, which was very close to that (IC 50 = 33 ± 5 nM) of HYNIC-3P-RGD 2 . Replacing glutamic acid with iminodiacetic acid had little impact on α v β 3 binding affinity of cyclic RGD peptides. 99m Tc-I2P-RGD 2 and 99m Tc-3P-RGD 2 shared similar tumor uptake values over the 2 h period, and its α v β 3 -specificity was demonstrated by a blocking experiment. The uptake of 99m Tc-I2P-RGD 2 was significantly lower than 99m Tc-3P-RGD 2 in the liver and kidneys. The U87MG glioma tumors were visualized by SPECT with excellent contrast using both 99m Tc-I2P-RGD 2 and 99m Tc-3P-RGD 2 . Conclusion: Iminodiacetic acid is an excellent bifunctional linker for dimerization of cyclic RGD peptides. Bifunctional linkers have significant impact on the excretion kinetics of 99m Tc radiotracers. Because of its lower liver uptake and better tumor/liver ratios, 99m Tc-I2P-RGD 2 may have advantages over 99m Tc-3P-RGD 2 for diagnosis of tumors in chest region. -- Graphical abstract: This report presents novel approach for dimerization of cyclic RGD peptides using iminodiacetic acid as a

  16. Synthesis, DNA Binding, and Anticancer Properties of Bis-Naphthalimide Derivatives with Lysine-Modified Polyamine Linkers

    Yu Huang

    2018-01-01

    Full Text Available A series of bis-naphthalimide derivatives with different diamine linkers were designed and synthesized. All of the synthesized bis-naphthalimide derivatives were characterized by NMR and HRMS spectra. The binding ability between the compounds and CT DNA was evaluated by using UV–Vis titration experiments. The bis-naphthalimide compound with an ethylenediamine linker showed the largest binding constant with CT DNA. Hence, it was used as the model compound to study the DNA binding selectivity by UV–Vis titration aiming at different DNA duplexes. As a result, this compound showed binding preference to AT-rich duplexes. The DNA binding modes of the compounds were also measured by viscosity titration. The cytotoxicity of the compounds was evaluated by MTT assay. Compounds with 1,6-diaminohexane or 1,4-phenylenedimethanamine linkers showed higher cytotoxicity compared with other bis-naphthalimide derivatives.

  17. Mutations in Biosynthetic Enzymes for the Protein Linker Region of Chondroitin/Dermatan/Heparan Sulfate Cause Skeletal and Skin Dysplasias

    Shuji Mizumoto

    2015-01-01

    Full Text Available Glycosaminoglycans, including chondroitin, dermatan, and heparan sulfate, have various roles in a wide range of biological events such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Their polysaccharides covalently attach to the serine residues on specific core proteins through the common linker region tetrasaccharide, -xylose-galactose-galactose-glucuronic acid, which is produced through the stepwise addition of respective monosaccharides by four distinct glycosyltransferases. Mutations in the human genes encoding the glycosyltransferases responsible for the biosynthesis of the linker region tetrasaccharide cause a number of genetic disorders, called glycosaminoglycan linkeropathies, including Desbuquois dysplasia type 2, spondyloepimetaphyseal dysplasia, Ehlers-Danlos syndrome, and Larsen syndrome. This review focused on recent studies on genetic diseases caused by defects in the biosynthesis of the common linker region tetrasaccharide.

  18. Linker length dependent binding of a focal adhesion kinase derived peptide to the Src SH3-SH2 domains.

    Lindfors, Hanna E; Venkata, Bharat Somireddy; Drijfhout, Jan W; Ubbink, Marcellus

    2011-02-18

    The interaction between a peptide encompassing the SH3 and SH2 binding motifs of focal adhesion kinase (FAK) and the Src SH3-SH2 domains has been investigated with NMR spectroscopy and calorimetry. The binding to both motifs is anti-cooperative. Reduction of the long linker connecting the motifs does not lead to cooperativity. Short linkers that do not allow simultaneous intramolecular binding of the peptide to both motifs cause peptide-mediated dimerisation, even with a linker of only three amino acids. The role of the SH3 binding motif is discussed in view of the independent nature of the SH interactions. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. The S4-S5 linker acts as a signal integrator for HERG K+ channel activation and deactivation gating.

    Chai Ann Ng

    Full Text Available Human ether-à-go-go-related gene (hERG K(+ channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4-S5 linker, which couples movement of the voltage sensor domain to opening of the activation gate at the distal end of the inner helix of the pore domain. It has also been suggested that cytosolic domains may interact with the S4-S5 linker to regulate activation and deactivation kinetics. Here, we show that the solution structure of a peptide corresponding to the S4-S5 linker of hERG contains an amphipathic helix. The effects of mutations at the majority of residues in the S4-S5 linker of hERG were consistent with the previously identified role in coupling voltage sensor movement to the activation gate. However, mutations to Ser543, Tyr545, Gly546 and Ala548 had more complex phenotypes indicating that these residues are involved in additional interactions. We propose a model in which the S4-S5 linker, in addition to coupling VSD movement to the activation gate, also contributes to interactions that stabilise the closed state and a separate set of interactions that stabilise the open state. The S4-S5 linker therefore acts as a signal integrator and plays a crucial role in the slow deactivation kinetics of the channel.

  20. Preparation of value-added metal-organic frameworks (MOFs) using waste PET bottles as source of acid linker

    Dyosiba, Xoliswa

    2016-12-01

    Full Text Available of Value-added Metal-organic Frameworks (MOFs) Using Waste PET Bottles as Source of Acid Linker Xoliswa Dyosiba, Jianwei Ren, Nicholas M. Musyoka, Henrietta W. Langmi, Mkhulu Mathe, Maurice S. Onyango PII: S2214-9937(16)30053-7 DOI: doi:10.1016/j..., Hen- rietta W. Langmi, Mkhulu Mathe, Maurice S. Onyango, Preparation of Value-added Metal-organic Frameworks (MOFs) Using Waste PET Bottles as Source of Acid Linker, Sustainable Materials and Technologies (2016), doi:10.1016/j.susmat.2016...

  1. A Linker for the Solid-Phase Synthesis of Hydroxamic Acids and Identification of HDAC6 Inhibitors

    Bang, Claus Gunnar; Jensen, Jakob Feldthusen; Cohrt, Anders Emil O'Hanlon

    2017-01-01

    We herein present broadly useful, readily available and nonintegral hydroxylamine linkers for the routine solid-phase synthesis of hydroxamic acids. The developed protocols enable the efficient synthesis and release of a wide range of hydroxamic acids from various resins, relying on high control...... and flexibility with respect to reagents and synthetic processes. A trityl-based hydroxylamine linker was used to synthesize a library of peptide hydroxamic acids. The inhibitory effects of the compounds were examined for seven HDAC enzyme subtypes using a chemiluminescence-based assay....

  2. Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry

    Bahrt, Frederikke; Dimitrov, Ivaylo; Daugaard, Anders Egede

    2013-01-01

    by 35%. The contact angle of PDMS films was increased from 108° to 116° by the introduction of a small poly(pentafluorostyrene) chain. Finally, 17α-ethynyl-1,3,5(10)-estratriene-3,17β-diol and 1-ethynyl-3,5- bis(trifluoromethyl)benzene were incorporated as examples of other functional groups. © 2013......-linkers have been utilized to prepare novel polydimethylsiloxane (PDMS) networks. All functional cross-linkers were successfully incorporated into the networks and were demonstrated to be well distributed within the PDMS films. This was substantiated by fluorescence microscopy of a film prepared with the 4...

  3. Preferential 5-Methylcytosine Oxidation in the Linker Region of Reconstituted Positioned Nucleosomes by Tet1 Protein.

    Kizaki, Seiichiro; Zou, Tingting; Li, Yue; Han, Yong-Woon; Suzuki, Yuki; Harada, Yoshie; Sugiyama, Hiroshi

    2016-11-07

    Tet (ten-eleven translocation) family proteins oxidize 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC), and are suggested to be involved in the active DNA demethylation pathway. In this study, we reconstituted positioned mononucleosomes using CpG-methylated 382 bp DNA containing the Widom 601 sequence and recombinant histone octamer, and subjected the nucleosome to treatment with Tet1 protein. The sites of oxidized methylcytosine were identified by bisulfite sequencing. We found that, for the oxidation reaction, Tet1 protein prefers mCs located in the linker region of the nucleosome compared with those located in the core region. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Efficient loading of primary alcohols onto a solid phase using a trityl bromide linker

    Crestey, François; Ottesen, Lars Korsgaard; Jaroszewski, Jerzy Witold

    2008-01-01

    The Letter describes an improved, rapid and mild strategy for the loading of primary alcohols onto a polystyrene trityl resin via a highly reactive trityl bromide linker. This protocol facilitates an efficient resin loading even of acid-sensitive or heat-labile alcohols, which otherwise require...... expensive or non-commercial resin types. Secondary alcohols were only attached in moderate to low yields, while attempts to load a tertiary alcohol expectedly failed. Importantly, selective attachment of diols via a primary alcohol group in the presence of more hindered alcohol groups proved possible....... The effects of activation time and reagent excess as well as alcohol structure were investigated. This improved method provides a convenient access to O-linked resin-bound N-Fmoc-protected amino alcohols that may be employed in SPS of peptides with C-terminal alcohol functionalities. In the case...

  5. Temperature-triggered release of a liquid cross-linker micro-encapsulated in a glassy polymer for low temperature curing

    Senatore, D.; Cate, ten A.T.; Laven, J.; Benthem, van R.A.T.M.; With, de G.

    2013-01-01

    In order to prevent a liquid epoxy cross-linker from premature, Arrhenius-law predicted, reaction with an acid-functional polyester resin, the liquid cross-linker has been physically separated from the resin by encapsulation while release is only possible by a temperature-controlled trigger. The

  6. Synthesis of Selective Butyrylcholinesterase Inhibitors Coupled between α-Lipoic Acid and Polyphenols by Using 2-(Piperazin-1-yl)ethanol Linker

    Yeun, Go Heun; Lee, Seung Hwan; LIm, Yong Bae; Lee, Hye Sook; Lee, Bong Ho; Park, Jeong Ho [Hanbat National Univ., Daejeon (Korea, Republic of); Won, Mooho [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2013-04-15

    In the previous paper (Bull. Korean Chem. Soc., 2011, 32, 2997), the hybrid molecules between α-lipoic acid (ALA) and polyphenols (PPs) connected with neutral 2-(2-aminoethoxy)ethanol linker (linker-1) showed new biological activity such as butyrylcholinesterase (BuChE) inhibition. In order to increase the binding affinity of the hybrid compounds to cholinesterase (ChE), the neutral 2-(2-aminoethoxy)ethanol (linker 1) was switched to the cationic 2-(piperazin-1-yl)ethanol linker (linker 2). The IC{sub 50} values of the linker-2 hybrid molecules for BuChE inhibition were lower than those of linker-1 hybrid molecules (except 9-2) and they also had the same great selectivity for BuChE over AChE (> 800 fold) as linker-1 hybrid molecules. ALA-acetyl caffeic acid (10-2, ALA-AcCA) was shown as an effective inhibitor of BuChE (IC{sub 50} = 0.44 ± 0.24 μM). A kinetic study using 7-2 showed that it is the same mixed type inhibition as 7-1. Its inhibition constant (Ki) to BuChE is 4.3 ± 0.09 μM.

  7. Synthesis of Selective Butyrylcholinesterase Inhibitors Coupled between α-Lipoic Acid and Polyphenols by Using 2-(Piperazin-1-yl)ethanol Linker

    Yeun, Go Heun; Lee, Seung Hwan; LIm, Yong Bae; Lee, Hye Sook; Lee, Bong Ho; Park, Jeong Ho; Won, Mooho

    2013-01-01

    In the previous paper (Bull. Korean Chem. Soc., 2011, 32, 2997), the hybrid molecules between α-lipoic acid (ALA) and polyphenols (PPs) connected with neutral 2-(2-aminoethoxy)ethanol linker (linker-1) showed new biological activity such as butyrylcholinesterase (BuChE) inhibition. In order to increase the binding affinity of the hybrid compounds to cholinesterase (ChE), the neutral 2-(2-aminoethoxy)ethanol (linker 1) was switched to the cationic 2-(piperazin-1-yl)ethanol linker (linker 2). The IC 50 values of the linker-2 hybrid molecules for BuChE inhibition were lower than those of linker-1 hybrid molecules (except 9-2) and they also had the same great selectivity for BuChE over AChE (> 800 fold) as linker-1 hybrid molecules. ALA-acetyl caffeic acid (10-2, ALA-AcCA) was shown as an effective inhibitor of BuChE (IC 50 = 0.44 ± 0.24 μM). A kinetic study using 7-2 showed that it is the same mixed type inhibition as 7-1. Its inhibition constant (Ki) to BuChE is 4.3 ± 0.09 μM

  8. Modulations of DNA Contacts by Linker Histones and Post-translational Modifications Determine the Mobility and Modifiability of Nucleosomal H3 Tails.

    Stützer, Alexandra; Liokatis, Stamatios; Kiesel, Anja; Schwarzer, Dirk; Sprangers, Remco; Söding, Johannes; Selenko, Philipp; Fischle, Wolfgang

    2016-01-21

    Post-translational histone modifications and linker histone incorporation regulate chromatin structure and genome activity. How these systems interface on a molecular level is unclear. Using biochemistry and NMR spectroscopy, we deduced mechanistic insights into the modification behavior of N-terminal histone H3 tails in different nucleosomal contexts. We find that linker histones generally inhibit modifications of different H3 sites and reduce H3 tail dynamics in nucleosomes. These effects are caused by modulations of electrostatic interactions of H3 tails with linker DNA and largely depend on the C-terminal domains of linker histones. In agreement, linker histone occupancy and H3 tail modifications segregate on a genome-wide level. Charge-modulating modifications such as phosphorylation and acetylation weaken transient H3 tail-linker DNA interactions, increase H3 tail dynamics, and, concomitantly, enhance general modifiability. We propose that alterations of H3 tail-linker DNA interactions by linker histones and charge-modulating modifications execute basal control mechanisms of chromatin function. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Eviction of linker histone H1 by NAP-family histone chaperones enhances activated transcription.

    Zhang, Qian; Giebler, Holli A; Isaacson, Marisa K; Nyborg, Jennifer K

    2015-01-01

    In the Metazoan nucleus, core histones assemble the genomic DNA to form nucleosome arrays, which are further compacted into dense chromatin structures by the linker histone H1. The extraordinary density of chromatin creates an obstacle for accessing the genetic information. Regulation of chromatin dynamics is therefore critical to cellular homeostasis, and histone chaperones serve as prominent players in these processes. In the current study, we examined the role of specific histone chaperones in negotiating the inherently repressive chromatin structure during transcriptional activation. Using a model promoter, we demonstrate that the human nucleosome assembly protein family members hNap1 and SET/Taf1β stimulate transcription in vitro during pre-initiation complex formation, prior to elongation. This stimulatory effect is dependent upon the presence of activators, p300, and Acetyl-CoA. We show that transcription from our chromatin template is strongly repressed by H1, and that both histone chaperones enhance RNA synthesis by overcoming H1-induced repression. Importantly, both hNap1 and SET/Taf1β directly bind H1, and function to enhance transcription by evicting the linker histone from chromatin reconstituted with H1. In vivo studies demonstrate that SET/Taf1β, but not hNap1, strongly stimulates activated transcription from the chromosomally-integrated model promoter, consistent with the observation that SET/Taf1β is nuclear, whereas hNap1 is primarily cytoplasmic. Together, these observations indicate that SET/Taf1β may serve as a critical regulator of H1 dynamics and gene activation in vivo. These studies uncover a novel function for SET that mechanistically couples transcriptional derepression with H1 dynamics. Furthermore, they underscore the significance of chaperone-dependent H1 displacement as an essential early step in the transition of a promoter from a dense chromatin state into one that is permissive to transcription factor binding and robust

  10. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.

    Samantha F Kornfeld

    Full Text Available Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as

  11. Synthesis of two new alkyne-bearing linkers used for the preparation of siRNA for labeling by click chemistry with fluorine-18

    Flagothier, Jessica; Kaisin, Geoffroy; Mercier, Frederic; Thonon, David; Teller, Nathalie; Wouters, Johan; Luxen, André

    2012-01-01

    Oligonucleotides (ONs) and more particularly siRNAs are promising drugs but their pharmacokinetics and biodistribution are widely unknown. Positron Emission Tomography (PET) using fluorine-18 is a suitable technique to quantify these biological processes. Click chemistry (Huisgen cycloaddition) is the current method for labeling siRNA. In order to study the influence of a linker bearing by [ 18 F] labeled ONs, on the in vivo pharmacokinetic and metabolism, we have developed two modified ONs by two new linkers. Here we report the synthesis of two alkyne-bearing linkers, the incorporation onto a ONs and the conjugation by click chemistry with a [ 18 F] prosthetic group. - Highlights: ► Synthesis of two new alkyne linkers. ► Functionalization at the 3′-end siRNA by alkyne linker derived of proline. ► Click chemistry between alkyne modified siRNA and [ 18 F] prosthetic group.

  12. One-pot preparation of mRNA/cDNA display by a novel and versatile puromycin-linker DNA.

    Mochizuki, Yuki; Biyani, Manish; Tsuji-Ueno, Sachika; Suzuki, Miho; Nishigaki, Koichi; Husimi, Yuzuru; Nemoto, Naoto

    2011-09-12

    A rapid, easy, and robust preparation method for mRNA/cDNA display using a newly designed puromycin-linker DNA is presented. The new linker is structurally simple, easy to synthesize, and cost-effective for use in "in vitro peptide and protein selection". An introduction of RNase T1 nuclease site to the new linker facilitates the easy recovery of mRNA/cDNA displayed protein by an improvement of the efficiency of ligating the linker to mRNAs and efficient release of mRNA/cDNA displayed protein from the solid-phase (magnetic bead). For application demonstration, affinity selections were successfully performed. Furthermore, we introduced a "one-pot" preparation protocol to perform mRNA display easy. Unlike conventional approaches that require tedious and downstream multistep process including purification, this protocol will make the mRNA/cDNA display methods more practical and convenient and also facilitate the development of next-generation, high-throughput mRNA/cDNA display systems amenable to automation.

  13. Mechanistic Evaluation of Motion in Redox-Driven Rotaxanes Reveals Longer Linkers Hasten Forward Escape's and Hinder Backward Translations

    Andersen, S. S.; Share, A. I.; Poulsen, B. L.

    2014-01-01

    temperatures to provide activation enthalpies (Delta H-double dagger) and entropies (Delta S-double dagger). Longer glycol linkers led to modest increases in the forward escape (t(1/2) = 60 to 69 s); though not because of a diffusive walk. The reduced rate of motion backward depended on folded structures...

  14. The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences

    Rivas, Matilde De Las; Lira-Navarrete, Erandi; Daniel, Earnest James Paul

    2017-01-01

    The polypeptide GalNAc-transferases (GalNAc-Ts), that initiate mucin-type O-glycosylation, consist of a catalytic and a lectin domain connected by a flexible linker. In addition to recognizing polypeptide sequence, the GalNAc-Ts exhibit unique long-range N- A nd/or C-terminal prior glycosylation ...

  15. Synthesis and catalytic evaluation in the Heck reaction of deposited palladium catalysts immobilized via amide linkers and their molecular analogues

    Semler, M.; Čejka, Jiří; Štěpnička, P.

    2014-01-01

    Roč. 227, MAY 2014 (2014), s. 207-214 ISSN 0920-5861 R&D Projects: GA ČR GA104/09/0561; GA ČR(CZ) GA13-08944S Institutional support: RVO:61388955 Keywords : deposited catalysts * palladium * amide linkers Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.893, year: 2014

  16. Differential solvation of intrinsically disordered linkers drives the formation of spatially organized droplets in ternary systems of linear multivalent proteins

    Harmon, Tyler S.; Holehouse, Alex S.; Pappu, Rohit V.

    2018-04-01

    Intracellular biomolecular condensates are membraneless organelles that encompass large numbers of multivalent protein and nucleic acid molecules. The bodies assemble via a combination of liquid–liquid phase separation and gelation. A majority of condensates included multiple components and show multilayered organization as opposed to being well-mixed unitary liquids. Here, we put forward a simple thermodynamic framework to describe the emergence of spatially organized droplets in multicomponent systems comprising of linear multivalent polymers also known as associative polymers. These polymers, which mimic proteins and/or RNA have the architecture of domains or motifs known as stickers that are interspersed by flexible spacers known as linkers. Using a minimalist numerical model for a four-component system, we have identified features of linear multivalent molecules that are necessary and sufficient for generating spatially organized droplets. We show that differences in sequence-specific effective solvation volumes of disordered linkers between interaction domains enable the formation of spatially organized droplets. Molecules with linkers that are preferentially solvated are driven to the interface with the bulk solvent, whereas molecules that have linkers with negligible effective solvation volumes form cores in the core–shell architectures that emerge in the minimalist four-component systems. Our modeling has relevance for understanding the physical determinants of spatially organized membraneless organelles.

  17. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network

    Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu

    2014-01-01

    Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers. PMID:25296246

  18. High-resolution two-dimensional liquid chromatography analysis of key linker drug intermediate used in antibody drug conjugates.

    Venkatramani, C J; Huang, Shu Rong; Al-Sayah, Mohammad; Patel, Ila; Wigman, Larry

    2017-10-27

    In this manuscript, the application of high-resolution sampling (HRS) two-dimensional liquid chromatography (2D-LC) in the detailed analysis of key linker drug intermediate is presented. Using HRS, selected regions of the primary column eluent were transferred to a secondary column with fidelity enabling qualitative and quantitative analysis of linker drugs. The primary column purity of linker drug intermediate ranged from 88.9% to 94.5% and the secondary column purity ranged from 99.6% to 99.9%, showing lot-to-lot variability, significant differences between the three lots, and substantiating the synthetic and analytical challenges of ADCs. Over 15 impurities co-eluting with the linker drug intermediate in the primary dimension were resolved in the secondary dimension. The concentrations of most of these impurities were over three orders of magnitude lower than the linker drug. Effective peak focusing and high-speed secondary column analysis resulted in sharp peaks in the secondary dimension, improving the signal-to-noise ratios. The sensitivity of 2D-LC separation was over five fold better than conventional HPLC separation. The limit of quantitation (LOQ) was less than 0.01%. Many peaks originating from primary dimension were resolved into multiple components in the complementary secondary dimension, demonstrating the complexity of these samples. The 2D-LC was highly reproducible, showing good precision between runs with%RSD of peak areas less than 0.1 for the main component. The absolute difference in the peak areas of impurities less than 0.1% were within ±0.01% and for impurities in the range of 0.1%-0.3%, the absolute difference were ±0.02%, which are comparable to 1D-LC. The overall purity of the linker drug intermediate was determined from the product of primary and secondary column purity (HPLC Purity=%peak area of main component in the primary dimension×%peak area of main component in the secondary dimension). Additionally, the 2D-LC separation enables

  19. Pivotal role of extended linker 2 in the activation of Gα by G protein-coupled receptor.

    Huang, Jianyun; Sun, Yutong; Zhang, J Jillian; Huang, Xin-Yun

    2015-01-02

    G protein-coupled receptors (GPCRs) relay extracellular signals mainly to heterotrimeric G-proteins (Gαβγ) and they are the most successful drug targets. The mechanisms of G-protein activation by GPCRs are not well understood. Previous studies have revealed a signal relay route from a GPCR via the C-terminal α5-helix of Gα to the guanine nucleotide-binding pocket. Recent structural and biophysical studies uncover a role for the opening or rotating of the α-helical domain of Gα during the activation of Gα by a GPCR. Here we show that β-adrenergic receptors activate eight Gαs mutant proteins (from a screen of 66 Gαs mutants) that are unable to bind Gβγ subunits in cells. Five of these eight mutants are in the αF/Linker 2/β2 hinge region (extended Linker 2) that connects the Ras-like GTPase domain and the α-helical domain of Gαs. This extended Linker 2 is the target site of a natural product inhibitor of Gq. Our data show that the extended Linker 2 is critical for Gα activation by GPCRs. We propose that a GPCR via its intracellular loop 2 directly interacts with the β2/β3 loop of Gα to communicate to Linker 2, resulting in the opening and closing of the α-helical domain and the release of GDP during G-protein activation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Evaluation of ¹¹¹in-labelled exendin-4 derivatives containing different meprin β-specific cleavable linkers.

    Andreas Jodal

    Full Text Available Cleavable linkers, which are specifically cleaved by defined conditions or enzymes, are powerful tools that can be used for various purposes. Amongst other things, they have been successfully used to deliver toxic payloads as prodrugs into target tissues. In this work novel linker sequences targeting meprin β, a metalloprotease expressed in the kidney brush-border membrane, were designed and included in the sequence of three radiolabelled exendin-4 derivatives. As radiolabelled exendin-4 derivatives strongly accumulate in the kidneys, we hypothesised that specific cleavage of the radiolabelled moiety at the kidney brush-border membrane would allow easier excretion of the activity into the urine and therefore improve the pharmacological properties of the peptide.The insertion of a cleavable linker did not negatively influence the in vitro properties of the peptides. They showed a good affinity to the GLP-1 receptor expressed in CHL cells, a high internalisation and sufficiently high stability in fresh human blood plasma. In vitro digestion with recombinant meprin β rapidly metabolised the corresponding linker sequences. After 60 min the majority of the corresponding peptides were digested and at the same time the anticipated fragments were formed. The peptides were also quickly metabolised in CD1 nu/nu mouse kidney homogenates. Immunofluorescence staining of meprin β in kidney sections confirmed the expression of the protease in the kidney brush-border membrane. Biodistribution in GLP-1 receptor positive tumour-xenograft bearing mice revealed high specific uptake of the 111In-labelled tracers in receptor positive tissue. Accumulation in the kidneys, however, was still high and comparable to the lead compound 111In-Ex4NOD40.In conclusion, we show that the concept of cleavable linkers specific for meprin β is feasible, as the peptides are rapidly cleaved by the enzyme while retaining their biological properties.

  1. Prescreening of Nicotine Hapten Linkers in Vitro To Select Hapten-Conjugate Vaccine Candidates for Pharmacokinetic Evaluation in Vivo.

    Arutla, Viswanath; Leal, Joseph; Liu, Xiaowei; Sokalingam, Sriram; Raleigh, Michael; Adaralegbe, Adejimi; Liu, Li; Pentel, Paul R; Hecht, Sidney M; Chang, Yung

    2017-05-08

    Since the demonstration of nicotine vaccines as a possible therapeutic intervention for the effects of tobacco smoke, extensive effort has been made to enhance nicotine specific immunity. Linker modifications of nicotine haptens have been a focal point for improving the immunogenicity of nicotine, in which the evaluation of these modifications usually relies on in vivo animal models, such as mice, rats or nonhuman primates. Here, we present two in vitro screening strategies to estimate and predict the immunogenic potential of our newly designed nicotine haptens. One utilizes a competition enzyme-linked immunoabsorbent assay (ELISA) to profile the interactions of nicotine haptens or hapten-protein conjugates with nicotine specific antibodies, both polyclonal and monoclonal. Another relies on computational modeling of the interactions between haptens and amino acid residues near the conjugation site of the carrier protein to infer linker-carrier protein conjugation effect on antinicotine antibody response. Using these two in vitro methods, we ranked the haptens with different linkers for their potential as viable vaccine candidates. The ELISA-based hapten ranking was in an agreement with the results obtained by in vivo nicotine pharmacokinetic analysis. A correlation was found between the average binding affinity (IC 50 ) of the haptens to an anti-Nic monoclonal antibody and the average brain nicotine concentration in the immunized mice. The computational modeling of hapten and carrier protein interactions helps exclude conjugates with strong linker-carrier conjugation effects and low in vivo efficacy. The simplicity of these in vitro screening strategies should facilitate the selection and development of more effective nicotine conjugate vaccines. In addition, these data highlight a previously under-appreciated contribution of linkers and hapten-protein conjugations to conjugate vaccine immunogenicity by virtue of their inclusion in the epitope that binds and

  2. Modification of Titanium Substrates with Chimeric Peptides Comprising Antimicrobial and Titanium-Binding Motifs Connected by Linkers To Inhibit Biofilm Formation.

    Liu, Zihao; Ma, Shiqing; Duan, Shun; Xuliang, Deng; Sun, Yingchun; Zhang, Xi; Xu, Xinhua; Guan, Binbin; Wang, Chao; Hu, Meilin; Qi, Xingying; Zhang, Xu; Gao, Ping

    2016-03-02

    Bacterial adhesion and biofilm formation are the primary causes of implant-associated infection, which is difficult to eliminate and may induce failure in dental implants. Chimeric peptides with both binding and antimicrobial motifs may provide a promising alternative to inhibit biofilm formation on titanium surfaces. In this study, chimeric peptides were designed by connecting an antimicrobial motif (JH8194: KRLFRRWQWRMKKY) with a binding motif (minTBP-1: RKLPDA) directly or via flexible/rigid linkers to modify Ti surfaces. We evaluated the binding behavior of peptides using quartz crystal microbalance (QCM) and atomic force microscopy (AFM) techniques and investigated the effect of the modification of titanium surfaces with these peptides on the bioactivity of Streptococcus gordonii (S. gordonii) and Streptococcus sanguis (S. sanguis). Compared with the flexible linker (GGGGS), the rigid linker (PAPAP) significantly increased the adsorption of the chimeric peptide on titanium surfaces (p chimeric peptide with the rigid linker exhibited more effective antimicrobial ability than the peptide with the flexible linker. This finding was ascribed to the ability of the rigid linker to separate functional domains and reduce their interference to the maximum extent. Consequently, the performance of chimeric peptides with specific titanium-binding motifs and antimicrobial motifs against bacteria can be optimized by the proper selection of linkers. This rational design of chimeric peptides provides a promising alternative to inhibit the formation of biofilms on titanium surfaces with the potential to prevent peri-implantitis and peri-implant mucositis.

  3. Multivalent cyclic RGD ligands: influence of linker lengths on receptor binding

    Kubas, Holger; Schaefer, Martin; Bauder-Wuest, Ulrike; Eder, Matthias; Oltmanns, Doerte [Department of Radiopharmaceutical Chemistry, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Haberkorn, Uwe; Mier, Walter [Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Eisenhut, Michael, E-mail: m.eisenhut@dkfz.d [Department of Radiopharmaceutical Chemistry, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2010-11-15

    Peptides involving the RGD motive (arginine-glycine-aspartic acid) recognize members of the integrin receptor family. Since the receptors are located mainly on the surface of endothelial cells, structural modifications including multimers of c(RGDfE) were recently found to improve the binding avidity for {alpha}{sub v{beta}3} integrin significantly. The multivalent RGD peptides exhibited rather loose linkages partly including oligo(ethylene glycol) spacers (EG{sub n}) with different chain lengths. Therefore, the dependence of multivalent RGD systems with and without EG{sub n} linkers were investigated on their binding properties to cultured {alpha}{sub v{beta}3} integrin-expressing U87MG cells. Methods: We synthesized a series of di-, tri- and tetravalent rigid scaffolds (terephthalic acid, trimesic acid and adamantane-1,3,5,7-tetracarboxylic acid) conjugated to c(RGDyK) ligands, which were linked contiguously or separated by the oligo(ethylene glycol) spacers. The inhibition constants of these c(RGDyK) derivatives were determined by competition assays with {sup 125}I-labeled echistatin. Results: While c(RGDyK) function is a relative weak competitor against [{sup 125}I]echistatin (K{sub i}, 329{+-}18 nM) for {alpha}{sub v{beta}3} integrin-expressing U87MG cells, RGD dimers improved the competition potency considerably (K{sub i}, 64{+-}23 nM). This effect was even more pronounced with the RGD trimers (K{sub i}, 40{+-}7 nM) and tetramers (K{sub i}, 26{+-}9 nM). The introduction of EG{sub n} spacers and the increase of linker lengths proved to be detrimental since more competitors were needed to compete with [{sup 125}I]echistatin. The EG{sub 6} group, for example, reduced the inhibition constants by 29% (dimer), 57% (trimer) and 97% (tetramer). Conclusion: The binding experiments performed with the three forms of multivalent RGD ligands indicate the weakening of competitive potency against [{sup 125}I]echistatin with the introduction of EG{sub n} spacers. This effect

  4. Inverse Effects on Gating and Modulation Caused by a Mutation in the M2-M3 Linker of the GABAA Receptor γ SubunitS⃞

    O'Shea, Sean M.; Williams, Carrie A.; Jenkins, Andrew

    2009-01-01

    M2-M3 linkers are receptor subunit domains known to be critical for the normal function of cysteine-loop ligand-gated ion channels. Previous studies of α and β subunits of type “A” GABA receptors suggest that these linkers couple extracellular elements involved in GABA binding to the transmembrane segments that control the opening of the ion channel. To study the importance of the γ subunit M2-M3 linker, we examined the macroscopic and single-channel effects of an engi...

  5. A Class of Rigid Linker-bearing Glucosides for Membrane Protein Structural Study.

    Sadaf, Aiman; Mortensen, Jonas S; Capaldi, Stefano; Tikhonova, Elena; Hariharan, Parameswaran; de Castro Ribeiro, Orquidea; Loland, Claus J; Guan, Lan; Byrne, Bernadette; Chae, Pil Seok

    2016-03-01

    Membrane proteins are amphipathic bio-macromolecules incompatible with the polar environments of aqueous media. Conventional detergents encapsulate the hydrophobic surfaces of membrane proteins allowing them to exist in aqueous solution. Membrane proteins stabilized by detergent micelles are used for structural and functional analysis. Despite the availability of a large number of detergents, only a few agents are sufficiently effective at maintaining the integrity of membrane proteins to allow successful crystallization. In the present study, we describe a novel class of synthetic amphiphiles with a branched tail group and a triglucoside head group. These head and tail groups were connected via an amide or ether linkage by using a tris(hydroxylmethyl)aminomethane (TRIS) or neopentyl glycol (NPG) linker to produce TRIS-derived triglucosides (TDTs) and NPG-derived triglucosides (NDTs), respectively. Members of this class conferred enhanced stability on target membrane proteins compared to conventional detergents. Because of straightforward synthesis of the novel agents and their favourable effects on a range of membrane proteins, these agents should be of wide applicability to membrane protein science.

  6. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Effect of the Linker in Terephthalate-Functionalized Conducting Redox Polymers

    Yang, Li; Huang, Xiao; Gogoll, Adolf; Strømme, Maria; Sjödin, Martin

    2016-01-01

    The combination of high capacity redox active pendent groups and conducting polymers, realized in conducting redox polymers (CRPs), provides materials with high charge storage capacity that are electronically conducting which makes CRPs attractive for electrical energy storage applications. In this report, six polythiophene and poly(3,4-ethylenedioxythiophene)(PEDOT)-based CRPs with a diethyl terephthalate unit covalently bound to the polymer chain by various linkers have been synthesized and characterized electrochemically. The effects of the choice of polymer backbone and of the nature of the link on the electrochemistry, and in particular the cycling stability of these polymers, are discussed. All CRPs show both the doping of the polymer backbone as well as the redox behavior of the pendent groups and the redox potential of the pendent groups in the CRPs is close to that of corresponding monomer, indicating insignificant interaction between the pendant and the polymer backbone. While all CRPs show various degrees of charge decay upon electrochemical redox conversion, the PEDOT-based CRPs show significantly improved stability compared to the polythiophene counterparts. Moreover, we show that by the right choice of link the cycling stability of diethyl terephthalate substituted PEDOT-based CRPs can be significantly improved.

  8. Missing Linker Defects in a Homochiral Metal-Organic Framework: Tuning the Chiral Separation Capacity.

    Slater, Benjamin; Wang, Zeru; Jiang, Shanxue; Hill, Matthew R; Ladewig, Bradley P

    2017-12-20

    Efficient chiral separation remains a very challenging task due to the identical physical and chemical properties of the enantiomers of a molecule. Enantiomers only behave differently from each other in the presence of other chiral species. Homochiral metal-organic frameworks (MOFs) have received much attention for their promising enantioseparation properties. However, there are still challenges to overcome in this field such as high enantiomeric separation. Structural defects play an important role in the properties of MOFs and can significantly change the pore architecture. In this work, we introduced missing linker defects into a homochiral metal-organic framework [Zn 2 (bdc)(l-lac)(dmf)] (ZnBLD; bdc = 1,4-benzenedicarboxylic acid, l-lac = l-lactic acid, dmf = N,N'-dimethylformamide) and observed an increase in enantiomeric excess for 1-phenylethanol of 35% with the defective frameworks. We adjusted the concentration of monocarboxylic acid ligand l-lactic acid by varying the ratio of Zn 2+ to ligand from 0.5 to 0.85 mmol. Additionally, a defective framework was synthesized with propanoic acid as modulator. In order to elucidate the correlation between defects and enantiomeric excess, five characterization techniques (FTIR, TGA, 1 H NMR, ICP, and PXRD) were employed. Full width at half-maximum analysis (fwhm) was performed on the powder X-ray diffraction traces and showed that the higher concentration of monocarboxylic acid MOFs were isostructural but suffered from increased fwhm values.

  9. Enhanced Charge Separation Efficiency in Pyridine-Anchored Phthalocyanine-Sensitized Solar Cells by Linker Elongation.

    Ikeuchi, Takuro; Agrawal, Saurabh; Ezoe, Masayuki; Mori, Shogo; Kimura, Mutsumi

    2015-11-01

    A series of zinc phthalocyanine sensitizers (PcS22-24) having a pyridine anchoring group are designed and synthesized to investigate the structural dependence on performance in dye-sensitized solar cells. The pyridine-anchor zinc phthalocyanine sensitizer PcS23 shows 79 % incident-photon to current-conversion efficiency (IPCE) and 6.1 % energy conversion efficiency, which are comparable with similar phthalocyanine dyes having a carboxylic acid anchoring group. Based on DFT calculations, the high IPCE is attributed with the mixture of an excited-state molecular orbital of the sensitizer and the orbitals of TiO2 . Between pyridine and carboxylic acid anchor dyes, opposite trends are observed in the linker-length dependence of the IPCE. The red-absorbing PcS23 is applied for co-sensitization with a carboxyl-anchor organic dye D131 that has a complementary spectral response. The site-selective adsorption of PcS23 and D131 on the TiO2 surface results in a panchromatic photocurrent response for the whole visible-light region of sun light. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers

    Chen, Guojian; Zhou, Yu; Wang, Xiaochen; Li, Jing; Xue, Shuang; Liu, Yangqing; Wang, Qian; Wang, Jun

    2015-06-01

    In fields of materials science and chemistry, ionic-type porous materials attract increasing attention due to significant ion-exchanging capacity for accessing diversified applications. Facing the fact that porous cationic materials with robust and stable frameworks are very rare, novel tactics that can create new type members are highly desired. Here we report the first family of polyhedral oligomeric silsesquioxane (POSS) based porous cationic frameworks (PCIF-n) with enriched poly(ionic liquid)-like cationic structures, tunable mesoporosities, high surface areas (up to 1,025 m2 g-1) and large pore volumes (up to 0.90 cm3 g-1). Our strategy is designing the new rigid POSS unit of octakis(chloromethyl)silsesquioxane and reacting it with the rigid N-heterocyclic cross-linkers (typically 4,4‧-bipyridine) for preparing the desired porous cationic frameworks. The PCIF-n materials possess large surface area, hydrophobic and special anion-exchanging property, and thus are used as the supports for loading guest species PMo10V2O405- the resultant hybrid behaves as an efficient heterogeneous catalyst for aerobic oxidation of benzene and H2O2-mediated oxidation of cyclohexane.

  11. Nucleosome–nucleosome interactions via histone tails and linker DNA regulate nuclear rigidity

    Shimamoto, Yuta; Tamura, Sachiko; Masumoto, Hiroshi; Maeshima, Kazuhiro

    2017-01-01

    Cells, as well as the nuclei inside them, experience significant mechanical stress in diverse biological processes, including contraction, migration, and adhesion. The structural stability of nuclei must therefore be maintained in order to protect genome integrity. Despite extensive knowledge on nuclear architecture and components, however, the underlying physical and molecular mechanisms remain largely unknown. We address this by subjecting isolated human cell nuclei to microneedle-based quantitative micromanipulation with a series of biochemical perturbations of the chromatin. We find that the mechanical rigidity of nuclei depends on the continuity of the nucleosomal fiber and interactions between nucleosomes. Disrupting these chromatin features by varying cation concentration, acetylating histone tails, or digesting linker DNA results in loss of nuclear rigidity. In contrast, the levels of key chromatin assembly factors, including cohesin, condensin II, and CTCF, and a major nuclear envelope protein, lamin, are unaffected. Together with in situ evidence using living cells and a simple mechanical model, our findings reveal a chromatin-based regulation of the nuclear mechanical response and provide insight into the significance of local and global chromatin structures, such as those associated with interdigitated or melted nucleosomal fibers. PMID:28428255

  12. Role of H1 linker histones in mammalian development and stem cell differentiation.

    Pan, Chenyi; Fan, Yuhong

    2016-03-01

    H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Dual-purpose linker for alpha helix stabilization and imaging agent conjugation to glucagon-like peptide-1 receptor ligands.

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M

    2015-02-18

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel α-helix-stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enable this technique to potentially be used as a general method for labeling α helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents.

  14. Optimizing the relaxivity of GdIII complexes appended to InP/ZnS quantum dots by linker tuning.

    Stasiuk, Graeme J; Tamang, Sudarsan; Imbert, Daniel; Gateau, Christelle; Reiss, Peter; Fries, Pascal; Mazzanti, Marinella

    2013-06-21

    Three bimodal MRI/optical nanosized contrast agents with high per-nanoparticle relaxivity (up to 2523 mM(-1) s(-1) at 35 MHz and 932 mM(-1) s(-1) at 200 MHz) have been prepared connecting up to 115 tris-aqua Gd(III) complexes to fluorescent non-toxic InP/ZnS quantum dots. The structure of the linker has an important effect on the relaxivity of the final multimeric contrast agent.

  15. A Small Number of Residues Can Determine if Linker Histones Are Bound On or Off Dyad in the Chromatosome.

    Zhou, Bing-Rui; Feng, Hanqiao; Ghirlando, Rodolfo; Li, Shipeng; Schwieters, Charles D; Bai, Yawen

    2016-10-09

    Linker histones bind to the nucleosome and regulate the structure and function of chromatin. We have previously shown that the globular domains of chicken H5 and Drosophila H1 linker histones bind to the nucleosome with on- or off-dyad modes, respectively. To explore the determinant for the distinct binding modes, we investigated the binding of a mutant globular domain of H5 to the nucleosome. This mutant, termed GH5_pMut, includes substitutions of five globular domain residues of H5 with the corresponding residues in the globular domain of Drosophila H1. The residues at these five positions play important roles in nucleosome binding by either H5 or Drosophila H1. NMR and spin-labeling experiments showed that GH5_pMut bound to the nucleosome off the dyad. We further found that the nucleosome array condensed by either the GH5_pMut or the globular domain of Drosophila H1 displayed a similar sedimentation coefficient, whereas the same nucleosome array condensed by the wild-type globular domain of H5 showed a much larger sedimentation coefficient. Moreover, NMR and spin-labeling results from the study of the nucleosome in complex with the full-length human linker histone H1.0, whose globular domain shares high sequence conservation with the corresponding globular domain of H5, are consistent with an on-dyad binding mode. Taken together, our results suggest that a small number of residues in the globular domain of a linker histone can control its binding location on the nucleosome and higher-order chromatin structure. Copyright © 2016. Published by Elsevier Ltd.

  16. Design of Tail-Clamp Peptide Nucleic Acid Tethered with Azobenzene Linker for Sequence-Specific Detection of Homopurine DNA

    Shinjiro Sawada

    2017-10-01

    Full Text Available DNA carries genetic information in its sequence of bases. Synthetic oligonucleotides that can sequence-specifically recognize a target gene sequence are a useful tool for regulating gene expression or detecting target genes. Among the many synthetic oligonucleotides, tail-clamp peptide nucleic acid (TC-PNA offers advantages since it has two homopyrimidine PNA strands connected via a flexible ethylene glycol-type linker that can recognize complementary homopurine sequences via Watson-Crick and Hoogsteen base pairings and form thermally-stable PNA/PNA/DNA triplex structures. Here, we synthesized a series of TC-PNAs that can possess different lengths of azobenzene-containing linkers and studied their binding behaviours to homopurine single-stranded DNA. Introduction of azobenzene at the N-terminus amine of PNA increased the thermal stability of PNA-DNA duplexes. Further extension of the homopyrimidine PNA strand at the N-terminus of PNA-AZO further increased the binding stability of the PNA/DNA/PNA triplex to the target homopurine sequence; however, it induced TC-PNA/DNA/TC-PNA complex formation. Among these TC-PNAs, 9W5H-C4-AZO consisting of nine Watson-Crick bases and five Hoogsteen bases tethered with a beta-alanine conjugated azobenzene linker gave a stable 1:1 TC-PNA/ssDNA complex and exhibited good mismatch recognition. Our design for TC-PNA-AZO can be utilized for detecting homopurine sequences in various genes.

  17. Identification of Epithelial-Mesenchymal Transition-related Target Genes Induced by the Mutation of Smad3 Linker Phosphorylation

    Park, Sujin; Yang, Kyung-Min; Park, Yuna; Hong, Eunji; Hong, Chang Pyo; Park, Jinah; Pang, Kyoungwha; Lee, Jihee; Park, Bora; Lee, Siyoung; An, Haein; Kwak, Mi-Kyung; Kim, Junil; Kang, Jin Muk; Kim, Pyunggang; Xiao, Yang; Nie, Guangjun; Ooshima, Akira

    2018-01-01

    Background Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. Methods We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. Results In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2, SNAI1, and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B, CTGF, and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. Conclusions These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B, CTGF, and JUNB genes in various cancers. PMID:29629343

  18. Butane-1,2,3,4-tetraol-based amphiphilic stereoisomers for membrane protein study: importance of chirality in the linker region

    Das, Manabendra; Du, Yang; Mortensen, Jonas S.

    2017-01-01

    of the targeted membrane proteins depending on the chirality of the linker region. These findings indicate an important role for detergent stereochemistry in membrane protein stabilization. In addition, we generally observed enhanced detergent efficacy with increasing alkyl chain length, reinforcing...

  19. Mutations in B3GALT6, which Encodes a Glycosaminoglycan Linker Region Enzyme, Cause a Spectrum of Skeletal and Connective Tissue Disorders

    Nakajima, Masahiro; Mizumoto, Shuji; Miyake, Noriko; Kogawa, Ryo; Iida, Aritoshi; Ito, Hironori; Kitoh, Hiroshi; Hirayama, Aya; Mitsubuchi, Hiroshi; Miyazaki, Osamu; Kosaki, Rika; Horikawa, Reiko; Lai, Angeline; Mendoza-Londono, Roberto; Dupuis, Lucie

    2013-01-01

    Proteoglycans (PGs) are a major component of the extracellular matrix in many tissues and function as structural and regulatory molecules. PGs are composed of core proteins and glycosaminoglycan (GAG) side chains. The biosynthesis of GAGs starts with the linker region that consists of four sugar residues and is followed by repeating disaccharide units. By exome sequencing, we found that B3GALT6 encoding an enzyme involved in the biosynthesis of the GAG linker region is responsible for a sever...

  20. Engineering of a novel Ca2+-regulated kinesin molecular motor using a calmodulin dimer linker

    Shishido, Hideki; Maruta, Shinsaku

    2012-01-01

    Highlights: ► Engineered kinesin–M13 and calmodulin involving single cysteine were prepared. ► CaM mutant was cross-linked to dimer by bifunctional thiol reactive reagent. ► Kinesin–M13 was dimerized via CaM dimer in the presence of calcium. ► Function of the engineered kinesin was regulated by a Ca 2+ -calmodulin dimer linker. -- Abstract: The kinesin–microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have “on–off” control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesin monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355–M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355–M13 dimerization with CaM dimers, we measured K355–M13 motility and found that it can be reversibly regulated in a Ca 2+ -dependent manner. We also found that velocities of K355–M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca 2+ -dependent dimerization of K355–M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.

  1. X-ray-enhanced cancer cell migration requires the linker of nucleoskeleton and cytoskeleton complex.

    Imaizumi, Hiromasa; Sato, Katsutoshi; Nishihara, Asuka; Minami, Kazumasa; Koizumi, Masahiko; Matsuura, Nariaki; Hieda, Miki

    2018-04-01

    The linker of nucleoskeleton and cytoskeleton (LINC) complex is a multifunctional protein complex that is involved in various processes at the nuclear envelope, including nuclear migration, mechanotransduction, chromatin tethering and DNA damage response. We recently showed that a nuclear envelope protein, Sad1 and UNC84 domain protein 1 (SUN1), a component of the LINC complex, has a critical function in cell migration. Although ionizing radiation activates cell migration and invasion in vivo and in vitro, the underlying molecular mechanism remains unknown. Here, we examined the involvement of the LINC complex in radiation-enhanced cell migration and invasion. A sublethal dose of X-ray radiation promoted human breast cancer MDA-MB-231 cell migration and invasion, whereas carbon ion beam radiation suppressed these processes in a dose-dependent manner. Depletion of SUN1 and SUN2 significantly suppressed X-ray-enhanced cell migration and invasion. Moreover, depletion or overexpression of each SUN1 splicing variant revealed that SUN1_888 containing 888 amino acids of SUN1 but not SUN1_916 was required for X-ray-enhanced migration and invasion. In addition, the results suggested that X-ray irradiation affected the expression level of SUN1 splicing variants and a SUN protein binding partner, nesprins. Taken together, our findings supported that the LINC complex contributed to photon-enhanced cell migration and invasion. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  2. Distribution of linker histone variants during plant cell differentiation in the developmental zones of the maize root, dedifferentiation in callus culture after auxin treatment

    ANASTASIOS ALATZAS

    2008-01-01

    Full Text Available Although several linker histone variants have been studied in both animal and plant organisms, little is known about their distribution during processes that involve alterations in chromatin function, such as differentiation, dedifferentiation and hormone treatment. In this study, we identified linker histone variants by using specific anti-histone Hl antibodies. Each variant's ratio to total Hl in the three developmental zones of maize (Zea mays L. root and in callus cultures derived from them was estimated in order to define possible alterations either during plant cell differentiation or during their dedifferentiation. We also evaluated linker histone variants' ratios in the developmental zones of maize roots treated with auxin in order to examine the effects of exogenous applied auxin to linker histone variant distribution. Finally, immunohistochemical detection was used to identify the root tissues containing each variant and correlate them with the physiological status of the plant cells. According to the results presented in this study, linker histone variants' ratios are altered in the developmental zones of maize root, while they are similar to the meristematic zone in samples from callus cultures and to the differentiation zone in samples from roots treated with auxin. We propose that the alterations in linker histone variants' ratios are correlated with plant cell differentiation and dedifferentiation.

  3. Substitution of the Lys linker with the β-Ala linker dramatically decreased the renal uptake of 99mTc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone peptides.

    Flook, Adam M; Yang, Jianquan; Miao, Yubin

    2014-11-13

    The purpose of this study was to examine whether the substitution of the Lys linker with the β-Ala could reduce the renal uptake of (99m)Tc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RSD-β-Ala-(Arg(11))CCMSH (1) {c[Arg-Ser-Asp-dTyr-Asp]-β-Ala-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RTD-β-Ala-(Arg(11))CCMSH (2), RVD-β-Ala-(Arg(11))CCMSH (3), RAD-β-Ala-(Arg(11))CCMSH (4), NAD-β-Ala-(Arg(11))CCMSH (5), and EAD-β-Ala-(Arg(11))CCMSH (6) peptides were synthesized and evaluated for their melanocortin 1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of their (99m)Tc-conjugates were determined in B16/F1 melanoma-bearing C57 mice. The substitution of the Lys linker with β-Ala linker dramatically reduced the renal uptake of all six (99m)Tc-peptides. (99m)Tc-4 exhibited the highest melanoma uptake (15.66 ± 6.19% ID/g) and the lowest kidney uptake (20.18 ± 3.86% ID/g) among these (99m)Tc-peptides at 2 h postinjection. The B16/F1 melanoma lesions could be clearly visualized by single photon emission computed tomography (SPECT)/CT using (99m)Tc-4 as an imaging probe.

