WorldWideScience

Sample records for linked conducting polymers

  1. Radiation cross-linking of PTC conductive polymers

    International Nuclear Information System (INIS)

    Doljack, F.A.; Jacobs, S.M.; Taylor, J.M.; McTavish, M.S.

    1982-01-01

    An electrical device comprising a PTC conductive polymer is irradiated so that it is very highly cross-linked. A dosage of at least 50 Mrads, preferably at least 80 Mrads, especially at least 120 Mrads is used except that where the device includes planar electrodes which are present during irradiation the minimum dose is 120 Mrads. In this way, for example, it is possible to make a circuit protection device which will continue to provide effective protection even after repeated exposure to a voltage of 200 volts. A PTC protection device may be produced by moulding carbon loaded polymer round three electrodes the centre one of which is then removed to leave an aperture between the other two electrodes. (author)

  2. Integration of conducting polymer network in non-conductive polymer substrates

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; West, Keld; Hassager, Ole

    2006-01-01

    Anew method for integration ofconjugated, inherently conducting polymers into non-conductive polymer substrates has been developed. Alayer of the conducting polymer is polymerised by chemical oxidation, e.g. using Fe(ID) p-toluene sulfonate (ferri tosylate) followed by washing with a solvent which...... simultaneously removes residual and spent oxidant and at the same time dissolves the top layer of the polymer substrate. This results in an integration of the conducting polymer into the surface layers of the polymer substrate. Several combinations of conducting polymers and substrates have been tested...... absorption during sequential reactive ion etching has allowed for analysis of the PEDOT distribution within the surface layer of thePMMA substrate. The surface resistance ofthe conducting polymer layer remains low while the surface layer at the same time adapts some of the mechanical properties...

  3. Synthesis of dye linked conducting block copolymers, dye linked conducting homopolymers and preliminary application to photovoltaics

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Hagemann, O.; Jørgensen, M.

    2004-01-01

    A synthetic approach to the synthesis of a large super molecule composed of two chemically different conducting polymer blocks with, respectively, high and low lying electronic energy levels linked through a porphyrin dye molecule is presented. The synthetic strategies to these molecular architec...

  4. Effect of the Linker in Terephthalate-Functionalized Conducting Redox Polymers

    International Nuclear Information System (INIS)

    Yang, Li; Huang, Xiao; Gogoll, Adolf; Strømme, Maria; Sjödin, Martin

    2016-01-01

    The combination of high capacity redox active pendent groups and conducting polymers, realized in conducting redox polymers (CRPs), provides materials with high charge storage capacity that are electronically conducting which makes CRPs attractive for electrical energy storage applications. In this report, six polythiophene and poly(3,4-ethylenedioxythiophene)(PEDOT)-based CRPs with a diethyl terephthalate unit covalently bound to the polymer chain by various linkers have been synthesized and characterized electrochemically. The effects of the choice of polymer backbone and of the nature of the link on the electrochemistry, and in particular the cycling stability of these polymers, are discussed. All CRPs show both the doping of the polymer backbone as well as the redox behavior of the pendent groups and the redox potential of the pendent groups in the CRPs is close to that of corresponding monomer, indicating insignificant interaction between the pendant and the polymer backbone. While all CRPs show various degrees of charge decay upon electrochemical redox conversion, the PEDOT-based CRPs show significantly improved stability compared to the polythiophene counterparts. Moreover, we show that by the right choice of link the cycling stability of diethyl terephthalate substituted PEDOT-based CRPs can be significantly improved.

  5. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Pivovar, Bryan [NREL

    2009-01-01

    Proton conductivity of polymer electrolytes is critical for fuel cells and has therefore been studied in significant detail. The conductivity of sulfonated polymers has been linked to material characteristics in order to elucidate trends. Mass based measurements based on water uptake and ion exchange capacity are two of the most common material characteristics used to make comparisons between polymer electrolytes, but have significant limitations when correlated to proton conductivity. These limitations arise in part because different polymers can have significantly different densities and conduction happens over length scales more appropriately represented by volume measurements rather than mass. Herein, we establish and review volume related parameters that can be used to compare proton conductivity of different polymer electrolytes. Morphological effects on proton conductivity are also considered. Finally, the impact of these phenomena on designing next generation sulfonated polymers for polymer electrolyte membrane fuel cells is discussed.

  6. Poly(vinylpyridine-co-styrene) based in situ cross-linked gel polymer electrolyte for lithium-ion polymer batteries

    International Nuclear Information System (INIS)

    Oh, Sijin; Kim, Dong Wook; Lee, Changjin; Lee, Myong-Hoon; Kang, Yongku

    2011-01-01

    A gel polymer electrolyte (GPE) was successfully prepared by means of an in situ cross-linking reaction of poly(2-vinylpyridine-co-styrene) and oligo(ethylene oxide) with epoxide functional groups at 65 °C without using a polymerization initiator. A stable gel polymer electrolyte could be obtained by adding only 1% of a polymer gelator. The ionic conductivity of the GPE containing 99 wt% of liquid electrolyte was measured to be ca. 10 −2 S/cm at the ambient temperature. The ionic conductivity of the resulting GPE was comparable to that of a pure liquid electrolyte. The electrochemical stability window of the prepared gel polymer electrolytes was measured to be 5.2 V. The test cell carried a discharge capacity of 133.2 mAh/g at 0.1 C and showed good cycling performance with negligible capacity fading after the 200th cycle, maintaining 99.5% coulombic efficiency throughout 200 cycles. The resulting gel polymer electrolyte prepared by in situ thermal cross-linking without a polymerization initiator holds promise for application to on the high power lithium-ion polymer batteries.

  7. In-situ Plasticized Cross-linked Polymer Composite Electrolyte Enhanced with Lithium-ion Conducting Nanofibers for Ambient All-Solid-State Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoyi; Zhu, Pei; Jia, Hao; Zhu, Jiadeng; Selvan, R. Kalai; Li, Ya; Dong, Xia; Du, Zhuang; Angunawela, Indunil; Wu, Nianqiang; Dirican, Mahmut

    2018-04-29

    Solid electrolytes have been gaining attention recently for the development of next-generation Li-ion batteries due to the substantial improvements in stability and safety. Among various types of solid electrolytes, composite solid electrolytes (CSEs) exhibit both high ionic conductivity and excellent interfacial contact with the electrodes. Incorporating active nanofibers into the polymer matrix demonstrates an effective method to fabricate CSEs. However, current CSEs based on traditional poly(ethylene oxide) (PEO) polymer suffer from the poor ionic conductivity of PEO and agglomeration effect of inorganic fillers at high concentrations, which limit further improvements in Li+ conductivity and electrochemical stability. Herein, we synthesize a novel PEO based cross-linked polymer (CLP) as the polymer matrix with naturally amorphous structure and high room-temperature ionic conductivity of 2.40 × 10-4 S cm-1. Li0.3La0.557TiO3 (LLTO) nanofibers incorporated composite solid electrolytes (L-CLPCSE) exhibit enhanced ionic conductivity without showing filler agglomeration. The high content of Li-conductive nanofibers improves the mechanical strength, ensures the conductive networks, and increases the total Li+ conductivity to 3.31 × 10-4 S cm-1. The all-solid-state Li|LiFePO4 batteries with L-CLPCSE are able to deliver attractive specific capacity of 147 mAh g-1 at room temperature, and no evident dendrite is found at the anode/electrolyte interface after 100 cycles.

  8. Conducting polymer hydrogels

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav

    2017-01-01

    Roč. 71, č. 2 (2017), s. 269-291 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : aerogel * conducting polymers * conductivity Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  9. New Aptes Cross-linked Polymers from Poly(ethylene oxide)s and Cyanuric Chloride for Lithium Batteries

    Science.gov (United States)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    A new series of polymer electrolytes for use as membranes for lithium batteries are described. Electrolytes were made by polymerization between cyanuric chloride and diamino-terminated poly(ethylene oxide)s, followed by cross-linking via a sol-gel process. Thermal analysis and lithium conductivity of freestanding polymer films were studied. The effects of several variables on conductivity were investigated, such as length of backbone PEO chain, length of branching PEO chain, extent of branching, extent of cross-linking, salt content, and salt counterion. Polymer films with the highest percentage of PEO were found to be the most conductive, with a maximum lithium conductivity of 3.9 x 10(exp -5) S/cm at 25 C. Addition of plasticizer to the dry polymers increased conductivity by an order of magnitude.

  10. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  11. A Platform for Functional Conductive Polymers

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hoffmann, Christian; Lind, Johan Ulrik

    Conductive polymers have been studied extensively during recent years. In order to broaden the application field of conductive polymers different methods have been tested and recently an azide functional poly(3,4-ethylenedioxythiophene) (PEDOT-N3) was developed(1, 2). The azide functional...... conductive polymer can be postpolymerization functionalized to introduce a large number of functionalities through click chemistry(3). Through selection of reaction conditions it is possible control the depth of the reaction into the polymer film to the upper surface or the entire film(4). Thus a conductive...... polymer can be prepared with a subsurface layer of highly conductive polymer where only the upper surface has been grafted with functional groups to ensure selectivity of the surface layer for e.g. interaction with specific biospecies. The conductive polymer can be patterned using selective etching, which...

  12. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  13. Proton Conducting Polymer Membrane Comprised of 2-Acrylamido-2-Methylpropanesulfonic Acid

    National Research Council Canada - National Science Library

    Walker, Charles

    2002-01-01

    In order to identify a proton-conducting polymer membrane suitable for replacing Nafion 117 in direct methanol fuel cells, we prepared a cross-linked copolymer of hydrophilic 2-acrylamido-2-methylpropanesulfonic acid (AMPS...

  14. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  15. 'Stuffed' conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; Chen, Jun; West, Keld

    2005-01-01

    Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid. In the pres......Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid....... In the present work we demonstrate this principle on three different CP's: polypyrrole (PPy), poly-terthiophene (PTTh) and poly(3,4-ethylenedioxy thiophene) (PEDT), using ferrocene as a model molecule to be trapped in the polymer films. (c) 2005 Elsevier Ltd. All rights reserved....

  16. Conducting polymer nanocomposite-based supercapacitors

    OpenAIRE

    Liew, Soon Yee; Walsh, Darren A.; Chen, George Z.

    2016-01-01

    The use of nanocomposites of electronically-conducting polymers for supercapacitors has increased significantly over the past years, due to their high capacitances and abilities to withstand many charge-discharge cycles. We have recently been investigating the use of nanocomposites of electronically-conducting polymers containing conducting and non-conducting nanomaterials such as carbon nanotubes and cellulose nanocrystals, for use in supercapacitors. In this contribution, we provide a summa...

  17. Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy.

    Science.gov (United States)

    Cho, Shin Hyo; Park, Su-Moon

    2006-12-28

    Electrical properties of contacts formed between conducting polymers and noble metal nanoparticles have been examined using current-sensing atomic force microscopy (CS-AFM). Contacts formed between electrochemically prepared pi-conjugated polymer films such as polypyrrole (PPy), poly(3-methylthiophene) (P3MeT), as well as poly(3,4-ethylenedioxythiophene) (PEDOT) and noble metal nanoparticles including platinum (Pt), gold (Au), and silver (Ag) have been examined. The Pt nanoparticles were electrochemically deposited on a pre-coated PPy film surface by reducing a platinum precursor (PtCl62-) at a constant potential. Both current and scanning electron microscopic images of the film showed the presence of Pt islands. The Au and Ag nanoparticles were dispersed on the P3MeT and PEDOT film surfaces simply by dipping the polymer films into colloid solutions containing Au or Ag particles for specified periods (5 to approximately 10 min). The deposition of Au or Ag particles resulted from either their physical adsorption or chemical bonding between particles and the polymer surface depending on the polymer. When compared with PPy, P3MeT and PEDOT showed a stronger binding to Au or Ag nanoparticles when dipped in their colloidal solutions for the same period. This indicates that Au and Ag particles are predominantly linked with the sulfur atoms via chemical bonding. Of the two, PEDOT was more conductive at the sites where the particles are connected to the polymer. It appears that PEDOT has better aligned sulfur atoms on the surface and is strongly bonded to Au and Ag nanoparticles due to their strong affinity to gold and silver. The current-voltage curves obtained at the metal islands demonstrate that the contacts between these metal islands and polymers are ohmic.

  18. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  19. Prospects of conducting polymers in biosensors

    International Nuclear Information System (INIS)

    Malhotra, Bansi D.; Chaubey, Asha; Singh, S.P.

    2006-01-01

    Applications of conducting polymers to biosensors have recently aroused much interest. This is because these molecular electronic materials offer control of different parameters such as polymer layer thickness, electrical properties and bio-reagent loading, etc. Moreover, conducting polymer based biosensors are likely to cater to the pressing requirements such as biocompatibility, possibility of in vivo sensing, continuous monitoring of drugs or metabolites, multi-parametric assays, miniaturization and high information density. This paper deals with the emerging trends in conducting polymer based biosensors during the last about 5 years

  20. Molecular and supramolecular orientation in conducting polymers

    International Nuclear Information System (INIS)

    Aldissi, M.

    1987-01-01

    Intrinsic anisotropy in electrical and optical properties of conducting polymers constitutes a unique aspect that derives π-electron delocalization along the polymer backbone and from the weak inter-chain interaction. To acquire such an intrinsic property, conducting polymers have to be oriented macroscopically and microscopically (at the chain level). A review of the various techniques, including stretch-alignment of the polymer and of precursor polymers, polymerization in ordered media, i.e., in a liquid crystal solvent, and synthesis of liquid crystalline conducting polymers will be given. 29 refs

  1. Conductive polymer/superconductor bilayer structures

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Grassi, J.; Lo, R.K.; Jones, C.

    1994-01-01

    The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole-coated YBa 2 Cu 3 O 7-∂ microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layer. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa 2 Cu 3 O 7-∂ film, the oxidized (conductive) polymer depresses Tc by up to 50K. In a similar fashion, the oxidation state of the polymer is found to modulate reversibly the magnitude of J c , the superconducting critical current. Thus, a new type of molecular switch for controlling superconductivity is demonstrated. Electrochemical, resistance vs. temperature, conact resistance, atomic force microscopy and scanning electron microscopy measurements are utilized to explore the polymer/superconductor interactions

  2. Functionalization of silicon nanowires by conductive and non-conductive polymers

    Science.gov (United States)

    Belhousse, S.; Tighilt, F.-Z.; Sam, S.; Lasmi, K.; Hamdani, K.; Tahanout, L.; Megherbi, F.; Gabouze, N.

    2017-11-01

    The work reports on the development of hybrid devices based on silicon nanowires (SiNW) with polymers and the difference obtained when using conductive and non-conductive polymers. SiNW have attracted much attention due to their importance in understanding the fundamental properties at low dimensionality as well as their potential application in nanoscale devices as in field effect transistors, chemical or biological sensors, battery electrodes and photovoltaics. SiNW arrays were formed using metal assisted chemical etching method. This process is simple, fast and allows obtaining a wide range of silicon nanostructures. Hydrogen-passivated SiNW surfaces show relatively poor stability. Surface modification with organic species confers the desired stability and enhances the surface properties. For this reason, this work proposes a covalent grafting of organic material onto SiNW surface. We have chosen a non-conductive polymer polyvinylpyrrolidone (PVP) and conductive polymers polythiophene (PTh) and polypyrrole (PPy), in order to evaluate the electric effect of the polymers on the obtained materials. The hybrid structures were elaborated by the polymerization of the corresponding conjugated monomers by electrochemical route; this electropolymerization offers several advantages such as simplicity and rapidity. SiNW functionalization by conductive polymers has shown to have a huge effect on the electrical mobility. Hybrid surface morphologies were characterized by scanning electron microscopy (SEM), infrared spectroscopy (FTIR-ATR) and contact angle measurements.

  3. A New Ultra Fast Conduction Mechanism in Insulating Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Xu

    2011-01-01

    Full Text Available A brand new phenomenon, namely, electrical conduction via soliton-like ultra fast space charge pulses, recently identified in unfilled cross-linked polyethylene, is shown for the first time to occur in insulating polymer nanocomposites and its characteristics correlated with the electromechanical properties of nanostructured materials. These charge pulses are observed to cross the insulation under low electrical field in epoxy-based nanocomposites containing nanosilica particles with relative weights of 1%, 5%, 10%, and 20% at speeds orders of magnitude higher than those expected for carriers in insulating polymers. The characteristics of mobility, magnitude and repetition rate for both positive and negative charge pulses are studied in relation to nanofiller concentration. The results show that the ultra fast charge pulses (packets are affected significantly by the concentration of nanoparticles. An explanation is presented in terms of a new conduction mechanism where the mechanical properties of the polymer and movement of polymer chains play an important role in the injection and transport of charge in the form of pulses. Here, the charge transport is not controlled by traps. Instead, it is driven by the contribution of polarization and the resultant electromechanical compression, which is substantially affected by the introduction of nanoparticles into the base polymer.

  4. Biochemical synthesis of water soluble conducting polymers

    Science.gov (United States)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-05-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  5. Biochemical synthesis of water soluble conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Ferdinando F., E-mail: Ferdinando-Bruno@uml.edu [US Army Natick Soldier Research, Development and Engineering Center, Natick, MA 01760 (United States); Bernabei, Manuele [ITAF, Test Flight Centre, Chemistry Dept. Pratica di Mare AFB, 00071 Pomezia (Rome), Italy (UE) (Italy)

    2016-05-18

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  6. Biochemical synthesis of water soluble conducting polymers

    International Nuclear Information System (INIS)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-01-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  7. Interpenetrating networks of two conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; West, Keld

    2005-01-01

    Interpenetrating networks (IPNs) of two conjugated polymers are prepared by a combination of a chemical oxidation step and a vapour phase polymerisation step on non-conducting surfaces. In this work ferric tosylate was used as the oxidant as it gives very smooth and homogeneous coatings, and beca......Interpenetrating networks (IPNs) of two conjugated polymers are prepared by a combination of a chemical oxidation step and a vapour phase polymerisation step on non-conducting surfaces. In this work ferric tosylate was used as the oxidant as it gives very smooth and homogeneous coatings......, and because its reaction products can be removed efficiently after the formation of the composite. Several combinations of polymers are demonstrated, and the versatility of the proposed method allows extensions to a wide range of conjugated polymers. The IPNs show optical and electrochemical characteristics......, which are sums of the characteristics from the participating conducting polymers....

  8. “Electro-Click” on Conducting Polymer Films

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede

    for their own functionalization with high spatial resolution. Interdigitated microelectrodes prepared from the azide-containing conducting polymer were selectively functionalized in sequence by two alkyne-modified fluorophores by control of the applied potentials. “Electro-click” on conducting polymer films......An azide substituted 3,4-ethylenedioxythiophene monomer is polymerised to yield a PEDOT like polymer with available azide groups (Figure 1). The azide groups enable post polymerization functionalization of the conducting polymer using a 1,3 dipolar cycloaddition reaction – also denoted “click...

  9. Smart Surface Chemistries of Conducting Polymers

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik

    In this thesis we investigate post-polymerization covalent modifications of poly(3,4-dioxythiophene (PEDOT)-type conducting polymers. The aim of the modifications is to gain specific control of the interaction between the material and living mammalian cells. The use of “click-chemistry” to modify...... a straightforward and in-expensive method for patterning conducting polymer thin films into microelectrodes, without losing control of the surface chemistry of the samples. On the contrary, the method provides direct control of the surface chemistry of both the fabricated micro-electrodes and the gaps between them....... The method is based on locally removing PEDOTtype polymers to expose underlying non-conducting functional polymer substrates. Thereby, multifunctional substrates are obtained. By applying this method, we are able to fabricate allpolymer micro-systems with multiple types of localized functional (bio...

  10. Culture experiments on conductive polymers

    International Nuclear Information System (INIS)

    Onoda, Mitsuyoshi

    2012-01-01

    Fibroblast L929 and myoblast C2C12 cells of the mouse connective tissue origin were sown on the surface of conductive polymer films (polypyrrole, PPy and poly(3,4-ethylenedioxythiophene), PEDOT) in the cell culture medium, and the proliferative process of these cells was observed. Without changing the form, fibroblast L929 and myoblast C2C12 cells were observed to proliferate almost similarly to the cell which cultured on a dish on the market and to maintain compatibility. In other word, it has been understood these two kinds of conductive polymers used in this study, the PEDOT films maintain the secretion function of the cell cultured on the surface of these polymers. Therefore, the PPy- and the PEDOT-coated electrode suggested the possibility usable as a nerve stimulation electrode with biocompatibility, because these polymers were effective to culture the cell.

  11. Method of forming electronically conducting polymers on conducting and nonconducting substrates

    Science.gov (United States)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Hodko, Dalibor (Inventor); Clarke, Eric T. (Inventor); Miller, David L. (Inventor); Parker, Donald L. (Inventor)

    2001-01-01

    The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.

  12. Modified conductivity of polymer materials with proton beam

    International Nuclear Information System (INIS)

    Matsumoto, Shinji; Seki, Miharu; Shima, Kunihiro; Ishihara, Toyoyuki

    2001-01-01

    Ionic conductivity of polymer materials is of increasing interest in many scientific fields. Industrial applications seem to be promising. In the present investigation, we used proton bombardment to modify the characteristic properties of polymers, especially for improvement in conductivity and hardening gel polymers. Particle beam bombardment is known to produce many scissions by particle passages and new bonds by bridge connection. These effects may modify various properties in many ways. We examined the modification of conductivity in solid polymers composed of polyethylene oxide and polyurethane and the surface appearance of gel polymers with bombardment by a proton beam using the accelerator facility of Tsukuba University. The results indicated proton bombardment induced conductivity changes in various ways according to particle range and polymer properties. (author)

  13. Conductive polymer switch for controlling superconductivity

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Grassi, J.; Lo, K.; Jones, C.

    1994-01-01

    The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole coated YBa 2 Cu 3 O 7-σ microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layout. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa 2 Cu 3 O 7-σ film, the oxidized (conductive) polymer depresses T c by up to 50K. In a similar fashion, the oxidation state of the polymer is found to reversibly modulate the magnitude of J c , the superconducting critical current. Thus, a new type of molecule switch for controlling superconductivity is demonstrated

  14. Shaped articles of cross-linked fluorocarbon polymers

    International Nuclear Information System (INIS)

    Gotcher, A.J.; Germeraad, P.B.

    1981-01-01

    A process is described which comprises (1) contacting (a) a shaped article of a polymeric composition wherein the polymer is a fluorocarbon polymer having a melting point of at least 200 0 C, the article having a tensile strength of at least 3,000 psi, with (b) a fluid composition comprising a cross-linking agent, until the article contains at least 2.5% by weight of the cross-linking agent; and (2) irradiating the shaped article with ionising radiation to a dosage not exceeding 50 Mrads under conditions such that the composition is cross-linked sufficiently to impart thereto an M 100 value of at least 300 psi, while maintaining a tensile strength of at least 3000 psi, the shaped article containing a specified proportion of the cross-linking agent. (author)

  15. Conductive polymer composition

    NARCIS (Netherlands)

    2010-01-01

    The present invention relates to a process for the preparation of a conductive polymer composition comprising graphene and the articles obtained by this process. The process comprises the following steps: A) contacting graphite oxide in an aqueous medium with a water-soluble or dispersible

  16. Lithium polymer cell assembled by in situ chemical cross-linking of ionic liquid electrolyte with phosphazene-based cross-linking agent

    International Nuclear Information System (INIS)

    Choi, Ji-Ae; Kang, Yongku; Kim, Dong-Won

    2013-01-01

    Highlights: ► Ionic liquid-based cross-linked gel polymer electrolytes were synthesized and their electrochemical properties were investigated. ► Lithium polymer cells with in situ cross-linked gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. ► The use of ionic liquid-based cross-linked gel polymer electrolytes significantly improved the thermal stability of the cells. -- Abstract: Ionic liquid-based cross-linked gel polymer electrolytes were prepared with a phosphazene-based cross-linking agent, and their electrochemical properties were investigated. Lithium polymer cells composed of lithium anode and LiCoO 2 cathode were assembled with ionic liquid-based cross-linked gel polymer electrolyte and their cycling performance was evaluated. The interfacial adhesion between the electrodes and the electrolyte by in situ chemical cross-linking resulted in stable capacity retention of the cell. A reduction in the ionic mobility in both the electrolyte and the electrode adversely affected discharge capacity and high rate performance of the cell. DSC studies demonstrated that the use of ionic liquid-based cross-linked gel polymer electrolytes provided a significant improvement in the thermal stability of the cell

  17. Conductivity hysteresis in polymer electrolytes incorporating poly(tetrahydrofuran)

    Energy Technology Data Exchange (ETDEWEB)

    Akbulut, Ozge; Taniguchi, Ikuo; Mayes, Anne M. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States); Kumar, Sundeep; Shao-Horn, Yang [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2007-01-01

    Conductivity hysteresis and room temperature ionic conductivities >10{sup -3}S/cm were recently reported for electrolytes prepared from blends of an amphiphilic comb copolymer, poly[2,5,8,11,14-pentaoxapentadecamethylene (5-hexadecyloxy-1,3-phenylene)] (polymer I), and a linear multiblock copolymer, poly(oligotetrahydrofuran-co-dodecamethylene) (polymer II), following thermal treatment [F. Chia, Y. Zheng, J. Liu, N. Reeves, G. Ungar, P.V. Wright, Electrochim. Acta 43 (2003) 1939]. To investigate the origin of these effects, polymers I and II were synthesized in this work, and the conductivity and thermal properties of the individual polymers were investigated. AC impedance measurements were conducted on I and II doped with LiBF{sub 4} or LiClO{sub 4} during gradual heating to 110{sup o}C and slow cooling to room temperature. Significant conductivity hysteresis was seen for polymer II, and was similarly observed for poly(tetrahydrofuran) (PTHF) homopolymer at equivalent doping levels. From thermogravimetric analysis (TGA), gel permeation chromatography (GPC) and {sup 1}H NMR spectroscopy, both polymer II and PTHF were found to partially decompose to THF during heat treatment, resulting in a self-plasticizing effect on conductivity. (author)

  18. Simulations of tensile failure in glassy polymers: effect of cross-link density

    International Nuclear Information System (INIS)

    Panico, M; Narayanan, S; Brinson, L C

    2010-01-01

    Molecular dynamics simulations are adopted to investigate the failure mechanisms of glassy polymers, particularly with respect to increasing density of cross-links. In our simulations thermosetting polymers, which are cross-linked, exhibit an embrittlement compared with uncross-linked thermoplastics in a similar fashion to several experimental investigations (Levita et al 1991 J. Mater. Sci. 26 2348; Sambasivam et al 1997 J. Appl. Polym. Sci. 65 1001; Iijima et al 1992 Eur. Polym. J. 28 573). We perform a detailed analysis of this phenomenon and propose an interpretation based on the predominance of chain scission process over disentanglement in thermosetting polymers. We also elucidate the brittle fracture response of the thermosetting polymers

  19. Swelling of cross-linked polymers: interpretations and misinterpretations

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Dušková-Smrčková, Miroslava

    2017-01-01

    Roč. 254, 20 August (2017), s. 102 ISSN 0065-7727. [ACS National Meeting & Exposition /254./. 20.08.2017-24.08.2017, Washington] Institutional support: RVO:61389013 Keywords : swelling * cross-linked polymer Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  20. Conducting polymers: Synthesis and industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The Conducting Polymer project funded by the AIM Materials Program is developing new methods for the synthesis of electronically conducting polymers and is evaluating new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1994 are electrochemical capacitors and membranes for gas separation. As an active material in electrochemical capacitors, conducting polymers have the potential of storing large amounts of electrical energy in low cost materials. Such devices are needed in electronics for power failure back-up and peak power, in power supplies for filtering, and in electric vehicles for peak power and load leveling. As a gas electrically adapt the membrane for specific gas combinations. Potential energy savings in the US. for this application are estimated at 1 to 3 quads/yr.

  1. Conducting polymer nanostructures: template synthesis and applications in energy storage.

    Science.gov (United States)

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-07-02

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  2. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    Directory of Open Access Journals (Sweden)

    Lijia Pan

    2010-07-01

    Full Text Available Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  3. Nanostructured polymer membranes for proton conduction

    Science.gov (United States)

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  4. BF3-doped polyaniline: A novel conducting polymer

    Indian Academy of Sciences (India)

    During the past two decades, both fundamental and applied research in conducting polymers has grown enormously [1]. Polyaniline (PANI) owing to its ease of synthe- sis, remarkable environmental stability, and high conductivity in the doped form, has remained one of the most thoroughly studied conducting polymers.

  5. Light harvesting by dye linked conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Troensegaard Nielsen, K.

    2006-06-15

    The fact that the fossil fuel is finite and that the detrimental long-term effects of letting CO2 into our atmosphere exist, have created an enormous interest in developing new, cheap, renewable and less polluting energy resources. One of the most obvious abundant sources of energy in the solar system is the sun. Unfortunately the well developed silicon solar cells are very costly to produce. In an attempt to produce cheap and flexible solar cells, plastic solar cells have received a lot of attention in the last decades. There are still a lot of parameters to optimize if the plastic solar cell shall be able to compete with the silicon solar cells. One of the parameters is to ensure a high degree of charge carrier separation. Charge carrier separation can only happen at heterojunctions, which cover for example the interfaces between the polymers and the electrodes or the interface between an n-conductor and a p-conductor. The facts that the charge carrier separation only happens at the heterojunctions limits the thickness of the active layer in solar cells and thereby the effectiveness of the solar cells. In this project the charge carrier separation is attempted optimized by making plastic solar cells with a molecular heterojunction. The molecular heterojunction has been obtained by synthesizing a three domain super molecular assembly termed NPN. NPN consists of two poly[1-(2,5-dioctyltolanyl)ethynylene] chains (N-domains) coupled to the [10,20-bis(3,5-bistert-butylphenyl]-5,15-dibromoporphinato]zinc(II) (P-domain). It is shown that the N domains in NPN work as effective light harvesting antennas for the P domain and effectively transfer electrically generated excitons in the N domain to the P domain. Unfortunately the P domain does not separate the charge carriers but instead works as a charge carrier trap. This results in a performance of solar cells made of NPN that is much lower than the performance of solar cells made of pure poly[1-(2,5-dioctyltolanyl

  6. Linking Polymer Dynamics to Melt Processing

    Indian Academy of Sciences (India)

    Ashish Lele

    Linking Polymer Dynamics to Melt Processing. Ashish Lele. NaUonal Chemical Laboratory, Pune ak.lele@ncl.res.in www.cfpegroup.net. Mid-‐Year MeeUng July 2-‐3, 2010. Indian Academy of Sciences, Bangalore ...

  7. Functional Conducting Polymers in the Application of SPR Biosensors

    Directory of Open Access Journals (Sweden)

    Rapiphun Janmanee

    2012-01-01

    Full Text Available In recent years, conducting polymers have emerged as one of the most promising transducers for both chemical, sensors and biosensors owing to their unique electrical, electrochemical and optical properties that can be used to convert chemical information or biointeractions into electrical or optical signals, which can easily be detected by modern techniques. Different approaches to the application of conducting polymers in chemo- or biosensing applications have been extensively studied. In order to enhance the application of conducting polymers into the area of biosensors, one approach is to introduce functional groups, including carboxylic acid, amine, sulfonate, or thiol groups, into the conducting polymer chain and to form a so-called “self-doped” or by doping with negatively charged polyelectrolytes. The functional conducting polymers have been successfully utilized to immobilize enzymes for construction of biosensors. Recently, the combination of SPR and electrochemical, known as electrochemical-surface plasmon resonance (EC-SPR, spectroscopy, has been used for in situ investigation of optical and electrical properties of conducting polymer films. Moreover, EC-SPR spectroscopy has been applied for monitoring the interaction between biomolecules and electropolymerized conjugated polymer films in biosensor and immunosensor applications. In this paper, recent development and applications on EC-SPR in biosensors will be reviewed.

  8. Antibody Immobilization on Conductive Polymer Coated Nonwoven Fibers for Biosensors

    Directory of Open Access Journals (Sweden)

    Shannon K. MCGRAW

    2011-12-01

    Full Text Available This work is being performed to develop rapid and novel electrochemical biosensors for foodborne pathogen detection. This research focuses on electrotextile platforms to perform both capture and sensing functions in a single component. The biosensor uses nonwoven fiber membranes coated with conductive polymer and functionalized with antibodies for biological capture. This study examines three methods for antibody immobilization: passive adsorption, glutaraldehyde cross-linking, and EDC/Sulfo-NHS cross-linking. Antibodies are immobilized onto the conductive fiber surfaces for the specific capture of a target pathogen. The immobilization and capture capabilities of each method are analyzed through the use of two different fluorescent reporters: FITC and PicoGreen DNA stain. Fluorescence is measured using a fluorescent plate reader and then imaged using a fluorescent microscope. The effect of a blocking agent on specificity is also evaluated. It is found that glutaraldehyde with blocking is the best immobilization method with PicoGreen being the best fluorescent reporter.

  9. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Science.gov (United States)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  10. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2017-10-17

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  11. Current Trends in Sensors Based on Conducting Polymer Nanomaterials

    Directory of Open Access Journals (Sweden)

    Hyeonseok Yoon

    2013-08-01

    Full Text Available Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to build various sensor devices. Many remarkable examples have been reported over the past decade. The enhanced sensitivity of conducting polymer nanomaterials toward various chemical/biological species and external stimuli has made them ideal candidates for incorporation into the design of sensors. However, the selectivity and stability still leave room for improvement.

  12. Current Trends in Sensors Based on Conducting Polymer Nanomaterials

    Science.gov (United States)

    Yoon, Hyeonseok

    2013-01-01

    Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to build various sensor devices. Many remarkable examples have been reported over the past decade. The enhanced sensitivity of conducting polymer nanomaterials toward various chemical/biological species and external stimuli has made them ideal candidates for incorporation into the design of sensors. However, the selectivity and stability still leave room for improvement. PMID:28348348

  13. Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries

    International Nuclear Information System (INIS)

    Ben youcef, Hicham; Garcia-Calvo, Oihane; Lago, Nerea; Devaraj, Shanmukaraj; Armand, Michel

    2016-01-01

    Semi-interpenetrated network Solid Polymer Electrolytes (SPEs) were fabricated by UV-induced cross-linking of poly(ethyleneglycol) diacrylate (PEGDA) and divinylbenzene (DVB) within a poly(ethyleneoxide) (PEO) matrix (M v = 5 × 10 6 g mol −1 ), comprising lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI), at a molar ratio of EO:Li ∼ 30:1. The influence of the DVB content on the final SPE properties was investigated in detail. An increase of DVB concentration resulted in self-standing polymer electrolytes. The DVB cross-linker incorporation was found to decrease the crystallinity of the PEO matrix from 34% to 23%, with a decrease in the melting temperature (T m ) of the membrane from 50 °C to 34 °C. Moreover, the influence of the DVB concentration on the ionic conductivity was determined for polymer electrolytes with 0, 10, 20 and 45% DVB from room temperature (RT) to 80 °C. The resulting SPEs showed a high electrochemical stability of 4.3 V as well as practical conductivity values exceeding 10 −4 S cm −1 at 70 °C. Cycling performance of these semi-interpenetrated SPE’s have been shown with a Li metal polymer battery and all solid -state Li sulphur battery.

  14. Formation of conductive polymers using nitrosyl ion as an oxidizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung-Shin; Jung, Yongju; Singh, Nikhilendra

    2016-06-07

    A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.

  15. Nanomembranes and Nanofibers from Biodegradable Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Jordi Puiggalí

    2013-09-01

    Full Text Available This review provides a current status report of the field concerning preparation of fibrous mats based on biodegradable (e.g., aliphatic polyesters such as polylactide or polycaprolactone and conducting polymers (e.g., polyaniline, polypirrole or polythiophenes. These materials have potential biomedical applications (e.g., tissue engineering or drug delivery systems and can be combined to get free-standing nanomembranes and nanofibers that retain the better properties of their corresponding individual components. Systems based on biodegradable and conducting polymers constitute nowadays one of the most promising solutions to develop advanced materials enable to cover aspects like local stimulation of desired tissue, time controlled drug release and stimulation of either the proliferation or differentiation of various cell types. The first sections of the review are focused on a general overview of conducting and biodegradable polymers most usually employed and the explanation of the most suitable techniques for preparing nanofibers and nanomembranes (i.e., electrospinning and spin coating. Following sections are organized according to the base conducting polymer (e.g., Sections 4–6 describe hybrid systems having aniline, pyrrole and thiophene units, respectively. Each one of these sections includes specific subsections dealing with applications in a nanofiber or nanomembrane form. Finally, miscellaneous systems and concluding remarks are given in the two last sections.

  16. Role of special cross-links in structure formation of bacterial DNA polymer

    Science.gov (United States)

    Agarwal, Tejal; Manjunath, G. P.; Habib, Farhat; Lakshmi Vaddavalli, Pavana; Chatterji, Apratim

    2018-01-01

    Using data from contact maps of the DNA-polymer of Escherichia coli (E. Coli) (at kilobase pair resolution) as an input to our model, we introduce cross-links between monomers in a bead-spring model of a ring polymer at very specific points along the chain. Via suitable Monte Carlo simulations, we show that the presence of these cross-links leads to a particular organization of the chain at large (micron) length scales of the DNA. We also investigate the structure of a ring polymer with an equal number of cross-links at random positions along the chain. We find that though the polymer does get organized at the large length scales, the nature of the organization is quite different from the organization observed with cross-links at specific biologically determined positions. We used the contact map of E. Coli bacteria which has around 4.6 million base pairs in a single circular chromosome. In our coarse-grained flexible ring polymer model, we used 4642 monomer beads and observed that around 80 cross-links are enough to induce the large-scale organization of the molecule accounting for statistical fluctuations caused by thermal energy. The length of a DNA chain even of a simple bacterial cell such as E. Coli is much longer than typical proteins, hence we avoided methods used to tackle protein folding problems. We define new suitable quantities to identify the large scale structure of a polymer chain with a few cross-links.

  17. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    OpenAIRE

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-01-01

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template met...

  18. Learning from Natural Nacre: Constructing Layered Polymer Composites with High Thermal Conductivity.

    Science.gov (United States)

    Pan, Guiran; Yao, Yimin; Zeng, Xiaoliang; Sun, Jiajia; Hu, Jiantao; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2017-09-27

    Inspired by the microstructures of naturally layered and highly oriented materials, such as natural nacre, we report a thermally conductive polymer composite that consists of epoxy resin and Al 2 O 3 platelets deposited with silver nanoparticles (AgNPs). Owing to their unique two-dimensional structure, Al 2 O 3 platelets are stacked together via a hot-pressing technique, resulting in a brick-and-mortar structure, which is similar to the one of natural nacre. Moreover, the AgNPs deposited on the surfaces of the Al 2 O 3 platelets act as bridges that link the adjacent Al 2 O 3 platelets due to the reduced melting point of the AgNPs. As a result, the polymer composite with 50 wt % filler achieves a maximum thermal conductivity of 6.71 W m -1 K -1 . In addition, the small addition of AgNPs (0.6 wt %) minimally affects the electrical insulation of the composites. Our bioinspired approach will find uses in the design and fabrication of thermally conductive materials for thermal management in modern electronics.

  19. Spatially Selective Functionalization of Conducting Polymers by "Electroclick" Chemistry

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Daugaard, Anders Egede; Hvilsted, Søren

    2009-01-01

    Conducting polymer microelectrodes can electrochemically generate the catalyst required for their own functionalization by "click chemistry" with high spatial resolution. Interdigitated microelectrodes prepared from an azide-containing conducting polymer are selectively functionalized in sequence...

  20. Conducting Polymers and Their Applications in Diabetes Management

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2016-10-01

    Full Text Available Advances in conducting polymers (CPs have promoted the development of diabetic monitoring and treatment, which is of great significance in human healthcare and modern medicine. CPs are special polymers with physical and electrochemical features resembling metals, inorganic semiconductors and non-conducting polymers. To improve and extend their properties, the fabrication of CPs and CP composites has attracted intensive attention in recent decades. Some CPs are biocompatible and suitable for biomedical use. Thus, the intriguing properties of CPs make wearable, noninvasive, continuous diabetes managing devices and other potential applications in diabetes possible in the near future. To highlight the recent advances of CPs and their derived materials (especially in conducting polymer hydrogels, here we discuss their fabrication and characterization, review the current state-of-the-art research in diabetes management based on these materials and describe current challenges as well as future potential research directions.

  1. Studies on conducting polymer and conducting polymerinorganic composite electrodes prepared via a new cathodic polymerization method

    Science.gov (United States)

    Singh, Nikhilendra

    A novel approach for the electrodeposition of conducting polymers and conducting polymer-inorganic composite materials is presented. The approach shows that conducting polymers, such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) can be electrodeposited by the application of a cathodic bias that generates an oxidizing agent, NO+, via the in-situ reduction of nitrate anions. This new cathodic polymerization method allows for the deposition of PPy and PEDOT as three dimensional, porous films composed of spherical polymer particles. The method is also suitable for the co-deposition of inorganic species producing conducting polymer-inorganic composite electrodes. Such composites are used as high surface area electrodes in Li-ion batteries, electrochemical hydrogen evolution and in the development of various other conducting polymer-inorganic composite electrodes. New Sn-PPy and Sb-PPy composite electrodes where Sn and Sb nanoparticles are well dispersed among the PPy framework are reported. These structures allow for decreased stress during expansion and contraction of the active material (Sn, Sb) during the alloying and de-alloying processes of a Li-ion battery anode, significantly alleviating the loss of active material due to pulverization processes. The new electrochemical synthesis mechanism allows for the fabrication of Sn-PPy and Sb-PPy composite electrodes directly from a conducting substrate and eliminates the use of binding materials and conducting carbon used in modern battery anodes, which significantly simplifies their fabrication procedures. Platinum (Pt) has long been identified as the most efficient catalyst for electrochemical water splitting, while nickel (Ni) is a cheaper, though less efficient alternative to Pt. A new morphology of PPy attained via the aforementioned cathodic deposition method allows for the use of minimal quantities of Pt and Ni dispersed over a very high surface area PPy substrate. These composite electrodes

  2. Rapid synthesis of flexible conductive polymer nanocomposite films

    International Nuclear Information System (INIS)

    Blattmann, C O; Sotiriou, G A; Pratsinis, S E

    2015-01-01

    Polymer nanocomposite films with nanoparticle-specific properties are sought out in novel functional materials and miniaturized devices for electronic and biomedical applications. Sensors, capacitors, actuators, displays, circuit boards, solar cells, electromagnetic shields and medical electrodes rely on flexible, electrically conductive layers or films. Scalable synthesis of such nanocomposite films, however, remains a challenge. Here, flame aerosol deposition of metallic nanosliver onto bare or polymer-coated glass substrates followed by polymer spin-coating on them leads to rapid synthesis of flexible, free-standing, electrically conductive nanocomposite films. Their electrical conductivity is determined during their preparation and depends on substrate composition and nanosilver deposition duration. Accordingly, thin (<500 nm) and flexible nanocomposite films are made having conductivity equivalent to metals (e.g. 5  × 10 4 S cm −1 ), even during repetitive bending. (paper)

  3. Conducting polymer coated neural recording electrodes

    Science.gov (United States)

    Harris, Alexander R.; Morgan, Simeon J.; Chen, Jun; Kapsa, Robert M. I.; Wallace, Gordon G.; Paolini, Antonio G.

    2013-02-01

    Objective. Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Approach. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. Main results. A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. Significance. A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during

  4. Morphology and conductivity of PEO-based polymers having various end functional groups

    Science.gov (United States)

    Jung, Ha Young; Mandal, Prithwiraj; Park, Moon Jeong

    Poly(ethylene oxide) (PEO)-based polymers have been considered most promising candidates of polymer electrolytes for lithium batteries owing to the high ionic conductivity of PEO/lithium salt complexes. This positive aspect prompted researchers to investigate PEO-containing block copolymers prepared by linking mechanically robust block to PEO covalently. Given that the microphase separation of block copolymers can affect both mechanical properties and ion transport properties, various strategies have been reported to tune the morphology of PEO-containing block copolymers. In the present study, we describe a simple means for modulating the morphologies of PEO-based block copolymers with an aim to improve ion transport properties. By varying terminal groups of PEO in block copolymers, the disordered morphology can be readily transformed into ordered lamellae or gyroid phases, depending on the type and number density of end group. In particular, the existence of terminal groups resulted in a large reduction in crystallinity of PEO chains and thereby increasing room temperature ionic conductivity.

  5. Nobel Prize 2000: from conducting polymers to molecular electronics

    International Nuclear Information System (INIS)

    Pron, A.; Rannou, P.

    2001-01-01

    In this paper the development of conducting organic polymers is reviewed. Poly(3-alkylthiophenes) with regioregularity exceeding 99% are especially interesting because if used as a thin semiconducting layer in the field effect transistor (FET) configuration they become superconducting at 2.35 K. This is the first example of the superconductivity of an organic polymer. Fields of use of conducting polymers are reviewed, too

  6. Cellulose nanocrystal: electronically conducting polymer nanocomposites for supercapacitors

    OpenAIRE

    Liew, Soon Yee

    2012-01-01

    This thesis describes the use of cellulose nanocrystals for the fabrication of porous nanocomposites with electronic conducting polymers for electrochemical supercapacitor applications. The exceptional strength and negatively charged surface functionalities on cellulose nanocrystals are utilised in these nanocomposites. The negatively charged surface functionalities on cellulose nanocrystals allow their simultaneous incorporation into electropolymerised, positively charged conducting polymer ...

  7. Radiation cross-linked polymers: Recent developments and new applications

    International Nuclear Information System (INIS)

    Rouif, Sophie

    2005-01-01

    The purpose of the present paper is to review the innovative and recent applications of radiation cross-linking of polymers that reinforces their dimensional stability in chemically aggressive and high temperature conditions. Radiation cross-linking can be applied to a great number of plastics: thermoplastics, elastomers and thermoplastic elastomers (TPE). Some of them can cross-link on their own, some others need to be formulated with a cross-linking agent (promoter) or to be modified during their polymerization. Some results of chemical and thermomechanical characterizations of radiation cross-linked plastics based on engineering polymers will be described, and their advantages will be emphasized in relation with their applications in various sectors: pipes and cables, packaging, automotive, electrical engineering and electronics, including connectors, surface mounted devices, integrated circuits, 3D-MID technology, etc. The paper will conclude with a short review of the industrial irradiation facilities (EB facilities and gamma plants) adapted to the treatment of such various products

  8. Actuator device utilizing a conductive polymer gel

    Science.gov (United States)

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  9. Ionic conduction in 70-MeV C5+-ion-irradiated poly(vinylidenefluoride- co-hexafluoropropylene)-based gel polymer electrolytes

    International Nuclear Information System (INIS)

    Saikia, D.; Kumar, A.; Singh, F.; Avasthi, D.K.; Mishra, N.C.

    2005-01-01

    In an attempt to increase the Li + -ion diffusivity, poly(vinylidenefluoride-co-hexafluoropropylene)-(propylene carbonate+diethyl carbonate)-lithium perchlorate gel polymer electrolyte system has been irradiated with 70-MeV C 5+ -ion beam of nine different fluences. Swift heavy-ion irradiation shows enhancement in ionic conductivity at lower fluences and decrease in ionic conductivity at higher fluences with respect to unirradiated gel polymer electrolyte films. Maximum room-temperature (303 K) ionic conductivity is found to be 2x10 -2 S/cm after irradiation with a fluence of 10 11 ions/cm 2 . This interesting result could be attributed to the fact that for a particular ion beam with a given energy, a higher fluence provides critical activation energy for cross linking and crystallization to occur, which results in the decrease in ionic conductivity. X-ray-diffraction results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤10 11 ions/cm 2 ) and increase in crystallinity at higher fluences (>10 11 ions/cm 2 ). Analysis of Fourier-transform infrared spectroscopy results suggests the bond breaking at a fluence of 5x10 9 ions/cm 2 and cross linking at a fluence of 10 12 ions/cm 2 and corroborate conductivity and x-ray-diffraction results. Scanning electron micrographs exhibit increased porosity of the polymer electrolyte after ion irradiation

  10. An electroactive conducting polymer actuator based on NBR/RTIL solid polymer electrolyte

    Science.gov (United States)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2007-04-01

    This paper reports the fabrication of a dry-type conducting polymer actuator using nitrile rubber (NBR) as the base material in a solid polymer electrolyte. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique. Room-temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X (where X = BF4-, PF6-, (CF3SO2)2N-), were absorbed into the composite film. The compatibility between the ionic liquids and the NBR polymer was confirmed by DMA. The effect of the anion size of the ionic liquids on the displacement of the actuator was examined. The displacement increased with increasing anion size of the ionic liquids. The cyclic voltammetry responses and the redox switching dynamics of the actuators were examined in different ionic liquids.

  11. Conducting Polymers Functionalized with Phthalocyanine as Nitrogen Dioxide Sensors

    Directory of Open Access Journals (Sweden)

    S. D. Deshpande

    2002-05-01

    Full Text Available The conducting polymers such as polyaniline, polypyrrole and polythiophene were functionalized with copper phthalocyanine using chemical oxidation method. The obtained polymers viz. PANI-CuPc, PPy-CuPc and PT-CuPc were studied as chemical sensors by their response characteristics after exposure to various chemical vapors such as methanol, ammonia and nitrogen dioxide. The results obtained showed that these polymers have moderate sensitivity towards the methanol as well as ammonia vapors whereas they show tremendous sensitivity towards nitrogen dioxide vapors. The sensitivity factor of as high as 50,000 was obtained for PT-CuPc polymers in nitrogen dioxide. In comparison to this, the sensitivity factors of about 100 and 40 were obtained, when these polymers were exposed to ammonia and methanol vapors. The very high selectivity towards the nitrogen dioxide was explained on the basis of charge transfer complex formed between, the phthalocyanine donor and nitrogen dioxide acceptor molecules. On the other hand, ammonia becomes a competing electron donor in CuPc containing conducting polymers. The very low response towards the methanol may be explained on the basis very little charge transfer / interaction between CuPc containing polymers and methanol. Thus, CuPc incorporated conducting polymers have much higher selectivity than their original homopolymer.

  12. Pedot and PPy Conducting Polymer Bilayer and Trilayer Actuators

    DEFF Research Database (Denmark)

    Zainudeen, Umer Lebbe; Careem, Mohamed Abdul; Skaarup, Steen

    2008-01-01

    attempts have been made to improve the actuator performance. We report electromechanical measurements on actuators of bilayer and trilayer free standing films prepared with polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymers. Both types of conducting polymer are pre...

  13. Electromagnetic properties of conducting polymers encapsulated in an insulating matrix

    International Nuclear Information System (INIS)

    Esnouf, Stephane

    1995-01-01

    The aim of this work is to study the electronic properties of conducting polymers encapsulated in zeolite. We studied two kinds of polymers: intrinsic conducting polymers (poly-pyrrole) and pyrolyzed polymers (polyacrylonitrile and poly-furfuryl alcohol). These systems were characterized by electron paramagnetic resonance and microwave conductivity measurements. In the first part, we present the preparation and the characterization of encapsulated poly-pyrrole. Conductivity measurements show that the encapsulated material is insulating, certainly because a strong interaction with the zeolite traps the charge carriers. In the second part, we focus on pyrolyzed encapsulated polyacrylonitrile. This system has a metal-like susceptibility at room temperature and a relatively high microwave conductivity. These results demonstrate the formation during the pyrolysis of extended aromatic clusters. Finally, we study pyrolyzed encapsulated poly-furfuryl alcohol. We show that the only effect of the pyrolysis is to fragment the polymers. We also discuss the spin relaxation and the EPR line broadening. (author) [fr

  14. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    Energy Technology Data Exchange (ETDEWEB)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh, E-mail: email-mkram83@gmail.com [Department of Physics, Alagappa University, Karaikudi – 630 004, India. (India)

    2016-05-06

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10{sup −4} Scm{sup −1}. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ε’, Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  15. Electrochemical sensors based on polyconjugated conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G. (Ist. di Polarografia ed Elettrochimica Preparativa, Consiglio Nazionale delle Ricerche, Padua (Italy))

    1992-09-01

    An overview of the applications of polyconjugated conducting polymers to electrochemical sensors is given. Gas sensors, ion sensors, and biosensors (non-enzyme and enzyme sensors) are presented and discussed. The role of the polymer as enzyme host and mediator of charge transfer is particularly emphasized in the light of recent results. (orig.).

  16. Emerging synthetic strategies for core cross-linked star (CCS) polymers and applications as interfacial stabilizers: bridging linear polymers and nanoparticles.

    Science.gov (United States)

    Chen, Qijing; Cao, Xueteng; Xu, Yuanyuan; An, Zesheng

    2013-10-01

    Core cross-linked star (CCS) polymers become increasingly important in polymer science and are evaluated in many value-added applications. However, limitations exist to varied degrees for different synthetic methods. It is clear that improvement in synthetic efficiency is fundamental in driving this field moving even further. Here, the most recent advances are highlighted in synthetic strategies, including cross-linking with cross-linkers of low solubility, polymerization-induced self-assembly in aqueous-based heterogeneous media, and cross-linking via dynamic covalent bonds. The understanding of CCS polymers is also further refined to advocate their role as an intermediate between linear polymers and polymeric nanoparticles, and their use as interfacial stabilizers is rationalized within this context. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Conducting polymers as sorbents of influenza viruses

    Czech Academy of Sciences Publication Activity Database

    Ivanova, V. T.; Garina, E. O.; Burtseva, E. I.; Kirillova, E. S.; Ivanova, M. V.; Stejskal, Jaroslav; Sapurina, Irina

    2017-01-01

    Roč. 71, č. 2 (2017), s. 495-503 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA16-02787S; GA MŠk(CZ) LH14199 Institutional support: RVO:61389013 Keywords : influenza viruses * conducting polymers * polyaniline Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  18. Conductivity in redox modified conducting polymers. In-situ conductivity of poly(cyclopentadithiophenes) bearing p-nitrophenyl and 4-N-methylpyridinium groups

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G. [Consiglio Nazionale delle Ricerche, (Italy). Istituto di Polarografia ed Elettrochimica Preparativa; Berlin, A. [Milan Univ. (Italy). Dipartimento di Chimica Organica e Industriale; Pagani, G. [Milan Univ. (Italy). Dipartimento di Chimica Organica e Industriale; Schiavon, G. [Consiglio Nazionale delle Ricerche, (Italy). Istituto di Polarografia ed Elettrochimica Preparativa; Zecchin, S. [Consiglio Nazionale delle Ricerche, (Italy). Istituto di Polarografia ed Elettrochimica Preparativa

    1995-01-01

    Redox-modified polythiophenes exhibiting the highest mixed-valence conductivities of any polymer containing a pendant redox group are reported. The ordering of the polymer, in which the backbone has been oxidized to a bipolaron conducting state and the redox sites have been reduced to a mixed-valence conducting state, encourages inter-site hopping and results in the high conductivities. Electron interactions are shown not have an influence on the conduction. (orig.)

  19. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)

    Unknown

    of a container that can hold a large amount of solvent and as a result possesses the ... having high value of conductivity results in polymer gel electrolytes. They are ..... the availability of free ions provided by the acid. It gene- rally reaches a ...

  20. Mediating conducting polymer growth within hydrogels by controlling nucleation

    Directory of Open Access Journals (Sweden)

    A. J. Patton

    2015-01-01

    Full Text Available This study examines the efficacy of primary and secondary nucleation for electrochemical polymerisation of conductive polymers within poly(vinyl alcohol methacrylate hydrogels. The two methods of nucleation investigated were a primary heterogeneous mechanism via introduction of conductive bulk metallic glass (Mg64Zn30Ca5Na1 particles and a secondary mechanism via introduction of “pre-polymerised” conducting polymer within the hydrogel (PEDOT:PSS. Evidence of nucleation was not seen in the bulk metallic glass loaded gels, however, the PEDOT:PSS loaded gels produced charge storage capacities over 15 mC/cm2 when sufficient polymer was loaded. These studies support the hypothesis that secondary nucleation is an efficient approach to producing stand-alone conducting hydrogels.

  1. Sodium conducting polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Skaarup, S.; West, K. (eds.)

    1989-04-01

    This section deals with the aspects of ionic conduction in general as well as specific experimental results obtained for sodium systems. The conductivity as a function of temperature and oxygen/metal ratio are given for the systems NaI, NaCF/sub 3/SO/sub 3/ and NaClO/sub 4/ plus polyethylene oxide. Attempts have been made to produce mixed phase solid electrolytes analogous to the lithium systems that have worked well. These consist of mixtures of polymer and a solid electrolyte. The addition of both nasicon and sodium beta alumina unexpectedly decreases the ionic conductivity in contrast to the lithium systems. Addition of the nonconducting silica AEROSIL in order to increase the internal surface area has the effect of retarding the phase transition at 60 deg. C, but does not enhance the conductivity. (author) 23 refs.

  2. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    Conducting polymers; LB films; biosensor microactuators; monolayers. ... have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices.

  3. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes

    Science.gov (United States)

    Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito

    2016-09-01

    This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.

  4. Impact of styrenic polymer one-step hyper-cross-linking on volatile organic compound adsorption and desorption performance.

    Science.gov (United States)

    Ghafari, Mohsen; Atkinson, John D

    2018-06-05

    A novel one-step hyper-cross-linking method, using 1,2-dichloroethane (DCE) and 1,6-dichlorohexane (DCH) cross-linkers, expands the micropore volume of commercial styrenic polymers. Performance of virgin and modified polymers was evaluated by measuring hexane, toluene, and methyl-ethyl-ketone (MEK) adsorption capacity, adsorption/desorption kinetics, and desorption efficiency. Hyper-cross-linked polymers have up to 128% higher adsorption capacity than virgin polymers at P/P 0  = 0.05 due to micropore volume increases up to 330%. Improvements are most pronounced with the DCE cross-linker. Hyper-cross-linking has minimal impact on hexane adsorption kinetics, but adsorption rates for toluene and MEK decrease by 6-41%. Desorption rates decreased (3-36%) for all materials after hyper-cross-linking, with larger decreases for DCE hyper-cross-linked polymers due to smaller average pore widths. For room temperature desorption, 20-220% more adsorbate remains in hyper-cross-linked polymers after regeneration compared to virgin materials. DCE hyper-cross-linked polymers have 13-92% more residual adsorbate than DCH counterparts. Higher temperatures were required for DCE hyper-cross-linked polymers to completely desorb VOCs compared to the DCH hyper-cross-linked and virgin counterparts. Results show that the one-step hyper-cross-linking method for modifying styrenic polymers improves adsorption capacity because of added micropores, but decreases adsorption/desorption kinetics and desorption efficiency for large VOCs due to a decrease in average pore width. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Selective removal of heavy metal ions by disulfide linked polymer networks

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Dongah [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Lee, Joo Sung [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Patel, Hasmukh A. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Jakobsen, Mogens H. [Department of Micro and Nano technology, Technical University of Denmark, Ørsteds Plads, 345B, 2800 Kgs. Lyngby (Denmark); Hwang, Yuhoon [Department of Environmental Engineering, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811 (Korea, Republic of); Yavuz, Cafer T. [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Hansen, Hans Chr. Bruun [Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Andersen, Henrik R., E-mail: henrik@ndersen.net [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark)

    2017-06-15

    Highlights: • Disulfide/thiol polymer networks are promising as sorbent for heavy metals. • Rapid sorption and high Langmuir affinity constant (a{sub L}) for stormwater treatment. • Selective sorption for copper, cadmium, and zinc in the presence of calcium. • Reusability likely due to structure stability of disulfide linked polymer networks. - Abstract: Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions–copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water.

  6. Potential of thermally conductive polymers for the cooling of mechatronic parts

    Science.gov (United States)

    Heinle, C.; Drummer, D.

    Adding thermally conductive fillers to polymers the thermal conductivity can be raised significantly. Thermal conductive polymers (TC-plastics) open up a vast range of options to set up novel concepts of polymer technological system solutions in the area of mechatronics. Heating experiment of cooling ribs show the potential in thermal management of mechatronic parts with TC-polymers in comparison with widely used reference materials copper and aluminum. The results demonstrate that especially for certain thermal boundary conditions comparable performance between these two material grades can be measured.

  7. Molecular motion in polymer electrolytes. An investigation of methods for improving the conductivity of solid polymer electrolytes

    International Nuclear Information System (INIS)

    Webster, Mark Ian

    2002-01-01

    Three methods were explored with a view to enhancing the ionic conductivity of polymer electrolytes; namely the addition of an inert, inorganic filler, the addition of a plasticizer and the incorporation of the electrolyte in the pores of silica matrices. There have been a number of reports, which suggest the addition of nanocrystalline oxides to polymer electrolytes increases the ionic conductivities by about a factor of two. In this thesis studies of the polymer electrolyte NaSCN.P(EO) 8 with added nanocrystalline alumina powder are reported which show no evidence of enhanced conductivity. The addition of a plasticizer to polymer electrolytes will increase the ionic conductivity. A detailed study was made of the polymer electrolytes LiT.P(EO) 10 and LiClO 4 .P(EO) 10 with added ethylene carbonate plasticizer. The conductivities showed an enhancement, however this disappeared on heating under vacuum. The present work suggests that the plasticised system is not thermodynamically stable and will limit the applications of the material. A series of samples were prepared from the polymer electrolyte LiT.P(EO) 8 and a range of porous silicas. The silicas were selected to give a wide range of pore size and included Zeolite Y, ZSM5, mesoporous silica and a range of porous glasses. This gave pore sizes from less than one nm to 50 nm. A variety of experiments, including X-ray diffraction, DSC and NMR, showed that the polymer electrolyte entered to pores of the silica. As a result the polymer was amorphous and the room temperature conductivity was enhanced. The high temperature conductivity was not increased above that for the pure electrolyte. The results suggest that this could be employed in applications, however would require higher conducting electrolytes to be of practical benefit. (author)

  8. Recent Development of Nanomaterial-Doped Conductive Polymers

    Science.gov (United States)

    Asyraf, Mohammad; Anwar, Mahmood; Sheng, Law Ming; Danquah, Michael K.

    2017-12-01

    Conductive polymers (CPs) have received significant research attention in material engineering for applications in microelectronics, micro-scale sensors, electromagnetic shielding, and micro actuators. Numerous research efforts have been focused on enhancing the conductivity of CPs by doping. Various conductive materials, such as metal nanoparticles and carbon-based nanoparticles, and structures, such as silver nanoparticles and graphene nanosheets, have been converted into polypyrrole and polypyrrole compounds as the precursors to developing hybrids, conjugates, or crystal nodes within the matrix to enhance the various structural properties, particularly the electrical conductivity. This article reviews nanomaterial doping of conductive polymers alongside technological advancements in the development and application of nanomaterial-doped polymeric systems. Emphasis is given to conductive nanomaterials such as nano-silver particles and carbon-based nanoparticles, graphene nano-sheets, fullerene, and carbon nanotubes (CNT) as dopants for polypyrrole-based CPs. The nature of induced electrical properties including electromagnetic absorption, electrical capacitance, and conductivities of polypyrrole systems is also discussed. The prospects and challenges associated with the development and application of CPs are also presented.

  9. The effect of microwave drying on polymer electrolyte conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Latham, R.J. (Dept. of Chemistry, De Montfort Univ., Gateway, Leicester (United Kingdom)); Linford, R.G. (Dept. of Chemistry, De Montfort Univ., Gateway, Leicester (United Kingdom)); Pynenburg, R.A.J. (Dept. of Chemistry, De Montfort Univ., Gateway, Leicester (United Kingdom))

    1993-03-01

    The morphology and conductivity of polymer electrolytes based on PEO are often substantially modified by the presence of water. A number of different approaches have commonly been used to eliminate water from polymer electrolyte films. The work reported here extends our earlier investigations of the use of microwaves for the rapid drying of solvent cast polymer electrolyte films. Films of PEO[sub n]:NiBr[sub 2] and PEO[sub n]:ZnCl[sub 2] have been prepared by normal casting techniques and then studied using EXAFS, DSC and ac conductivity measurements. (orig.)

  10. Comparative study of 150 keV Ar+ and O+ ion implantation induced structural modification on electrical conductivity in Bakelite polymer

    Science.gov (United States)

    Aneesh Kumar, K. V.; Krishnaveni, S.; Asokan, K.; Ranganathaiah, C.; Ravikumar, H. B.

    2018-02-01

    A comparative study of 150 keV argon (Ar+) and oxygen (O+) ion implantation induced microstructural modifications in Bakelite Resistive Plate Chamber (RPC) detector material at different implantation fluences have been studied using Positron Annihilation Lifetime Spectroscopy (PALS). Positron lifetime parameters viz., o-Ps lifetime (τ3) and its intensity (I3) upon lower implantation fluences can be interpreted as the cross-linking and the increased local temperature induced diffusion followed by trapping of ions in the interior polymer voids. The increased o-Ps lifetime (τ3) at higher O+ ion implantation fluences indicates chain scission owing to the oxidation and track formation. This is also justified by the X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) results. The modification in the microstructure and electrical conductivity of Bakelite materials are more upon implantation of O+ ions than Ar+ ions of same energy and fluences. The reduced electrical conductivity of Bakelite polymer material upon ion implantation of both the ions is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate energy and fluence of implanting ions might reduce the leakage current and hence improve the performance of Bakelite RPC detectors.

  11. Cationic Polymers Inhibit the Conductance of Lysenin Channels

    Directory of Open Access Journals (Sweden)

    Daniel Fologea

    2013-01-01

    Full Text Available The pore-forming toxin lysenin self-assembles large and stable conductance channels in natural and artificial lipid membranes. The lysenin channels exhibit unique regulation capabilities, which open unexplored possibilities to control the transport of ions and molecules through artificial and natural lipid membranes. Our investigations demonstrate that the positively charged polymers polyethyleneimine and chitosan inhibit the conducting properties of lysenin channels inserted into planar lipid membranes. The preservation of the inhibitory effect following addition of charged polymers on either side of the supporting membrane suggests the presence of multiple binding sites within the channel's structure and a multistep inhibition mechanism that involves binding and trapping. Complete blockage of the binding sites with divalent cations prevents further inhibition in conductance induced by the addition of cationic polymers and supports the hypothesis that the binding sites are identical for both multivalent metal cations and charged polymers. The investigation at the single-channel level has shown distinct complete blockages of each of the inserted channels. These findings reveal key structural characteristics which may provide insight into lysenin’s functionality while opening innovative approaches for the development of applications such as transient cell permeabilization and advanced drug delivery systems.

  12. Corrosion Protection of Steels by Conducting Polymer Coating

    Directory of Open Access Journals (Sweden)

    Toshiaki Ohtsuka

    2012-01-01

    Full Text Available The corrosion protection of steels by conducting polymer coating is reviewed. The conducting polymer such as polyaniline, polypyrrole, and polythiophen works as a strong oxidant to the steel, inducing the potential shift to the noble direction. The strongly oxidative conducting polymer facilitates the steel to be passivated. A bilayered PPy film was designed for the effective corrosion protection. It consisted of the inner layer in which phosphomolybdate ion, PMo12O3−40 (PMo, was doped and the outer layer in which dodecylsulfate ion (DoS was doped. The inner layer stabilized the passive oxide and the outer possessed anionic perm-selectivity to inhibit the aggressive anions such as chloride from penetrating through the PPy film to the substrate steel. By the bilayered PPy film, the steel was kept passive for about 200 h in 3.5% sodium chloride solution without formation of corrosion products.

  13. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    Science.gov (United States)

    Kumar, Binod

    2003-12-02

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  14. Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, D. [Department of Physics, Amrita Viswha Vidyapeetham, Bangalore, India, E-mail: d-praveen@blr.amrita.edu (India); Damle, Ramakrishna [Department of Physics, Bangalore University, Bangalore, India. E-mail: ramkrishnadamle@bub.ernet.in (India)

    2016-05-23

    Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO{sub 4}){sub 2}, NH{sub 4}I etc., have already been tried in the past with some success. Also various nanoparticles like Al{sub 2}O{sub 3}, TiO{sub 2} etc., have been tried in the past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.