  4. Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties

    Baratéla, Fernando José Costa; Zazuco Higa, Olga [Biotechnology Center, Institute of Energy and Nuclear Research (IPEN), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Duarte dos Passos, Esdras [PostGraduate Program in Materials for Engineering, Federal University of Itajubá (UNIFEI), Av. BPS 1303, 37500-903 Itajubá, MG (Brazil); Alencar de Queiroz, Alvaro Antonio, E-mail: alencar@unifei.edu.br [Physics and Chemistry Institute (IFQ), Federal University of Itajubá (UNIFEI), Av. BPS 1303, 37500-903 Itajubá, MG (Brazil); High Voltage Laboratory (LAT-EFEI), Federal University of Itajubá (UNIFEI), Av. BPS 1303, 37500-903 Itajubá, MG (Brazil)

    2017-04-01

    Electrospinning is a suitable method to produce scaffolds composed of nanoscale to microscale fibers, which are comparable to the extracellular matrix (ECM). Hyperbranched polyglycerol (HPGL) is a highly biocompatible polyether polyol potentially useful for the design of fibrous scaffolds mimicking the ECM architecture. However, scaffolds developed from HPGL have poor mechanical properties and morphological stability in the aqueous environments required for tissue engineering applications. This work reports the production of stable electrospun HPGL scaffolds (EHPGLS) using glycidyl methacrylate (GMA) as cross-linker to enhance the water stability and mechanical property of electrospun HPGL. The diameter and morphology of the produced EHPGLS were analyzed by scanning electron microscopy (SEM). It was observed that electrical fields in the range of 0.2 kV·cm{sup −1} to 1.0 kV·cm{sup −1} decrease the average fiber diameter of EHPGLS. The increase in porosity of EHPGLS with GMA concentration indicates the in situ formation of a heterogeneous structure resultant from the phase separation during crosslinking of HPGL by GMA. EHPGLS containing 20% (w/w) GMA concentration possessed highest tensile strength (295.4 ± 11.32 kPa), which is approximately 58 times higher than that of non-crosslinked EHPGLS (5.1 ± 2.12 kPa). The MTS cell viability results showed that the EHPGLS have no significant cytotoxicity effect on Chinese hamster ovary (CHO-K1) cells. Scanning electron microscopy (SEM) indicates that the cultured BALB/3T3 fibroblasts cells were able to keep contact each other's, thus forming a homogeneous monolayer on the internal surface of the EHPGLS. - Highlights: • A hyperbranched polyglycerol (HPGL) scaffold with elastic modulus of 295.4 ± 11.32 kPa was developed for soft tissue repair. • HPGL scaffold was prepared by electrospinning method. • The porosity of HPGL scaffolds can be tuned by selecting the degree of GMA in HPGL. • Electrospun HPGL

  5. Integrity of the Linker of Nucleoskeleton and Cytoskeleton Is Required for Efficient Herpesvirus Nuclear Egress.

    Klupp, Barbara G; Hellberg, Teresa; Granzow, Harald; Franzke, Kati; Dominguez Gonzalez, Beatriz; Goodchild, Rose E; Mettenleiter, Thomas C

    2017-10-01

    Herpesvirus capsids assemble in the nucleus, while final virion maturation proceeds in the cytoplasm. This requires that newly formed nucleocapsids cross the nuclear envelope (NE), which occurs by budding at the inner nuclear membrane (INM), release of the primary enveloped virion into the perinuclear space (PNS), and subsequent rapid fusion with the outer nuclear membrane (ONM). During this process, the NE remains intact, even at late stages of infection. In addition, the spacing between the INM and ONM is maintained, as is that between the primary virion envelope and nuclear membranes. The linker of nucleoskeleton and cytoskeleton (LINC) complex consists of INM proteins with a luminal SUN (Sad1/UNC-84 homology) domain connected to ONM proteins with a KASH (Klarsicht, ANC-1, SYNE homology) domain and is thought to be responsible for spacing the nuclear membranes. To investigate the role of the LINC complex during herpesvirus infection, we generated cell lines constitutively expressing dominant negative (dn) forms of SUN1 and SUN2. Ultrastructural analyses revealed a significant expansion of the PNS and the contiguous intracytoplasmic lumen, most likely representing endoplasmic reticulum (ER), especially in cells expressing dn-SUN2. After infection, primary virions accumulated in these expanded luminal regions, also very distant from the nucleus. The importance of the LINC complex was also confirmed by reduced progeny virus titers in cells expressing dn-SUN2. These data show that the intact LINC complex is required for efficient nuclear egress of herpesviruses, likely acting to promote fusion of primary enveloped virions with the ONM. IMPORTANCE While the viral factors for primary envelopment of nucleocapsids at the inner nuclear membrane are known to the point of high-resolution structures, the roles of cellular components and regulators remain enigmatic. Furthermore, the machinery responsible for fusion with the outer nuclear membrane is unsolved. We show here

  6. Structural Polymorphism of the Actin-Espin System: A Prototypical System of Filaments and Linkers in Stereocilia

    Purdy, Kirstin R.; Wong, Gerard C. L.; Bartles, James R.

    2007-01-01

    We examine the interaction between cytoskeletal F-actin and espin 3A, a prototypical actin bundling protein found in sensory cell microvilli, including ear cell stereocilia. Espin induces twist distortions in F-actin as well as facilitates bundle formation. Mutations in one of the two F-actin binding sites of espin, which have been implicated in deafness, can tune espin-actin interactions and radically transform the system's phase behavior. These results are compared to recent theoretical work on the general phase behavior linker-rod systems

  7. The First Extracellular Linker Is Important for Several Aspects of the Gating Mechanism of Human TRPA1 Channel

    Maršáková, Lenka; Barvík, I.; Zíma, V.; Zímová, Lucie; Vlachová, Viktorie

    2017-01-01

    Roč. 10, Jan 31 (2017), č. článku 16. ISSN 1662-5099 R&D Projects: GA ČR(CZ) GA15-15839S; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : TRP channel * S1-S2 linker * allyl isothiocynate * sensor module Subject RIV: FH - Neurology OBOR OECD: Neuroscience s (including psychophysiology Impact factor: 5.076, year: 2016

  8. Micropatterning of biomolecules on a glass substrate in fused silica microchannels by using photolabile linker-based surface activation

    Jang, K.; Mawatari, K.; Kitamori, T.; Xu, Y.; Sato, K.; Tanaka, Y.

    2012-01-01

    We report on a straightforward method for creating micropatterns of multiple biomolecules. The anti-fouling agent 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer and a photolabile linker (PL) were covalently linked to an amino-terminated silane surface. Patterns were generated by selective removal of the MPC polymer via UV irradiation. Multiple micropatterns of fluorescein isothiocyanate (FITC)-labeled bovine serum albumin (BSA) and rhodamine-labeled goat fragment antigen-binding fragments (FAB) were deposited on a same glass substrate. We also employed micropatterning of multiple biomolecules in that Texas red-labeled BSA and FITC-labeled rabbit anti-mouse IgG were placed inside a microchannel. (author)

  9. Impact of cathepsin B-sensitive triggers and hydrophilic linkers on in vitro efficacy of novel site-specific antibody-drug conjugates.

    Bryden, Francesca; Martin, Camille; Letast, Stéphanie; Lles, Eva; Viéitez-Villemin, Inmaculada; Rousseau, Anaïs; Colas, Cyril; Brachet-Botineau, Marie; Allard-Vannier, Emilie; Larbouret, Christel; Viaud-Massuard, Marie-Claude; Joubert, Nicolas

    2018-03-14

    Herein we describe the synthesis and evaluation of four novel HER2-targeting, cathepsin B-sensitive antibody-drug conjugates bearing a monomethylauristatin E (MMAE) cytotoxic payload, constructed via the conjugation of cleavable linkers to trastuzumab using a site-specific bioconjugation methodology. These linkers vary by both cleavable trigger motif and hydrophilicity, containing one of two cathepsin B sensitive dipeptides (Val-Cit and Val-Ala), and engendered with either hydrophilic or hydrophobic character via application of a PEG 12 spacer. Through evaluation of physical properties, in vitro cytotoxicity, and receptor affinity of the resulting antibody-drug conjugates (ADCs), we have demonstrated that while both dipeptide triggers are effective, the increased hydrophobicity of the Val-Ala pair limits its utility within this type of linker. In addition, while PEGylation augments linker hydrophilicity, this change does not translate to more favourable ADC hydrophilicity or potency. While all described structures demonstrated excellent and similar in vitro cytotoxicity, the ADC with the ValCitPABMMAE linker shows the most promising combination of in vitro potency, structural homogeneity, and hydrophilicity, warranting further evaluation into its therapeutic potential.

  10. Preparation, structural analysis and bioactivity of ribonuclease A-albumin conjugate: tetra-conjugation or PEG as the linker.

    Li, Chunju; Lin, Qixun; Wang, Jun; Shen, Lijuan; Ma, Guanghui; Su, Zhiguo; Hu, Tao

    2012-12-31

    Ribonuclease A (RNase A) is a therapeutic enzyme with cytotoxic action against tumor cells. Its clinical application is limited by the short half-life and insufficient stability. Conjugation of albumin can overcome the limitation, whereas dramatically decrease the enzymatic activity of RNase A. Here, three strategies were proposed to prepare the RNase A-bovine serum albumin (BSA) conjugates. R-SMCC-B (a conjugate of four RNase A attached with one BSA) and R-PEG-B (a mono-conjugate) were prepared using Sulfo-SMCC (a short bifunctional linker) and mal-PEG-NHS (a bifunctional PEG), respectively. Mal-PEG-NHS and hexadecylamine (HDA) were used to prepare the mono-conjugate, R-HDA-B, where HDA was adopted to bind BSA. The PEG linker can elongate the proximity between RNase A and BSA. In contrast, four RNase A were closely located on BSA in R-SMCC-B. R-SMCC-B showed the lowest K(m) and the highest relative enzymatic activity and k(cat)/K(m) in the three conjugates. Presumably, the tetravalent interaction of RNase A in R-SMCC-B can increase the binding affinity to its substrate. In addition, the slow release of BSA from R-HDA-B may increase the enzymatic activity of R-HDA-B. Our study is expected to provide strategies to develop protein-albumin conjugate with high therapeutic potential. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Wall to membrane linkers, stretch activated channels, and the detection of tension, voltage, temperature, auxin, and pH

    Pickard, B. G.

    1992-01-01

    Introduction. The higher plant is a heterogeneous, mechanically prestressed structure continually subject to shifting forces. When a cell grows in a plant at gravitropic equilibrium, it must create localized maxima of shear in walls of neighboring cells. Such mechanical stress and strain are likely detected in a variety of ways. However, tension-sensitive ion channels are of particular interest because it appears that they are elaborately evolved for sensory function. We hypothesize that 1) the patchy patterns of high shear are focused via wall-to-membrane linkers onto the plasma membrane, where 2) they are translated by mechanosensory cation channels into corresponding patterns of high cytosolic Ca2+, which 3) initiate local enhancement of wall expansion. Further, we hypothesize that the local promotion of enhancement is achieved at least in part by local intensification of auxin transport across the plasma membrane. By implication, when an organ is asymmetrically pressed, rubbed, or bent or when it is displaced in the gravitational field, the net asymmetry of shear stress occurring across the organ would lead to asymmetric redistribution of auxin and corrective asymmetric growth. We shall describe a representative mechanosensitive Ca(2+) -selective cation channel (MCaC) with susceptibilities to xenobiotics implicating it as a force transducer in thigmo- and gravitropism. Then, we shall consider whether a putative wall-to-membrane linker (WML) could be a key feature of the molecular architecture permitting the stress distributed in the wall system to be focused on the channels.

  12. Probing the Influence of Linker Length and Flexibility in the Design and Synthesis of New Trehalase Inhibitors

    Giampiero D’Adamio

    2018-02-01

    Full Text Available This work aims to synthesize new trehalase inhibitors selective towards the insect trehalase versus the porcine trehalase, in view of their application as potentially non-toxic insecticides and fungicides. The synthesis of a new pseudodisaccharide mimetic 8, by means of a stereoselective α-glucosylation of the key pyrrolizidine intermediate 13, was accomplished. The activity of compound 8 as trehalase inhibitor towards C. riparius trehalase was evaluated and the results showed that 8 was active in the μM range and showed a good selectivity towards the insect trehalase. To reduce the overall number of synthetic steps, simpler and more flexible disaccharide mimetics 9–11 bearing a pyrrolidine nucleus instead of the pyrrolizidine core were synthesized. The biological data showed the key role of the linker chain’s length in inducing inhibitory properties, since only compounds 9 (α,β-mixture, bearing a two-carbon atom linker chain, maintained activity as trehalase inhibitors. A proper change in the glucosyl donor-protecting groups allowed the stereoselective synthesis of the β-glucoside 9β, which was active in the low micromolar range (IC50 = 0.78 μM and 12-fold more potent (and more selective than 9α towards the insect trehalase.

  13. Parsing the roles of neck-linker docking and tethered head diffusion in the stepping dynamics of kinesin.

    Zhang, Zhechun; Goldtzvik, Yonathan; Thirumalai, D

    2017-11-14

    Kinesin walks processively on microtubules (MTs) in an asymmetric hand-over-hand manner consuming one ATP molecule per 16-nm step. The individual contributions due to docking of the approximately 13-residue neck linker to the leading head (deemed to be the power stroke) and diffusion of the trailing head (TH) that contributes in propelling the motor by 16 nm have not been quantified. We use molecular simulations by creating a coarse-grained model of the MT-kinesin complex, which reproduces the measured stall force as well as the force required to dislodge the motor head from the MT, to show that nearly three-quarters of the step occurs by bidirectional stochastic motion of the TH. However, docking of the neck linker to the leading head constrains the extent of diffusion and minimizes the probability that kinesin takes side steps, implying that both the events are necessary in the motility of kinesin and for the maintenance of processivity. Surprisingly, we find that during a single step, the TH stochastically hops multiple times between the geometrically accessible neighboring sites on the MT before forming a stable interaction with the target binding site with correct orientation between the motor head and the [Formula: see text] tubulin dimer.

  14. Improving the performance of DomainDiscovery of protein domain boundary assignment using inter-domain linker index

    Zomaya Albert Y

    2006-12-01

    Full Text Available Abstract Background Knowledge of protein domain boundaries is critical for the characterisation and understanding of protein function. The ability to identify domains without the knowledge of the structure – by using sequence information only – is an essential step in many types of protein analyses. In this present study, we demonstrate that the performance of DomainDiscovery is improved significantly by including the inter-domain linker index value for domain identification from sequence-based information. Improved DomainDiscovery uses a Support Vector Machine (SVM approach and a unique training dataset built on the principle of consensus among experts in defining domains in protein structure. The SVM was trained using a PSSM (Position Specific Scoring Matrix, secondary structure, solvent accessibility information and inter-domain linker index to detect possible domain boundaries for a target sequence. Results Improved DomainDiscovery is compared with other methods by benchmarking against a structurally non-redundant dataset and also CASP5 targets. Improved DomainDiscovery achieves 70% accuracy for domain boundary identification in multi-domains proteins. Conclusion Improved DomainDiscovery compares favourably to the performance of other methods and excels in the identification of domain boundaries for multi-domain proteins as a result of introducing support vector machine with benchmark_2 dataset.

  15. Crystallization and preliminary X-ray analysis of Acetivibrio cellulolyticus cellulosomal type II cohesin module: two versions having different linker lengths

    Noach, Ilit; Alber, Orly; Bayer, Edward A.; Lamed, Raphael; Levy-Assaraf, Maly; Shimon, Linda J. W.; Frolow, Felix

    2007-01-01

    The cloning, expression, purification, crystallization and preliminary X-ray characterization of two protein constructs of the second type II cohesin module from A. cellulolyticus ScaB are described. Both constructs contain the native N-terminal linker, but only one of them contains the full-length 45-residue C-terminal linker; the other contains a five-residue segment of this linker. The second type II cohesin module of the cellulosomal scaffoldin polypeptide ScaB from Acetivibrio cellulolyticus (CohB2) was cloned into two constructs: one containing a short (five-residue) C-terminal linker (CohB2-S) and the second incorporating the full native 45-residue linker (CohB2-L). Both constructs encode proteins that also include the full native six-residue N-terminal linker. The CohB2-S and CohB2-L proteins were expressed, purified and crystallized in the orthorhombic crystal system, but with different unit cells and symmetries: space group P2 1 2 1 2 1 with unit-cell parameters a = 90.36, b = 68.65, c = 111.29 Å for CohB2-S and space group P2 1 2 1 2 with unit-cell parameters a = 68.76, b = 159.22, c = 44.21 Å for CohB2-L. The crystals diffracted to 2.0 and 2.9 Å resolution, respectively. The asymmetric unit of CohB2-S contains three cohesin molecules, while that of CohB2-L contains two molecules

  16. The linker domain of poly(rC) binding protein 2 is a major determinant in poliovirus cap-independent translation.

    Sean, Polen; Nguyen, Joseph H C; Semler, Bert L

    2008-09-01

    Poliovirus, a member of the enterovirus genus in the family Picornaviridae, is the causative agent of poliomyelitis. Translation of the viral genome is mediated through an internal ribosomal entry site (IRES) encoded within the 5' noncoding region (5' NCR). IRES elements are highly structured RNA sequences that facilitate the recruitment of ribosomes for translation. Previous studies have shown that binding of a cellular protein, poly(rC) binding protein 2 (PCBP2), to a major stem-loop structure in the genomic 5' NCR is necessary for the translation of picornaviruses containing type I IRES elements, including poliovirus, coxsackievirus, and human rhinovirus. PCBP1, an isoform that shares approximately 90% amino acid identity to PCBP2, cannot efficiently stimulate poliovirus IRES-mediated translation, most likely due to its reduced binding affinity to stem-loop IV within the poliovirus IRES. The primary differences between PCBP1 and PCBP2 are found in the so-called linker domain between the second and third K-homology (KH) domains of these proteins. We hypothesize that the linker region of PCBP2 augments binding to poliovirus stem-loop IV RNA. To test this hypothesis, we generated six PCBP1/PCBP2 chimeric proteins. The recombinant PCBP1/PCBP2 chimeric proteins were able to interact with poliovirus stem-loop I RNA and participate in protein-protein interactions. We demonstrated that the PCBP1/PCBP2 chimeric proteins with the PCBP2 linker, but not with the PCBP1 linker, were able to interact with poliovirus stem-loop IV RNA, and could subsequently stimulate poliovirus IRES-mediated translation. In addition, using a monoclonal anti-PCBP2 antibody (directed against the PCBP2 linker domain) in mobility shift assays, we showed that the PCBP2 linker domain modulates binding to poliovirus stem-loop IV RNA via a mechanism that is not inhibited by the antibody.

  17. Substitutions in conserved regions preceding and within the linker affect activity and flexibility of tRNase ZL, the long form of tRNase Z.

    Makenzie Saoura

    Full Text Available The enzyme tRNase Z, a member of the metallo-β-lactamase family, endonucleolytically removes 3' trailers from precursor tRNAs, preparing them for CCA addition and aminoacylation. The short form of tRNase Z, tRNase ZS, functions as a homodimer and is found in all prokaryotes and some eukaryotes. The long form, tRNase ZL, related to tRNase ZS through tandem duplication and found only in eukaryotes, possesses ~2,000-fold greater catalytic efficiency than tRNase ZS. tRNase ZL consists of related but diverged amino and carboxy domains connected by a flexible linker (also referred to as a flexible tether and functions as a monomer. The amino domain retains the flexible arm responsible for substrate recognition and binding while the carboxy domain retains the active site. The linker region was explored by Ala-scanning through two conserved regions of D. melanogaster tRNase Z: NdomTprox, located at the carboxy end of the amino domain proximal to the linker, and Tflex, a flexible site in the linker. Periodic substitutions in a hydrophobic patch (F329 and L332 at the carboxy end of NdomTprox show 2,700 and 670-fold impairment relative to wild type, respectively, accompanied by reduced linker flexibility at N-T inside the Ndom- linker boundary. The Ala substitution for N378 in the Tflex region has 10-fold higher catalytic efficiency than wild type and locally decreased flexibility, while the Ala substitution at R382 reduces catalytic efficiency ~50-fold. These changes in pre-tRNA processing kinetics and protein flexibility are interpreted in light of a recent crystal structure for S. cerevisiae tRNase Z, suggesting transmission of local changes in hydrophobicity into the skeleton of the amino domain.

  18. Yeast linker histone Hho1p is required for efficient RNA polymerase I processivity and transcriptional silencing at the ribosomal DNA

    Levy, Anat; Eyal, Miri; Hershkovits, Gitit; Salmon-Divon, Mali; Klutstein, Michael; Katcoff, Don Jay

    2008-01-01

    Nucleosome core particles in eukaryotes are linked by a stretch of DNA that is usually associated with a linker histone. Here, we show in yeast, that the presence of yeast linker histone Hho1p represses expression of a pol II transcribed gene (MET15) embedded in the rDNA. In vivo deletions of Hho1p sequences showed that the second globular domain is sufficient for that repression, whereas the presence of the N terminus is required for its derepression. In contrast, a run-on assay confirmed by...

  19. Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide

    Dijkgraaf, Ingrid; Liu, Shuang; Kruijtzer, John A.W.; Soede, Annemieke C.; Oyen, Wim J.G.; Liskamp, Rob M.J.; Corstens, Frans H.M.; Boerman, Otto C.

    2007-01-01

    Introduction: Due to the selective expression of the α v β 3 integrin in tumors, radiolabeled arginine-glycine-aspartic acid (RGD) peptides are attractive candidates for tumor targeting. Minor modifications of these peptides could have a major impact on in vivo characteristics. In this study, we systematically investigated the effects of linker modification between two cyclic RGD sequences and DOTA (1,4,7,10-tetraazadodecane-N,N',N ' ,N'''-tetraacetic acid) on the in vitro and in vivo characteristics of the tracer. Methods: A dimeric RGD peptide was synthesized and conjugated either directly with DOTA or via different linkers: PEG 4 (polyethylene glycol), glutamic acid or lysine. The RGD peptides were radiolabeled with 111 In, and their in vitro and in vivo α v β 3 -binding characteristics were determined. Results: LogP values varied between -2.82±0.06 and -3.95±0.33. The IC 50 values for DOTA-E-[c(RGDfK)] 2 , DOTA-PEG 4 -E-[c(RGDfK)] 2 , DOTA-E-E-[c(RGDfK)] 2 and DOTA-K-E-[c(RGDfK)] 2 were comparable. Two hours after injection, the tumor uptakes of the 111 In-labeled compounds were not significantly different. The kidney accumulation of [ 111 In]-DOTA-K-E-[c(RGDfK)] 2 [4.05±0.20% of the injected dose per gram (ID/g)] was significantly higher as compared with that of [ 111 In]-DOTA-E-[c(RGDfK)] 2 (2.63±0.19% ID/g; P 111 In]-DOTA-E-E-[c(RGDfK)] 2 (2.16±0.21% ID/g; P 111 In]-DOTA-E-E-[c(RGDfK)] 2 (2.12±0.09% ID/g) was significantly higher as compared with that of [ 111 In]-DOTA-E-[c(RGDfK)] 2 (1.64±0.1% ID/g; P 111 In]-DOTA-K-E-[c(RGDfK)] 2 (1.52±0.04% ID/g; P v β 3 and tumor uptake. Insertion of lysine caused enhanced kidney retention; that of glutamic acid also resulted in enhanced retention in the kidneys. PEG 4 appeared to be the most suitable linker as compared with glutamic acid and lysine because it has the highest tumor-to-blood ratio and the lowest uptake in the kidney and liver

  20. CD6 and Linker of Activated T Cells are Potential Interaction Partners for T Cell-Specific Adaptor Protein.

    Hem, C D; Ekornhol, M; Granum, S; Sundvold-Gjerstad, V; Spurkland, A

    2017-02-01

    The T cell-specific adaptor protein (TSAd) contains several protein interaction domains, and is merging as a modulator of T cell activation. Several interaction partners for the TSAd proline-rich region and phosphotyrosines have been identified, including the Src and Tec family kinases lymphocyte-specific protein tyrosine kinase and interleukin 2-inducible T cell kinase. Via its Src homology 2 (SH2) domain, TSAd may thus function as a link between these enzymes and other signalling molecules. However, few binding partners to the TSAd SH2 domain in T cells are hitherto known. Through the use of in silico ligand prediction, peptide spot arrays, pull-down and immunoprecipitation experiments, we here report novel interactions between the TSAd SH2 domain and CD6 phosphotyrosine (pTyr) 629 and linker of activated T cells (LAT) pTyr 171 , pTyr 191 and pTyr 226 . © 2016 The Foundation for the Scandinavian Journal of Immunology.

  1. Self-organization of Au–CdSe hybrid nanoflowers at different length scales via bi-functional diamine linkers

    AbouZeid, Khaled Mohamed [Virginia Commonwealth University, Department of Chemistry (United States); Mohamed, Mona Bakr [Cairo University, National Institute of Laser Enhanced Science (NILES) (Egypt); El-Shall, M. Samy, E-mail: mselshal@vcu.edu [Virginia Commonwealth University, Department of Chemistry (United States)

    2016-01-15

    This work introduces a series of molecular bridging bi-functional linkers to produce laterally self-assembled nanostructures of the Au–CdSe nanoflowers on different length scales ranging from 10 nm to 100 microns. Assembly of Au nanocrystals within amorphous CdSe rods is found in the early stages of the growth of the Au–CdSe nanoflowers. The Au–CdSe nanoflowers are formed through a one-pot low temperature (150 °C) process where CdSe clusters are adsorbed on the surface of the Au cores, and they then start to form multiple arms and branches resulting in flower-shaped hybrid nanostructures. More complex assembly at a micron length scale can be achieved by means of bi-functional capping agents with appropriate alkyl chain lengths, such as 1,12-diaminododecane.

  2. Ag2S Quantum Dot-Sensitized Solar Cells by First Principles: The Effect of Capping Ligands and Linkers.

    Amaya Suárez, Javier; Plata, Jose J; Márquez, Antonio M; Fernández Sanz, Javier

    2017-09-28

    Quantum dots solar cells, QDSCs, are one of the candidates for being a reliable alternative to fossil fuels. However, the well-studied CdSe and CdTe-based QDSCs present a variety of issues for their use in consumer-goods applications. Silver sulfide, Ag 2 S, is a promising material, but poor efficiency has been reported for QDSCs based on this compound. The potential influence of each component of QDSCs is critical and key for the development of more efficient devices based on Ag 2 S. In this work, density functional theory calculations were performed to study the nature of the optoelectronic properties for an anatase-TiO 2 (101) surface sensitized with different silver sulfide nanoclusters. We demonstrated how it is possible to deeply tune of its electronic properties by modifying the capping ligands and linkers to the surface. Finally, an analysis of the electron injection mechanism for this system is presented.

  3. Regulating repression: roles for the sir4 N-terminus in linker DNA protection and stabilization of epigenetic states.

    Stephanie Kueng

    Full Text Available Silent information regulator proteins Sir2, Sir3, and Sir4 form a heterotrimeric complex that represses transcription at subtelomeric regions and homothallic mating type (HM loci in budding yeast. We have performed a detailed biochemical and genetic analysis of the largest Sir protein, Sir4. The N-terminal half of Sir4 is dispensable for SIR-mediated repression of HM loci in vivo, except in strains that lack Yku70 or have weak silencer elements. For HM silencing in these cells, the C-terminal domain (Sir4C, residues 747-1,358 must be complemented with an N-terminal domain (Sir4N; residues 1-270, expressed either independently or as a fusion with Sir4C. Nonetheless, recombinant Sir4C can form a complex with Sir2 and Sir3 in vitro, is catalytically active, and has sedimentation properties similar to a full-length Sir4-containing SIR complex. Sir4C-containing SIR complexes bind nucleosomal arrays and protect linker DNA from nucleolytic digestion, but less effectively than wild-type SIR complexes. Consistently, full-length Sir4 is required for the complete repression of subtelomeric genes. Supporting the notion that the Sir4 N-terminus is a regulatory domain, we find it extensively phosphorylated on cyclin-dependent kinase consensus sites, some being hyperphosphorylated during mitosis. Mutation of two major phosphoacceptor sites (S63 and S84 derepresses natural subtelomeric genes when combined with a serendipitous mutation (P2A, which alone can enhance the stability of either the repressed or active state. The triple mutation confers resistance to rapamycin-induced stress and a loss of subtelomeric repression. We conclude that the Sir4 N-terminus plays two roles in SIR-mediated silencing: it contributes to epigenetic repression by stabilizing the SIR-mediated protection of linker DNA; and, as a target of phosphorylation, it can destabilize silencing in a regulated manner.

  4. Microencapsulation of Epoxidized Linseed Oil Liquid Cross-Linker in Poly(N-vinyl-pyrrolidone): Optimization by a Design-of-Experiments Approach

    Senatore, D.; Laven, J.; Benthem, van R.A.T.M.; La Camera, D.; With, de G.

    2010-01-01

    A liquid cross-linker, epoxidized linseed oil (ELO), was encapsulated in a plastic with a high glass transition temperature (poly(N-vinyl-2-pyrrolidone); PVP). The process parameters of the spray-drying employed were optimized by a Design-of-Experiments (DoE) approach. Three factors concerning both

  5. Modulation of procaspase-7 self-activation by PEST amino acid residues of the N-terminal prodomain and intersubunit linker.

    Alves, Juliano; Garay-Malpartida, Miguel; Occhiucci, João M; Belizário, José E

    2017-12-01

    Procaspase-7 zymogen polypeptide is composed of a short prodomain, a large subunit (p20), and a small subunit (p10) connected to an intersubunit linker. Caspase-7 is activated by an initiator caspase-8 and -9, or by autocatalysis after specific cleavage at IQAD 198 ↓S located at the intersubunit linker. Previously, we identified that PEST regions made of amino acid residues Pro (P), Glu (E), Asp (D), Ser (S), Thr (T), Asn (N), and Gln (Q) are conserved flanking amino acid residues in the cleavage sites within a prodomain and intersubunit linker of all caspase family members. Here we tested the impact of alanine substitution of PEST amino acid residues on procaspase-7 proteolytic self-activation directly in Escherichia coli. The p20 and p10 subunit cleavage were significantly delayed in double caspase-7 mutants in the prodomain (N18A/P26A) and intersubunit linker (S199A/P201A), compared with the wild-type caspase-7. The S199A/P201A mutants effectively inhibited the p10 small subunit cleavage. However, the mutations did not change the kinetic parameters (k cat /K M ) and optimal tetrapeptide specificity (DEVD) of the purified mutant enzymes. The results suggest a role of PEST-amino acid residues in the molecular mechanism for prodomain and intersubunit cleavage and caspase-7 self-activation.

  6. Micromachined silicon acoustic delay line with 3D-printed micro linkers and tapered input for improved structural stability and acoustic directivity

    Cho, Y; Kumar, A; Xu, S; Zou, J

    2016-01-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays. (paper)

  7. Synthetic incorporation of Nile Blue into DNA using 2′-deoxyriboside substitutes: Representative comparison of (R- and (S-aminopropanediol as an acyclic linker

    Daniel Lachmann

    2010-02-01

    Full Text Available The Nile Blue chromophore was incorporated into oligonucleotides using “click” chemistry for the postsynthetic modification of oligonucleotides. These were synthesized using DNA building block 3 bearing an alkyne group and reacted with the azide 4. (R-3-amino-1,2-propanediol was applied as the linker between the phosphodiester bridges. Two sets of DNA duplexes were prepared. One set carried the chromophore in an A-T environment, the second set in a G-C environment. Both were characterized by optical spectroscopy. Sequence-dependent fluorescence quenching was applied as a sensitive tool to compare the stacking interactions with respect to the chirality of the acyclic linker attachment. The results were compared to recent results from duplexes that carried the Nile Blue label in a sequentially and structurally identical context, except for the opposite chirality of the linker ((S-3-amino-1,2-propandiol. Only minor, negligible differences were observed. Melting temperatures, UV–vis absorption spectra together with fluorescence quenching data indicate that Nile Blue stacks perfectly between the adjacent base pairs regardless of whether it has been attached via an S- or R-configured linker. This result was supported by geometrically optimized DNA models.

  8. Radioiodination of protein using 2,3,5,6-tetrafluorophenyl 3-(nido-carboranyl) propionate (TCP) as a potential bi-functional linker: Synthesis and biodistribution in mice

    Lin Rushan; Liu Ning; Yang Yuanyou; Li Bing; Liao Jiali; Jin Jiannan

    2009-01-01

    2,3,5,6-Tetrafluorophenyl 3-(nido-carboranyl) propionate (TCP), as a new potential bi-functional linker for radiohalogenation of proteins or peptides, was synthesized. With this bi-functional linker, the first attempt to conjugate bovine serum albumin (BSA) with 125 I was made and the biodistribution of the conjugated BSA ( 125 I-TCP-BSA) was investigated in NIH strain mice. By the use of TCP as the linker, BSA was conjugated with 125 I in a labeling yield of 58-75% and with radiochemical purity of 99.8% after purification by Sephadex TM G-50. Even after being kept at room temperature for 72 h, the radiochemical purity of 125 I-TCP-BSA was still more than 98%, much higher than that of the directly 125 I-labeled BSA ( 125 I-BSA). Meanwhile, biodistribution experiments in mice indicated that the uptake of 125 I with 125 I-TCP-BSA into thyroid was obviously less than that with 125 I-BSA post-injection. All the results implied that the 125 I-conjugated BSA ( 125 I-TCP-BSA) was considerably stable in vivo as well as in vitro, and TCP was regarded as a promising bi-functional linker for radiohalogenation of proteins

  9. Traceless Azido Linker for the Solid-Phase Synthesis of NH-1,2,3-Triazoles via Cu-Catalyzed Azide-Alkyne Cycloaddition Reactions

    Cohrt, Anders Emil; Jensen, Jakob Feldthusen; Nielsen, Thomas Eiland

    2010-01-01

    A broadly useful acid-labile traceless azido linker for the solid-phase synthesis of NH-1,2,3-triazoles is presented. A variety of alkynes were efficiently immobilized on a range of polymeric supports by Cu(I)-mediated azide-alkyne cycloadditions. Supported triazoles showed excellent compatibility...

  10. The ortho backbone amide linker (o-BAL) is an easily prepared and highly acid-labile handle for solid-phase synthesis

    Boas, Ulrik; Brask, Jesper; Christensen, J.B.

    2002-01-01

    The tris(alkoxy)benzyl backbone amide linker (BAL) has found widespread application in solid-phase synthesis. The key intermediate for preparation of para BAL (p-BAL) is 2,6-dimethoxy-4-hydroxybenzaldehyde; several reports on its synthesis have appeared. However, the ortho analogue of the handle (o...

  11. Diols and anions can control the formation of an exciplex between a pyridinium boronic acid with an aryl group connected via a propylene linker.

    Huang, Yan-Jun; Jiang, Yun-Bao; Bull, Steven D; Fossey, John S; James, Tony D

    2010-11-21

    The exciplex formation between a pyridinium boronic acid and phenyl group connected via a propylene linker can be monitored using fluorescence. Addition of pinacol affords a cyclic boronate ester with enhanced Lewis acidity that increases the strength of its cation-π stacking interaction causing a four-fold fluorescence enhancement.

  12. Doxorubicin conjugation and drug linker chemistry alter the intravenous and pulmonary pharmacokinetics of a PEGylated Generation 4 polylysine dendrimer in rats.

    Leong, Nathania J; Mehta, Dharmini; McLeod, Victoria M; Kelly, Brian D; Pathak, Rashmi; Owen, David J; Porter, Christopher Jh; Kaminskas, Lisa M

    2018-05-28

    PEGylated polylysine dendrimers have demonstrated potential as inhalable drug delivery systems that can improve the treatment of lung cancers. Their treatment potential may be enhanced by developing constructs that display prolonged lung retention, together with good systemic absorption, the capacity to passively target lung tumours from the blood and highly selective, yet rapid liberation in the tumour microenvironment. This study sought to characterise how the nature of cathepsin B cleavable peptide linkers, used to conjugate doxorubicin to a PEGylated (PEG570) G4 polylysine dendrimer, affect drug liberation kinetics and intravenous and pulmonary pharmacokinetics in rats. The construct bearing a self-emolative diglycolic acid-V-Citrulline linker exhibited faster doxorubicin release kinetics compared to constructs bearing self emolative diglycolic acid-GLFG, or non-self emolative glutaric acid-GLFG linkers. The V-Citrulline construct exhibited slower plasma clearance, but faster absorption from the lungs than a GLFG construct, although mucociliary clearance and urinary elimination were unchanged. Doxorubicin-conjugation enhanced localisation in the bronchoalveolar lavage fluid compared to lung tissue, suggesting that projection of doxorubicin from the dendrimer surface reduced tissue uptake. These data show that the linker chemistry employed to conjugate drugs to PEGylated carriers can affect drug release profiles and systemic and lung disposition. Copyright © 2018. Published by Elsevier Inc.

  13. Synthesis of highly fluorescent and thio-linkers stabilize gold quantum dots and nano clusters in DMF for bio-labeling

    Rastogi, Shiva K., E-mail: srastogi@uidaho.edu [University of Idaho, Department of Chemistry (United States); Denn, Benjamin D.; Branen, A. Larry [University of Idaho, Coeur D' Alene, Biosensors and Nanotechnology Application Laboratory (BNAL) (United States)

    2012-01-15

    This study demonstrates a one versus two-step synthesis of fluorescent gold quantum dots (F-AuQDs) and nano clusters (F-AuNCs) functionalized with thiolated organic linkers using reduction of gold precursor in N,N Prime -dimethylformamide in 1 h of reaction. The F-AuQDs and F-AuNCs show fluorescence emission at 425 {+-} 5 nm upon excitation at 345 {+-} 5 nm of wavelength, with good water solubility and stability. Five different thiolated organic binary linkers consisting of various functional groups including: carboxylic acid, hydroxyl, and aromatic amine, were conjugated with the F-AuQDs and F-AuNCs. The formation mechanism and functionalization of the F-AuQDs and F-AuNCs was characterized using UV-vis absorption spectra, UV-vis light, fluorescent emission spectra, pH, TEM, and FTIR. The fluorescence emission of the F-AuQDs and F-AuNCs is greatly dependent on the thio-linker. This novel one-step approach provides facile and fast synthesis of F-AuQDs and F-AuNCs over the two-step method, with less than 5 h of reaction and workup compared to more than 28 h of reaction for the two-step approach. These thio-linker functionalized F-AuQDs and F-AuNCs have a wide application in fluorescent labeling of biomolecules, optical devices, imaging, energy transfer, and biosensing.

  14. Desorption of 3,3′-diindolylmethane from imprinted particles: An impact of cross-linker structure on binding capacity and selectivity

    Klejn, Dorota; Luliński, Piotr; Maciejewska, Dorota, E-mail: dorota.maciejewska@wum.edu.pl

    2015-11-01

    Here, seven cross-linkers (six polar diacrylates or dimethacrylates of different lengths between double bonds, and one aromatic-divinylbenzene) were used to examine the impact of the cross-linker on binding capacity and selectivity of 3,3′-diindolylmethane (DIM) imprinted material. DIM participates in the suppression of viability of human ovarian and human breast cancer cell lines, but has low bioavailability. The investigations of novel imprinted polymer matrices for improvement of DIM release could allow to utilize not only a potency of DIM but also similar alkaloids, which are the important compounds with pharmacological activity. The bulk, thermal radical copolymerization of the cross-linkers in the presence of 3,3′-diindolylmethane (the template) and allylamine (the functional monomer) in dimethyl sulfoxide or in carbon tetrachloride (porogens) was carried out. The binding capacities of imprinted and non-imprinted polymers were compared, and two polymers (these were prepared using ethylene glycol dimethacrylate and polyethylene glycol dimethacrylate as the cross-linkers) with the highest selectivity and binding capacity were selected to desorption test. The desorption profile of polymer prepared using polyethylene glycol dimethacrylate as the cross-linker revealed sustained release of 3,3′-diindolylmethane, and this system was selected for further optimization of the cross-linker amounts. The morphology and structure of the selected particles were analyzed using SEM micrographs, {sup 13}C CP/MAS NMR spectroscopy, and BET measurements. The desorption of 3,3′-diindolylmethane from poly(allylamine-co-polyethylene glycol dimethacrylate) particles was in accordance with pseudo-second-order kinetics and the simplified Higuchi model indicated the diffusion controlled release of 3,3′-diindolylmethane. - Graphical abstract: Sustained release of 3,3′-diindolylmethane from cavity in imprinted poly(allylamine-co-polyethylene glycol dimethacrylate

  15. The Effects of Anchor Groups on (1) TiO2-Catalyzed Photooxidation and (2) Linker-Assisted Assembly on TiO2

    Anderson, Ian Mark

    Quantum dot-sensitized solar cells (QDSSCs) are a popular target for research due to their potential for highly efficient, easily tuned absorption. Typically, light is absorbed by quantum dots attached to a semiconductor substrate, such as TiO2, via bifunctional linker molecules. This research aims to create a patterned monolayer of linker molecules on a TiO2 film, which would in turn allow the attachment of a patterned layer of quantum dots. One method for the creation of a patterned monolayer is the functionalization of a TiO2 film with a linker molecule, followed by illumination with a laser at 355 nm. This initiates a TiO 2-catalyzed oxidation reaction, causing loss of surface coverage. A second linker molecule can then be adsorbed onto the TiO2 surface in the illuminated area. Towards that end, the behaviors of carboxylic and phosphonic acids adsorbed on TiO2 have been studied. TiO2 films were functionalized by immersion in solutions a single adsorbate and surface coverage was determined by IR spectroscopy. It is shown that phosphonic acids attain higher surface coverage than carboxylic acids, and will displace them from TiO2 when in a polar solvent. Alkyl chain lengths, which can influence stabilities of monolayers, are shown not to have an effect on this relationship. Equilibrium binding data for the adsorption of n-hexadecanoic acid to TiO2 from a THF solution are presented. It is shown that solvent polarity can affect monolayer stability; carboxylates and phosphonates undergo more desorption into polar solvents than nonpolar. Through illumination, it was possible to remove nearly all adsorbed linkers from TiO2. However, the illuminated areas were found not to be receptive to attachment by a second adsorbate. A possible reason for this behavior is presented. I also report on the synthesis and characterization of a straight-chain, thiol-terminated phosphonic acid. Initial experiments involving monolayer formation and quantum dot attachment are presented

  16. Desorption of 3,3′-diindolylmethane from imprinted particles: An impact of cross-linker structure on binding capacity and selectivity

    Klejn, Dorota; Luliński, Piotr; Maciejewska, Dorota

    2015-01-01

    Here, seven cross-linkers (six polar diacrylates or dimethacrylates of different lengths between double bonds, and one aromatic-divinylbenzene) were used to examine the impact of the cross-linker on binding capacity and selectivity of 3,3′-diindolylmethane (DIM) imprinted material. DIM participates in the suppression of viability of human ovarian and human breast cancer cell lines, but has low bioavailability. The investigations of novel imprinted polymer matrices for improvement of DIM release could allow to utilize not only a potency of DIM but also similar alkaloids, which are the important compounds with pharmacological activity. The bulk, thermal radical copolymerization of the cross-linkers in the presence of 3,3′-diindolylmethane (the template) and allylamine (the functional monomer) in dimethyl sulfoxide or in carbon tetrachloride (porogens) was carried out. The binding capacities of imprinted and non-imprinted polymers were compared, and two polymers (these were prepared using ethylene glycol dimethacrylate and polyethylene glycol dimethacrylate as the cross-linkers) with the highest selectivity and binding capacity were selected to desorption test. The desorption profile of polymer prepared using polyethylene glycol dimethacrylate as the cross-linker revealed sustained release of 3,3′-diindolylmethane, and this system was selected for further optimization of the cross-linker amounts. The morphology and structure of the selected particles were analyzed using SEM micrographs, 13 C CP/MAS NMR spectroscopy, and BET measurements. The desorption of 3,3′-diindolylmethane from poly(allylamine-co-polyethylene glycol dimethacrylate) particles was in accordance with pseudo-second-order kinetics and the simplified Higuchi model indicated the diffusion controlled release of 3,3′-diindolylmethane. - Graphical abstract: Sustained release of 3,3′-diindolylmethane from cavity in imprinted poly(allylamine-co-polyethylene glycol dimethacrylate). - Highlights:

  17. Structural and Functional Analysis of the Signal-Transducing Linker in the pH-Responsive One-Component System CadC of Escherichia coli.

    Buchner, Sophie; Schlundt, Andreas; Lassak, Jürgen; Sattler, Michael; Jung, Kirsten

    2015-07-31

    The pH-responsive one-component signaling system CadC in Escherichia coli belongs to the family of ToxR-like proteins, whose members share a conserved modular structure, with an N-terminal cytoplasmic winged helix-turn-helix DNA-binding domain being followed by a single transmembrane helix and a C-terminal periplasmic pH-sensing domain. In E. coli CadC, a cytoplasmic linker comprising approximately 50 amino acids is essential for transmission of the signal from the sensor to the DNA-binding domain. However, the mechanism of transduction is poorly understood. Using NMR spectroscopy, we demonstrate here that the linker region is intrinsically disordered in solution. Furthermore, mutational analyses showed that it tolerates a range of amino acid substitutions (altering polarity, rigidity and α-helix-forming propensity), is robust to extension but is sensitive to truncation. Indeed, truncations either reversed the expression profile of the target operon cadBA or decoupled expression from external pH altogether. CadC dimerizes via its periplasmic domain, but light-scattering analysis provided no evidence for dimerization of the isolated DNA-binding domain, with or without the linker region. However, bacterial two-hybrid analysis revealed that CadC forms stable dimers in a stimulus- and linker-dependent manner, interacting only at pHpH. Thus, we propose that the disordered CadC linker is required for transducing the pH-dependent response of the periplasmic sensor into a structural rearrangement that facilitates dimerization of the cytoplasmic CadC DNA-binding domain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption.

    Wu, Hui; Chua, Yong Shen; Krungleviciute, Vaiva; Tyagi, Madhusudan; Chen, Ping; Yildirim, Taner; Zhou, Wei

    2013-07-17

    UiO-66 is a highly important prototypical zirconium metal-organic framework (MOF) compound because of its excellent stabilities not typically found in common porous MOFs. In its perfect crystal structure, each Zr metal center is fully coordinated by 12 organic linkers to form a highly connected framework. Using high-resolution neutron power diffraction technique, we found the first direct structural evidence showing that real UiO-66 material contains significant amount of missing-linker defects, an unusual phenomenon for MOFs. The concentration of the missing-linker defects is surprisingly high, ∼10% in our sample, effectively reducing the framework connection from 12 to ∼11. We show that by varying the concentration of the acetic acid modulator and the synthesis time, the linker vacancies can be tuned systematically, leading to dramatically enhanced porosity. We obtained samples with pore volumes ranging from 0.44 to 1.0 cm(3)/g and Brunauer-Emmett-Teller surface areas ranging from 1000 to 1600 m(2)/g, the largest values of which are ∼150% and ∼60% higher than the theoretical values of defect-free UiO-66 crystal, respectively. The linker vacancies also have profound effects on the gas adsorption behaviors of UiO-66, in particular CO2. Finally, comparing the gas adsorption of hydroxylated and dehydroxylated UiO-66, we found that the former performs systematically better than the latter (particularly for CO2) suggesting the beneficial effect of the -OH groups. This finding is of great importance because hydroxylated UiO-66 is the practically more relevant, non-air-sensitive form of this MOF. The preferred gas adsorption on the metal center was confirmed by neutron diffraction measurements, and the gas binding strength enhancement by the -OH group was further supported by our first-principles calculations.

  19. Crystal structure of the Src family kinase Hck SH3-SH2 linker regulatory region supports an SH3-dominant activation mechanism.

    Alvarado, John J; Betts, Laurie; Moroco, Jamie A; Smithgall, Thomas E; Yeh, Joanne I

    2010-11-12

    Most mammalian cell types depend on multiple Src family kinases (SFKs) to regulate diverse signaling pathways. Strict control of SFK activity is essential for normal cellular function, and loss of kinase regulation contributes to several forms of cancer and other diseases. Previous x-ray crystal structures of the SFKs c-Src and Hck revealed that intramolecular association of their Src homology (SH) 3 domains and SH2 kinase linker regions has a key role in down-regulation of kinase activity. However, the amino acid sequence of the Hck linker represents a suboptimal ligand for the isolated SH3 domain, suggesting that it may form the polyproline type II helical conformation required for SH3 docking only in the context of the intact structure. To test this hypothesis directly, we determined the crystal structure of a truncated Hck protein consisting of the SH2 and SH3 domains plus the linker. Despite the absence of the kinase domain, the structures and relative orientations of the SH2 and SH3 domains in this shorter protein were very similar to those observed in near full-length, down-regulated Hck. However, the SH2 kinase linker adopted a modified topology and failed to engage the SH3 domain. This new structure supports the idea that these noncatalytic regions work together as a "conformational switch" that modulates kinase activity in a manner unique to the SH3 domain and linker topologies present in the intact Hck protein. Our results also provide fresh structural insight into the facile induction of Hck activity by HIV-1 Nef and other Hck SH3 domain binding proteins and implicate the existence of innate conformational states unique to individual Src family members that "fine-tune" their sensitivities to activation by SH3-based ligands.

  20. Directing the breathing behavior of pillared-layered metal-organic frameworks via a systematic library of functionalized linkers bearing flexible substituents.

    Henke, Sebastian; Schneemann, Andreas; Wütscher, Annika; Fischer, Roland A

    2012-06-06

    Flexible metal-organic frameworks (MOFs), also referred to as soft porous crystals (SPCs), show reversible structural transitions dependent on the nature and quantity of adsorbed guest molecules. In recent studies it has been reported that covalent functionalization of the organic linker can influence or even integrate framework flexibility ("breathing") in MOFs. However, rational fine-tuning of such responsive properties is very desirable but challenging as well. Here we present a powerful approach for the targeted manipulation of responsiveness and framework flexibility of an important family of pillared-layered MOFs based on the parent structure [Zn(2)(bdc)(2)(dabco)](n) (bdc = 1,4-benzenedicarboxylate; dabco = 1,4-diazabicyclo[2.2.2]octane). A library of functionalized bdc-type linkers (fu-bdc), which bear additional dangling side groups at different positions of the benzene core (alkoxy groups of varying chain length with diverse functionalities and polarity), was generated. Synthesis of the materials [Zn(2)(fu-bdc)(2)(dabco)](n) yields the respective collection of highly responsive MOFs. The parent MOF is only weakly flexible; however, the substituted frameworks of [Zn(2)(fu-bdc)(2)(dabco)](n) contract drastically upon guest removal and expand again upon adsorption of DMF (N,N-dimethylformamide), EtOH, or CO(2), etc., while N(2) is hardly adsorbed and does not open the narrow-pored form. These "breathing" dynamics are attributed to the dangling side chains that act as immobilized "guests", which interact with mobile guest molecules as well as with themselves and with the framework backbone. The structural details of the guest-free, contracted form and the gas sorption behavior (phase transition pressure, hysteresis loop) are highly dependent on the nature of the substituent at the linker and can therefore be adjusted using our approach. Combining our library of functionalized linkers with the concept of mixed-component MOFs (solid solutions) offers very rich

  1. Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage

    Deng, Da; Lee, Jim Yang, E-mail: cheleejy@nus.edu.sg [Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260 (Singapore)

    2011-09-02

    A simple and scalable procedure combining hydrothermal synthesis with post-synthesis calcination was developed to produce a linker-free, thermally stable, mesoscale 3D ordered assembly of spinel-type ZnCo{sub 2}O{sub 4} nanocrystals. The mesoscale assembly with distinctively sharp edges was formed by close-packing the ZnCo{sub 2}O{sub 4} nanocrystal building blocks with a unit size changeable by the synthesis temperature. A self-templating mechanism based on the topotactic transformation of an oxalato-bridged precursor coordination compound was proposed for the assembly. The packaging of crystalline ZnCo{sub 2}O{sub 4} nanoparticles, an active lithium ion storage compound, into a dense organized structure is an effective way to increase the volumetric capacity of ZnCo{sub 2}O{sub 4} nanoparticles for reversible lithium ion storage. The highly ordered 3D assembly of ZnCo{sub 2}O{sub 4} demonstrated excellent reversible lithium ion storage properties and a specific capacity ({approx}800 mAh g{sup -1}) much higher than that of carbon (typically {approx} 350 mAh g{sup -1}).

  2. Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate.

    Sujiet Puthenveetil

    Full Text Available Antibody drug conjugates (ADCs are no longer an unknown entity in the field of cancer therapy with the success of marketed ADCs like ADCETRIS and KADCYLA and numerous others advancing through clinical trials. The pursuit of novel cytotoxic payloads beyond the mictotubule inhibitors and DNA damaging agents has led us to the recent discovery of an mRNA splicing inhibitor, thailanstatin, as a potent ADC payload. In our previous work, we observed that the potency of this payload was uniquely tied to the method of conjugation, with lysine conjugates showing much superior potency as compared to cysteine conjugates. However, the ADC field is rapidly shifting towards site-specific ADCs due to their advantages in manufacturability, characterization and safety. In this work we report the identification of a highly efficacious site-specific thailanstatin ADC. The site of conjugation played a critical role on both the in vitro and in vivo potency of these ADCs. During the course of this study, we developed a novel methodology of loading a single site with multiple payloads using an in situ generated multi-drug carrying peptidic linker that allowed us to rapidly screen for optimal conjugation sites. Using this methodology, we were able to identify a double-cysteine mutant ADC delivering four-loaded thailanstatin that was very efficacious in a gastric cancer xenograft model at 3mg/kg and was also shown to be efficacious against T-DM1 resistant and MDR1 overexpressing tumor cell lines.

  3. Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate.

    Puthenveetil, Sujiet; He, Haiyin; Loganzo, Frank; Musto, Sylvia; Teske, Jesse; Green, Michael; Tan, Xingzhi; Hosselet, Christine; Lucas, Judy; Tumey, L Nathan; Sapra, Puja; Subramanyam, Chakrapani; O'Donnell, Christopher J; Graziani, Edmund I

    2017-01-01

    Antibody drug conjugates (ADCs) are no longer an unknown entity in the field of cancer therapy with the success of marketed ADCs like ADCETRIS and KADCYLA and numerous others advancing through clinical trials. The pursuit of novel cytotoxic payloads beyond the mictotubule inhibitors and DNA damaging agents has led us to the recent discovery of an mRNA splicing inhibitor, thailanstatin, as a potent ADC payload. In our previous work, we observed that the potency of this payload was uniquely tied to the method of conjugation, with lysine conjugates showing much superior potency as compared to cysteine conjugates. However, the ADC field is rapidly shifting towards site-specific ADCs due to their advantages in manufacturability, characterization and safety. In this work we report the identification of a highly efficacious site-specific thailanstatin ADC. The site of conjugation played a critical role on both the in vitro and in vivo potency of these ADCs. During the course of this study, we developed a novel methodology of loading a single site with multiple payloads using an in situ generated multi-drug carrying peptidic linker that allowed us to rapidly screen for optimal conjugation sites. Using this methodology, we were able to identify a double-cysteine mutant ADC delivering four-loaded thailanstatin that was very efficacious in a gastric cancer xenograft model at 3mg/kg and was also shown to be efficacious against T-DM1 resistant and MDR1 overexpressing tumor cell lines.

  4. Biocompatible Porous Polyester-Ether Hydrogel Scaffolds with Cross-Linker Mediated Biodegradation and Mechanical Properties for Tissue Augmentation

    Berkay Ozcelik

    2018-02-01

    Full Text Available Porous polyester-ether hydrogel scaffolds (PEHs were fabricated using acid chloride/alcohol chemistry and a salt templating approach. The PEHs were produced from readily available and cheap commercial reagents via the reaction of hydroxyl terminated poly(ethylene glycol (PEG derivatives with sebacoyl, succinyl, or trimesoyl chloride to afford ester cross-links between the PEG chains. Through variation of the acid chloride cross-linkers used in the synthesis and the incorporation of a hydrophobic modifier (poly(caprolactone (PCL, it was possible to tune the degradation rates and mechanical properties of the resulting hydrogels. Several of the hydrogel formulations displayed exceptional mechanical properties, remaining elastic without fracture at compressive strains of up to 80%, whilst still displaying degradation over a period of weeks to months. A subcutaneous rat model was used to study the scaffolds in vivo and revealed that the PEHs were infiltrated with well vascularised tissue within two weeks and had undergone significant degradation in 16 weeks without any signs of toxicity. Histological evaluation for immune responses revealed that the PEHs incite only a minor inflammatory response that is reduced over 16 weeks with no evidence of adverse effects.

  5. Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker

    Gunda, Naga Siva Kumar; Singh, Minashree; Norman, Lana; Kaur, Kamaljit; Mitra, Sushanta K.

    2014-01-01

    In the present work, we developed and optimized a technique to produce a thin, stable silane layer on silicon substrate in a controlled environment using (3-aminopropyl)triethoxysilane (APTES). The effect of APTES concentration and silanization time on the formation of silane layer is studied using spectroscopic ellipsometry and Fourier transform infrared spectroscopy (FTIR). Biomolecules of interest are immobilized on optimized silane layer formed silicon substrates using glutaraldehyde linker. Surface analytical techniques such as ellipsometry, FTIR, contact angle measurement system, and atomic force microscopy are employed to characterize the bio-chemically modified silicon surfaces at each step of the biomolecule immobilization process. It is observed that a uniform, homogenous and highly dense layer of biomolecules are immobilized with optimized silane layer on the silicon substrate. The developed immobilization method is successfully implemented on different silicon substrates (flat and pillar). Also, different types of biomolecules such as anti-human IgG (rabbit monoclonal to human IgG), Listeria monocytogenes, myoglobin and dengue capture antibodies were successfully immobilized. Further, standard sandwich immunoassay (antibody–antigen–antibody) is employed on respective capture antibody coated silicon substrates. Fluorescence microscopy is used to detect the respective FITC tagged detection antibodies bound to the surface after immunoassay.

  6. Silica-bound copper(II)triazacyclononane as a phosphate esterase: effect of linker length and surface hydrophobicity.

    Bodsgard, Brett R; Clark, Robert W; Ehrbar, Anthony W; Burstyn, Judith N

    2009-04-07

    A series of silica-bound Cu(ii) triazacyclononane materials was prepared to study the effect of linker length and surface hydrophobicity on the hydrolysis of phosphate esters. The general synthetic approach for these heterogeneous reagents was rhodium-catalyzed hydrosilation between an alkenyl-modified triazacyclononane and hydride-modified silica followed by metallation with a Cu(ii) salt. Elemental analysis confirmed that organic functionalization of the silica gel was successful and provided an estimate of the surface concentration of triazacyclononane. EPR spectra were consistent with square pyramidal Cu(ii), indicating that Cu(ii) ions were bound to the immobilized macrocycles. The hydrolytic efficacies of these heterogeneous reagents were tested with bis(p-nitrophenyl)phosphate (BNPP) and diethyl 4-nitrophenyl phosphate (paraoxon). The agent that performed best was an octyl-linked, propanol-blocked material. This material had the most hydrophilic surface and the most accessible active site, achieving a rate maximum on par with the other materials, but in fewer cycles and without an induction period.

  7. Solid phase synthesis of mitochondrial triphenylphosphonium-vitamin E metabolite using a lysine linker for reversal of oxidative stress.

    Mohanad Mossalam

    Full Text Available Mitochondrial targeting of antioxidants has been an area of interest due to the mitochondria's role in producing and metabolizing reactive oxygen species. Antioxidants, especially vitamin E (α-tocopherol, have been conjugated to lipophilic cations to increase their mitochondrial targeting. Synthetic vitamin E analogues have also been produced as an alternative to α-tocopherol. In this paper, we investigated the mitochondrial targeting of a vitamin E metabolite, 2,5,7,8-tetramethyl-2-(2'-carboxyethyl-6-hydroxychroman (α-CEHC, which is similar in structure to vitamin E analogues. We report a fast and efficient method to conjugate the water-soluble metabolite, α-CEHC, to triphenylphosphonium cation via a lysine linker using solid phase synthesis. The efficacy of the final product (MitoCEHC to lower oxidative stress was tested in bovine aortic endothelial cells. In addition the ability of MitoCEHC to target the mitochondria was examined in type 2 diabetes db/db mice. The results showed mitochondrial accumulation in vivo and oxidative stress decrease in vitro.

  8. The bacterial tubulin FtsZ requires its intrinsically disordered linker to direct robust cell wall construction.

    Sundararajan, Kousik; Miguel, Amanda; Desmarais, Samantha M; Meier, Elizabeth L; Casey Huang, Kerwyn; Goley, Erin D

    2015-06-23

    The bacterial GTPase FtsZ forms a cytokinetic ring at midcell, recruits the division machinery and orchestrates membrane and peptidoglycan cell wall invagination. However, the mechanism for FtsZ regulation of peptidoglycan metabolism is unknown. The FtsZ GTPase domain is separated from its membrane-anchoring C-terminal conserved (CTC) peptide by a disordered C-terminal linker (CTL). Here we investigate CTL function in Caulobacter crescentus. Strikingly, production of FtsZ lacking the CTL (ΔCTL) is lethal: cells become filamentous, form envelope bulges and lyse, resembling treatment with β-lactam antibiotics. This phenotype is produced by FtsZ polymers bearing the CTC and a CTL shorter than 14 residues. Peptidoglycan synthesis still occurs downstream of ΔCTL; however, cells expressing ΔCTL exhibit reduced peptidoglycan crosslinking and longer glycan strands than wild type. Importantly, midcell proteins are still recruited to sites of ΔCTL assembly. We propose that FtsZ regulates peptidoglycan metabolism through a CTL-dependent mechanism that extends beyond simple protein recruitment.

  9. Synthesis of Cassava Waste Pulp-Acrylamide Super Absorbent: Effect of Initiator and Cross-Linker Concentration

    Zainal Alim Mas’ud

    2013-05-01

    Full Text Available Cassava waste pulp (CWP contains high carbohydrates that can be modified into super absorbent polymer (SAP through grafting and cross-linking copolymerization. Acrylamide (AM was grafted onto CWP with ammonium persulfate (APS as the initiator and N,N'-methylene-bis-acrylamide (MBA as the cross-linker under atmospheric nitrogen. The effect of APS and MBA concentrations on water absorption capacity of saponified SAP was studied, while the evaluation of grafting ratio (GR and grafting efficiency (GRE was conducted on unsaponified SAP. The grafting success was indicated by the occurrence of IR peaks at wave numbers of 573, 765, 858, and 1667 cm-1. In the saponified SAP, the very intense characteristic band at 1562 cm-1 is due to C=O asymmetric stretching in the carboxylate anion. Saponification increases significantly water absorption capacity compared to that of unsaponified SAP (from 39.79 g/g to 578.23 g/g. The highest water absorption capacity is reached at 0.74% APS and 0.09% MBA. The percentage of GRE and GR tends to increase with increasing APS concentration until reaching the highest value and then decreases. Effect of MBA concentration on water absorption capacity, GR, and on GRE is similar to the effect of initiator concentration on GR and GRE.

  10. NIR-Cyanine Dye Linker: a Promising Candidate for Isochronic Fluorescence Imaging in Molecular Cancer Diagnostics and Therapy Monitoring.

    Komljenovic, Dorde; Wiessler, Manfred; Waldeck, Waldemar; Ehemann, Volker; Pipkorn, Ruediger; Schrenk, Hans-Hermann; Debus, Jürgen; Braun, Klaus

    2016-01-01

    Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the Cy7 molecule whose indolenine-N residues were substituted with a propylene linker are described. Methylating agent temozolomide is functionalized with a tetrazine as a diene component whereas Cy7-cell penetrating peptide conjugate acts as a dienophilic reaction partner for the inverse Diels-Alder click chemistry-mediated ligation route yielding a theranostic conjugate, 3-mercapto-propionic-cyclohexenyl-Cy7-bis-temozolomide-bromide-cell penetrating peptide. Synthesis route described here may facilitate targeted delivery of the therapeutic compound to achieve sufficient local concentrations at the target site or tissue. Its versatility allows a choice of adequate imaging tags applicable in e.g. PET, SPECT, CT, near-infrared imaging, and therapeutic substances including cytotoxic agents. Imaging tags and therapeutics may be simultaneously bound to the conjugate applying click chemistry. Theranostic compound presented here offers a solid basis for a further improvement of cancer management in a precise, patient-specific manner.

  11. Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage

    Deng, Da; Lee, Jim Yang

    2011-01-01

    A simple and scalable procedure combining hydrothermal synthesis with post-synthesis calcination was developed to produce a linker-free, thermally stable, mesoscale 3D ordered assembly of spinel-type ZnCo 2 O 4 nanocrystals. The mesoscale assembly with distinctively sharp edges was formed by close-packing the ZnCo 2 O 4 nanocrystal building blocks with a unit size changeable by the synthesis temperature. A self-templating mechanism based on the topotactic transformation of an oxalato-bridged precursor coordination compound was proposed for the assembly. The packaging of crystalline ZnCo 2 O 4 nanoparticles, an active lithium ion storage compound, into a dense organized structure is an effective way to increase the volumetric capacity of ZnCo 2 O 4 nanoparticles for reversible lithium ion storage. The highly ordered 3D assembly of ZnCo 2 O 4 demonstrated excellent reversible lithium ion storage properties and a specific capacity (∼800 mAh g -1 ) much higher than that of carbon (typically ∼ 350 mAh g -1 ).

  12. Construction, Structural Diversity and Properties of Five Coordination Polymers Based on 5-Nitroisophthalate and Bis(imidazole) Linkers

    Arıcı, Mürsel

    2018-06-01

    Five coordination polymers, namely, [Cd(μ3-5-nip)(μ-obix)]n (1), [Co(μ3-5-nip)(μ-obix)]n (2), [Zn(μ-5-nip)(μ-obix)]n (3 and 4) and [Cd(μ-5-nip)(μ-bisobix)]n (5) (5-nip: 5-nitroisophthalate, obix: 1,2-bis(imidazol-1ylmethyl)benzene, bisobix: 1,2-bis(2-isopropylimidazol-1ylmethyl)benzene) were hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, single crystal and powder X-ray diffraction and thermal analysis (TG/DTA). X-ray results showed that the complexes displayed structural diversity depending on metal ions and conformations of bis(imidazole) linkers. Complexes 1 and 2 were 1D structures and obix ligand displayed cis-conformation. Complexes 3 and 4 exhibited 2D and 3D structures with same components depending on obix conformation. In complex 5, 3D+3D→3D interpenetrated structure was obtained with dia topology when bisobix having sterically hindered groups on imidazole rings was used. Moreover, thermal, photoluminescence and optical properties of the complexes were also investigated.

  13. Demonstration of Improved Charge Transfer in Graphene/Au Nanorods Plasmonic Hybrids Stabilized by Benzyl Thiol Linkers

    Giuseppe Valerio Bianco

    2016-01-01

    Full Text Available Hybrids based on graphene decorated with plasmonic gold (Au nanostructures are being investigated as possible materials combination to add to graphene functionalities of tunable plasmon resonance and enhanced absorption at selected wavelength in the visible-near-infrared region of the spectrum. Here, we report a solution drop-casting approach for fabricating stable hybrids based on chemical vapor deposition (CVD graphene and Au nanorods, which are able to activate effective charge transfer from graphene. We demonstrate that CVD graphene functionalization by benzyl thiol (BZT provides the linker to strong anchoring, via S-Au bonds, Au nanorods to graphene. Optical measurements by spectroscopic ellipsometry give evidence of the introduction of plasmon resonances at 1.85 and 2.25 eV in the Au nanorods/BZT/graphene hybrids, which enable surface enhanced Raman scattering (SERS detection. Furthermore, an effective electron transfer from graphene to Au nanorods, resulting in an enhancement of p-type doping of graphene with a consequent decrease of its sheet resistance, is probed by Raman spectroscopy and corroborated by electrical measurements.

  14. Phosphonate self-assembled monolayers as organic linkers in solid-state quantum dot sensetized solar cells

    Ardalan, Pendar

    2010-06-01

    We have employed X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) spectroscopy, infrared (IR) spectroscopy, water contact angle (WCA) measurements, ellipsometry, and electrical measurements to study the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state quantum dot sensitized solar cells (QDSSCs). ∼2 to ∼6 nm size CdS quantum dots (QDs) were grown on the SAM-passivated TiO2 surfaces by successive ionic layer adsorption and reaction (SILAR). Our results show differences in the bonding of the CdS QDs at the TiO2 surfaces with a SAM linker. Moreover, our data indicate that presence of a SAM increases the CdS uptake on TiO2 as well as the performance of the resulting devices. Importantly, we observe ∼2 times higher power conversion efficiencies in the devices with a SAM compared to those that lack a SAM. © 2010 IEEE.

  15. Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker

    Gunda, Naga Siva Kumar [Department of Mechanical Engineering, University of Alberta, Edmonton, Canada T6G 2G8 (Canada); Singh, Minashree [Department of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada T6G 1C9 (Canada); Norman, Lana [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 2V4 (Canada); Kaur, Kamaljit [Department of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada T6G 1C9 (Canada); Mitra, Sushanta K., E-mail: sushanta.mitra@ualberta.ca [Department of Mechanical Engineering, University of Alberta, Edmonton, Canada T6G 2G8 (Canada)

    2014-06-01

    In the present work, we developed and optimized a technique to produce a thin, stable silane layer on silicon substrate in a controlled environment using (3-aminopropyl)triethoxysilane (APTES). The effect of APTES concentration and silanization time on the formation of silane layer is studied using spectroscopic ellipsometry and Fourier transform infrared spectroscopy (FTIR). Biomolecules of interest are immobilized on optimized silane layer formed silicon substrates using glutaraldehyde linker. Surface analytical techniques such as ellipsometry, FTIR, contact angle measurement system, and atomic force microscopy are employed to characterize the bio-chemically modified silicon surfaces at each step of the biomolecule immobilization process. It is observed that a uniform, homogenous and highly dense layer of biomolecules are immobilized with optimized silane layer on the silicon substrate. The developed immobilization method is successfully implemented on different silicon substrates (flat and pillar). Also, different types of biomolecules such as anti-human IgG (rabbit monoclonal to human IgG), Listeria monocytogenes, myoglobin and dengue capture antibodies were successfully immobilized. Further, standard sandwich immunoassay (antibody–antigen–antibody) is employed on respective capture antibody coated silicon substrates. Fluorescence microscopy is used to detect the respective FITC tagged detection antibodies bound to the surface after immunoassay.

  16. Influence of vibronic contribution on light harvesting efficiency of NKX-2587 derivatives with oligothiophene as π-conjugated linker

    Yang, Pan; Zhang, Yang; Li, Ming; Shen, Wei; He, Rongxing

    2018-01-01

    Based on the NKX-2587 molecule we designed ten sensitizers with 1-10 thiophene moieties to investigate how the number of thiophene unit in the spacer influences the absorption spectra of sensitizer in dye sensitized solar cells (DSSCs). The parameters of short-circuit current density (Jsc), open circuit voltage (Voc), the light harvesting efficiency (LHE), injection driving force (Δ Ginject), and transferred electron number (nc), were calculated and discussed in detail. Results indicated that the increasing of thiophene units makes for the enhancement of oscillator strengths (f), although the red shift of vertical electronic absorption spectra is small. For the designed sensitizers with 1-5 thiophene units, their ΔGinject and nc raise gradually with the increasing of thiophene number. However, for those sensitizers with 6-10 thiophene units, the ΔGinject and nc decrease continuously with the increasing of thiophene units. In order to study how the oligothiophene as π-conjugated linker affects light harvesting efficiency of DSSCs, the vibrationally resolved electronic spectra of five metal-free NKX-2587 derivatives with 1-5 thiophene units were simulated within the Franck-Condon approximation including the Herzberg-Teller and Duschinsky effects. The present theoretical results provided helpful guidance for understanding the sources of spectral intensities of dye molecules, and a valuable method for rational design of new molecules to improve the energy conversion efficiency (η) of DSSCs.

  17. Structure and properties of Al-MIL-53-ADP, a breathing MOF based on the aliphatic linker molecule adipic acid.

    Reinsch, Helge; Pillai, Renjith S; Siegel, Renée; Senker, Jürgen; Lieb, Alexandra; Maurin, Guillaume; Stock, Norbert

    2016-03-14

    The new aluminium based metal-organic framework [Al(OH)(O2C-C4H8-CO2)]·H2O denoted as Al-MIL-53-ADP-lp (lp stands for large pore) was synthesised under solvothermal conditions. This solid is an analogue of the archetypical aluminium terephthalate Al-MIL-53 based on the aliphatic single-chain linker molecule adipic acid (H2ADP, hexanedioic acid). In contrast to its aromatic counterparts, Al-MIL-53-ADP exhibits a structural breathing behaviour solely upon dehydration/rehydration. The crystal structure of the anhydrous compound denoted as Al-MIL-53-ADP-np (np stands for narrow pore) was determined by a combination of forcefield-based computations and Rietveld refinement of the powder X-ray diffraction data while the structure of the hydrated form Al-MIL-53-ADP-lp was derived computationally by a combination of force field based methods and Density Functional Theory calculations. Both structures were further supported by (1)H, (13)C and (27)Al high-resolution NMR MAS 1D data coupled again with simulations. Al-MIL-53-ADP was further characterised by means of vibrational spectroscopy, elemental analysis, thermogravimetry and water vapour sorption.

  18. A Dual-Purpose Linker for Alpha Helix Stabilization and Imaging Agent Conjugation to Glucagon-Like Peptide-1 Receptor Ligands

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M.

    2016-01-01

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using the glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel alpha helix stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enables this technique to potentially be used as a general method for labeling alpha helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741

  19. Mutation of Gly717Phe in human topoisomerase 1B has an effect on enzymatic function, reactivity to the camptothecin anticancer drug and on the linker domain orientation

    Wang, Zhenxing; D'Annessa, Ilda; Tesauro, Cinzia

    2015-01-01

    –DNA covalent adduct. In this work the role of the Gly717 residue, located in a α-helix structure bridging the active site and the linker domain, has been investigated mutating it in Phe. The mutation gives rise to drug resistance in vivo as observed through a viability assay of yeast cells. In vitro activity...... assays show that the mutant is characterized by a fast religation rate, only partially reduced by the presence of the drug. Comparative molecular dynamics simulations of the native and mutant proteins indicate that the mutation of Gly717 affects the motion orientation of the linker domain, changing its...... interaction with the DNA substrate, likely affecting the strand rotation and religation rate. The mutation also causes a slight rearrangement of the active site and of the drug binding site, providing an additional explanation for the lowered effect of camptothecin toward the mutant....

  20. Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens.

    Sheila M Reynolds

    2010-07-01

    Full Text Available DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence-301 base pairs, centered at the position to be scored-with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the

  1. Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens.

    Reynolds, Sheila M; Bilmes, Jeff A; Noble, William Stafford

    2010-07-08

    DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence-301 base pairs, centered at the position to be scored-with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the bulk of the

  2. Epigenetics and autism spectrum disorder: A report of an autism case with mutation in H1 linker histone HIST1H1e and literature review.

    Duffney, Lara J; Valdez, Purnima; Tremblay, Martine W; Cao, Xinyu; Montgomery, Sarah; McConkie-Rosell, Allyn; Jiang, Yong-Hui

    2018-04-27

    Genetic mutations in genes encoding proteins involved in epigenetic machinery have been reported in individuals with autism spectrum disorder (ASD), intellectual disability, congenital heart disease, and other disorders. H1 histone linker protein, the basic component in nucleosome packaging and chromatin organization, has not been implicated in human disease until recently. We report a de novo deleterious mutation of histone cluster 1 H1 family member e (HIST1H1E; c.435dupC; p.Thr146Hisfs*50), encoding H1 histone linker protein H1.4, in a 10-year-old boy with autism and intellectual disability diagnosed through clinical whole exome sequencing. The c.435dupC at the 3' end of the mRNA leads to a frameshift and truncation of the positive charge in the carboxy-terminus of the protein. An expression study demonstrates the mutation leads to reduced protein expression, supporting haploinsufficiency of HIST1H1E protein and loss of function as an underlying mechanism of dysfunction in the brain. Taken together with other recent cases with mutations of HIST1H1E in intellectual disability, the evidence supporting the link to causality in disease is strong. Our finding implicates the deficiency of H1 linker histone protein in autism. The systematic review of candidate genes implicated in ASD revealed that 42 of 215 (19.5%) genes are directly involved in epigenetic regulations and the majority of these genes belong to histone writers, readers, and erasers. While the mechanism of how haploinsufficiency of HIST1H1E causes autism is entirely unknown, our report underscores the importance of further study of the function of this protein and other histone linker proteins in brain development. © 2018 Wiley Periodicals, Inc.

  3. Funktionalisierte Linker für Metallorganische Gerüstverbindungen, deren postsynthetische Modifikation und polar markierte Schutzgruppen für terminale Alkine

    Roy, Pascal

    2011-01-01

    Metal-organic frameworks (MOFs) form the class of porous materials with the highest surface areas. This characteristic property combined with the variability of both building blocks, the inorganic node and the organic linker, makes many scientists dream of materials with very special chemical, electronic, optic and/or magnetic properties. For individual applications both building blocks, but also possibly in the framework embedded guests, play a crucial role. This work describes the synthe...

  4. Assessing the adsorption selectivity of linker functionalized, moisture-stable metal-organic framework thin films by means of an environment-controlled quartz crystal microbalance.

    Bétard, Angélique; Wannapaiboon, Suttipong; Fischer, Roland A

    2012-11-04

    The stepwise thin film deposition of the robust, hydrophobic [Zn(4)O(dmcapz)(3)](n) (dmcapz = 3,5-dimethyl-4-carboxy-pyrazolato) is reported. The adsorption of small organic probe molecules, including alkanols, toluene, aniline and xylenes, was monitored by an environment-controlled quartz crystal microbalance setup. The adsorption selectivity was tuned by introducing alkyl side chains in the dmcapz linker.

  5. Learning a Weighted Sequence Model of the Nucleosome Core and Linker Yields More Accurate Predictions in Saccharomyces cerevisiae and Homo sapiens

    Reynolds, Sheila M.; Bilmes, Jeff A.; Noble, William Stafford

    2010-01-01

    DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence—301 base pairs, centered at the position to be scored—with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the bulk of the

  6. Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116

    Zhang, Yuan; Palla, Mirkó; Liao, Jung-Chi; Sun, Andrew

    2013-01-01

    DEAD-box RNA helicases are ATP-dependent proteins implicated in nearly all aspects of RNA metabolism. The yeast DEAD-box helicase Mss116 is unique in its functions of splicing group I and group II introns and activating mRNA translation, but the structural understanding of why it performs these unique functions remains unclear. Here we used sequence analysis and molecular dynamics simulation to identify residues in the flexible linker specific for yeast Mss116, potentially associated with its unique functions. We first identified residues that are 100% conserved in Mss116 of different species of the Saccharomycetaceae family. The amino acids of these conserved residues were then compared with the amino acids of the corresponding residue positions of other RNA helicases to identify residues that have distinct amino acids from other DEAD-box proteins. Four residues in the flexible linker, i.e. N334, E335, P336 and H339, are conserved and Mss116-specific. Molecular dynamics simulation was conducted for the wild-type Mss116 structure and mutant models to examine mutational effects of the linker on the conformational equilibrium. Relatively short MD simulation runs (within 20 ns) were enough for us to observe mutational effects, suggesting serious structural perturbations by these mutations. The mutation of E335 depletes the interactions between E335 and K95 in domain 1. The interactions between N334/P336 and N496/I497 of domain 2 are also abolished by mutation. Our results suggest that tight interactions between the Mss116-specific flexible linker and the two RecA-like domains may be mechanically required to crimp RNA for the unique RNA processes of yeast Mss116. (paper)

  7. Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116

    Zhang, Yuan; Palla, Mirkó; Sun, Andrew; Liao, Jung-Chi

    2013-09-01

    DEAD-box RNA helicases are ATP-dependent proteins implicated in nearly all aspects of RNA metabolism. The yeast DEAD-box helicase Mss116 is unique in its functions of splicing group I and group II introns and activating mRNA translation, but the structural understanding of why it performs these unique functions remains unclear. Here we used sequence analysis and molecular dynamics simulation to identify residues in the flexible linker specific for yeast Mss116, potentially associated with its unique functions. We first identified residues that are 100% conserved in Mss116 of different species of the Saccharomycetaceae family. The amino acids of these conserved residues were then compared with the amino acids of the corresponding residue positions of other RNA helicases to identify residues that have distinct amino acids from other DEAD-box proteins. Four residues in the flexible linker, i.e. N334, E335, P336 and H339, are conserved and Mss116-specific. Molecular dynamics simulation was conducted for the wild-type Mss116 structure and mutant models to examine mutational effects of the linker on the conformational equilibrium. Relatively short MD simulation runs (within 20 ns) were enough for us to observe mutational effects, suggesting serious structural perturbations by these mutations. The mutation of E335 depletes the interactions between E335 and K95 in domain 1. The interactions between N334/P336 and N496/I497 of domain 2 are also abolished by mutation. Our results suggest that tight interactions between the Mss116-specific flexible linker and the two RecA-like domains may be mechanically required to crimp RNA for the unique RNA processes of yeast Mss116.

  8. Optimization of the Alkyl Linker of TO Base Surrogate in Triplex-Forming PNA for Enhanced Binding to Double-Stranded RNA.

    Sato, Takaya; Sato, Yusuke; Nishizawa, Seiichi

    2017-03-23

    A series of triplex-forming peptide nucleic acid (TFP) probes carrying a thiazole orange (TO) base surrogate through an alkyl linker was synthesized, and the interactions between these so-called tFIT probes and purine-rich sequences within double-stranded RNA (dsRNA) were examined. We found that the TO base surrogate linker significantly affected both the binding affinity and the fluorescence response upon triplex formation with the target dsRNA. Among the probes examined, the TO base surrogate connected through the propyl linker in the tFIT probes increased the binding affinity by a factor of ten while maintaining its function as the fluorescent universal base. Isothermal titration calorimetry experiments revealed that the increased binding affinity resulted from the gain in the binding enthalpy, which could be explained by the enhanced π-stacking interaction between the TO base surrogate and the dsRNA part of the triplex. We expect that these results will provide a molecular basis for designing strong binding tFIT probes for fluorescence sensing of various kinds of purine-rich dsRNAs sequences including those carrying a pyrimidine-purine inversion. The obtained data also offers a new insight into further development of the universal bases incorporated in TFP. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The role of H1 linker histone subtypes in preserving the fidelity of elaboration of mesendodermal and neuroectodermal lineages during embryonic development.

    Giang D Nguyen

    Full Text Available H1 linker histone proteins are essential for the structural and functional integrity of chromatin and for the fidelity of additional epigenetic modifications. Deletion of H1c, H1d and H1e in mice leads to embryonic lethality by mid-gestation with a broad spectrum of developmental alterations. To elucidate the cellular and molecular mechanisms underlying H1 linker histone developmental functions, we analyzed embryonic stem cells (ESCs depleted of H1c, H1d and H1e subtypes (H1-KO ESCs by utilizing established ESC differentiation paradigms. Our study revealed that although H1-KO ESCs continued to express core pluripotency genes and the embryonic stem cell markers, alkaline phosphatase and SSEA1, they exhibited enhanced cell death during embryoid body formation and during specification of mesendoderm and neuroectoderm. In addition, we demonstrated deregulation in the developmental programs of cardiomyocyte, hepatic and pancreatic lineage elaboration. Moreover, ectopic neurogenesis and cardiomyogenesis occurred during endoderm-derived pancreatic but not hepatic differentiation. Furthermore, neural differentiation paradigms revealed selective impairments in the specification and maturation of glutamatergic and dopaminergic neurons with accelerated maturation of glial lineages. These impairments were associated with deregulation in the expression profiles of pro-neural genes in dorsal and ventral forebrain-derived neural stem cell species. Taken together, these experimental observations suggest that H1 linker histone proteins are critical for the specification, maturation and fidelity of organ-specific cellular lineages derived from the three cardinal germ layers.

  10. Surface expression and subunit specific control of steady protein levels by the Kv7.2 helix A-B linker.

    Paloma Aivar

    Full Text Available Kv7.2 and Kv7.3 are the main components of the neuronal voltage-dependent M-current, which is a subthreshold potassium conductance that exerts an important control on neuronal excitability. Despite their predominantly intracellular distribution, these channels must reach the plasma membrane in order to control neuronal activity. Thus, we analyzed the amino acid sequence of Kv7.2 to identify intrinsic signals that may control its surface expression. Removal of the interlinker connecting helix A and helix B of the intracellular C-terminus produces a large increase in the number of functional channels at the plasma membrane. Moreover, elimination of this linker increased the steady-state amount of protein, which was not associated with a decrease of protein degradation. The magnitude of this increase was inversely correlated with the number of helix A - helix B linkers present in the tetrameric channel assemblies. In contrast to the remarkable effect on the amount of Kv7.2 protein, removal of the Kv7.2 linker had no detectable impact on the steady-state levels of Kv7.3 protein.

  11. Development and characterization of polyclonal antibodies against the linker region of the telomere-binding protein TRF2

    Nadya V. Ilicheva

    2018-03-01

    Full Text Available Background: TRF2 (telomeric repeat binding factor 2 is an essential component of the telomere-binding protein complex shelterin. TRF2 induces the formation of a special structure of telomeric DNA and counteracts activation of DNA damage-response pathways telomeres. TRF2 has a poorly characterized linker region (udTRF2 between its homodimerization and DNA-binding domains. Some lines of evidence have shown that this region could be involved in TRF2 interaction with nuclear lamina. Results: In this study, the fragment of the TERF2 gene encoding udTRF2 domain of telomere-binding protein TRF2 was produced by PCR and cloned into the pET32a vector. The resulting plasmid pET32a-udTRF2 was used for the expression of the recombinant udTRF2 in E. coli RosettaBlue (DE3. The protein was isolated and purified using ammonium sulfate precipitation followed by ion-exchange chromatography. The purified recombinant protein udTRF2 was injected into guinea pigs to generate polyclonal antibodies. The ability of anti-udTRF2 antibodies to bind endogenous TRF2 in human skin fibroblasts was tested by western blotting and immunofluorescent staining. Conclusions: In this study, the recombinant protein udTRF2 and antibodies to it were generated. Both protein and antibodies will provide a useful tool for investigation of the functions of the udTRF2 domain and its role in the interaction between TRF2 and nuclear lamina. Keywords: Chromosomes, Molecular cloning, Nuclear lamina, Nucleoprotein complexes, Polyclonal antibodies, Recombinant polypeptide, Shelterin, Telomere-binding protein TRF2, Telomeres, Telomeric DNA, TTAGGG repeats

  12. Stomach Chitinase from Japanese Sardine Sardinops melanostictus: Purification, Characterization, and Molecular Cloning of Chitinase Isozymes with a Long Linker

    Satoshi Kawashima

    2016-01-01

    Full Text Available Fish express two different chitinases, acidic fish chitinase-1 (AFCase-1 and acidic fish chitinase-2 (AFCase-2, in the stomach. AFCase-1 and AFCase-2 have different degradation patterns, as fish efficiently degrade chitin ingested as food. For a comparison with the enzymatic properties and the primary structures of chitinase isozymes obtained previously from the stomach of demersal fish, in this study, we purified chitinase isozymes from the stomach of Japanese sardine Sardinops melanostictus, a surface fish that feeds on plankton, characterized the properties of these isozymes, and cloned the cDNAs encoding chitinases. We also predicted 3D structure models using the primary structures of S. melanostictus stomach chitinases. Two chitinase isozymes, SmeChiA (45 kDa and SmeChiB (56 kDa, were purified from the stomach of S. melanostictus. Moreover, two cDNAs, SmeChi-1 encoding SmeChiA, and SmeChi-2 encoding SmeChiB were cloned. The linker regions of the deduced amino acid sequences of SmeChi-1 and SmeChi-2 (SmeChi-1 and SmeChi-2 are the longest among the fish stomach chitinases. In the cleavage pattern groups toward short substrates and the phylogenetic tree analysis, SmeChi-1 and SmeChi-2 were classified into AFCase-1 and AFCase-2, respectively. SmeChi-1 and SmeChi-2 had catalytic domains that consisted of a TIM-barrel (β/α8–fold structure and a deep substrate-binding cleft. This is the first study showing the 3D structure models of fish stomach chitinases.

  13. Noninvasive imaging of tumor integrin expression using 18F-labeled RGD dimer peptide with PEG4 linkers

    Liu, Zhaofei; Liu, Shuanglong; Wang, Fan; Liu, Shuang; Chen, Xiaoyuan

    2009-01-01

    Various radiolabeled Arg-Gly-Asp (RGD) peptides have been previously investigated for tumor integrin α v β 3 imaging. To further develop RGD radiotracers with enhanced tumor-targeting efficacy and improved in vivo pharmacokinetics, we designed a new RGD homodimeric peptide with two PEG 4 spacers (PEG 4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) between the two monomeric RGD motifs and one PEG 4 linker on the glutamate α-amino group ( 18 F-labeled PEG 4 -E[PEG 4 -c(RGDfK)] 2 , P-PRGD2), as a promising agent for noninvasive imaging of integrin expression in mouse models. P-PRGD2 was labeled with 18 F via 4-nitrophenyl 2- 18 F-fluoropropionate ( 18 F-FP) prosthetic group. In vitro and in vivo characteristics of the new dimeric RGD peptide tracer 18 F-FP-P-PRGD2 were investigated and compared with those of 18 F-FP-P-RGD2 ( 18 F-labeled RGD dimer without two PEG 4 spacers between the two RGD motifs). The ability of 18 F-FP-P-PRGD2 to image tumor vascular integrin expression was evaluated in a 4T1 murine breast tumor model. With the insertion of two PEG 4 spacers between the two RGD motifs, 18 F-FP-P-PRGD2 showed enhanced integrin α v β 3 -binding affinity, increased tumor uptake and tumor-to-nontumor background ratios compared with 18 F-FP-P-RGD2 in U87MG tumors. MicroPET imaging with 18 F-FP-P-PRGD2 revealed high tumor contrast and low background in tumor-bearing nude mice. Biodistribution studies confirmed the in vivo integrin α v β 3 -binding specificity of 18 F-FP-P-RGD2. 18 F-FP-P-PRGD2 can specifically image integrin α v β 3 on the activated endothelial cells of tumor neovasculature. 18 F-FP-P-PRGD2 can provide important information on integrin expression on the tumor vasculature. The high integrin binding affinity and specificity, excellent pharmacokinetic properties and metabolic stability make the new RGD dimeric tracer 18 F-FP-P-PRGD2 a promising agent for PET imaging of tumor angiogenesis and for monitoring the efficacy of antiangiogenic

  14. Dissociation Behavior of a TEMPO-Active Ester Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS) in Negative ESI-MS.

    Hage, Christoph; Ihling, Christian H; Götze, Michael; Schäfer, Mathias; Sinz, Andrea

    2017-01-01

    We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS 3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids. Graphical Abstract ᅟ.

  15. Effects of the Amino Acid Linkers on the Melanoma-Targeting and Pharmacokinetic Properties of Indium-111-labeled Lactam Bridge-Cyclized α-MSH Peptides

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Miao, Yubin

    2011-01-01

    The purpose of this study was to examine the profound effects of the amino acid linkers on the melanoma targeting and pharmacokinetic properties of novel 111In-labeled lactam bridge-cyclized DOTA-[X]-CycMSHhex {1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-[X]-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH2, X=GlyGlyNle, GlyGluNle or NleGlyGlu} peptides. Methods Three novel DOTA-GGNle-CycMSHhex, DOTA-GENle-CycMSHhex and DOTA-NleGE-CycMSHhex peptides were designed and synthesized. The melanocortin-1 (MC1) receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The melanoma targeting and pharmacokinetic properties of 111In-DOTA-GGNle-CycMSHhex and 111In-DOTA-GENle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. Results DOTA-GGNle-CycMSHhex and DOTA-GENle-CycMSHhex displayed 2.1 and 11.5 nM MC1 receptor binding affinities, whereas DOTA-NleGE-CycMSHhex showed 873.4 nM MC1 receptor binding affinity. The introduction of the -GlyGly- linker maintained high melanoma uptake while decreased the renal and liver uptakes of 111In-DOTA-GlyGlyNle-CycMSHhex. The tumor uptake values of 111In-DOTA-GGNle-CycMSHhex were 19.05 ± 5.04 and 18.6 ± 3.56 % injected dose/gram (%ID/g) at 2 and 4 h post-injection. 111In-DOTA-GGNle-CycMSHhex exhibited 28, 32 and 42% less renal uptake values than 111In-DOTA-Nle-CycMSHhex we reported previously, and 61, 65 and 68% less liver uptake values than 111In-DOTA-Nle-CycMSHhex at 2, 4 and 24 h post-injection, respectively. Conclusion The amino acid linkers exhibited the profound effects on the melanoma targeting and pharmacokinetic properties of the 111In-labeled lactam bridge-cyclized α-MSH peptides. Introduction of the -GlyGly- linker maintained high melanoma uptake while reducing the renal and liver uptakes of 111In-DOTA-GlyGlyNle-CycMSHhex, highlighting its potential as an effective imaging probe for melanoma detection, as well as a therapeutic peptide for melanoma treatment when labeled with a therapeutic

  16. Effects of the amino acid linkers on the melanoma-targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized alpha-MSH peptides.

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Miao, Yubin

    2011-04-01

    The purpose of this study was to examine the profound effects of the amino acid linkers on the melanoma-targeting and pharmacokinetic properties of (111)In-labeled lactam bridge-cyclized DOTA-[X]-CycMSH(hex) {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[X]-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH(2); X = GGNle, GENle, or NleGE; GG = -Gly-Gly- and GE = -Gly-Glu-} peptides. Three novel peptides (DOTA-GGNle-CycMSH(hex), DOTA-GENle-CycMSH(hex), and DOTA-NleGE-CycMSH(hex)) were designed and synthesized. The melanocortin-1 (MC1) receptor-binding affinities of the peptides were determined in B16/F1 melanoma cells. The melanoma-targeting and pharmacokinetic properties of (111)In-DOTA-GGNle-CycMSH(hex) and (111)In-DOTA-GENle-CycMSH(hex) were determined in B16/F1 melanoma-bearing C57 mice. DOTA-GGNle-CycMSH(hex) and DOTA-GENle-CycMSH(hex) displayed 2.1 and 11.5 nM MC1 receptor-binding affinities, whereas DOTA-NleGE-CycMSH(hex) showed 873.4 nM MC1 receptor-binding affinity. The introduction of the -GG- linker maintained high melanoma uptake while decreasing kidney and liver uptake of (111)In-DOTA-GGNle-CycMSH(hex). The tumor uptake of (111)In-DOTA-GGNle-CycMSH(hex) was 19.05 ± 5.04 and 18.6 ± 3.56 percentage injected dose per gram at 2 and 4 h after injection, respectively. (111)In-DOTA-GGNle-CycMSH(hex) exhibited 28%, 32%, and 42% less kidney uptake than (111)In-DOTA-Nle-CycMSH(hex) we reported previously, and 61%, 65%, and 68% less liver uptake than (111)In-DOTA-Nle-CycMSH(hex) at 2, 4, and 24 h after injection, respectively. The amino acid linkers exhibited profound effects on the melanoma-targeting and pharmacokinetic properties of the (111)In-labeled lactam bridge-cyclized α-melanocyte-stimulating hormone peptides. Introduction of the -GG- linker maintained high melanoma uptake while reducing kidney and liver uptake of (111)In-DOTA-GGNle-CycMSH(hex), highlighting its potential as an effective imaging probe for melanoma detection, as well as a therapeutic peptide

  17. Saccharomyces cerevisiae Linker Histone Hho1p Functionally Interacts with Core Histone H4 and Negatively Regulates the Establishment of Transcriptionally Silent Chromatin*

    Yu, Qun; Kuzmiak, Holly; Zou, Yanfei; Olsen, Lars; Defossez, Pierre-Antoine; Bi, Xin

    2009-01-01

    Saccharomyces cerevisiae linker histone Hho1p is not essential for cell viability, and very little is known about its function in vivo. We show that deletion of HHO1 (hho1Δ) suppresses the defect in transcriptional silencing caused by a mutation in the globular domain of histone H4. hho1Δ also suppresses the reduction in HML silencing by the deletion of SIR1 that is involved in the establishment of silent chromatin at HML. We further show that hho1Δ suppresses chan...

  18. Synthetic surfactant- and cross-linker-free preparation of highly stable lipid-polymer hybrid nanoparticles as potential oral delivery vehicles.

    Wang, Taoran; Xue, Jingyi; Hu, Qiaobin; Zhou, Mingyong; Chang, Chao; Luo, Yangchao

    2017-06-05

    The toxicity associated with concentrated synthetic surfactants and the poor stability at gastrointestinal condition are two major constraints for practical applications of solid lipid nanoparticles (SLN) as oral delivery vehicles. In this study, a synthetic surfactant-free and cross-linker-free method was developed to fabricate effective, safe, and ultra-stable lipid-polymer hybrid nanoparticles (LPN). Bovine serum albumin (BSA) and dextran varying in molecular weights were first conjugated through Maillard reaction and the conjugates were exploited to emulsify solid lipid by a solvent diffusion and sonication method. The multilayer structure was formed by self-assembly of BSA-dextran micelles to envelope solid lipid via a pH- and heating-induced facile process with simultaneous surface deposition of pectin. The efficiency of different BSA-dextran conjugates was systematically studied to prepare LPN with the smallest size, the most homogeneous distribution and the greatest stability. The molecular interactions were characterized by Fourier transform infrared and fluorescence spectroscopies. Both nano spray drying and freeze-drying methods were tested to produce spherical and uniform pectin-coated LPN powders that were able to re-assemble nanoscale structure when redispersed in water. The results demonstrated the promise of a synthetic surfactant- and cross-linker-free technique to prepare highly stable pectin-coated LPN from all natural biomaterials as potential oral delivery vehicles.

  19. Site specific replacements of a single loop nucleoside with a dibenzyl linker may switch the activity of TBA from anticoagulant to antiproliferative.

    Scuotto, Maria; Rivieccio, Elisa; Varone, Alessia; Corda, Daniela; Bucci, Mariarosaria; Vellecco, Valentina; Cirino, Giuseppe; Virgilio, Antonella; Esposito, Veronica; Galeone, Aldo; Borbone, Nicola; Varra, Michela; Mayol, Luciano

    2015-09-18

    Many antiproliferative G-quadruplexes (G4s) arise from the folding of GT-rich strands. Among these, the Thrombin Binding Aptamer (TBA), as a rare example, adopts a monomolecular well-defined G4 structure. Nevertheless, the potential anticancer properties of TBA are severely hampered by its anticoagulant action and, consequently, no related studies have appeared so far in the literature. We wish to report here that suitable chemical modifications in the TBA sequence can preserve its antiproliferative over anticoagulant activity. Particularly, we replaced one residue of the TT or TGT loops with a dibenzyl linker to develop seven new quadruplex-forming TBA based sequences (TBA-bs), which were studied for their structural (CD, CD melting, 1D NMR) and biological (fibrinogen, PT and MTT assays) properties. The three-dimensional structures of the TBA-bs modified at T13 (TBA-bs13) or T12 (TBA-bs12), the former endowed with selective antiproliferative activity, and the latter acting as potently as TBA in both coagulation and MTT assays, were further studied by 2D NMR restrained molecular mechanics. The comparative structural analyses indicated that neither the stability, nor the topology of the G4s, but the different localization of the two benzene rings of the linker was responsible for the loss of the antithrombin activity for TBA-bs13. © Crown copyright 2015.

  20. Quercetin-glutamic acid conjugate with a non-hydrolysable linker; a novel scaffold for multidrug resistance reversal agents through inhibition of P-glycoprotein.

    Kim, Mi Kyoung; Kim, Yunyoung; Choo, Hyunah; Chong, Youhoon

    2017-02-01

    Previously, we have reported remarkable effect of a quercetin-glutamic acid conjugate to reverse multidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer agents through inhibition of P-glycoprotein (Pgp)-mediated drug efflux. Due to the hydrolysable nature, MDR-reversal activity of the quercetin conjugate was attributed to its hydrolysis product, quercetin. However, several lines of evidence demonstrated that the intact quercetin-glutamic acid conjugate has stronger MDR-reversal activity than quercetin. In order to evaluate this hypothesis and to identify a novel scaffold for MDR-reversal agents, we prepared quercetin conjugates with a glutamic acid attached at the 7-O position via a non-hydrolysable linker. Pgp inhibition assay, Pgp ATPase assay, and MDR-reversal activity assay were performed, and the non-hydrolysable quercetin conjugates showed significantly higher activities compared with those of quercetin. Unfortunately, the quercetin conjugates were not as effective as verapamil in Pgp-inhibition and thereby reversing MDR, but it is worth to note that the structurally modified quercetin conjugates with a non-cleavable linker showed significantly improved MDR-reversal activity compared with quercetin. Taken together, the quercetin conjugates with appropriate structural modifications were shown to have a potential to serve as a scaffold for the design of novel MDR-reversal agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Two-dimensional layer architecture assembled by Keggin polyoxotungstate, Cu(II)-EDTA complex and sodium linker: Synthesis, crystal structures, and magnetic properties

    Liu Hong; Xu Lin; Gao Guanggang; Li Fengyan; Yang Yanyan; Li Zhikui; Sun Yu

    2007-01-01

    Reaction of Keggin polyoxotungstate with copper(II)-EDTA (EDTA=ethylenediamine tetraacetate) complex under mild conditions led to the formation of hybrid inorganic-organic compounds Na 4 (OH)[(Cu 2 EDTA)PW 12 O 40 ].17H 2 O (1) and Na 4 [(Cu 2 EDTA)SiW 12 O 40 ].19H 2 O (2). The single-crystal X-ray diffraction analyses reveal their two structural features: (1) one-dimensional chain structure consisting of Keggin polyoxotungstate and copper(II)-EDTA complex; (2) Two-dimensional layer architecture assembled by the one-dimensional chain structure and sodium linker. The results of magnetic measurements in the temperature range 300-2 K indicated the existence of ferromagnetic exchange interactions between the Cu II ions for both compounds. In addition, TGA analysis, IR spectra, and electrochemical properties were also investigated to well characterize these two compounds. - Graphical abstract: Two new polyoxometalate-based hybrids, Na 4 (OH)[Cu 2 (EDTA)PW 12 O 40 ].17H 2 O (1) and Na 4 [Cu 2 (EDTA)SiW 12 O 40 ].19H 2 O (2), have been synthesized and structurally characterized, which consist of one-dimensional chain structure assembled by Keggin polyoxotungstate and copper(II)-EDTA complex. The chains are further connected to form two-dimensional layer architecture assembled by the one-dimensional chain structure and sodium linker

  2. Structure of calmodulin complexed with an olfactory CNG channel fragment and role of the central linker: Residual dipolar couplings to evaluate calmodulin binding modes outside the kinase family

    Contessa, Gian Marco; Orsale, Maria; Melino, Sonia; Torre, Vincent; Paci, Maurizio; Desideri, Alessandro; Cicero, Daniel O.

    2005-01-01

    The NMR high-resolution structure of calmodulin complexed with a fragment of the olfactory cyclic-nucleotide gated channel is described. This structure shows features that are unique for this complex, including an active role of the linker connecting the N- and C-lobes of calmodulin upon binding of the peptide. Such linker is not only involved in the formation of an hydrophobic pocket to accommodate a bulky peptide residue, but it also provides a positively charged region complementary to a negative charge of the target. This complex of calmodulin with a target not belonging to the kinase family was used to test the residual dipolar coupling (RDC) approach for the determination of calmodulin binding modes to peptides. Although the complex here characterized belongs to the (1--14) family, high Q values were obtained with all the 1:1 complexes for which crystalline structures are available. Reduction of the RDC data set used for the correlation analysis to structured regions of the complex allowed a clear identification of the binding mode. Excluded regions comprise calcium binding loops and loops connecting the EF-hand motifs

  3. Crucial role of dynamic linker histone binding and divalent ions for DNA accessibility and gene regulation revealed by mesoscale modeling of oligonucleosomes

    Collepardo-Guevara, Rosana; Schlick, Tamar

    2012-01-01

    Monte Carlo simulations of a mesoscale model of oligonucleosomes are analyzed to examine the role of dynamic-linker histone (LH) binding/unbinding in high monovalent salt with divalent ions, and to further interpret noted chromatin fiber softening by dynamic LH in monovalent salt conditions. We find that divalent ions produce a fiber stiffening effect that competes with, but does not overshadow, the dramatic softening triggered by dynamic-LH behavior. Indeed, we find that in typical in vivo conditions, dynamic-LH binding/unbinding reduces fiber stiffening dramatically (by a factor of almost 5, as measured by the elasticity modulus) compared with rigidly fixed LH, and also the force needed to initiate chromatin unfolding, making it consistent with those of molecular motors. Our data also show that, during unfolding, divalent ions together with LHs induce linker-DNA bending and DNA–DNA repulsion screening, which guarantee formation of heteromorphic superbeads-on-a-string structures that combine regions of loose and compact fiber independently of the characteristics of the LH–core bond. These structures might be important for gene regulation as they expose regions of the DNA selectively. Dynamic control of LH binding/unbinding, either globally or locally, in the presence of divalent ions, might constitute a mechanism for regulation of gene expression. PMID:22790986

  4. Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders.