  15. Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species

    International Nuclear Information System (INIS)

    Praveen, D.; Damle, Ramakrishna

    2016-01-01

    Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO_4)_2, NH_4I etc., have already been tried in the past with some success. Also various nanoparticles like Al_2O_3, TiO_2 etc., have been tried in the past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.

  16. A nonconjugated radical polymer glass with high electrical conductivity

    Science.gov (United States)

    Joo, Yongho; Agarkar, Varad; Sung, Seung Hyun; Savoie, Brett M.; Boudouris, Bryan W.

    2018-03-01

    Solid-state conducting polymers usually have highly conjugated macromolecular backbones and require intentional doping in order to achieve high electrical conductivities. Conversely, single-component, charge-neutral macromolecules could be synthetically simpler and have improved processibility and ambient stability. We show that poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a nonconjugated radical polymer with a subambient glass transition temperature, underwent rapid solid-state charge transfer reactions and had an electrical conductivity of up to 28 siemens per meter over channel lengths up to 0.6 micrometers. The charge transport through the radical polymer film was enabled with thermal annealing at 80°C, which allowed for the formation of a percolating network of open-shell sites in electronic communication with one another. The electrical conductivity was not enhanced by intentional doping, and thin films of this material showed high optical transparency.

  17. Fabrication of multilayered conductive polymer structures via selective visible light photopolymerization

    Science.gov (United States)

    Cullen, Andrew T.; Price, Aaron D.

    2017-04-01

    Electropolymerization of pyrrole is commonly employed to fabricate intrinsically conductive polymer films that exhibit desirable electromechanical properties. Due to their monolithic nature, electroactive polypyrrole films produced via this process are typically limited to simple linear or bending actuation modes, which has hindered their application in complex actuation tasks. This initiative aims to develop the specialized fabrication methods and polymer formulations required to realize three-dimensional conductive polymer structures capable of more elaborate actuation modes. Our group has previously reported the application of the digital light processing additive manufacturing process for the fabrication of three-dimensional conductive polymer structures using ultraviolet radiation. In this investigation, we further expand upon this initial work and present an improved polymer formulation designed for digital light processing additive manufacturing using visible light. This technology enables the design of novel electroactive polymer sensors and actuators with enhanced capabilities and brings us one step closer to realizing more advanced electroactive polymer enabled devices.

  18. Effect of cross-linkable polymer on the morphology and properties of transparent multi-walled carbon nanotube conductive films

    International Nuclear Information System (INIS)

    Huang, Yuan-Li; Tien, Hsi-Wen; Ma, Chen-Chi M.; Teng, Chih-Chun; Yu, Yi-Hsiuan; Yang, Shin-Yi; Wei, Ming-Hsiung; Wu, Sheng-Yen

    2011-01-01

    In this study, we fabricated optically transparent and electrically conductive multi-walled carbon nanotube (MWCNT) thin films using a spray-coating technique. The transparency and the electrical resistance of thin film are dependent on the nanotube content deposited on the polyethylene terephthalate (PET) substrate. Poly(acrylic acid) (PAA) and poly(N-vinyl pyrrolidone) (PVP) were used as adhesion promoters to improve MWCNT coating more significantly. The cross-linked polymer resulted in a superior bond between the MWCNTs and the substrates. The surface electrical resistance was significantly lower than the original sheet after nitric acid (HNO 3 ) treatment because of the removed surfactant and the increased interconnecting networks of MWCNT bundles, thus improving the electrical and optical properties of the films. Stronger interaction between the MWCNTs and the substrates resulted in lower decomposition of the polymer chain and less amounts of MWCNTs separated into the HNO 3 solution. The lower sheet electrical resistance of PVP/PAA-g-MWCNT conductive films on the PET substrate was because of a more complete conductive path with the cross-linked polymer than that without. Such an improved sheet of electrical resistance varied from 8.83 x 10 4 Ω/□ to 2.65 x 10 3 Ω/□ with 5.0 wt.% PVP/PAA-g-MWCNT sprayed on the PET after acid treatment.

  19. Effect of cross-linkable polymer on the morphology and properties of transparent multi-walled carbon nanotube conductive films

    Science.gov (United States)

    Huang, Yuan-Li; Tien, Hsi-Wen; Ma, Chen-Chi M.; Teng, Chih-Chun; Yu, Yi-Hsiuan; Yang, Shin-Yi; Wei, Ming-Hsiung; Wu, Sheng-Yen

    2011-10-01

    In this study, we fabricated optically transparent and electrically conductive multi-walled carbon nanotube (MWCNT) thin films using a spray-coating technique. The transparency and the electrical resistance of thin film are dependent on the nanotube content deposited on the polyethylene terephthalate (PET) substrate. Poly(acrylic acid) (PAA) and poly(N-vinyl pyrrolidone) (PVP) were used as adhesion promoters to improve MWCNT coating more significantly. The cross-linked polymer resulted in a superior bond between the MWCNTs and the substrates. The surface electrical resistance was significantly lower than the original sheet after nitric acid (HNO 3) treatment because of the removed surfactant and the increased interconnecting networks of MWCNT bundles, thus improving the electrical and optical properties of the films. Stronger interaction between the MWCNTs and the substrates resulted in lower decomposition of the polymer chain and less amounts of MWCNTs separated into the HNO 3 solution. The lower sheet electrical resistance of PVP/PAA-g-MWCNT conductive films on the PET substrate was because of a more complete conductive path with the cross-linked polymer than that without. Such an improved sheet of electrical resistance varied from 8.83 × 10 4 Ω/□ to 2.65 × 10 3 Ω/□ with 5.0 wt.% PVP/PAA-g-MWCNT sprayed on the PET after acid treatment.

  20. Influence of conductive electroactive polymer polyaniline on ...

    Indian Academy of Sciences (India)

    Conductive electroactive polymer polyaniline is utilized to substitute conductive additive acetylene black in the LiMn1.95Al0.05O4 cathode for lithium ion batteries. Results show that LiMn1.95Al0.05O4 possesses stable structure and good performance. Percolation theory is used to optimize the content of conductive additive ...

  1. Thermoelectric Properties of Solution-Processed n-Doped Ladder-Type Conducting Polymers

    DEFF Research Database (Denmark)

    Wang, Suhao; Sun, Hengda; Ail, Ujwala

    2016-01-01

    Ladder-type "torsion-free" conducting polymers (e.g., polybenzimidazobenzophenanthroline (BBL)) can outperform "structurally distorted" donor-acceptor polymers (e.g., P(NDI2OD-T2)), in terms of conductivity and thermoelectric power factor. The polaron delocalization length is larger in BBL than...... in P(NDI2OD-T2), resulting in a higher measured polaron mobility. Structure-function relationships are drawn, setting material-design guidelines for the next generation of conducting thermoelectric polymers....

  2. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    Characterization of conducting polymers has been considered to be very .... and CH4) on surface plasmon resonance of Langmuir–Blodgett films of ..... [37] D G Zhu, M C Petty, H Ancelin and J Yarwood, Thin Solid Films 176, 151 (1989).

  3. Gyroid nanoporous scaffold for conductive polymers

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Schulte, Lars; Zhang, Weimin

    2011-01-01

    Conductive nanoporous polymers with interconnected large surface area have been prepared by depositing polypyrrole onto nanocavity walls of nanoporous 1,2-polybutadiene films with gyroid morphology. Vapor phase polymerization of pyrrole was used to generate ultrathin films and prevent pore blocking...

  4. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...

  5. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires

    Science.gov (United States)

    Liu, Wei; Lee, Seok Woo; Lin, Dingchang; Shi, Feifei; Wang, Shuang; Sendek, Austin D.; Cui, Yi

    2017-04-01

    In contrast to conventional organic liquid electrolytes that have leakage, flammability and chemical stability issues, solid electrolytes are widely considered as a promising candidate for the development of next-generation safe lithium-ion batteries. In solid polymer electrolytes that contain polymers and lithium salts, inorganic nanoparticles are often used as fillers to improve electrochemical performance, structure stability, and mechanical strength. However, such composite polymer electrolytes generally have low ionic conductivity. Here we report that a composite polymer electrolyte with well-aligned inorganic Li+-conductive nanowires exhibits an ionic conductivity of 6.05 × 10-5 S cm-1 at 30 ∘C, which is one order of magnitude higher than previous polymer electrolytes with randomly aligned nanowires. The large conductivity enhancement is ascribed to a fast ion-conducting pathway without crossing junctions on the surfaces of the aligned nanowires. Moreover, the long-term structural stability of the polymer electrolyte is also improved by the use of nanowires.

  6. Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries

    International Nuclear Information System (INIS)

    He, Weisheng; Cui, Zili; Liu, Xiaochen; Cui, Yanyan; Chai, Jingchao; Zhou, Xinhong; Liu, Zhihong; Cui, Guanglei

    2017-01-01

    The classic poly(ethylene oxide) (PEO) based solid polymer electrolyte suffers from poor ionic conductivity of ambient temperature, low lithium ion transference number and relatively narrow electrochemical window (<4.0 V vs. Li + /Li). Herein, the carbonate-linked PEO solid polymer such as poly(diethylene glycol carbonate) (PDEC) and poly(triethylene glycol carbonate) (PTEC) were explored to find out the feasibility of resolving above issues. It was proven that the optimized ionic conductivity of PTEC based electrolyte reached up to 1.12 × 10 −5 S cm −1 at 25 °C with a decent lithium ion transference number of 0.39 and a wide electrochemical window about 4.5 V vs. Li + /Li. In addition, the PTEC based Li/LiFePO 4 cell could be reversibly charged and discharged at 0.05 C-rates at ambient temperature. Moreover, the higher voltage Li/LiFe 0.2 Mn 0.8 PO 4 cell (cutoff voltage 4.35 V) possessed considerable rate capability and excellent cycling performance even at ambient temperature. Therefore, these carbonate-linked PEO electrolytes were demonstrated to be fascinating candidates for the next generation solid state lithium batteries simultaneously with high energy and high safety.

  7. Dip-pen nanopatterning of photosensitive conducting polymer using a monomer ink

    Science.gov (United States)

    Su, Ming; Aslam, Mohammed; Fu, Lei; Wu, Nianqiang; Dravid, Vinayak P.

    2004-05-01

    Controlled patterning of conducting polymers at a micro- or nanoscale is the first step towards the fabrication of miniaturized functional devices. Here, we introduce an approach for the nanopatterning of conducting polymers using an improved monomer "ink" in dip-pen nanolithography (DPN). The nominal monomer "ink" is converted, in situ, to its conducting solid-state polymeric form after patterned. Proof-of-concept experiments have been performed with acid-promoted polymerization of pyrrole in a less reactive environment (tetrahydrofuran). The ratios of reactants are optimized to give an appropriate rate to match the operation of DPN. A similar synthesis process for the same polymer in its bulk form shows a high conductance and crystalline structure. The miniaturized conducting polymer sensors with light detection ability are fabricated by DPN using the improved ink formula, and exhibit excellent response, recovery, and sensitivity parameters.

  8. Dip-pen nanopatterning of photosensitive conducting polymer using a monomer ink

    International Nuclear Information System (INIS)

    Su Ming; Aslam, Mohammed; Fu Lei; Wu Nianqiang; Dravid, Vinayak P.

    2004-01-01

    Controlled patterning of conducting polymers at a micro- or nanoscale is the first step towards the fabrication of miniaturized functional devices. Here, we introduce an approach for the nanopatterning of conducting polymers using an improved monomer 'ink' in dip-pen nanolithography (DPN). The nominal monomer 'ink' is converted, in situ, to its conducting solid-state polymeric form after patterned. Proof-of-concept experiments have been performed with acid-promoted polymerization of pyrrole in a less reactive environment (tetrahydrofuran). The ratios of reactants are optimized to give an appropriate rate to match the operation of DPN. A similar synthesis process for the same polymer in its bulk form shows a high conductance and crystalline structure. The miniaturized conducting polymer sensors with light detection ability are fabricated by DPN using the improved ink formula, and exhibit excellent response, recovery, and sensitivity parameters

  9. Conducting polymer nanowire arrays for high performance supercapacitors.

    Science.gov (United States)

    Wang, Kai; Wu, Haiping; Meng, Yuena; Wei, Zhixiang

    2014-01-15

    This Review provides a brief summary of the most recent research developments in the fabrication and application of one-dimensional ordered conducting polymers nanostructure (especially nanowire arrays) and their composites as electrodes for supercapacitors. By controlling the nucleation and growth process of polymerization, aligned conducting polymer nanowire arrays and their composites with nano-carbon materials can be prepared by employing in situ chemical polymerization or electrochemical polymerization without a template. This kind of nanostructure (such as polypyrrole and polyaniline nanowire arrays) possesses high capacitance, superior rate capability ascribed to large electrochemical surface, and an optimal ion diffusion path in the ordered nanowire structure, which is proved to be an ideal electrode material for high performance supercapacitors. Furthermore, flexible, micro-scale, threadlike, and multifunctional supercapacitors are introduced based on conducting polyaniline nanowire arrays and their composites. These prototypes of supercapacitors utilize the high flexibility, good processability, and large capacitance of conducting polymers, which efficiently extend the usage of supercapacitors in various situations, and even for a complicated integration system of different electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    Science.gov (United States)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  11. Conducting Polymer Based Nanobiosensors

    Directory of Open Access Journals (Sweden)

    Chul Soon Park

    2016-06-01

    Full Text Available In recent years, conducting polymer (CP nanomaterials have been used in a variety of fields, such as in energy, environmental, and biomedical applications, owing to their outstanding chemical and physical properties compared to conventional metal materials. In particular, nanobiosensors based on CP nanomaterials exhibit excellent performance sensing target molecules. The performance of CP nanobiosensors varies based on their size, shape, conductivity, and morphology, among other characteristics. Therefore, in this review, we provide an overview of the techniques commonly used to fabricate novel CP nanomaterials and their biosensor applications, including aptasensors, field-effect transistor (FET biosensors, human sense mimicking biosensors, and immunoassays. We also discuss prospects for state-of-the-art nanobiosensors using CP nanomaterials by focusing on strategies to overcome the current limitations.

  12. Correlation between ionic conductivity and fluidity of polymer gel ...

    Indian Academy of Sciences (India)

    Unknown

    Ionic conductivity; ion aggregates; FTIR spectroscopy; gels; fluidity. 1. Introduction ... liquid and polymer gel electrolytes have been studied as functions of salt ..... Ratner M A 1987 in Polymer electrolyte reviews (eds) J R. MacCallum and C A ...

  13. Highly conductive polymers: superconductivity in nanochannels or an experimental artifact?

    International Nuclear Information System (INIS)

    Hayden, Harley; Park, Seongho; Zhirnov, Victor; Cavin, Ralph; Kohl, Paul A.

    2010-01-01

    There is a significant body of literature concerning the potential formation of electrically conductive moieties in polymeric materials. The conductive path is not associated with conjugation (such as in the case of 'conductive polymers') but rather associated with a new conductivity route. The objective of the experiments reported herein was to provide insight into the phenomenon of unusually high electrical conductivity in polymers that have been reported by several research groups. In some experiments, the test apparatus did indeed indicate high levels of conductance. Arguments pro and con for high conductivity based on known physical phenomena and the collected data were examined.

  14. Conductive Polymer Functionalization by Click Chemistry

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hvilsted, Søren; Hansen, Thomas Steen

    2008-01-01

    Click chemistry is used to obtain new conductive polymer films based on poly(3,4-ethylenedioxythiophene) (PEDOT) from a new azide functional monomer. Postpolymerization, 1,3-dipolar cycloadditions in DMF, using a catalyst system of CUS04 and sodium ascorbate, and different alkynes are performed...

  15. Investigation of ionic conduction in PEO-PVDF based blend polymer electrolytes

    Science.gov (United States)

    Patla, Subir Kumar; Ray, Ruma; Asokan, K.; Karmakar, Sanat

    2018-03-01

    We investigate the effect of blend host polymer on solid polymer electrolyte (SPE) films doped with ammonium iodide (NH4I) salt using a variety of experimental techniques. Structural studies on the composite SPEs show that the blending of Poly(ethylene oxide) (PEO)-Poly(vinylidene fluoride) (PVDF) polymers in a suitable ratio enhances the amorphous fraction of the polymer matrix and facilitates fast ion conduction through it. We observe that the addition of a small amount of PVDF in the PEO host polymer enhances the ion - polymer interaction leading to more ion dissociation. As a result, the effective number of mobile charge carriers within the polymer matrix increases. Systematic investigation in these blend SPEs shows that the maximum conductivity (1.01 × 10-3 S/cm) is obtained for PEO - rich (80 wt. % PEO, 20 wt. % PVDF) composites at 35 wt. % NH4I concentration at room temperature. Interestingly, at higher salt concentrations (above 35 wt. %), the conductivity is found to decrease in this system. The reduction of conductivity at higher salt concentrations is the consequence of decrease in the carrier concentration due to the formation of an ion pair and ion aggregates. PVDF-rich compositions (20 wt. % PEO and 80 wt. % PVDF), on the other hand, show a very complex porous microstructure. We also observe a much lower ionic conductivity (maximum ˜ 10-6 S/cm at 15 wt. % salt) in these composite systems relative to PEO-rich composites.

  16. SOLID STATE BATTERIES WITH CONDUCTING POLYMERS

    OpenAIRE

    Bénière , F.; Boils , D.; Cánepa , H.; Franco , J.; Le Corre , A.; Louboutin , J.

    1983-01-01

    The conducting polymers like (CH)x are very interesting materials for electrodes in electrochemical cells. We have combined such electrodes with solid electrolytes to build "all solid-state" batteries. The first prototypes using a silver anode and a silver conducting electrolyte have been working satisfactorily since two years. The performances have been tested with many batteries to study the electrical properties as well as the thermodynamical parameters. A number of cycles of charge-discha...

  17. Water-Enabled Healing of Conducting Polymer Films.

    Science.gov (United States)

    Zhang, Shiming; Cicoira, Fabio

    2017-10-01

    The conducting polymer polyethylenedioxythiophene doped with polystyrene sulfonate (PEDOT:PSS) has become one of the most successful organic conductive materials due to its high air stability, high electrical conductivity, and biocompatibility. In recent years, a great deal of attention has been paid to its fundamental physicochemical properties, but its healability has not been explored in depth. This communication reports the first observation of mechanical and electrical healability of PEDOT:PSS thin films. Upon reaching a certain thickness (about 1 µm), PEDOT:PSS thin films damaged with a sharp blade can be electrically healed by simply wetting the damaged area with water. The process is rapid, with a response time on the order of 150 ms. Significantly, after being wetted the films are transformed into autonomic self-healing materials without the need of external stimulation. This work reveals a new property of PEDOT:PSS and enables its immediate use in flexible and biocompatible electronics, such as electronic skin and bioimplanted electronics, placing conducting polymers on the front line for healing applications in electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electrochemical Switching of Conductance with Diarylethene-Based Redox-Active Polymers

    DEFF Research Database (Denmark)

    Logtenberg, Hella; van der Velde, Jasper H. M.; de Mendoza, Paula

    2012-01-01

    Reversible switching of conductance using redox triggered switching of a polymer-modified electrode is demonstrated. A bifunctional monomer comprising a central electroswitchable core and two bithiophene units enables formation of a film through anodic electropolymerization. The conductivity...... of the polymer can be switched electrochemically in a reversible manner by redox triggered opening and closing of the diarylethene unit. In the closed state, the conductivity of the modified electrode is higher than in the open state....

  19. Constrained swelling of polymer networks: characterization of vapor-deposited cross-linked polymer thin films

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Choukourov, A.; Dušková-Smrčková, Miroslava; Biederman, H.

    2014-01-01

    Roč. 47, č. 13 (2014), s. 4417-4427 ISSN 0024-9297 R&D Projects: GA ČR GAP101/12/1306 Institutional support: RVO:61389013 Keywords : swelling * cross-linked polymer * elasticity Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.800, year: 2014

  20. Microwave assisted click chemistry on a conductive polymer film

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hansen, Thomas S.; Larsen, Niels Bent

    2011-01-01

    Microwave (MW) irradiation has been used to accelerate the functionalization of an azide functional poly(3,4-ethylenedioxythiophene) film by click chemistry. The absorption of MW energy by the conductive polymer has been exploited for localized activation of the reaction on the polymer surface...

  1. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    Science.gov (United States)

    Jarad, Amer N.; Ibrahim, Kamarulazizi; Ahmed, Nasser M.

    2016-07-01

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10-5 (Ω.cm)-1, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  2. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    Energy Technology Data Exchange (ETDEWEB)

    Jarad, Amer N., E-mail: amer78malay@yahoo.com.my; Ibrahim, Kamarulazizi, E-mail: kamarul@usm.my; Ahmed, Nasser M., E-mail: nas-tiji@yahoo.com [Nano-optoelectronic Research and Technology Laboratory School of physics, University of Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2016-07-06

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10{sup −5} (Ω.cm){sup −1}, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  3. Conductive polymer/metal composites for interconnect of flexible devices

    Science.gov (United States)

    Kawakita, Jin; Hashimoto Shinoda, Yasuo; Shuto, Takanori; Chikyow, Toyohiro

    2015-06-01

    An interconnect of flexible and foldable devices based on advanced electronics requires high electrical conductivity, flexibility, adhesiveness on a plastic substrate, and efficient productivity. In this study, we investigated the applicability of a conductive polymer/metal composite to the interconnect of flexible devices. By combining an inkjet process and a photochemical reaction, micropatterns of a polypyrrole/silver composite were formed on flexible plastic substrates with an average linewidth of approximately 70 µm within 10 min. The conductivity of the composite was improved to 6.0 × 102 Ω-1·cm-1. From these results, it is expected that the conducting polymer/metal composite can be applied to the microwiring of flexible electronic devices.

  4. Enhanced thermal conductance of polymer composites through embeddingaligned carbon nanofibers

    Directory of Open Access Journals (Sweden)

    Dale K. Hensley

    2016-07-01

    Full Text Available The focus of this work is to find a more efficient method of enhancing the thermal conductance of polymer thin films. This work compares polymer thin films embedded with randomly oriented carbon nanotubes to those with vertically aligned carbon nanofibers. Thin films embedded with carbon nanofibers demonstrated a similar thermal conductance between 40–60 μm and a higher thermal conductance between 25–40 μm than films embedded with carbon nanotubes with similar volume fractions even though carbon nanotubes have a higher thermal conductivity than carbon nanofibers.

  5. Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors

    KAUST Repository

    Baby, Rakhi Raghavan

    2012-01-01

    Herein, we report for the first time, conducting polymer (polyaniline (PANI) and polypyrrole (PPY)) coated carbon nanocoils (CNCs) as efficient binder-free electrode materials for supercapacitors. CNCs act as a perfect backbone for the uniform distribution of the conducting polymers in the composites. In two electrode configuration, the samples exhibited high specific capacitance with the values reaching up to 360 and 202 F g -1 for PANI/CNCs and PPY/CNCs respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be comparable to one of the best reported values for polymer coated multi-walled carbon nanotubes. In addition, the fabricated PANI/CNC based supercapacitors exhibited a high value of 44.61 Wh kg -1 for maximum storage energy per unit mass. Although the devices exhibit an initial capacitance loss due to the instability of the polymer, the specific capacitance stabilizes at a fixed value after 500 charge-discharge cycles. © 2012 The Royal Society of Chemistry.

  6. Robust solid polymer electrolyte for conducting IPN actuators

    Science.gov (United States)

    Festin, Nicolas; Maziz, Ali; Plesse, Cédric; Teyssié, Dominique; Chevrot, Claude; Vidal, Frédéric

    2013-10-01

    Interpenetrating polymer networks (IPNs) based on nitrile butadiene rubber (NBR) as first component and poly(ethylene oxide) (PEO) as second component were synthesized and used as a solid polymer electrolyte film in the design of a mechanically robust conducting IPN actuator. IPN mechanical properties and morphologies were mainly investigated by dynamic mechanical analysis and transmission electron microscopy. For 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) swollen IPNs, conductivity values are close to 1 × 10-3 S cm-1 at 25 ° C. Conducting IPN actuators have been synthesized by chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) within the PEO/NBR IPN. A pseudo-trilayer configuration has been obtained with PEO/NBR IPN sandwiched between two interpenetrated PEDOT electrodes. The robust conducting IPN actuators showed a free strain of 2.4% and a blocking force of 30 mN for a low applied potential of ±2 V.

  7. Patterning and Conductivity Modulation of Conductive Polymers by UV Light Exposure

    DEFF Research Database (Denmark)

    Edberg, Jesper; Iandolo, Donata; Brooke, Robert

    2016-01-01

    to control the conductivity in the conjugated polymer poly(3,4-ethylenedioxythiophene):tosylate by more than six orders of magnitude in addition to producing high-resolution patterns and optical gradients. The mechanism behind the modulation in the polymerization kinetics by UV light irradiation as well...

  8. Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture

    KAUST Repository

    Inal, Sahika

    2017-05-03

    This work reports the design of a live-cell monitoring platform based on a macroporous scaffold of a conducting polymer, poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate). The conducting polymer scaffolds support 3D cell cultures due to their biocompatibility and tissue-like elasticity, which can be manipulated by inclusion of biopolymers such as collagen. Integration of a media perfusion tube inside the scaffold enables homogenous cell spreading and fluid transport throughout the scaffold, ensuring long term cell viability. This also allows for co-culture of multiple cell types inside the scaffold. The inclusion of cells within the porous architecture affects the impedance of the electrically conducting polymer network and, thus, is utilized as an in situ tool to monitor cell growth. Therefore, while being an integral part of the 3D tissue, the conducting polymer is an active component, enhancing the tissue function, and forming the basis for a bioelectronic device with integrated sensing capability.

  9. Effect of complexing salt on conductivity of PVC/PEO polymer blend ...

    Indian Academy of Sciences (India)

    Administrator

    composite polymer, a blend-based polymer electrolyte, composed of two conductive ... LiClO4 electrolytes with various methacrylic and acrylic polymers used as additives .... Z real vs Z imaginary plot for PVC : PEO : LiBF4 at room temperature.

  10. Robust solid polymer electrolyte for conducting IPN actuators

    International Nuclear Information System (INIS)

    Festin, Nicolas; Maziz, Ali; Plesse, Cédric; Teyssié, Dominique; Chevrot, Claude; Vidal, Frédéric

    2013-01-01

    Interpenetrating polymer networks (IPNs) based on nitrile butadiene rubber (NBR) as first component and poly(ethylene oxide) (PEO) as second component were synthesized and used as a solid polymer electrolyte film in the design of a mechanically robust conducting IPN actuator. IPN mechanical properties and morphologies were mainly investigated by dynamic mechanical analysis and transmission electron microscopy. For 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) swollen IPNs, conductivity values are close to 1 × 10 −3 S cm −1 at 25 ° C. Conducting IPN actuators have been synthesized by chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) within the PEO/NBR IPN. A pseudo-trilayer configuration has been obtained with PEO/NBR IPN sandwiched between two interpenetrated PEDOT electrodes. The robust conducting IPN actuators showed a free strain of 2.4% and a blocking force of 30 mN for a low applied potential of ±2 V. (paper)

  11. Probing Rubber Cross-Linking Generation of Industrial Polymer Networks at Nanometer Scale.

    Science.gov (United States)

    Gabrielle, Brice; Gomez, Emmanuel; Korb, Jean-Pierre

    2016-06-23

    We present improved analyses of rheometric torque measurements as well as (1)H double-quantum (DQ) nuclear magnetic resonance (NMR) buildup data on polymer networks of industrial compounds. This latter DQ NMR analysis allows finding the distribution of an orientation order parameter (Dres) resulting from the noncomplete averaging of proton dipole-dipole couplings within the cross-linked polymer chains. We investigate the influence of the formulation (filler and vulcanization systems) as well as the process (curing temperature) ending to the final polymer network. We show that DQ NMR follows the generation of the polymer network during the vulcanization process from a heterogeneous network to a very homogeneous one. The time variations of microscopic Dres and macroscopic rheometric torques present power-law behaviors above a threshold time scale with characteristic exponents of the percolation theory. We observe also a very good linear correlation between the kinetics of Dres and rheometric data routinely performed in industry. All these observations confirm the description of the polymer network generation as a critical phenomenon. On the basis of all these results, we believe that DQ NMR could become a valuable tool for investigating in situ the cross-linking of industrial polymer networks at the nanometer scale.

  12. Electrically conductive polymer concrete coatings

    Science.gov (United States)

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  13. A Route for Polymer Nanocomposites with Engineered Electrical Conductivity and Percolation Threshold

    Directory of Open Access Journals (Sweden)

    Lawrence T. Drzal

    2010-02-01

    Full Text Available Polymer nanocomposites with engineered electrical properties can be made by tuning the fabrication method, processing conditions and filler’s geometric and physical properties. This work focuses on investigating the effect of filler’s geometry (aspect ratio and shape, intrinsic electrical conductivity, alignment and dispersion within the polymer, and polymer crystallinity, on the percolation threshold and electrical conductivity of polypropylene based nanocomposites. The conductive reinforcements used are exfoliated graphite nanoplatelets, carbon black, vapor grown carbon fibers and polyacrylonitrile carbon fibers. The composites are made using melt mixing followed by injection molding. A coating method is also employed to improve the nanofiller’s dispersion within the polymer and compression molding is used to alter the nanofiller’s alignment.

  14. Interdiffusion and Spinodal Decomposition in Electrically Conducting Polymer Blends

    Directory of Open Access Journals (Sweden)

    Antti Takala

    2015-08-01

    Full Text Available The impact of phase morphology in electrically conducting polymer composites has become essential for the efficiency of the various functional applications, in which the continuity of the electroactive paths in multicomponent systems is essential. For instance in bulk heterojunction organic solar cells, where the light-induced electron transfer through photon absorption creating excitons (electron-hole pairs, the control of diffusion of the spatially localized excitons and their dissociation at the interface and the effective collection of holes and electrons, all depend on the surface area, domain sizes, and connectivity in these organic semiconductor blends. We have used a model semiconductor polymer blend with defined miscibility to investigate the phase separation kinetics and the formation of connected pathways. Temperature jump experiments were applied from a miscible region of semiconducting poly(alkylthiophene (PAT blends with ethylenevinylacetate-elastomers (EVA and the kinetics at the early stages of phase separation were evaluated in order to establish bicontinuous phase morphology via spinodal decomposition. The diffusion in the blend was followed by two methods: first during a miscible phase separating into two phases: from the measurement of the spinodal decomposition. Secondly the diffusion was measured by monitoring the interdiffusion of PAT film into the EVA film at elected temperatures and eventually compared the temperature dependent diffusion characteristics. With this first quantitative evaluation of the spinodal decomposition as well as the interdiffusion in conducting polymer blends, we show that a systematic control of the phase separation kinetics in a polymer blend with one of the components being electrically conducting polymer can be used to optimize the morphology.

  15. Concept of polymer alloy electrolytes: towards room temperature operation of lithium-polymer batteries

    International Nuclear Information System (INIS)

    Noda, Kazuhiro; Yasuda, Toshikazu; Nishi, Yoshio

    2004-01-01

    Polymer alloy technique is very powerful tool to tune the ionic conductivity and mechanical strength of polymer electrolyte. A semi-interpenetrating polymer network (semi-IPN) polymer alloy electrolyte, composed of non-cross-linkable siloxane-based polymer and cross-linked 3D network polymer, was prepared. Such polymer alloy electrolyte has quite high ionic conductivity (more than 10 -4 Scm -1 at 25 o C and 10 -5 Scm -1 at -10 o C) and mechanical strength as a separator film with a wide electrochemical stability window. A lithium metal/semi-IPN polymer alloy solid state electrolyte/LiCoO 2 cell demonstrated promising cycle performance with room temperature operation of the energy density of 300Wh/L and better rate performance than conventional PEO based lithium polymer battery ever reported

  16. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    Science.gov (United States)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  17. Biomimetic electrochemistry from conducting polymers. A review

    International Nuclear Information System (INIS)

    Otero, T.F.; Martinez, J.G.; Arias-Pardilla, J.

    2012-01-01

    Highlights: ► Composition and properties of conducting polymers change during reactions. ► These properties are being exploited to develop biomimetic reactive and soft devices. ► The state of the art for artificial muscles sensing working conditions was reviewed. ► Smart membranes, drug delivery devices and nervous interfaces were also reviewed. - Abstract: Films of conducting polymers in the presence of electrolytes can be oxidized or reduced by the flow of anodic or cathodic currents. Ions and solvent are exchanged during a reaction for charge and osmotic pressure balance. A reactive conducting polymer contains ions and solvent. Such variation of composition during a reaction is reminiscent of the biological processes in cells. Along changes to the composition of the material during a reaction, there are also changes to other properties, including: volume (electrochemomechanical), colour (electrochromic), stored charge (electrical storage), porosity or permselectivity (electroporosity), stored chemicals, wettability and so on. Most of those properties mimic similar property changes in organs during their functioning. These properties are being exploited to develop biomimetic reactive and soft devices: artificial muscles and polymeric actuators; supercapacitors and all organic batteries; smart membranes; electron-ion transducers; nervous interfaces and artificial synapses, or drug delivery devices. In this review we focus on the state of the art for artificial muscles, smart membranes and electron-ion transducers. The reactive nature of those devices provide them with a unique advantage related to the present days technologies: any changes in the surrounding physical or chemical variable acting on the electrochemical reaction rate will be sensed by the device while working. Working under constant current (driving signal), the evolution of the device potential or the evolution of the consumed electrical energy (sensing signals) senses and quantifies the

  18. Selective removal of heavy metal ions by disulfide linked polymer networks

    DEFF Research Database (Denmark)

    Ko, Dongah; Sung Lee, Joo; Patel, Hasmukh A.

    2017-01-01

    Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has...... a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal...... sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions―copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water....