    Nakajima, Masahiro; Mizumoto, Shuji; Miyake, Noriko; Kogawa, Ryo; Iida, Aritoshi; Ito, Hironori; Kitoh, Hiroshi; Hirayama, Aya; Mitsubuchi, Hiroshi; Miyazaki, Osamu; Kosaki, Rika; Horikawa, Reiko; Lai, Angeline; Mendoza-Londono, Roberto; Dupuis, Lucie; Chitayat, David; Howard, Andrew; Leal, Gabriela F; Cavalcanti, Denise; Tsurusaki, Yoshinori; Saitsu, Hirotomo; Watanabe, Shigehiko; Lausch, Ekkehart; Unger, Sheila; Bonafé, Luisa; Ohashi, Hirofumi; Superti-Furga, Andrea; Matsumoto, Naomichi; Sugahara, Kazuyuki; Nishimura, Gen; Ikegawa, Shiro

    2013-06-06

    Proteoglycans (PGs) are a major component of the extracellular matrix in many tissues and function as structural and regulatory molecules. PGs are composed of core proteins and glycosaminoglycan (GAG) side chains. The biosynthesis of GAGs starts with the linker region that consists of four sugar residues and is followed by repeating disaccharide units. By exome sequencing, we found that B3GALT6 encoding an enzyme involved in the biosynthesis of the GAG linker region is responsible for a severe skeletal dysplasia, spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1). B3GALT6 loss-of-function mutations were found in individuals with SEMD-JL1 from seven families. In a subsequent candidate gene study based on the phenotypic similarity, we found that B3GALT6 is also responsible for a connective tissue disease, Ehlers-Danlos syndrome (progeroid form). Recessive loss-of-function mutations in B3GALT6 result in a spectrum of disorders affecting a broad range of skeletal and connective tissues characterized by lax skin, muscle hypotonia, joint dislocation, and spinal deformity. The pleiotropic phenotypes of the disorders indicate that B3GALT6 plays a critical role in a wide range of biological processes in various tissues, including skin, bone, cartilage, tendon, and ligament. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. The effect of linker of electrodes prepared from sol–gel ionic liquid precursor and carbon nanoparticles on dioxygen electroreduction bioelectrocatalysis

    Szot, Katarzyna; Lynch, Robert P.; Lesniewski, Adam; Majewska, Ewa; Sirieix-Plenet, Juliette; Gaillon, Laurent; Opallo, Marcin

    2011-01-01

    The effect of linker of three-dimensional, hydrophilic-carbon-nanoparticle film-electrodes prepared by layer-by-layer method on redox probe accumulation and bioelectrocatalytic dioxygen reduction was studied and compared for two different electrode scaffolds. The linker in both of these scaffolds was based on the same ionic liquid sol–gel precursor, 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium bis(trifluoromethyl-sulfonyl)imide. The first electrode type was prepared by alternative immersion of tin doped indium oxide substrate in an aqueous suspension of carbon nanoparticles modified with phenyl sulphonic groups and a sol composed of ionic liquid sol–gel precursor and tetramethoxysilane. For the second electrode type sol was replaced by a methanolic suspension of silicate submicroparticles with appended imidazolium functional groups. In both films 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) anions accumulate irreversibly. In the case of the first electrode electrostatic attraction plays the more important role in comparison to the case of the second where stable adsorption of the redox probe takes place. After adsorption of bilirubin oxidase, electrodes obtained from sol and carbon nanoparticles exhibit modest bioelectrocatalytic activity towards dioxygen reduction at pH 4.8, however those obtained from oppositely charged particles are much more efficient. The magnitude of the associated catalytic current in both cases depends on the number of immersion and withdrawal steps. Interestingly, mediatorless catalysis at electrodes obtained from oppositely charged particles is more efficient than mediated catalysis.

  6. Lymphatic transport and lymph node targeting of methotrexate-conjugated PEGylated dendrimers are enhanced by reducing the length of the drug linker or masking interactions with the injection site.

    Ryan, Gemma M; McLeod, Victoria M; Mehta, Dharmini; Kelly, Brian D; Stanislawski, Pauline C; Owen, David J; Kaminskas, Lisa M; Porter, Christopher J H

    2017-11-01

    Drug conjugation to dendrimer-based delivery systems has been shown to enhance delivery to the lymphatic system after subcutaneous administration. Dendrimer interaction with components of the interstitium at the injection site, however, may prevent drainage from the injection site. The current study sought to vary the length of a linker employed to conjugate methotrexate (MTX) to a PEGylated dendrimer, in an attempt to reduce MTX interaction with interstitial binding sites and enhance lymphatic drainage. Dendrimers with shorter linkers resulted in higher lymphatic drainage, presumably via shielding of interaction sites by the PEG mantle, but were not retained in lymph nodes. Improved drainage of dendrimers with longer linkers was achieved through coadministration with dextran to mask interactions at the injection site while maintaining retention within the node. Enhanced drug exposure to the lymph node has the potential to enhance the treatment of lymph-node resident cancer metastases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Introduction of an 8-aminooctanoic acid linker enhances uptake of 99mTc-labeled lactam bridge-cyclized α-MSH peptide in melanoma.

    Guo, Haixun; Miao, Yubin

    2014-12-01

    The purpose of this study was to examine the effects of amino acid, hydrocarbon, and polyethylene glycol (PEG) linkers on the melanoma targeting and imaging properties of (99m)Tc-labeled lactam bridge-cyclized HYNIC-linker-Nle-CycMSHhex (hydrazinonicotinamide-linker-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2) peptides. Four novel peptides (HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex, and HYNIC-AocNle-CycMSHhex) were designed and synthesized. The melanocortin-1 receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The biodistribution of (99m)Tc(ethylenediaminediacetic acid [EDDA])-HYNIC-GGGNle-CycMSHhex, (99m)Tc(EDDA)-HYNIC-GSGNle-CycMSHhex, (99m)Tc(EDDA)-HYNIC-PEG2Nle-CycMSHhex, and (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice at 2 h after injection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were further examined because of its high melanoma uptake. The inhibitory concentrations of 50% (IC50) for HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex, and HYNIC-AocNle-CycMSHhex were 0.7 ± 0.1, 0.8 ± 0.09, 0.4 ± 0.08, and 0.3 ± 0.06 nM, respectively, in B16/F1 melanoma cells. Among these four (99m)Tc-labeled peptides, (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex displayed the highest melanoma uptake (22.3 ± 1.72 percentage injected dose/g) at 2 h after injection. (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex exhibited high tumor-to-normal-organ uptake ratios except for the kidneys. The tumor-to-kidney uptake ratios of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were 3.29, 3.63, and 6.78 at 2, 4, and 24 h, respectively, after injection. The melanoma lesions were clearly visualized by SPECT/CT using (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex as an imaging probe at 2 h after injection. High melanoma uptake and fast urinary clearance of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex highlighted its

  8. Introduction of an 8-Aminooctanoic Acid Linker Enhances the melanoma uptake of Tc-99m-labeled Lactam Bridge-Cyclized Alpha-MSH Peptide

    Guo, Haixun; Miao, Yubin

    2015-01-01

    The purpose of this study was to examine the effects of amino acid, hydrocarbon and polyethylene glycol (PEG) linkers on melanoma targeting and imaging properties of 99mTc-labeled lactam bridge-cyclized HYNIC-linker-Nle-CycMSHhex {hydrazinonicotinamide-linker-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} peptides. Methods four novel peptides {HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex and HYNIC-AocNle-CycMSHhex} were designed and synthesized. The melanocortin-1 (MC1) receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The biodistribution of 99mTc(EDDA)-HYNIC-GGGNle-CycMSHhex, 99mTc(EDDA)-HYNIC-GSGNle-CycMSHhex, 99mTc(EDDA)-HYNIC-PEG2Nle-CycMSHhex and 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice at 2 h post-injection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex were further examined because of its high melanoma uptake. Results The IC50 values of HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex, and HYNIC-AocNle-CycMSHhex were 0.7 ± 0.1, 0.8 ± 0.09, 0.4 ± 0.08, and 0.3 ± 0.06 nM in B16/F1 melanoma cells, respectively. Among these four 99mTc-labeled peptides, 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex displayed the highest melanoma uptake (22.3 ± 1.72% ID/g) at 2 h post-injection. 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex exhibited high tumor to normal organ uptake ratios except for the kidneys. The tumor/kidney uptake ratios of 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex were 3.29, 3.63 and 6.78 at 2, 4 and 24 h post-injection. The melanoma lesions were clearly visualized by single photon emission computed tomography (SPECT)/CT using 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex as an imaging probe at 2 h post-injection. Conclusion High melanoma uptake and fast urinary clearance of 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex highlighted its potential for metastatic melanoma detection in the future

  9. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies.

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH 2 -CH=CH-CH 2 -) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than ~1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  10. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH2-CH=CH-CH2-) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than 1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  11. Adenoviral vectors expressing fusogenic membrane glycoproteins activated via matrix metalloproteinase cleavable linkers have significant antitumor potential in the gene therapy of gliomas.

    Allen, Cory; McDonald, Cari; Giannini, Caterina; Peng, Kah Whye; Rosales, Gabriela; Russell, Stephen J; Galanis, Evanthia

    2004-11-01

    Fusogenic membrane glycoproteins (FMG) such as the gibbon ape leukemia virus envelope (GALV) glycoprotein are potent therapeutic transgenes with potential utility in the gene therapy of gliomas. Transfection of glioma cell lines with FMG expression constructs results in fusion with massive syncytia formation followed by cytotoxic cell death. Nevertheless, ubiquitous expression of the GALV receptor, Pit-1, makes targeting desirable in order to increase the specificity of the observed cytopathic effect. Here we report on use of matrix metalloproteinase (MMP)-cleavable linkers to target the cytotoxicity of FMG-expressing adenoviral vectors against gliomas. Replication-defective adenoviruses (Ad) were constructed expressing the hyperfusogenic version of the GALV glycoprotein linked to a blocking ligand (C-terminal extracellular domain of CD40 ligand) through either an MMP-cleavable linker (AdM40) or a non-cleavable linker (AdN40). Both viruses also co-expressed the green fluorescent protein (GFP) via an internal ribosomal entry site. The glioma cell lines U87, U118, and U251 characterized by zymography and MMP-2 activity assay as high, medium and low MMP expressors, respectively, the MMP-poor cell lines TE671 and normal human astrocytes were infected with AdM40 and AdN40 at different multiplicities of infection (MOIs) from 1-30. Fusion was quantitated by counting both number and size of syncytia. Infection of these cell lines with AdN40 did not result in fusion or cytotoxic cell death, despite the presence of infection, as demonstrated by GFP positivity, therefore indicating that the displayed CD40 ligand blocked GALV-induced fusion. Fusion was restored after infection of glioma cells with AdM40 at an MOI as low as 1 to an extent dependent on MMP expression and coxsackie adenovirus receptor (CAR) expression in the specific cell line. Western immunoblotting demonstrated the presence of the cleaved CD40 ligand in the supernatant of fused glioma cells. Use of the MMP

  12. Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods: Synergies of the metal center and organic linker.

    Tian, Jingqi; Liu, Qian; Shi, Jinle; Hu, Jianming; Asiri, Abdullah M; Sun, Xuping; He, Yuquan

    2015-09-15

    Considerable recent attention has been paid to homogeneous fluorescent DNA detection with the use of nanostructures as a universal "quencher", but it still remains a great challenge to develop such nanosensor with the benefits of low cost, high speed, sensitivity, and selectivity. In this work, we report the use of iron-based metal-organic framework nanorods as a high-efficient sensing platform for fluorescent DNA detection. It only takes about 4 min to complete the whole "mix-and-detect" process with a low detection limit of 10 pM and a strong discrimination of single point mutation. Control experiments reveal the remarkable sensing behavior is a consequence of the synergies of the metal center and organic linker. This work elucidates how composition control of nanostructures can significantly impact their sensing properties, enabling new opportunities for the rational design of functional materials for analytical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The Au-S bond and SAM-protein contact in long-range electron transfer of pure and biomimetic metalloproteins via functionalized alkanethiol linkers

    Chi, Qijin; Ford, Michael J.; Halder, Arnab

    disentangled a wealth of data to identify the nature of the crucial Au-S contact, all suggesting prevalence of a Au(0)-thiyl radical unit. Molecular packing is further determined by the SAM molecular structure and involves binding either to Au-atoms mined out of the surface or directly to a flat surface. We...... functionalized alkanethiols have emerged as core linkers. We have studied molecular linking in the long-range ET (LRET) processes in detail using electrochemistry, in situ STM and AFM, and electronic structure computations. A focus is the electronic structure of the Au-S link and the SAM packing. We have...... is exceedingly sensitive to the structure of the thiol-based SAM molecules, testifying to the crucial importance of SAM packing and Au-S binding, and of the SAM link to the protein. Some of the subtleties are illustrated simpler by similar size (5-6 nm) nanoparticles (NPs). Biomimetic NPs must possess a certain...

  14. Synthesis of Biotin Linkers with the Activated Triple Bond Donor [p-(N-propynoylaminotoluic Acid] (PATA for Efficient Biotinylation of Peptides and Oligonucleotides

    Martina Jezowska

    2012-11-01

    Full Text Available Biotin is an important molecule for modern biological studies including, e.g., cellular transport. Its exclusive affinity to fluorescent streptavidin/avidin proteins allows ready and specific detection. As a consequence methods for the attachment of biotin to various biological targets are of high importance, especially when they are very selective and can also proceed in water. One useful method is Hüisgen dipolar [3+2]-cycloaddition, commonly referred to as “click chemistry”. As we reported recently, the activated triple bond donor p-(N-propynoylaminotoluic acid (PATA gives excellent results when used for conjugations at submicromolar concentrations. Thus, we have designed and synthesized two biotin linkers, with different lengths equipped with this activated triple bond donor and we proceeded with biotinylation of oligonucleotides and C-myc peptide both in solution and on solid support with excellent yields of conversion.

  15. Effects of the capping ligands, linkers and oxide surface on the electron injection mechanism of copper sulfide quantum dot-sensitized solar cells.

    Suárez, Javier Amaya; Plata, Jose J; Márquez, Antonio M; Sanz, Javier Fdez

    2017-06-07

    Quantum dot-sensitized solar cells, QDSCs, are a clean and effective alternative to fossil fuels to reduce CO 2 emissions. However, the different components that constitute the QDSCs and the difficulty of isolating experimentally their effects on the performance of the whole system slow down the development of more efficient devices. In this work, DFT calculations are combined with a bottom-up approach to differentiate the effect of each component on the electronic structure and absorption spectra. First, Cu 2 S QDs were built including a U parameter to effectively describe the localization of electrons. The effect of capping agents is addressed using ligands with different electron-donating/withdrawing groups. The role of linkers and their adsorption on the oxide surface are also examined. Finally, we propose a main indirect electron injection mechanism based on the position of the peaks of the spectra.

  16. Steric effects in release of amides from linkers in solid-phase synthesis. Molecular mechanics modeling of key step in peptide and combinatorial chemistry

    Norrby, Per-Ola; Jensen, Knud Jørgen

    2006-01-01

    Acidolytic release of an amide from a solid support by C-N bond cleavage is all ubiquitous and crucial step in many solid-phase syntheses. We have used molecular modeling of a pseudo-equilibrium to explore substituent and steric effects in the release of peptides. The high acid-lability of the ba......Acidolytic release of an amide from a solid support by C-N bond cleavage is all ubiquitous and crucial step in many solid-phase syntheses. We have used molecular modeling of a pseudo-equilibrium to explore substituent and steric effects in the release of peptides. The high acid......-lability of the backbone amide linkage (BAL), which releases sec. amides, compared to C-terminal amide anchoring, which releases primary amides, was rationalized by steric relief upon cleavage. Thus, the relative stability of the carbenium ion formed from the linker in the acidolytic release is an insufficient measure...

  17. The JH2 domain and SH2-JH2 linker regulate JAK2 activity: A detailed kinetic analysis of wild type and V617F mutant kinase domains.

    Sanz Sanz, Arturo; Niranjan, Yashavanthi; Hammarén, Henrik; Ungureanu, Daniela; Ruijtenbeek, Rob; Touw, Ivo P; Silvennoinen, Olli; Hilhorst, Riet

    2014-10-01

    JAK2 tyrosine kinase regulates many cellular functions. Its activity is controlled by the pseudokinase (JH2) domain by still poorly understood mechanisms. The V617F mutation in the pseudokinase domain activates JAK2 and causes myeloproliferative neoplasms. We conducted a detailed kinetic analysis of recombinant JAK2 tyrosine kinase domain (JH1) and wild-type and V617F tandem kinase (JH1JH2) domains using peptide microarrays to define the functions of the kinase domains. The results show that i) JAK2 follows a random Bi-Bi reaction mechanism ii) JH2 domain restrains the activity of the JH1 domain by reducing the affinity for ATP and ATP competitive inhibitors iii) V617F decreases affinity for ATP but increases catalytic activity compared to wild-type and iv) the SH2-JH2 linker region participates in controlling activity by reducing the affinity for ATP. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A histidine-rich linker region in peptidylglycine α-amidating monooxygenase has the properties of a pH sensor.

    Vishwanatha, Kurutihalli; Bäck, Nils; Mains, Richard E; Eipper, Betty A

    2014-05-02

    Decreasing luminal pH is thought to play a role in the entry of newly synthesized and endocytosed membrane proteins into secretory granules. The two catalytic domains of peptidylglycine α-amidating monooxygenase (PAM), a type I integral membrane protein, catalyze the sequential reactions that convert peptidyl-Gly substrates into amidated products. We explored the hypothesis that a conserved His-rich cluster (His-Gly-His-His) in the linker region connecting its two catalytic domains senses pH and affects PAM trafficking by mutating these His residues to Ala (Ala-Gly-Ala-Ala; H3A). Purified recombinant wild-type and H3A linker peptides were examined using circular dichroism and tryptophan fluorescence; mutation of the His cluster largely eliminated its pH sensitivity. An enzymatically active PAM protein with the same mutations (PAM-1/H3A) was expressed in HEK293 cells and AtT-20 corticotrope tumor cells. Metabolic labeling followed by immunoprecipitation revealed more rapid loss of newly synthesized PAM-1/H3A than PAM-1; although release of newly synthesized monofunctional PHM/H3A was increased, release of soluble bifunctional PAM/H3A, a product of the endocytic pathway, was decreased. Surface biotinylation revealed rapid loss of PAM-1/H3A, with no detectable return of the mutant protein to secretory granules. Consistent with its altered endocytic trafficking, little PAM-1/H3A was subjected to regulated intramembrane proteolysis followed by release of a small nuclear-targeted cytosolic fragment. AtT-20 cells expressing PAM-1/H3A adopted the morphology of wild-type AtT-20 cells; secretory products no longer accumulated in the trans-Golgi network and secretory granule exocytosis was more responsive to secretagogue.

  19. 177Lu-labeled HPMA copolymers utilizing cathepsin B and S cleavable linkers: Synthesis, characterization and preliminary in vivo investigation in a pancreatic cancer model

    Ogbomo, Sunny M.; Shi, Wen; Wagh, Nilesh K.; Zhou, Zhengyuan; Brusnahan, Susan K.; Garrison, Jered C.

    2013-01-01

    Introduction: A major barrier to the advancement of therapeutic nanomedicines has been the non-target toxicity caused by the accumulation of the drug delivery systems in organs associated with the reticuloendothelial system, particularly the liver and spleen. Herein, we report the development of peptide based metabolically active linkers (MALs) that are enzymatically cleaved by cysteine cathepsin B and S, two proteases highly expressed in the liver and spleen. The overall goal of this approach is to utilize the MALs to lower the non-target retention and toxicity of radiolabeled drug delivery systems, thus resulting in higher diagnostic and radiotherapeutic efficacy. Methods: In this study three MALs (MAL0, MAL1 and MAL2) were investigated. MAL1 and MAL2 are composed of known substrates of cathepsin B and S, respectively, while MAL0 is a non-cleavable control. Both MAL1 and MAL2 were shown to undergo enzymatic cleavage with the appropriate cathepsin protease. Subsequent to conjugation to the HPMA copolymer and radiolabeling with 177 Lu, the peptide–polymer conjugates were renamed 177 Lu-metabolically active copolymers ( 177 Lu-MACs) with the corresponding designations: 177 Lu-MAC0, 177 Lu-MAC1 and 177 Lu-MAC2. Results: In vivo evaluation of the 177 Lu-MACs was performed in an HPAC human pancreatic cancer xenograft mouse model. 177 Lu-MAC1 and 177 Lu-MAC2 demonstrated 3.1 and 2.1 fold lower liver retention, respectively, compared to control ( 177 Lu-MAC0) at 72 h post-injection. With regard to spleen retention, 177 Lu-MAC1 and 177 Lu-MAC2 each exhibited a nearly fourfold lower retention, relative to control, at the 72 h time point. However, the tumor accumulation of the 177 Lu-MAC0 was two to three times greater than 177 Lu-MAC1 and 177 Lu-MAC2 at the same time point. The MAL approach demonstrated the capability of substantially reducing the non-target retention of the 177 Lu-labeled HPMA copolymers. Conclusions: While further studies are needed to optimize the

  20. Synthetic positive controls for ELISA test kits for detection of IgA and IgM antibodies to Chlamydia trachomatis

    O. Y. Galkin

    2015-01-01

    Full Text Available The enzyme-linked immunosorbent assay (ELISA is the most informative and versatile method of serological diagnostics. The possibility of detecting by ELISA specific antibodies of different classes allow to differentiate primary infectious process and its remission, exacerbation and chronic disease (holding of differential diagnosis. This approach is implemented in the methodology for evaluation of patients for presence of humoral immune response against the causative agent of urogenital chlamydiosis. As with other infections immediately after Chlamydia trachomatis infection the specific IgM antibodies are formed, and subsequently basic projective antibodies of IgG class are synthesized. However, at exacerbation of chronic urogenital chlamydiosis specific IgA antibodies can be synthesized. That is why comprehensive evaluation of patients for presence of humoral immune response to Ch. trachomatis involves plasma testing of specific antibodies of all three classes. The essential problem in the production of ELISA diagnostic kits is obtaining of positive control. The classic version of positive control is human blood plasma containing specific antibodies. But specific IgM- and IgA-positive sera are deficit raw materials. This fact can significantly limit the production of diagnostic kits, especially in case of large-scale manufacture. We have suggested methodological approach to use of synthetic positive controls in indirect ELISA kits based on conjugate of normal human IgM (IgA and monoclonal antibodies against major outer membrane protein of Ch. trachomatis. It was found that it’s possible to realize such task by means of NHS ester-maleimide-mediated conjugation (by sulfosuccinimidyl-4-(N-maleimidomethylcyclohexane-1-carboxylate and reductive amination-mediated conjugation (by sodium periodate. It was found that synthetic positive controls obtained by different methods are characterized by higher titer compared to IgM- and IgA-positive high

  1. Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells.

    Yang, Jun; Adamian, Michael; Li, Tiansen

    2006-02-01

    Rootletin, a major structural component of the ciliary rootlet, is located at the basal bodies and centrosomes in ciliated and nonciliated cells, respectively. Here we investigated its potential role in the linkage of basal bodies/centrioles and the mechanism involved in such linkages. We show that rootletin interacts with C-Nap1, a protein restricted at the ends of centrioles and functioning in centrosome cohesion in interphase cells. Their interaction in vivo is supported by their colocalization at the basal bodies/centrioles and coordinated association with the centrioles during the cell cycle. Ultrastructural examinations demonstrate that rootletin fibers connect the basal bodies in ciliated cells and are present both at the ends of and in between the pair of centrioles in nonciliated cells. The latter finding stands in contrast with C-Nap1, which is present only at the ends of the centrioles. Transient expression of C-Nap1 fragments dissociated rootletin fibers from the centrioles, resulting in centrosome separation in interphase. Overexpression of rootletin in cells caused multinucleation, micronucleation, and irregularity of nuclear shape and size, indicative of defects in chromosome separation. These data suggest that rootletin may function as a physical linker between the pair of basal bodies/centrioles by binding to C-Nap1.

  2. Impact of functional monomers, cross-linkers and porogens on morphology and recognition properties of 2-(3,4-dimethoxyphenyl)ethylamine imprinted polymers

    Lulinski, Piotr; Maciejewska, Dorota

    2011-01-01

    The main objective of this paper was to examined the impact of synthetic reagents on morphology and recognition properties of 2-(3,4-dimethoxyphenyl)ethylamine imprinted polymers. The effect of nine different functional monomers, five porogens and four cross-linkers on the binding capacity of particles was analyzed. The results revealed that the highest imprinting factor (1.81) showed the polymer obtained from methacrylic acid and ethylene glycol dimethacrylate in toluene. The binding capacities of imprinted (MIP1) and non-imprinted (NIP1) materials were 135.3 ± 9.8 and 74.8 ± 7.8 μmol g -1 , respectively. The specific surface areas were 55.05 ± 3.89 for MIP1 and 38.72 ± 2.40 m 2 g -1 for NIP1. The SEM analysis confirmed that the surface of MIP1 is rougher and denser than NIP1. Structural analysis supported by 13 C CP/MAS NMR spectra was also performed. The binding abilities of homoveratrylamine and eight structurally related compounds to MIP1 showed that strong interactions between carboxylic group in the polymer and amine group in the analyte together with its molecular volume govern the recognition mechanism.

  3. Expression, purification and characterization of hepatitis B virus X protein BH3-like motif-linker-Bcl-xL fusion protein for structural studies

    Hideki Kusunoki

    2017-03-01

    Full Text Available Hepatitis B virus X protein (HBx is a multifunctional protein that interacts directly with many host proteins. For example, HBx interacts with anti-apoptotic proteins, Bcl-2 and Bcl-xL, through its BH3-like motif, which leads to elevated cytosolic calcium levels, efficient viral DNA replication and the induction of apoptosis. To facilitate sample preparation and perform detailed structural characterization of the complex between HBx and Bcl-xL, we designed and purified a recombinant HBx BH3-like motif-linker-Bcl-xL fusion protein produced in E. coli. The fusion protein was characterized by size exclusion chromatography, circular dichroism and nuclear magnetic resonance experiments. Our results show that the fusion protein is a monomer in aqueous solution, forms a stable intramolecular complex, and likely retains the native conformation of the complex between Bcl-xL and the HBx BH3-like motif. Furthermore, the HBx BH3-like motif of the intramolecular complex forms an α-helix. These observations indicate that the fusion protein should facilitate structural studies aimed at understanding the interaction between HBx and Bcl-xL at the atomic level.

  4. A limited 4 Å radial displacement of the S4-S5 linker is sufficient for internal gate closing in Kv channels.

    Faure, Élise; Starek, Greg; McGuire, Hugo; Bernèche, Simon; Blunck, Rikard

    2012-11-16

    Voltage-gated ion channels are responsible for the generation of action potentials in our nervous system. Conformational rearrangements in their voltage sensor domains in response to changes of the membrane potential control pore opening and thus ion conduction. Crystal structures of the open channel in combination with a wealth of biophysical data and molecular dynamics simulations led to a consensus on the voltage sensor movement. However, the coupling between voltage sensor movement and pore opening, the electromechanical coupling, occurs at the cytosolic face of the channel, from where no structural information is available yet. In particular, the question how far the cytosolic pore gate has to close to prevent ion conduction remains controversial. In cells, spectroscopic methods are hindered because labeling of internal sites remains difficult, whereas liposomes or detergent solutions containing purified ion channels lack voltage control. Here, to overcome these problems, we controlled the state of the channel by varying the lipid environment. This way, we directly measured the position of the S4-S5 linker in both the open and the closed state of a prokaryotic Kv channel (KvAP) in a lipid environment using Lanthanide-based resonance energy transfer. We were able to reconstruct the movement of the covalent link between the voltage sensor and the pore domain and used this information as restraints for molecular dynamics simulations of the closed state structure. We found that a small decrease of the pore radius of about 3-4 Å is sufficient to prevent ion permeation through the pore.

  5. The C. elegans tailless/Tlx homolog nhr-67 regulates a stage-specific program of linker cell migration in male gonadogenesis.

    Kato, Mihoko; Sternberg, Paul W

    2009-12-01

    Cell migration is a common event during organogenesis, yet little is known about how migration is temporally coordinated with organ development. We are investigating stage-specific programs of cell migration using the linker cell (LC), a migratory cell crucial for male gonadogenesis of C. elegans. During the L3 and L4 larval stages of wild-type males, the LC undergoes changes in its position along the migratory route, in transcriptional regulation of the unc-5 netrin receptor and zmp-1 zinc matrix metalloprotease, and in cell morphology. We have identified the tailless homolog nhr-67 as a cell-autonomous, stage-specific regulator of timing in LC migration programs. In nhr-67-deficient animals, each of the L3 and L4 stage changes is either severely delayed or never occurs, yet LC development before the early L3 stage or after the mid-L4 stage occurs with normal timing. We propose that there is a basal migration program utilized throughout LC migration that is modified by stage-specific regulators such as nhr-67.

  6. Development of a polymeric ionic liquid coating for direct-immersion solid-phase microextraction using polyhedral oligomeric silsesquioxane as cross-linker.

    Chen, Chunyan; Liang, Xiaotong; Wang, Jianping; Zou, Ying; Hu, Huiping; Cai, Qingyun; Yao, Shouzhuo

    2014-06-27

    A novel solid-phase microextraction (SPME) fiber was developed by chemical binding of a crosslinked polymeric ionic liquid (PIL) on the surface of an anodized Ti wire, and was applied in direct-immersion mode for the extraction of perfluorinated compounds (PFCs) from water samples coupled with high performance liquid chromatography-tandem mass spectrometry analysis. The PIL coatings were synthesized by using 1-vinyl-3-hexylimidazolium hexafluorophosphate as monomer and methylacryloyl-substituted polyhedral oligomeric silsesquioxane (POSS) as cross-linker via free radical reaction. The proposed fiber coating exhibited high mechanical stability due to the chemical bonding between the coating and the Ti wire surface. The integration of POSS reagent enhanced the organic solvent resistance of the coating. The parameters affecting the extraction performance of the fiber coating including extraction time, pH of solution, ionic strength and desorption conditions were optimized. The developed PIL-POSS fiber showed good linearity (R<0.998) between 0.1 and 50ngmL(-1) with method detection limits ranging from 0.005 to 0.08ngmL(-1) depending on the analyte, and with relative standard deviation for single-fiber repeatability and fiber-to-fiber reproducibility less than 8.6% and 9.5%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Alginate-okra gum blend beads of diclofenac sodium from aqueous template using ZnSO4 as a cross-linker.

    Sinha, Priyanka; Ubaidulla, U; Hasnain, M Saquib; Nayak, Amit Kumar; Rama, Bobba

    2015-08-01

    Zinc (Zn(2+))-ion induced diclofenac sodium (DS)-loaded alginate-okra (Hibiscus esculentus) gum (OG) blend beads was successfully formulated through Zn(2+)-ion induced ionic-gelation cross-linking method in a complete aqueous environment. Effects of polymer-blend ratio and cross-linker concentration on drug encapsulation efficiency (DEE) and cumulative drug release at 8 h (R8h) were optimized by 3(2)-factorial design. The optimized formulation of Zn(2+)-ion induced DS-loaded alginate-OG beads demonstrated 89.27±3.58% of DEE and 43.73±2.83% of R8h. The bead sizes were within 1.10±0.07 to 1.38±0.14 mm. The bead surface morphology was analyzed by SEM. The drug-polymer interaction in the optimized bead matrix was analyzed by FTIR and P-XRD. These beads exhibited sustained in vitro drug release over a prolonged period of 8h and followed controlled-release (zero-order) pattern with super case-II transport mechanism. The swelling and degradation of the optimized beads was influenced by the pH of test mediums, which might be suitable for intestinal drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Dehydration of an azeotrope of ethanol/water by sodium carboxymethylcellulose membranes cross-linked with organic or inorganic cross-linker

    2010-11-01

    Full Text Available To control the swelling of sodium carboxymethylcellulose (CMCNa membranes, mixtures of CMCNa and glutaraldehyde (GA and mixtures of CMCNa as an organic component and tetraethoxysilane (TEOS as an inorganic component were prepared, and CMCNa/GA cross-linked membranes and CMCNa/TEOS hybrid membranes were formed. In the separation of an ethanol/water azeotrope by pervaporation (PV, the effects of the GA or TEOS content on the water/ethanol selectivity and permeability of these CMCNa/GA cross-linked and CMCNa/TEOS hybrid membranes were investigated. Cross-linked and hybrid membranes containing up to 10 wt% GA or 10 wt% TEOS exhibited higher water/ethanol selectivity than CMCNa membrane without any cross-linker. This resulted from both increased density and depressed swelling of the membranes by the formation of a cross-linked structure. The relationship between the structure of the CMCNa/GA cross-linked membranes and CMCNa/TEOS hybrid membranes and their permeation and separation characteristics for an ethanol/water azeotrope during PV is discussed in detail.

  9. Linker for activation of T cells is displaced from lipid rafts and decreases in lupus T cells after activation via the TCR/CD3 pathway.

    Abdoel, Nursamaa; Brun, Susana; Bracho, Carmen; Rodríguez, Martín A; Blasini, Ana M

    2012-03-01

    Systemic lupus erythematosus (SLE) is characterized by abnormal signal transduction mechanisms in T lymphocytes. Linker for activation of T cells (LAT) couples TCR/CD3 activation with downstream signaling pathways. We reported diminished ERK 1/2 kinase activity in TCR/CD3 stimulated lupus T cells. In this study we evaluated the expression, phosphorylation, lipid raft and immunological synapse (IS) localization and colocalization of LAT with key signalosome molecules. We observed a diminished expression and an abnormal localization of LAT in lipid rafts and at the IS in activated lupus T cells. LAT phosphorylation, capture by GST-Grb2 fusion protein, and coupling to Grb2 and PLCγ1, was similar in healthy control and lupus T cells. Our results suggest that an abnormal localization of LAT within lipid rafts and its accelerated degradation after TCR/CD3 activation may compromise the assembly of the LAT signalosome and downstream signaling pathways required for full MAPK activation in lupus T cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Simple, Fast and Selective Detection of Adenosine Triphosphate at Physiological pH Using Unmodified Gold Nanoparticles as Colorimetric Probes and Metal Ions as Cross-Linkers

    Huan Pang

    2012-11-01

    Full Text Available We report a simple, fast and selective colorimetric assay of adenosine triphosphate (ATP using unmodified gold nanoparticles (AuNPs as probes and metal ions as cross-linkers. ATP can be assembled onto the surface of AuNPs through interaction between the electron-rich nitrogen atoms and the electron-deficient surface of AuNPs. Accordingly, Cu2+ ions induce a change in the color and UV/Vis absorbance of AuNPs by coordinating to the triphosphate groups and a ring nitrogen of ATP. A detection limit of 50 nM was achieved, which is comparable to or lower than that achievable by the currently used electrochemical, spectroscopic or chromatographic methods. The theoretical simplicity and high selectivity reported herein demonstrated that AuNPs-based colorimetric assay could be applied in a wide variety of fields by rationally designing the surface chemistry of AuNPs. In addition, our results indicate that ATP-modified AuNPs are less stable in Cu2+, Cd2+ or Zn2+-containing solutions due to the formation of the corresponding dimeric metal-ATP complexes.

  11. Physicochemical Characteristics and Slow Release Performances of Chlorpyrifos Encapsulated by Poly(butyl acrylate-co-styrene) with the Cross-Linker Ethylene Glycol Dimethacrylate.

    Wang, Yu; Gao, Zideng; Shen, Feng; Li, Yang; Zhang, Sainan; Ren, Xueqin; Hu, Shuwen

    2015-06-03

    Chlorpyrifos' application and delivery to the target substrate needs to be controlled to improve its use. Herein, poly(butyl acrylate-co-styrene) (poly(BA/St)) and poly(BA/St/ethylene glycol dimethacrylate (EGDMA)) microcapsules loaded with chlorpyrifos as a slow release formulation were prepared by emulsion polymerization. The effects of structural characteristics on the chlorpyrifos microcapsule particle size, entrapment rate (ER), pesticide loading (PL), and release behaviors in ethyl alcohol were investigated. Fourier transform infrared and thermogravimetric analysis confirmed the successful entrapment of chlorpyrifos. The ER and PL varied with the BA/St monomer ratio, chlorpyrifos/monomer core-to-shell ratio, and EGDMA cross-linker content with consequence that suitable PL was estimated to be smaller than 3.09% and the highest ER was observed as 96.74%. The microcapsule particle size (88.36-101.8 nm) remained mostly constant. The extent of sustainable release decreased with increasing content of BA, St, or chlorpyrifos in the oil phase. Specifically, an adequate degree of cross-linking with EGMDA (0.5-2.5%) increased the extent of sustainable release considerably. However, higher levels of cross-linking with EGDMA (5-10%) reduced the extent of sustainable release. Chlorpyrifos release from specific microcapsules (monomer ratio 1:2 with 0.5% EGDMA or 5 g chlopyrifos) tended to be a diffusion-controlled process, while for others, the kinetics probably indicated the initial rupture release.

  12. Vitamin C-linker-conjugated tripeptide AHK stimulates BMP-2-induced osteogenic differentiation of mouse myoblast C2C12 cells.

    Jung, Jung-Il; Park, Kyeong-Yong; Lee, Yura; Park, Mira; Kim, Jiyeon

    2018-03-15

    Vitamin C-linker-conjugated Ala-His-Lys tripeptide (Vit C-AHK) is a derivative of Vitamin C-conjugated tripeptides, which were originally developed as a component of a product for collagen synthesis enhancement or human dermal fibroblast growth. Here, we investigated the effect of Vit C-AHK on bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Vit C-AHK enhanced proliferation of C2C12 cells and induction of BMP-2-induced alkaline phosphatase, a typical marker of osteoblast differentiation. Vit C-AHK also stimulated the phosphorylation and translocation of Smad1/5/8 to the nucleus and phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2 and p38. In addition, Vit C-AHK enhanced the BMP-2-induced mRNA expression of osteoblast differentiation-related genes such as ALP, BMP-2, Osteocalcin, and Runx2. Our results suggest that Vit C-AHK exerts an enhancing effect on osteoblast proliferation and differentiation through activation of Smad1/5/8 and MAPK ERK1/2 and p38 signaling and without significant cytotoxicity. These results provide important data for the development of peptide-based bone-regenerative agents and treatment of bone-related disorders. Copyright © 2018 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  13. Preparation of 16β-Estradiol Derivative Libraries as Bisubstrate Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 Using the Multidetachable Sulfamate Linker

    Donald Poirier

    2010-03-01

    Full Text Available Combinatorial chemistry is a powerful tool used to rapidly generate a large number of potentially biologically active compounds. In our goal to develop bisubstrate inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1 that interact with both the substrate (estrone or estradiol and the cofactor (NAD(PH binding sites, we used parallel solid-phase synthesis to prepare three libraries of 16β-estradiol derivatives with two or three levels of molecular diversity. From estrone, we first synthesized a sulfamate precursor that we loaded on trityl chloride resin using the efficient multidetachable sulfamate linker strategy recently developed in our laboratory. We then introduced molecular diversity [one or two amino acid(s followed by a carboxylic acid] on steroid nucleus by Fmoc peptide chemistry. Finally, after a nucleophilic cleavage, libraries of 30, 63 and 25 estradiol derivatives were provided. A library of 30 sulfamoylated estradiol derivatives was also generated by acidic cleavage and its members were screened for inhibition of steroid sulfatase. Biological evaluation on homogenated HEK-293 cells overexpressing 17β-HSD1 of the estradiol derivatives carrying different oligoamide-type chains at C-16 first revealed that three levels of molecular diversity (a spacer of two amino acids were necessary to interact with the adenosine part of the cofactor binding site. Second, the best inhibition was obtained when hydrophobic residues (phenylalanine were used as building blocks.

  14. A highly conserved glycine within linker I and the extreme C terminus of G protein alpha subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity

    Kostenis, Evi; Martini, Lene; Ellis, James

    2004-01-01

    Numerous studies have attested to the importance of the extreme C terminus of G protein alpha subunits in determining their selectivity of receptor recognition. We have previously reported that a highly conserved glycine residue within linker I is important for constraining the fidelity of receptor...... recognition by Galpha(q) proteins. Herein, we explored whether both modules (linker I and extreme C terminus) interact cooperatively in switching G protein-coupled receptor (GPCR)-to-effector specificity and created as models mutant Galpha(q) proteins in which glycine was replaced with various amino acids...... and the C-terminal five Galpha(q) residues with the corresponding Galpha(i) or Galpha(s) sequence. Coupling properties of the mutated Galpha(q) proteins were determined after coexpression with a panel of 13 G(i)-and G(s) -selective receptors and compared with those of Galpha proteins modified in only one...

  15. C-Terminally modified peptides via cleavage of the HMBA linker by O-, N- or S-nucleophiles

    Hansen, Jonas; Diness, Frederik; Meldal, Morten Peter

    2016-01-01

    A large variety of C-terminally modified peptides was obtained by nucleophilic cleavage of the ester bond in solid phase linked peptide esters of 4-hydroxymethyl benzamide (HMBA). The developed methods provided peptides, C-terminally functionalized as esters, amides and thioesters, with high purity...... directly from the resin in a single reaction step. A comprehensive screening of the reaction conditions and scope for nucleophilic cleavage of peptides from the HMBA linker was performed....

  16. The specificity of Av3 sea anemone toxin for arthropods is determined at linker DI/SS2-S6 in the pore module of target sodium channels.

    Gur Barzilai, Maya; Kahn, Roy; Regev, Noa; Gordon, Dalia; Moran, Yehu; Gurevitz, Michael

    2014-10-15

    Av3 is a peptide neurotoxin from the sea anemone Anemonia viridis that shows specificity for arthropod voltage-gated sodium channels (Navs). Interestingly, Av3 competes with a scorpion α-toxin on binding to insect Navs and similarly inhibits the inactivation process, and thus has been classified as 'receptor site-3 toxin', although the two peptides are structurally unrelated. This raises questions as to commonalities and differences in the way both toxins interact with Navs. Recently, site-3 was partly resolved for scorpion α-toxins highlighting S1-S2 and S3-S4 external linkers at the DIV voltage-sensor module and the juxtaposed external linkers at the DI pore module. To uncover channel determinants involved in Av3 specificity for arthropods, the toxin was examined on channel chimaeras constructed with the external linkers of the mammalian brain Nav1.2a, which is insensitive to Av3, in the background of the Drosophila DmNav1. This approach highlighted the role of linker DI/SS2-S6, adjacent to the channel pore, in determining Av3 specificity. Point mutagenesis at DI/SS2-S6 accompanied by functional assays highlighted Trp404 and His405 as a putative point of Av3 interaction with DmNav1. His405 conservation in arthropod Navs compared with tyrosine in vertebrate Navs may represent an ancient substitution that explains the contemporary selectivity of Av3. Trp404 and His405 localization near the membrane surface and the hydrophobic bioactive surface of Av3 suggest that the toxin possibly binds at a cleft by DI/S6. A partial overlap in receptor site-3 of both toxins nearby DI/S6 may explain their binding competition capabilities.

  17. Opposite effects of the S4-S5 linker and PIP2 on voltage-gated channel function: KCNQ1/KCNE1 and other channels

    Frank S Choveau

    2012-07-01

    Full Text Available Voltage-gated potassium (Kv channels are tetramers, each subunit presenting six transmembrane segments (S1-S6, with each S1-S4 segments forming a voltage-sensing domain (VSD and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5L and of the S6 C-terminal part (S6T in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5L is acting like a ligand binding to S6T to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5L, the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2, stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated require PIP2 to function properly, confirming its crucial importance as an ion channel co-factor. This is highlighted in cases in which an altered regulation of ion channels by PIP2 leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP2 and S4-S5L, and assesses their potential physiological and pathophysiological roles.

  18. A conserved motif in the linker domain of STAT1 transcription factor is required for both recognition and release from high-affinity DNA-binding sites.

    Hüntelmann, Bettina; Staab, Julia; Herrmann-Lingen, Christoph; Meyer, Thomas

    2014-01-01

    Binding to specific palindromic sequences termed gamma-activated sites (GAS) is a hallmark of gene activation by members of the STAT (signal transducer and activator of transcription) family of cytokine-inducible transcription factors. However, the precise molecular mechanisms involved in the signal-dependent finding of target genes by STAT dimers have not yet been very well studied. In this study, we have characterized a sequence motif in the STAT1 linker domain which is highly conserved among the seven human STAT proteins and includes surface-exposed residues in close proximity to the bound DNA. Using site-directed mutagenesis, we have demonstrated that a lysine residue in position 567 of the full-length molecule is required for GAS recognition. The substitution of alanine for this residue completely abolished both binding to high-affinity GAS elements and transcriptional activation of endogenous target genes in cells stimulated with interferon-γ (IFNγ), while the time course of transient nuclear accumulation and tyrosine phosphorylation were virtually unchanged. In contrast, two glutamic acid residues (E559 and E563) on each monomer are important for the dissociation of dimeric STAT1 from DNA and, when mutated to alanine, result in elevated levels of tyrosine-phosphorylated STAT1 as well as prolonged IFNγ-stimulated nuclear accumulation. In conclusion, our data indicate that the kinetics of signal-dependent GAS binding is determined by an array of glutamic acid residues located at the interior surface of the STAT1 dimer. These negatively charged residues appear to align the long axis of the STAT1 dimer in a position perpendicular to the DNA, thereby facilitating the interaction between lysine 567 and the phosphodiester backbone of a bound GAS element, which is a prerequisite for transient gene induction.

  19. Work function and temperature dependence of electron tunneling through an N-type perylene diimide molecular junction with isocyanide surface linkers.

    Smith, Christopher E; Xie, Zuoti; Bâldea, Ioan; Frisbie, C Daniel

    2018-01-18

    Conducting probe atomic force microscopy (CP-AFM) was employed to examine electron tunneling in self-assembled monolayer (SAM) junctions. A 2.3 nm long perylene tetracarboxylic acid diimide (PDI) acceptor molecule equipped with isocyanide linker groups was synthesized, adsorbed onto Ag, Au and Pt substrates, and the current-voltage (I-V) properties were measured by CP-AFM. The dependence of the low-bias resistance (R) on contact work function indicates that transport is LUMO-assisted ('n-type behavior'). A single-level tunneling model combined with transition voltage spectroscopy (TVS) was employed to analyze the experimental I-V curves and to extract the effective LUMO position ε l = E LUMO - E F and the effective electronic coupling (Γ) between the PDI redox core and the contacts. This analysis revealed a strong Fermi level (E F ) pinning effect in all the junctions, likely due to interface dipoles that significantly increased with increasing contact work function, as revealed by scanning Kelvin probe microscopy (SKPM). Furthermore, the temperature (T) dependence of R was found to be substantial. For Pt/Pt junctions, R varied more than two orders of magnitude in the range 248 K tunneling mechanism and allow independent determination of ε l , giving values compatible with estimates of ε l based on analysis of the full I-V data. Theoretical analysis revealed a general criterion to unambiguously rule out a two-step transport mechanism: namely, if measured resistance data exhibit a pronounced Arrhenius-type temperature dependence, a two-step electron transfer scenario should be excluded in cases where the activation energy depends on contact metallurgy. Overall, our results indicate (1) the generality of the Fermi level pinning phenomenon in molecular junctions, (2) the utility of employing the single level tunneling model for determining essential electronic structure parameters (ε l and Γ), and (3) the importance of changing the nature of the contacts to

  20. Flexible long-chain-linker constructed Ni-based metal-organic frameworks with 1D helical channel and their pseudo-capacitor behavior studies

    Wang, Kuaibing; Wang, Zikai; Wang, Xin; Zhou, Xueqin; Tao, Yuehong; Wu, Hua

    2018-02-01

    Two novel and isostructural Ni-based MOFs with topological symbol of 422·54·62, namely [Ni2(TATB)2(L)2(H2O)], have successfully synthesized, where L is the flexibly N-donor bid (1,10-bisimidazoledecane) or btd (1,10-bistriazoledecane) linker and TATB is the deprotonation mode from 4,4‧,4″-s-triazine-2,4,6-triyl-tribenzoic acid (H3TATB). Two types of left- and right-handed helical channels with mean diameter of 11 Å results in large void space in 3D network. When directly use as electrode materials, the as-synthesized Ni-MOFs single-crystal electrodes behave as pseudo-capacitor and deliver high gravimetric capacitance with superior energy deliverable ability and cycling stability. For example, the maximum gravimetric capacitance is 705 F g-1 with the energy density of 29.6 Wh kg-1 at a current density of 1 A g-1. Even after 5000 continuous cycles, the capacitance retention maintains at 92.1%. The good electrochemical performance should be ascribed to the 1D helical channels facilitating the diffusion of OH-. Furthermore, the low bulk solution (0.46 and 0.50 Ω) and charge-transfer resistances accelerate the contact between OH- and active species in the electrode, and consequently result in efficiency Faradaic reaction. This work opens a new way for the directly application of 3D topological MOFs single-crystal with novel interior structures especially porous and channel-like architectures in electronic energy storage field.

  1. Parallel Solid-Phase Synthesis Using a New Diethylsilylacetylenic Linker and Leading to Mestranol Derivatives with Potent Antiproliferative Activities on Multiple Cancer Cell Lines.

    Dutour, Raphael; Maltais, Rene; Perreault, Martin; Roy, Jenny; Poirier, Donald

    2018-03-07

    RM-133 belongs to a new family of aminosteroid derivatives demonstrating interesting anticancer properties, as confirmed in vivo in four mouse cancer xenograft models. However, the metabolic stability of RM-133 needs to be improved. After investigation, the replacement of its androstane scaffold by a more stable estrane scaffold led to the development of the mestranol derivative RM-581. Using solid-phase strategy involving five steps, we quickly synthesized a series of RM-581 analogs using the recently-developed diethylsilyl acetylenic linker. To establish structure-activity relationships, we then investigated their antiproliferative potency on a panel of cancer cell lines from various cancers (breast, prostate, ovarian and pancreatic). Some of the mestranol derivatives have shown in vitro anticancer activities that are close to, or better than those observed for RM-581. Compound 23, a mestranol derivative having a ((3,5-dimethylbenzoyl)-L-prolyl)piperazine side chain at position C2, was found to be active as an antiproliferative agent (IC50 = 0.38 ± 0.34 to 3.17 ± 0.10 µM) and to be twice as active as RM-581 on LNCaP, PC-3, MCF-7, PANC-1 and OVCAR-3 cancer cells (IC50 = 0.56 ± 0.30, 0.89 ± 0.63, 1.36 ± 0.31, 2.47 ± 0.91 and 3.17 ± 0.10 µM, respectively). Easily synthesized in good yields by both solid-phase organic synthesis and classic solution-phase chemistry, this promising candidate could be used as an antiproliferative agent on a variety of cancers, notably pancreatic and ovarian cancers, both having very bad prognoses. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. PEGYLATION OF αα-Hb USING SUCCINIMIDYL PROPIONIC ACID PEG 5K

    Meng, Fantao; Tsai, Amy G.; Intaglietta, Marcos; Acharya, Seetharama A.

    2014-01-01

    PEGylation of intramolecularly crosslinked Hb has been studied here to overcome the limitation of dissociation of Hb tetramers. New hexa and deca PEGylated low oxygen affi nity PEG-αα-Hbs have been generated. Infl uence of PEG conjugation chemistry and the PEG shell structure on the functional properties as well as PEGylation induced plasma expander like properties of the protein has been delineated. The results have established that in the design of PEG-Hbs as oxygen therapeutics, the infl uence of conjugation chemistry and the PEG shell structure on the oxygen affi nity of Hb needs to be optimized independently besides optimizing the PEG shell structure for inducing resuscitation fluid like properties. PMID:24597567

  3. Luminescent MOFs comprising mixed tritopic linkers and Cd(II)/Zn(II) nodes for selective detection of organic nitro compounds and iodine capture

    Rachuri, Yadagiri; Bisht, Kamal Kumar [Analytical Discipline and Centralized Instrument Facility, CSIR–Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat (India); Academy of Scientific and Innovative Research (AcSIR), CSIR–Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat (India); Parmar, Bhavesh [Analytical Discipline and Centralized Instrument Facility, CSIR–Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat (India); Suresh, Eringathodi, E-mail: esuresh@csmcri.org [Analytical Discipline and Centralized Instrument Facility, CSIR–Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat (India); Academy of Scientific and Innovative Research (AcSIR), CSIR–Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat (India)

    2015-03-15

    Two CPs ([Cd{sub 3}(BTC){sub 2}(TIB){sub 2}(H{sub 2}O){sub 4}].(H{sub 2}O){sub 2}){sub n} (1) and ([Zn{sub 3}(BTC){sub 2}(TIB){sub 2}].(H{sub 2}O){sub 6}){sub n} (2) composed of tripodal linkers BTC (1,3,5-benzenetricarboxylate) and TIB (1,3,5-tris(imidazol-1-ylmethyl)benzene) were synthesized via solvothermal route and structurally characterized. Single crystal structural analysis reveals 1 possesses a novel 3D framework structure, whereas 2 represents a previously established compound. Owing to the d{sup 10} configuration of metal nodes and robust 3D frameworks, 1 and 2 exhibit excellent fluorescence properties which have been exploited to sense organic nitro compounds in vapor phase. Compound 1 demonstrates selective sensing of nitromethane over structurally similar methanol with ca. 70 and 43% fluorescence quenching in case of former and later. Similarly, 58% fluorescence quenching was observed in case of nitrobenzene over the structurally resembling toluene for which 30% quenching was observed. Compound 2 did not show any preference for nitro compounds and exhibited comparable fluorescence quenching when exposed to the vapors of nitro or other geometrically resembling organic molecules. Furthermore, adsorption experiments revealed that 1 and 2 can uptake 2.74 and 14.14 wt% molecular iodine respectively in vapor phase which can be released in organic solvents such as hexane and acetonitrile. The maximal iodine uptake in case of 1 and 2 corresponds to 0.15 and 0.80 molecules of iodine per formula unit of respective frameworks. Comprehensive structural description, thermal stability and luminescence behavior for both CPs has also been presented. - Graphical abstract: Two 3D luminescent CPs comprising mixed tripodal ligands have been hydrothermally synthesized and structurally characterized. Iodine encapsulation capacity of synthesized CPs is evaluated and their fluorescence quenching in presence of small organic molecules is exploited for sensing of nitro

  4. Human Cytochrome P450 3A4 as a Biocatalyst: Effects of the Engineered Linker in Modulation of Coupling Efficiency in 3A4-BMR Chimeras.

    Degregorio, Danilo; D'Avino, Serena; Castrignanò, Silvia; Di Nardo, Giovanna; Sadeghi, Sheila J; Catucci, Gianluca; Gilardi, Gianfranco

    2017-01-01

    Human liver cytochrome P450 3A4 is the main enzyme involved in drug metabolism. This makes it an attractive target for biocatalytic applications, such as the synthesis of pharmaceuticals and drug metabolites. However, its poor solubility, stability and low coupling have limited its application in the biotechnological context. We previously demonstrated that the solubility of P450 3A4 can be increased by creating fusion proteins between the reductase from Bacillus megaterium BM3 (BMR) and the N-terminally modified P450 3A4 (3A4-BMR). In this work, we aim at increasing stability and coupling efficiency by varying the length of the loop connecting the two domains to allow higher inter-domain flexibility, optimizing the interaction between the domains. Starting from the construct 3A4-BMR containing the short linker Pro-Ser-Arg, two constructs were generated by introducing a 3 and 5 glycine hinge (3A4-3GLY-BMR and 3A4-5GLY-BMR). The three fusion proteins show the typical absorbance at 450 nm of the reduced heme-CO adduct as well as the correct incorporation of the FAD and FMN cofactors. Each of the three chimeric proteins were more stable than P450 3A4 alone. Moreover, the 3A4-BMR-3-GLY enzyme showed the highest NADPH oxidation rate in line with the most positive reduction potential. On the other hand, the 3A4-BMR-5-GLY fusion protein showed a V max increased by 2-fold as well as a higher coupling efficiency when compared to 3A4-BMR in the hydroxylation of the marker substrate testosterone. This protein also showed the highest rate value of cytochrome c reduction when this external electron acceptor is used to intercept electrons from BMR to P450. The data suggest that the flexibility and the interaction between domains in the chimeric proteins is a key parameter to improve turnover and coupling efficiency. These findings provide important guidelines in engineering catalytically self-sufficient human P450 for applications in biocatalysis.

  5. Chimeric polyomavirus-derived virus-like particles: the immunogenicity of an inserted peptide applied without adjuvant to mice depends on its insertion site and its flanking linker sequence

    Lawatscheck, R.; Aleksaite, E.; Schenk, J.A.; Micheel, B.; Jandrig, B.; Holland, G.; Sasnauskas, K.; Gedvilaite, A.; Ulrich, R.G.

    2007-01-01

    We inserted the sequence of the carcinoembryonic antigen-derived T cell epitope CAP-1-6D (CEA) into different positions of the hamster polyomavirus major capsid protein VP1. Independently from additional flanking linkers, yeast-expressed VP1 proteins harboring the CEA insertion between VP1 amino acid residues 80 and 89 (site 1) or 288 and 295 (site 4) or simultaneously at both positions assembled to chimeric virus-like particles (VLPs). BALB/c mice immunized with adjuvant-free VLPs developed ...

  6. Reagents for Astatination of Biomolecules. 5. Evaluation of hydrazone linkers in 211At- and 125I-labeled closo-decaborate(2-) conjugates of Fab′ as a means of decreasing kidney retention

    Wilbur, D. Scott; Chyan, Ming-Kuan; Hamlin, Donald K.; Nguyen, Holly; Vessella, Robert L.

    2011-01-01

    Evaluation of monoclonal antibody (MAb) fragments (e.g. Fab′, Fab or engineered fragments) as cancer-targeting reagents for therapy with the α-particle emitting radionuclide astatine-211 (211At) has been hampered by low in vivo stability of the label and a propensity of these proteins localize to kidneys. Fortunately, our group has shown that the low stability of the 211At label, generally a meta- or para-[211At]astatobenzoyl conjugate, on MAb Fab′ fragments can be dramatically improved by use of closo-decaborate(2-) conjugates. However, the higher stability of radiolabeled MAb Fab′ conjugates appears to result in retention of the radioactivity in kidneys. This investigation was conducted to evaluate whether the retention of radioactivity in kidney might be decreased by the use of acid-cleavable hydrazone between the Fab′ and the radiolabeled closo-decaborate(2-) moiety. Five conjugation reagents containing sulfhydryl-reactive maleimide groups, a hydrazone functionality and a closo-decaborate(2-) moiety were prepared. In four of the five conjugation reagents, a discrete polyethylene glycol (PEG) linker was used, and one substituent adjacent to the hydrazone was varied (phenyl, benzoate, anisole or methyl) to provide varying acid-sensitivity. In the initial studies, the five maleimido-closo-decaborate(2-) conjugation reagents were radioiodinated (125I or 131I), then conjugated with an anti-PSMA Fab′ (107-1A4 Fab′). Biodistributions of the five radioiodinated Fab′ conjugates were obtained in nude mice at 1, 4 and 24 h post injection (pi). In contrast to closo-decaborate(2-) conjugated to 107-1A4 Fab′ through a non-cleavable linker, two conjugates containing either a benzoate or a methyl substituent on the hydrazone functionality displayed clearance rates from kidney, liver and spleen that were similar to those obtained with directly radioiodinated Fab′ (i.e. no conjugate). The maleimido-closo-decaborate(2-) conjugation reagent containing a benzoate

  7. Distinct DNA-binding surfaces in the ATPase and linker domains of MutLγ determine its substrate specificities and exert separable functions in meiotic recombination and mismatch repair.

    Corentin Claeys Bouuaert

    2017-05-01

    Full Text Available Mlh1-Mlh3 (MutLγ is a mismatch repair factor with a central role in formation of meiotic crossovers, presumably through resolution of double Holliday junctions. MutLγ has DNA-binding, nuclease, and ATPase activities, but how these relate to one another and to in vivo functions are unclear. Here, we combine biochemical and genetic analyses to characterize Saccharomyces cerevisiae MutLγ. Limited proteolysis and atomic force microscopy showed that purified recombinant MutLγ undergoes ATP-driven conformational changes. In vitro, MutLγ displayed separable DNA-binding activities toward Holliday junctions (HJ and, surprisingly, single-stranded DNA (ssDNA, which was not predicted from current models. MutLγ bound DNA cooperatively, could bind multiple substrates simultaneously, and formed higher-order complexes. FeBABE hydroxyl radical footprinting indicated that the DNA-binding interfaces of MutLγ for ssDNA and HJ substrates only partially overlap. Most contacts with HJ substrates were located in the linker regions of MutLγ, whereas ssDNA contacts mapped within linker regions as well as the N-terminal ATPase domains. Using yeast genetic assays for mismatch repair and meiotic recombination, we found that mutations within different DNA-binding surfaces exert separable effects in vivo. For example, mutations within the Mlh1 linker conferred little or no meiotic phenotype but led to mismatch repair deficiency. Interestingly, mutations in the N-terminal domain of Mlh1 caused a stronger meiotic defect than mlh1Δ, suggesting that the mutant proteins retain an activity that interferes with alternative recombination pathways. Furthermore, mlh3Δ caused more chromosome missegregation than mlh1Δ, whereas mlh1Δ but not mlh3Δ partially alleviated meiotic defects of msh5Δ mutants. These findings illustrate functional differences between Mlh1 and Mlh3 during meiosis and suggest that their absence impinges on chromosome segregation not only via reduced

  8. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array

    Hizume, Kohji; Nakai, Tonau; Araki, Sumiko; Prieto, Eloise; Yoshikawa, Kenichi; Takeyasu, Kunio

    2009-01-01

    In order to reveal the roles of histone tails in the formation of higher-order chromatin structures, we employed atomic force microscopy (AFM), and an in vitro reconstitution system to examine the properties of reconstituted chromatin composed of tail-less histones and a long DNA (106-kb plasmid) template. The tail-less nucleosomes did not aggregate at high salt concentrations or with an excess amount of core histones, in contrast with the behavior of nucleosomal arrays composed of nucleosomes containing normal, N-terminal tails. Analysis of our nucleosome distributions reveals that the attractive interaction between tail-less nucleosomes is weakened. Addition of linker histone H1 into the tail-less nucleosomal array failed to promote the formation of 30 nm chromatin fibers that are usually formed in the normal nucleosomal array. These results demonstrate that the attractive interaction between nucleosomes via histone tails plays a critical role in the formation of the uniform 30-nm chromatin fiber.

  9. Stabilization of Resveratrol in Blood Circulation by Conjugation to mPEG and mPEG-PLA Polymers: Investigation of Conjugate Linker and Polymer Composition on Stability, Metabolism, Antioxidant Activity and Pharmacokinetic Profile

    Siddalingappa, Basavaraj; Benson, Heather A. E.; Brown, David H.; Batty, Kevin T.; Chen, Yan

    2015-01-01

    Resveratrol is naturally occurring phytochemical with diverse biological activities such as chemoprevention, anti-inflammatory, anti-cancer, anti-oxidant. But undergoes rapid metabolism in the body (half life 0.13h). Hence Polymer conjugation utilizing different chemical linkers and polymer compositions was investigated for enhanced pharmacokinetic profile of resveratrol. Ester conjugates such as α-methoxy-ω-carboxylic acid poly(ethylene glycol) succinylamide resveratrol (MeO-PEGN-Succ-RSV) (2 and 20 kDa); MeO-PEG succinyl ester resveratrol (MeO-PEGO-Succ-RSV) (2 kDa); α-methoxy poly(ethylene glycol)-co-polylactide succinyl ester resveratrol (MeO-PEG-PLAO-Succ-RSV) (2 and 6.6kDa) were prepared by carbodiimide coupling reactions. Resveratrol-PEG ethers (2 and 5 kDa) were synthesized by alkali-mediated etherification. All polymer conjugates were fully characterized in vitro and the pharmacokinetic profile of selected conjugates was characterized in rats. Buffer and plasma stability of conjugates was dependent on polymer hydrophobicity, aggregation behavior and PEG corona, with MeO-PEG-PLAO-Succ-RSV (2 kDa) showing a 3h half-life in rat plasma in vitro. Polymer conjugates irrespective of linker chemistry protected resveratrol against metabolism in vitro. MeO-PEG-PLAO-Succ-RSV (2 kDa), Resveratrol-PEG ether (2 and 5 kDa) displayed improved pharmacokinetic profiles with significantly higher plasma area under curve (AUC), slower clearance and smaller volume of distribution, compared to resveratrol. PMID:25799413

  10. Mixed-linker UiO-66: structure-property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations.

    Taddei, Marco; Tiana, Davide; Casati, Nicola; van Bokhoven, Jeroen A; Smit, Berend; Ranocchiari, Marco

    2017-01-04

    The use of mixed-linker metal-organic frameworks (MIXMOFs) is one of the most effective strategies to modulate the physical-chemical properties of MOFs without affecting the overall crystal structure. In many instances, MIXMOFs have been recognized as solid solutions, with random distribution of ligands, in agreement with the empirical rule known as Vegard's law. In this work, we have undertaken a study combining high-resolution powder X-ray diffraction (HR-PXRD) and density functional theory (DFT) calculations with the aim of understanding the reasons why UiO-66-based amino- and bromo-functionalized MIXMOFs (MIXUiO-66) undergo cell expansion obeying Vegard's law and how this behaviour is related to their physical-chemical properties. DFT calculations predict that the unit cell in amino-functionalized UiO-66 experiences only minor expansion as a result of steric effects, whereas major modification to the electronic features of the framework leads to weaker metal-linker interaction and consequently to the loss of stability at higher degrees of functionalization. For bromo-functionalized UiO-66, steric repulsion due to the size of bromine yields a large cell expansion, but the electronic features remain very similar to pristine UiO-66, preserving the stability of the framework upon functionalization. MIXUiO-66 obtained by either direct synthesis or by post-synthetic exchange shows Vegard-like behaviour, suggesting that both preparation methods yield solid solutions, but the thermal stability and the textural properties of the post-synthetic exchanged materials do not display a clear dependence on the chemical composition, as observed for the MOFs obtained by direct synthesis.

  11. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels.

    Ana Laura Sanchez-Sandoval

    Full Text Available Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA and low-voltage (LVA activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.

  12. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30–40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers. PMID:29474447

  13. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels.

    Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel; Gomora, Juan Carlos

    2018-01-01

    Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.

  14. The roles of the RIIβ linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of the type IIβ protein kinase A: a small angle x-ray and neutron scattering study.

    Blumenthal, Donald K; Copps, Jeffrey; Smith-Nguyen, Eric V; Zhang, Ping; Heller, William T; Taylor, Susan S

    2014-10-10

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. The PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1-280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. Our results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Activation of moesin, a protein that links actin cytoskeleton to the plasma membrane, occurs by phosphatidylinositol 4,5-bisphosphate (PIP2) binding sequentially to two sites and releasing an autoinhibitory linker.

    Ben-Aissa, Khadija; Patino-Lopez, Genaro; Belkina, Natalya V; Maniti, Ofelia; Rosales, Tilman; Hao, Jian-Jiang; Kruhlak, Michael J; Knutson, Jay R; Picart, Catherine; Shaw, Stephen

    2012-05-11

    Many cellular processes depend on ERM (ezrin, moesin, and radixin) proteins mediating regulated linkage between plasma membrane and actin cytoskeleton. Although conformational activation of the ERM protein is mediated by the membrane PIP2, the known properties of the two described PIP2-binding sites do not explain activation. To elucidate the structural basis of possible mechanisms, we generated informative moesin mutations and tested three attributes: membrane localization of the expressed moesin, moesin binding to PIP2, and PIP2-induced release of moesin autoinhibition. The results demonstrate for the first time that the POCKET containing inositol 1,4,5-trisphosphate on crystal structure (the "POCKET" Lys-63, Lys-278 residues) mediates all three functions. Furthermore the second described PIP2-binding site (the "PATCH," Lys-253/Lys-254, Lys-262/Lys-263) is also essential for all three functions. In native autoinhibited ERM proteins, the POCKET is a cavity masked by an acidic linker, which we designate the "FLAP." Analysis of three mutant moesin constructs predicted to influence FLAP function demonstrated that the FLAP is a functional autoinhibitory region. Moreover, analysis of the cooperativity and stoichiometry demonstrate that the PATCH and POCKET do not bind PIP2 simultaneously. Based on our data and supporting published data, we propose a model of progressive activation of autoinhibited moesin by a single PIP2 molecule in the membrane. Initial transient binding of PIP2 to the PATCH initiates release of the FLAP, which enables transition of the same PIP2 molecule into the newly exposed POCKET where it binds stably and completes the conformational activation.

  16. Silver(I)-directed growth of metal-organic complex nanocrystals with bidentate ligands of hydroquinine anthraquinone-1,4-diyl diethers as linkers at the water-chloroform interface

    Tang, Ying; Wang, Hui-Ting; Chen, Meng; Qian, Dong-Jin; Zhang, Li; Liu, Minghua

    2014-09-01

    Immiscible liquid-liquid interfaces provide unique double phase regions for the design and construction of nanoscale materials. Here, we reported Ag(I)-directed growth of metal-organic complex nanocrystals by using AgNO3 as a connector in the aqueous solution and bidentate ligand of 1,4-bis(9-O-dihydroquininyl)anthraquinone [(DHQ)2AQN] and its enantiomer of (DHQD)2AQN in the chloroform solutions as linkers. The Ag-(DHQ)2AQN and Ag-(DHQD)2AQN complex nanocrystals were formed at the liquid-liquid interfaces and characterized by using UV-vis absorption and fluorescence spectroscopy and X-ray photoelectron spectroscopy, as well as by using scanning electron microscopy. Screw-like nanocrystals were formed at the initial 30 min after the interfacial coordination reaction started, then they grew into nanorods after several days, and finally became cubic microcrystals after 2 weeks. The pure ligand showed two emission bands centered at about 363 and 522 nm in the methanol solution, the second one of which was quenched and shifted to about 470 nm in the Ag-complex nanocrystals. Two couples of reversible redox waves were recorded for the Ag-complex nanocrystals; one centered at about -0.25 V (vs. Ag/AgCl) was designated to one electron transfer process of Ag - (DHQ)2AQN and Ag - (DHQ)2AQN+, and the other one centered at about 0.2 V was designated to one electron transfer process of Ag - (DHQ)2AQN and Ag+ - (DHQ)2AQN.

  17. The Regulatory and Kinase Domains but Not the Interdomain Linker Determine Human Double-stranded RNA-activated Kinase (PKR) Sensitivity to Inhibition by Viral Non-coding RNAs.

    Sunita, S; Schwartz, Samantha L; Conn, Graeme L

    2015-11-20

    Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is an important component of the innate immune system that presents a crucial first line of defense against viral infection. PKR has a modular architecture comprising a regulatory N-terminal dsRNA binding domain and a C-terminal kinase domain interposed by an unstructured ∼80-residue interdomain linker (IDL). Guided by sequence alignment, we created IDL deletions in human PKR (hPKR) and regulatory/kinase domain swap human-rat chimeric PKRs to assess the contributions of each domain and the IDL to regulation of the kinase activity by RNA. Using circular dichroism spectroscopy, limited proteolysis, kinase assays, and isothermal titration calorimetry, we show that each PKR protein is properly folded with similar domain boundaries and that each exhibits comparable polyinosinic-cytidylic (poly(rI:rC)) dsRNA activation profiles and binding affinities for adenoviral virus-associated RNA I (VA RNAI) and HIV-1 trans-activation response (TAR) RNA. From these results we conclude that the IDL of PKR is not required for RNA binding or mediating changes in protein conformation or domain interactions necessary for PKR regulation by RNA. In contrast, inhibition of rat PKR by VA RNAI and TAR RNA was found to be weaker than for hPKR by 7- and >300-fold, respectively, and each human-rat chimeric domain-swapped protein showed intermediate levels of inhibition. These findings indicate that PKR sequence or structural elements in the kinase domain, present in hPKR but absent in rat PKR, are exploited by viral non-coding RNAs to accomplish efficient inhibition of PKR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Amine Analysis Using AlexaFluor 488 Succinimidyl Ester and Capillary Electrophoresis with Laser-Induced Fluorescence

    Christian G. Kendall

    2015-01-01

    Full Text Available Fluorescent probes enable detection of otherwise nonfluorescent species via highly sensitive laser-induced fluorescence. Organic amines are predominantly nonfluorescent and are of analytical interest in agricultural and food science, biomedical applications, and biowarfare detection. Alexa Fluor 488 N-hydroxysuccinimidyl ester (AF488 NHS-ester is an amine-specific fluorescent probe. Here, we demonstrate low limit of detection of long-chain (C9 to C18 primary amines and optimize AF488 derivatization of long-chain primary amines. The reaction was found to be equally efficient in all solvents studied (dimethylsulfoxide, ethanol, and N,N-dimethylformamide. While an organic base (N,N-diisopropylethylamine is required to achieve efficient reaction between AF488 NHS-ester and organic amines with longer hydrophobic chains, high concentrations (>5 mM result in increased levels of ethylamine and propylamine in the blank. Optimal incubation times were found to be >12 hrs at room temperature. We present an initial capillary electrophoresis separation for analysis using a simple micellar electrokinetic chromatography (MEKC buffer consisting of 12 mM sodium dodecylsulfate (SDS and 5 mM carbonate, pH 10. Limits of detection using the optimized labeling conditions and these separation conditions were 5–17 nM. The method presented here represents a novel addition to the arsenal of fluorescent probes available for highly sensitive analysis of small organic molecules.

  19. Ballistic energy transport via perfluoroalkane linkers

    Rubtsova, Natalia I. [Department of Chemistry, Tulane University, New Orleans, LA 70118 (United States); Rubtsov, Igor V., E-mail: irubtsov@tulane.edu [Department of Chemistry, Tulane University, New Orleans, LA 70118 (United States)

    2013-08-30

    Highlights: ► Energy transport in perfluoroalkanes oligomers of various chain lengths was studied. ► Cross-peaks among C=O stretch and CH bending modes were recorded using RA 2DIR. ► Efficient constant-speed energy transport with the speed of 1150 m/s is found. ► Ballistic energy transport mechanism is suggested. - Abstract: Intramolecular energy transport in a series of perfluoroalkane oligomers with various chain lengths of 3, 5, 7, 9, and 11 carbon atoms terminated by a carboxylic acid moiety on one end and –CF{sub 2}H group on another end is studied by relaxation-assisted two-dimensional infrared spectroscopy. Perfluoroalkane oligomers adopt an extended structure with antiperiplanar orientation of the neighboring carbon atoms. The energy transport initiated by exciting the C=O stretching mode of the acid was recorded by measuring a cross-peak amplitude between the C=O stretch and the C–H bending mode as a function of the waiting time between the excitation and probing. A linear dependence of energy transport time vs. chain length is found, which suggests a ballistic energy transport mechanism. The energy transport speed, measured from the chain-length dependence of the half-rise time, T{sub ½}, was found to be ca. 1150 m/s, which is close to the longitudinal speed of sound in Teflon polymers.

  20. (15)N NMR spectroscopy unambiguously establishes the coordination mode of the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) in Ru(ii) complexes.

    Battistin, Federica; Balducci, Gabriele; Demitri, Nicola; Iengo, Elisabetta; Milani, Barbara; Alessio, Enzo

    2015-09-21

    We investigated the reactivity of three Ru(ii) precursors -trans,cis,cis-[RuCl2(CO)2(dmso-O)2], cis,fac-[RuCl2(dmso-O)(dmso-S)3], and trans-[RuCl2(dmso-S)4] - towards the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) or its parent compound 4-methyl-2-(2'-pyridyl)pyrimidine ligand (mpp), in which a methyl group replaces the carboxylic group on the pyrimidine ring. In principle, both cppH and mpp can originate linkage isomers, depending on how the pyrimidine ring binds to ruthenium through the nitrogen atom ortho (N(o)) or para (N(p)) to the group in position 4. The principal aim of this work was to establish a spectroscopic fingerprint for distinguishing the coordination mode of cppH/mpp also in the absence of an X-ray structural characterization. By virtue of the new complexes described here, together with the others previously reported by us, we successfully recorded {(1)H,(15)N}-HMBC NMR spectra at natural abundance of the (15)N isotope on a consistent number of fully characterized Ru(ii)-cppH/mpp compounds, most of them being stereoisomers and/or linkage isomers. Thus, we found that (15)N NMR chemical shifts unambiguously establish the binding mode of cppH and mpp - either through N(o) or N(p)- and can be conveniently applied also in the absence of the X-ray structure. In fact, coordination of cppH to Ru(ii) induces a marked upfield shift for the resonance of the N atoms directly bound to the metal, with coordination induced shifts (CIS) ranging from ca.-45 to -75 ppm, depending on the complex, whereas the unbound N atom resonates at a frequency similar to that of the free ligand. Similar results were found for the complexes of mpp. This work confirmed our previous finding that cppH has no binding preference, whereas mpp binds exclusively through N(p). Interestingly, the two cppH linkage isomers trans,cis-[RuCl2(CO)2(cppH-κN(p))] (5) and trans,cis-[RuCl2(CO)2(cppH-κN(o))] (6) were easily obtained in pure form by exploiting their different

  1. Four coordination polymers based on 5-tert-butyl isophthalic acid and rigid bis(imidazol-1yl)benzene linkers: Synthesis, luminescence detection of acetone and optical properties

    Arıcı, Mürsel; Zafer Yeşilel, Okan; Büyükgüngör, Orhan

    2017-01-01

    detection of acetone. Moreover, thermal and optical properties of the complexes were also studied. - Highlights: • Four new 2D and 3D coordination polymers with 5-tert-butyl isophthalic acid and rigid bis(imidazol-1yl)benzene linkers. • The structural diversity depending on ligands and coordination number of metal centers. • Fluorescent sensor for the detection of acetone.

  2. Four coordination polymers based on 5-tert-butyl isophthalic acid and rigid bis(imidazol-1yl)benzene linkers: Synthesis, luminescence detection of acetone and optical properties

    Arıcı, Mürsel, E-mail: marici@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Zafer Yeşilel, Okan [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Büyükgüngör, Orhan [Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun (Turkey)

    2017-05-15

    methanol could be used as a fluorescent sensor for the detection of acetone. Moreover, thermal and optical properties of the complexes were also studied. - Highlights: • Four new 2D and 3D coordination polymers with 5-tert-butyl isophthalic acid and rigid bis(imidazol-1yl)benzene linkers. • The structural diversity depending on ligands and coordination number of metal centers. • Fluorescent sensor for the detection of acetone.

  3. Pharmacokinetics and safety of DTS-108, a human oligopeptide bound to SN-38 with an esterase-sensitive cross-linker in patients with advanced malignancies: a Phase I study

    Coriat R

    2016-11-01

    Full Text Available Romain Coriat,1 Sandrine J Faivre,2 Olivier Mir,3 Chantal Dreyer,2 Stanislas Ropert,3 Mohammed Bouattour,2 Robert Desjardins,4 François Goldwasser,3 Eric Raymond5 1Gastroenterology and Digestive Oncology Unit, Cochin Teaching Hospital, Université Paris Descartes Sorbonne Paris Cité, Paris, 2Department of Medical Oncology, Beaujon Teaching Hospital, Université Paris Diderot, Paris 7, Clichy, 3Department of Medical Oncology, Cochin Teaching Hospital, Université Paris Descartes Sorbonne Paris Cité, Paris, France; 4Drais Pharmaceuticals, Bridgewater, NJ, USA; 5Groupe Hospitalier Paris Saint-Joseph, Paris, France Background: DTS-108 is a hydrosoluble prodrug, where the SN-38 moiety is covalently linked to a 20-amino acid vector peptide by a specific esterase-sensitive cross-linker, releasing 7-ethyl-10-hydroxycampthotecin (SN-38 by esterase bond cleavage. Methods: The pharmacokinetics of DTS-108, adverse events graded according to NCI-CTCv3.1, dose-limiting toxicities at cycle 1, the maximum tolerated dose (MTD, and the recommended Phase II dose (RP2D of intravenous DTS-108 (1–2 hours every 2 weeks were evaluated in a first-in-human Phase I study in patients with advanced/metastatic carcinomas, according to an accelerated dose escalation design. SN-38 and SN-38 glucuronide (SN-38G levels were evaluated with fluorescence high-performance liquid chromatography (HPLC test, then liquid chromatography–tandem mass spectrometry (LC/MS/MS methods. Results: Forty-two patients received DTS-108 across 14 dosing cohorts (range 3–416 mg/m2. At 416 mg/m2, three out of six patients had grade 4 neutropenia thereby defining the MTD and the RP2D at 313 mg/m2. Fluorescence HPLC was inaccurate to quantify DTS-108 and its metabolites (SN-38 and SN-38G. New processes and analytical LC/MS/MS methods for testing SN-38 were implemented. At a dose of 313 mg/m2, mean DTS-108, SN-38, and SN-38G area under the plasma concentration–time curve to infinity

  4. Design of a covalently bonded glycosphingolipid microarray

    Arigi, Emma; Blixt, Klas Ola; Buschard, Karsten

    2012-01-01

    , the major classes of plant and fungal GSLs. In this work, a prototype "universal" GSL-based covalent microarray has been designed, and preliminary evaluation of its potential utility in assaying protein-GSL binding interactions investigated. An essential step in development involved the enzymatic release...... of the fatty acyl moiety of the ceramide aglycone of selected mammalian GSLs with sphingolipid N-deacylase (SCDase). Derivatization of the free amino group of a typical lyso-GSL, lyso-G(M1), with a prototype linker assembled from succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester and 2...

  5. An Automatic Matcher and Linker for Transportation Datasets

    Ali Masri

    2017-01-01

    Full Text Available Multimodality requires the integration of heterogeneous transportation data to construct a broad view of the transportation network. Many new transportation services are emerging while being isolated from previously-existing networks. This leads them to publish their data sources to the web, according to linked data principles, in order to gain visibility. Our interest is to use these data to construct an extended transportation network that links these new services to existing ones. The main problems we tackle in this article fall in the categories of automatic schema matching and data interlinking. We propose an approach that uses web services as mediators to help in automatically detecting geospatial properties and mapping them between two different schemas. On the other hand, we propose a new interlinking approach that enables the user to define rich semantic links between datasets in a flexible and customizable way.

  6. Strategies, linkers and coordination polymers for high-performance sorbents

    Matzger, Adam J.; Wong-Foy, Antek G.; Lebel, Oliver

    2015-09-15

    A linking ligand compound includes three bidentate chemical moieties distributed about a central chemical moiety. Another linking ligand compound includes a bidentate linking ligand and a monodentate chemical moiety. Coordination polymers include a plurality of metal clusters linked together by residues of the linking ligand compounds.

  7. PYRENE INTERCALATING NUCLEIC ACIDS WITH A CARBON LINKER

    Østergaard, Michael E.; Wamberg, Michael Chr.; Pedersen, Erik Bjerregaard

    2011-01-01

    geminally attached. Fluorescence studies of this intercalating nucleic acid with the pyrene moieties inserted as a bulge showed formation of an excimer band. When a mismatch was introduced at the site of the intercalator, an excimer band was formed for the destabilized duplexes whereas an exciplex band...

  8. Nano/biosensors based on large-area graphene

    Ducos, Pedro Jose

    Two dimensional materials have properties that make them ideal for applications in chemical and biomolecular sensing. Their high surface/volume ratio implies that all atoms are exposed to the environment, in contrast to three dimensional materials with most atoms shielded from interactions inside the bulk. Graphene additionally has an extremely high carrier mobility, even at ambient temperature and pressure, which makes it ideal as a transduction device. The work presented in this thesis describes large-scale fabrication of Graphene Field Effect Transistors (GFETs), their physical and chemical characterization, and their application as biomolecular sensors. Initially, work was focused on developing an easily scalable fabrication process. A large-area graphene growth, transfer and photolithography process was developed that allowed the scaling of production of devices from a few devices per single transfer in a chip, to over a thousand devices per transfer in a full wafer of fabrication. Two approaches to biomolecules sensing were then investigated, through nanoparticles and through chemical linkers. Gold and platinum Nanoparticles were used as intermediary agents to immobilize a biomolecule. First, gold nanoparticles were monodispersed and functionalized with thiolated probe DNA to yield DNA biosensors with a detection limit of 1 nM and high specificity against noncomplementary DNA. Second, devices are modified with platinum nanoparticles and functionalized with thiolated genetically engineered scFv HER3 antibodies to realize a HER3 biosensor. Sensors retain the high affinity from the scFv fragment and show a detection limit of 300 pM. We then show covalent and non-covalent chemical linkers between graphene and antibodies. The chemical linker 1-pyrenebutanoic acid succinimidyl ester (pyrene) stacks to the graphene by Van der Waals interaction, being a completely non-covalent interaction. The linker 4-Azide-2,3,5,6-tetrafluorobenzoic acid, succinimidyl ester (azide

  9. Developments of sensitive immunoassays for detection of antibodies against hepatitis B surface antigen

    Ionescu-Matiu, I; Sanchez, Y; Dreesman, G R [Baylor Univ., Houston, TX (USA). Coll. of Medicine; Fields, H A [Centers for Disease Control, Public Health Service, Department of Health and Human Services, Phoenix, AZ (USA)

    1983-01-01

    Three micro solid phase immunoassays (a micro-SPRIA and two ELISA techniques) were developed and tested for the detection of anti-HBs antibodies. Two different crosslinkers (glutaraldehyde and N-succinimidyl 3-(2-pyridyldithio) propionate) were used to couple a goat anti-mouse IgG reagent to alkaline phosphatase for use as enzyme-labeled probes in the two ELISA tests. With the latter cross-linker, a defined conjugate with a 1 : 1 antibody-enzyme molar ratio was obtained. The sensitivities of micro-SPRIA and the two types of ELISA were compared to that of the commercial solid phase radioimmunoassay AUSAB test. All three microtests were significantly more sensitive than the AUSAB test. The ELISA using the glutaraldehyde cross-linked conjugate was 3-5 times less sensitive than micro-SPRIA, while the ELISA using the disulfide-linked conjugate was 2.6-4.0 times more sensitive than micro-SPRIA.

  10. Preparation and biodistribution of 131I labeled 3-Amino-1-hydroxypropylidene-1, 1-bisphosphonate

    Lin Rushan; Yang Yuanyou; Liu Ning; Liao Jiali; Jin Jiannan; Pu Manfei

    2008-01-01

    3-amino-1-hydroxypropylidene-1, 1-bisphosphonate (ABP) was synthesized and labeled with 131 I using N-succinimidyl-5-(tri-butylstannyl)-3-pyridinecarboxylate (SPC) as a bi-functional linker. 131 I could be coupled to ABP via a 131 I-SIPC intermediate with a labeling yield of more than 64%, and a radiochemical purity of more than 99% after HPLC purification. After 72 h at room temperature, the radiochemical purity was still more than 98.8%, implying that the 131 I-SIPC-ABP is stable in vitro. Biodistribution experiments in mice show that 131 I-SIPC-ABP has high affinity to bone and high stability in vivo as well as in vitro. (authors)

  11. Production and characterization of a camelid single domain antibody-urease enzyme conjugate for the treatment of cancer.

    Tian, Baomin; Wong, Wah Yau; Hegmann, Elda; Gaspar, Kim; Kumar, Praveen; Chao, Heman

    2015-06-17

    A novel immunoconjugate (L-DOS47) was developed and characterized as a therapeutic agent for tumors expressing CEACAM6. The single domain antibody AFAIKL2, which targets CEACAM6, was expressed in the Escherichia coli BL21 (DE3) pT7-7 system. High purity urease (HPU) was extracted and purified from Jack bean meal. AFAIKL2 was activated using N-succinimidyl [4-iodoacetyl] aminobenzoate (SIAB) as the cross-linker and then conjugated to urease. The activation and conjugation reactions were controlled by altering pH. Under these conditions, the material ratio achieved conjugation ratios of 8-11 antibodies per urease molecule, the residual free urease content was practically negligible (95%) L-DOS47 conjugate was produced using only ultradiafiltration to remove unreacted antibody and hydrolyzed cross-linker. L-DOS47 was characterized by a panel of analytical techniques including SEC, IEC, Western blot, ELISA, and LC-MS(E) peptide mapping. As the antibody-urease conjugate ratio increased, a higher binding signal was observed. The specificity and cytotoxicity of L-DOS47 was confirmed by screening in four cell lines (BxPC-3, A549, MCF7, and CEACAM6-transfected H23). BxPC-3, a CEACAM6-expressing cell line was found to be most susceptible to L-DOS47. L-DOS47 is being investigated as a potential therapeutic agent in human phase I clinical studies for nonsmall cell lung cancer.

  12. Trastuzumab emtansine: first global approval.

    Ballantyne, Anita; Dhillon, Sohita

    2013-05-01

    Genentech and ImmunoGen are collaborating on the development of trastuzumab emtansine, a HER2 antibody-drug conjugate that comprises Genentech's trastuzumab antibody linked to ImmunoGen's anti-mitotic agent, mertansine (a maytansine derivative; also known as DM1). The conjugate combines two strategies: the anti-HER2 activity of trastuzumab, and the targeted intracellular delivery of mertansine, a tubulin polymerisation inhibitor which interferes with mitosis and promotes apoptosis. The linker in trastuzumab emtansine is a non-reducible thioether linker, N-succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC, designated MCC after conjugation). Trastuzumab emtansine (Kadcyla™) has been launched in the USA as second-line monotherapy for HER2-positive metastatic breast cancer, and has been filed for approval in the EU and Japan in this indication. Trastuzumab emtansine is in phase III development as first-line combination therapy or monotherapy for metastatic HER2-positive breast cancer, and as third-line monotherapy for metastatic HER2-positive breast cancer. Phase II development is underway for early-stage breast cancer and phase II/III development is underway in patients with HER2-positive gastric cancer. This article summarizes the milestones in the development of trastuzumab emtansine leading to this first approval for the treatment of patients with HER2-positive, metastatic breast cancer who previously received trastuzumab and a taxane, separately or in combination.

  13. Detailed mutational analysis of Vga(A) interdomain linker: Implication for antibiotic resistance specificity and mechanism

    Lenart, Jakub; Vimberg, Vladimír; Veselá, Ludmila; Janata, Jiří; Balíková Novotná, Gabriela

    2015-01-01

    Roč. 59, č. 2 (2015), s. 1360-1364 ISSN 0066-4804 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.20.0055; GA MŠk(CZ) EE2.3.30.0003; GA ČR GPP302/12/P632 Institutional support: RVO:61388971 Keywords : antibiotic * resistance * Vga(A) Subject RIV: EE - Microbiology, Virology Impact factor: 4.415, year: 2015

  14. Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis

    Thompson, Joshua A.; Blad, Catherine R.; Brunelli, Nicholas A.; Lydon, Megan E.; Lively, Ryan P.; Jones, Christopher W.; Nair, Sankar

    2012-01-01

    Zeolitic imidazolate frameworks (ZIFs) are a subclass of nanoporous metal-organic frameworks (MOFs) that exhibit zeolite-like structural topologies and have interesting molecular recognition properties, such as molecular sieving and gate

  15. Good Applications for Crummy Entity Linkers? : The Case of Corpus Selection in Digital Humanities

    Olieman, Alex; Beelen, Kaspar; Lange, van Milan; Kamps, Jaap; Marx, Maarten

    2017-01-01

    Over the last decade we have made great progress in entity linking (EL) systems, but performance may vary depending on the context and, arguably, there are even principled limitations prevent a "perfect" EL system. This also suggests that there may be applications for which current "imperfect" EL is

  16. About a significance of the avian linker histone (H1) polymorphic ...

    60

    structural disorder may specify histone H1 interaction with both DNA and partnering proteins through ... from the studies conducted on mammalian model, including the human H1 variants. However ..... Thus, the disparate layout of histone H1.

  17. Direct Scaffolding of Biomimetic Hydroxyapatite-gelatin Nanocomposites using Aminosilane Cross-linker for Bone Regeneration

    Chiu, Chi-Kai; Ferreira, Joao; Luo, Tzy-Jiun M.; Geng, Haixia; Lin, Feng-Chang; Ko, Ching-Chang

    2012-01-01

    Hydroxyapatite-gelatin modified siloxane (GEMOSIL) nanocomposite was developed by coating, kneading and hardening processes to provide formable scaffolding for alloplastic graft applications. The present study aims to characterize scaffolding formability and mechanical properties of GEMOSIL, and to test the in vitro and in vivo biocompatibility of GEMOSIL. Buffer Solution initiated formable paste followed by the sol-gel reaction led to a final hardened composite. Results showed the adequate c...

  18. Linker Flexibility Facilitates Module Exchange in Fungal Hybrid PKS-NRPS Engineering

    Nielsen, Maria Lund; Petersen, Thomas Isbrandt; Petersen, Lene Maj

    2016-01-01

    Polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) each give rise to a vast array of complex bioactive molecules with further complexity added by the existence of natural PKS-NRPS fusions. Rational genetic engineering for the production of natural product derivatives....... We succeeded in the construction of a functional cross-species chimeric PKS-NRPS expressed in Aspergillus nidulans. Module swapping of the two PKS-NRPS natural hybrids CcsA from Aspergillus clavatus involved in the biosynthesis of cytochalasin E and related Syn2 from rice plant pathogen Magnaporthe...... oryzae lead to production of novel hybrid products, demonstrating that the rational re-design of these fungal natural product enzymes is feasible. We also report the structure of four novel pseudo pre-cytochalasin intermediates, niduclavin and niduporthin along with the chimeric compounds niduchimaeralin...

  19. Trapping molecular bromine: a one-dimensional bromobismuthate complex with Br2 as a linker.

    Adonin, S A; Gorokh, I D; Abramov, P A; Plyusnin, P E; Sokolov, M N; Fedin, V P

    2016-03-07

    The reaction between solid (NMP)n{[BiBr4]}n (1) (NMP = N-methylpyridinium) and Br2, generated in situ in HBr solution, results in the formation of (NMP)3[Bi2Br9]·Br2 (2). In the structure of 2, dibromine molecules connect discrete binuclear [Bi2Br9](3-) anions into an extended network. Complex 2 is thermally stable (up to 150 °C).

  20. Site-specific chemical modification of antibody fragments using traceless cleavable linkers.

    Bernardes, Gonçalo J L; Steiner, Martina; Hartmann, Isabelle; Neri, Dario; Casi, Giulio

    2013-11-01

    Antibody-drug conjugates (ADCs) are promising agents for the selective delivery of cytotoxic drugs to specific cells (for example, tumors). In this protocol, we describe two strategies for the precise modification at engineered C- or N-terminal cysteines of antibodies in IgG, diabody and small immunoprotein (SIP) formats that yield homogenous ADCs. In this protocol, cemadotin derivatives are used as model drugs, as these agents have a potent cytotoxic activity and are easy to synthesize. However, other drugs with similar functional groups could be considered. In the first approach, a cemadotin derivative containing a sulfhydryl group results in a mixed disulfide linkage. In the second approach, a cemadotin derivative containing an aldehyde group is joined via a thiazolidine linkage. The procedures outlined are robust, enabling the preparation of ADCs with a defined number of drugs per antibody in a time frame between 7 and 24 h.

  1. Series of mixed uranyl-lanthanide (Ce, Nd) organic coordination polymers with aromatic polycarboxylates linkers.

    Mihalcea, Ionut; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry

    2012-09-17

    Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.

  2. Mechanically Strong Aerogels Formed by Templated Growth of Polymer Cross- Linkers on Inorganic Nanoparticles

    Leventis, Nicholas; Fabrizio, Eve F.; Johnston, Chris; Meador, Maryann

    2004-01-01

    In the search for materials with better mechanical, thermal, and electrical properties, it is becoming evident that oftentimes dispersing ceramic nanoparticles in plastics improves performance. Along these lines, chemical bonding (both covalent and noncovalent) between a filler and a polymer improves their compatibility, and thus enhances certain properties of the polymeric matrix above and beyond what is accomplished by simple doping with the filler. When a similarly sized dopant and matrix are used, elementary building blocks may also have certain distinct advantages (e.g., in catalysis). In this context, researchers at the NASA Glenn Research Center reasoned that in the extreme case, where the dopant and the matrix (e.g., a filler and a polymer) are not only sized similarly, but their relative amounts are comparable, the relative roles of the dopant and matrix can be reversed. Then, if the "filler," or a certain form thereof, possesses desirable properties of its own, such properties could be magnified by cross-linking with a polymer. We at Glenn have identified silica as such a filler in its lowest-density form, namely the silica aerogel.

  3. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation

    Henrichs, Sina; Wang, Bangjun; Fukao, Yoichiro

    2012-01-01

    Polar transport of the plant hormone auxin is controlled by PIN-and ABCB/PGP-efflux catalysts. PIN polarity is regulated by the AGC protein kinase, PINOID (PID), while ABCB activity was shown to be dependent on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Using co-immunoprecipitation (co-I...

  4. Gas adsorption properties of highly porous metal-organic frameworks containing functionalized naphthalene dicarboxylate linkers.

    Sim, Jaeung; Yim, Haneul; Ko, Nakeun; Choi, Sang Beom; Oh, Youjin; Park, Hye Jeong; Park, SangYoun; Kim, Jaheon

    2014-12-28

    Three functionalized metal-organic frameworks (MOFs), MOF-205-NH2, MOF-205-NO2, and MOF-205-OBn, formulated as Zn4O(BTB)4/3(L), where BTB is benzene-1,3,5-tribenzoate and L is 1-aminonaphthalene-3,7-dicarboxylate (NDC-NH2), 1-nitronaphthalene-3,7-dicarboxylate (NDC-NO2) or 1,5-dibenzyloxy-2,6-naphthalenedicarboxylate (NDC-(OBn)2), were synthesized and their gas (H2, CO2, or CH4) adsorption properties were compared to those of the un-functionalized, parent MOF-205. Ordered structural models for MOF-205 and its derivatives were built based on the crystal structures and were subsequently used for predicting porosity properties. Although the Brunauer-Emmett-Teller (BET) surface areas of the three MOF-205 derivatives were reduced (MOF-205, 4460; MOF-205-NH2, 4330; MOF-205-NO2, 3980; MOF-205-OBn, 3470 m(2) g(-1)), all three derivatives were shown to have enhanced H2 adsorption capacities at 77 K and CO2 uptakes at 253, 273, and 298 K respectively at 1 bar in comparison with MOF-205. The results indicate the following trend in H2 adsorption: MOF-205 < MOF-205-NO2 < MOF-205-NH2 < MOF-205-OBn. MOF-205-OBn showed good ideal adsorbed solution theory (IAST) selectivity values of 6.5 for CO2/N2 (15/85 in v/v) and 2.7 for CO2/CH4 (50/50 in v/v) at 298 K. Despite the large reduction (-22%) in the surface area, MOF-205-OBn displayed comparable total volumetric CO2 (at 48 bar) and CH4 (at 35 bar) storage capacities with those of MOF-205 at 298 K: MOF-205-OBn, 305 (CO2) and 112 (CH4) cm(3) cm(-3), and for MOF-205, 307 (CO2) and 120 (CH4) cm(3) cm(-3), respectively.

  5. Grubbs Catalysts Immobilized on Mesoporous Molecular Sieves via Phosphine and Pyridine Linkers

    Bek, David; Balcar, Hynek; Žilková, Naděžda; Zukal, Arnošt; Horáček, Michal; Čejka, Jiří

    2011-01-01

    Roč. 1, č. 7 (2011), s. 709-718 ISSN 2155-5435 R&D Projects: GA AV ČR IAA400400805; GA AV ČR KAN100400701; GA ČR GD203/08/H032 Institutional research plan: CEZ:AV0Z40400503 Keywords : Grubbs catalyst * mesoporous molecular sieves * olefin metathesis Subject RIV: CF - Physical ; Theoretical Chemistry

  6. Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers

    Chen, Guojian; Zhou, Yu; Wang, Xiaochen; Li, Jing; Xue, Shuang; Liu, Yangqing; Wang, Qian; Wang, Jun

    2015-01-01

    In fields of materials science and chemistry, ionic-type porous materials attract increasing attention due to significant ion-exchanging capacity for accessing diversified applications. Facing the fact that porous cationic materials with robust and stable frameworks are very rare, novel tactics that can create new type members are highly desired. Here we report the first family of polyhedral oligomeric silsesquioxane (POSS) based porous cationic frameworks (PCIF-n) with enriched poly(ionic li...

  7. The Identification of Linker Characteristics among Venezuelan Students in the United States.

    1980-06-01

    MOVER RECURSOS TECNICOS, MATERIALES , M9TODOS E INFORMACI6N, DESDE EL LUGAR DE DESCUBRIMIENTO 0 INVENCIdN HASTA LOS NUEVOS USUARIOSŕ [Gilmore, 1969]. El...fabricar tin nuevo tipo de vidrio aislante con infinidad de aplicaciones. 6. Materiales resistentes al calor, usados para cubrir la ojiva y el cuerpo de...mientos (el inventor o doscubridor genera nuevas ideas, conceptos, materiales , etc.), (2) la difusio’n o diseminacio’n de esas ideas o conocimientos

  8. Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins

    Červenka, I.; Valnohová, J.; Bernatík, Ondřej; Harnoš, J.; Radsetoulal, M.; Šedová, K.; Hanakova, K.; Potěšil, D.; Sedláčková, M.; Salašová, A.; Steinhart, Z.; Angers, S.; Schulte, G.; Hampl, A.; Zdráhal, Z.; Bryja, Vítězslav

    2016-01-01

    Roč. 113, č. 33 (2016), s. 9304-9309 ISSN 0027-8424 R&D Projects: GA ČR GP13-31488P Institutional support: RVO:68081707 Keywords : cell-cycle * centriole duplication * beta-catenin * cohesion Subject RIV: BO - Biophysics Impact factor: 9.661, year: 2016

  9. Electronic Interplay between TTF and Extended-TCNQ Electrophores along a Ruthenium Bis(acetylide) Linker.

    Vacher, Antoine; Auffray, Morgan; Barrière, Frédéric; Roisnel, Thierry; Lorcy, Dominique

    2017-11-17

    A bis(TTF-butadiynyl) ruthenium D-D'-D complex, with intramolecular electronic interplay between the three electron-donating electrophores, was easily converted through a cycloaddition-retroelectrocyclization with TCNQ into a D-A-D'-A-D pentad complex, which exhibits an intense intramolecular charge transfer together with an electronic interplay between the two acceptors along the conjugated organometallic bridge.

  10. The Roles and Identification of Innovators and Linkers in the Technology Transfer Process.

    1977-09-01

    major source from which the question was derived: ( I ) Earlier adopters are more cosmopolite than later adopters (Rogers & Shoemaker . p. 189). ~2...Earlier knowers of an innovation are more cosmopolit e than later knowers (Rogers & Shoemaker, p. 108). (3) Opinion leaders are more cosmopolite ...final conclusion is based on 13 studies. 77 percent of which favor the general statement Rogers & Shoemaker. p. 3 S . Cosmopoliteness is defined as

  11. Antitumor activity of sequence-specific alkylating agents: pyrolle-imidazole CBI conjugates with indole linker.

    Shinohara, Ken-ichi; Bando, Toshikazu; Sasaki, Shunta; Sakakibara, Yogo; Minoshima, Masafumi; Sugiyama, Hiroshi

    2006-03-01

    DNA-targeting agents, including cisplatin, bleomycin and mitomycin C, are used routinely in cancer treatments. However, these drugs are extremely toxic, attacking normal cells and causing severe side effects. One important question to consider in designing anticancer agents is whether the introduction of sequence selectivity to DNA-targeting agents can improve their efficacy as anticancer agents. In the present study, the growth inhibition activities of an indole-seco 1,2,9,9a-tetrahydrocyclopropa[1,2-c]benz[1,2-e]indol-4-one (CBI) (1) and five conjugates with hairpin pyrrole-imidazole polyamides (2-6), which have different sequence specificities for DNA alkylation, were compared using 10 different cell lines. The average values of -log GI50 (50% growth inhibition concentration) for compounds 1-6 against the 10 cell lines were 8.33, 8.56, 8.29, 8.04, 8.23 and 8.83, showing that all of these compounds strongly inhibit cell growth. Interestingly, each alkylating agent caused significantly different growth inhibition patterns with each cell line. In particular, the correlation coefficients between the -log GI50 of compound 1 and its conjugates 2-6 showed extremely low values (Ralkylation lead to marked differences in biological activity. Comparison of the correlation coefficients between compounds 6 and 7, with the same sequence specificity as 6, and MS-247, with sequence specificity different from 6, when used against a panel of 37 human cancer cell lines further confirmed the above hypothesis.