  19. Conductive polymers for controlled release and treatment of central nervous system injury

    Science.gov (United States)

    Saigal, Rajiv

    As one of the most devastating forms of neurotrauma, spinal cord injury remains a challenging clinical problem. The difficulties in treatment could potentially be resolved by better technologies for therapeutic delivery. In order to develop new approaches to treating central nervous system injury, this dissertation focused on using electrically-conductive polymers, controlled drug release, and stem cell transplantation. We first sought to enhance the therapeutic potential of neural stem cells by electrically increasing their production of neurotrophic factors (NTFs), important molecules for neuronal cell survival, differentiation, synaptic development, plasticity, and growth. We fabricated a new cell culture device for growing neural stem cells on a biocompatible, conductive polymer. Electrical stimulation via the polymer led to upregulation of NTF production by neural stem cells. This approach has the potential to enhance stem cell function while avoiding the pitfalls of genetic manipulation, possibly making stem cells more viable as a clinical therapy. Seeing the therapeutic potential of conductive polymers, we extended our studies to an in vivo model of spinal cord injury (SCI). Using a novel fabrication and extraction technique, a conductive polymer was fabricated to fit to the characteristic pathology that follows contusive SCI. Assessed via quantitative analysis of MR images, the conductive polymer significantly reduced compression of the injured spinal cord. Further characterizing astroglial and neuronal response of injured host tissue, we found significant neuronal sparing as a result of this treatment. The in vivo studies also demonstrated improved locomotor recovery mediated by a conductive polymer scaffold over a non-conductive control. We next sought to take advantage of conductive polymers for local, electronically-controlled release of drugs. Seeking to overcome reported limitations in drug delivery via polypyrrole, we first embedded drugs in poly

  20. Current state and future directions of research and development in conducting polymers

    International Nuclear Information System (INIS)

    Spinks, G.M.; Innis, P.C.; Lewis, T.W.; Kane-Maghire, L.A.P.; Wallace, G.G.

    2000-01-01

    Polymers that inherently conduct electricity have been researched intensively for a little over 20 years. An enormous research effort in academic and industrial institutions has resulted in over 17,000 publications published in the last 10 years alone. Significant advances in the synthesis of new polymers and the methods for processing these polymers into products have resulted from this research activity. A number of commercial developments have emerged, some of which have reached maturity as marketed products. Some others have failed in the marketplace. The diversity of applications for conducting polymers continues to fuel research and development and ensures that new products will emerge over the foreseeable future. In the more distant future, truly intelligent polymer systems remain as an achievable objective. By developing appropriate processing and fabrication technologies, it should be possible to integrate sensing, actuating and energy storage functions into a single system. Further developments in self-assembly of conducting polymers from the nano- to the meso-scale will open up applications in MEMS and nanotechnology

  1. The conductivity and stability of polymer composite solid electrolyte upon addition of graphene

    Science.gov (United States)

    Hamid, Farzana Abd.; Salleh, Fauzani Md.; Mohamed, Nor Sabirin

    2017-12-01

    The effect of graphene composition on the conductivity and stability of polymer composite solid electrolyte was studied. These polymer composite solid electrolytes were synthesized by sol gel method and prepared via the solution-casting technique. The compositions of graphene were varied between 10 wt% to 70 wt%. The changes in the functional group of polymer composite after the addition of graphene were characterized by Fourier Transform InfraRed spectroscopy. Electrochemical impedance spectroscopy was conducted at ambient temperature in the frequency range of 10 Hz to 1 MHz to study the conductivity of the polymer composite. The highest conductivity was obtained at 60 wt% graphene with the value of 2.85×10-4 Scm-1. Sample without the addition of graphene showed the lowest conductivity value of 1.77×10-7 Scm-1 and acts as an insulator. The high conductivity at 60 wt% graphene loading is related to dehydration of cellulose. This is supported by the FTIR spectrum where the absorption peaks of C-O stretching vibrations of polymer composite is weakened and the hydroxyl group is slightly shifted compared to the FTIR spectrum without the addition of graphene. Linear sweep voltammetry results demonstrated that the polymer composite solid electrolyte exhibited electrochemical stability up to 3.2 V.

  2. Interfaced conducting polymers

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Bober, Patrycja; Trchová, Miroslava; Nuzhnyy, Dmitry; Bovtun, Viktor; Savinov, Maxim; Petzelt, Jan; Prokeš, J.

    2017-01-01

    Roč. 224, February (2017), s. 109-115 ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 ; RVO:68378271 Keywords : polyaniline * polypyrrole * poly(p-phenylenediamine) Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (FZU-D) OBOR OECD: Polymer science; Polymer science (FZU-D) Impact factor: 2.435, year: 2016

  3. Mechanisms of proton conductance in polymer electrolyte membranes

    DEFF Research Database (Denmark)

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.

    2001-01-01

    We provide a phenomenological description of proton conductance in polymer electrolyte membranes, based on contemporary views of proton transfer processes in condensed media and a model for heterogeneous polymer electrolyte membrane structure. The description combines the proton transfer events...... in a single pore with the total pore-network performance and, thereby, relates structural and kinetic characteristics of the membrane. The theory addresses specific experimentally studied issues such as the effect of the density of proton localization sites (equivalent weight) of the membrane material...

  4. 3.3. Sorption activity of cross-linked polymers of ethynyl-piperidol

    International Nuclear Information System (INIS)

    Khalikov, D.Kh.

    2012-01-01

    The sorption activity of cross-linked polymers of ethynyl-piperidol was studied. The bilirubin sorption was studied as well. The kinetic of bilirubin sorption and human serum albumin at their joint presence in hydrogel solutions was defined. Bilirubin sorption and change of albumin composition was considered. The sorption of middle molecular peptides was considered as well. The sorption of endogenous toxin by means of ethynyl-piperidol polymers was done.

  5. Ionic conduction studies in Li3+ ion irradiated P(VDF-HFP)-(PC + DEC)-LiCF3SO3 gel polymer electrolyte

    International Nuclear Information System (INIS)

    Saikia, D.; Hussain, A.M.P.; Kumar, A.; Singh, F.; Avasthi, D.K.

    2006-01-01

    In an attempt to increase the Li ion diffusivity in gel polymer electrolytes, the effects of Li 3+ ion irradiation in P(VDF-HFP)-(PC + DEC)-LiCF 3 SO 3 electrolyte system, with five different fluences, is studied. Irradiation with swift heavy ions shows enhancement in conductivity at low fluences and decreased in conductivity at higher fluences with respect to pristine polymer electrolyte films. Maximum room temperature ionic conductivity after irradiation is found to be 2.6 x 10 -3 S/cm. This interesting result could be attributed to the fact that, higher fluence provides critical activation energy for cross-linking and crystallization to occur, which results in decrease in ionic conductivity. XRD results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤10 11 ions/cm 2 ) and increase in crystallinity at high fluences (>10 11 ions/cm 2 ). In FTIR spectra the absorption band intensities around 3025 cm -1 and 2985 cm -1 decrease upon irradiation with a fluence of 5 x 10 1 ions/cm 2 suggesting chain scission and increase upon irradiation with a fluence of 5 x 10 12 ions/cm 2 indicating cross-linking. FTIR analyses corroborate the conductivity and XRD results

  6. Reversible control of kinesin activity and microtubule gliding speeds by switching the doping states of a conducting polymer support

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Brett D [US Naval Research Laboratory, Code 6930, Washington, DC 20375 (United States); Velea, Luminita M [US Naval Research Laboratory, Code 6930, Washington, DC 20375 (United States); Soto, Carissa M [US Naval Research Laboratory, Code 6930, Washington, DC 20375 (United States); Whitaker, Craig M [US Naval Academy, Department of Chemistry, Annapolis, MD 21402 (United States); Gaber, Bruce P [US Naval Research Laboratory, Code 6930, Washington, DC 20375 (United States); Ratna, Banahalli [US Naval Research Laboratory, Code 6930, Washington, DC 20375 (United States)

    2007-02-07

    We describe a method for reversibly controlling the ATPase activity of streptavidin-linked kinesin by changing the doping states of a conducting polymer support. When the polymer (poly(CH{sub 2}OH-EDOT)) was electrochemically switched from its dedoped (semiconducting) state to its doped (conducting) state, the ATPase activity of the adsorbed kinesin complex decreased by 35% with a concomitant decrease in the gliding speeds of kinesin-driven microtubules. When the polymer was switched back to its original dedoped state, nearly identical increases were observed in the kinesin ATPase activity and microtubule speeds. Use of a fluorescent ATP substrate analogue showed that the total amount of kinesin adsorbed on the poly(CH{sub 2}OH-EDOT) surface remained constant as the doping state of the polymer was switched. The microtubules exhibited nearly identical speed differences on the doped and dedoped surfaces for both chemical and electrochemical doping methods. Michaelis-Menten modelling suggests that the doped surface acts as an 'uncompetitive inhibitor' of kinesin. This work represents an investigation into the phenomenon of an electrically switchable surface exerting a moderating effect on the activity of an adsorbed protein that does not contain a bound, electroactive metal ion.

  7. Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles

    Science.gov (United States)

    Simaite, Aiva; Delagarde, Aude; Tondu, Bertrand; Souères, Philippe; Flahaut, Emmanuel; Bergaud, Christian

    2017-01-01

    During cyclic actuation, conducting polymer based artificial muscles are often creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. To improve the actuation reversibility and subsequently the long time performance of ionic actuators, we suggest using spray-coated carbon nanotube (CNT) carpets on the surface of the conducting polymer electrodes. We show that carbon nanotubes facilitate a conducting polymer redox reaction and improve its reversibility. Consequently, in the long term, charge accumulation in the polymer film is avoided leading to a significantly improved lifetime performance during cycling actuation. To our knowledge, it is the first time a simple solution to an actuator creeping problem has been suggested.

  8. Fabrication of flexible polymer dispersed liquid crystal films using conducting polymer thin films as the driving electrodes

    International Nuclear Information System (INIS)

    Kim, Yang-Bae; Park, Sucheol; Hong, Jin-Who

    2009-01-01

    Conducting polymers exhibit good mechanical and interfacial compatibility with plastic substrates. We prepared an optimized coating formulation based on poly(3,4-ethylenedioxythiophene) (PEDOT) and 3-(trimethoxysilyl)propyl acrylate and fabricated a transparent electrode on poly(ethylene terephthalate) (PET) substrate. The surface resistances and transmittance of the prepared thin films were 500-600 Ω/□ and 87% at 500 nm, respectively. To evaluate the performance of the conducting polymer electrode, we fabricated a five-layer flexible polymer-dispersed liquid crystal (PDLC) device as a PET-PEDOT-PDLC-PEDOT-PET flexible film. The prepared PDLC device exhibited a low driving voltage (15 VAC), high contrast ratio (60:1), and high transmittance in the ON state (60%), characteristics that are comparable with those of conventional PDLC film based on indium tin oxide electrodes. The fabrication of conducting polymer thin films as the driving electrodes in this study showed that such films can be used as a substitute for an indium tin oxide electrode, which further enhances the flexibility of PDLC film

  9. Biomolecule-recognition gating membrane using biomolecular cross-linking and polymer phase transition.

    Science.gov (United States)

    Kuroki, Hidenori; Ito, Taichi; Ohashi, Hidenori; Tamaki, Takanori; Yamaguchi, Takeo

    2011-12-15

    We present for the first time a biomolecule-recognition gating system that responds to small signals of biomolecules by the cooperation of biorecognition cross-linking and polymer phase transition in nanosized pores. The biomolecule-recognition gating membrane immobilizes the stimuli-responsive polymer, including the biomolecule-recognition receptor, onto the pore surface of a porous membrane. The pore state (open/closed) of this gating membrane depends on the formation of specific biorecognition cross-linking in the pores: a specific biomolecule having multibinding sites can be recognized by several receptors and acts as the cross-linker of the grafted polymer, whereas a nonspecific molecule cannot. The pore state can be distinguished by a volume phase transition of the grafted polymer. In the present study, the principle of the proposed system is demonstrated using poly(N-isopropylacrylamide) as the stimuli-responsive polymer and avidin-biotin as a multibindable biomolecule-specific receptor. As a result of the selective response to the specific biomolecule, a clear permeability change of an order of magnitude was achieved. The principle is versatile and can be applied to many combinations of multibindable analyte-specific receptors, including antibody-antigen and lectin-sugar analogues. The new gating system can find wide application in the bioanalytical field and aid the design of novel biodevices.

  10. Conductivity enhancement induced by casting of polymer electrolytes under a magnetic field

    International Nuclear Information System (INIS)

    Kovarsky, R.; Golodnitsky, D.; Peled, E.; Khatun, S.; Stallworth, P.E.; Greenbaum, S.; Greenbaum, A.

    2011-01-01

    Highlights: ► Ordering of polymer electrolytes under applied magnetic field. ► Positive effect of nanosize ferromagnetic filler. ► Structure-ion conductivity interrelationship. - Abstract: We recently presented a procedure for orienting the polyethylene-oxide (PEO) helices in a direction perpendicular to the film plane by casting the polymer electrolytes (PE) under a magnetic field (MF). Here we study the influence of magnetic fields of different strengths and configurations on the structural properties and ionic conductivity of concentrated LiCF 3 SO 3 (LiTf) and LiAsF 6 :P(EO) pristine and composite polymer electrolytes containing γ-Fe 2 O 3 nanoparticles. Some data of LiI:P(EO) system are shown for comparison. We suggest that the effect of type of salt (LiI, LiTf and LiAsF 6 ) on the structure–conductivity relationship of the polymer electrolytes cast under magnetic field is closely connected to the crystallinity of the PEO–LiX system. It was found that the higher the content of the crystalline phase and the size of spherulites in the typically cast salt-polymer system, the stronger the influence of the magnetic field on the conductivity enhancement when the electrolyte is cast and dried under MF. Casting of the PE from a high-dielectric-constant solvent results in disentanglement of the PEO chains, which facilitates even more the perpendicular orientation of helices under applied MF. The enhancement of ionic conductivity was appreciably higher in the PEs cast under strong NdFeB magnets than under SmCo. Both bulk (intrachain) and grain-boundary conductivities increase when a MF is applied, but the improvement in the grain-boundary conductivity – associated with ion-hopping between polymer chains – is more pronounced. For LiAsF 6 :(PEO) 3 at 65 °C, the interchain conductivity increased by a factor of 75, while the intrachain conductivity increased by a factor of 11–14. At room temperature, the SEI resistance of these PEs, cast under NdFeB HMF

  11. Functionalised hybrid materials of conducting polymers with individual wool fibers.

    Science.gov (United States)

    Kelly, Fern M; Johnston, James H; Borrmann, Thomas; Richardson, Michael J

    2008-04-01

    Composites of natural protein materials, such as merino wool, with the conducting polymers polypyrrole (PPy) and polyaniline (PAn) have been successfully synthesised. In doing so, hybrid materials have been produced in which the mechanical strength and flexibility of the fibers is retained whilst also incorporating the desired chemical and electrical properties of the polymer. Scanning electron microscopy shows PPy coatings to comprise individual polymer spheres, approximately 100 to 150 nm in diameter. The average size of the polymer spheres of PAn was observed to be approximately 50 to 100 nm in diameter. These spheres fuse together in a continuous sheet to coat the fibers in their entirety. The reduction of silver ions to silver metal nanoparticles onto the redox active polymer surface has also been successful and thus imparts anti-microbial properties to the hybrid materials. This gives rise to further applications requiring the inhibition of microbial growth. The chemical and physical characterisation of such products has been undertaken through scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrical conductivity, cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and the testing of their anti-microbial activity.

  12. The Organic Chemistry of Conducting Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, Laren Malcolm [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-12-01

    For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

  13. Gold nanorod linking to control plasmonic properties in solution and polymer nanocomposites.

    Science.gov (United States)

    Ferrier, Robert C; Lee, Hyun-Su; Hore, Michael J A; Caporizzo, Matthew; Eckmann, David M; Composto, Russell J

    2014-02-25

    A novel, solution-based method is presented to prepare bifunctional gold nanorods (B-NRs), assemble B-NRs end-to-end in various solvents, and disperse linked B-NRs in a polymer matrix. The B-NRs have poly(ethylene glycol) grafted along its long axis and cysteine adsorbed to its ends. By controlling cysteine coverage, bifunctional ligands or polymer can be end-grafted to the AuNRs. Here, two dithiol ligands (C6DT and C9DT) are used to link the B-NRs in organic solvents. With increasing incubation time, the nanorod chain length increases linearly as the longitudinal surface plasmon resonance shifts toward lower adsorption wavelengths (i.e., red shift). Analogous to step-growth polymerization, the polydispersity in chain length also increases. Upon adding poly(ethylene glycol) or poly(methyl methacrylate) to chloroform solution with linked B-NR, the nanorod chains are shown to retain end-to-end linking upon spin-casting into PEO or PMMA films. Using quartz crystal microbalance with dissipation (QCM-D), the mechanism of nanorod linking is investigated on planar gold surfaces. At submonolayer coverage of cysteine, C6DT molecules can insert between cysteines and reach an areal density of 3.4 molecules per nm(2). To mimic the linking of Au NRs, this planar surface is exposed to cysteine-coated Au nanoparticles, which graft at 7 NPs per μm(2). This solution-based method to prepare, assemble, and disperse Au nanorods is applicable to other nanorod systems (e.g., CdSe) and presents a new strategy to assemble anisotropic particles in organic solvents and polymer coatings.

  14. Study of growth mechanism of conducting polymers by pulse radiolysis

    International Nuclear Information System (INIS)

    Coletta, Cecilia

    2016-01-01

    Today conductive polymers have many applications in several devices. For these reasons they have received much attention in recent years. Despite intensive research, the mechanism of conducting polymers growth is still poorly understood and the methods of polymerization are limited to two principal ways: chemical and electrochemical synthesis. On the other hand, the complex properties of polymers can be controlled only if a good knowledge of polymerization process is acquired. In this case, it is possible to control the process during the synthesis (functionalization, hydrophilicity, chain length, doping level), and consequently to improve the conductive properties of the synthesized polymers. Water radiolysis represents an easy and efficient method of synthesis comparing to chemical and electrochemical polymerization routes. It enables the polymerization under soft conditions: ambient temperature and pressure, without any external dopant. Among all conductive polymers, poly(3, 4-ethylenedioxy-thiophene) (PEDOT, a derivative of poly-thiophene) and poly-Pyrrole (PPy) have gained some large scale applications for their chemical and physical proprieties. The aim of the present work was the synthesis of PEDOT and PPy in aqueous solution and the study of their growth mechanism by pulsed radiolysis. Thanks to the electron accelerator ELYSE, the use of pulsed radiolysis coupled with time-resolved absorption spectroscopy allowed to study the kinetics of polymerization. The first transient species involved in the mechanism were identified by time resolved spectroscopy and the rate constants were determined. First, the reaction of hydroxyl radicals onto EDOT and Py monomers was studied, as well as the corresponding radiation induced polymerization. Then, the study was transposed to others oxidizing radicals such as CO3 .- , N 3 . and SO 4 .- at different pHs. This approach allowed to check and to highlight the influence of oxidizing species onto the first transient species

  15. Mechanism of actuation in conducting polymers: Osmotic expansion

    DEFF Research Database (Denmark)

    Bay, Lasse; Jacobsen, Torben; West, Keld

    2001-01-01

    Conducting polymers expand or contract when their redox state is changed. This expansion/contraction effect can be separated in an intrinsic part because of changes of the polymer backbone on reduction/oxidation and a part depending on the surrounding electrolyte phase, because of osmotic expansion...... is compared with measurements on PPy(DBS) films. The experiments show that the expansion decreases as the electrolyte concentration is increased. This means that a considerable part of the total expansion is due to the osmotic effect. The osmotic effect should be taken into account when interpreting...

  16. Realization and characterization of a cellulose and conducting polymer-based ultrathin films composite material

    International Nuclear Information System (INIS)

    Henry, Christelle

    1998-01-01

    This work was dedicated to the realization and the characterization of an organic composite material in order to obtain organized ultrathin films with high conductivity and good mechanical properties. In this purpose, the Langmuir-Blodgett (LB) film of a crosslinked alkyl cellulose (rigid-rod polymer) was used as a host matrix for the electro-polymerization of alkyl thiophene and pyrrole. The first interesting result was the synthesis of a bigger amount of conducting alkyl polymer in the presence of cellulose. With the help of a photo-patterning technique, we were able to form contacts more or less conducting on the substrate. We have also shown that the conducting polymer grows beyond the electrode area until distances never described up to now in the literature. A preferential orientation of the conducting polymer chains along the LB dipping direction of the cellulose has been observed in some cases. Even for the films without molecular orientation, we have systematically observed a microscopic or macroscopic anisotropy. This phenomenon appears as domains concentrated in conducting polymers with anisotropic shapes oriented along the dipping direction. Finally, we have noticed that cellulose doesn't change the conductivity and the electrochromic properties of the conducting polymer. Beyond the keeping of these intrinsic properties, the matrix allows to stabilize the film when it is in contact with an organic solvent. (author) [fr

  17. Reversible post-breakdown conduction in aluminum oxide-polymer capacitors

    NARCIS (Netherlands)

    Chen, Qian; Gomes, H.L.; Rocha, P.R.F.; Leeuw, de D.M.; Meskers, S.C.J.

    2013-01-01

    Aluminum/Al2O3/polymer/metal capacitors submitted to a low-power constant current stress undergo dielectric breakdown. The post-breakdown conduction is metastable, and over time the capacitors recover their original insulating properties. The decay of the conduction with time follows a power law

  18. Conductivity of oriented bis-azo polymer films

    DEFF Research Database (Denmark)

    Apitz, D.; Bertram, R.P.; Benter, N.

    2006-01-01

    The conductivity properties of electro-optic photoaddressable, dense bis-ozo chromophore polymer films are investigated by using samples corona poled at various temperatures. A dielectric spectrometer is applied to measure the frequency dependence of the conductivity at different temperatures...... before and after heating the material to above the glass transition temperature. The results show that the orientation of the chromophores changes the charge-carrier mobility. Ionic conductivity dominates in a more disordered configuration of the material, while the competing process of hole hopping...... takes over as a transition to a liquid-crystalline phase occurs when the material is heated to much higher than the gloss transition temperature. Such micro-crystallization strongly enhances the conductivity....

  19. Studies on AC Electrical Conductivity of CdCl2 Doped PVA Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    M. B. Nanda Prakash

    2013-01-01

    Full Text Available PVA-based polymer electrolytes were prepared with various concentrations of CdCl2 using solvent casting method. Prepared polymer films were investigated using line profile analysis employing X-ray diffraction (XRD data. XRD results show that the crystallite size decreases and then increases with increase in CdCl2. AC conductivity in these polymer increases films first and then decreases. These observations are in agreement with XRD results. The highest ionic conductivity of 1.68E − 08 Scm−1 was observed in 4% of CdCl2 in PVA polymer blend. Crystallite ellipsoids for different concentrations of CdCl2 are computed here using whole pattern powder fitting (WPPF indicating that crystallite area decreases with increase in the ionic conductivity.

  20. A study on nanocomposites made of a conducting polymer and metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Ahmed Khalil, Rania [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Abdelaziz Mahmoud Abdelaziz, Ramzy [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Strunkus, Thomas; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Conducting polymers offer a unique combination of properties that makes them attractive materials for many electronic applications. PEDOT:PSS is one of the most successful conductive materials which is considered to be highly stable and resisting degradation under typical ambient conditions. In this study, we have prepared two sets of conducting polymer nano-composites. The first set is composed of PEDOT:PSS doped with different aspect ratios of gold nanorod and the other one is PEDOT:PSS doped with different sizes of gold nanosphere. The chemical reduction method was used for preparing the nano-particles. Indeed, gold nanorods and nanosphere which exhibit tunable absorption as a function of their size and aspect ratio, respectively, have tuned the absorption coefficient for PEDOT: PSS. The nature of the dopant as well as the degree of doping has played a significant role in the improvement of the electrical conductivity of conducting polymer.

  1. Universal Scaling in Highly Doped Conducting Polymer Films

    NARCIS (Netherlands)

    Kronemeijer, A. J.; Huisman, E. H.; Katsouras, I.; van Hal, P. A.; Geuns, T. C. T.; Blom, P. W. M.; van der Molen, S. J.; de Leeuw, D. M.

    2010-01-01

    Electrical transport of a highly doped disordered conducting polymer, viz. poly-3,4-ethylenedioxythiophene stabilized with poly-4-styrenesulphonic acid, is investigated as a function of bias and temperature. The transport shows universal power-law scaling with both bias and temperature. All

  2. Universal scaling in highly doped conducting polymer films

    NARCIS (Netherlands)

    Kronemeijer, A.J.; Huisman, E.H.; Katsouras, I.; Hal, P.A. van; Geuns, T.C.T.; Blom, P.W.M.; Molen, S.J. van der; Leeuw, D.M. de

    2010-01-01

    Electrical transport of a highly doped disordered conducting polymer, viz. poly-3,4-ethylenedioxythiophene stabilized with poly-4-styrenesulphonic acid, is investigated as a function of bias and temperature. The transport shows universal power-law scaling with both bias and temperature. All

  3. Conducting Polymers for Neutron Detection

    International Nuclear Information System (INIS)

    Clare Kimblin; Kirk Miller; Bob Vogel; Bill Quam; Harry McHugh; Glen Anthony; Steve Jones; Mike Grover

    2007-01-01

    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number

  4. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    Science.gov (United States)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  5. Effects of γ-rays on electrical conductivity of polyvinyl alcohol-polypyrrole composite polymer films

    International Nuclear Information System (INIS)

    Mohd Hamzah Harun; Elias Saion; Noorhana Yahya; Anuar Kassim; Ekramul Mahmud; Muhammad Yousuf Hussain; Iskandar Shahrim Mustafa; Azian Othman; Norazimah Mohd Yusof; Mohd Ahmad Ali Omer

    2007-01-01

    The composite polymer films of polyvinyl alcohol/polypyrrole/chloral hydrate (PVA-PPy-CH) had been prepared. Effects of γ-rays on the electrical conductivity of the composite polymer films had been investigated by using Inductance Resistance meter (LCR) meter at a frequency ranging from 20 Hz to 1 MHz. With the incorporation of choloral hydrate in the polymer sample, the conductivity increased indicates that it is capable to be used as dopant for polymerizing conjugated polymer. The electrical conductivity obtained increased as the dose increased, which is in the order of 10 -5 Scm -1 indicates that γ-ray is capable to enhance the electrical conductivity of the composite polymer films. The parameter of s is in the range of 0.31 ≤ S ≤ 0.49 and obeyed simple power law dispersion ω S . The Scanning Electron Microscopy (SEM) micrographs reveal the formation of polypyrrole globules in polyvinyl alcohol matrix which increased as the irradiation dose was increased. (Author)

  6. Thermal Conductivity of Polymer Composite poypropilene-Sand

    International Nuclear Information System (INIS)

    Betha; Mashuri; Sudirman; Karo Karo, Aloma

    2001-01-01

    Thermal conductivity composite materials polypropylene (PP)-sand have been investigated. PP composite with sand to increase thermal conductivity from the polymer. The composite in this observation is done by mixing matrix (PP melt flow 2/10)and filler sand)by means tool labo plastomil. The result of thermal conductivity is composite of PP-sand which is obtained increase and followed by the raising of filler particle volume fraction. The analysis of thermal conductivity based on the model Cheng and Vachon, model Lewis and Nielsen where this model has the function to support experiment finding. It is proved that Lewis' and Nielsen's model almost approach experiment result. And then thermal conductivity raising will be analyzed by the model of pararel-series conductive with the two (2)phases system. It is showed that sand in PP MF 2 composite have the big role to increase the thermal conductivity than sand in PP MF 10 composition, but it is not easy to shape conductive medium

  7. Micropatterning of Functional Conductive Polymers with Multiple Surface Chemistries in Register

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik; Acikgöz, Canet; Daugaard, Anders Egede

    2012-01-01

    A versatile procedure is presented for fast and efficient micropatterning of multiple types of covalently bound surface chemistry in perfect register on and between conductive polymer microcircuits. The micropatterning principle is applied to several types of native and functionalized PEDOT (poly(3...... functionalized conjugated polymer systems....

  8. Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers

    CERN Document Server

    Broer, Dirk

    2011-01-01

    With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu

  9. Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor

    Science.gov (United States)

    Chaudoy, V.; Tran Van, F.; Deschamps, M.; Ghamouss, F.

    2017-02-01

    In the present work, we developed a gel polymer electrolyte via the incorporation of a room temperature ionic liquid into a cross-linked polymer matrix. The cross-linked gel electrolyte was prepared using a free radical polymerization of methacrylate and dimethacrylate oligomers dissolved in 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide. Combining the advantages of the ionic liquids and of conventional polymers, the cross-linked gel polymer electrolyte was used both as a separator and as an electrolyte for a leakage-free and non-flammable EDLC supercapacitor. The quasi-all solid-state supercapacitors showed rather good capacitance, power and energy densities by comparison to a liquid electrolyte-based EDLC.

  10. Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications

    International Nuclear Information System (INIS)

    Kurian, Mary; Galvin, Mary E.; Trapa, Patrick E.; Sadoway, Donald R.; Mayes, Anne M.

    2005-01-01

    Solid-state polymer-silicate nanocomposite electrolytes based on an amorphous polymer poly[(oxyethylene) 8 methacrylate], POEM, and lithium montmorillonite clay were fabricated and characterized to investigate the feasibility of their use as 'salt-free' electrolytes in lithium polymer batteries. X-ray scattering and transmission electron microscopy studies indicate the formation of an intercalated morphology in the nanocomposites due to favorable interactions between the polymer matrix and the clay. The morphology of the nanocomposite is intricately linked to the amount of silicate in the system. At low clay contents, dynamic rheological testing verifies that silicate incorporation enhances the mechanical properties of POEM, while impedance spectroscopy shows an improvement in electrical properties. With clay content ≥15 wt.%, mechanical properties are further improved but the formation of an apparent superlattice structure correlates with a loss in the electrical properties of the nanocomposite. The use of suitably modified clays in nanocomposites with high clay contents eliminates this superstructure formation, yielding materials with enhanced performance

  11. Effect of Dimethyl Carbonate Plasticizer on Ionic Conductivity of Methyl Cellulose-Based Polymer Electrolytes

    International Nuclear Information System (INIS)

    Mustafa, M.F.; Ridwan, N.I.M.; Hatta, F.F.; Yahya, M.Z.A.

    2012-01-01

    Influences of dimethyl carbonate (DMC) plasticizer on ionic conductivity, dielectric permittivity and electrical modulus formalism of methyl cellulose (MC)-based polymer electrolytes have been studied. The room temperature electrical conductivity as measured by impedance spectroscopy shows that a methyl cellulose film has a conductivity of ∼10 -10 S cm -1 . In this study, other than KOH ionic dopant, DMC plasticizer is also added to the polymer with the aim of enhancing the electrical conductivity of the polymer. The highest room temperature conductivity of the plasticised sample is ∼10 -5 S cm -1 . The plot of log σ versus 10 3 / T for the highest conducting sample obeys Arrhenius rule indicating that the conductivity occurs by thermally activated mechanism. (author)

  12. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei

    2014-12-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). As compared to conventional electrolytes, the redox-active electrolytes, prepared by simply adding a redox mediator to the conventional electrolyte, can significantly improve the energy storage capacity of pseudocapacitors with different conducting polymers. The results show that the specific capacitance of conducting polymer based pseudocapacitors can be increased by a factor of two by utilization of the redox-active electrolytes. In fact, this approach gives some of the highest reported specific capacitance values for electroactive conducting polymers. Moreover, our findings present a general and effective approach for the enhancement of energy storage performance of pseudocapacitors using a variety of polymeric electrode materials. © 2014 Elsevier B.V. All rights reserved.

  13. Synthesis of polymer nanostructures with conductance switching properties

    Science.gov (United States)

    Su, Kai; Nuraje, Nurxat; Zhang, Lingzhi; Matsui, Hiroshi; Yang, Nan Loh

    2015-03-03

    The present invention is directed to crystalline organic polymer nanoparticles comprising a conductive organic polymer; wherein the crystalline organic polymer nanoparticles have a size of from 10 nm to 200 nm and exhibits two current-voltage states: (1) a high resistance current-voltage state, and (2) a low resistance current-voltage state, wherein when a first positive threshold voltage (V.sub.th1) or higher positive voltage, or a second negative threshold voltage (V.sub.th2) or higher negative voltage is applied to the nanoparticle, the nanoparticle exhibits the low-resistance current-voltage state, and when a voltage less positive than the first positive threshold voltage or a voltage less negative than the second negative threshold voltage is applied to the nanoparticle, the nanoparticle exhibits the high-resistance current-voltage state. The present invention is also directed methods of manufacturing the nanoparticles using novel interfacial oxidative polymerization techniques.

  14. Conducting polymer colloids, hydrogels, and cryogels: common start to various destinations

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Bober, Patrycja

    2018-01-01

    Roč. 296, č. 5 (2018), s. 989-994 ISSN 0303-402X R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : conducting polymer * polyaniline * colloidal dispersion Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.723, year: 2016

  15. Electrochemical characterization of aminated acrylic conducting polymer

    International Nuclear Information System (INIS)

    Rashid, Norma Mohammad; Heng, Lee Yook; Ling, Tan Ling

    2015-01-01

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study

  16. Electrochemical characterization of aminated acrylic conducting polymer

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Norma Mohammad [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Heng, Lee Yook [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ling, Tan Ling [Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2015-09-25

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  17. Ecological concepts in recent polymer technology. Part4. Eco-friendly water-absorbing polymer; Kankyo ni chowa shita kyusuisei kobunshi

    Energy Technology Data Exchange (ETDEWEB)

    Kunioka, M.

    1997-07-01

    As an application example of water-absorbing polymers with biodegradability, it was expected to be applied to soil improvement agents used in planting trees in deserts, besides physiological napkins, paper diapers and medical materials. In this paper, water-absorbing polymers with biodegradability such as natural polymers, petroleum-made polymers and polymers synthesized by radiation cross-linking and chemical cross-linking were introduced. Moreover, a kind of water-absorbing polymers developed by the authors, made from polyamino acid synthesized by microbes, was introduced. In the method developed by the authors, the cross-linking structure could be made by combining PGA carboxyl groups and various amino groups of diamine using carbimide with water solubility. As for this method, all of reactions could be conducted in water and catalytic replacement was not necessary, moreover, hydrogel with the water-absorbing rate of 200 to 1500 times could be produced. 44 refs., 3 figs., 1 tab.