  12. N-Alkylated dinitrones from isosorbide as cross-linkers for unsaturated bio-based polyesters

    Oliver Goerz

    2014-04-01

    Full Text Available Isosorbide was esterified with acryloyl chloride and crotonic acid yielding isosorbide diacrylate (9a and isosorbide dicrotonate (9b, which were reacted with benzaldehyde oxime in the presence of zinc(II iodide and boron triflouride etherate as catalysts to obtain N-alkylated dinitrones 10a/b. Poly(isosorbide itaconite -co- succinate 13 as a bio-based unsaturated polyester was cross-linked by a 1,3-dipolar cycloaddition with the received dinitrones 10a/b. The 1,3-dipolar cycloaddition led to a strong change of the mechanical properties which were investigated by rheological measurements. Nitrones derived from methyl acrylate (3a and methyl crotonate (3b were used as model systems and reacted with dimethyl itaconate to further characterize the 1,3-dipolaric cycloaddition.

  13. Mechanistic insights into antitumor effects of new dinuclear cis PtII complexes containing aromatic linkers

    Zerzánková, Lenka; Kostrhunová, Hana; Vojtíšková, Marie; Nováková, Olga; Suchánková, T.; Lin, M.; Guo, Z.; Kašpárková, Jana; Brabec, Viktor

    2010-01-01

    Roč. 80, č. 3 (2010), s. 344-351 ISSN 0006-2952 R&D Projects: GA MŠk(CZ) LC06030; GA MŠk(CZ) ME08017; GA MŠk(CZ) ME10066; GA MŠk(CZ) OC08003; GA AV ČR(CZ) IAA400040803; GA ČR(CZ) GD301/09/H004; GA ČR(CZ) GAP301/10/0598 Grant - others:GA MŠk(CZ) OC09018; GA AV ČR(CZ) KAN200200651 Program:KA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA * platinum * cancer Subject RIV: BO - Biophysics Impact factor: 4.889, year: 2010

  14. Cellular delivery and antisense effects of peptide nucleic acid conjugated to polyethyleneimine via disulfide linkers

    Berthold, Peter R; Shiraishi, Takehiko; Nielsen, Peter E

    2010-01-01

    Peptide nucleic acid (PNA) is potentially an attractive antisense and antigene agent for which more efficient cellular delivery systems are still warranted. The cationic polymer polyethylenimine (PEI) is commonly used for cellular transfection of DNA and RNA complexes, but is not readily applicable...... moiety) and further reacted this with a cysteine PNA. The level of modification was determined spectrophotometrically with high accuracy, and the PNA transfection efficiency of the conjugates was evaluated in an antisense luciferase splice-correction assay using HeLa pLuc705 cells. We find that PEI...... is an efficient vector for PNA delivery yielding significantly higher (up to 10-fold) antisense activity than an analogous PNA-octaarginine conjugate, even in the presence of chloroquine, which only slightly enhances the PEI-PNA activity. The PEI-PEG conjugates are preferred due to lower acute cellular toxicity...

  15. Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes.

    Horn, P.J.; Carruthers, L.M.; Logie, C.; Hill, D.A.; Solomon, M.J.; Wade, P.A.; Imbalzano, A.N.; Hansen, J.; Peterson, C.L.

    2002-01-01

    Members of the ATP-dependent family of chromatin remodeling enzymes play key roles in the regulation of transcription, development, DNA repair and cell cycle control. We find that the remodeling activities of the ySWI/SNF, hSWI/SNF, xMi-2 and xACF complexes are nearly abolished by incorporation of

  16. NTAL (non-T cell activation linker):a transmembrane adaptor protein involved in immunoreceptor signaling

    Brdička, Tomáš; Imrich, Martin; Angelisová, Pavla; Brdičková, Naděžda; Horváth, Ondřej; Špička, Jiří; Hilgert, Ivan; Lusková, Petra; Dráber, Petr; Novák, P.; Engels, N.; Wienands, J.; Simeoni, L.; Osterreicher, J.; Aguado, E.; Malissen, M.; Schraven, B.; Hořejší, Václav

    2002-01-01

    Roč. 196, č. 12 (2002), s. 16180-16185 ISSN 0022-1007 R&D Projects: GA MŠk LN00A026 Keywords : NTAL * transmembrane adaptor * immunoreceptor signaling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 15.838, year: 2002

  17. An intrinsically disordered linker controlling the formation and the stability of the bacterial flagellar hook

    Barker, Clive S.; Meshcheryakova, Irina V.; Kostyukova, Alla S.; Freddolino, Peter L.; Samatey, Fadel A.

    2017-01-01

    Background In a macro-molecular complex, any minor change may prove detrimental. For a supra-molecular nano-machine like the bacterial flagellum, which consists of several distinct parts with specific characteristics, stability is important. During the rotation of the bacterial flagellar motor, which is located in the membrane, the flagella rotate at speeds between 200 and 2000 rpm, depending on the bacterial species. The hook substructure of the bacterial flagellum acts as a universal joint ...

  18. Coiled coil peptides as universal linkers for the attachment of recombinant proteins to polymer therapeutics

    Pechar, Michal; Pola, Robert; Laga, Richard; Ulbrich, Karel; Bednárová, Lucie; Maloň, Petr; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Vaněk, O.

    2011-01-01

    Roč. 12, č. 10 (2011), s. 3645-3655 ISSN 1525-7797 R&D Projects: GA ČR GA203/08/0543; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : coiled coil * polymer the rapeutics * drug targeting Subject RIV: CC - Organic Chemistry Impact factor: 5.479, year: 2011

  19. Radiation Oncology Terminology Linker: A Step Towards a Linked Data Knowledge Base.

    Lustberg, Tim; van Soest, Johan; Fick, Peter; Fijten, Rianne; Hendriks, Tim; Puts, Sander; Dekker, Andre

    2018-01-01

    Performing image feature extraction in radiation oncology is often dependent on the organ and tumor delineations provided by clinical staff. These delineation names are free text DICOM metadata fields resulting in undefined information, which requires effort to use in large-scale image feature extraction efforts. In this work we present a scale-able solution to overcome these naming convention challenges with a REST service using Semantic Web technology to convert this information to linked data. As a proof of concept an open source software is used to compute radiation oncology image features. The results of this work can be found in a public Bitbucket repository.

  20. Coordination Polymers and Metal Organic Frameworks Derived from 1,2,4-Triazole Amino Acid Linkers

    Yann Garcia

    2011-10-01

    Full Text Available The perceptible appearance of biomolecules as prospective building blocks in the architecture of coordination polymers (CPs and metal-organic frameworks (MOFs are redolent of their inclusion in the synthon/tecton library of reticular chemistry. In this frame, for the first time a synthetic strategy has been established for amine derivatization in amino acids into 1,2,4-triazoles. A set of novel 1,2,4-triazole derivatized amino acids were introduced as superlative precursors in the design of 1D coordination polymers, 2D chiral helicates and 3D metal-organic frameworks. Applications associated with these compounds are diverse and include gas adsorption-porosity partitioning, soft sacrificial matrix for morphology and phase selective cadmium oxide synthesis, FeII spin crossover materials, zinc-b-lactamases inhibitors, logistics for generation of chiral/non-centrosymmetric networks; and thus led to a foundation of a new family of functional CPs and MOFs that are reviewed in this invited contribution.

  1. Organic Linker Defines the Excited-State Decay of Photocatalytic MIL-125(Ti)-Type Materials.

    Santaclara, Jara G; Nasalevich, Maxim A; Castellanos, Sonia; Evers, Wiel H; Spoor, Frank C M; Rock, Kamila; Siebbeles, Laurens D A; Kapteijn, Freek; Grozema, Ferdinand; Houtepen, Arjan; Gascon, Jorge; Hunger, Johannes; van der Veen, Monique A

    2016-02-19

    Recently, MIL-125(Ti) and NH2 -MIL-125(Ti), two titanium-based metal-organic frameworks, have attracted significant research attention in the field of photocatalysis for solar fuel generation. This work reveals that the differences between these structures are not only based on their light absorption range but also on the decay profile and topography of their excited states. In contrast to MIL-125(Ti), NH2 -MIL-125(Ti) shows markedly longer lifetimes of the charge-separated state, which improves photoconversion by the suppression of competing decay mechanisms. We used spectroelectrochemistry and ultrafast spectroscopy to demonstrate that upon photoexcitation in NH2 -MIL-125(Ti) the electron is located in the Ti-oxo clusters and the hole resides on the aminoterephthalate unit, specifically on the amino group. The results highlight the role of the amino group in NH2 -MIL-125(Ti), the electron donation of which extends the lifetime of the photoexcited state substantially. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 99mTc-monoclonal antibody radiolabeled via hydrazino nicotinamide derivative for imaging disialoganglioside GD2-positive tumors

    Fonti, Rosa; Cheung, N.-K.V.; Bridger, Gary J.; Guo, H.-F.; Abrams, Michael J.; Larson, Steven M.

    1999-01-01

    3F8 is a murine IgG 3 monoclonal antibody (MAb) selective for the ganglioside G D2 . Previous studies using 131 I-3F8 have shown great potential in the imaging of neuroectodermal tumors and the therapy of human neuroblastoma. 131 I is commonly used in radioimmunodiagnosis, but its relatively long half-life (8 days) and its high energy γ-emission (364 KeV) are suboptimal for imaging purposes when compared with 99m Tc (6 h and 140 KeV, respectively). To label 3F8 with 99m Tc, the antibody was first coupled with a heterobifunctional linker, succinimidyl-6-hydrazinonicotinate hydrochloride (SHNH), obtaining a hydrazinonicotinamide-antibody conjugate. Using 99m Tc-Tricine as the precursor complex, 3F8-SHNH was coupled efficiently to 99m Tc, resulting in >90% radiometal incorporation, with a specific activity >10 mCi/mg and retaining full immunoreactivity. Immunoscintigraphy at 6, 22, and 46 h after intravenous injection of 1 mCi of 99m Tc-3F8 showed selective neuroblastoma localization in xenografted nude mice, comparable to that obtained with the injection of 100 μCi of 131 I-3F8. Biodistribution studies of 131 I-3F8 and 99m Tc-3F8 in mice demonstrated comparable %ID/g uptake in tumor (with a T/B ratio: ∼2.5 at 24 h and ∼3.5 at 48 h) and normal organs, including blood, except for spleen and liver which had about a three times higher uptake of the 99m Tc conjugate. In conclusion, 99m Tc can be coupled conveniently at high specific activity to 3F8 without compromising immunoreactivity. SHNH appears to be a useful linker for 99m Tc in tumor diagnostic imaging and may have potential utility in coupling other radioisotopes (e.g., 94m Tc) for positron imaging and therapy

  3. An Antibody-Immobilized Silica Inverse Opal Nanostructure for Label-Free Optical Biosensors

    Wang Sik Lee

    2018-01-01

    Full Text Available Three-dimensional SiO2-based inverse opal (SiO2-IO nanostructures were prepared for use as biosensors. SiO2-IO was fabricated by vertical deposition and calcination processes. Antibodies were immobilized on the surface of SiO2-IO using 3-aminopropyl trimethoxysilane (APTMS, a succinimidyl-[(N-maleimidopropionamido-tetraethyleneglycol] ester (NHS-PEG4-maleimide cross-linker, and protein G. The highly accessible surface and porous structure of SiO2-IO were beneficial for capturing influenza viruses on the antibody-immobilized surfaces. Moreover, as the binding leads to the redshift of the reflectance peak, the influenza virus could be detected by simply monitoring the change in the reflectance spectrum without labeling. SiO2-IO showed high sensitivity in the range of 103–105 plaque forming unit (PFU and high specificity to the influenza A (H1N1 virus. Due to its structural and optical properties, SiO2-IO is a promising material for the detection of the influenza virus. Our study provides a generalized sensing platform for biohazards as various sensing strategies can be employed through the surface functionalization of three-dimensional nanostructures.

  4. An Antibody-Immobilized Silica Inverse Opal Nanostructure for Label-Free Optical Biosensors.

    Lee, Wang Sik; Kang, Taejoon; Kim, Shin-Hyun; Jeong, Jinyoung

    2018-01-20

    Three-dimensional SiO₂-based inverse opal (SiO₂-IO) nanostructures were prepared for use as biosensors. SiO₂-IO was fabricated by vertical deposition and calcination processes. Antibodies were immobilized on the surface of SiO₂-IO using 3-aminopropyl trimethoxysilane (APTMS), a succinimidyl-[(N-maleimidopropionamido)-tetraethyleneglycol] ester (NHS-PEG₄-maleimide) cross-linker, and protein G. The highly accessible surface and porous structure of SiO₂-IO were beneficial for capturing influenza viruses on the antibody-immobilized surfaces. Moreover, as the binding leads to the redshift of the reflectance peak, the influenza virus could be detected by simply monitoring the change in the reflectance spectrum without labeling. SiO₂-IO showed high sensitivity in the range of 10³-10⁵ plaque forming unit (PFU) and high specificity to the influenza A (H1N1) virus. Due to its structural and optical properties, SiO₂-IO is a promising material for the detection of the influenza virus. Our study provides a generalized sensing platform for biohazards as various sensing strategies can be employed through the surface functionalization of three-dimensional nanostructures.

  5. Photochemical immobilization of protein on the inner wall of a microchannel and Its application in a glucose sensor

    Nakajima, Hizuru; Ishino, Satomi; Masuda, Hironori; Nakagama, Tatsuro; Shimosaka, Takuya; Uchiyama, Katsumi

    2006-01-01

    A new protein immobilization technique has been developed for patterning enzymes in a specific position inside a microchannel. First, bovine serum albumin (BSA) was adsorbed onto the internal surface of a polydimethylsiloxane microchannel. The microchannel was then filled with the conjugate solution of a photoreactive cross-linker, 4-azido-2,3,5,6-tetrafluorobenzoic acid succinimidyl ester (ATFB-SE), and an enzyme, horseradish peroxidase (HRP). An irradiation by a He-Cd laser activated the azido group of the conjugates and these conjugates became covalently attached to the adsorbed BSA on the microchannel. The enzyme turnover was observed from only the HRP zone. This technique was successfully applied to the enzymatic glucose sensor. Glucose oxidase (GOD) and HRP were sequentially patterned in a single microchannel, i.e., the HRP zone was located downstream from the GOD zone. The calibration curve of a glucose standard solution was linear over the range of 0-128 μM with a correlation coefficient of 0.993. Compared to the traditional method using a 96-well microtiter plate, the present technique on the microchip shortened the reaction time from 30 min to 4.8 s, i.e., to 1/375

  6. Towards prostate cancer gene therapy: Development of a chlorotoxin-targeted nanovector for toxic (melittin) gene delivery.

    Tarokh, Zahra; Naderi-Manesh, Hossein; Nazari, Mahboobeh

    2017-03-01

    Prostate cancer is the second leading cause of death due to cancer in men. Owing to shortcomings in the current treatments, other therapies are being considered. Toxic gene delivery is one of the most effective methods for cancer therapy. Cationic polymers are able to form stable nanoparticles via interaction with nucleic acids electrostatically. Branched polyethylenimine that contains amine groups has notable buffering capacity and the ability to escape from endosome through the proton sponge effect. However, the cytotoxicity of this polymer is high, and modification is one of the applicable strategies to overcome this problem. In this study, PEI was targeted with chlorotoxin (CTX) via N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) cross-linker. CTX can bind specifically to matrix metalloproteinase-2 that is overexpressed in certain cancers. Melittin as the major component of bee venom has been reported to have anti-cancer activity. This was thus selected to deliver to PC3 cell line. Flow cytometry analysis revealed that transfection efficiency of targeted nanoparticles is significantly higher compared to non-targeted nanoparticles. Targeted nanoparticles carrying the melittin gene also decreased cell viability of PC3 cells significantly while no toxic effects were observed on NIH3T3 cell line. Therefore, CTX-targeted nanoparticles carrying the melittin gene could serve as an appropriate gene delivery system for prostate and other MMP-2 positive cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Micropattern printing of adhesion, spreading, and migration peptides on poly(tetrafluoroethylene) films to promote endothelialization.

    Gauvreau, Virginie; Laroche, Gaétan

    2005-01-01

    We report here the development of an original multistep micropatterning technique for printing peptides on surfaces, based on the ink-jet printer technology. Contrary to most micropatterning methods used nowadays, this technique is advantageous because it allows displaying 2D-arrays of multiple biomolecules. Moreover, this low cost procedure allies the advantages of computer-aided design with high flexibility and reproducibility. A Hewlett-Packard printer was modified to print peptide solutions, and Adobe Illustrator was used as the graphic-editing software to design high-resolution checkerboard-like micropatterns. In a first step, PTFE films were treated with ammonia plasma to introduce amino groups on the surface. These chemical functionalities were reacted with heterobifunctional cross-linker sulfo-succinimidyl 4-(N-maleimidomethyl)cycloexane-1-carboxylate (S-SMCC) to allow the subsequent surface covalent conjugation of various cysteine-modified peptides to the polymer substrate. These peptidic molecules containing RGD and WQPPRARI sequences were selected for their adhesive, spreading, and migrational properties toward endothelial cells. On one hand, our data demonstrated that the initial cell adhesion does not depend on the chemical structure and combination of the peptides covalently bonded either through conventional conjugation or micropatterning. On the other hand, spreading and migration of endothelial cells is clearly enhanced while coconjugating the GRGDS peptide in conjunction with WQPPRARI. This behavior is further improved by micropatterning these peptides on specific areas of the polymer surface.

  8. Serodiagnostic potential of immuno-PCR using a cocktail of mycobacterial antigen 85B, ESAT-6 and cord factor in tuberculosis patients.

    Singh, Netrapal; Sreenivas, Vishnubhatla; Sheoran, Abhishek; Sharma, Suman; Gupta, Krishna B; Khuller, Gopal K; Mehta, Promod K

    2016-01-01

    A novel indirect immuno-polymerase chain reaction (I-PCR) assay was developed for the detection of circulating anti-Ag85B (antigen 85B, Rv1886c), anti-ESAT-6 (early secretory antigenic target-6, Rv3875) and anti-cord factor (trehalose 6,6'-dimycolate) antibodies from the sera samples of pulmonary tuberculosis (PTB) and extrapulmonary tuberculosis (EPTB) patients and the results were compared with an analogous enzyme-linked immunosorbent assay (ELISA). We covalently attached the amino-modified reporter DNA to the dithiothreitol (DTT)-reduced anti-human IgG antibody through a chemical linker succinimidyl 4-[N-maleimidomethyl]-cyclohexane-1-carboxylate (SMCC). The detection of cocktail of anti-Ag85B, anti-ESAT-6 and anti-cord factor antibodies was found to be superior to the detection of individual antibodies. The sensitivities of 89.5% and 77.5% with I-PCR and 70.8% and 65% with ELISA were observed in smear-positive and smear-negative PTB cases, respectively with high specificity (90.9%). On the other hand, a sensitivity of 77.5% with I-PCR and 65% with ELISA was observed in EBTB cases. The detection of cocktail of antibodies by I-PCR is likely to improve the utility of existing algorithms for TB diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events.

    Yoo, Min-Sang; Shin, Minguk; Kim, Younghun; Jang, Min; Choi, Yoon-E; Park, Si Jae; Choi, Jonghoon; Lee, Jinyoung; Park, Chulhwan

    2017-05-01

    We developed a single-walled carbon nanotubes (SWCNTs)-based electrochemical biosensor for the detection of Bacillus subtilis, one of the microorganisms observed in Asian dust events, which causes respiratory diseases such as asthma and pneumonia. SWCNTs plays the role of a transducer in biological antigen/antibody reaction for the electrical signal while 1-pyrenebutanoic acid succinimidyl ester (1-PBSE) and ant-B. subtilis were performed as a chemical linker and an acceptor, respectively, for the adhesion of target microorganism in the developed biosensor. The detection range (10 2 -10 10  CFU/mL) and the detection limit (10 2  CFU/mL) of the developed biosensor were identified while the response time was 10 min. The amount of target B. subtilis was the highest in the specificity test of the developed biosensor, compared with the other tested microorganisms (Staphylococcus aureus, Flavobacterium psychrolimnae, and Aquabacterium commune). In addition, target B. subtilis detected by the developed biosensor was observed by scanning electron microscope (SEM) analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. In-Culture Cross-Linking of Bacterial Cells Reveals Large-Scale Dynamic Protein-Protein Interactions at the Peptide Level.

    de Jong, Luitzen; de Koning, Edward A; Roseboom, Winfried; Buncherd, Hansuk; Wanner, Martin J; Dapic, Irena; Jansen, Petra J; van Maarseveen, Jan H; Corthals, Garry L; Lewis, Peter J; Hamoen, Leendert W; de Koster, Chris G

    2017-07-07

    Identification of dynamic protein-protein interactions at the peptide level on a proteomic scale is a challenging approach that is still in its infancy. We have developed a system to cross-link cells directly in culture with the special lysine cross-linker bis(succinimidyl)-3-azidomethyl-glutarate (BAMG). We used the Gram-positive model bacterium Bacillus subtilis as an exemplar system. Within 5 min extensive intracellular cross-linking was detected, while intracellular cross-linking in a Gram-negative species, Escherichia coli, was still undetectable after 30 min, in agreement with the low permeability in this organism for lipophilic compounds like BAMG. We were able to identify 82 unique interprotein cross-linked peptides with cross-links occur in assemblies involved in transcription and translation. Several of these interactions are new, and we identified a binding site between the δ and β' subunit of RNA polymerase close to the downstream DNA channel, providing a clue into how δ might regulate promoter selectivity and promote RNA polymerase recycling. Our methodology opens new avenues to investigate the functional dynamic organization of complex protein assemblies involved in bacterial growth. Data are available via ProteomeXchange with identifier PXD006287.

  11. Enhancement of anti-tumor activity of hybrid peptide in conjugation with carboxymethyl dextran via disulfide linkers.

    Gaowa, Arong; Horibe, Tomohisa; Kohno, Masayuki; Tabata, Yasuhiko; Harada, Hiroshi; Hiraoka, Masahiro; Kawakami, Koji

    2015-05-01

    To improve the anti-tumor activity of EGFR2R-lytic hybrid peptide, we prepared peptide-modified dextran conjugates with the disulfide bonds between thiolated carboxymethyl dextran (CMD-Cys) and cysteine-conjugated peptide (EGFR2R-lytic-Cys). In vitro release studies showed that the peptide was released from the CMD-s-s-peptide conjugate in a concentration-dependent manner in the presence of glutathione (GSH, 2μM-2mM). The CMD-s-s-peptide conjugate exhibited a similar cytotoxic activity with free peptide alone against human pancreatic cancer BxPC-3 cells in vitro. Furthermore, it was shown that the CMD-s-s-peptide conjugates were highly accumulated in tumor tissue in a mouse xenograft model using BxPC-3 cells, and the anti-tumor activity of the conjugate was more effective than that of the free peptide. In addition, the plasma concentrations of peptide were moderately increased and the elimination half-life of the peptide was prolonged after intravenous injection of CMD-s-s-peptide conjugates. These results demonstrated that the conjugate based on thiolated CMD polymer would be potentially useful carriers for the sustained release of the hybrid peptide in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Screening novel candidates and exploring design strategies for organic dye sensitizers with rigid π-linker: A theoretical study

    Zhu, Kai-Li [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070 Gansu (China); College of Chemistry and Life Science, Gansu Normal University for Nationalities, Hezuo, 747000 Gansu (China); Liu, Le-Yan [College of Chemistry and Life Science, Gansu Normal University for Nationalities, Hezuo, 747000 Gansu (China); Geng, Zhi-Yuan, E-mail: zhiyuangeng@126.com [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070 Gansu (China); Yan, Pen-Ji; Lu, Yan-Hong; Liu, Rui-Rui [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070 Gansu (China)

    2015-07-15

    Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations have been carried out to explore the underlying origin of merits for rigid π-spacer based on reference dyes C255 and C254. The results demonstrate that higher short-circuit current density (J{sub SC}) of C255 is primarily ascribed to the lower EBE, while the biggish short-circuit current density (V{sub OC}) mainly originates from the larger μ{sub normal} compared to C254. Besides, a novel index integral of overlap between hole and electron (S) is firstly introduced to quantitatively estimate the facility of intramolecular charge transfer (ICT) and preliminarily confirmed to be effective for the research target of this work. Furthermore, three series of dyes (C-series, A-series, AC-series) have been designed and characterized to screen promising sensitizer candidates and design strategies, while delightful results have been achieved including 6 promising candidates, design stratagem on efficiently reducing the charge recombination and combinational tactics on screening new dyes with excellent spectral properties or outstanding DSSC performance. - Graphical abstract: Display Omitted - Highlights: • Novel S index was introduced in and confirmed to be effective to estimate ICT. • The merits of rigid π bridge have been theoretically revealed. • Six promising candidates have been screened out. • New strategy on reduce charge recombination was reported. • Novel combinational tactics were acquired and justified to be feasible.

  13. Periodically arranged benzene-linker molecules on boron-doped single-crystalline diamond films for DNA

    Shin, D.; Tokuda, N.; Rezek, Bohuslav; Nebel, C.E.

    2006-01-01

    Roč. 8, - (2006), s. 844-850 ISSN 1388-2481 Institutional research plan: CEZ:AV0Z10100521 Keywords : electrochemical surface modification * single-crystalline CVD diamond * covalent DNA Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.484, year: 2006

  14. Effects of single and double bonds in linkers on colorimetric and fluorescent sensing properties of polyving akohol grafting rhodamine hydrazides.

    Geng, Tong-Mou; Wang, Xie; Wang, Zhu-Qing; Chen, Tai-Jie; Zhu, Hai; Wang, Yu

    2015-03-01

    Two rhodamine derivatives, N-mono-maleic acid amide-N'-rhodamine B hydrazide (MRBH) and N-mono-succinic acid amide-N'-rhodamine 6G hydrazide (SR6GH), were synthesized by amidation with maleic anhydride (MAH), succinic anhydride (SAH) and rhodamine B hydrazide, rhodamine 6G hydrazide, which were identified by FTIR, (1)H NMR and elemental analysis. Two water-soluble fluorescent materials (PVA-MRBH and PVA-SR6GH) were prepared via esterification reaction with N-mono-maleic acyl chloride amide-N'-rhodamine B hydrazide (MRBHCl) or N-mono-maleic acyl chloride amide-N'-rhodamine 6G hydrazide (SR6GHCl) and poly(vinyl alcohol) (PVA) in DMSO solution. The sensing behaviors of PVA-MRBH and PVA-SR6GH were explored by recording the fluorescence spectra in completely aqueous solution. Upon the addition of Cu(2+) and Fe(3+) ions to the aqueous solution of PVA-MRBH, visual color change from rose pink to amaranth and orange for Cu(2+) and Fe(3+) ions, respectively, and fluorescence quenching were observed. Titration of Cu(2+), Fe(3+), Cr(3+) or Hg(2+) into the aqueous solution of PVA-SR6GH, although they induced fluorescence enhancement, only Fe(3+) made the color changing from colorless to yellow. Moreover, other metal ions did not induce obvious changes to color and the fluorescence spectra.

  15. Surface Modification of Titanium with BMP-2/GDF-5 by a Heparin Linker and Its Efficacy as a Dental Implant

    Dae Hyeok Yang

    2017-01-01

    Full Text Available In this study, we prepared human bone morphogenetic protein-2 (hBMP-2/human growth and differentiation factor-5 (hGDF-5-coated titanium (Ti disc and screw types for controlled release of the growth factors (GFs. The two growth factors were coated onto Ti with a smooth surface using their specific interaction with heparin, because they have heparin binding sites in their molecular structures. Efficacy of the two growth factor-coated Ti for enhancement of bone formation and osseointegration was compared to pristine Ti, and hBMP-2- and hGDF-5-coated Ti in vivo. The surface chemical composition, surface morphology, and wettability characteristics of the metal samples were determined by X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM, and contact angle measurement, respectively. The initial burst of hBMP-2, hGDF-5, and their combination, occurred within one day of the release study, resulting in 12.5%, 4.5%, and 13.5%/3.2%, and then there was a sustained, even release of these two growth factors from the coated metal for 30 days. In vitro tests revealed that MC3T3-E1 cells cultured on the two growth factor-coated Ti had a higher proliferation rate and a higher activity for alkaline phosphatase (ALP, which led to a larger amount of calcium deposition and larger expressions of type I collagen (COL 1, ALP, and osteocalcin (OCN mRNAs. In vivo animal tests using ten white New Zealand rabbits showed that the two growth factor-coated Ti enhanced bone formation and osseointegration at the interface between the implants and host bone. In addition, histological evaluation showed that bone remodeling, including bone formation by osteoblasts and bone resorption by osteoclasts, actively occurred between the two growth factor-coated Ti and host bone. Consequently, it is suggested that Ti surface modification with the combination of hBMP-2 and hGDF-5 for the two growth factor-coated Ti implants can improve the clinical properties of implants for orthopedic and dental applications.

  16. Multi-component polymeric system for tumour cell-specific gene delivery using a universal bungarotoxin linker

    Willemsen, R. A.; Pechar, Michal; Carlisle, R. C.; Schooten, E.; Pola, Robert; Thompson, A. J.; Seymour, L. W.; Ulbrich, Karel

    2010-01-01

    Roč. 27, č. 11 (2010), s. 2274-2282 ISSN 0724-8741 R&D Projects: GA ČR GA203/08/0543; GA AV ČR KAN200200651 Institutional research plan: CEZ:AV0Z40500505 Keywords : adenovirus * hydrophilic polymers * tumour targeting Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.456, year: 2010

  17. Arabidopsis PCaP2 Functions as a Linker Between ABA and SA Signals in Plant Water Deficit Tolerance

    Xianling Wang

    2018-05-01

    Full Text Available Water stress has a major influence on plant growth, development, and productivity. However, the cross-talk networks involved in drought tolerance are not well understood. Arabidopsis PCaP2 is a plasma membrane-associated Ca2+-binding protein. In this study, we employ qRT-PCR and β-glucuronidase (GUS histochemical staining to demonstrate that PCaP2 expression was strongly induced in roots, cotyledons, true leaves, lateral roots, and whole plants under water deficit conditions. Compared with the wild type (WT plants, PCaP2-overexpressing (PCaP2-OE plants displayed enhanced water deficit tolerance in terms of seed germination, seedling growth, and plant survival status. On the contrary, PCaP2 mutation and reduction via PCaP2-RNAi rendered plants more sensitive to water deficit. Furthermore, PCaP2-RNAi and pcap2 seedlings showed shorter root hairs and lower relative water content compared to WT under normal conditions and these phenotypes were exacerbated under water deficit. Additionally, the expression of PCaP2 was strongly induced by exogenous abscisic acid (ABA and salicylic acid (SA treatments. PCaP2-OE plants showed insensitive to exogenous ABA and SA treatments, in contrast to the susceptible phenotypes of pcap2 and PCaP2-RNAi. It is well-known that SNF1-related kinase 2s (SnRK2s and pathogenesis-related (PRs are major factors that influence plant drought tolerance by ABA- and SA-mediated pathways, respectively. Interestingly, PCaP2 positively regulated the expression of drought-inducible genes (RD29A, KIN1, and KIN2, ABA-mediated drought responsive genes (SnRK2.2, -2.3, -2.6, ABF1, -2, -3, -4, and SA-mediated drought responsive genes (PR1, -2, -5 under water deficit, ABA, or SA treatments. Taken together, our results showed that PCaP2 plays an important and positive role in Arabidopsis water deficit tolerance by involving in response to both ABA and SA signals and regulating root hair growth. This study provides novel insights into the underlying cross-talk mechanisms of plants in response to water deficit stress.

  18. Poly-N-Heterocyclic Carbene Ligands with Polyaromatic Linkers. Self-Assembly and Host-Guest Chemistry

    Mejuto Nieblas, Carmen

    2017-01-01

    In summary, a series of polytopic ligands based on NHC and MIC ligands have been synthesized in this Doctoral Thesis by means of different synthetic routes that gave rise to systems with very sophisticated architectures. A large variety of metal complexes have been formed based on these salt precursors that allowed the preparation of homo and heteroleptic mono-, di- and tri-metal complexes with different geometries. The luminescence properties of various imidazolium salts, the catalytic activ...

  19. Fanconi anemia genes act to suppress a cross-linker-inducible p53-independent apoptosis pathway in lymphoblastoid cell lines

    Kruyt, F. A.; Dijkmans, L. M.; van den Berg, T. K.; Joenje, H.

    1996-01-01

    Hypersensitivity to cross-linking agents such as mitomycin C (MMC) is characteristic of cells from patients suffering from the inherited bone marrow failure syndrome. Fanconi anemia (FA). Here, we link MMC hypersensitivity of Epstein-Barr virus (EBV)-immortalized FA lymphoblasts to a high

  20. The LILI Motif of M3-S2 Linkers Is a Component of the NMDA Receptor Channel Gate

    Ladislav, Marek; Černý, Jiří; Krůšek, Jan; Balík, Aleš; Vyklický ml., Ladislav

    2018-01-01

    Roč. 11, Apr 6 (2018), č. článku 113. ISSN 1662-5099 R&D Projects: GA ČR(CZ) GA17-02300S; GA TA ČR(CZ) TE01020028; GA MZd(CZ) NV15-29370A; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : glutamate receptor gating * electrophysiology * spontaneous activity * channel open probability * protein block alphabet * molecular modeling Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 5.076, year: 2016

  1. Phosphonate self-assembled monolayers as organic linkers in solid-state quantum dot sensetized solar cells

    Ardalan, Pendar; Brennan, Thomas P.; Bakke, Jonathan R.; Bent, Stacey F.

    2010-01-01

    We have employed X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) spectroscopy, infrared (IR) spectroscopy, water contact angle (WCA) measurements, ellipsometry, and electrical measurements to study the effects of self

  2. A pair of polymorphous metal-organic frameworks based on an angular diisophthalate linker: synthesis, characterization and gas adsorption properties.

    Chen, Fengli; Bai, Dongjie; Wang, Yao; He, Minghui; Gao, Xiaoxia; He, Yabing

    2018-01-15

    The combination of an angular diisophthalate ligand, 5,5'-(naphthyl-2,7-yl)diisophthalate (H 4 L), and copper ions under different solvothermal conditions afforded two polymorphous metal-organic frameworks (ZJNU-77 and ZJNU-78) with the same framework composition of [Cu 2 (L)(H 2 O) 2 ], providing a platform to investigate the relationship between MOF polymorphism and gas adsorption properties. As determined by single-crystal X-ray diffraction, ZJNU-77 and ZJNU-78 exhibited three-dimensional networks crystallizing in different space groups. Their structural differences were mainly manifested by the ligand's conformation, the level of framework interpenetration and the network's topology. Interestingly, gas adsorption studies showed that the two compounds after desolvation displayed comparable gas adsorption properties with respect to C 2 H 2 , CO 2 and CH 4 , despite their different surface areas and pore volumes. The C 2 H 2 , CO 2 , and CH 4 uptake capacities at 298 K and 1 atm are 120.2, 78.1, and 18.4 cm 3 (STP) g -1 for ZJNU-77, and 122.0, 82.0, and 18.9 cm 3 (STP) g -1 for ZJNU-78, respectively. The IAST adsorption selectivities for the equimolar C 2 H 2 /CH 4 and CO 2 /CH 4 mixtures are 28.6 and 5.7 for ZJNU-77, and 28.4 and 5.9 for ZJNU-78 at 298 K and 1 atm. These results indicate that besides the surface area, the pore size also plays a crucial role in gas adsorption. This work not only represents an intriguing example of MOF polymorphism achieved by controlling solvothermal conditions, but also provides an insight into the correlation between MOF polymorphism and gas adsorption properties.

  3. Triazene-Based Traceless Linkers for DNA-Directed Chemistry and Development of Methods for Linking Nanomaterials to DNA Origami

    Hejesen, Christian

    2013-01-01

    , kan triazen linkeren ydermere introducere ny kemi på en DNA streng ved kløvning. Det andet projekt, der er beskrevet i dette kapitel, omhandler de indledende studier og resultater for en DNA-dirigeret palladium katalyseret Suzuki-Miyaura krydskobling. I kapitel 3 bliver DNA origami feltet kort...... med ren DNA bliver kulstof-nanorørene dispergeret med syntetisk polymer der indeholder DNA. Denne polymer gør det muligt at binde kulstof-nanorørene på en DNA origami, der så kan analyseret ved hjælp af atomar kraftmikroskopi. Kapitel 4 omhandler et projekt omhandler arbejde der er udført ved Arizona...

  4. Mapping the Binding Site for Escitalopram and Paroxetine in the Human Serotonin Transporter Using Genetically Encoded Photo-Cross-Linkers

    Rannversson, Hafsteinn; Andersen, Jacob; Bang-Andersen, Benny

    2017-01-01

    amber codon suppression in hSERT to encode the photo-cross-linking unnatural amino acid p-azido-l-phenylalanine into the suggested high- and low-affinity binding sites. We then employ UV-induced cross-linking with azF to map the binding site of escitalopram and paroxetine, two prototypical selective...... serotonin reuptake inhibitors (SSRIs). We find that the two antidepressant drugs exclusively cross-link to azF incorporated at the high-affinity binding site of hSERT, while cross-linking is not observed at the low-affinity binding site. Combined with previous homology models and recent structural data on h...

  5. A potential strategy to treat liver fibrosis : Drug targeting to hepatic stellate cells applying a novel linker technology

    Gonzalo Lázaro, Teresa

    2006-01-01

    Liver fibrosis is the 9th leading cause of death in the world. This chronic disease cannot be treated successfully with conventional antifibrotic and anti-inflammatory drugs currently on the market, because they either lack efficacy or cause too many side-effects. Targeting of antifibrotic agents to

  6. Joining the un-joinable: adhesion between low surface energy polymers using tetrapodal ZnO linkers.

    Jin, Xin; Strueben, Jan; Heepe, Lars; Kovalev, Alexander; Mishra, Yogendra K; Adelung, Rainer; Gorb, Stanislav N; Staubitz, Anne

    2012-11-08

    Tetrapodal ZnO crystals are used for mechanical interlocking of PTFE and cross-linked PDMS, classically non-adhesive polymers. This novel approach is straightforward and easily applicable and leads to a peel strength that is higher than 200 N m(-1) without chemical modification of the surfaces. The shape of these fillers emerged as a crucial aspect of the interlocking mechanism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Single step purification of recombinant proteins using the metal ion-inducible autocleavage (MIIA) domain as linker for tag removal.

    Ibe, Susan; Schirrmeister, Jana; Zehner, Susanne

    2015-08-20

    For fast and easy purification, proteins are typically fused with an affinity tag, which often needs to be removed after purification. Here, we present a method for the removal of the affinity tag from the target protein in a single step protocol. The protein VIC_001052 of the coral pathogen Vibrio coralliilyticus ATCC BAA-450 contains a metal ion-inducible autocatalytic cleavage (MIIA) domain. Its coding sequence was inserted into an expression vector for the production of recombinant fusion proteins. Following, the target proteins MalE and mCherry were produced as MIIA-Strep fusion proteins in Escherichia coli. The target proteins could be separated from the MIIA-Strep part simply by the addition of calcium or manganese(II) ions within minutes. The cleavage is not affected in the pH range from 5.0 to 9.0 or at low temperatures (6°C). Autocleavage was also observed with immobilized protein on an affinity column. The protein yield was similar to that achieved with a conventional purification protocol. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. On the Creation of Hypertext Links in Full-Text Documents: Measurement of Inter-Linker Consistency.

    Ellis, David; And Others

    1994-01-01

    Describes a study in which several different sets of hypertext links are inserted by different people in full-text documents. The degree of similarity between the sets is measured using coefficients and topological indices. As in comparable studies of inter-indexer consistency, the sets of links used by different people showed little similarity.…

  9. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: The Role of Defects

    Szilágyi, Petra Ágota, E-mail: p.a.szilagyi@greenwich.ac.uk [Department of Pharmaceutical, Chemical and Environmental Sciences, University of Greenwich, Chatham (United Kingdom); Serra-Crespo, Pablo [Department of Radiation Science and Technology, Delft University of Technology, Delft (Netherlands); Gascon, Jorge [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands); Geerlings, Hans [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands); Shell Technology Centre, Amsterdam (Netherlands); Dam, Bernard [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands)

    2016-03-29

    Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. However, its vehicular application will only be widespread if safe and high-capacity methane stores are developed. In this work, we report an over 33% increase in methane uptake on a post-synthetically modified metal–organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  10. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: the Role of Defects

    Petra Agota Szilagyi

    2016-03-01

    Full Text Available Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. Its vehicular application however will only be widespread if safe and high-capacity methane stores are developed. In this work report an over 33% increase in methane uptake on a post-synthetically modified metal-organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  11. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: The Role of Defects

    Szilágyi, Petra Ágota; Serra-Crespo, Pablo; Gascon, Jorge; Geerlings, Hans; Dam, Bernard

    2016-01-01

    Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. However, its vehicular application will only be widespread if safe and high-capacity methane stores are developed. In this work, we report an over 33% increase in methane uptake on a post-synthetically modified metal–organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  12. An unusual mono-substituted Keggin anion-chain based 3D framework with 24-membered macrocycles as linker units

    Pang Haijun; Ma Huiyuan; Yu Yan; Yang Ming; Xun Ye; Liu Bo

    2012-01-01

    A new compound, [Cu I (H 2 O)(Hbpp) 2 ]⊂{[Cu I (bpp)] 2 [PW 11 Cu II O 39 ]} (1) (bpp=1,3-bis(4-pyridyl)propane), has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. In compound 1, the unusual –A–B–A–B– array mono-substituted Keggin anion-chains and 24-membered (Cubpp) 2 cation-macrocycles are linked together to form a (2, 4) connected 3D framework with channels of ca. 9.784×7.771 Å 2 along two directions, in which the [Cu(H 2 O)(Hbpp) 2 ] coordination fragments as guest components are trapped. The photocatalytic experiments of compound 1 were performed, which show a good catalytic activity of compound 1 for photodegradation of RhB. Furthermore, the IR, TGA and electrochemical properties of compound 1 were investigated. - Graphical abstract: An unusual example of mono-substituted Keggin anion-chain based hybrid compound that possesses a 3D structure has been synthesized, which offers a feasible route for synthesis of such compounds. Highlights: ► The first example of –A–B–A–B– array mono-substituted Keggin chain is observed. ► An unusual three dimensional structure based mono-substituted Keggin anion-chains. ► The photocatalysis and electrochemical properties of the title compound were studied.

  13. Functional and Structural Characterization of Novel Type of Linker Connecting Capsid and Nucleocapsid Protein Domains in Murine Leukemia Virus

    Doležal, Michal; Hadravová, Romana; Kožíšek, Milan; Bednárová, Lucie; Langerová, H.; Ruml, T.; Rumlová, Michaela

    2016-01-01

    Roč. 291, č. 39 (2016), s. 20630-20642 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA14-15326S; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : circular dichroism (CD) * electron microscopy (EM) * nuclear magnetic resonance (NMR) * retrovirus * virus assembly Subject RIV: CE - Biochemistry Impact factor: 4.125, year: 2016

  14. Methacrylate based cross-linkers for improved thermomechanical properties and retention of radiation detection response in plastic scintillators

    Mahl, Adam; Lim, Allison; Latta, Joseph; Yemam, Henok A.; Greife, Uwe; Sellinger, Alan

    2018-03-01

    Pulse shape discrimination (PSD) is an important method that can efficiently sort and separate neutron and gamma radiation signals. PSD is currently achieved in plastic scintillators by over-doping poly(vinyl toluene) (PVT) matrices with fluorescent molecules. Meaningful separation of the signals requires addition of >20 wt% 2,5-diphenyloxazole (PPO) fluor in PVT. At these concentrations PPO acts as a plasticizer, negatively affecting the physical properties of the final plastic such as hardness, machinability, and thermomechanical stability. This work addresses these issues by implementing a cost-effective solution using cross-linking chemistry via commercially available bisphenol A dimethacrylate (BPA-DM), and a synthesized fluorinated analogue. Both improve the physical properties of over-doped PPO based plastic scintillators without degrading the measured light yield or PSD and Figure of Merit (FoM). In addition, the fluorinated analogue appears to enhance the hydrophobicity of the surface of the plastic scintillators, which may improve the scintillators' resistance to water diffusion and subsequent radiation response degradation. The new formulations improve the feasibility of widely deploying long lifetime PSD capable plastic scintillators in large area coverage assemblies.

  15. Celecoxib coupled to dextran via a glutamic acid linker yields a polymeric prodrug suitable for colonic delivery.

    Lee, Yonghyun; Kim, Jungyun; Kim, Wooseong; Nam, Joon; Jeong, Seongkeun; Lee, Sunyoung; Yoo, Jin-Wook; Kim, Min-Soo; Jung, Yunjin

    2015-01-01

    Celecoxib, a selective cyclooxygenase-2 inhibitor, is potentially useful for the treatment of colonic diseases such as colorectal cancer and colitis. However, the cardiovascular toxicity of celecoxib limits its routine use in the clinic. Generally, colon-specific delivery of a drug both increases the therapeutic availability in the large intestine and decreases the systemic absorption of the drug, most likely resulting in enhanced therapeutic effects against colonic diseases such as colitis and reduced systemic side effects. To develop a colon-specific prodrug of celecoxib that could reduce its cardiovascular toxicity and improve its therapeutic activity, dextran-glutamic acid-celecoxib conjugate (glutam-1-yl celecoxib-dextran ester [G1CD]) was prepared and evaluated. While stable in pH 1.2 and 6.8 buffer solutions and small-intestinal contents, G1CD efficiently released celecoxib in cecal contents. Oral administration of G1CD to rats delivered a larger amount of celecoxib to the large intestine than free celecoxib. G1CD prevented the systemic absorption of celecoxib and did not decrease the serum level of 6-ketoprostaglandin F1α, an inverse indicator of cardiovascular toxicity of celecoxib. Collectively, G1CD may be a polymeric colon-specific celecoxib prodrug with therapeutic and toxicological advantages.

  16. Emergence of Nonlinear Optical Activity by Incorporation of a Linker Carrying the p-Nitroaniline Motif in MIL-53 Frameworks

    Markey, Karen; Krüger, Martin; Seidler, Tomasz; Reinsch, Helge; Verbiest, Thierry; De Vos, Dirk E.; Champagne, Benoît; Stock, Norbert; van der Veen, M.A.

    2017-01-01

    p-Nitroaniline presents the typical motif of a second-order nonlinear optically (NLO) active molecule. However, because of its crystallization in an antiparallel and hence centrosymmetric structure, the NLO activity is lost. In this contribution, the p-nitroaniline motif was built successfully

  17. Target and identify: triazene linker helps identify azidation sites of labelled proteins via click and cleave strategy.

    Lohse, Jonas; Schindl, Alexandra; Danda, Natasha; Williams, Chris P; Kramer, Karl; Kuster, Bernhard; Witte, Martin D; Médard, Guillaume

    2017-10-31

    A method for identifying probe modification of proteins via tandem mass spectrometry was developed. Azide bearing molecules are immobilized on functionalised sepharose beads via copper catalysed Huisgen-type click chemistry and selectively released under acidic conditions by chemical cleavage of the triazene linkage. We applied this method to identify the modification site of targeted-diazotransfer on BirA.

  18. Non-T cell activation linker (NTAL) negatively regulates TREM-1/DAP12-induced inflammatory cytokine production in myeloid cells

    Tessarz, A.S.; Weiler, S.; Zanzinger, K.; Angelisová, Pavla; Hořejší, Václav; Cerwenka, A.

    2007-01-01

    Roč. 178, č. 4 (2007), s. 1991-1999 ISSN 0022-1767 R&D Projects: GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : NTAL * TREM-1 * cytokines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.068, year: 2007

  19. Nonsensing residues in S3-S4 linker's C terminus affect the voltage sensor set point in K+ channels.

    Carvalho-de-Souza, Joao L; Bezanilla, Francisco

    2018-02-05

    Voltage sensitivity in ion channels is a function of highly conserved arginine residues in their voltage-sensing domains (VSDs), but this conservation does not explain the diversity in voltage dependence among different K + channels. Here we study the non-voltage-sensing residues 353 to 361 in Shaker K + channels and find that residues 358 and 361 strongly modulate the voltage dependence of the channel. We mutate these two residues into all possible remaining amino acids (AAs) and obtain Q-V and G-V curves. We introduced the nonconducting W434F mutation to record sensing currents in all mutants except L361R, which requires K + depletion because it is affected by W434F. By fitting Q-Vs with a sequential three-state model for two voltage dependence-related parameters ( V 0 , the voltage-dependent transition from the resting to intermediate state and V 1 , from the latter to the active state) and G-Vs with a two-state model for the voltage dependence of the pore domain parameter ( V 1/2 ), Spearman's coefficients denoting variable relationships with hydrophobicity, available area, length, width, and volume of the AAs in 358 and 361 positions could be calculated. We find that mutations in residue 358 shift Q-Vs and G-Vs along the voltage axis by affecting V 0 , V 1 , and V 1/2 according to the hydrophobicity of the AA. Mutations in residue 361 also shift both curves, but V 0 is affected by the hydrophobicity of the AA in position 361, whereas V 1 and V 1/2 are affected by size-related AA indices. Small-to-tiny AAs have opposite effects on V 1 and V 1/2 in position 358 compared with 361. We hypothesize possible coordination points in the protein that residues 358 and 361 would temporarily and differently interact with in an intermediate state of VSD activation. Our data contribute to the accumulating knowledge of voltage-dependent ion channel activation by adding functional information about the effects of so-called non-voltage-sensing residues on VSD dynamics. © 2018 Carvalho-de-Souza and Bezanilla.

  20. The influence of increased cross-linker chain length in thermosensitive microspheres on potential sun-protection activity

    Musiał, Witold; Kokol, Vanja; Vončina, Bojana

    2012-01-01

    The sun protection should involve substances with protecting activity against both UVB and UVA radiation. In this research the evaluation of thermosensitive microspheres as potential molecules for sunscreen formulations was approached, using modified Boots star rating system. The microspheres, thermosensitive N-isopropylacrylamide derivatives, have potential protecting activity against UV radiation. The MX and DX microspheres, with ethylene glycol dimethacrylate and diethylene glycol dimethac...

  1. The influence of increased cross-linker chain length in thermosensitive microspheres on potential sun-protection activity.

    Musiał, Witold; Kokol, Vanja; Voncina, Bojana

    2010-01-01

    The sun protection should involve substances with protecting activity against both UVB and UVA radiation. In this research the evaluation of thermosensitive microspheres as potential molecules for sunscreen formulations was approached, using modified Boots star rating system. The microspheres, thermosensitive N-isopropylacrylamide derivatives, have potential protecting activity against UV radiation. The MX and DX microspheres, with ethylene glycol dimethacrylate and diethylene glycol dimethacrylate crosslinker respectively, due to theirs thermosensitivity exhibit increase in protecting activity against UV radiation when heated to 45 degrees C. The MX microspheres have higher increase in terms of UV absorbance, comparing to DX microspheres, when heated in the 25 degrees C to 45 degrees C range. Studied microspheres have high potential for application as components of sun-screens used in elevated temperatures.

  2. Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide.

    Dijkgraaf, I.; Liu, S.; Kruijtzer, J.A.; Soede, A.C.; Oyen, W.J.G.; Liskamp, R.M.; Corstens, F.H.M.; Boerman, O.C.

    2007-01-01

    INTRODUCTION: Due to the selective expression of the alpha(v)beta3 integrin in tumors, radiolabeled arginine-glycine-aspartic acid (RGD) peptides are attractive candidates for tumor targeting. Minor modifications of these peptides could have a major impact on in vivo characteristics. In this study,

  3. Preparation of 99mTc-HYNIC-PEG-liposomes for imaging of the focal sites infection

    Hong, Jun Pyo; Awh, Ok Doo; Kim, Hyun Suk; Lee, Eun Sook; Lee, Tae Sup; Choi, Tae Hyun; Choi, Chang Woon; Lim, Sang Moo

    2002-01-01

    A new linker, hydrazino nicotinamide (HYNIC), was recently introduced for labelling of liposome with 99m Tc. In this study we synthesized HYNIC derivatized PEG (polyethylene glycol)-liposomes radiolabeled with 99m Tc. In order to synthesize HYNIC-DSPE (distearoyl phosphatidyl ethanolamine) which is a crucial component for 99m Tc chelation, first of all succinimidyl 6-BOC-hydrazinopyridine-3-carboxylic acid was synthesized from 6-chloronicotinic acid by three sequential reactions. A DSPE derivative of succinimidyl 6-BOC-hydrazinopyridine-3-carboxylic acid was transformed into HYNIC-DSPE by HCI/dioxane. HYNIC-PEG-liposomes were prepared by hydration of the dried lipid mixture of EPC (egg phosphatidyl choline): PEG-DSPE : HYNIC-DSPE: cholesterol (1.85:0.15:0.07:1, molar ratio). The HYNIC-PEG-liposomes were labeled with 99m Tc in the presence of SnCl 2 ·2H 2 O (a reducing agent) and tricine (a colignad). To investigate the level of in vivo transchelation of 99m Tc in the liposomes, the 99m Tc-HYNIC-PEG-liposomes were incubated with a molar excess of DTPA, cysteine or glutathione solutions at 37 .deg. C for 24 hours. 6-BOC-hydrazinopyridine-3-carboxylic acid was synthesized with 77.3% overall yield. The HYNIC concentration in the PEG-coated liposome dispersion was 1.08 mM. In condition of considering the measured liposome size of 106 nm, the phospholipid concentration of 77.5 μmol/ ml and the liposomal particle number of 5.2x10 14 liposomes/ml, it is corresponded to approximate 1,250 nicotinyl hydrazine group per liposome in HYNIC-PEG-liposome. The removal of free 99m Tc was not necessary because the labeling efficiency were above 99%. The radiolabeled liposomes maintained 98%, 96% and 99%, respectively, of radioactivity after incubation with transchelators. The radiolabeled liposomes possessed above 90% of the radioactivity in serum. These results suggest that the HYNIC can be synthesized easily and applied in labelling of PEG-liposomes with 99m Tc

  4. Development and Characterization of a Camelid Single Domain Antibody-Urease Conjugate That Targets Vascular Endothelial Growth Factor Receptor 2.

    Tian, Baomin; Wong, Wah Yau; Uger, Marni D; Wisniewski, Pawel; Chao, Heman

    2017-01-01

    Angiogenesis is the process of new blood vessel formation and is essential for a tumor to grow beyond a certain size. Tumors secrete the pro-angiogenic factor vascular endothelial growth factor, which acts upon local endothelial cells by binding to vascular endothelial growth factor receptors (VEGFRs). In this study, we describe the development and characterization of V21-DOS47, an immunoconjugate that targets VEGFR2. V21-DOS47 is composed of a camelid single domain anti-VEGFR2 antibody (V21) and the enzyme urease. The conjugate specifically binds to VEGFR2 and urease converts endogenous urea into ammonia, which is toxic to tumor cells. Previously, we developed a similar antibody-urease conjugate, L-DOS47, which is currently in clinical trials for non-small cell lung cancer. Although V21-DOS47 was designed from parameters learned from the generation of L-DOS47, additional optimization was required to produce V21-DOS47. In this study, we describe the expression and purification of two versions of the V21 antibody: V21H1 and V21H4. Each was conjugated to urease using a different chemical cross-linker. The conjugates were characterized by a panel of analytical techniques, including SDS-PAGE, size exclusion chromatography, Western blotting, and LC-MS E peptide mapping. Binding characteristics were determined by ELISA and flow cytometry assays. To improve the stability of the conjugates at physiologic pH, the pIs of the V21 antibodies were adjusted by adding several amino acid residues to the C-terminus. For V21H4, a terminal cysteine was also added for use in the conjugation chemistry. The modified V21 antibodies were expressed in the E. coli BL21 (DE3) pT7 system. V21H1 was conjugated to urease using the heterobifunctional cross-linker succinimidyl-[( N -maleimidopropionamido)-diethyleneglycol] ester (SM(PEG) 2 ), which targets lysine resides in the antibody. V21H4 was conjugated to urease using the homobifunctional cross-linker, 1,8-bis(maleimido)diethylene glycol

  5. Development and Characterization of a Camelid Single Domain Antibody–Urease Conjugate That Targets Vascular Endothelial Growth Factor Receptor 2

    Baomin Tian

    2017-08-01

    Full Text Available Angiogenesis is the process of new blood vessel formation and is essential for a tumor to grow beyond a certain size. Tumors secrete the pro-angiogenic factor vascular endothelial growth factor, which acts upon local endothelial cells by binding to vascular endothelial growth factor receptors (VEGFRs. In this study, we describe the development and characterization of V21-DOS47, an immunoconjugate that targets VEGFR2. V21-DOS47 is composed of a camelid single domain anti-VEGFR2 antibody (V21 and the enzyme urease. The conjugate specifically binds to VEGFR2 and urease converts endogenous urea into ammonia, which is toxic to tumor cells. Previously, we developed a similar antibody–urease conjugate, L-DOS47, which is currently in clinical trials for non-small cell lung cancer. Although V21-DOS47 was designed from parameters learned from the generation of L-DOS47, additional optimization was required to produce V21-DOS47. In this study, we describe the expression and purification of two versions of the V21 antibody: V21H1 and V21H4. Each was conjugated to urease using a different chemical cross-linker. The conjugates were characterized by a panel of analytical techniques, including SDS-PAGE, size exclusion chromatography, Western blotting, and LC-MSE peptide mapping. Binding characteristics were determined by ELISA and flow cytometry assays. To improve the stability of the conjugates at physiologic pH, the pIs of the V21 antibodies were adjusted by adding several amino acid residues to the C-terminus. For V21H4, a terminal cysteine was also added for use in the conjugation chemistry. The modified V21 antibodies were expressed in the E. coli BL21 (DE3 pT7 system. V21H1 was conjugated to urease using the heterobifunctional cross-linker succinimidyl-[(N-maleimidopropionamido-diethyleneglycol] ester (SM(PEG2, which targets lysine resides in the antibody. V21H4 was conjugated to urease using the homobifunctional cross-linker, 1,8-bis

  6. In vitro evaluation of the astatinated chimeric monoclonal antibody U36, a potential candidate for treatment of head and neck squamous cell carcinoma

    Nestor, M.; Anniko, M. [Uppsala University, Unit of Otolaryngology and Head and Neck Surgery, Department of Surgical Sciences, Uppsala (Sweden); Persson, M. [Uppsala University, Unit of Urology, Department of Surgical Sciences, Uppsala (Sweden); Uppsala University, Unit of Biomedical Radiation Science, Department of Oncology, Radiology and Clinical Immunology, Uppsala (Sweden); Dongen, G.A.M.S. van [Vrije Universiteit Medical Center, Department of Otolaryngology/Head and Neck Surgery, Amsterdam (Netherlands); Jensen, H.J. [Righshospitalet, PET and Cyclotron Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen (Denmark); Lundqvist, H.; Tolmachev, V. [Uppsala University, Unit of Biomedical Radiation Science, Department of Oncology, Radiology and Clinical Immunology, Uppsala (Sweden)

    2005-11-01

    The purpose of this study was to analyse the properties of the astatinated chimeric MAb (cMAb) U36 as a conjugate to selectively target and eradicate head and neck squamous cell carcinoma (HNSCC). cMAb U36 was labelled with {sup 211}At via the linker N-succinimidyl 4-(trimethylstannyl)benzoate (SPMB). The quality of the conjugate was extensively evaluated for binding and internalisation capacity, and compared with {sup 125}I-SPMB-cMAb U36. The cellular toxicity of the astatinated conjugate was assessed in two types of in vitro growth assay and compared with {sup 131}I-labelled cMAb U36 (directly labelled). Comparisons between {sup 211}At-cMAb U36 and {sup 125}I-cMAb U36 demonstrated an optimal functional capacity of the labelled products. Immunoreactivity and affinity assays showed high immunoreactive fractions (>93%), and an affinity in good agreement between the astatinated and iodinated antibodies. For both conjugates, specific binding to HNSCC cells could be demonstrated, as well as some internalisation. Retention of the astatinated conjugate was just slightly lower than for the iodinated conjugate and still reasonable for therapeutic use (31{+-}2% vs 42.6{+-}1.0% at 22 h), demonstrating no adverse effects from astatination of the antibody. Studies on cellular toxicity demonstrated a dose-dependent and antigen-specific cellular toxicity for {sup 211}At-cMAb U36, with about 10% cell survival at 50 decays per cell. The {sup 131}I-labelled conjugate was not as efficient, with a surviving cell fraction of about 50% at 55 decays per cell. (orig.)

  7. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding

    Schmøkel, Julie; Voldum, Anders; Tsakiridou, Georgia; Kuhlmann, Matthias; Cameron, Jason; Sørensen, Esben S.; Wengel, Jesper; Howard, Kenneth A.

    2017-05-01

    Aptamers are an attractive molecular medicine that offers high target specificity. Nucleic acid-based aptamers, however, are prone to nuclease degradation and rapid renal excretion that require blood circulatory half-life extension enabling technologies. The long circulatory half-life, predominately facilitated by engagement with the cellular recycling neonatal Fc receptor (FcRn), and ligand transport properties of albumin promote it as an attractive candidate to improve the pharmacokinetic profile of aptamers. This study investigates the effect of Cys34 site-selective covalent attachment of a factor IXa anticoagulant aptamer on aptamer functionality and human FcRn (hFcRn) engagement using recombinant human albumin (rHA) of either a wild type (WT) or an engineered human FcRn high binding variant (HB). Albumin-aptamer conjugates, connected covalently through a heterobifunctional succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate linker, were successfully prepared and purified by high performance liquid chromatography as confirmed by gel electrophoresis band-shift analysis and matrix-assisted laser desorption/ionization time of flight. Minimal reduction (∼25%) in activity of WT-linked aptamer to that of aptamer alone was found using an anticoagulant activity assay measuring temporal levels of activated partial thrombin. Covalent albumin-aptamer conjugation, however, substantially compromized binding to hFcRn, to 10% affinity of that of non-conjugated WT, determined by biolayer interferometry. Binding could be rescued by aptamer conjugation to recombinant albumin engineered for higher FcRn affinity (HB) that exhibited an 8-fold affinity compared to WT alone. This work describes a novel albumin-based aptamer delivery system whose hFcRn binding can be increased using a HB engineered albumin.

  8. Feasibility Study Exploring the Potential of Novel Battacin Lipopeptides as Antimicrobial Coatings.

    De Zoysa, Gayan Heruka; Sarojini, Vijayalekshmi

    2017-01-18

    Colonization of medical implant surfaces by pathogenic microorganisms causes implant failure and undermines their clinical applicability. Alarming increase in multidrug-resistant bacteria poses serious concerns with the use of medical implants. Antimicrobial peptides (AMPs) that form part of the innate immune system in all forms of life are attractive alternatives to conventional antibiotics to treat multidrug-resistant bacterial biofilms. The aim of this study was to assess the in vitro antibacterial potency of our recently discovered lipopeptides from the battacin family upon immobilization to various surfaces. To achieve this, glass, silicon, and titanium surfaces were functionalized through silanization followed by addition of the heterobifunctional cross-linker, succinimidyl-[N-maleimidopropionamido]-poly(ethylene glycol) ester to generate maleimide-functionalized surfaces. The lipopeptide, GZ3.27, with an added N-terminal cysteine was covalently coupled to the surfaces via a thioether bond through a Michael-type addition between the cysteine sulfhydryl group and the maleimide moiety. Success of surface immobilization and antimicrobial activity of the coated surfaces was assessed using water contact angle measurements, X-ray photoelectron spectroscopy, ellipsometry, scanning electron microscopy, colony forming unit assays and biofilm analysis. The lipopeptide-coated surfaces caused significant damage to the cellular envelop of Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) upon contact and prevented surface colonization by P. aeruginosa and E. coli biofilms. The lipopeptides investigated in this study were not hemolytic to mouse blood cells in solution. Findings from this study indicate that these lipopeptides have the potential to be developed as promising antimicrobial coatings on medical implants.

  9. In vitro evaluation of the astatinated chimeric monoclonal antibody U36, a potential candidate for treatment of head and neck squamous cell carcinoma

    Nestor, M.; Anniko, M.; Persson, M.; Dongen, G.A.M.S. van; Jensen, H.J.; Lundqvist, H.; Tolmachev, V.

    2005-01-01

    The purpose of this study was to analyse the properties of the astatinated chimeric MAb (cMAb) U36 as a conjugate to selectively target and eradicate head and neck squamous cell carcinoma (HNSCC). cMAb U36 was labelled with 211 At via the linker N-succinimidyl 4-(trimethylstannyl)benzoate (SPMB). The quality of the conjugate was extensively evaluated for binding and internalisation capacity, and compared with 125 I-SPMB-cMAb U36. The cellular toxicity of the astatinated conjugate was assessed in two types of in vitro growth assay and compared with 131 I-labelled cMAb U36 (directly labelled). Comparisons between 211 At-cMAb U36 and 125 I-cMAb U36 demonstrated an optimal functional capacity of the labelled products. Immunoreactivity and affinity assays showed high immunoreactive fractions (>93%), and an affinity in good agreement between the astatinated and iodinated antibodies. For both conjugates, specific binding to HNSCC cells could be demonstrated, as well as some internalisation. Retention of the astatinated conjugate was just slightly lower than for the iodinated conjugate and still reasonable for therapeutic use (31±2% vs 42.6±1.0% at 22 h), demonstrating no adverse effects from astatination of the antibody. Studies on cellular toxicity demonstrated a dose-dependent and antigen-specific cellular toxicity for 211 At-cMAb U36, with about 10% cell survival at 50 decays per cell. The 131 I-labelled conjugate was not as efficient, with a surviving cell fraction of about 50% at 55 decays per cell. (orig.)

  10. Photoaffinity cross-linking of a radioiodinated probe, 125I-A55453, into alpha 1-adrenergic receptors

    Dickinson, K.E.; Leeb-Lundberg, L.M.; Heald, S.L.; Wikberg, J.E.; DeBernardis, J.F.; Caron, M.G.; Lefkowitz, R.J.

    1984-01-01

    We have synthesized and characterized a high-affinity alpha 1-adrenergic receptor probe, 4-amino-6,7-dimethoxy-2[4'- [5''(3'''- 125 I-iodo-4'''-aminophenyl)pentanoyl]-1'-piperazinyl] quinazoline ( 125 I-A55453). This ligand binds reversibly to rat hepatic plasma membranes with high affinity (KD . 77 +/- 6 pM), and it labels the same number of specific prazosin-competable sites as the alpha 1-adrenergic receptor-selective radioligand [ 125 I] iodo-2-[beta-(4-hydroxyphenyl)-ethylaminomethyl]tetralone. Specific binding is stereoselective and competed for by alpha-adrenergic agents with an alpha 1-adrenergic receptor specificity. 125 I-A55453 can be covalently photoincorporated into peptides of rat hepatic and splenic membranes using the bifunctional photoactive cross-linker, N-succinimidyl-6- (4'-azido-2'-nitrophenylamino)hexanoate. Following photolysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of labeled hepatic membranes reveals a major specifically labeled peptide of Mr . 82,000 (+/- 1,000) with minor peptides at Mr . 50,000 (+/- 500), and 40,000 (+/- 300). Covalent incorporation of 125 I-A55453 into the Mr . 82,000 peptide is inhibited by adrenergic drugs with an alpha 1-adrenergic receptor specificity. Labeled splenic membranes demonstrate a broad band of photoincorporated radioactivity centered at Mr . 82,000, and covalent incorporation into this peptide is also attenuated with an alpha 1-adrenergic receptor specificity. This new high-affinity radioiodinated probe has features which should make it useful for the molecular characterization of alpha 1-adrenergic receptors in tissues

  11. The synthesis and biological evaluation of new DNA-directed alkylating agents, phenyl N-mustard-4-anilinoquinoline conjugates containing a urea linker.

    Marvania, Bhavin; Kakadiya, Rajesh; Christian, Wilson; Chen, Tai-Lin; Wu, Ming-Hsi; Suman, Sharda; Tala, Kiran; Lee, Te-Chang; Shah, Anamik; Su, Tsann-Long

    2014-08-18

    We synthesized a series of phenyl N-mustard-4-anilinoquinoline conjugates to study their antitumorigenic effects. These agents were prepared by the condensation of 4-[N,N-bis(2-chloroethyl)amino]phenyl isocyanate with 6-amino-4-methylamino or 4-anilinoquinolines. The structure-activity relationship (SAR) studies revealed that the C2-methylquinoline derivatives (18a-o) were generally more cytotoxic than the C2-phenylquinoline conjugates (23a-d) in inhibiting the cell growth of various human tumor cell lines in vitro. However, the methylamino or aniline substituents at C4 of quinoline did not influence the cytotoxic effects. The title conjugates were capable of inducing DNA cross-linking and promoting cell-cycle arrest at the G2/M phase. This study demonstrates that phenyl N-mustard-4-anilinoquinoline conjugates are generally more potent than phenyl N-mustard-4-anilinoquinazoline conjugates against the cell growth of various tumor cell-lines. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Next-generation bis-locked nucleic acids with stacking linker and 2'-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes

    Geny, Sylvain; Moreno, Pedro M D; Krzywkowski, Tomasz

    2016-01-01

    Targeting and invading double-stranded DNA with synthetic oligonucleotides under physiological conditions remain a challenge. Bis-locked nucleic acids (bisLNAs) are clamp-forming oligonucleotides able to invade into supercoiled DNA via combined Hoogsteen and Watson-Crick binding. To improve the b...

  13. 3,4-Dihydroxy-L-Phenylalanine as a Novel Covalent Linker of Extracellular Matrix Proteins to Polyacrylamide Hydrogels with a Tunable Stiffness

    Wouters, Olaf Y.; Ploeger, Diana T. A.; van Putten, Sander M.; Bank, Ruud A.

    Cells acquire mechanical information from their surrounding and convert this into biochemical activity. The concept and mechanism behind this cellular mechanosensing and mechanotransduction are often studied by means of two-dimensional hydrogels. Polyacrylamide hydrogels (PAAMs) offer chemical,

  14. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS

    Zhang, Yang; Yang, Peng; Madathumpady Abubaker, Habeeb Muhammed; Alsaiari, Shahad K.; Moosa, Basem; AlMalik, Abdulaziz; Kumar, Anjli; Ringe, Emilie; Khashab, Niveen M.

    2017-01-01

    Controlling the size, number, and shape of nanogaps in plasmonic nanostructures is of significant importance for the development of novel quantum plasmonic devices and quantitative sensing techniques such as surface-enhanced Raman scattering (SERS). Here, we introduce a new synthetic method based on coordination interactions and galvanic replacement to prepare core-shell plasmonic nanorods with tunable enclosed nanogaps. Decorating Au nanorods with Raman reporters that strongly coordinate Ag+ ions (e.g., 4-mercaptopyridine) afforded uniform nucleation sites to form a sacrificial Ag shell. Galvanic replacement of the Ag shell by HAuCl4 resulted in Au-AgAu core-shell structure with a uniform intra-nanoparticle gap. The size (length and width) and morphology of the core-shell plasmonic nanorods as well as the nanogap size depends on the concentration of the coordination complexes formed between Ag+ ions and 4-mercaptopyridine. Moreover, encapsulating Raman reporters within the nanogaps afforded an internal standard for sensitive and quantitative SERS analysis. To test the applicability, core-shell plasmonic nanorods were functionalized with aptamers specific to circulating tumor cells such as MCF-7 (Michigan Cancer Foundation-7, breast cancer cell line). This system could selectively detect as low as 20 MCF-7 cells in a blood mimicking fluid employing SERS. The linking DNA duplex on core-shell plasmonic nanorods can also intercalate hydrophobic drug molecules such as Doxorubicin, thereby increasing the versatility of this sensing platform to include drug delivery. Our synthetic method offers the possibility of developing multifunctional SERS-active materials with a wide range of applications including bio sensing, imaging and therapy.

  15. Enhanced stability of a chimeric hepatitis B core antigen virus-like-particle (HBcAg-VLP) by a C-terminal linker-hexahistidine-peptide.

    Schumacher, Jens; Bacic, Tijana; Staritzbichler, René; Daneschdar, Matin; Klamp, Thorsten; Arnold, Philipp; Jägle, Sabrina; Türeci, Özlem; Markl, Jürgen; Sahin, Ugur

    2018-04-13

    Virus-like-particles (VLPs) are attractive nanoparticulate scaffolds for broad applications in material/biological sciences and medicine. Prior their functionalization, specific adaptations have to be carried out. These adjustments frequently lead to disordered particles, but the particle integrity is an essential factor for the VLP suitability. Therefore, major requirements for particle stabilization exist. The objective of this study was to evaluate novel stabilizing elements for functionalized chimeric hepatitis B virus core antigen virus-like particles (HBcAg-VLP), with beneficial characteristics for vaccine development, imaging or delivery. The effects of a carboxy-terminal polyhistidine-peptide and an intradimer disulfide-bridge on the stability of preclinically approved chimeric HBcAg-VLPs were assessed. We purified recombinant chimeric HBcAg-VLPs bearing different modified C-termini and compared their physical and chemical particle stability by quantitative protein-biochemical and biophysical techniques. We observed lower chemical resistance of T = 3- compared to T = 4-VLP (triangulation number) capsids and profound impairment of accessibility of hexahistidine-peptides in assembled VLPs. Histidines attached to the C-terminus were associated with superior mechanical and/or chemical particle stability depending on the number of histidine moieties. A molecular modeling approach based on cryo-electron microscopy and biolayer interferometry revealed the underlying structural mechanism for the strengthening of the integrity of VLPs. Interactions triggering capsid stabilization occur on a highly conserved residue on the basis of HBcAg-monomers as well as on hexahistidine-peptides of adjacent monomers. This new stabilization mechanism appears to mimic an evolutionary conserved stabilization concept for hepadnavirus core proteins. These findings establish the genetically simply transferable C-terminal polyhistidine-peptide as a general stabilizing element for chimeric HBcAg-VLPs to increase their suitability.

  16. A comparison of DNA binding profiles of dinuclear platinum compounds with polyamine linkers and the trinuclear platinum phase II clinical agent BBR3464

    McGregor, T. D.; Hegmans, A.; Kašpárková, Jana; Neplechová, Kamila; Nováková, Olga; Peňázová, Hana; Vrána, Oldřich; Brabec, Viktor; Farrel, N.

    2002-01-01

    Roč. 7, 4/5 (2002), s. 397-404 ISSN 0949-8257 R&D Projects: GA ČR GA305/99/0695; GA ČR GA301/00/0556; GA ČR GA301/98/P231; GA AV ČR IAA5004101; GA AV ČR IAA7004805 Institutional research plan: CEZ:AV0Z5004920 Keywords : unwinding * dinuclear platinum * hydrogen bonding Subject RIV: BO - Biophysics Impact factor: 3.911, year: 2002

  17. Extracellular vesicles shed by melanoma cells contain a modified form of H1.0 linker histone and H1.0 mRNA-binding proteins.

    Schiera, Gabriella; Di Liegro, Carlo Maria; Puleo, Veronica; Colletta, Oriana; Fricano, Anna; Cancemi, Patrizia; Di Cara, Gianluca; Di Liegro, Italia

    2016-11-01

    Extracellular vesicles (EVs) are now recognized as a fundamental way for cell-to-cell horizontal transfer of properties, in both physiological and pathological conditions. Most of EV-mediated cross-talk among cells depend on the exchange of proteins, and nucleic acids, among which mRNAs, and non-coding RNAs such as different species of miRNAs. Cancer cells, in particular, use EVs to discard molecules which could be dangerous to them (for example differentiation-inducing proteins such as histone H1.0, or antitumor drugs), to transfer molecules which, after entering the surrounding cells, are able to transform their phenotype, and even to secrete factors, which allow escaping from immune surveillance. Herein we report that melanoma cells not only secrete EVs which contain a modified form of H1.0 histone, but also transport the corresponding mRNA. Given the already known role in tumorigenesis of some RNA binding proteins (RBPs), we also searched for proteins of this class in EVs. This study revealed the presence in A375 melanoma cells of at least three RBPs, with apparent MW of about 65, 45 and 38 kDa, which are able to bind H1.0 mRNA. Moreover, we purified one of these proteins, which by MALDI-TOF mass spectrometry was identified as the already known transcription factor MYEF2.

  18. General Linker Diversification Approach to Bivalent Ligand Assembly: Generation of an Array of Ligands for the Cation-Independent Mannose 6-Phosphate Receptor.

    Fei, Xiang; Zavorka, Megan E; Malik, Guillaume; Connelly, Christopher M; MacDonald, Richard G; Berkowitz, David B

    2017-08-18

    A generalized strategy is presented for the rapid assembly of a set of bivalent ligands with a variety of linking functionalities from a common monomer. Herein, an array of phosphatase-inert mannose-6-phosphonate-presenting ligands for the cation-independent-mannose 6-phosphate receptor (CI-MPR) is constructed. Receptor binding affinity varies with linking functionality-the simple amide and 1,5-triazole(tetrazole) being preferred over the 1,4-triazole. This approach is expected to find application across chemical biology, particularly in glycoscience, wherein multivalency often governs molecular recognition.

  19. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz

    2015-01-01

    Three new coordination polymers [Mn(hip)(phen) (H_2O)]_n (1), [Co(hip)(phen) (H_2O)]_n (2), and [Cd(hip) (phen) (H_2O)]_n (3) (H_2hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H_2O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π–π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π–π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift. - Graphical abstract: 1D helical chains of coordination polymers were synthesized by solvo-hydrothermal reaction of 5-hydroxyisopthalic acid and 1,10-phenanthroline with MnCl_2·4H_2O / CoCl_2·6H_2O / Cd(NO_3)_2·6H_2O. - Highlights: • Solvent induced synthesis of three coordination polymers with 1D zig-zag structure. • Crystal structures of coordination polymers are reported and discussed. • 1,10-Phenanthroline influences magnetic and luminescent properties of polymers. • Coordination polymer of Cd is luminescent exhibiting large Stokes shift.

  20. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz

    2015-11-01

    Three new coordination polymers [Mn(hip)(phen) (H2O)]n (1), [Co(hip)(phen) (H2O)]n (2), and [Cd(hip) (phen) (H2O)]n (3) (H2hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H2O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π-π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π-π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift.

  1. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz, E-mail: hnsheikh@rediffmail.com

    2015-11-15

    Three new coordination polymers [Mn(hip)(phen) (H{sub 2}O)]{sub n} (1), [Co(hip)(phen) (H{sub 2}O)]{sub n} (2), and [Cd(hip) (phen) (H{sub 2}O)]{sub n} (3) (H{sub 2}hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H{sub 2}O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π–π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π–π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift. - Graphical abstract: 1D helical chains of coordination polymers were synthesized by solvo-hydrothermal reaction of 5-hydroxyisopthalic acid and 1,10-phenanthroline with MnCl{sub 2}·4H{sub 2}O / CoCl{sub 2}·6H{sub 2}O / Cd(NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • Solvent induced synthesis of three coordination polymers with 1D zig-zag structure. • Crystal structures of coordination polymers are reported and discussed. • 1,10-Phenanthroline influences magnetic and luminescent properties of polymers. • Coordination polymer of Cd is luminescent exhibiting large Stokes shift.

  2. Self-assembly of a [Ni8] carbonate cube incorporating four μ4-carbonato linkers through fixation of atmospheric CO2 by ligated [Ni2] complexes.

    Ghosh, Aloke Kumar; Pait, Moumita; Shatruk, Michael; Bertolasi, Valerio; Ray, Debashis

    2014-02-07

    The communication reports the synthesis, characterization, and magnetic behavior of a novel μ4-carbonato supported and imidazole capped ligated nickel cage [Ni8(μ-H2bpmp)4(μ4-CO3)4(ImH)8](NO3)4·2H2O (1) through self-assembly of ligand bound ferromagnetic Ni2 building blocks. Structural analysis indicates newer geometrical features for the coordination cage formation and dominant interdimer antiferromagnetic coupling resulting in a diamagnetic ground state.

  3. The Diels Alder/retro-Diels Alder concept on solid support : a study of the scope, limitations and conceivable applications as a traceless thermocleavable linker

    Gieling, Reinerus Gerardus

    2003-01-01

    This thesis deals with the conceivable transfer of the Diels Alder/retro-Diels Alder concept to the solid phase in order to broaden the scope of the methodology to a combinatorial level. In addition, based on this methodology the development of a traceless thermocleavable linking system for

  4. Linker-free covalent immobilization of heparin, SDF-1α, and CD47 on PTFE surface for antithrombogenicity, endothelialization and anti-inflammation.

    Gao, Ang; Hang, Ruiqiang; Li, Wan; Zhang, Wei; Li, Penghui; Wang, Guomin; Bai, Long; Yu, Xue-Feng; Wang, Huaiyu; Tong, Liping; Chu, Paul K

    2017-09-01

    Small-diameter vascular grafts made of biomedical polytetrafluoroethylene (PTFE) suffer from the poor long-term patency rate originating from thrombosis and intimal hyperplasia, which can be ascribed to the insufficient endothelialization and chronic inflammation of the materials. Hence, bio-functionalization of PTFE grafts is highly desirable to circumvent these disadvantages. In this study, a versatile "implantation-incubation" approach in which the biomedical PTFE is initially modified by plasma immersion ion implantation (PIII) is described. After the N 2 PIII treatment, the surface of biomedical PTFE is roughened with nanostructures and more importantly, the abundant free radicals generated underneath the surface continuously migrate to the surface and react with environmental molecules. Taking advantage of this mechanism, various biomolecules with different functions can be steadily immobilized on the surface of PTFE by simple solution immersion. As examples, three typical biomolecules, heparin, SDF-1α, and CD47, are covalently grafted onto the PTFE. In addition to retaining the bioactivity, the surface-functionalized PTFE exhibits reduced thrombogenicity, facilitates the recruitment of endothelial progenitor cells, and even alleviates the inflammatory immune responses of monocytes-macrophages and is thus promising to the development of small-diameter prosthetic vascular grafts with good long-term patency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Modulating p-hydroxycinnamate behavior as a ditopic linker or photoacid in copper(ii) complexes with an auxiliary pyridine ligand.

    Soldevila-Sanmartín, Joan; Calvet, Teresa; Font-Bardia, Merce; Domingo, Concepción; Ayllón, José A; Pons, Josefina

    2018-05-08

    The reaction of copper(ii) acetate monohydrate with p-hydroxycinnamic acid (HpOHcinn) and different pyridine derivatives (4-tert-butylpyridine, 4-tBupy; 4-acetylpyridine, 4-Acpy; 3-phenylpyridine, 3-Phpy; 4-phenylpyridine, 4-Phpy) was essayed in methanol solvent at room temperature. The crystal structures of the resulting compounds were elucidated. Their analysis shows that the choice of pyridine ligands determines different coordination modes of the pOHcinn ligand and the Cu(ii) coordination, nuclearity and geometry. The pOHcinn acts as a monodentate carboxylate ligand in combination with 4-tBupy or 4-Phpy, yielding monomers and dimers, associated by hydrogen bonds into supramolecular networks in which the phenol group plays a key role. Conversely, in combination with 4-Acpy or 3-Phpy, the phenol group coordinates directly to the Cu(ii), acting as a ditopic ligand and yielding 2D coordination polymers. The compound containing 3-Phpy shows interesting MeOH-H2O reversible exchange behavior. Not only has the pyridine auxiliary ligand had a tremendous effect on the coordination mode of pOHcinn, but also its reactivity is influenced. Particularly, in the case of the compound containing 4-Phpy, it undergoes a photoinduced process, in which the phenol group deprotonates and coordinates to Cu(ii) as a phenoxy ligand. This yields a coordination polymer in which two different dimers alternate, bridged by the resulting pOcinn ligand. The magneto-structural correlation of this compound is also discussed.

  6. Calculated photo-isomerization efficiencies of functionalized azobenzene derivatives in solar energy materials: azo-functional organic linkers for porous coordinated polymers

    Neukirch, A.J.; Park, J.; Zobač, Vladimír; Wang, H.; Jelínek, Pavel; Prezhdo, O.V.; Zhou, H.-C.; Lewis, J.P.

    2015-01-01

    Roč. 27, č. 13 (2015), s. 134208 ISSN 0953-8984 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : photoisomerization * azobenzene * metal -organic frameworks * molecular switches Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015

  7. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS

    Zhang, Yang

    2017-10-09

    Controlling the size, number, and shape of nanogaps in plasmonic nanostructures is of significant importance for the development of novel quantum plasmonic devices and quantitative sensing techniques such as surface-enhanced Raman scattering (SERS). Here, we introduce a new synthetic method based on coordination interactions and galvanic replacement to prepare core-shell plasmonic nanorods with tunable enclosed nanogaps. Decorating Au nanorods with Raman reporters that strongly coordinate Ag+ ions (e.g., 4-mercaptopyridine) afforded uniform nucleation sites to form a sacrificial Ag shell. Galvanic replacement of the Ag shell by HAuCl4 resulted in Au-AgAu core-shell structure with a uniform intra-nanoparticle gap. The size (length and width) and morphology of the core-shell plasmonic nanorods as well as the nanogap size depends on the concentration of the coordination complexes formed between Ag+ ions and 4-mercaptopyridine. Moreover, encapsulating Raman reporters within the nanogaps afforded an internal standard for sensitive and quantitative SERS analysis. To test the applicability, core-shell plasmonic nanorods were functionalized with aptamers specific to circulating tumor cells such as MCF-7 (Michigan Cancer Foundation-7, breast cancer cell line). This system could selectively detect as low as 20 MCF-7 cells in a blood mimicking fluid employing SERS. The linking DNA duplex on core-shell plasmonic nanorods can also intercalate hydrophobic drug molecules such as Doxorubicin, thereby increasing the versatility of this sensing platform to include drug delivery. Our synthetic method offers the possibility of developing multifunctional SERS-active materials with a wide range of applications including bio sensing, imaging and therapy.

  8. Two polymeric nickel(II) complexes with aromatic benzene-1,2,4,5-tetracarboxylate and pyridine-2,5-dicarboxylate linkers.

    Atria, Ana María; Corsini, Gino; González, Lissette; Garland, Maria Teresa; Baggio, Ricardo

    2009-07-01

    (Mu-benzene-1,2,4,5-tetracarboxylato-kappa(2)O(1):O(4))bis[aquabis(2,2-methylpropane-1,3-diamine-kappa(2)N,N')nickel(II)] methanol disolvate tetrahydrate, [Ni(2)(C(10)H(2)O(8))(C(5)H(14)N(2))(4)(H(2)O)(2)].2CH(4)O.4H(2)O, (I), is dinuclear, with elemental units built up around an inversion centre halving the benzene-1,2,4,5-tetracarboxylate (btc) anion, which bridges two symmetry-related Ni(II) cations. The octahedral Ni polyhedron is completed by two chelating 2,2-methylpropane-1,3-diamine (dmpda) groups and a terminal aqua ligand. Two methanol and four water solvent molecules are involved in a number of N-H...O and O-H...O hydrogen bonds which define a strongly bound two-dimensional supramolecular structure. The structure of catena-poly[[[bis(2,2-methylpropane-1,3-diamine-kappa(2)N,N')nickel(II)]-mu-pyridine-2,5-dicarboxylato-kappa(3)O(5):N,O(2)-[(2,2-methylpropane-1,3-diamine-kappa(2)N,N')nickel(II)]-mu-pyridine-2,5-dicarboxylato-kappa(3)N,O(2):O(5)] octahydrate], {[Ni(2)(C(7)H(3)NO(4))(2)(C(5)H(14)N(2))(3)].8H(2)O}(n), (II), is polymeric, forming twisted chains around three independent Ni centres, two of which lie on inversion centres and the third in a general position. There are three chelating dmpda ligands (one disordered over two equally populated positions), which are each attached to a different cation, and two pyridine-2,5-dicarboxylate (pdc) anions, both chelating the Ni centre in general positions through an -O-C-C-N- loop, while acting as bridges to the remaining two centrosymmetric Ni atoms. There are, in addition, eight noncoordinated water molecules in the structure, some of which are disordered.

  9. Exploitation of knowledge databases in the synthesis of zinc(II malonates with photo-sensitive and photo-insensitive N,N′-containing linkers

    Ekaterina N. Zorina-Tikhonova

    2018-05-01

    Full Text Available Photoinitiated solid-state reactions are known to affect the physical properties of coordination polymers, such as fluorescence and sorption behaviour, and also afford extraordinary architectures (e.g. three-periodic structures with polyorganic ligands. However, the construction of novel photo-sensitive coordination polymers requires an understanding of the factors which govern the mutual disposition of reactive fragments. A series of zinc(II malonate complexes with 1,2-bis(pyridin-4-ylethylene and its photo-insensitive analogues has been synthesized for the purpose of systematic analysis of their underlying nets and mutual disposition of N-donor ligands. The application of a big data-set analysis for the prediction of a variety of possible complex compositions, coordination environments and networks for a four-component system has been demonstrated for the first time. Seven of the nine compounds possess one of the highly probable topologies for their underlying nets; in addition, two novel closely related four-coordinated networks were obtained. Complexes containing 1,2-bis(pyridin-4-ylethylene and 1,2-bis(pyridin-4-ylethane form isoreticular compounds more readily than those with 4,4′-bipyridine and 1,2-bis(pyridin-4-ylethylene. The effects of the precursor, either zinc(II nitrate or zinc(II acetate, on the composition and dimensionality of the resulting architecture are discussed. For three of the four novel complexes containing 1,2-bis(pyridin-4-ylethylene, the single-crystal-to-single-crystal [2 + 2] cycloaddition reactions were carried out. UV irradiation of these crystals afforded either the 0D→1D or the 3D→3D transformations, with and without network changes. One of the two 3D→3D transformations was accompanied by solvent (H2O cleavage.

  10. FRET structure with non-radiative acceptor provided by dye-linker-glass surface complex and single-molecule photodynamics by TIRFM-polarized imaging

    Tani, Toshiro; Mashimo, Kei; Suzuki, Tetsu; Horiuchi, Hiromi; Oda, Masaru

    2008-01-01

    We present our recent study of microscopic single-molecule imaging on the artificial complex of tetramethylrhodamine linked with a propyl chain onto silica glass surface, i.e. an asymmetric fluorescence resonance energy transfer (FRET) structure with non-radiative acceptor. In the synthesis of the complex, we used a mixture of two kinds of isomers to introduce rather small photodynamic difference among them. This isomeric structure change will provide more or less a distinctive photophysical change in e.g. non-radiative relaxation rate. Our recent observation at room temperatures, so far, shows that such contributions can be discriminated in the histograms of the fluorescent spot intensities; broad but distinctive multi-components appear. To identify the isomeric difference as a cause of structures, some configurational assumptions are necessary. One such basic prerequisite is that the transition dipoles of the chromophores should be oriented almost parallel to the glass surface. In order to make clear the modeling, we also provide preliminary experiments on the polarization dependence of the imaging under rotating polarization in epi-illumination

  11. Synthesis, characterization and thermal degradation of cross-linked polystyrene using the alkyne-functionalized esters as a cross-linker agent by click chemistry method

    Hakan Akat

    2015-08-01

    Full Text Available AbstractIn this study, it has been demonstrated that cross-linked polystyrene (CPS was successfully prepared by using click chemistry. For this purpose, firstly, poly (styrene-co-4 chloromethylstyrene with 4-chloromethylstyrene was synthesized. Secondly, alkyne-functionalized esters (dipropargyl adipate, dipropargyl succinate were obtained using propargyl alcohol, adipoyl chloride and succinyl chloride. Azide-functionalized polystrene (PS-N3 and dipropargyl adipate (or dipropargyl succinate were reacted in N,N-dimethylformamide for 24 h at room temperature to give CPS. The synthesized polymer and compounds were characterized by nuclear magnetic resonance (1H-NMR, gel permeation chromatography (GPC, fourier transform infrared spectroscopy (FT-IR and thermogravimetric (TG/DTG analysis.. The surface properties were investigated by Scanning Electron Micrography (SEM.

  12. Synthesis and characterization of one- to three-dimensional compounds composed of paradodecatungstate-B cluster and transition metals as linkers

    Sun Chunyan; Liu Shuxia; Xie Linhua; Wang Chunling; Gao Bo; Zhang Chundan; Su Zhongmin

    2006-01-01

    Three new extended frameworks built from paratungstate and transition metals have been synthesized and characterized. In the compound Na 8 [{Cd (H 2 O) 2 }(H 2 W 12 O 42 )].32H 2 O (1), two neighboring paratungstate-B ions [H 2 W 12 O 42 ] 10- are linked by [Cd(H 2 O) 2 ] 2+ units, leading to the formation of infinite one-dimensional (1D) anion chain [{Cd(H 2 O) 2 }(H 2 W 12 O 42 )] n 8n- . The anion [{Co(H 2 O) 3 }{Co(H 2 O) 4 }(H 2 W 12 O 42 )] n 6n- of the compound Na 6 [{Co(H 2 O) 3 }{Co(H 2 O) 4 }(H 2 W 12 O 42 )].29H 2 O (2) shows a layer-like (2D) structure in which paratungstate-B units are linked by CoO 6 octahedra, while the anion [{Co(H 2 O) 3 } 3 (H 2 W 12 O 42 )] n 4n- of the compound (H 3 O + ) 3 [{Na(H 2 O) 4 }{Co(H 2 O) 4 } 3 (H 2 W 12 O 42 )].24.5H 2 O (3) is a three-dimensional (3D) anionic polymer that consists of paratungstate-B units linked by CoO 6 octahedra. Compound 3 can reversibly adsorb and desorb water molecules leading to the color reversibly change from pink to violet. The preliminary magnetic measurement and electrochemical properties of compounds are performed. The crystal structure of unexpected product Na 4 [NiW 6 O 24 H 6 ].13H 2 O (4) is described here for the rare report of crystal structure information on the Anderson-type polyoxotungstate which has nickel as a heteroatom. - Graphical abstract: Three new compounds with one- to three-dimensional extended frameworks built from [H 2 W 12 O 42 ] 10- anion and transition metals have been synthesized and characterized by elemental analyses, X-ray single-crystal analyses, magnetic measurement, XRPD, and cyclic voltammetry measurements. The cobalt containing compound exhibits interesting reversible sorption/desorption of water molecules

  13. Cross-talk between Tetraspanin CD9 and Transmembrane Adaptor Protein Non-T Cell Activation Linker (NTAL) in Mast Cell Activation and Chemotaxis

    Hálová, Ivana; Dráberová, Lubica; Bambousková, Monika; Machyna, Martin; Stegurová, Lucie; Smrž, Daniel; Dráber, Petr

    2013-01-01

    Roč. 288, č. 14 (2013), s. 9801-9814 ISSN 0021-9258 R&D Projects: GA ČR GA301/09/1826; GA ČR GAP302/10/1759; GA ČR(CZ) GBP302/12/G101; GA ČR(CZ) GD204/09/H084; GA MŠk LD12073; GA TA ČR TA01010436; GA MPO FR-TI3/067 Grant - others:European Cooperation in Science and Technology(XE) Action BM1007 Institutional support: RVO:68378050 Keywords : mast cell * chemotaxis * Fc receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.600, year: 2013

  14. Grb2 and the non-T cell activation linker NTAL constitute a Ca(2+)-regulating signal circuit in B lymphocytes

    Stork, B.; Engelke, M.; Frey, J.; Hořejší, Václav; Hamm-Baarke, A.; Schraven, B.; Kurosaki, T.; Wienands, J.

    2004-01-01

    Roč. 21, č. 5 (2004), s. 681-691 ISSN 1074-7613 R&D Projects: GA MŠk LN00A026 Institutional research plan: CEZ:AV0Z5052915 Keywords : NTAL * Grb2 * lymphocyte Subject RIV: EC - Immunology Impact factor: 15.448, year: 2004

  15. On the influence of the aliphatic linker on fabrication of highly ordered and orientated self-assembled monolayers of aromatic selenols on AU(111)

    Azzam, Waleed

    2014-03-06

    Self-assembled monolayers (SAMs) formed by adsorption of 1,2-dibenzyldiselenide (DPMSe) and 1,2-diphenyldiselenide (DBSe) on Au(111) substrates at room temperature have been characterized using scanning tunnelling microscopy, X-ray photoelectron spectroscopy, infrared reflection absorption spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and low-energy electron diffraction. Upon adsorption, the Se-Se bonds in DPMSe and DBSe were cleaved on the gold surface to form phenylmethaneselenolate (PMSe) and benzeneselenolate (BSe) species, respectively. Although both PMSe and BSe molecular entities only differ in their structure (an additional methyl group in PMSe), the resulting monolayer films revealed noteworthy dissimilarities regarding their adlayer SAM structure and surface morphology. The molecular adlayer structure and orientation of PMSe and BSe species were found to vary significantly with the immersion time (IT). The resulting PMSe films were poorly organized, and the structure was described by a (4√3 × 2) rectangular unit cell for the SAMs prepared with 24 h of IT. Moreover, the PMSe-SAMs were found to be unstable upon exposure to air for a long time. Our results showed that exposure to air for 48 h results in the formation of small bright ad-islands, which have a height corresponding to that of a single atomic step on the Au(111). Contrary, BSe-SAMs exhibited densely packed and well-ordered monolayers, and two different structural phases were resolved at short and long ITs. The most densely packed structure was obtained for SAMs prepared with very short ITs (10 min). Upon increasing the IT, the SAMs exhibited structural changes to a lower density of molecular packing structure. The spectroscopic data also confirmed this structural transformation by suggesting an upright orientation for BSe-SAMs prepared after short ITs and strongly inclined adsorption geometry for SAMs prepared after long ITs. © 2014 American Chemical Society.

  16. Solvent-free thermoplastic-poly(dimethylsiloxane) bonding mediated by UV irradiation followed by gas-phase chemical deposition of an adhesion linker

    Ahn, S. Y.; Lee, N. Y.

    2015-07-01

    Here, we introduce a solvent-free strategy for bonding various thermoplastic substrates with poly(dimethylsiloxane) (PDMS) using ultraviolet (UV) irradiation followed by the gas-phase chemical deposition of aminosilane on the UV-irradiated thermoplastic substrates. The thermoplastic substrates were first irradiated with UV for surface hydrophilic treatment and were then grafted with vacuum-evaporated aminosilane, where the alkoxysilane side reacted with the oxidized surface of the thermoplastic substrate. Next, the amine-terminated thermoplastic substrates were treated with corona discharge to oxidize the surface and were bonded with PDMS, which was also oxidized via corona discharge. The two substrates were then hermetically sealed and pressed under atmospheric pressure for 30 min at 60 °C. This process enabled the formation of a robust siloxane bond (Si-O-Si) between the thermoplastic substrate and PDMS under relatively mild conditions using an inexpensive and commercially available UV lamp and Tesla coil. Various thermoplastic substrates were examined for bonding with PDMS, including poly(methylmethacrylate) (PMMA), polycarbonate (PC), poly(ethyleneterephthalate) (PET) and polystyrene (PS). Surface characterizations were performed by measuring the contact angle and performing x-ray photoelectron spectroscopy analysis, and the bond strength was analyzed by conducting various mechanical force measurements such as pull, delamination, leak and burst tests. The average bond strengths for the PMMA-PDMS, PC-PDMS, PET-PDMS and PS-PDMS assemblies were measured at 823.6, 379.3, 291.2 and 229.0 kPa, respectively, confirming the highly reliable performance of the introduced bonding strategy.

  17. Cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells with dichloromethyl phosphinic acid as a cross-linker

    Noye, Pernille; Li, Qingfeng; Pan, Chao

    2008-01-01

    Phosphoric acid doped polybenzimidazole (PBI) membranes have been covalently cross-linked with dichloromethyl phosphinic acid (DCMP). FT-IR measurements showed new bands originating from bonds between the hydrogen bearing nitrogen in the imidazole group of PBI and the CH2 group in DCMP. The produ......Phosphoric acid doped polybenzimidazole (PBI) membranes have been covalently cross-linked with dichloromethyl phosphinic acid (DCMP). FT-IR measurements showed new bands originating from bonds between the hydrogen bearing nitrogen in the imidazole group of PBI and the CH2 group in DCMP.......e. within the temperature range of operation of PBI-based fuel cells....

  18. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Kwangwon [Eulji Univ. Hospital, Daejeon (Korea, Republic of); Kwon, Jungkee [Chonbuk National Univ., Jeonju (Korea, Republic of); Kim, Taewoon [Jeonbuk Technopark, Jeonju (Korea, Republic of)

    2012-03-15

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage.

  19. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon; Lee, Kwangwon; Kwon, Jungkee; Kim, Taewoon

    2012-01-01

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage

  20. On the influence of the aliphatic linker on fabrication of highly ordered and orientated self-assembled monolayers of aromatic selenols on AU(111)

    Azzam, Waleed; Al-Rawashdeh, Nathir A F; Al-Refaie, Najd; Shekhah, Osama; Bashir, Asif

    2014-01-01

    their adlayer SAM structure and surface morphology. The molecular adlayer structure and orientation of PMSe and BSe species were found to vary significantly with the immersion time (IT). The resulting PMSe films were poorly organized, and the structure

  1. Improving Tumor Uptake and Pharmacokinetics of 64Cu-Labeled Cyclic RGD Peptide Dimers with Gly3 and PEG4 Linkers

    Shi, Jiyun; Kim, Young-Seung; Zhai, Shizhen; Liu, Zhaofei; Chen, Xiaoyuan; Liu, Shuang

    2009-01-01

    Radiolabeled cyclic RGD (Arg-Gly-Asp) peptides represent a new class of radiotracers with potential for the early tumor detection and non-invasive monitoring of tumor metastasis and therapeutic response in cancer patients. This report describes the synthesis of two cyclic RGD peptide dimer conjugates, DOTA-PEG4-E[PEG4-c(RGDfK)]2 (DOTA-3PEG4-dimer: DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; PEG4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) and DOTA-G3-E[G3-c(RGDfK)]2 ...

  2. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.

    Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W

    2014-01-03

    The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution. Copyright

  3. An irresolute linker: separation, and structural and spectroscopic characterization of the two linkage isomers of a Ru(ii)-(2-(2'-pyridyl)pyrimidine-4-carboxylic acid) complex.

    Iengo, E; Demitri, N; Balducci, G; Alessio, E

    2014-08-28

    For the first time the two linkage isomers of a Ru(ii) complex with 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) - that form in comparable amounts - have been fully characterized individually. The X-ray structure of each isomer is related to its NMR spectrum in solution.

  4. 2-D and 3-D phosphotungstate-based TM-Ln heterometallic derivatives constructed from dimeric [Ln({alpha}-PW{sub 11}O{sub 39}){sub 2}]{sup 11-} fragments and copper-organic complex linkers

    Shang, Sensen [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Zhao, Junwei, E-mail: zhaojunwei@henu.edu.cn [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Chen, Lijuan [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Basic Experiment Teaching Center, Henan University, Kaifeng, Henan 475004 (China); Li, Yuye; Zhang, Jingli; Li, Yanzhou [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Niu, Jingyang, E-mail: jyniu@henu.edu.cn [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China)

    2012-12-15

    Three organic-inorganic hybrid TM-Ln heterometallic phosphotungstates [Cu(dap){sub 2}(H{sub 2}O)][Cu(dap){sub 2}]{sub 3.5}[La({alpha}-HPW{sub 11}O{sub 39}){sub 2}]{center_dot}6H{sub 2}O (1) [Cu(dap){sub 2}(H{sub 2}O)]{sub 0.5}[Cu(dap){sub 2}]{sub 4}[Nd({alpha}-HPW{sub 11}O{sub 39}){sub 2}]{center_dot}4H{sub 2}O (2) and [Cu(dap){sub 2}(H{sub 2}O)]{sub 2}[Cu(dap){sub 2}]{sub 3.5}[Eu({alpha}-PW{sub 11}O{sub 39}){sub 2}]{center_dot}6H{sub 2}O (3) (dap=1,2-diaminopropane) have been hydrothermally synthesized and structurally characterized by elemental analyses, IR spectra, optical diffuse reflectance spectra, powder X-ray diffraction (PXRD), thermogravimetric (TG) analyses and single-crystal X-ray diffraction. Their common features are that 1-3 all consist of asymmetric sandwich-type subunits [Ln({alpha}-PW{sub 11}O{sub 39}){sub 2}]{sup 11-} and [Cu(dap){sub 2}]{sup 2+} bridges. Both 1 and 2 display the 2-D (4,4)-topological sheets whereas 3 exhibits the 3-D 5-connected (4{sup 6}{center_dot}6{sup 4}) topological framework. The magnetic properties of 2 and 3 and the luminescence performance of 3 have been measured. - Graphical Abstract: Three TM-Ln heterometallic phosphotungstates 1-3 have been synthesized and characterized by elemental analyses, IR spectra, optical diffuse reflectance spectra, X-ray diffraction, thermogravimetric analyses magnetic susceptibility and luminescent properties. Highlights: Black-Right-Pointing-Pointer Cu{sup II}-Ln{sup III} heterometallic polyoxometalates. Black-Right-Pointing-Pointer 2-D and 3-D organic-inorganic hybrid phosphotungstates. Black-Right-Pointing-Pointer 2-D and 3-D structures consisting of Cu{sup II}-Ln{sup III} heterometals.