  18. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes

    KAUST Repository

    Ventura, Isaac Aguilar

    2015-12-16

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs that have been coated with a conductive layer of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS). It has been posited that the insulating region between the CNTs is replaced by a conductive polymer bridge; this has not been proven up to now. We propose here to investigate in-depth how the macroscopic conductivity of these materials is changing when (1) varying the frequency of the electrical loading (impedance spectroscopy), (2) varying the mechanical hydrostatic pressure, and (3) varying the voltage of the electrical loading. The response is systematically compared to the one of conventional carbon nanotube/polycarbonate (CNT/PC) nanocomposites so we can clarify how efficiently the tunneling effect is suppressed from these composites. The objective is to elucidate further the mechanism for conduction in such material formulations.

  19. New secondary batteries utilizing electronically conductive polymer cathodes

    Science.gov (United States)

    Martin, Charles R.; White, Ralph E.

    1989-01-01

    The objectives of this project are to characterize the transport properties in electronically conductive polymers and to assess the utility of these films as cathodes in lithium/polymer secondary batteries. During this research period, progress has been made in a literature survey of the historical background, methods of preparation, the physical and chemical properties, and potential technological applications of polythiophene. Progress has also been made in the characterization of polypyrrole flat films and fibrillar films. Cyclic voltammetry and potential step chronocoulometry were used to gain information on peak currents and potentials switching reaction rates, charge capacity, and charge retention. Battery charge/discharge studies were also performed.

  20. Charge transport and structure in semimetallic polymers

    DEFF Research Database (Denmark)

    Rudd, Sam; Franco-Gonzalez, Juan F.; Kumar Singh, Sandeep

    2017-01-01

    Owing to changes in their chemistry and structure, polymers can be fabricated to demonstrate vastly different electrical conductivities over many orders of magnitude. At the high end of conductivity is the class of conducting polymers, which are ideal candidates for many applications in low......-cost electronics. Here, we report the influence of the nature of the doping anion at high doping levels within the semi-metallic conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) on its electronic transport properties. Hall effect measurements on a variety of PEDOT samples show that the choice of doping...... that the chosen doping anion modifies the way PEDOT chains stack together. This link between structure and specific anion doping at high doping levels has ramifications for the fabrication of conducting polymer-based devices....

  1. Conducting polymer networks synthesized by photopolymerization-induced phase separation

    Science.gov (United States)

    Yamashita, Yuki; Komori, Kana; Murata, Tasuku; Nakanishi, Hideyuki; Norisuye, Tomohisa; Yamao, Takeshi; Tran-Cong-Miyata, Qui

    2018-03-01

    Polymer mixtures composed of double networks of a polystyrene derivative (PSAF) and poly(methyl methacrylate) (PMMA) were alternatively synthesized by using ultraviolet (UV) and visible (Vis) light. The PSAF networks were generated by UV irradiation to photodimerize the anthracene (A) moieties labeled on the PSAF chains, whereas PMMA networks were produced by photopolymerization of methyl methacrylate (MMA) monomer and the cross-link reaction using ethylene glycol dimethacrylate (EGDMA) under Vis light irradiation. It was found that phase separation process of these networks can be independently induced and promptly controlled by using UV and Vis light. The characteristic length scale distribution of the resulting co-continuous morphology can be well regulated by the UV and Vis light intensity. In order to confirm and utilize the connectivity of the bicontinuous morphology observed by confocal microscopy, a very small amount, 0.1 wt%, of multi-walled carbon nanotubes (MWCNTs) was introduced into the mixture and the current-voltage (I-V) relationship was subsequently examined. Preliminary data show that MWCNTs are preferentially dispersed in the PSAF-rich continuous domains and the whole mixture became electrically conducting, confirming the connectivity of the observed bi-continuous morphology. The experimental data obtained in this study reveal a promising method to design various scaffolds for conducting soft matter taking advantages of photopolymerization-induced phase separation.

  2. Characterization of PEDOT-Quinone Conducting Redox Polymers for Water Based Secondary Batteries

    International Nuclear Information System (INIS)

    Sterby, Mia; Emanuelsson, Rikard; Huang, Xiao; Gogoll, Adolf; Strømme, Maria; Sjödin, Martin

    2017-01-01

    Lithium-ion technologies show great promise to meet the demands that the transition towards renewable energy sources and the electrification of the transport sector put forward. However, concerns regarding lithium-ion batteries, including limited material resources, high energy consumption during production, and flammable electrolytes, necessitate research on alternative technologies for electrochemical energy storage. Organic materials derived from abundant building blocks and with tunable properties, together with water based electrolytes, could provide safe, inexpensive and sustainable alternatives. In this study, two conducting redox polymers based on poly(3,4-ethylenedioxythiophene) (PEDOT) and a hydroquinone pendant group have been synthesized and characterized in an acidic aqueous electrolyte. The polymers were characterized with regards to kinetics, pH dependence, and mass changes during oxidation and reduction, as well as their conductance. Both polymers show redox matching, i.e. the quinone redox reaction occurs within the potential region where the polymer is conducting, and fast redox conversion that involves proton cycling during pendant group redox conversion. These properties make the presented materials promising candidates as electrode materials for water based all-organic batteries.

  3. A review study of (bio)sensor systems based on conducting polymers.

    Science.gov (United States)

    Ates, Murat

    2013-05-01

    This review article concentrates on the electrochemical biosensor systems with conducting polymers. The area of electro-active polymers confined to different electrode surfaces has attracted great attention. Polymer modified carbon substrate electrodes can be designed through polymer screening to provide tremendous improvements in sensitivity, selectivity, stability and reproducibility of the electrode response to detect a variety of analytes. The electro-active films have been used to entrap different enzymes and/or proteins at the electrode surface, but without obvious loss of their bioactivity for the development of biosensors. Electropolymerization is a well-known technique used to immobilize biomaterials to the modified electrode surface. Polymers might be covalently bonding to enzymes or proteins; therefore, thickness, permeation and charge transport characteristics of the polymeric films can be easily and precisely controlled by modulating the electrochemical parameters for various electrochemical techniques, such as chronoamperometry, chronopotentiometry, cyclic voltammetry, and differential pulse voltammetry. This review article is divided into three main parts as given in the table of contents related to the immobilization process of some important conducting polymers, polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polycarbazole, polyaniline, polyphenol, poly(o-phenylenediamine), polyacetylene, polyfuran and their derivatives. A total of 216 references are cited in this review article. The literature reviewed covers a 7 year period beginning from 2005. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Optimization of mechanical performance of oxidative nano-particle electrode nitrile butadiene rubber conducting polymer actuator.

    Science.gov (United States)

    Kim, Baek-Chul; Park, S J; Cho, M S; Lee, Y; Nam, J D; Choi, H R; Koo, J C

    2009-12-01

    Present work delivers a systematical evaluation of actuation efficiency of a nano-particle electrode conducting polymer actuator fabricated based on Nitrile Butadiene Rubber (NBR). Attempts are made for maximizing mechanical functionality of the nano-particle electrode conducting polymer actuator that can be driven in the air. As the conducting polymer polypyrrole of the actuator is to be fabricated through a chemical oxidation polymerization process that may impose certain limitations on both electrical and mechanical functionality of the actuator, a coordinated study for optimization process of the actuator is necessary for maximizing its performance. In this article actuation behaviors of the nano-particle electrode polypyrrole conducting polymer is studied and an optimization process for the mechanical performance maximization is performed.

  5. Proton-conducting polymer electrolytes based on methacrylates

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Velická, Jana; Míka, M.

    2008-01-01

    Roč. 53, č. 26 (2008), s. 7769-7774 ISSN 0013-4686 R&D Projects: GA ČR GA106/04/1279; GA AV ČR KJB400320701; GA MŠk LC523; GA ČR(CZ) GA104/06/1471 Institutional research plan: CEZ:AV0Z40320502 Keywords : polymer electrolyte * proton conductivity * phosporic acid Subject RIV: CA - Inorganic Chemistry Impact factor: 3.078, year: 2008

  6. Ionic motion in PEDOT and PPy conducting polymer bilayers

    DEFF Research Database (Denmark)

    Zainudeen, Umer L.; Careem, M.A.; Skaarup, Steen

    2006-01-01

    Conducting polymer bilayers with poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy), each containing dodecyl benzenesulfonate (DBS) as immobile dopant species, were synthesized galvanostatically. The electrochemical behaviour of the bilayers was investigated using cyclic voltammetry...

  7. A new type of magnetocaloric composite based on conductive polymer and magnetocaloric compound

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, W., E-mail: williamimamura@yahoo.com.br [State University of Maringá (UEM)/Department of Mechanical Engineering (DEM-PEM), 87020-900 Maringá, PR (Brazil); Coelho, A.A. [State University of Campinas (Unicamp)/Department of Applied Physics (DFA-IFGW), 13083-859 Campinas, SP (Brazil); Kupfer, V.L. [State University of Maringá (UEM)/Department of Chemistry (DQI-LMSen), 87020-900 Maringá, PR (Brazil); Carvalho, A.M.G. [Brazilian Synchrotron Light Laboratory (LNLS)/Brazilian Center for Research in Energy and Materials (CNPEM), C. P. 6192, 13083-970 Campinas, SP (Brazil); Zago, J.G. [State University of Maringá (UEM)/Department of Mechanical Engineering (DEM-PEM), 87020-900 Maringá, PR (Brazil); Rinaldi, A.W. [State University of Maringá (UEM)/Department of Chemistry (DQI-LMSen), 87020-900 Maringá, PR (Brazil); Favaro, S.L.; Alves, C.S. [State University of Maringá (UEM)/Department of Mechanical Engineering (DEM-PEM), 87020-900 Maringá, PR (Brazil)

    2017-03-01

    We introduce a processing route of the first magnetocaloric composite with conductive polymer – wherein the magnetocaloric reinforcement is a compound Gd{sub 5.09}Ge{sub 2.03}Si{sub 1.88} and the ductile matrix is a conductive polymer polyaniline doped by camphorsulfonic acid (PAni-CSA). This new type of composite combines mechanical, electrical and magnetocaloric properties that can be applied in thermomagnetic machines. - Highlights: • We developed a new type of magnetocaloric composite: PAni-CSA/Gd5.09Ge2.03Si1.88. • We presented a processing route which use a conductive polymer instead of epoxy resins or thermoplastic polymers. • We varied the concentration of PAni-CSA (numerical type) and sintering (categorical type). • We analyzed the matrix (PAni-CSA), the magnetocaloric reinforcement (Gd5.09Ge2.03Si1.88) and the composites. • We presented and discussed mechanical, electrical and magnetocaloric properties.

  8. A new type of magnetocaloric composite based on conductive polymer and magnetocaloric compound

    International Nuclear Information System (INIS)

    Imamura, W.; Coelho, A.A.; Kupfer, V.L.; Carvalho, A.M.G.; Zago, J.G.; Rinaldi, A.W.; Favaro, S.L.; Alves, C.S.

    2017-01-01

    We introduce a processing route of the first magnetocaloric composite with conductive polymer – wherein the magnetocaloric reinforcement is a compound Gd_5_._0_9Ge_2_._0_3Si_1_._8_8 and the ductile matrix is a conductive polymer polyaniline doped by camphorsulfonic acid (PAni-CSA). This new type of composite combines mechanical, electrical and magnetocaloric properties that can be applied in thermomagnetic machines. - Highlights: • We developed a new type of magnetocaloric composite: PAni-CSA/Gd5.09Ge2.03Si1.88. • We presented a processing route which use a conductive polymer instead of epoxy resins or thermoplastic polymers. • We varied the concentration of PAni-CSA (numerical type) and sintering (categorical type). • We analyzed the matrix (PAni-CSA), the magnetocaloric reinforcement (Gd5.09Ge2.03Si1.88) and the composites. • We presented and discussed mechanical, electrical and magnetocaloric properties.

  9. Conductivity-Relaxation Relations in Nanocomposite Polymer Electrolytes Containing Ionic Liquid.

    Science.gov (United States)

    Shojaatalhosseini, Mansoureh; Elamin, Khalid; Swenson, Jan

    2017-10-19

    In this study, we have used nanocomposite polymer electrolytes, consisting of poly(ethylene oxide) (PEO), δ-Al 2 O 3 nanoparticles, and lithium bis(trifluoromethanesolfonyl)imide (LiTFSI) salt (with 4 wt % δ-Al 2 O 3 and PEO:Li ratios of 16:1 and 8:1), and added different amounts of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesolfonyl)imide (BMITFSI). The aim was to elucidate whether the ionic liquid is able to dissociate the Li-ions from the ether oxygens and thereby decouple the ionic conductivity from the segmental polymer dynamics. The results from DSC and dielectric spectroscopy show that the ionic liquid speeds up both the segmental polymer dynamics and the motion of the Li + ions. However, a close comparison between the structural (α) relaxation process, given by the segmental polymer dynamics, and the ionic conductivity shows that the motion of the Li + ions decouples from the segmental polymer dynamics at higher concentrations of the ionic liquid (≥20 wt %) and instead becomes more related to the viscosity of the ionic liquid. This decoupling increases with decreasing temperature. In addition to the structural α-relaxation, two more local relaxation processes, denoted β and γ, are observed. The β-relaxation becomes slightly faster at the highest concentration of the ionic liquid (at least for the lower salt concentration), whereas the γ-relaxation is unaffected by the ionic liquid, over the whole concentration range 0-40 wt %.

  10. Core Cross-linked Star Polymers for Temperature/pH Controlled Delivery of 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Elizabeth Sánchez-Bustos

    2016-01-01

    Full Text Available RAFT polymerization with cross-linking was used to prepare core cross-linked star polymers bearing temperature sensitive arms. The arms consisted of a diblock copolymer containing N-isopropylacrylamide (NIPAAm and 4-methacryloyloxy benzoic acid (4MBA in the temperature sensitive block and poly(hexyl acrylate forming the second hydrophobic block, while ethyleneglycol dimethacrylate was used to form the core. The acid comonomer provides pH sensitivity to the arms and also increases the transition temperature of polyNIPAAm to values in the range of 40 to 46°C. Light scattering and atomic force microscopy studies suggest that loose core star polymers were obtained. The star polymers were loaded with 5-fluorouracil (5-FU, an anticancer agent, in values of up to 30 w/w%. In vitro release experiments were performed at different temperatures and pH values, as well as with heating and cooling temperature cycles. Faster drug release was obtained at 42°C or pH 6, compared to normal physiological conditions (37°C, pH 7.4. The drug carriers prepared acted as nanopumps changing the release kinetics of 5-FU when temperatures cycles were applied, in contrast with release rates at a constant temperature. The prepared core cross-linked star polymers represent advanced drug delivery vehicles optimized for 5-FU with potential application in cancer treatment.

  11. Preparation of new conductive polymer nanocomposites for cadmium removal from industrial wastewaters

    International Nuclear Information System (INIS)

    Zoleikani, Leila; Issazadeh, Hossein; ZareNezhad, Bahman

    2015-01-01

    Different conductive polymer nanocomposites have been synthesized, characterized and tested, regarding the removal of cadmium from industrial wastewaters. The chemical structure and morphology are studied by FTIR spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The cadmium removal performance, using the produced polypyrrole, polyaniline and polythiophene nanocomposites, are about 40.2 %, 59 % and 99.94 %, respectively, suggesting the superior performance of synthesized polythiophene conductive nanocomposite for cadmium removal from industrial wastewaters. It is shown that the Langmuir adsorption model can be used for accurate description of cadmium removal mechanism using different synthesized conductive nanocomposites. Keywords : wastewater, nanocomposite, polythiophene, cadmium removal, conductive polymer.

  12. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei; Xia, Chuan; Baby, Rakhi Raghavan; Alshareef, Husam N.

    2014-01-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline

  13. Synthesis, ionic conductivity, and thermal properties of proton conducting polymer electrolyte for high temperature fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Takahito; Hamaguchi, Yohei; Uno, Takahiro; Kubo, Masataka [Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1577 Kurima Machiya-cho, Tsu, Mie 514-8507 (Japan); Aihara, Yuichi; Sonai, Atsuo [Samsung Yokohama Research Institute, 2-7 Sugasawa-cho, Tsurumi-ku, Yokohama 230-0027 (Japan)

    2006-01-16

    Hyperbranched polymer (poly-1a) with sulfonic acid groups at the end of chains was successfully synthesized. Interpenetration reaction of poly-1a with a hyperbranched polymer with acryloyl groups at the end of chains (poly-1b) as a cross-linker afforded a tough electrolyte membrane. The poly-1a and the resulting electrolyte membrane showed the ionic conductivities of 7x10{sup -4} and 8x10{sup -5} S/cm, respectively, at 150C under dry condition. The ionic conductivities of the poly-1a and the electrolyte membrane exhibited the VTF type temperature dependence. And also, both poly-1a and the resulting electrolyte membrane were thermally stable up to 200C. (author)

  14. Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response

    Directory of Open Access Journals (Sweden)

    Václav Bajgar

    2016-04-01

    Full Text Available The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology.

  15. Injection molded chips with integrated conducting polymer electrodes for electroporation of cells

    DEFF Research Database (Denmark)

    Andresen, Kristian; Hansen, Morten; Matschuk, Maria

    2010-01-01

    We present the design-concept for an all polymer injection molded single use microfluidic device. The fabricated devices comprise integrated conducting polymer electrodes and Luer fitting ports to allow for liquid and electrical access. A case study of low voltage electroporation of biological...

  16. A practical multilayered conducting polymer actuator with scalable work output

    International Nuclear Information System (INIS)

    Ikushima, Kimiya; John, Stephen; Yokoyama, Kazuo; Nagamitsu, Sachio

    2009-01-01

    Household assistance robots are expected to become more prominent in the future and will require inherently safe design. Conducting polymer-based artificial muscle actuators are one potential option for achieving this safety, as they are flexible, lightweight and can be driven using low input voltages, unlike electromagnetic motors; however, practical implementation also requires a scalable structure and stability in air. In this paper we propose and practically implement a multilayer conducting polymer actuator which could achieve these targets using polypyrrole film and ionic liquid-soaked separators. The practical work density of a nine-layer multilayer actuator was 1.4 kJ m −3 at 0.5 Hz, when the volumes of the electrolyte and counter electrodes were included, which approaches the performance of mammalian muscle. To achieve air stability, we analyzed the effect of air-stable ionic liquid gels on actuator displacement using finite element simulation and it was found that the majority of strain could be retained when the elastic modulus of the gel was kept below 3 kPa. As a result of this work, we have shown that multilayered conducting polymer actuators are a feasible idea for household robotics, as they provide a substantial practical work density in a compact structure and can be easily scaled as required

  17. Applications of oligomers for nanostructured conducting polymers.

    Science.gov (United States)

    Wang, Yue; Tran, Henry D; Kaner, Richard B

    2011-01-03

    This Feature Article provides an overview of the distinctive nanostructures that aniline oligomers form and the applications of these oligomers for shaping the nanoscale morphologies and chirality of conducting polymers. We focus on the synthetic methods for achieving such goals and highlight the underlying mechanisms. The clear advantages of each method and their possible drawbacks are discussed. Assembly and applications of these novel organic (semi)conducting nanomaterials are also outlined. We conclude this article with our perspective on the main challenges, new opportunities, and future directions for this nascent yet vibrant field of research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structural, thermal and ion transport properties of radiation grafted lithium conductive polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)]. E-mail: mahmoudeithar@mailcity.com; Saidi, Hamdani [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)

    2006-10-10

    Structural, thermal and ion transport properties of lithium conductive polymer electrolytes prepared by radiation-induced grafting of styrene onto poly(vinylidene fluoride) (PVDF) films and subsequent activation with LiPH{sub 6}/EC/DEC liquid electrolyte were investigated in correlation with the content of the grafted polystyrene (Y%). The changes in the structure were studied using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Thermal gravimetric analysis (TGA) was used to evaluate the thermal stability. The ionic conductivity was measured by means of ac impedance spectroscopy at various temperatures. The polymer electrolytes were found to undergo considerable structural and morphological changes that resulted in a noticeable increase in their ionic conductivity with the increase in Y% at various temperatures (25-65 deg. C). The ionic conductivity achieved a value of 1.61 x 10{sup -3} S cm{sup -1} when Y of the polymer electrolyte reached 50% and at 25 deg. C. The polymer electrolytes also showed a multi-step degradation behaviour and thermal stability up to 120 deg. C, which suits normal lithium battery operation temperature range. The overall results of this work suggest that the structural changes took place in PVDF matrix during the preparation of these polymer electrolytes have a strong impact on their various properties.

  19. Conductivity enhancement in SiO2 doped PVA:PVDF nanocomposite polymer electrolyte by gamma ray irradiation

    Science.gov (United States)

    Hema, M.; Tamilselvi, P.; Pandaram, P.

    2017-07-01

    Nanocomposite polymer electrolyte has been irradiated with 15 Gy Gamma rays. Exposure of gamma radiation caused scissoring and crosslinking of polymer chains thereby increasing amorphous phase of the polymer matrix because of which the ionic conductivity has been enhanced. Ionic conductivity of irradiated nanocomposite polymer electrolyte is enhanced to 9.4 × 10-4 Scm-1 at 303 K compared to un-irradiated system (σ ∼ 1.7 × 10-4 Scm-1). Temperature dependence of ionic conductivity of both un-irradiated and irradiated systems obeys VTF relation. Frequency and temperature dependence of dielectric and modulus of both systems have been analyzed. The ionic transference number of polymer electrolyte has been calculated by Wagner's polarization technique and it confirms that conducting species are predominantly due to ions in both systems.

  20. An all-polymer micropump based on the conductive polymer poly(3,4-ethylenedioxythiophene) and a polyurethane channel system

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; West, Keld; Hassager, Ole

    2007-01-01

    An all-polymer micropunlp was realized using the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDT) as the active cODlponent. The pUlnping effect originated fronl an ac potential applied to an aSylnlnetric array of interdigitat.ed electrodes. The PEDT electrodes were fabricated using...... of t.he conducting polylner electrodes by an insulating polYlTIer layer prevented electrode break-down at the cost of puolping efficiency. Continuous punlping for 40 nlin at 20 fJ..,m s-l without detectable pump degradation was delTIOnstrated in this configuration....

  1. TITANIUM DIOXIDE TRIADS FOR IMPROVED CHARGE-SEPARATION USING CONDUCTIVE POLYMERS

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, T.M.; Gaylor, T.N.; de la Garza, L.; Rajh, T.

    2009-01-01

    Dye-sensitized solar cells are potentially one of the best solutions to solar energy conversion because of the low cost of required materials and production processes. Titanium dioxide (TiO2) nanoparticulate fi lms are the basis for one of these types of cells, providing large surface area for dye-sensitizer adsorption. Because TiO2 nanoparticulate fi lms develop defects caused by oxygen defi ciency, deep reactive electron traps are formed. With the addition of an enediol ligand, these electron traps are deliberately removed, enhancing the conduction of electrons within the fi lm. In this project, TiO2 nanoparticulate fi lms made by a layer-by-layer dip coating method were modifi ed with 3,4-dihydroxyphenylacetic acid (DOPAC). DOPAC binds to the titanium atoms on the surface of the nanoparticles, restoring their octahedral geometry. This restructuring of the surface shifts the spectral properties of the TiO2 to the visible spectrum and improves the separation of charges which is observed using photoelectrochemistry. Furthermore, DOPAC enables the electronic attachment of other molecules to the surface of TiO2 fi lms, such as the conductive polymer polyaniline base. This conductive polymer provides an extended separation of charges which increases photocurrent production by forming a triad with the TiO2 semiconductor through the 3,4-dihydroxyphenylacetic acid linker. The photocurrent increases due to the donor properties of the conductive polymer thereby decreasing charge pair recombination.

  2. MeV ion beam interaction with polymer films containing cross-linking agents

    International Nuclear Information System (INIS)

    Evelyn, A. L.

    1999-01-01

    Polymer films containing cross linking enhancers were irradiated with MeV alpha particles to determine the effects of MeV ion beam interaction on these materials. The contributed effects from the electronic and nuclear stopping powers were separated by irradiating stacked thin films of polyvinyl chloride (PVC), polystyrene (PS) and polyethersulfone (PES). This layered system allowed most of the effects of the electronic energy deposited to be experienced by the first layers and the last layers to receive most of the effects of the nuclear stopping power. RGA, Raman microprobe analysis, RBS and FTIR measured changes in the chemical structures of the irradiated films. The characterization resolved the effects of the stopping powers on the PVC, PS and PES and the results were compared with those from previously studied polymers that did not contain any cross linking agents

  3. Direct Creation of Highly Conductive Laser-Induced Graphene Nanocomposites from Polymer Blends.

    Science.gov (United States)

    Yazdi, Alireza Zehtab; Navas, Ivonne Otero; Abouelmagd, Ahmed; Sundararaj, Uttandaraman

    2017-09-01

    The current state-of-the-art mixing strategies of nanoparticles with insulating polymeric components have only partially utilized the unique electrical conductivity of graphene in nanocomposite systems. Herein, this paper reports a nonmixing method of direct creation of polymer/graphene nanocomposites from polymer blends via laser irradiation. Polycarbonate-laser-induced graphene (PC-LIG) nanocomposite is produced from a PC/polyetherimide (PC/PEI) blend after exposure to commercially available laser scribing with a power of ≈6 W and a speed of ≈2 cm s -1 . Extremely high electrical conductivities are obtained for the PC-LIG nanocomposites, ranging from 26 to 400 S m -1 , depending on the vol% of the starting PEI phase in the blend. To the authors' knowledge, these conductivity values are at least one order of magnitude higher than the values that are previously reported for conductive polymer/graphene nanocomposites prepared via mixing strategies. The comprehensive microscopy and spectroscopy characterizations reveal a complete graphitization of the PEI phase with columnar microstructure embedded in the PC phase. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Conductive polymer and Si nanoparticles composite secondary particles and structured current collectors for high loading lithium ion negative electrode application

    Science.gov (United States)

    Liu, Gao

    2017-07-11

    Embodiments of the present invention disclose a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer. Another embodiment discloses a method for preparing a composition of matter comprising a plurality of silicon (Si) nanoparticles coated with a conductive polymer comprising providing Si nanoparticles, providing a conductive polymer, preparing a Si nanoparticle, conductive polymer, and solvent slurry, spraying the slurry into a liquid medium that is a non-solvent of the conductive polymer, and precipitating the silicon (Si) nanoparticles coated with the conductive polymer. Another embodiment discloses an anode comprising a current collector, and a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer.

  5. Reprotonation of aniline: A route to various conducting polymer materials

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Prokeš, B.; Trchová, Miroslava

    2008-01-01

    Roč. 68, č. 9 (2008), s. 1355-1361 ISSN 1381-5148 R&D Projects: GA ČR GA202/06/0419; GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : acids * conductivity * conducting polymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.039, year: 2008

  6. Thermal conductivity of polymer composites with oriented boron nitride

    International Nuclear Information System (INIS)

    Ahn, Hong Jun; Eoh, Young Jun; Park, Sung Dae; Kim, Eung Soo

    2014-01-01

    Highlights: • Thermal conductivity depended on the orientation of BN in the polymer matrices. • Hexagonal boron nitride (BN) particles were treated by C 27 H 27 N 3 O 2 and C 14 H 6 O 8 . • Amphiphilic-agent-treated BN particles are more easily oriented in the composite. • BN/PVA composites with C 14 H 6 O 8 -treated BN showed the highest thermal conductivity. • Thermal conductivity of the composites was compared with several theoretical models. - Abstract: Thermal conductivity of boron nitride (BN) with polyvinyl alcohol (PVA) and/or polyvinyl butyral (PVB) was investigated as a function of the degree of BN orientation, the numbers of hydroxyl groups in the polymer matrices and the amphiphilic agents used. The composites with in-plane orientation of BN showed a higher thermal conductivity than the composites with out-of-plane orientation of BN due to the increase of thermal pathway. For a given BN content, the composites with in-plane orientation of BN/PVA showed higher thermal conductivity than the composites with in-plane orientation of BN/PVB. This result could be attributed to the improved degree of orientation of BN, caused by a larger number of hydroxyl groups being present. Those treated with C 14 H 6 O 8 amphiphilic agent demonstrated a higher thermal conductivity than those treated by C 27 H 27 N 3 O 2 . The measured thermal conductivity of the composites was compared with that predicted by the several theoretical models

  7. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH{sub 4}SCN

    Energy Technology Data Exchange (ETDEWEB)

    Premalatha, M. [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Materials Research Center, Coimbatore-641 045 (India); Mathavan, T., E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Selvasekarapandian, S. [Materials Research Center, Coimbatore-641 045 (India); Genova, F. Kingslin Mary, E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com; Umamaheswari, R. [Department of physics, S.F.R College for Women, Sivakasi-626 128 (India)

    2016-05-23

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10{sup −3} S cm{sup −1} for 20 mol % NH{sub 4}SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  8. The selective flow of volatile organic compounds in conductive polymer-coated microchannels

    Science.gov (United States)

    Hossein-Babaei, Faramarz; Hooshyar Zare, Ali

    2017-02-01

    Many gaseous markers of critical biological, physicochemical, or industrial occurrences are masked by the cross-sensitivity of the sensors to the other active components present at higher concentrations. Here, we report the strongly selective diffusion and drift of contaminant molecules in air-filled conductive polymer-coated microfluidic channels for the first time. Monitoring the passage of different target molecules through microchannels coated with Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) revealed that contaminants such as hexane, benzene, and CO pass through the channel unaffected by the coating while methanol, ethanol, and partly acetone are blocked. The observations are explained with reference to the selective interactions between the conductive polymer surface and target gas molecules amplified by the large wall/volume ratio in microchannels. The accumulated quantitative data point at the hydrogen bonding as the mechanism of wall adsorption; dipole-dipole interactions are relatively insignificant. The presented model facilitates a better understanding of how the conductive polymer-based chemical sensors operate.

  9. Polymer Surface Engineering for Efficient Printing of Highly Conductive Metal Nanoparticle Inks.

    Science.gov (United States)

    Agina, Elena V; Sizov, Alexey S; Yablokov, Mikhail Yu; Borshchev, Oleg V; Bessonov, Alexander A; Kirikova, Marina N; Bailey, Marc J A; Ponomarenko, Sergei A

    2015-06-10

    An approach to polymer surface modification using self-assembled layers (SALs) of functional alkoxysilanes has been developed in order to improve the printability of silver nanoparticle inks and enhance adhesion between the metal conducting layer and the flexible polymer substrate. The SALs have been fully characterized by AFM, XPS, and WCA, and the resulting printability, adhesion, and electrical conductivity of the screen-printed metal contacts have been estimated by cross-cut tape test and 4-point probe measurements. It was shown that (3-mercaptopropyl)trimethoxysilane SALs enable significant adhesion improvements for both aqueous- and organic-based silver inks, approaching nearly 100% for PEN and PDMS substrates while exhibiting relatively low sheet resistance up to 0.1 Ω/sq. It was demonstrated that SALs containing functional -SH or -NH2 end groups offer the opportunity to increase the affinity of the polymer substrates to silver inks and thus to achieve efficient patterning of highly conductive structures on flexible and stretchable substrates.

  10. Regiochemistry of Poly(3-Hexylthiophene): Synthesis and Investigation of a Conducting Polymer

    Science.gov (United States)

    Pappenfus, Ted M.; Hermanson, David L.; Kohl, Stuart G.; Melby, Jacob H.; Thoma, Laura M.; Carpenter, Nancy E.; Filho, Demetrio A. da Silva; Bredas, Jean-Luc

    2010-01-01

    A series of experiments for undergraduate laboratory courses (e.g., organic, polymer, inorganic) have been developed. These experiments focus on understanding the regiochemistry of the conducting polymer poly(3-hexylthiophene) (P3HT). The substitution patterns in P3HTs control their conformational features, which, in turn, dictates the [pi]…

  11. Role of Interchain Coupling in the Metallic State of Conducting Polymers

    Science.gov (United States)

    Kim, Nara; Lee, Byoung Hoon; Choi, Doowhan; Kim, Geunjin; Kim, Heejoo; Kim, Jae-Ryoung; Lee, Jongjin; Kahng, Yung Ho; Lee, Kwanghee

    2012-09-01

    We investigated the charge dynamics of the conductivity enhancement from 2 to 1000S/cm in poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) as induced by structural changes through the addition of a polar solvent and the following solvent bath treatment. Our results indicate that the addition of a polar solvent selectively enhanced the π-π coupling of the polymer chains, resulting in the reduction of disorder and tremendously increasing the charge carrier mobility, which yielded an insulator-to-metal transition. In contrast, the following solvent bath treatment selectively enhanced the intergrain coupling, which did not affect the disorder or the mobility but increased the charge carrier density. Therefore, we demonstrate that the conduction-character defining disorder in this conducting polymer system is determined by the extent of interchain coupling.

  12. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Ahmad, A.; Abdullah, M.P.; Ramli, N.; Rahman, M.Y.A.

    2013-01-01

    The potential of carboxymethyl chitosan as a green polymer electrolyte has been explored. Chitosan produced from partial deacetylation of chitin was reacted with monochloroacetic acid to form carboxymethyl chitosan. A green polymer electrolyte based chitosan and carboxymethyl chitosan was prepared by solution-casting technique. The powder and films were characterized by reflection Fourier transform infrared (ATR-FTIR) spectroscopy, 1 H nuclear magnetic resonance, elemental analysis and X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The shift of wavenumber that represents hydroxyl and amine stretching confirmed the polymer solvent complex formation. The XRD spectra results show that chemical modification of chitosan has improved amorphous properties of chitosan. The ionic conductivity was found to increase by two magnitudes higher with the chemical modification of chitosan. The highest conductivity achieved was 3.6 × 10 −6 S cm −1 for carboxymethyl chitosan at room temperature and 3.7 × 10 −4 S cm −1 at 60 °C

  13. Fabrication of Si negative electrodes for Li-ion batteries (LIBs) using cross-linked polymer binders.

    Science.gov (United States)

    Jang, Suk-Yong; Han, Sien-Ho

    2016-12-19

    Currently, Si as an active material for LIBs has been attracting much attention due to its high theoretical specific capacity (3572 mAh g -1 ). However, a disadvantage when using a Si negative electrode for LIBs is the abrupt drop of its capabilities during the cycling process. Therefore, there have been a few studies of polymers such as poly(vinylidene fluoride) (PVdF), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR) and polyacrylic acid (PAA) given that the robust structure of a polymeric binder to LIBs anodes is a promising means by which to enhance the performance of high-capacity anodes. These studies essentially focused mainly on modifying of the linear-polymer component or on copolymers dissolved in solvents. Cross-linking polymers as a binder may be preferred due to their good scratch resistance, excellent chemical resistance and high levels of adhesion and resilience. However, because these types of polymers (with a rigid structure and cross-linking points) are also insoluble in general organic solvents, applying these types in this capacity is virtually impossible.

  14. Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds.

    Science.gov (United States)

    Obadia, Mona M; Mudraboyina, Bhanu P; Serghei, Anatoli; Montarnal, Damien; Drockenmuller, Eric

    2015-05-13

    Exploiting exchangeable covalent bonds as dynamic cross-links recently afforded a new class of polymer materials coined as vitrimers. These permanent networks are insoluble and infusible, but the network topology can be reshuffled at high temperatures, thus enabling glasslike plastic deformation and reprocessing without depolymerization. We disclose herein the development of functional and high-value ion-conducting vitrimers that take inspiration from poly(ionic liquid)s. Tunable networks with high ionic content are obtained by the solvent- and catalyst-free polyaddition of an α-azide-ω-alkyne monomer and simultaneous alkylation of the resulting poly(1,2,3-triazole)s with a series of difunctional cross-linking agents. Temperature-induced transalkylation exchanges of C-N bonds between 1,2,3-triazolium cross-links and halide-functionalized dangling chains enable recycling and reprocessing of these highly cross-linked permanent networks. They can also be recycled by depolymerization with specific solvents able to displace the transalkylation equilibrium, and they display a great potential for applications that require solid electrolytes with excellent mechanical performances and facile processing such as supercapacitors, batteries, fuel cells, and separation membranes.

  15. Synthesis, characterization and DC conductivity studies of conducting polyaniline/PVA/Fly ash polymer composites

    Science.gov (United States)

    Revanasiddappa, M.; Swamy, D. Siddalinga; Vinay, K.; Ravikiran, Y. T.; Raghavendra, S. C.

    2018-05-01

    The present work is an investigation of dc conduction behaviour of conducting polyaniline/fly ash nano particles blended in polyvinyl Alcohol (PANI/PVA/FA) synthesized via in-situ polymerization technique using (NH4)2S2O8 as an oxidising agent with varying fly ash cenosphere by 10, 20, 30, 40 and 50 wt%. The structural characterization of the synthesised polymer composites was examined using FT-IR, XRD and SEM techniques. Dc conductivity as a function of temperature has been measured in the temperature range from 302K - 443K. The increase of conductivity with increasing temperature reveals semiconducting behaviour of the composites and shows an evidence for the transport properties of the composites.

  16. Process modeling of conductivity in nanocomposites based on reticulated polymers and carbon nanotubes

    International Nuclear Information System (INIS)

    Dolgoshej, V.B.; Korskanov, V.V.; Karpova, I.L.; Bardash, L.V.

    2012-01-01

    The dependences of electric conductivities of thermosetting polymer nanocomposites based on epoxy polymer and polycyanurate filled by carbon nanotubes were investigated. Low values of percolation threshold at volume fraction of carbon nanotubes from 0.001 to 0.002 were observed for all samples.Absolute values of the percolation threshold are in good agreement with the results of mathematical modeling. It is established that electrical properties of thermosetting polymer nanocomposites can be characterized in the frame of the same theoretical model despite difference in polymers properties

  17. Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stamping

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Hassager, Ole; Larsen, Niels Bent

    2007-01-01

    A highly conducting stretchable polymer material has been patterned using additive inkjet printing and by subtractive agarose stamping of a deactivation agent (hypochlorite). The material consisted of elastomeric polyurethane combined in an interpenetrating network with a conductive polymer, poly(3....... Inkjet printing of the material was only possible if a short-chain polyurethane was used as elastomer to overcome strain hardening at the neck of the droplets produced for printing. Reproducible line widths down to 200 μm could be achieved by inkjet printing. Both methods were used to fabricate test...

  18. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.

    Science.gov (United States)

    Allen, Ranulfo; Pan, Lijia; Fuller, Gerald G; Bao, Zhenan

    2014-07-09

    Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.

  19. Bioelectrochemical control of neural cell development on conducting polymers.

    Science.gov (United States)

    Collazos-Castro, Jorge E; Polo, José L; Hernández-Labrado, Gabriel R; Padial-Cañete, Vanesa; García-Rama, Concepción

    2010-12-01

    Electrically conducting polymers hold promise for developing advanced neuroprostheses, bionic systems and neural repair devices. Among them, poly(3, 4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) exhibits superior physicochemical properties but biocompatibility issues have limited its use. We describe combinations of electrochemical and molecule self-assembling methods to consistently control neural cell development on PEDOT:PSS while maintaining very low interfacial impedance. Electro-adsorbed polylysine enabled long-term neuronal survival and growth on the nanostructured polymer. Neurite extension was strongly inhibited by an additional layer of PSS or heparin, which in turn could be either removed electrically or further coated with spermine to activate cell growth. Binding basic fibroblast growth factor (bFGF) to the heparin layer inhibited neurons but promoted proliferation and migration of precursor cells. This methodology may orchestrate neural cell behavior on electroactive polymers, thus improving cell/electrode communication in prosthetic devices and providing a platform for tissue repair strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Relaxation model of radiation-induced conductivity in polymers

    Science.gov (United States)

    Zhutayeva, Yu. R.; Khatipov, S. A.

    1999-05-01

    The paper suggests a relaxation model of radiation-induced conductivity (RIC) in polymers. According to the model, the transfer of charges generated in the polymer volume by ionizing radiation takes place with the participation of molecular relaxation processes. The mechanism of electron transport consists in the transfer of the charge directly between traps when they draw close to one another due to the rotation of macromolecule segments. The numerical solutions of the corresponding kinetic equations for different distribution functions Q( τ) of the times of molecular relaxation and for different functions of the probability P( τ, τ') of charge transfer in the `overlapping' regions of the diffusion spheres of the segments are analyzed. The relaxation model provides an explanation of the non-Arrhenius behavior of the RIC temperature dependence, the power dependence of RIC on the dose rate with a power index in the interval 0.5-1.0, the appearance of maxima in the curves of the RIC temporal dependence and their irreversible character in the region of large dose rates (more than 1 Gy/s). The model can be used for interpreting polymer RIC in conditions of kinetic mobility of macromolecules.

  1. Free-radical-induced chain scission and cross-linking of polymers in aqueous solution. An overview

    International Nuclear Information System (INIS)

    Von Sonntag, C.

    2002-01-01

    Complete text of publication follows. In the radiolysis of N 2 O-saturated aqueous solutions OH are generated. In their reactions with polymers, they give rise to polymer-derived radicals. The kinetics of the formation and decay of these radicals are reviewed. The rate of reaction of a polymer with a reactive free radical is noticeably lower than that of an equivalent concentration of monomer due to the non-random distribution of the reaction sites. Once a larger number of radicals are formed on one polymer molecule, e.g. upon pulse radiolysis, close-by radicals recombine more rapidly while the more distant ones survive for much longer times than an equivalent concentration of freely diffusing radicals. Intermolecular cross-linking (between two polymer chains, increase in molecular weight) and intramolecular cross-linking (formation of small loops, no increase in polymer weight) are competing processes, and their relative yields thus depend on the dose rate and polymer concentration. Hydrogen-transfer reactions within the polymer, e.g. transformation of a secondary radical into a tertiary one, are common and facilitated by the high local density of reactive sites. Due to repulsive forces, the lifetime of radicals of charged polymers is substantially increased. This enables even relatively slow b-fragmentation reactions to become of importance. In the case of poly(methacrylic acid), where β-fragmentation is comparatively fast, this even leads to an unzipping, and as a consequence of the efficient release of methacrylic acid the situation of equilibrium polymerization is approached. Heterolytic β-fragmentation is possible when adequate leaving groups are available, e.g. in polynucleotides and DNA. In the presence of O 2 , chain scission occurs via oxyl radicals as intermediates. Some implications for technical applications are discussed

  2. Electrical and Electrochemical Properties of Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Thanh-Hai Le

    2017-04-01

    Full Text Available Conducting polymers (CPs have received much attention in both fundamental and practical studies because they have electrical and electrochemical properties similar to those of both traditional semiconductors and metals. CPs possess excellent characteristics such as mild synthesis and processing conditions, chemical and structural diversity, tunable conductivity, and structural flexibility. Advances in nanotechnology have allowed the fabrication of versatile CP nanomaterials with improved performance for various applications including electronics, optoelectronics, sensors, and energy devices. The aim of this review is to explore the conductivity mechanisms and electrical and electrochemical properties of CPs and to discuss the factors that significantly affect these properties. The size and morphology of the materials are also discussed as key parameters that affect their major properties. Finally, the latest trends in research on electrochemical capacitors and sensors are introduced through an in-depth discussion of the most remarkable studies reported since 2003.

  3. Transparent conductive-polymer strain sensors for touch input sheets of flexible displays

    International Nuclear Information System (INIS)

    Takamatsu, Seiichi; Takahata, Tomoyuki; Muraki, Masato; Iwase, Eiji; Matsumoto, Kiyoshi; Shimoyama, Isao

    2010-01-01

    A transparent conductive polymer-based strain-sensor array, designed especially for touch input sheets of flexible displays, was developed. A transparent conductive polymer, namely poly(3, 4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), was utilized owing to its strength under repeated mechanical bending. PEDOT:PSS strain sensors with a thickness of 130 nm exhibited light transmittance of 92%, which is the same as the transmittance of ITO electrodes widely used in flat panel displays. We demonstrated that the sensor array on a flexible sheet was able to sustain mechanical bending 300 times at a bending radius of 5 mm. The strain sensor shows a gauge factor of 5.2. The touch point on a flexible sheet could be detected from histograms of the outputs of the strain sensors when the sheet was pushed with an input force of 5 N. The touch input could be detected on the flexible sheet with a curved surface (radius of curvature of 20 mm). These results show that the developed transparent conductive polymer-based strain-sensor array is applicable to touch input sheets of mechanically bendable displays.

  4. A percolation approach to study the high electric field effect on electrical conductivity of insulating polymer

    Science.gov (United States)

    Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour

    2018-04-01

    The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.

  5. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals.

    Science.gov (United States)

    Liu, Ye; Li, Ying; Yang, Guang; Zheng, Xiaotong; Zhou, Shaobing

    2015-02-25

    In this study, we developed a thermoresponsive and water-responsive shape-memory polymer nanocomposite network by chemically cross-linking cellulose nanocrystals (CNCs) with polycaprolactone (PCL) and polyethylene glycol (PEG). The nanocomposite network was fully characterized, including the microstructure, cross-link density, water contact angle, water uptake, crystallinity, thermal properties, and static and dynamic mechanical properties. We found that the PEG[60]-PCL[40]-CNC[10] nanocomposite exhibited excellent thermo-induced and water-induced shape-memory effects in water at 37 °C (close to body temperature), and the introduction of CNC clearly improved the mechanical properties of the mixture of both PEG and PCL polymers with low molecular weights. In addition, Alamar blue assays based on osteoblasts indicated that the nanocomposites possessed good cytocompatibility. Therefore, this thermoresponsive and water-responsive shape-memory nanocomposite could be potentially developed into a new smart biomaterial.

  6. THE ELECTROCHEMISTRY OF ANTIBODY-MODIFIED CONDUCTING POLYMER ELECTRODES. (R825323)

    Science.gov (United States)

    AbstractThe modification of conducting polymer electrodes with antibodies (i.e. proteins) by means of electrochemical polymerization is a simple step that can be used to develop an immunological sensor. However, the electrochemical processes involved leading to the ge...

  7. A colourimetric method for the determination of the degree of chemical cross-linking in aspartic acid-based polymer gels

    Directory of Open Access Journals (Sweden)

    B. Gyarmati

    2015-02-01

    Full Text Available A 2,4,6-trinitrobenzenesulphonic acid (TNBS-based assay is developed to determine the degree of chemical cross-linking in aspartic acid-based polymer gels. The conventional colourimetric method for the quantitative determination of amine groups is difficult to use in polymer networks; thus, an improved method is developed to analyse polymer gels swollen in dimethyl sulfoxide (DMSO. Reaction products of the derivatizing reaction are examined by NMR. The chemical stability of the reagent is increased in DMSO, and the method shows satisfactory linearity and accuracy. The degree of chemical cross-linking in the investigated gels is close to its theoretical maximum, but the conversion of the pendant amine groups to cross-linking points is strongly dependent on the feed composition of the gels.

  8. An Integrated Laboratory Approach toward the Preparation of Conductive Poly(phenylene vinylene) Polymers

    Science.gov (United States)

    Knoerzer, Timm A.; Balaich, Gary J.; Miller, Hannah A.; Iacono, Scott T.

    2014-01-01

    Poly(phenylene vinylene) (PPV) represents an important class of conjugated, conducting polymers that have been readily exploited in the preparation of organic electronic materials. In this experiment, students prepare a PPV polymer via a facile multistep synthetic sequence with robust spectroscopic evaluation of synthetic intermediates and the…

  9. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer

    Science.gov (United States)

    Zhu, Bo; Luo, Shyh-Chyang; Zhao, Haichao; Lin, Hsing-An; Sekine, Jun; Nakao, Aiko; Chen, Chi; Yamashita, Yoshiro; Yu, Hsiao-Hua

    2014-07-01

    Although electrically stimulated neurite outgrowth on bioelectronic devices is a promising means of nerve regeneration, immunogenic scar formation can insulate electrodes from targeted cells and tissues, thereby reducing the lifetime of the device. Ideally, an electrode material capable of electrically interfacing with neurons selectively and efficiently would be integrated without being recognized by the immune system and minimize its response. Here we develop a cell membrane-mimicking conducting polymer possessing several attractive features. This polymer displays high resistance towards nonspecific enzyme/cell binding and recognizes targeted cells specifically to allow intimate electrical communication over long periods of time. Its low electrical impedance relays electrical signals efficiently. This material is capable to integrate biochemical and electrical stimulation to promote neural cellular behaviour. Neurite outgrowth is enhanced greatly on this new conducting polymer; in addition, electrically stimulated secretion of proteins from primary Schwann cells can also occur on it.

  10. Rechargeable aluminum batteries with conducting polymers as positive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hudak, Nicholas S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

  11. Conductivity behavior of very thin gold films ruptured by mass transport in photosensitive polymer film

    Energy Technology Data Exchange (ETDEWEB)

    Linde, Felix; Sekhar Yadavalli, Nataraja; Santer, Svetlana [Department of Experimental Physics, Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam (Germany)

    2013-12-16

    We report on conductivity behavior of very thin gold layer deposited on a photosensitive polymer film. Under irradiation with light interference pattern, the azobenzene containing photosensitive polymer film undergoes deformation at which topography follows a distribution of intensity, resulting in the formation of a surface relief grating. This process is accompanied by a change in the shape of the polymer surface from flat to sinusoidal together with a corresponding increase in surface area. The gold layer placed above deforms along with the polymer and ruptures at a strain of 4%. The rupturing is spatially well defined, occurring at the topographic maxima and minima resulting in periodic cracks across the whole irradiated area. We have shown that this periodic micro-rupturing of a thin metal film has no significant impact on the electrical conductivity of the films. We suggest a model to explain this phenomenon and support this by additional experiments where the conductivity is measured in a process when a single nanoscopic scratch is formed with an AFM tip. Our results indicate that in flexible electronic materials consisting of a polymer support and an integrated metal circuit, nano- and micro cracks do not alter significantly the behavior of the conductivity unless the metal is disrupted completely.

  12. PATTERN RECOGNITION STUDIES OF HALOGENATED ORGANIC COMPOUNDS USING CONDUCTING POLYMER SENSOR ARRAYS. (R825323)

    Science.gov (United States)

    Direct measurement of volatile and semivolatile halogenated organic compounds of environmental interest was carried out using arrays of conducting polymer sensors. Mathematical expressions of the sensor arrays using microscopic polymer network model is described. A classical, non...

  13. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    International Nuclear Information System (INIS)

    Ogihara, Wataru; Sun Jiazeng; Forsyth, Maria; MacFarlane, Douglas R.; Yoshizawa, Masahiro; Ohno, Hiroyuki

    2004-01-01

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10 -4 to 10 -3 S cm -1 at room temperature. Gelation was found to cause little change in the 7 Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids

  14. Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide–N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries

    International Nuclear Information System (INIS)

    Wetjen, Morten; Kim, Guk-Tae; Joost, Mario; Winter, Martin; Passerini, Stefano

    2013-01-01

    Highlights: ► Solid-state electrolyte for lithium batteries. ► Polymer electrolyte with improved mechanical properties by cross-linking. ► Enhanced performance of polymer electrolytes using water- and air-stable ionic liquids as co-salts. ► Polymer electrolyte with high rate capability at moderate temperatures. - Abstract: An advanced electrochemical characterization of cross-linked ternary solid polymer electrolytes (SPEs), prepared by a solvent-free hot-pressing process, is reported. Ionic conductivity, electrochemical stability window and limiting current measurements were performed as a function of the temperature by using both potentiodynamic and galvanostatic techniques. Additionally, the lithium cycleability was evaluated with respect to its dependence on both the operating temperature and the current density by using a new multi-rate Li-stripping-plating procedure. The results clearly indicate the beneficial effect of higher operating temperatures on the rate-capability, without major degradation of the electrochemical stability of the SPE. All-solid-state lithium metal polymer batteries (LMPBs), comprising a lithium metal anode, the cross-linked ternary solid polymer electrolyte and a LiFePO 4 composite cathode, were manufactured and investigated in terms of the interdependencies of the delivered capacity, operating temperature and discharge rate. The results prove quite exceptional delivered capacities both at medium current densities at ambient temperatures and even more impressive capacities above 160 mAh g −1 at high discharge rates (1 C) and temperatures above 60 °C.

  15. Decohesion Kinetics of PEDOT:PSS Conducting Polymer Films

    KAUST Repository

    Dupont, Stephanie R.; Novoa, Fernando; Voroshazi, Eszter; Dauskardt, Reinhold H.

    2013-01-01

    The highly conductive polymer PEDOT:PSS is a widely used hole transport layer and transparent electrode in organic electronic devices. To date, the mechanical and fracture properties of this conductive polymer layer are not well understood. Notably, the decohesion rate of the PEDOT:PSS layer and its sensitivity to moist environments has not been reported, which is central in determining the lifetimes of organic electronic devices. Here, it is demonstrated that the decohesion rate is highly sensitive to the ambient moisture content, temperature, and mechanical stress. The kinetic mechanisms are elucidated using atomistic bond rupture models and the decohesion process is shown to be facilitated by a chemical reaction between water molecules from the environment and strained hydrogen bonds. Hydrogen bonds are the predominant bonding mechanism between individual PEDOT:PSS grains within the layer and cause a significant loss in cohesion when they are broken. Understanding the decohesion kinetics and mechanisms in these films is essential for the mechanical integrity of devices containing PEDOT:PSS layers and yields general guidelines for the design of more reliable organic electronic devices. Decohesion rate in PEDOT:PSS conducting films is studied under varied environmental conditions. The moisture content in the environment is the most important factor accelerating the decohesion in the PEDOT:PSS layer, which is detrimental for device reliability. The findings on the decohesion rate and mechanisms, elucidated by atomic kinetic models, are essential for the design of more reliable organic electronic devices containting PEDOT:PSS layers. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Decohesion Kinetics of PEDOT:PSS Conducting Polymer Films

    KAUST Repository

    Dupont, Stephanie R.

    2013-10-17

    The highly conductive polymer PEDOT:PSS is a widely used hole transport layer and transparent electrode in organic electronic devices. To date, the mechanical and fracture properties of this conductive polymer layer are not well understood. Notably, the decohesion rate of the PEDOT:PSS layer and its sensitivity to moist environments has not been reported, which is central in determining the lifetimes of organic electronic devices. Here, it is demonstrated that the decohesion rate is highly sensitive to the ambient moisture content, temperature, and mechanical stress. The kinetic mechanisms are elucidated using atomistic bond rupture models and the decohesion process is shown to be facilitated by a chemical reaction between water molecules from the environment and strained hydrogen bonds. Hydrogen bonds are the predominant bonding mechanism between individual PEDOT:PSS grains within the layer and cause a significant loss in cohesion when they are broken. Understanding the decohesion kinetics and mechanisms in these films is essential for the mechanical integrity of devices containing PEDOT:PSS layers and yields general guidelines for the design of more reliable organic electronic devices. Decohesion rate in PEDOT:PSS conducting films is studied under varied environmental conditions. The moisture content in the environment is the most important factor accelerating the decohesion in the PEDOT:PSS layer, which is detrimental for device reliability. The findings on the decohesion rate and mechanisms, elucidated by atomic kinetic models, are essential for the design of more reliable organic electronic devices containting PEDOT:PSS layers. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H., E-mail: h-manjunath@blr.amrita.edu; Kumaraswamy, G. N. [Department of Physics, Amrita Vishwa Vidyapeetham, Bengaluru-560 035 (India); Damle, R. [Department of Physics, Bangalore University, Bengaluru-560 056 (India)

    2016-05-06

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10{sup −1} – 10{sup −3} Scm{sup −1}, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEO{sub x}NaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O{sup +1} ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  18. Conducting polymers doped with a mineral phase: structural and electrical study

    International Nuclear Information System (INIS)

    González, C P; Montaño, A M; Estrada, S; Ortiz, C

    2013-01-01

    This work reports the results obtained of a series of novel doped conducting polymers (CPs) of polyaniline/hematite (PANI/HEM), which were synthesized in acidic aqueous solution by the in situ chemical oxidative polymerization, using ammonium peroxydisulfate as oxidant reagent. The synthesis was carried out with 20, 40 y 60 % (weight percent) contents of hematite (HEM) at 8 and 14 h of polymerization times (tP). These composites were structurally characterized by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). An electrochemical analysis was made by Electrochemical impedance spectroscopy (EIS). Results of this study allow to evaluate the influence of hematite on the improvement of the structural properties and in the increase of the electric conductivity (sac) of the doped polymers compared to CPs without dopant agents

  19. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique

    Science.gov (United States)

    Harshlata, Mishra, Kuldeep; Rai, D. K.

    2018-04-01

    A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.

  20. Drastic modification of the piezoresistive behavior of polymer nanocomposites by using conductive polymer coatings

    KAUST Repository

    Ventura, Isaac Aguilar; Zhou, Jian; Lubineau, Gilles

    2015-01-01

    We obtained highly conductive nanocomposites by adding conductive polymer poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS)-coated carbon nanotubes (CNTs) to pristine insulating Polycarbonate. Because the PEDOT/PSS ensures efficient charge transfer both along and between the CNTs, we could attribute the improvement in electrical conductivity to coating. In addition to improving the electrical conductivity, the coating also modified the piezoresistive behavior of the nanocomposites compared to the material with pristine uncoated CNTs: whereas CNT/Polycarbonate samples exhibited a very strong piezoresistive effect, PEDOT/PSS-coated MWCNT/Polycarbonate samples exhibited very little piezoresistivity. We studied this change in piezoresistive behavior in detail by investigating various configurations of filler content. We investigated how this observation could be explained by changes in the microstructure and in the conduction mechanism in the interfacial regions between the nanofillers. Our study suggests that tailoring the piezoresistive response to specific application requirements is possible.

  1. Drastic modification of the piezoresistive behavior of polymer nanocomposites by using conductive polymer coatings

    KAUST Repository

    Ventura, Isaac Aguilar

    2015-07-21

    We obtained highly conductive nanocomposites by adding conductive polymer poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS)-coated carbon nanotubes (CNTs) to pristine insulating Polycarbonate. Because the PEDOT/PSS ensures efficient charge transfer both along and between the CNTs, we could attribute the improvement in electrical conductivity to coating. In addition to improving the electrical conductivity, the coating also modified the piezoresistive behavior of the nanocomposites compared to the material with pristine uncoated CNTs: whereas CNT/Polycarbonate samples exhibited a very strong piezoresistive effect, PEDOT/PSS-coated MWCNT/Polycarbonate samples exhibited very little piezoresistivity. We studied this change in piezoresistive behavior in detail by investigating various configurations of filler content. We investigated how this observation could be explained by changes in the microstructure and in the conduction mechanism in the interfacial regions between the nanofillers. Our study suggests that tailoring the piezoresistive response to specific application requirements is possible.

  2. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation

    KAUST Repository

    Du, Naiying

    2011-03-11

    Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O 2/N 2 and CO 2/N 2 gas pairs, as well as for condensable gases, such as CO 2/CH 4, propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO 2 plasticization up to 20 atm pressure of pure CO 2 and CO 2/CH 4 mixtures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation

    KAUST Repository

    Du, Naiying; Dal-Cin, Mauro M D; Pinnau, Ingo; Nicalek, Andrzej; Robertson, Gilles P.; Guiver, Michael D.

    2011-01-01

    Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O 2/N 2 and CO 2/N 2 gas pairs, as well as for condensable gases, such as CO 2/CH 4, propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO 2 plasticization up to 20 atm pressure of pure CO 2 and CO 2/CH 4 mixtures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dielectric properties and conductivity of carbon nanofiber/semi-crystalline polymer composites

    International Nuclear Information System (INIS)

    Sui, G.; Jana, S.; Zhong, W.H.; Fuqua, M.A.; Ulven, C.A.

    2008-01-01

    The properties of semi-crystalline polymer nanocomposites are affected by the nanofillers directly and indirectly, as two phases, i.e., crystalline and amorphous, exist in the polymer. The effects of nanofillers on the two phases could be competitive. The dielectric properties and conductivity of carbon nanofibers (CNF)/semi-crystalline polymer nanocomposites are studied in this paper. CNF/polypropylene (PP) nanocomposites are prepared in experiment by melt blending. The resulting morphology and crystalline structure are characterized by means of differential scanning calorimetry, wide angle X-ray diffraction and scanning electron microscopy. The PP nanocomposite containing 5 wt.% CNF exhibits a surprisingly high dielectric constant under wide sweep frequencies attended by low dielectric loss. Its dielectric constant is >600 under lower frequency, and remains >200 at a frequency of 4000 Hz. The electrical and thermal conductivities of the nanocomposites are studied, and enhancements are seen with increased CNF content. Theoretical analyses on the physical properties are carried out by applying the existing models. Research results indicate that a common commercial plastic with good comprehensive performance, which exhibited the potential for applications in advanced electronics, was obtained by a simple industry benign technique

  5. Fabrication and properties of shape-memory polymer coated with conductive nanofiber paper

    Science.gov (United States)

    Lu, Haibao; Liu, Yanju; Gou, Jan; Leng, Jinsong

    2009-07-01

    A unique concept of shape-memory polymer (SMP) nanocomposites making up of carbon nanofiber paper was explored. The essential element of this method was to design and fabricate nanopaper with well-controlled and optimized network structure of carbon nanofibers. In this study, carbon nanofiber paper was prepared under ultrasonicated processing and vapor press method, while the dispersion of nanofiber was treated by BYK-191 dispersant. The morphologies of carbon nanofibers within the paper were characterized with scanning electron microscopy (SEM). In addition, the thermomechanical properties of SMP coated with carbon nanofiber paper were measured by the dynamic mechanical thermal analysis (DMTA). It was found that the glass transition temperature and thermomechanical properties of nanocomposites were strongly determined by the dispersion of polymer in conductive paper. Subsequently, the electrical conductivity of conductive paper and nanocomposites were measured, respectively. And experimental results revealed that the conductive properties of nanocoposites were significantly improved by carbon nanopaper, resulting in actuation driven by electrical resistive heating.

  6. New transparent conductive metal based on polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz Hedayati, Mehdi; Jamali, Mohammad [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Strunkus, Thomas; Zaporochentko, Vladimir; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Currently great efforts are made to develop new kind of transparent conductors (TCs) to replace ITO. In this regard different materials and composites have been proposed and studied including conductive polymers, carbon nanotubes (CNTs), metal grids, and random networks of metallic nanowires. But so far none of them could be used as a replacing material, since either they are either fragile and brittle or their electrical conductivity is below the typical ITO. Thin metallic films due to their high electrical conductivity could be one of the best replacing materials for ITO, however their poor transparency makes their application as TCs limited. Here we design and fabricate a new polymeric composite coating which enhances the transparency of the thin metal film up to 100% relative to the initial value while having a high electrical conductivity of typical metals. Therefore our proposed device has a great potential to be used as new transparent conductor.

  7. Direct measurement of the microscale conductivity of conjugated polymer monolayers

    DEFF Research Database (Denmark)

    Bøggild, Peter; Grey, Francois; Hassenkam, T.

    2000-01-01

    The in-plane conductivity of conjugated polymer monolayers is mapped here for the first time on the microscale using a novel scanning micro four-point probe (see Figure). The probe allows the source, drain, and voltage electrodes to be positioned within the same domain and the mapping results...

  8. Stabilized Sulfonated Aromatic Polymers by in situ Solvothermal Cross-Linking

    Energy Technology Data Exchange (ETDEWEB)

    Di Vona, Maria Luisa, E-mail: divona@uniroma2.it; Sgreccia, Emanuela [Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome (Italy); Narducci, Riccardo; Pasquini, Luca [Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome (Italy); MAtériaux Divisés, Interfaces, Réactivité, ELectrochimie (MADIREL – UMR 7246), Aix Marseille Université, Marseille (France); Hou, Hongying [Faculty of Material and Engineering, Kunming University of Science and Technology, Kunming (China); Knauth, Philippe [MAtériaux Divisés, Interfaces, Réactivité, ELectrochimie (MADIREL – UMR 7246), Aix Marseille Université, Marseille (France)

    2014-10-10

    The cross-link reaction via sulfone bridges of sulfonated polyether ether ketone (SPEEK) by thermal treatment at 180°C in presence of dimethylsulfoxide is discussed. The modifications of properties subsequent to the cross-linking are presented. The mechanical strength as well as the hydrolytic stability increased with the thermal treatment time, i.e., with the degree of cross-linking. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking, and hydration number. The memory effect, which is the membrane ability to “remember” the water uptake reached at high temperature also at lower temperature, is exploited in order to achieve high values of conductivity. Membranes swelled at 110°C can reach a conductivity of 0.14 S/cm at 80°C with a hydration number (λ) of 73.

  9. Quasi-solid polymer electrolytes using photo-cross-linked polymers. Lithium and divalent cation conductors and their applications

    Science.gov (United States)

    Ikeda, Shoichiro; Mori, Yoichi; Furuhashi, Yuri; Masuda, Hideki; Yamamoto, Osamu

    In this report, we will present the results on the photo-cross-linked poly-(ethylene glycol) diacrylate (PEGDA) based quasi-solid, i.e. gel, polymer electrolyte systems with lithium, magnesium and zinc trifluoromethanesulfonates [triflate; M n(CF 3SO 3) n] and their preliminary applications to primary cells. The Celgard® membrane-impregnated electrolytes were prepared in the same manner as Abraham et al. [K.M. Abraham, M. Alamgir, D.K. Hoffman, J. Electrochem. Soc. 142 (1995) 683]. The precursor solutions were composed of metal triflates, ethylene carbonate, propylene carbonate, and tetraethylene glycol diacrylate. The Celgard® #3401 membrane was soaked overnight in the precursor solution, then clamped between two Pyrex glass plates and irradiated with UV light to form a gel electrolyte. The maxima of the conductivity obtained were 4.5×10 -4 S cm -1 at 12 mol% for LiCF 3SO 3, 1.7×10 -4 S cm -1 at 1 mol% for Mg(CF 3SO 3) 2, and 2.1×10 -4 S cm -1 at 4 mol% for Zn(CF 3SO 3) 2 system, respectively. The Arrhenius plots of the conductivities are almost linear between 268 and 338 K with 15-25 kJ/mol of activation energy for conduction. The cell, Li|LiCF 3SO 3-SPE+Celgard® #3401|(CH 3) 4NI 5+acetylene black, showed 2.86 V of OCV and could discharge up to 25% with respect to the cathode active material at a discharging current of 0.075 mA/cm 2.

  10. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  11. Nano silver diffusion behaviour on conductive polymer during doping process for high voltage application

    Science.gov (United States)

    Mohammad, A.; Mahmood, A.; Chin, K. T.; Danquah, M. K.; van Stratan, S.

    2017-06-01

    Conductive polymer had opened a new era of engineering for microelectronics and semiconductor applications. However, it is still a challenge for high voltage applications due to lower electrical conductivity compare to metals. This results tremendous energy losses during transmission and restricts its usage. In order to address such problem a novel method was investigated using nano silver particle doped iodothiophene since silver is the highest electrical conductive material. The experiments were carried out to study the organometallic diffusion behaviour of nanosilver doped iodothiophene with different concentration of iodothiophene. Five different mixing ratio between nanosilver and the solution of iodothiophene dissolved in diethyl ether were used which are 1:1.25, 1:1.5, 1:2.5, 1:3 and l:5. It was revealed that there is an effective threshold concentration of which the nano silver evenly distributed and there was no coagulation observed. These parameters laid the foundation of better doping process between the nano silver and the polymer significantly which would contribute developing conductive polymer towards high voltage application for industries that are vulnerable to corrosive environment.

  12. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling

    OpenAIRE

    Gnanasekaran, K.; Heijmans, T.; van Bennekom, S.; Woldhuis, H.; Wijnia, S.; de With, G.; Friedrich, H.