  5. Four coordination polymers based on 5-tert-butyl isophthalic acid and rigid bis(imidazol-1yl)benzene linkers: Synthesis, luminescence detection of acetone and optical properties

    Arıcı, Mürsel; Zafer Yeşilel, Okan; Büyükgüngör, Orhan

    2017-05-01

    Four coordination polymers including, [Co(μ-Htbip)2(μ-dib)]n (1), [Co(μ-tbip)(μ-dmib)0.5]n (2), [Zn2(μ-tbip)(μ3-tbip)(μ-dmib)1.5]n (3) and [Cd(μ3-tbip)(μ-dib)0.5 (H2O)]n (4) (tbip: 5-tert-butylisophthalate, dib: 1,4-bis(imidazol-1yl)benzene, dmib: 1,4-bis(imidazol-1yl)-2,5-dimethylbenzene), were hydrothermally synthesized and characterized by elemental analysis, IR spectra, single crystal and powder X-ray diffraction and thermal analysis (TG/DTA). The structural diversity is observed depending on ligands and coordination number of metal centers in the synthesized complexes. The tbip ligand displayed five different coordination modes in its complexes. In 1 and 2, complex 1 is 3D framework with the dia topology while complex 2 has 2D structure with the sql topology depending on coordination geometries of Co ions. Complex 3 is 3D framework with the fsh 4,6-conn topology and complex 4 has 2D 4-connected sql topology. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3 dispersed in methanol could be used as a fluorescent sensor for the detection of acetone. Moreover, thermal and optical properties of the complexes were also studied.

  6. A triple-bridged azido-Cu(II) chain compound fine-tuned by mixed carboxylate/ethanol linkers displays slow-relaxation and ferromagnetic order: synthesis, crystal structure, magnetic properties and DFT calculations.

    Liu, Xiangyu; Chen, Sanping; Grancha, Thais; Pardo, Emilio; Ke, Hongshan; Yin, Bing; Wei, Qing; Xie, Gang; Gao, Shengli

    2014-11-07

    A new azido-Cu(II) compound, [Cu(4-fba)(N3)(C2H5OH)] (4-fba = 4-fluorobenzoic acid) (1), has been synthesized and characterized. The X-ray crystal structure analysis demonstrates that only one crystallographically independent Cu(II) ion in the asymmetric unit of 1 exhibits a stretched octahedral geometry in which two azido N atoms and two carboxylic O atoms locate in the equatorial square, while two ethanol O atoms occupy the apical positions, forming a 1D Cu(II) chain with an alternating triple-bridge of EO-azido, syn,syn-carboxylate, and μ2-ethanol. The title compound consists of ferromagnetically interacting ferromagnetic chains, which exhibit ferromagnetic order (T(c) = 7.0 K). The strong ferromagnetic coupling between adjacent Cu(II) ions within each chain is due to the countercomplementarity of the super-exchange pathways, whereas the ferromagnetic interchain interactions--responsible for the long-range magnetic ordering--are most likely due to the presence of coordinated ethanol molecules establishing hydrogen bonds with neighboring chains. DFT calculations have been performed on compound 1 to offer a qualitative theoretical explanation of the magnetic behavior.

  7. Lanthanide(III) complexes with μ-SnSe{sub 4} and μ-Sn{sub 2}Se{sub 6} linkers. Solvothermal syntheses and properties of new Ln(III) selenidostannates decorated with linear polyamine

    Liu, Shuzhen; Sun, Peipei; Shen, Yali; Han, Jingyu; Sun, Hui; Jia, Dingxian [Soochow Univ., Suzhou (China). College of Chemistry, Chemical Engineering and Materials Science

    2017-06-01

    New lanthanide-selenidostannate complexes [{La(peha)(Cl)}{La(peha)(NO_3)}(μ-1κ{sup 2}:2κ{sup 2}-SnSe{sub 4})] (1), [H{sub 2}trien][{La(trien)_2}{sub 2}(μ-1-κ:2κ-Sn{sub 2}Se{sub 6})][Sn{sub 2}Se{sub 6}].H{sub 2}O (2) and [{Ln(tepa)(μ-OH)}{sub 2}(μ-1κ:2κ-Sn{sub 2}Se{sub 6})]{sub n}.nH{sub 2}O (Ln=Sm(3), Eu(4)) were prepared by solvothermal methods in pentaethylenehexamine (peha), triethylenetetramine (trien) and tetraethylenepentamine (tepa), respectively. Acting as a tetradentate chelating and bridging ligand, μ-1κ{sup 2}:2κ{sup 2}-SnSe{sub 4}, the tetrahedral SnSe{sub 4} unit joins {La(peha)(Cl)}{sup 2+} and {La(peha)(NO_3)}{sup 2+} complex fragments to generate the neutral coordination compound 1. The tetradentate μ-1κ{sup 2}:2κ{sup 2} bridge in 1 represents a new coordination mode for the SnSe{sub 4} tetrahedron. In 2, dinuclear [Sn{sub 2}Se{sub 6}]{sup 4-} anions are formed of SnSe{sub 4} tetrahedra via edge-sharing. One [Sn{sub 2}Se{sub 6}]{sup 4-} anion acts as a bidentate bridging ligand in a μ-1κ:2κ coordination mode to join two {La(trien)_2}{sup 3+} units, and the other [Sn{sub 2}Se{sub 6}]{sup 4-} anion exists as a free charge compensating ion. In 3 and 4, the [Sn{sub 2}Se{sub 6}]{sup 4-} anion connects binuclear [{Ln(tepa)(μ-OH)}{sub 2}]{sup 2+}(Ln=Sm, Eu) units with a bidentate μ-1κ:2κ mode, giving neutral coordination polymers [{Ln(tepa)(μ-OH)}{sub 2}(μ-1κ:2κ-Sn{sub 2}Se{sub 6})]{sub n}. The La(2){sup 3+} ion in 1 is in a 10-fold coordination environment of LaN{sub 6}O{sub 2}Se{sub 2}, whereas the La(1){sup 3+} ions in 1 and 2 are in 9-fold coordinated environments forming polyhedra LaN{sub 6}ClSe{sub 2} and LaN{sub 8}Se, respectively. The Sm{sup 3+} and Eu{sup 3+} ions in 3 and 4 are both in an 8-fold coordination environment of LnN{sub 5}O{sub 2}Se. Compounds 1-4 exhibit optical band gaps between 2.21 and 2.42 eV. Their thermal stabilities were investigated by thermogravimetric analyses.

  8. Kinetics of isomerization and inversion of aspartate 58 of αA-crystallin peptide mimics under physiological conditions.

    Kenzo Aki

    Full Text Available Although proteins consist exclusively of L-amino acids, we have reported that aspartyl (Asp 58 and Asp 151 residues of αA-crystallin of eye lenses from elderly cataract donors are highly inverted and isomerized to D-β, D-α and L-β-Asp residues through succinimide intermediates. Of these Asp isomers, large amounts of D-β- and L-β-isomers are present but the amount of D-α-isomer is not significant. The difference in abundance of the Asp isomers in the protein may be due to the rate constants for the formation of the isomers. However, the kinetics have not been well defined. Therefore, in this study, we synthesized a peptide corresponding to human αA-crystallin residues 55 to 65 (T(55VLD(58SGISEVR(65 and its isomers in which L-α-Asp at position 58 was replaced with L-β-, D-β- and D-α-Asp and determined the rate of isomerization and inversion of Asp residues under physiological conditions (37°C, pH7.4. The rate constant for dehydration from L-α-Asp peptide to L-succinimidyl peptide was 3 times higher than the rate constant for dehydration from L-β-Asp peptide to L-succinimidyl peptide. The rate constant for hydrolysis from L-succinimidyl peptide to L-β-Asp peptide was about 5 times higher than the rate constant for hydrolysis from L-succinimidyl peptide to L-α-Asp peptide. The rate constant for dehydration from L-α-Asp peptide to L-succinimidyl peptide was 2 times higher than the rate constant for dehydration from D-α-Asp peptide to D-succinimidyl peptide. The rate constants for hydrolysis from L-succinimidyl peptide to L-β-Asp peptide and for hydrolysis from D-succinimidyl peptide to D-β-Asp peptide were almost equal. Using these rate constants, we calculated the change in the abundance ratios of the 4 Asp isomers during a human lifespan. This result is consistent with the fact that isomerized Asp residues accumulate in proteins during the ageing process.

  9. Surface self-assembled hybrid nanocomposites with electroactive nanoparticles and enzymes confined in a polymer matrix for controlled electrocatalysis

    Zhu, Nan; Ulstrup, Jens; Chi, Qijin

    2015-01-01

    A three-dimensional network of highly branched poly(ethyleneimine) (PEI) is designed and synthesized on gold electrode surfaces. A self-assembled monolayer (SAM) of dithiobis(succinimidyl propionate) (DTSP) on a gold electrode was first prepared, which is confirmed by the reductive desorption of ...

  10. Molecular Innovations Toward Theranostics of Aggressive Prostate Cancer

    2014-09-01

    18F]4-fluorobenzoic acid ([18F]FBA) as the corresponding TPA salt. After saponification , 1 ml of acetonitrile was added and evaporated (70°C, 5 min...with a stream of argon to remove any residual water left over from the saponification . O-(N-succinimidyl)-1,1,3,3-tetramethyluronium

  11. Evaluation of protein acylation agents for the radioiodination of peptides: Application to labelling octreotide

    Zalutsky, M.; Vaidyanathan, G.

    2002-01-01

    The purpose of this study was to investigate the utility of two acylation agents originally developed for protein labelling - N-succinimidyl 3-[ 131 I]iodobenzoate and N-succinimidyl 5-[ 131 I]iodopyridine-3- carboxylate - for the radioiodination of peptides. Because of the widespread interest in imaging and treating malignancies that overexpress somatostatin receptors, octreotide was selected as the model peptide. Using these reagents, octreotide was coupled to 3-iodobenzoyl and 3-iodonicotinoyl templates, yielding [N-(3-iodobenzoyl)- D-Phe 1 ]octreotide (IBO) and [N-(3-iodonicotinoyl)-D-Phe 1 ]octreotide (INO), respectively. The IC 50 values for the binding of IBO and INO to somatostatin receptor expressing CA20948 rat pancreatic tumour membranes were 0.90 nM and 0.13 nM, respectively, compared with 0.35 nM for octreotide itself. Yields for the preparation of [ 131 I]IBO and [ 131 I]INO from N-succinimidyl 3-[ 131 I]iodobenzoate and N-succinimidyl 5-[ 131 I]iodopyridine-3- carboxylate, were 35-50%. In vitro assays with AR42J rat pancreatic tumour cells demonstrated considerably higher receptor-specific retention of cell-internalized radioiodine activity for [ 131 I]INO compared with [ 125 I]IBO. A tissue distribution study with both conjugates revealed low levels of activity in the thyroid, consistent with a low degree of deiodination of these radioiodinated peptide conjugates. (author)

  12. A flow cytometric assay for simultaneously measuring the ...

    This research objective was to exploit a novel method for measuring the proliferation, cytotoxicity of cytokine-induced killer (CIK) cells using carboxyfluorescein succinimidyl ester/proliferation index (CFSE/PI) and flow cytometric assay. As cells divide, CFSE is apportioned equally between the two daughter cells, leading to a ...

  13. Smart PEGylation of trypsin.

    Zarafshani, Zoya; Obata, Toshihiro; Lutz, Jean-François

    2010-08-09

    Thermoresponsive oligo(ethylene glycol)-based copolymers were investigated for trypsin conjugation. These copolymers have been synthesized by atom transfer radical polymerization of 2-(2-methoxyethoxy)ethyl methacrylate (MEO(2)MA) with oligo(ethylene glycol) methyl ether methacrylate (OEGMA(475), M(n) = 475 g.mol(-1)) at 60 degrees C in the presence of copper(I) chloride and 2,2'-bipyridyl. Two different ATRP initiators, containing succinimidyl ester moieties, were tested, namely, N-succinimidyl-2-bromopropionate and N-succinimidyl-2-bromoisobutyrate. In both cases, ATRP afforded well-defined polymers with a narrow molecular weight distribution and controlled chain-ends. However, the efficiency of initiation of the two initiators was lower than 1 and therefore the formed polymers exhibited a higher than expected mean degree of polymerization. Nevertheless, all types of polymers could be conjugated to trypsin. The conjugation reaction was performed in borax-HCl buffer. Sodium dodecyl sulfate poly(acrylamide) gel electrophoresis (SDS-PAGE) indicated that polymer/enzyme conjugates were obtained in all cases. However, (co)polymers initiated by N-succinimidyl-2-bromopropionate led to the best conjugation results. The formed P(MEO(2)MA-co-OEGMA(475))-trypsin conjugates were found to be thermoresponsive and moreover exhibited a higher enzymatic activity than unmodified trypsin.

  14. Solvent-Controlled Chemoselectivity in the Photolytic Release of Hydroxamic Acids and Carboxamides from Solid Support

    Qvortrup, Katrine; Petersen, Rico G; Dohn, Asmus Ougaard

    2017-01-01

    The synthetic utility and theoretical basis of a photolabile hydroxylamine-linker are presented. The developed protocols enable the efficient synthesis and chemoselective photolytic release of either hydroxamates or carboxamides from solid support. The bidetachable mode of the linker unit...

  15. A new achiral reagent for the incorporation of multiple amino groups into oligonucleotides

    Behrens, Carsten; Petersen, Kenneth H.; Egholm, Michael

    1995-01-01

    The synthesis of a new functionalized achiral linker reagent (10) for the incorporation of multiple primary amino groups into oligonucleotides is described. The linker reagent is compatible with conventional DNA-synthesis following the phosphoramidite methodology, and the linker can be incorporated...

  16. A magnetic nanoparticle-clustering biosensor for blu-ray based optical detection of small-molecules

    Yang, Jaeyoung; Donolato, Marco; Antunes, Paula Soares Martins

    2014-01-01

    MNP-clustering facilitates high-resolution small-molecule assays. For experiments, aptamer-functionalized MNPs (Apt-MNPs) were first incubated with adenosine-5'-triphosphate (ATP) followed by adding MNPs with linker strands (linker-MNPs). The linker hybridizes with a region of aptamer sequences...

  17. Rational assembly of nanoparticle superlattices with designed lattice symmetries

    Gang, Oleg; Lu, Fang; Tagawa, Miho

    2017-09-05

    A method for lattice design via multivalent linkers (LDML) is disclosed that introduces a rationally designed symmetry of connections between particles in order to achieve control over the morphology of their assembly. The method affords the inclusion of different programmable interactions within one linker that allow an assembly of different types of particles. The designed symmetry of connections is preferably provided utilizing DNA encoding. The linkers may include fabricated "patchy" particles, DNA scaffold constructs and Y-shaped DNA linkers, anisotropic particles, which are preferably functionalized with DNA, multimeric protein-DNA complexes, and particles with finite numbers of DNA linkers.

  18. Another piece in the progranulin puzzle: special binding between progranulin and prosaposin creates additional lysosomal access: An Editorial Comment for 'The interaction between progranulin and prosaposin is mediated by granulins and the linker region between saposin B and C' on page 236.

    Van Damme, Philip

    2017-10-01

    Loss-of-function mutations in the gene encoding the growth factor progranulin cause degeneration of the ageing brain in a dose-dependent manner. While heterozygous mutations result in adult onset frontotemporal dementia, the much rarer homozygous null mutations cause an early onset lysosomal storage disorder. A better understanding of the biology of progranulin in the central nervous system is needed to find solutions for these incurable diseases. This Editorial highlights a study by Zhou et al. in the current issue of the Journal of Neurochemistry, in which the authors provide data that are a step towards this goal. Progranulin is mainly expressed by neurons and microglia and, although it is a secreted protein, it also ends up in lysosomes. Recently, the trafficking of progranulin and the molecular players involved have become better understood. A special interaction between progranulin and its travelling companion, prosaposin, explains how both proteins can use each other's transport receptors to gain access to lysosomes. © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  19. Chimeric anti-tenascin antibody 81C6: Increased tumor localization compared with its murine parent

    Zalutsky, Michael R.; Archer, Gary E.; Garg, Pradeep K.; Batra, Surinder K.; Bigner, Darell D.

    1996-01-01

    When labeled using the Iodogen method, a chimeric antibody composed of the human IgG 2 constant region and the variable regions of murine anti-tenascin 81C6 exhibited superior uptake in human glioma xenografts compared with its murine parent. In the current study, three paired-label experiments were performed in athymic mice with subcutaneous D-54 MG human glioma xenografts to evaluate further the properties of radioiodinated chimeric 81C6. These studies demonstrated that (a) the enhanced tumor uptake of chimeric 81C6 is specific; (b) when labeling was performed using N-succinimidyl 3-iodobenzoate, chimeric 81C6 again showed preferential accumulation in tumor compared with murine 81C6; and (c) the tumor uptake advantage observed previously with murine 81C6 for N-succinimidyl 3-iodobenzoate compared with Iodogen labeling did not occur with chimeric 81C6

  20. Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer

    Wilbur, D.S.; Hadley, S.W.; Hylarides, M.D.; Abrams, P.G.; Beaumier, P.A.; Morgan, A.C.; Reno, J.M.; Fritzberg, A.R.

    1989-01-01

    A method of radioiodinating monoclonal antibodies such that the labeled antibodies do not undergo in vivo deiodination has been studied. The method utilizes conjugation of succinimidyl para-iodobenzoate to the antibody. The iodobenzoate was radiolabeled by using an organometallic intermediate to facilitate the reaction. Thus, succinimidyl para-tri-n-butylstannylbenzoate was radiolabeled in 60-90% radiochemical yield and subsequently conjugated to the antibody in 80-90% yield. Animal biodistribution studies were carried out with two separate anti-melanoma antibodies (9.2.27 and NR-M1-05) labeled by this method, and examined in nude mice bearing human melanoma tumor xenografts. Very large differences in the localization of radioactivity were observed in the thyroids and stomachs of mice when the iodobenzoyl-labeled antibodies were compared with the same antibodies labeled using the chloramine-T method of radioiodination. Few other significant differences in the tissue distribution of the radioiodinated antibodies were seen

  1. Breast Tumor Detection and Treatment Using Tarvacin Labeled with Arsenic Radionuclides

    2007-04-01

    have also purchased and tested isotopically enriched 76GeO2. Materials and Methods. All reagents and solvents were purchased from Sigma-Aldrich...and dimethylsulfoxide were purchased from Pierce (Rockford, IL). BOND ELUT ENV cartridges with a sorbent mass of 25 mg were purchased from Varian...two days prior to the above target processing. Briefly, 2.0 mg of SATA (N-Succinimidyl S- Acetylthioacetate) was dissolved in 500 μL of DMSO , giving a

  2. Indirect labeling of proteins with radioiodine

    Araujo, Elaine Bortoleti de; Lavinas, Tatiana; Muramoto, Emiko; Pereira, Nilda P.S. de; Silva, Constancia P.G.; Tavares, Leoberto C.

    2000-01-01

    A procedure is described for the radioiodination of proteins using an iodinated derivative of N succinimidyl 3-(tri-n-butylstannyl)benzoate (ATE), previously described by Zalutsky. ATE was obtained in a high pure form and the iodination has been performed with 131-Iodine in 70-80% yield. Protein labeling studies performed with human IgG indicate that the ATE intermediate is an important alternative to conventional labeling methods. (author)

  3. Preparation of catalytically active, covalent α-polylysine-enzyme conjugates via UV/vis-quantifiable bis-aryl hydrazone bond formation.

    Grotzky, Andrea; Manaka, Yuichi; Kojima, Taisuke; Walde, Peter

    2011-01-10

    Covalent UV/vis-quantifiable bis-aryl hydrazone bond formation was investigated for the preparation of conjugates between α-poly-d-lysine (PDL) and either α-chymotrypsin (α-CT) or horseradish peroxidase (HRP). PDL and the enzymes were first modified via free amino groups with the linking reagents succinimidyl 6-hydrazinonicotinate acetone hydrazone (S-HyNic, at pH 7.6) and succinimidyl 4-formylbenzoate (S-4FB, at pH 7.2), respectively. The modified PDL and enzymes were then conjugated at pH 4.7, whereby polymer chains carrying several enzymes were obtained. Kinetics of the bis-aryl hydrazone bond formation was investigated spectrophotometrically at 354 nm. Retention of the enzymatic activity after conjugate formation was confirmed by using the substrates N-succinimidyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide (for α-CT) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, for HRP). Thus, not only a mild and efficient preparation and convenient quantification of a conjugate between the polycationic α-polylysine and enzymes could be shown, but also the complete preservation of the enzymatic activity.

  4. Factors Influencing Rapid Prototyping Innovation Implementation: A Descriptive Model

    1990-03-01

    Risk Active in Multi-disciplines More Information Contacts High Credibility With Peers Cosmopolite Oriented Towards Outside Information Sources...affords linkers with a high degree of opinion leadership. Linkers are cosmopolite —oriented toward something which is greater than the limited local

  5. Post-assembly transformations of porphyrin-containing metal-organic framework (MOF) films fabricated via automated layer-by-layer coordination

    So, Monica; Beyzavi, M. Hassan; Sawhney, Rohan; Shekhah, Osama; Eddaoudi, Mohamed; Al-Juaid, Salih Salem; Hupp, Joseph T.; Farha, Omar K.

    2015-01-01

    Herein, we demonstrate the robustness of layer-by-layer (LbL)-assembled, pillared-paddlewheel-type MOF films toward conversion to new or modified MOFs via solvent-assisted linker exchange (SALE) and post-assembly linker metalation. Further, we show that LbL synthesis can afford MOFs that have proven inaccessible through other de novo strategies.

  6. The Effect of Double Crosslinker on Precipitation Polymerization of Poly(acrylic acid

    Hajar Es-haghi

    2014-06-01

    Full Text Available Cross-linked poly(acrylic acids were prepared by dual cross-linkers via precipitation polymerization method in a binary organic solvent. Polyethylene glycol diacrylate (PEGDA-400 as a long-chain cross-linker and di(trimethylol propane tetraacrylate (DTMPTA as multifunctional cross-linker were used. PEGDA-400 was utilized to increase thickening properties and DTMPTA was used to improve the gel strength. The dual cross-linkers effect on the sample features (i.e., equilibrium swelling, thickening properties and rheological properties was investigated. Maximum amount of swelling was obtained by a high percentage of long-chain cross-linker. The apparent viscosity of the microgels was measured to determine their thickening properties for aqueous media. Maximum viscosity occurred at DT25-PE75 which was dependent on the type of cross-linkers in the polymer structure. The Flory-Rehner equation (from swelling ratio data and rubber elasticity theory (from rheometry data were used to discuss the network structure of the polymer. Increasing density of the network was shown by a sample containing high percentage of a four-functional cross-linker. The rheological properties of the cross-linked polymers were measured to determine storage modulus (strength network. The rheological behaviors demonstrated that the synthesized polymer containing a high amount of four-functional cross-linker had higher storage modulus (G′ than other samples. In addition the consistency coefficient (m and flow behavior index (n parameters of Ostwald equation were investigated as well. As a result, n values in each sample were found to be smaller than 1 and these results were fitted clearly with the pseudoplastic model. Apparent and rotational viscosities were used to determine the optimal cross-linker type (synthesized sample contained a high percentage of long-chain cross-linker.

  7. A method for the radiohalogenation of proteins resulting in decreased thyroid uptake of radioiodine

    Zalutsky, M.R.; Narula, A.S.

    1987-01-01

    A procedure is described for the radioiodination of proteins using an iodinated derivative of N-succinimidyl 3-(tri-n-butylstannyl) benzoate (ATE). Adequate removal of unreacted ATE from [ 125 I]ATE was necessary for optimal protein radioiodination. Labelling efficiencies of greater than 60% could be obtained after a 20 min incubation of goat IgG with [ 125 I]ATE at 4 0 C. Paired-label experiments with goat IgG labeled with 125 I using ATE and 131 I using Iodogen demonstrated that use of the ATE reagent for protein labeling significantly reduced (P < 0.005) the thyroid uptake of radioiodine. (author)

  8. Grafting C8-C16 alkyl groups altered the self-assembly and curcumin –loading properties of sodium caseinate in water

    Yaqiong Zhang; Puyu Yang; Fangyi Yao; Jie Liu; Liangli (Lucy) Yu

    2018-01-01

    The data presented here are related to the research article entitled “Synthesis and characterization of alkylated caseinate, and its structure-curcumin loading property relationship in water” (Zhang et al., 2018) [1]. This data article reports the detailed spectra information for 1H NMR, 13C NMR and UPLC-Q-TOF MS of the N-succinimidyl fatty acid esters with various alkyl chain lengths (Cn-NHSs, n = 8, 12, 14 and 16). 1H NMR, 13C NMR and UPLC-Q-TOF MS spectra for C16-NHS are shown as an exampl...

  9. Fluorescence dye tagging scheme for mercury quantification and speciation

    Jiao, Hong; Catterall, Hannah

    2015-09-22

    A fluorescent dye or fluorophore capable of forming complexes with mercury comprises 6,8-difluoro-7-hydroxy-2-oxo-2H-chromene-3-carboxylate amide, wherein the amide is formed by reacting the succinimidyl ester (Pacific Blue.TM.) with an amino acid containing a thiol group, such as cysteine or glutathione. Mercury complexes of the fluorophore fluoresce when excited by a UV or violet laser diode, and the detected intensity can be calibrated to quantify the concentration of mercury in a sample reacted with the fluorophore.

  10. Synthesis of dendrimer-based biotin radiopharmaceuticals to enhance whole-body clearance

    Sato, Noriko; Park, Chang W.; Kim, Hyung-Sik; Han, Eui-Sik; Wong, Karen J.; Paik, Ronald S.; Park, Luke S.; Yao Zhengsheng; Carrasquillo, Jorge A.; Paik, Chang H.

    2003-01-01

    To synthesize a biotin radiopharmaceutical that clears rapidly, dendrimer was used as a carrier and conjugated with succinimidyl 3-[ 125 I]iodobenzoate and tetrafluorophenyl norbiotinamidosuccinate. Then, succinic anhydride was used to reduce its pI. In mice, the non-succinylated product showed high liver (67% ID/g) and kidney (44% ID/g) uptakes and whole-body retention (94% ID) at 20 min that persisted for 12 hr. The corresponding organ uptakes (22% and 11% ID/g) and the whole-body retention (47% ID) were drastically reduced by succinylation (p<0.0001). Lysine co-injection further lowered renal uptake

  11. Synthesis of radioiodinated labeled peptides

    Matloobi, M.; Rafii, H.; Beigi, D.; Khalaj, A.; Kamali-Dehghan, M.

    2003-01-01

    Optimization of radioiodination of peptides is covered by both a direct method in which a constituent tyrosine residue is labeled and indirect method by using an iodinated derivative (SIB) of N succinimidyl 3-(tri-n-butylstannyl) benzoate (ATE) as the intermediate. Radioiodination of IgG and FMLF were performed by direct method using Chloramine-T as an oxidant but since Formyl-Methyl-Leucyl-Phenylalanine, FMLF, does not lend itself for direct radioiodination we performed labeling of FMLF by indirect method via radioiodined SIB at different pH. (author)

  12. Electrostatic Interactions Govern "Odd/Even" Effects in Water-Induced Gemini Surfactant Self-Assembly.

    Mantha, Sriteja; McDaniel, Jesse G; Perroni, Dominic V; Mahanthappa, Mahesh K; Yethiraj, Arun

    2017-01-26

    Gemini surfactants comprise two single-tailed surfactants connected by a linker at or near the hydrophilic headgroup. They display a variety of water-concentration-dependent lyotropic liquid crystal morphologies that are sensitive to surfactant molecular structure and the nature of the headgroups and counterions. Recently, an interesting dependence of the aqueous-phase behavior on the length of the linker has been discovered; odd-numbered linker length surfactants exhibit characteristically different phase diagrams than even-numbered linker surfactants. In this work, we investigate this "odd/even effect" using computer simulations, focusing on experimentally studied gemini dicarboxylates with Na + counterions, seven nonterminal carbon atoms in the tails, and either three, four, five, or six carbon atoms in the linker (denoted Na-73, Na-74, Na-75, and Na-76, respectively). We find that the relative electrostatic repulsion between headgroups in the different morphologies is correlated with the qualitative features of the experimental phase diagrams, predicting destabilization of hexagonal phases as the cylinders pack close together at low water content. Significant differences in the relative headgroup orientations of Na-74 and Na-76 compared to those of Na-73 and Na-75 surfactants lead to differences in linker-linker packing and long-range headgroup-headgroup electrostatic repulsion, which affects the delicate electrostatic balance between the hexagonal and gyroid phases. Much of the fundamental insight presented in this work is enabled by the ability to computationally construct and analyze metastable phases that are not observable in experiments.

  13. Biocompatible branched copolymer nanoparticles prepared by RAFT polymerization as MRI/PET bimodal tracers

    Yang, Chang-Tong [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Tao, He; Jackson, Alexander W [Institute of Chemical and Engineering Sciences, Agency for Science Technology and Research (Singapore); Chandrasekharan, Prashant [Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (Singapore); Padmanabhan, Parasuraman [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Gulyás, Balázs; Halldin, Christer [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Karolinska Institutet, Department of Clinical Neuroscience, Stockholm (Sweden)

    2015-05-18

    Stable branched copolymer nanoparticles of varying size (Dh = 20 – 35 nm) have been developed and employed as MRI nano-sized contrast agents. RAFT polymerization has been employed to prepare these novel nanoparticles possessing DO3A macrocycles within their cores and succinimidyl ester benzoate functionalities within their coronas. It has been demonstrated that these nanoparticles can chelate gadolinium and in vitro cytotoxicity studies using HK-2 cells established their negligible toxicity profile. In vivo MRI experiments showed that these nanoparticles have a high relaxivity and a long blood retention time. Xenograft experiments further illustrated the ability of these nanoparticles to perfuse and passively accumulate in tumor cells, presumably through the enhanced EPR effect. The presence of the succinimidyl ester benzoate functionalities within the nanoparticle coronas will permit future surface modification with fluorophores or targeting moieties to generate nanoparticles to study opportunities for bimodal imaging nano-probes or active cell targeting contrast agents. The chelation with PET radioisotopes (68Ga(III) or 64Cu(II)) can afford various PET tracers.

  14. Biocompatible branched copolymer nanoparticles prepared by RAFT polymerization as MRI/PET bimodal tracers

    Yang, Chang-Tong; Tao, He; Jackson, Alexander W; Chandrasekharan, Prashant; Padmanabhan, Parasuraman; Gulyás, Balázs; Halldin, Christer

    2015-01-01

    Stable branched copolymer nanoparticles of varying size (Dh = 20 – 35 nm) have been developed and employed as MRI nano-sized contrast agents. RAFT polymerization has been employed to prepare these novel nanoparticles possessing DO3A macrocycles within their cores and succinimidyl ester benzoate functionalities within their coronas. It has been demonstrated that these nanoparticles can chelate gadolinium and in vitro cytotoxicity studies using HK-2 cells established their negligible toxicity profile. In vivo MRI experiments showed that these nanoparticles have a high relaxivity and a long blood retention time. Xenograft experiments further illustrated the ability of these nanoparticles to perfuse and passively accumulate in tumor cells, presumably through the enhanced EPR effect. The presence of the succinimidyl ester benzoate functionalities within the nanoparticle coronas will permit future surface modification with fluorophores or targeting moieties to generate nanoparticles to study opportunities for bimodal imaging nano-probes or active cell targeting contrast agents. The chelation with PET radioisotopes (68Ga(III) or 64Cu(II)) can afford various PET tracers.

  15. 211At-labelling of polymer particles for radiotherapy: synthesis, purification and stability

    Larsen, R.H.; Hassfjell, S.P.; Hoff, P.; Alstad, J.; Bjoergum, J.

    1993-01-01

    Cyclotron-produced 211 At was distilled from a Bi metal target and coupled to N-succinimidyl-3-(trimethylstannyl)benzoate. The resulting N-succinimidyl-3-( 211 At)astatobenzoate was thereafter coupled to aminated monosized polymer particles with a diameter of 1.8 μm. The total time elapsed from the end of the cyclotron irradiation until the final product was prepared was about 2.5 hours. From 23 to 51% of the target activity at the end of bombardment was measured in the final conjugate. Solid-liquid extraction purification of the astatinated intermediate, using Sep-pak columns (Waters), gave more reproducible yields in the final conjugation step. The 211 At-labelled particles were incubated with fetal calf serum, human serum and human full blood at room temperature. The 211 At activity on the particles was measured before and after three times washing at 4, 24 and 48 hours. The stability was not significantly different from 100% for all media and for all time points. This indicates that 211 At-labelled particles can be stable under in vivo conditions, and may thereby be a promising agent for intracavitary radiotherapy on free-floating cancer cells or surface fixed cells. (Author)

  16. Effects of Rosiglitazone on the Expression of PPAR-γ and on the ...

    Erah

    2011-11-03

    Nov 3, 2011 ... Tropical Journal of Pharmaceutical Research December 2011; 10 (6): ... of Medicine, The Catholic University of Korea, Seoul, South Korea ... measured in the culture supernatants by ELISA. ..... a photoaffinity cross-linker [30].

  17. A Novel Membrane-Permeable Breast-Targeting Pro-Apoptotic Peptide for Treatment of Breast Cancer

    Guo, Bin

    2005-01-01

    .... The BH3 peptide of Bid (EDIIRNIARHLAQVGDSMDR) was synthesized with eight d-arginine residues at the N-terminus with a glycine linker residue, followed by a breast-homing sequence (CPGPEGAGC) at the C-terminal...

  18. Design, Synthesis and Characterization of Functional Metal-Organic Framework Materials

    Alamer, Badriah

    2015-01-01

    are known as Metal Organic Framework (MOFs). This exceptional new family of porous materials is fabricated by linkage of metal ions or clusters and organic linkers via strong bonds. MOFs have been awarded with remarkable interest and widely studied due

  19. Smart dual-functional warhead for folate receptor-specific activatable imaging and photodynamic therapy.

    Kim, Jisu; Tung, Ching-Hsuan; Choi, Yongdoo

    2014-09-21

    A smart dual-targeted theranostic agent becomes highly fluorescent and phototoxic only when its linker is cleaved by tumor-associated lysosomal enzyme cathepsin B after internalization into folate receptor-positive cancer cells.

  20. Trichostatin-A induces differential changes in histone protein dynamics and expression in HeLa cells

    Rao, Jyothsna; Bhattacharya, Dipanjan; Banerjee, Bidisha; Sarin, Apurva; Shivashankar, G.V.

    2007-01-01

    Trichostatin-A (TSA), a histone deacetylase (HDAC) inhibitor, results in enhanced acetylation of core histones thereby disrupting chromatin organization within living cells. We report on changes in chromatin organization and the resultant alteration in nuclear architecture following treatment with TSA using fluorescence imaging. TSA triggers an expected increase in the euchromatin fraction which is accompanied by a significant increase in nuclear volume and alterations in chromatin compaction mapped using fluorescence anisotropy imaging. We observe differential changes in the mobility of core and linker histones as measured by fluorescence recovery after photo-bleaching (FRAP) and fluorescence correlation spectroscopy (FCS) methods. Further TSA induces a differential increase in linker histone transcription and increased phosphorylation of linker histone proteins accompanying an expected increase in core histone acetylation patterns. Thus subtle feedback responses triggered by changes in chromatin configurations impinge selectively on linker histone mobility and its expression. These observations have implications for understanding the role of HDAC in the dynamic maintenance of chromatin organization

  1. Pyrrolidine constrained bipyridyl-dansyl click fluoroionophore as selective Al(3+)sensor.

    Maity, Debabrata; Govindaraju, T

    2010-07-07

    A pyrrolidine constrained bipyridyl-dansyl (ionophore-fluorophore) conjugate with triazole linker was synthesised through click chemistry. The fluoroionophore serves as a selective ratiometric and colorimetric chemosensor for Al(3+) based on internal charge transfer (ICT).

  2. Divergent unprotected peptide macrocyclisation by palladium-mediated cysteine arylation.

    Rojas, Anthony J; Zhang, Chi; Vinogradova, Ekaterina V; Buchwald, Nathan H; Reilly, John; Pentelute, Bradley L; Buchwald, Stephen L

    2017-06-01

    Macrocyclic peptides are important therapeutic candidates due to their improved physicochemical properties in comparison to their linear counterparts. Here we detail a method for a divergent macrocyclisation of unprotected peptides by crosslinking two cysteine residues with bis-palladium organometallic reagents. These synthetic intermediates are prepared in a single step from commercially available aryl bis-halides. Two bioactive linear peptides with cysteine residues at i , i + 4 and i , i + 7 positions, respectively, were cyclised to introduce a diverse array of aryl and bi-aryl linkers. These two series of macrocyclic peptides displayed similar linker-dependent lipophilicity, phospholipid affinity, and unique volume of distributions. Additionally, one of the bioactive peptides showed target binding affinity that was predominantly affected by the length of the linker. Collectively, this divergent strategy allowed rapid and convenient access to various aryl linkers, enabling the systematic evaluation of the effect of appending unit on the medicinal properties of macrocyclic peptides.

  3. Prostate Activated Prodrugs and Imaging Agents

    Jones, Graham B

    2004-01-01

    .... The substrate chosen was a 3 component system composed of a peptide sequence with affinity for PSA, an imaging agent and a deactivating bridge-linker, which electronically incapacitates the imaging agent...

  4. Impedance cardiography

    Lamberts, Robert

    1984-01-01

    De doelstelling van dit onderzoek over impedantie-cardiograflie was het vaststellen van de bruikbaarheid van deze voor NASA ontwikkelde niet-invasieve meetmethode, in het bijzonder voor het bepalen van het slagvolume van de linker hartkamer. ... Zie: Samenvatting

  5. Inter-domain synergism is required for efficient feeding of cellulose chain into active site of cellobiohydrolase Cel7A

    Kont, Riin; Kari, Jeppe; Borch, Kim

    2016-01-01

    systems. TrCel7A consists of catalytic domain (CD) and a smaller carbohydrate binding module (CBM) connected through the glycosylated linker peptide. A tunnel shaped active site rests in the CD and contains 10 glucose unit binding sites. The active site of TrCel7A is lined with four Trp residues with two...... to Ala substitution on on-rates was strongly dependent on the presence of the CBM-linker. This compensation between CBM-linker and Trp-38 indicates synergism between CBM-linker and CD in feeding the cellulose chain into the active site. The inter-domain synergism was pre-requisite for the efficient......Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme...

  6. Determination of surface concentrations of individual molecule-layers used in nanoscale biosensors by in situ ATR-FTIR spectroscopy

    Punzet, Manuel; Baurecht, Dieter; Varga, Franz; Karlic, Heidrun; Heitzinger, Clemens

    2012-01-01

    formation of typical functionalization protocols and to determine the respective molecule surface concentrations. BSA, anti-TNF-α and anti-PSA antibodies were bound via 3-(trimethoxy)butylsilyl aldehyde linkers to silicon-oxide surfaces in order

  7. Mass distributions of a macromolecular assembly based on ...

    Unknown

    Because of variation in the number and masses of subunits, ... and scanning transmission electron microscopy (STEM) appearances ... 36 linker chains, in agreement with the model proposed ... Each of them is determined by the two integer.

  8. Impact of Pore–Walls Ligand Assembly on the Biodegradation of Mesoporous Organosilica Nanoparticles for Controlled Drug Delivery

    Omar, Haneen; Moosa, Basem; Alamoudi, Kholod; Anjum, Dalaver H.; Emwas, Abdul-Hamid M.; El Tall, Omar; Vu, Binh; Tamanoi, Fuyu; AlMalik, Abdulaziz; Khashab, Niveen M.

    2018-01-01

    -assembly of the organic linkers provides a crystal-like pore wall. However, unlike metal coordination, specific geometries cannot be predicted because of the competitive and dynamic nature of noncovalent interactions. Herein, we study the influence of competing

  9. Controlled release in hard to access places by poly(methyl methacrylate) microcapsules triggered by gamma irradiation

    Kostrzewska, Malgorzata; Ma, Baoguang; Javakhishvili, Irakli

    2015-01-01

    microcapsules were shown to become permeable after irradiation and release an encapsulated cross-linker, which enables the remotely controlled formation of polydimethylsiloxanes in traditionally unavailable places. Therefore, the activation method has significant implications for industrial application....

  10. Metal–organic framework membranes: from synthesis to separation application

    Qiu, Shilun; Xue, Ming; Zhu, Guangshan

    2014-01-01

    Metal-organic framework (MOF) materials, which are constructed from metal ions or metal ion clusters and bridging organic linkers, exhibit regular crystalline lattices with relatively well-defined pore structures and interesting properties. As a new

  11. The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors

    Van den Steen, Philippe E; Van Aelst, Ilse; Hvidberg, Vibeke

    2006-01-01

    Gelatinase B/matrix metalloproteinase-9 (MMP-9), a key regulator and effector of immunity, contains a C-terminal hemopexin domain preceded by a unique linker sequence of approximately 64 amino acid residues. This linker sequence is demonstrated to be an extensively O-glycosylated (OG) domain with...... domains down-regulate the bioavailability of active MMP-9 and the interactions with the cargo receptors are proposed to be the original function of hemopexin domains in MMPs....

  12. Cytoskeletal dynamics

    Bendix, Pól Martin

    2015-01-01

    I worked with reconstitutted contractile acto-myosin systems containing mainly actin, actin cross-linkers and myosin motors. Contractility and rheology of such systems was studied using confocal microscopy and rheology.......I worked with reconstitutted contractile acto-myosin systems containing mainly actin, actin cross-linkers and myosin motors. Contractility and rheology of such systems was studied using confocal microscopy and rheology....

  13. Cellobiohydrolase I enzymes

    Adney, William S; Himmel, Michael E; Decker, Stephen R; Knoshaug, Eric P; Nimlos, Mark R; Crowley, Michael F; Jeoh, Tina

    2014-01-28

    Provided herein is an isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide, wherein the mutations reduce N-linked glycosylation of the isolated polypeptide relative to the wild type polypeptide. Also provided herein is an isolated Cel7A polypeptide comprising increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide. The increased O-linked glycosylation is a result of the addition of and/or substitution of one or more serine and/or threonine residues to the linker domain relative to the linker domain of the wild type polypeptide. In some embodiments, the isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide further comprises increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide. The mutations in the catalytic domain reduce N-linked glycosylation of the isolated polypeptide relative to the wild type polypeptide. The addition of and/or substitution of one or more serine and/or threonine residues to the linker domain relative to the linker domain of the wild type polypeptide increases O-linked glycosylation of the isolated polypeptide. Further provided are compositions comprising such polypeptides and nucleic acids encoding such polypeptides. Still further provided are methods for making such polypeptides.

  14. Harnessing high density lipoproteins to block transforming growth factor beta and to inhibit the growth of liver tumor metastases.

    José Medina-Echeverz

    Full Text Available Transforming growth factor β (TGF-β is a powerful promoter of cancer progression and a key target for antitumor therapy. As cancer cells exhibit active cholesterol metabolism, high density lipoproteins (HDLs appear as an attractive delivery system for anticancer TGFβ-inhibitory molecules. We constructed a plasmid encoding a potent TGF-β-blocking peptide (P144 linked to apolipoprotein A-I (ApoA-I through a flexible linker (pApoLinkerP144. The ApoLinkerP144 sequence was then incorporated into a hepatotropic adeno-associated vector (AAVApoLinkerP144. The aim was to induce hepatocytes to produce HDLs containing a modified ApoA-I capable of blocking TGF-β. We observed that transduction of the murine liver with pApoLinkerP144 led to the appearance of a fraction of circulating HDL containing the fusion protein. These HDLs were able to attenuate TGF-β signaling in the liver and to enhance IL-12 -mediated IFN-γ production. Treatment of liver metastasis of MC38 colorectal cancer with AAVApoLinkerP144 resulted in a significant reduction of tumor growth and enhanced expression of IFN-γ and GM-CSF in cancerous tissue. ApoLinkerP144 also delayed MC38 liver metastasis in Rag2-/-IL2rγ-/- immunodeficient mice. This effect was associated with downregulation of TGF-β target genes essential for metastatic niche conditioning. Finally, in a subset of ret transgenic mice, a model of aggressive spontaneous metastatic melanoma, AAVApoLinkerP144 delayed tumor growth in association with increased CD8+ T cell numbers in regional lymph nodes. In conclusion, modification of HDLs to transport TGF-β-blocking molecules is a novel and promising approach to inhibit the growth of liver metastases by immunological and non-immunological mechanisms.

  15. Similar distributions of repaired sites in chromatin of normal and xeroderma pigmentosum variant cells damaged by ultraviolet light

    Cleaver, J.E.

    1979-01-01

    Excision repair of damage from ultraviolet light in both normal and xeroderma pigmentosum variant fibroblasts at early times after irradiation occurred preferentially in regions of DNA accessible to micrococcal nuclease digestion. These regions are predominantly the linker regions between nucleosomes in chromatin. The alterations reported at polymerization and ligation steps of excision repair in the variant are therefore not associated with changes in the relative distributions of repair sites in linker and core particle regions of DNA. (Auth.)

  16. Accelerated optical holographic recording using bis-DNO

    Rasmussen, Palle H.; Ramanujam, P.S.; Hvilsted, Søren

    1999-01-01

    The design, synthesis and optical holographic recording properties of bis-DNO are reported. Bis-DNO is composed of two identical azobenzene oligoornithine segments (DNO) connected via a dipeptide linker. The two segments were assembled in a parallel fashion at the two amino groups of the dipeptid...... linker by Merrifield synthesis. Surprisingly, the response time of films of bis-DNOs was found to be much faster than that of their linear counterparts. (C) 1999 Elsevier Science Ltd. All rights reserved....

  17. Computational modeling and in-vitro/in-silico correlation of phospholipid-based prodrugs for targeted drug delivery in inflammatory bowel disease

    Dahan, Arik; Markovic, Milica; Keinan, Shahar; Kurnikov, Igor; Aponick, Aaron; Zimmermann, Ellen M.; Ben-Shabat, Shimon

    2017-11-01

    Targeting drugs to the inflamed intestinal tissue(s) represents a major advancement in the treatment of inflammatory bowel disease (IBD). In this work we present a powerful in-silico modeling approach to guide the molecular design of novel prodrugs targeting the enzyme PLA2, which is overexpressed in the inflamed tissues of IBD patients. The prodrug consists of the drug moiety bound to the sn-2 position of phospholipid (PL) through a carbonic linker, aiming to allow PLA2 to release the free drug. The linker length dictates the affinity of the PL-drug conjugate to PLA2, and the optimal linker will enable maximal PLA2-mediated activation. Thermodynamic integration and Weighted Histogram Analysis Method (WHAM)/Umbrella Sampling method were used to compute the changes in PLA2 transition state binding free energy of the prodrug molecule (ΔΔGtr) associated with decreasing/increasing linker length. The simulations revealed that 6-carbons linker is the optimal one, whereas shorter or longer linkers resulted in decreased PLA2-mediated activation. These in-silico results were shown to be in excellent correlation with experimental in-vitro data. Overall, this modern computational approach enables optimization of the molecular design of novel prodrugs, which may allow targeting the free drug specifically to the diseased intestinal tissue of IBD patients.

  18. Optimization of syntheses, quality control procedures and in vitro/in vivo evaluation of 18F and 123I radiopharmaceuticals based on peptides

    Bortoleti de Araujo, E.; Pagano, C.; Silva, G. da; Pereira, N.P.S. de; Muramoto, E.; Colturato, M.T.

    2002-01-01

    Since the discovery of peptide receptors and synthesis of small, biologically active peptides, it has been recognized that these molecules can provide new approaches for radiopharmaceutical development. Radiohalogenation via prosthetic groups has provided a useful route for labelling proteins, especially those lacking tyrosyl groups in their structure. The ATE prosthetic group [N-succinimidyl 3-(tri-n-butylstannyl) benzoate] was synthesized in a two step reaction: tri-n-butyl tin 3-(tri-n-butylstannyl)-benzoate was synthesized from m-bromobenzoic acid in THF and n-butyllithium at -95 deg. C, followed by the quenching the dilithio-anion with tri-n-butyl tin chloride. The stannyl ester obtained reacted with NHS and DCC in dry THF for 12 hours at room temperature and the reaction mixture was filtered and the product purified by flash chromatography to obtain ATE in a pure form. Iodination of ATE was performed with 131 I and the radiochemical purity obtained was 72.22±5.50 at pH3.0-4.0. The purification on Sep-Pack system indicated that about 40% of the initial radioactivity are recuperated in the 30% ethyl acetate in hexane fraction. The per cent of iodinated precursor depends of the TBHP concentration used in the reaction mixture. The coupling of radioiodinated ATE with the protein was studied using human IgG, (500 μg) and mildly alkaline conditions. After Sephadex G-25 purification step, about 40% of activity was isolated as labelled protein. The N-succinimidyl-pradioiodobenzoate was also obtained using an alternative approach: p-Br-benzoic acid was first iodinated in DMSO and high temperature in a reaction catalyzed by CuCl. After Sep-Pack purification, the pradioiodobenzoic acid reacts with TSTU to produce the succinimidyl esther. Direct labelling of IgG using Iodogen method showed a radiochemical purity of 80-90% determined by ITLC-SG in methanol 85%. IgG labelled by direct method and by ATE prosthetic group was administered in normal mice. The results from

  19. Ligand Bridging-Angle-Driven Assembly of Molecular Architectures Based on Quadruply Bonded Mo-Mo Dimers

    Li, Jian-Rong; Yakovenko, Andrey A; Lu, Weigang; Timmons, Daren J; Zhuang, Wenjuan; Yuan, Daqiang; Zhou, Hong-Cai

    2010-12-15

    A systematic exploration of the assembly of Mo₂(O₂C-)₄-based metal–organic molecular architectures structurally controlled by the bridging angles of rigid organic linkers has been performed. Twelve bridging dicarboxylate ligands were designed to be of different sizes with bridging angles of 0, 60, 90, and 120° while incorporating a variety of nonbridging functional groups, and these ligands were used as linkers. These dicarboxylate linkers assemble with quadruply bonded Mo–Mo clusters acting as nodes to give 13 molecular architectures, termed metal–organic polygons/polyhedra with metal cluster node arrangements of a linear shape, triangle, octahedron, and cuboctahedron/anti-cuboctahedron. The syntheses of these complexes have been optimized and their structures determined by single-crystal X-ray diffraction. The results have shown that the shape and size of the resulting molecular architecture can be controlled by tuning the bridging angle and size of the linker, respectively. Functionalization of the linker can adjust the solubility of the ensuing molecular assembly but has little or no effect on the geometry of the product. Preliminary gas adsorption, spectroscopic, and electrochemical properties of selected members were also studied. The present work is trying to enrich metal-containing supramolecular chemistry through the inclusion of well-characterized quadruply bonded Mo–Mo units into the structures, which can widen the prospect of additional electronic functionality, thereby leading to novel properties.

  20. Ligand bridging-angle-driven assembly of molecular architectures based on quadruply bonded Mo-Mo dimers.

    Li, Jian-Rong; Yakovenko, Andrey A; Lu, Weigang; Timmons, Daren J; Zhuang, Wenjuan; Yuan, Daqiang; Zhou, Hong-Cai

    2010-12-15

    A systematic exploration of the assembly of Mo2(O2C-)4-based metal-organic molecular architectures structurally controlled by the bridging angles of rigid organic linkers has been performed. Twelve bridging dicarboxylate ligands were designed to be of different sizes with bridging angles of 0, 60, 90, and 120° while incorporating a variety of nonbridging functional groups, and these ligands were used as linkers. These dicarboxylate linkers assemble with quadruply bonded Mo-Mo clusters acting as nodes to give 13 molecular architectures, termed metal-organic polygons/polyhedra with metal cluster node arrangements of a linear shape, triangle, octahedron, and cuboctahedron/anti-cuboctahedron. The syntheses of these complexes have been optimized and their structures determined by single-crystal X-ray diffraction. The results have shown that the shape and size of the resulting molecular architecture can be controlled by tuning the bridging angle and size of the linker, respectively. Functionalization of the linker can adjust the solubility of the ensuing molecular assembly but has little or no effect on the geometry of the product. Preliminary gas adsorption, spectroscopic, and electrochemical properties of selected members were also studied. The present work is trying to enrich metal-containing supramolecular chemistry through the inclusion of well-characterized quadruply bonded Mo-Mo units into the structures, which can widen the prospect of additional electronic functionality, thereby leading to novel properties.