    2017-01-01

    Fused deposition modeling (FDM) is limited by the availability of application specific functional materials. Here we illustrate printing of non-conventional polymer nanocomposites (CNT- and graphene-based polybutylene terephthalate (PBT)) on a commercially available desktop 3D printer leading toward printing of electrically conductive structures. The printability, electrical conductivity and mechanical stability of the polymer nanocomposites before and after 3D printing was evaluated. The res...

  13. Mechanically Strong, Polymer Cross-linked Aerogels (X-Aerogels)

    Science.gov (United States)

    Leventis, Nicholas

    2006-01-01

    Aerogels comprise a class of low-density, high porous solid objects consisting of dimensionally quasi-stable self-supported three-dimensional assemblies of nanoparticles. Aerogels are pursued because of properties above and beyond those of the individual nanoparticles, including low thermal conductivity, low dielectric constant and high acoustic impedance. Possible applications include thermal and vibration insulation, dielectrics for fast electronics, and hosting of functional guests for a wide variety of optical, chemical and electronic applications. Aerogels, however, are extremely fragile materials, hence they have found only limited application in some very specialized environments, for example as Cerenkov radiation detectors in certain types of nuclear reactors, aboard spacecraft as collectors of hypervelocity particles (refer to NASA's Stardust program) and as thermal insulators on planetary vehicles on Mars (refer to Sojourner Rover in 1997 and Spirit and Opportunity in 2004). Along these lines, the X-Aerogel is a new NASA-developed strong lightweight material that has resolved the fragility problem of traditional (native) aerogels. X-Aerogels are made by applying a conformal polymer coating on the surfaces of the skeletal nanoparticles of native aerogels (see Scanning Electron Micrographs). Since the relative amounts of the polymeric crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by the templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by remplated casting of polymer on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralighweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the the thermal conductivity of styrofoam. X

  14. Sociocognitive Correlates of Gender-Linked Conduct.

    Science.gov (United States)

    Bussey, Kay

    This study of the processes guiding children's gender-linked conduct focused on ages prior to the development of self-regulatory control through the exercise of self-evaluative reactions. The study sample consisted of 29 boys and 33 girls in Australia between 17 and 48 months old. Measures included: (1) a videotaped toy play session in which…

  15. Cross Linking Polymers (PVA & PEG with TiO2 Nanoparticles for Humidity Sensing

    Directory of Open Access Journals (Sweden)

    Monika Joshi

    2009-11-01

    Full Text Available Humidity Sensors of different types are being used for various applications. Resistive Humidity Sensor has advantage over others for being small, low cost, interchangeable and long term stable. This makes them suitable for industrial, commercial and residential applications. In the present investigation humidity sensing behavior of various composite films made of Polyvinyl Alcohol (PVA, Polyethylene glycol (PEG, alkalies and oxide nanoparticles has been studied. It was found that relationship of resistance v/s relative humidity (RH was linear from 40 RH to 60 RH for a composite film made of PVA + PEG+ alkalies .The film can work with reliable efficiency for more than 100 days for the above range of humidity at room temperature. In order to improve the efficiency of composite polymer film TiO2 nanoparticles were added in the film and studied for resistance vs. RH responses. It was found that humidity range expands from 30 RH to 65 RH indicating the proportional decrease in resistance with increase in humidity at both ends as a result of the presence of TiO2 nanoparticles. The composite film with TiO2 nanoparticles can thus be used for wider range of humidity with reasonable stability and consistency. The observed behavior of the film has been attributed to the transportation of charge through TiO2 nanoparticles enhancing the conduction with the cross linked polymers.

  16. Morphology and Electrical Conductivity of Carbon Nanocoatings Prepared from Pyrolysed Polymers

    Directory of Open Access Journals (Sweden)

    Marcin Molenda

    2014-01-01

    Full Text Available Conductive carbon nanocoatings (conductive carbon layers—CCL were formed on α-Al2O3 model support using three different polymer precursors and deposition methods. This was done in an effort to improve electrical conductivity of the material through creating the appropriate morphology of the carbon layers. The best electrical properties were obtained with use of a precursor that consisted of poly-N-vinylformamide modified with pyromellitic acid (PMA. We demonstrate that these properties originate from a specific morphology of this layer that showed nanopores (3-4 nm capable of assuring easy pathways for ion transport in real electrode materials. The proposed, water mediated, method of carbon coating of powdered supports combines coating from solution and solid phase and is easy to scale up process. The optimal polymer carbon precursor composition was used to prepare conductive carbon nanocoatings on LiFePO4 cathode material. Charge-discharge tests clearly show that C/LiFePO4 composites obtained using poly-N-vinylformamide modified with pyromellitic acid exhibit higher rechargeable capacity and longer working time in a battery cell than standard carbon/lithium iron phosphate composites.

  17. Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses

    Science.gov (United States)

    Kim, Baek-Chul; Kim, Hyunseok; Nguyen, H. C.; Cho, M. S.; Lee, Y.; Nam, Jae-Do; Choi, Hyouk Ryeol; Koo, J. C.; Jeong, H.-S.

    2008-03-01

    The objective of the present work is to demonstrate the efficiency and feasibility of NBR (Nitrile Butadiene Rubber) based conducting polymer actuator that is fabricated into a micro zoon lens driver. Unlike the traditional conducting polymer that normally operates in a liquid, the proposed actuator successfully provides fairly effective driving performance for the zoom lens system in a dry environment. And this paper is including the experiment results for an efficiency improvement. The result suggested by an experiment was efficient in micro optical zoom lens system. In addition, the developed design method of actuator was given consideration to design the system.

  18. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  19. Conductive polymer/high-TC superconductor sandwich structures: An example of a molecular switch for controlling superconductivity

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Lo, R.K.

    1994-01-01

    The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole coated YBa 2 Cu 3 O 7-x microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layer. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa 2 Cu 3 O 7- film, the oxidized (conductive) polymer depresses T c by up to 50K. In a similar fashion, the oxidation state of the polymer is found to modulate reversibly the magnitude of J c , the superconducting critical current. Thus, a new type of molecular switch for controlling superconductivity is demonstrated. Electrochemical, resistance vs. temperature, atomic force microscopy and scanning electron microscopy measurements are utilized to explore the polymer/superconductor interactions

  20. Stabilized sulfonated aromatic polymers by in situ solvothermal cross-linking

    Directory of Open Access Journals (Sweden)

    Maria Luisa eDi Vona

    2014-10-01

    Full Text Available The cross-link reaction via sulfone bridges of sulfonated polyetheretherketone (SPEEK by thermal treatment at 180 °C in presence of dimethylsulfoxide (DMSO is discussed. The modifications of properties subsequent to the cross-linking are presented. The mechanical strength as well as the hydrolytic stability increased with the thermal treatment time, i.e., with the degree of cross-linking. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking and hydration number. The memory effect, which is the membrane ability to remember the water uptake reached at high temperature also at lower temperature, is exploited in order to achieve high values of conductivity. Membranes swelled at 110 °C can reach a conductivity of 0.14 S/cm at 80°C with a hydration number ( of 73.

  1. Conductivity, XRD, and FTIR studies of New Mg2+-ion-conducting solid polymer electrolytes: [PEG: Mg(CH3COO)2

    International Nuclear Information System (INIS)

    Polu, Anji Reddy; Kumar, Ranveer; Causin, Valerio; Neppalli, Ramesh

    2011-01-01

    Solid polymer electrolytes based on poly (ethylene glycol) (PEG) doped with Mg(CH 3 COO) 2 have been prepared by using the solution-casting method. The X-ray diffraction patterns of PEG with Mg(CH 3 COO) 2 salt indicated a decrease in the degree of crystallinity with increasing concentration of the salt. The complexation of Mg(CH 3 COO) 2 salt with the polymer was confirmed by using Fourier transform infrared spectroscopy (FTIR) studies. The ionic conductivity was measured for the [PEG: Mg(CH 3 COO) 2 ] system in the frequency range 50 Hz - 1 MHz. The addition of Mg salt was found to improve the ionic conductivity significantly. The 15-wt-% Mg(CH 3 COO) 2 -doped system had a maximum conductivity of 1.07 x 10 -6 S/cm at 303 K. The conductance spectrum shows two distinct regions: a dc plateau and a dispersive region. The temperature dependence of the ionic conductivity reveals the conduction mechanism to be an Arrhenius-type thermally activated process.

  2. Anion-conducting polymer, composition, and membrane

    Science.gov (United States)

    Pivovar, Bryan S [Los Alamos, NM; Thorn, David L [Los Alamos, NM

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  3. Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Suriani, E-mail: sue_83@um.edu.my [Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ahmad, Roslina; Johan, Mohd Rafie [Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2012-01-15

    Solid polymer electrolyte films based on Poly(ethylene oxide) (PEO) complexed with lithium hexafluorophosphate (LiPF{sub 6}), ethylene carbonate (EC) and amorphous carbon nanotube ({alpha}CNTs) were prepared by the solution cast technique. The conductivity increases from 10{sup -10} to 10{sup -5} Scm{sup -1} upon the addition of salt. The incorporation of EC and {alpha}CNTs to the salted polymer enhances the conductivity significantly to 10{sup -4} and 10{sup -3} Scm{sup -1}. The complexation of doping materials with polymer were confirmed by X-ray diffraction and infrared studies. Optical properties like direct band gap and indirect band gap were investigated for pure and doped polymer films in the wavelength range 200-400 nm. It was found that the energy gaps and band edge values shifted to lower energies on doping. - Highlights: > Optical band gap values show the decreasing trend with an increasing dopant concentration. > It is also observed that the absorption edge shifted to longer wavelength on doping. > Results of the optical measurements indicate the presence of a well-defined {pi}{yields}{pi}* transition associated with the formation of a conjugated C=O and/or C=O electronic structure.

  4. Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube

    International Nuclear Information System (INIS)

    Ibrahim, Suriani; Ahmad, Roslina; Johan, Mohd Rafie

    2012-01-01

    Solid polymer electrolyte films based on Poly(ethylene oxide) (PEO) complexed with lithium hexafluorophosphate (LiPF 6 ), ethylene carbonate (EC) and amorphous carbon nanotube (αCNTs) were prepared by the solution cast technique. The conductivity increases from 10 -10 to 10 -5 Scm -1 upon the addition of salt. The incorporation of EC and αCNTs to the salted polymer enhances the conductivity significantly to 10 -4 and 10 -3 Scm -1 . The complexation of doping materials with polymer were confirmed by X-ray diffraction and infrared studies. Optical properties like direct band gap and indirect band gap were investigated for pure and doped polymer films in the wavelength range 200-400 nm. It was found that the energy gaps and band edge values shifted to lower energies on doping. - Highlights: → Optical band gap values show the decreasing trend with an increasing dopant concentration. → It is also observed that the absorption edge shifted to longer wavelength on doping. → Results of the optical measurements indicate the presence of a well-defined π→π* transition associated with the formation of a conjugated C=O and/or C=O electronic structure.

  5. Effects of electric field and charge distribution on nanoelectronic processes involving conducting polymers

    International Nuclear Information System (INIS)

    Ramos, Marta M.D.; Correia, Helena M.G.

    2006-01-01

    The injection of charge carriers in conducting polymer layers gives rise to local electric fields which should have serious implications on the charge transport through the polymer layer. The charge distribution and the related electric field inside the ensemble of polymer molecules, with different molecular arrangements at nanoscale, determine whether or not intra-molecular charge transport takes place and the preferential direction for charge hopping between neighbouring molecules. Consequently, these factors play a significant role in the competition between current flow, charge trapping and recombination in polymer-based electronic devices. By suitable Monte Carlo calculations, we simulated the continuous injection of electrons and holes into polymer layers with different microstructures and followed their transport through those polymer networks. Results of these simulations provided a detailed picture of charge and electric field distribution in the polymer layer and allowed us to assess the consequences for current transport and recombination efficiency as well as the distribution of recombination events within the polymer film. In the steady state we found an accumulation of electrons and holes near the collecting electrodes giving rise to an internal electric field which is greater than the external applied field close to the electrodes and lower than the one in the central region of the polymer layer. We also found that a strong variation of electric field inside the polymer layer leads to an increase of recombination events in regions inside the polymer layer where the values of the internal electric field are lower

  6. Core Cross-Linked Multiarm Star Polymers with Aggregation-Induced Emission and Temperature Responsive Fluorescence Characteristics

    KAUST Repository

    Zhang, Zhen; Bilalis, Panagiotis; Zhang, Hefeng; Gnanou, Yves; Hadjichristidis, Nikolaos

    2017-01-01

    Aggregation-induced emission (AIE) active core cross-linked multiarm star polymers, carrying polystyrene (PS), polyethylene (PE), or polyethylene-b-polycaprolactone (PE-b-PCL) arms, have been synthesized through an “arm-first” strategy, by atom

  7. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    Science.gov (United States)

    Gu, Meng; Xiao, Xing-Cheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D.; Wang, Chong-Min

    2014-01-01

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact. PMID:24418812

  8. Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating

    KAUST Repository

    Yang, Yuan; Yu, Guihua; Cha, Judy J.; Wu, Hui; Vosgueritchian, Michael; Yao, Yan; Bao, Zhenan; Cui, Yi

    2011-01-01

    Ah/g after 150 cycles at C/5 rate. We believe that this conductive polymer coating method represents an exciting direction for enhancing the device performance of Li-S batteries and can be applicable to other electrode materials in lithium ion batteries

  9. Characterization of Plasma-Polymerized Fused Polycyclic Compounds for Binding Conducting Polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; Norrman, Kion; Kingshott, Peter

    2005-01-01

    with hydrogen in the position which is able to co-polymerize with thiophene derivatives polymerized by conventional oxidative polymerization, thereby forming a conducting thiophene polymer bonded to the substrate. The durability of the surface modification procedure is demonstrated by micropatterning of PEDT...

  10. Micro-patterning of self-supporting layers with conducting polymer wires for 3D-chip interconnection applications

    International Nuclear Information System (INIS)

    Ackermann, J.; Videlot, C.; Nguyen, T.N.; Wang, L.; Sarro, P.M.; Crawley, D.; Nikolic, K.; Forshaw, M.

    2003-01-01

    Highly conducting polymers have attracted much interest because of their potential applications in sensors and electronic devices. By the use of templates like porous membranes during polymerization conducting molecular wires can be formed with highly anisotropic properties which can be used as interconnecting layers in a three-dimensional (3D)-chip stacking. We focussed on two electrochemical polymerization (ECP) techniques to produce molecular wires based on polypyrrole (PPy) embedded in isolating porous polycarbonate membranes as self-supporting layers. The growth of the polymer through the membrane pores was investigated in order to achieve a good conductivity through the pores, but with a small cross-talk between them. A new polymerization technique based on a structured cathode has been developed in order to control the polymerization locally. By that technique micro-patterned membranes with separated conducting polymer wires could be produced

  11. Semi-metallic, strong conductive polymer microfiber, method and fast response rate actuators and heating textiles

    KAUST Repository

    Zhou, Jian; Li, Er Qiang; Lubineau, Gilles; Thoroddsen, Sigurdur T; Mulle, Matthieu

    2016-01-01

    A method comprising: providing at least one first composition comprising at least one conjugated polymer and at least one solvent, wet spinning the at least one first composition to form at least one first fiber material, hot-drawing the at least one fiber to form at least one second fiber material. In lead embodiments, high-performance poly(3,4-ethylenedioxy- thiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet- spinning followed by hot-drawing. In these lead embodiments, due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), a record electrical conductivity of 2804 S · cm-1 was achieved. This is believed to be a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S · cm-1) and a twofold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S · cm-1). Moreover, these lead, highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young's modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers can make them available for conductive smart electronics. A dramatic improvement in electrical conductivity is needed to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators.

  12. Semi-metallic, strong conductive polymer microfiber, method and fast response rate actuators and heating textiles

    KAUST Repository

    Zhou, Jian

    2016-06-09

    A method comprising: providing at least one first composition comprising at least one conjugated polymer and at least one solvent, wet spinning the at least one first composition to form at least one first fiber material, hot-drawing the at least one fiber to form at least one second fiber material. In lead embodiments, high-performance poly(3,4-ethylenedioxy- thiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet- spinning followed by hot-drawing. In these lead embodiments, due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), a record electrical conductivity of 2804 S · cm-1 was achieved. This is believed to be a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S · cm-1) and a twofold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S · cm-1). Moreover, these lead, highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young\\'s modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers can make them available for conductive smart electronics. A dramatic improvement in electrical conductivity is needed to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators.

  13. Gamma- and electron dose response of the electrical conductivity of polyaniline based polymer blends

    International Nuclear Information System (INIS)

    Sevil, U.A.; Gueven, O.; Slezsak, I.

    2002-01-01

    Complete text of publication follows. Conducting polymers, also known as 'synthetic metals' have been the subject of widespread investigations over the past decade due to their very promising characteristics. Polyaniline (PANI) holds a special position among conducting polymers in that its most highly conducting doped form can be reached by protonic acid doping or oxidative doping. It was published earlier, that the electrical conductivity of some polyaniline based polymer composites increases to a significant extent when irradiated to gamma, electron or UV radiation. The aim of the present study was to measure the high frequency conductivity of blended films of PANI with poly(vinylchloride), PVC, and chlorinated poly(propylene) irradiated in air to different doses. In order to find the most suitable composition od these composites the mass percentage of PANI within the PPCl and PVC matrix was changed between 5 - 30%. These samples were then gamma irradiated and the induced electrical conductivity was measured in the 1 kHz - 1 MHz frequency range to determine the most sensitive evaluation conditions. After selecting both the most suitable measuring conditions as well as the blend compositions the dose response of the chosen samples was determined in the dose range of 10 - 250 kGy. With respect to potential dosimetry application the effect of electron irradiation, the effect of irradiation temperature and the stability of the irradiated samples have also been investigated

  14. Characteristics of Anisotropic Conducting Polymers Suggest Feasibility of Test Fixtures up to 110 GHz

    Directory of Open Access Journals (Sweden)

    Mark Sippel

    2017-12-01

    Full Text Available Applications and volume of integrated circuits operating at frequencies up to 100 GHz are steadily increasing. This establishes serious challenges, especially for temporarily contacting such products during manufacturing tests with appropriate signal integrity. At present, existing test socket concepts have reached their applicability limit. The most promising candidates to meet the requirements of future microwave device interfacing are thin, anisotropic conducting polymers. This paper reports a survey covering measurement methodology for signal integrity properties of conducting polymers, model parameter extraction, measurement results from various materials, reliability issues, and a prototype application.

  15. Colloid electrochemistry of conducting polymer: towards potential-induced in-situ drug release

    International Nuclear Information System (INIS)

    Sankoh, Supannee; Vagin, Mikhail Yu.; Sekretaryova, Alina N.; Thavarungkul, Panote; Kanatharana, Proespichaya; Mak, Wing Cheung

    2017-01-01

    Highlights: • Pulsed electrode potential induced an in-situ drug release from dispersion of conducting polymer microcapsules. • Fast detection of the released drug within the colloid microenvironment. • Improved the efficiency of localized drug release at the electrode interface. - Abstract: Over the past decades, controlled drug delivery system remains as one of the most important area in medicine for various diseases. We have developed a new electrochemically controlled drug release system by combining colloid electrochemistry and electro-responsive microcapsules. The pulsed electrode potential modulation led to the appearance of two processes available for the time-resolved registration in colloid microenvironment: change of the electronic charge of microparticles (from 0.5 ms to 0.1 s) followed by the drug release associated with ionic equilibration (1–10 s). The dynamic electrochemical measurements allow the distinction of drug release associated with ionic relaxation and the change of electronic charge of conducting polymer colloid microparticles. The amount of released drug (methylene blue) could be controlled by modulating the applied potential. Our study demonstrated a surface-potential driven controlled drug release of dispersion of conducting polymer carrier at the electrode interfaces, while the bulk colloids dispersion away from the electrode remains as a reservoir to improve the efficiency of localized drug release. The developed new methodology creates a model platform for the investigations of surface potential-induced in-situ electrochemical drug release mechanism.

  16. Temperature dependence of nonsteady radiation conductivity of polymers

    International Nuclear Information System (INIS)

    Tyutnev, A.P.; Saenko, V.S.; Dunaev, A.F.; Sichkar', V.P.; Vannikov, A.V.

    1984-01-01

    Influence of temperature on non-steady radiation conductivity (NRC) of polymeric dielectrics is investigated. It is revealed that the temperature effects first of all delayed NRC constituent. Temperature increase up to 100 deg C is followed by certain slowing down the rate of current drop of induced conductivity, in this case the nature of the volt-ampere characteristic of delayed NRC constituent does not essentially change, as a rule. The obtained experimental results interpreted in the frames of the band model permitted to make conclusions on the effect of chemical structure of the polymer on its NRC. Presence of carbazole or phenylic groups in the elementary chain is shown to increase the delayed constituent of induced conductivity and to ensure prevailing yield of free charges. Appearance of methyl groups in the composition of the chain essentially suppresses the delayed constituent and results in high values of activation energy and rather slowed down current drop

  17. Dielectric spectroscopy investigation of proton transfer processes in carboxymethyl alpha-cyclodextrin polymer cross-linked by epichlorohydrin

    Science.gov (United States)

    Papaioannou, Panagoula K.; Karagianni, Chaido S.; Kakali, Glykeria; Charalampopoulos, Vasileios G.

    2018-03-01

    The carboxymethyl-α-cyclodextrin polymer (cross-linked by epichlorohydrin) is investigated by dielectric spectroscopy over a frequency range of 0.1-100 kHz and the temperature ranges of 137.2-297.6 K (cooling) and 137.2-472 K (heating). Upon cooling to 288.1 K, the ac-conductivity invariance is attributed to slight changes in the topology of the H-bonded chains. From 288.1 to 244.0 K, the ac-conductivity decreases abruptly (following the Arrhenius law with Eα = 0.40 eV), whereas below 244.0 K it presents no important variations. During heating from 137.2 to 302.6 K, no thermal hysteresis is observed. From 302.6 to 364.9 K, the ac-conductivity increases (Eα = 0.71 eV), whereas above 383 K it decreases up to 436.7 K since the dehydration process has been completed and the H-bonded chains can no longer be retained. From 436.7 to 472 K, the ac-conductivity increases again (Eα = 0.76 eV) indicating the formation of "new" H-bonded chains. Curve fitting of various relaxation processes is done by Havriliak-Negami equation at selective temperatures.

  18. Sensing of environmental pollutant by conductive composite from prepared from hyperbranched polymer-grafted carbon black and crystalline polymer

    International Nuclear Information System (INIS)

    Taniguchi, Y.; Chen, J.; Ogawa, M.; Yokoyama, K.; Shimizu, H.; Tsubokawa, N.; Maekawa, Y.; Yoshida, M.

    2002-01-01

    Complete text of publication follows. The hyperbranched (HB) polymer-grafted (PG) carbon blacks (CB) have the possibility of utilizing as a support of catalyst and enzyme, and a curing agent of epoxy resin, because they have much terminal amino or hydroxyl groups. The postgrafting of crystalline polymer onto HB PG CB and the sensing of environmental pollutant by the conductive composite prepared from the polymer-postgrafted CB was discussed. The grafting of poly(amidoamide) onto CB surface was achieved by repeating either Michael addition of methyl acrylate to amino group on the surface or the amidation of the resulting terminal methyl ester group with ethylene diamine. HB polyester onto CB surface was grafted by stepwise growth of 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) from surface carboxyl and hydroxyl groups on CB as a core in the presence of p-toluenesulfonic acid (p-TSA). The one-pot grafting of HB polyester onto CB as core was also achieved by the polycondensation of bis-MPA in the presence of p-TSA. Postgrafting of crystalline polymer onto HB polymer-grafted CB was achieved by the reaction of terminal amino or hydroxyl groups of grafted chain with COCl-terminated crystalline polymer. The electric resistance of the composite prepared from crystalline polymer-postgrafted CB was found to increase drastically in hexane, containing environmental pollutant, such as chloroform and trichloroethane, and returned immediately to the initial resistance when it was transferred into pure hexane. Based on the above results, it is concluded that the composite can be used as a novel sensor for environmental pollutant in solution

  19. Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar, Y.N. [Department of Chemistry, Manipal Institute of Technology, Manipal, Karnataka (India); Selvakumar, M., E-mail: chemselva78@gmail.com [Department of Chemistry, Manipal Institute of Technology, Manipal, Karnataka (India); Bhat, D. Krishna [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore (India)

    2014-02-15

    Highlights: • A new finding of tubular array of 10–20 μm in length and 1–2 μm in thickness of gel polymer electrolyte (GPE) having 2.2 × 10{sup −3} S cm{sup −1} conductivity is reported. • Thermal and electrochemical characterizations of GPEs show good interaction among the polymer, plasticizer and salt. • GPE based supercapacitor demonstrates high capacitance of 186 F g{sup −1}. • Low temperature studies did not influence much on capacitance values obtained from AC impedance studies. • Charge–discharge exhibits high capacity with excellent cyclic stability and energy density. -- Abstract: A supercapacitor based on a biodegradable gel polymer electrolyte (GPE) has been fabricated using guar gum (GG) as the polymer matrix, LiClO{sub 4} as the doping salt and glycerol as the plasticizer. The scanning electron microscopy (SEM) images of the gel polymer showed an unusual tubular array type surface morphology. FTIR, DSC and TGA results of the GPE indicated good interaction between the components used. Highest ionic conductivity and lowest activation energy values were 2.2 × 10{sup −3} S cm{sup −1} and 0.18 eV, respectively. Dielectric studies revealed ionic behavior and good capacitance with varying frequency of the GPE system. The fabricated supercapacitor showed a maximum specific capacitance value of 186 F g{sup −1} using cyclic voltammetry. Variation of temperature from 273 K to 293 K did not significantly influence the capacitance values obtained from AC impedance studies. Galvanostatic charge–discharge study of supercapacitor indicated that the device has good stability, high energy density and power density.

  20. Fast prototyping of conducting polymer microelectrodes using resistance-controlled high precision drilling

    DEFF Research Database (Denmark)

    Kafka, Jan Robert; Geschke, Oliver; Skaarup, Steen

    2011-01-01

    We present a straightforward method for fast prototyping of microelectrode arrays in the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Microelectrode arrays were produced by electrical resistance-controlled microdrilling through an insulating polymer layer (TOPAS® 5013...... approach the steady state currents predicted from modeling, but at a much slower rate than expected. This is shown to be caused by the use of electroactive PEDOT electrodes. Subtraction of the latter contribution gives approach to steady state currents within a few seconds, which is in very good agreement...

  1. Microwave synthesis: An alternative approach to synthesize conducting end-capped polymers

    Czech Academy of Sciences Publication Activity Database

    Marcasuzaa, P.; Reynaud, S.; Grassl, B.; Preud’homme, H.; Desbrieres, J.; Trchová, Miroslava; Donard, O. F. X.

    2011-01-01

    Roč. 52, č. 1 (2011), s. 33-39 ISSN 0032-3861 Grant - others:Eco-net project (FR) 16256SA Institutional research plan: CEZ:AV0Z40500505 Keywords : tetra-aniline * microwave synthesis * intrinsically conducting polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.438, year: 2011

  2. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, Dominic Francis [Univ. of Arizona, Tucson, AZ (United States)

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without or with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration at

  3. Synthesis and surface characterization of electroactive conducting polymers and polyurethane coatings

    Science.gov (United States)

    Vang, Chur Kalec

    The direct electrodeposition of electroactive conducting polymers (ECPs) on active metals such as iron, steel, and aluminum is complicated by the concomitant metal oxidation that occurs at the positive potentials required for polymer formation. In the case of aluminum and its alloys, the oxide layer that forms is an insulator that blocks electron transfer and impedes polymer formation and deposition. As a result, only patchy, nonuniform polymer films are obtained. Electron transfer mediation is a well-known technique for overcoming kinetic limitations of electron transfer at metal electrodes. In this dissertation, we report the use of electron transfer mediation for the direct electrodeposition of polypyrrole onto aluminum and onto Al 2024-T3 alloy. The first few chapters focus on the electrochemistry and use of Tiron RTM (4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt) as the mediator. Electroactive conductive polymers (ECPs) were also being investigated for corrosion protection of Al alloys, with a view toward replacement of chromate-based coating systems. The use of electrochemical methods clearly indicated that the electrodeposited Ppy coatings had altered the corrosion behavior of the Al alloy. Degradation mechanisms for self-priming (unicoat), high-gloss, and fluorinated polyurethane aircraft coatings exposed to QUV/H2O radiation were carried out using linear and step-scan photoacoustic (S2-PA) FTIR spectroscopy (Chapters 7--9). FTIR spectroscopic analysis indicated that, as the depth of sampling increased from film-air to film-substrate, an increase of free carbonyl components was observed. These free carbonyl groups are indicative of polyurethane components. Exposure of the polyurethane coating to prolonged periods of extreme weathering conditions indicated a loss of both polyurethane/polyurea components at the air interface, which has lead to an increase of disordered hydrogen-bonding formations. Contact angle measurement further indicated that as

  4. Molybdenum and tungsten disulfides surface-modified with a conducting polymer, polyaniline, for application in electrorheology

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Mrlík, M.; Plachý, T.; Trchová, Miroslava; Kovářová, Jana; Li, Yu

    2017-01-01

    Roč. 120, November (2017), s. 30-37 ISSN 1381-5148 R&D Projects: GA ČR(CZ) GA17-04109S Institutional support: RVO:61389013 Keywords : molybdenum sulfide * polyaniline * conducting polymer Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.151, year: 2016

  5. Impedance study of tea with added taste compounds using conducting polymer and metal electrodes.

    Science.gov (United States)

    Dhiman, Mopsy; Kapur, Pawan; Ganguli, Abhijit; Singla, Madan Lal

    2012-09-01

    In this study the sensing capabilities of a combination of metals and conducting polymer sensing/working electrodes for tea liquor prepared by addition of different compounds using an impedance mode in frequency range 1 Hz-100 KHz at 0.1 V potential has been carried out. Classification of six different tea liquor samples made by dissolving various compounds (black tea liquor + raw milk from milkman), (black tea liquor + sweetened clove syrup), (black tea liquor + sweetened ginger syrup), (black tea liquor + sweetened cardamom syrup), (black tea liquor + sweet chocolate syrup) and (black tea liquor + vanilla flavoured milk without sugar) using six different working electrodes in a multi electrode setup has been studied using impedance and further its PCA has been carried out. Working electrodes of Platinum (Pt), Gold (Au), Silver (Ag), Glassy Carbon (GC) and conducting polymer electrodes of Polyaniline (PANI) and Polypyrrole (PPY) grown on an ITO surface potentiostatically have been deployed in a three electrode set up. The impedance response of these tea liquor samples using number of working electrodes shows a decrease in the real and imaginary impedance values presented on nyquist plots depending upon the nature of the electrode and amount of dissolved salts present in compounds added to tea liquor/solution. The different sensing surfaces allowed a high cross-selectivity in response to the same analyte. From Principal Component Analysis (PCA) plots it was possible to classify tea liquor in 3-4 classes using conducting polymer electrodes; however tea liquors were well separated from the PCA plots employing the impedance data of both conducting polymer and metal electrodes.

  6. Fullerene-doped conducting polymers: effects of enhanced photoconductivity and quenched photoluminescence

    International Nuclear Information System (INIS)

    Yoshino, K.; Yin, X.H.; Muro, K.; Kiyomatsu, S.; Morita, S.; Zakhidov, A.A.; Noguchi, T.; Ohnishi, T.

    1993-01-01

    It is found that fullerenes (C 60 , C 70 ), due to their strong electron accepting abilities can be hole generators in conducting polymers sensitizing photoinduced charge transfer. Here we report that photoconductivity of poly(2,5-dialkoxy-p-phenylene-vinylene) OO-PPV is found to be remarkably enhanced by several orders of magnitude upon introduction of several mol % of C 60 . Positive polarons (P + ) photogenerated with increased efficiency due to autoionization of excitons and/or photopumping from fullerene are considered to be responsible for enhanced photoconductivity. Photoluminescence of polymer is strongly quenched upon C 60 doping due to dissociation of excitons accompanied by electron transfer to fullerene. (orig.)

  7. Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating reflector using electron conducting polymer

    KAUST Repository

    Alias, Mohd Sharizal; Liao, Hsien-Yu; Ng, Tien Khee; Ooi, Boon S.

    2015-01-01

    Nanoscale periodic patterning on insulating materials using focused-ion beam (FIB) is challenging because of charging effect, which causes pattern distortion and resolution degradation. In this paper, the authors used a charging suppression scheme using electron conducting polymer for the implementation of FIB patterned dielectric subwavelength grating (SWG) reflector. Prior to the FIB patterning, the authors numerically designed the optimal structure and the fabrication tolerance for all grating parameters (period, grating thickness, fill-factor, and low refractive index layer thickness) using the rigorous-coupled wave analysis computation. Then, the authors performed the FIB patterning on the dielectric SWG reflector spin-coated with electron conducting polymer for the anticharging purpose. They also performed similar patterning using thin conductive film anticharging scheme (30 nm Cr coating) for comparison. Their results show that the electron conducting polymer anticharging scheme effectively suppressing the charging effect during the FIB patterning of dielectric SWG reflector. The fabricated grating exhibited nanoscale precision, high uniformity and contrast, constant patterning, and complied with fabrication tolerance for all grating parameters across the entire patterned area. Utilization of electron conducting polymer leads to a simpler anticharging scheme with high precision and uniformity for FIB patterning on insulator materials.

  8. Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating reflector using electron conducting polymer

    KAUST Repository

    Alias, Mohd Sharizal

    2015-08-19

    Nanoscale periodic patterning on insulating materials using focused-ion beam (FIB) is challenging because of charging effect, which causes pattern distortion and resolution degradation. In this paper, the authors used a charging suppression scheme using electron conducting polymer for the implementation of FIB patterned dielectric subwavelength grating (SWG) reflector. Prior to the FIB patterning, the authors numerically designed the optimal structure and the fabrication tolerance for all grating parameters (period, grating thickness, fill-factor, and low refractive index layer thickness) using the rigorous-coupled wave analysis computation. Then, the authors performed the FIB patterning on the dielectric SWG reflector spin-coated with electron conducting polymer for the anticharging purpose. They also performed similar patterning using thin conductive film anticharging scheme (30 nm Cr coating) for comparison. Their results show that the electron conducting polymer anticharging scheme effectively suppressing the charging effect during the FIB patterning of dielectric SWG reflector. The fabricated grating exhibited nanoscale precision, high uniformity and contrast, constant patterning, and complied with fabrication tolerance for all grating parameters across the entire patterned area. Utilization of electron conducting polymer leads to a simpler anticharging scheme with high precision and uniformity for FIB patterning on insulator materials.

  9. Anticorrosion efficiency of zinc-filled epoxy coatings containing conducting polymers and pigments

    Czech Academy of Sciences Publication Activity Database

    Kalendová, A.; Veselý, D.; Kohl, M.; Stejskal, Jaroslav

    2015-01-01

    Roč. 78, January (2015), s. 1-20 ISSN 0300-9440 Institutional support: RVO:61389013 Keywords : conducting polymer * zinc metal * organic coating Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.632, year: 2015

  10. Polymer-inorganic hybrid proton conductive membranes: Effect of the interfacial transfer pathways

    International Nuclear Information System (INIS)

    Chen, Pingping; Hao, Lie; Wu, Wenjia; Li, Yifan; Wang, Jingtao

    2016-01-01

    Highlights: • A series of hybrid membranes are prepared using fillers with different structures. • The fillers (0-D, 1-D, and 2-D) are sulfonated to ensure close surface component. • The effect of filler’s structure on microstructure of hydrid membrane is explored. • For single-kind filler series, 2-D filler has the strongest conduction promotion. • The synergy effect of different kinds of fillers is systematacially investigated. - Abstract: For hybrid membrane, the polymer-inorganic interface along filler surface can be facilely created to be distinctive and controllable pathway for mass transfer. Herein, three kinds of fillers are used as inorganic additives including zero-dimensional silica (0-D, SiO_2), one-dimensional halloysite nanotube (1-D, HNT), and two-dimensional graphene oxide (2-D, GO), which are functionalized by sulfonated polymer layer to ensure close surface component. Then the fillers are incorporated into two types of polymer matrixes (phase-separated sulfonated poly(ether ether ketone) and non-phase-separated chitosan) to prepare three series of hybrid membranes with single-kind filler, double-kinds fillers, or triple-kinds fillers, respectively. The microstructures, physicochemical properties, and proton conduction properties (under hydrated and anhydrous conditions) of the membranes are extensively investigated. It is found that (i) for the single-kind filler-filled membranes, 2-D filler has the strongest promotion ability for proton conductivity of membrane due to the constructed wide and long-range pathways for proton transfer; (ii) while for the hybrid membranes with double-kinds fillers, instead of synergistic promotion effect, the fillers cause more tortuous transfer pathways within membranes and then decrease proton conductivity; (iii) the hybrid membranes with triple-kinds fillers exhibit similar behavior but a little higher conductivity than the membranes with double-kinds fillers.

  11. Core Cross-Linked Multiarm Star Polymers with Aggregation-Induced Emission and Temperature Responsive Fluorescence Characteristics

    KAUST Repository

    Zhang, Zhen

    2017-05-19

    Aggregation-induced emission (AIE) active core cross-linked multiarm star polymers, carrying polystyrene (PS), polyethylene (PE), or polyethylene-b-polycaprolactone (PE-b-PCL) arms, have been synthesized through an “arm-first” strategy, by atom transfer radical copolymerization (ATRP) of a double styrene-functionalized tetraphenylethene (TPE-2St) used as a cross-linker with linear arm precursors possessing terminal ATRP initiating moieties. Polyethylene macroinitiator (PE–Br) was prepared via the polyhomologation of dimethylsulfoxonium methylide with triethylborane followed by oxidation/hydrolysis and esterification of the produced PE–OH with 2-bromoisobutyryl bromide; polyethylene-block-poly(ε-caprolactone) diblock macroinitiator was derived by combining polyhomologation with ring-opening polymerization (ROP). All synthesized star polymers showed AIE-behavior either in solution or in bulk. At high concentration in good solvents (e.g., THF, or toluene) they exhibited low photoluminescence (PL) intensity due to the inner filter effect. In sharp contrast to the small molecule TPE-2St, the star polymers were highly emissive in dilute THF solutions. This can be attributed to the cross-linked structure of poly(TPE-2St) core which restricts the intramolecular rotation and thus induces emission. In addition, the PL intensity of PE star polymers in THF(solvent)/n-hexane(nonsolvent) mixtures, due to their nearly spherical shape, increased when the temperature decreased from 55 to 5 °C with a linear response in the range 40–5 °C.

  12. Removal of Parabens from Aqueous Solution Using β-Cyclodextrin Cross-Linked Polymer

    Directory of Open Access Journals (Sweden)

    Mhd Radzi Bin Abas

    2010-09-01

    Full Text Available The removal of four parabens, methyl-, ethyl-, propyl-, and benzyl-paraben, by β-cyclodextrin (β-CD polymer from aqueous solution was studied. Different β-CD polymers were prepared by using two cross-linkers, i.e., hexamethylene diisocyanate (HMDI and toluene-2,6-diisocyanate (TDI, with various molar ratios of cross-linker. β-CD-HMDI polymer with molar ratio of 1:7 and β-CD-TDI polymer with ratio 1:4 gave the highest adsorption of parabens among the β-CD-HMDI and β-CD-TDI series, and were subsequently used for further studies. The adsorption capacity of β-CD-HMDI is 0.0305, 0.0376, 0.1854 and 0.3026 mmol/g for methyl-, ethyl-, propyl-, and benzyl-paraben, respectively. β-CD-TDI have higher adsorption capacities compared with β-CD-HMDI, the adsorption capacity are 0.1019, 0.1286, 0.2551, and 0.3699 mmol/g methyl-, ethyl-, propyl-, and benzyl-paraben respectively. The parameters studied were adsorption capacity, water retention, and reusability. Role of both cross-linker in adsorption, hydrophobicity of polymers, and adsorption capacity of different parabens were compared and discussed. All experiments were conducted in batch adsorption technique. These polymers were applied to real samples and showed positive results.

  13. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  14. Electronically conductive polymer binder for lithium-ion battery electrode

    Science.gov (United States)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  15. Thermoelectric behavior of conducting polymers: On the possibility of off-diagonal thermoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Mateeva, N; Niculescu, H; Schlenoff, J; Testardi, L

    1997-07-01

    Non-cubic materials, when structurally aligned, possess sufficient anisotropy to exhibit thermoelectric effects where the electrical and thermal currents are orthogonal (off-diagonal thermoelectricity). The authors discuss the benefits of this form of thermoelectricity for devices and describe a search for suitable properties in the air-stable conducting polymers polyaniline and polypyrrole. They find the simple and general correlation that the logarithm of the electrical conductivity scales linearly with the Seebeck coefficient on doping but with proportionality in excess of the conventional prediction for thermoelectricity. The correlation is unexpected in its universality and unfavorable for thermoelectric applications. A simple model suggests that mobile charges of both signs exist in these polymers, and this leads to reduced thermoelectric efficiency. They also briefly discuss non air-stable polyacetylene, where ambipolar transport does not appear to occur, and where properties seem more favorable for thermoelectricity.

  16. Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend-based polymer electrolytes

    International Nuclear Information System (INIS)

    Ramesh, S.; Liew, Chiam-Wen; Morris, Ezra; Durairaj, R.

    2010-01-01

    In this paper, temperature dependence of ionic conductivity, crystallographic structural, morphological and thermal characteristics of polymer blends of PMMA and PVC with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) as a dopant salt are investigated. The study on the temperature dependence of ionic conductivity shows that these polymer blends exhibit Arrhenius behavior. The highest ionic conductivity was achieved when 70 wt% of PMMA was blended with 30 wt% of PVC. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal the amorphous nature and surface morphology of polymer electrolytes, respectively. In DSC analysis it was found that the glass transition temperature (T g ) and melting temperature (T m ) decreased, whereas the decomposition temperature (T d ) increased. In contrast, the shift towards higher decomposition temperature and decrease in weight loss of polymer electrolytes, in TGA studies, indicates that the thermal stability of polymer electrolytes improved.

  17. Conductive polymer sensor arrays for smart orthopaedic implants

    Science.gov (United States)

    Micolini, Carolina; Holness, F. B.; Johnson, James A.; Price, Aaron D.

    2017-04-01

    This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smartpolymer sensor array using conductive polyaniline (PANI) structures embedded in a polymeric substrate. The piezoresistive characteristics of PANI were studied to evaluate the efficacy of the manufacturing of an embedded pressure sensor. PANI's stability throughout loading and unloading cycles together with the response to incremental loading cycles was investigated. It is demonstrated that this specially developed multi-material additive manufacturing process for polyaniline is a good candidate for the manufacture of implant components with smart-polymer sensors embedded for the analysis of joint loads in orthopaedic implants.

  18. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.

    Science.gov (United States)

    Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

  19. Contribution to the electromagnetic study of conducting polymers and chiral structures

    International Nuclear Information System (INIS)

    Lafosse, Xavier

    1994-01-01

    In this work, an electromagnetic characterisation of organic absorptive materials partially made of conductive polymer is presented. Poly-pyrrole-Teflon alloys containing from 0 to 20 pc (in volume) poly-pyrrole were prepared and characterised from dc to 6 GHz. The complex permittivity shows that these materials are absorptive; the dielectric properties strongly depend on the composition and are correctly modelled by a percolation law. A dielectric relaxation was observed for the conductive alloys and this phenomenon is interpreted as the result of an electronic conduction process insured by a charged carriers hopping. A model was developed; it is in good agreement with these results. The difference between the low and high frequency behaviour is also underlined. Microwave chiral structures were manufactured. A cholesteric arrangement of uniaxial slabs was measured in transmission between 4 and 6 GHz; the experimental results are correctly modelled by cascading quadrupolar scattering matrices. New chiral materials were prepared by mixing millimetric helices made of poly-pyrrole with an insulating matrix. These materials exhibit a rotatory power and a good absorption of electromagnetic waves which is connected to the poly-pyrrole concentration. The interest in using conductive polymers to design absorptive chiral materials in the microwave domain is put in evidence and the experimental results are in good agreement with a numerical model; nevertheless, the optimisation of these materials remains difficult. (author) [fr

  20. Microtexturing of the conductive PEDOT:PSS Polymer for superhydrophobic organic electrochemical transistors

    KAUST Repository

    Gentile, Francesco; Coppedè , Nicola; Tarabella, Giuseppe; Villani, Marco; Calestani, Davide; Candeloro, Patrizio; Iannotta, Salvatore; Di Fabrizio, Enzo M.

    2014-01-01

    and materials science to obtain an advanced device where, on account of the superhydrophobicity of the system, the solutions of interest can be manipulated and, on account of the conductive PEDOT:PSS polymer, the charged molecules dispersed inside can

  1. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  2. Color combination of conductive polymers for black electrochromism.

    Science.gov (United States)

    Shin, Haijin; Kim, Yuna; Bhuvana, Thiruvelu; Lee, Jiyea; Yang, Xu; Park, Cheolmin; Kim, Eunkyoung

    2012-01-01

    Conducting polymers that absorb three primary colors, red, green, and blue (RGB), were introduced with a yellow electrochromic polymer (Y) for the preparation of black electrochromic devices. Red poly(3-hexylthiophene) (P3HT) and blue poly(3,4-ethylenedioxythiophene) (PEDOT) were coated on one side of the electrode as a cathodically coloring electrochromic (EC) layer, while green poly(aniline-N-butylsulfonate) (PANBS) and yellow EC poly{[1,3-bis(9',9'-dihexylfluoren-20-yl)azulenyl]-alt-[2",7"-(9",9"-dihexylfluorenyl]} (PDHFA) were coated on the opposite electrode to complete a complementary EC device. The yellow PDHFA layer effectively compensated for absorption below 450 nm and above the 600 nm region, which was lacking in the RGB electrode. The resultant RGBY ECD provided a black color near the CIE black with L*, a*, and b* values of 32, -1.1, and 3.7, respectively, covering a broad absorption in the visible range in the colored state. The state of the black EC device was maintained, even after the electricity was turned off for 200 h, showing stable memory effect. © 2011 American Chemical Society

  3. Properties of grafted polymer metal complexes as ion exchangers and its electrical conductivity

    International Nuclear Information System (INIS)

    El-Arnaouty, M.B.; Abdel Ghaffar, A.M.; Eid, M.

    2011-01-01

    The polyelectrolyte has been prepared as a potential proton exchanger polymer by grafting of acrylic acid/acrylamide and acrylic acid/acrylonitrile comonomer onto low density polyethylene film via gamma radiation. The influence of grafting percent on the electrical conductivity was studied. The resulting polymers were then characterized by evaluating their physico-chemical properties such as ion exchange capacity, and electrical conductivity as a function of grafting yield. The grafted films at different compositions was characterized by FTIR, TGA and SEM. The ion exchange capacity (IEC) of the grafted film at grafting % (191) and monomer concentration ratio 50:50 for (LDPE-g-AAc/AAm) was found to be more than that for (LDPE-g-AAc/AN). The electrical conductivity was found to be greatly affected by the comonomer composition where it increased as the degree of grafting increased for all grafted films. After alkaline treatment with 3% KOH, the electrical conductivity of the grafted films found to be increased. The presence of potassium as counter ion maximized the electrical conductivity of the grafted films. The electrical conductivity of Cu-membrane complexes was higher than that of both Co and Ni complexes. The electrical conductivity increases by increasing both Cu ions content and temperature

  4. How the type of input function affects the dynamic response of conducting polymer actuators

    Science.gov (United States)

    Xiang, Xingcan; Alici, Gursel; Mutlu, Rahim; Li, Weihua

    2014-10-01

    There has been a growing interest in smart actuators typified by conducting polymer actuators, especially in their (i) fabrication, modeling and control with minimum external data and (ii) applications in bio-inspired devices, robotics and mechatronics. Their control is a challenging research problem due to the complex and nonlinear properties of these actuators, which cannot be predicted accurately. Based on an input-shaping technique, we propose a new method to improve the conducting polymer actuators’ command-following ability, while minimizing their electric power consumption. We applied four input functions with smooth characteristics to a trilayer conducting polymer actuator to experimentally evaluate its command-following ability under an open-loop control strategy and a simulated feedback control strategy, and, more importantly, to quantify how the type of input function affects the dynamic response of this class of actuators. We have found that the four smooth inputs consume less electrical power than sharp inputs such as a step input with discontinuous higher-order derivatives. We also obtained an improved transient response performance from the smooth inputs, especially under the simulated feedback control strategy, which we have proposed previously [X Xiang, R Mutlu, G Alici, and W Li, 2014 “Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization’, Journal of Smart Materials and Structure, 23]. The idea of using a smooth input command, which results in lower power consumption and better control performance, can be extended to other smart actuators. Consuming less electrical energy or power will have a direct effect on enhancing the operational life of these actuators.

  5. How the type of input function affects the dynamic response of conducting polymer actuators

    International Nuclear Information System (INIS)

    Xiang, Xingcan; Alici, Gursel; Mutlu, Rahim; Li, Weihua

    2014-01-01

    There has been a growing interest in smart actuators typified by conducting polymer actuators, especially in their (i) fabrication, modeling and control with minimum external data and (ii) applications in bio-inspired devices, robotics and mechatronics. Their control is a challenging research problem due to the complex and nonlinear properties of these actuators, which cannot be predicted accurately. Based on an input-shaping technique, we propose a new method to improve the conducting polymer actuators’ command-following ability, while minimizing their electric power consumption. We applied four input functions with smooth characteristics to a trilayer conducting polymer actuator to experimentally evaluate its command-following ability under an open-loop control strategy and a simulated feedback control strategy, and, more importantly, to quantify how the type of input function affects the dynamic response of this class of actuators. We have found that the four smooth inputs consume less electrical power than sharp inputs such as a step input with discontinuous higher-order derivatives. We also obtained an improved transient response performance from the smooth inputs, especially under the simulated feedback control strategy, which we have proposed previously [X Xiang, R Mutlu, G Alici, and W Li, 2014 “Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization’, Journal of Smart Materials and Structure, 23]. The idea of using a smooth input command, which results in lower power consumption and better control performance, can be extended to other smart actuators. Consuming less electrical energy or power will have a direct effect on enhancing the operational life of these actuators. (paper)

  6. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration.

    Science.gov (United States)

    Zhang, Ze; Rouabhia, Mahmoud; Wang, Zhaoxu; Roberge, Christophe; Shi, Guixin; Roche, Phillippe; Li, Jiangming; Dao, Lê H

    2007-01-01

    Normal and electrically stimulated PC12 cell cultures and the implantation of nerve guidance channels were performed to evaluate newly developed electrically conductive biodegradable polymer composites. Polypyrrole (PPy) doped by butane sulfonic acid showed a significantly higher number of viable cells compared with PPy doped by polystyrenesulfonate after a 6-day culture. The PC12 cells were left to proliferate for 6 days, and the PPy-coated membranes, showing less initial cell adherence, recorded the same proliferation rate as did the noncoated membranes. Direct current electricity at various intensities was applied to the PC12 cell-cultured conductive membranes. After 7 days, the greatest number of neurites appeared on the membranes with a current intensity approximating 1.7-8.4 microA/cm. Nerve guidance channels made of conductive biodegradable composite were implanted into rats to replace 8 mm of sciatic nerve. The implants were harvested after 2 months and analyzed with immunohistochemistry and transmission electron microscopy. The regenerated nerve tissue displayed myelinated axons and Schwann cells that were similar to those in the native nerve. Electrical stimulation applied through the electrically conductive biodegradable polymers therefore enhanced neurite outgrowth in a current-dependent fashion. The conductive polymers also supported sciatic nerve regeneration in rats.

  7. Quasi-solid polymer electrolytes using photo-cross-linked polymers. Lithium and divalent cation conductors and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Shoichiro; Mori, Yoichi; Furuhashi, Yuri; Masuda, Hideki [Nagoya Inst. of Tech. (Japan). Dept. of Applied Chemistry; Yamamoto, Osamu [Mie Univ., Tsu (Japan). Dept. of Chemistry

    1999-09-01

    In this report, we will present the results on the photo-cross-linked poly-(ethylene glycol) diacrylate (PEGDA) based quasi-solid, i.e. gel, polymer electrolyte systems with lithium, magnesium and zinc trifluoromethanesulfonates [triflate; M{sup n}(CF{sub 3}SO{sub 3}){sub n}] and their preliminary applications to primary cells. The Celgard{sup trademark} membrane-impregnated electrolytes were prepared in the same manner as Abraham et al. [K.M. Abraham, M. Alamgir, D.K. Hoffmann, J. Electrochem. Soc. 142 (1995) 683]. The precursor solutions were composed of metal triflates, ethylene carbonate, propylene carbonate, and tetraethylene glycol diacrylate. The Celgard{sup trademark} aa3401 membrane was soaked overnight in the precursor solution, then clamped between two Pyrex glass plates and irradiated with UV light to form a gel electrolyte. The maxima of the conductivity obtained were 4.5 x 10{sup -4} S cm{sup -1} at 12 mol% for LiCF{sub 3}SO{sub 3}, 1.7 x 10{sup -4} S cm{sup -1} at 1 mol% for Mg(CF{sub 3}SO{sub 3}){sub 2}, and 2.1 x 10{sup -4} S cm{sup -1} at 4 mol% Zn(CF{sub 3}SO{sub 3}){sub 2} system, respectively. The Arrhenius plots of the conductivities are almost linear between 268 and 338 K with 15-25 kJ/mol of activation energy for conduction. The cell, li vertical stroke LiCF{sub 3}SO{sub 3}-SPE+Celgard{sup trademark} aa3401 vertical stroke (CH{sub 3}){sub 4}NI{sub 5}+acetylene black, showed 2.86 V of OCV and could discharge up to 25% with respect to the cathode active material at a discharging current of 0.075 mA/cm{sup 2}. (orig.)

  8. Novel electrical transport properties in conducting polymers such as polythiophene and Poly(3-Methylthiophene)

    International Nuclear Information System (INIS)

    Kazama, Shigeo; Masubuchi, Shin-ichi; Matsuyama, Tomochika; Matsushita, Rokuji.

    1994-01-01

    Electric transport properties in most of the conducting organic polymers have provided a riddle that prevents a thorough physical understanding of the conduction mechanism. Major difficulties for approaching the most substantial aspect in the electrical transport properties underlie in complicated higher order structure inherent to polymeric materials consisting of crystalline regions entangled with disordered amorphous regions. In order to clearly understand the origin of the metallic nature of conducting polymers, we have to extract the proper transport properties characteristics of the ordered crystalline regions. We have made a series of experimental studies of the transport properties in conductive polythiophene and poly(3-methylthiophene) obtained with the electrochemical polymerization. For polythiophene, we have investigated both the as-grown samples and the ones that contain controlled amount of dopant species exchanged after the neutralization aiming to see the effect of dopant concentration on the transport properties. (author)

  9. Microtexturing of the conductive PEDOT:PSS Polymer for superhydrophobic organic electrochemical transistors

    KAUST Repository

    Gentile, Francesco

    2014-01-22

    Superhydrophobic surfaces are bioinspired, nanotechnology artifacts, which feature a reduced friction coefficient, whereby they can be used for a number of very practical applications including, on the medical side, the manipulation of biological solutions. In this work, we integrated superhydrophobic patterns with the conducting polymer PEDOT:PSS, one of the most used polymers in organic electronics because highly sensitive to ionized species in solution. In doing so, we combined geometry and materials science to obtain an advanced device where, on account of the superhydrophobicity of the system, the solutions of interest can be manipulated and, on account of the conductive PEDOT:PSS polymer, the charged molecules dispersed inside can be quantitatively measured. This original substrate preparation allowed to perform electrochemical measurements on ionized species in solution with decreasing concentration down to 10 -7 molar. Moreover, it was demonstrated the ability of the device of realizing specific, combined time and space resolved analysis of the sample. Collectively, these results demonstrate how a tight, interweaving integration of different disciplines can provide realistic tools for the detection of pathologies. The scheme here introduced offers breakthrough capabilities that are expected to radically improve both the pace and the productivity of biomedical research, creating an access revolution. 2014 Francesco Gentile et al.

  10. Exploring novel silicon-containing polymers---From preceramic polymers to conducting polymers with nonlinear optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yi.

    1991-10-07

    Several new types of silicon-containing preceramic polymers, i.e., poly(diorganosilacetylene) and poly(diorganosilvinylene) have been synthesized with molecular weights from 10,000 to 120,000. These polymers could be thermally converted to SiC with a moderate to high char yields. Ready solubility and good processability made these types of polymers attractive in their applications to ceramics. The thermal polymerization of diethynyldiphenyl-silane, which was reported in 1968 to afford poly(diphenylsilyldiacetylene) via dehydrogenation, was reinvestigated. Spectroscopic studies showed that the polymer had a structure of polyacetylene type not diacetylene. Diphenyldiethynylgermane and a series of diorganodiethynylsilances were synthesized. These could be polymerized in the presence of MoCl{sub 5} or WCl{sub 6} to afford a soluble, violet material with Mw as high as 108,000. 100 refs., 56 figs., 16 tabs.

  11. Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend-based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, S., E-mail: rameshtsubra@gmail.com [Centre for Ionics University Malaya, Department of Physics, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Liew, Chiam-Wen; Morris, Ezra; Durairaj, R. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)

    2010-11-20

    In this paper, temperature dependence of ionic conductivity, crystallographic structural, morphological and thermal characteristics of polymer blends of PMMA and PVC with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) as a dopant salt are investigated. The study on the temperature dependence of ionic conductivity shows that these polymer blends exhibit Arrhenius behavior. The highest ionic conductivity was achieved when 70 wt% of PMMA was blended with 30 wt% of PVC. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal the amorphous nature and surface morphology of polymer electrolytes, respectively. In DSC analysis it was found that the glass transition temperature (T{sub g}) and melting temperature (T{sub m}) decreased, whereas the decomposition temperature (T{sub d}) increased. In contrast, the shift towards higher decomposition temperature and decrease in weight loss of polymer electrolytes, in TGA studies, indicates that the thermal stability of polymer electrolytes improved.

  12. Preparation, Characterization and Efficacy Evaluation of Synthetic Biocompatible Polymers Linking Natural Antioxidants

    Directory of Open Access Journals (Sweden)

    Nevio Picci

    2012-10-01

    Full Text Available The purpose of this work was the synthesis, characterization and efficacy evaluation of new biocompatible antioxidant polymers linking trans-ferulic acid or a-lipoic acid. In particular, ferulic or lipoic acid were introduced in the preformed polymeric backbone. The new antioxidant biopolymers were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography. The degree of functionalization (moles of antioxidant per gram of polymer was determined by the Gaur-Gupta method for free amino group determination and by the Folin method for the phenolic groups. Their ability to inhibit lipid peroxidation were estimated in rat liver microsomal membranes induced in vitro by tert-BOOH (tert-butyl hydroperoxide, as a source of free radicals. The DPPH (1,1-diphenyl-2-picrylhydrazyl radical-scavenging effect was also evaluated. The obtained systems, with different solubility, showed strong antioxidant and antiradical activities, suggesting potential use as packaging materials for foods, cosmetics, pharmaceuticals and personal care products. Moreover, the cytotoxicity of the synthesized polymers was also evaluated on Caco-2 cell cultures in order to verify their biocompatibility when exposed to an absorptive epithelial cell line.

  13. Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating

    KAUST Repository

    Yang, Yuan

    2011-11-22

    Rechargeable lithium-sulfur (Li-S) batteries hold great potential for next-generation high-performance energy storage systems because of their high theoretical specific energy, low materials cost, and environmental safety. One of the major obstacles for its commercialization is the rapid capacity fading due to polysulfide dissolution and uncontrolled redeposition. Various porous carbon structures have been used to improve the performance of Li-S batteries, as polysulfides could be trapped inside the carbon matrix. However, polysulfides still diffuse out for a prolonged time if there is no effective capping layer surrounding the carbon/sulfur particles. Here we explore the application of conducting polymer to minimize the diffusion of polysulfides out of the mesoporous carbon matrix by coating poly(3,4-ethylenedioxythiophene)- poly(styrene sulfonate) (PEDOT:PSS) onto mesoporous carbon/sulfur particles. After surface coating, coulomb efficiency of the sulfur electrode was improved from 93% to 97%, and capacity decay was reduced from 40%/100 cycles to 15%/100 cycles. Moreover, the discharge capacity with the polymer coating was ∼10% higher than the bare counterpart, with an initial discharge capacity of 1140 mAh/g and a stable discharge capacity of >600 mAh/g after 150 cycles at C/5 rate. We believe that this conductive polymer coating method represents an exciting direction for enhancing the device performance of Li-S batteries and can be applicable to other electrode materials in lithium ion batteries. © 2011 American Chemical Society.

  14. Performance Improvement by Layout Designs of Conductive Polymer Microelectrode Based Impedimetric Biosensors

    DEFF Research Database (Denmark)

    Rosati, Giulio; Daprà, Johannes; Cherré, Solène

    2014-01-01

    In this work we present a theoretical, computational, and experimental evaluation of the performance of an impedimetric biosensor based on interdigitated conductive polymer (PEDOT:TsO) microelectrodes in a microfluidic system. The influence of the geometry of the electrodes and microchannels on t...

  15. Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization

    International Nuclear Information System (INIS)

    Xiang, Xingcan; Mutlu, Rahim; Alici, Gursel; Li, Weihua

    2014-01-01

    Conducting polymer actuators have shown significant potential in articulating micro instruments, manipulation devices, and robotics. However, implementing a feedback control strategy to enhance their positioning ability and accuracy in any application requires a feedback sensor, which is extremely large in size compared to the size of the actuators. Therefore, this paper proposes a new sensorless control scheme without the use of a position feedback sensor. With the help of the system identification technique and particle swarm optimization, the control scheme, which we call the simulated feedback control system, showed a satisfactory command tracking performance for the conducting polymer actuator’s step and dynamic displacement responses, especially under a disturbance, without needing a physical feedback loop, but using a simulated feedback loop. The primary contribution of this study is to propose and experimentally evaluate the simulated feedback control scheme for a class of the conducting polymer actuators known as tri-layer polymer actuators, which can operate both in dry and wet media. This control approach can also be extended to other smart actuators or systems, for which the feedback control based on external sensing is impractical. (paper)

  16. Modeling and inverse feedforward control for conducting polymer actuators with hysteresis

    International Nuclear Information System (INIS)

    Wang, Xiangjiang; Alici, Gursel; Tan, Xiaobo

    2014-01-01

    Conducting polymer actuators are biocompatible with a small footprint, and operate in air or liquid media under low actuation voltages. This makes them excellent actuators for macro- and micro-manipulation devices, however, their positioning ability or accuracy is adversely affected by their hysteresis non-linearity under open-loop control strategies. In this paper, we establish a hysteresis model for conducting polymer actuators, based on a rate-independent hysteresis model known as the Duhem model. The hysteresis model is experimentally identified and integrated with the linear dynamics of the actuator. This combined model is inverted to control the displacement of the tri-layer actuators considered in this study, without using any external feedback. The inversion requires an inverse hysteresis model which was experimentally identified using an inverse neural network model. Experimental results show that the position tracking errors are reduced by more than 50% when the hysteresis inverse model is incorporated into an inversion-based feedforward controller, indicating the potential of the proposed method in enabling wider use of such smart actuators. (paper)

  17. Low polymer hydraulic fracturing applications in Reconcavo basin wells can reduce cost and improve conductivity

    International Nuclear Information System (INIS)

    Suzart, Joao Walter Pereira; Araujo, Paulo Fernando de

    2000-01-01

    Gels used for hydraulic-fracturing treatments generally contain high concentrations of polymer. The polymer helps the fracturing fluid achieve the level of viscosity necessary for transporting proppant through the rock matrix. However, high-polymer gels leave greater amounts of residue in the formation and can therefore cause formation damage. This paper describes how low polymer (L P) gels can be used for hydraulic-fracturing operations to reduce job costs and increase conductivity by reducing formation damage while maintaining the characteristics of a high-polymer gel. The L P fluid system has a low p H and contains an appropriate breaker concentration. Operators have achieved positive results with this system, which allows them to measure robust gel breaks and reduces the necessity for well cleaning. Consequently, formation damage can be significantly reduced. (author)

  18. Sulfonation and characterization of styrene-indene copolymers for the development of proton conducting polymer membranes

    Directory of Open Access Journals (Sweden)

    Cristiane M. Becker

    2012-01-01

    Full Text Available The aim of this work is to obtain polymer precursors based on styrene copolymers with distinct degrees of sulfonation, as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the performance of the polyelectrolyte was evaluated based on the content of acid polar groups incorporated into the macromolecular chain. Polymeric films were produced by blending the sulfonated styrene-indene copolymer with poly(vinylidene fluoride. The degree of sulfonation of the polymer was strongly affected by the sulfonation reaction parameters, with a direct impact on the ionic exchange capacity and the ionic conductivity of the sulfonated polymers and the membranes obtained from them. The films produced with the blends showed more suitable mechanical properties, although the conductivity of the membranes was still lower than that of commercially available membranes used in fuel cells.

  19. Electrical conductivity studies on Ammonium bromide incorporated with Zwitterionic polymer blend electrolyte for battery application

    Science.gov (United States)

    Parameswaran, V.; Nallamuthu, N.; Devendran, P.; Nagarajan, E. R.; Manikandan, A.

    2017-06-01

    Solid polymer blend electrolytes are widely studied due to their extensive applications particularly in electrochemical devices. Blending polymer makes the thermal stability, higher mechanical strength and inorganic salt provide ionic charge carrier to enhance the conductivity. In these studies, 50% polyvinyl alcohol (PVA), 50% poly (N-vinyl pyrrolidone) (PVP) and 2.5% L-Asparagine mixed with different ratio of the Ammonium bromide (NH4Br), have been synthesized using solution casting technique. The prepared PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films have been characterized by various analytical methods such as FT-IR, XRD, impedance spectroscopy, TG-DSC and scanning electron microscopy. FT-IR, XRD and TG/DSC analysis revealed the structural and thermal behavior of the complex formation between PVA/PVP/L-Asparagine/doped-NH4Br. The ionic conductivity and the dielectric properties of PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films were examined using impedance analysis. The highest ionic conductivity was found to be 2.34×10-4 S cm-1 for the m.wt. composition of 50%PVA:50%PVP:2.5%L-Asparagine:doped 0.15 g NH4Br at ambient temperature. Solid state proton battery is fabricated and the observed open circuit voltage is 1.1 V and its performance has been studied.

  20. Morphology, optical and ionic conductivity studies of electron beam irradiated polymer electrolyte film

    Science.gov (United States)

    Devendrappa, H.; Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Ganesh, S.

    2018-04-01

    The effects of electron beam (EB) irradiation on morphology, optical properties and ionic conductivity of (PVdF-co-HFP: LiClO4=90:10, PHL10) electrolyte films. The FESEM image reveal increasing porous morphology with increasing EB dose confirms the polymer degradation as result more amorphousity. The optical absorbance was found to be increase with red shift in UV region and direct optical band gaps was found decreased upon EB dose from 3.70 eV to 2.65 eV. The ionic conductivity increases slowly in lower frequency, whereas rapidly increases at the high frequency and found about 8.28×10-4 S/cm at 120 kGy dose. The obtained results suggest that the physical properties of polymer electrolytes can be changed using EB irradiation as requirement.

  1. All-solid-state reference electrodes based on conducting polymers.

    Science.gov (United States)

    Kisiel, Anna; Marcisz, Honorata; Michalska, Agata; Maksymiuk, Krzysztof

    2005-12-01

    A novel construction of solution free (pseudo)reference electrodes, compatible with all-solid-state potentiometric indicator electrodes, has been proposed. These electrodes use conducting polymers (CP): polypyrrole (PPy) or poly(3,4-ethylenedioxythiophene) (PEDOT). Two different arrangements have been tested: solely based on CP and those where the CP phase is covered with a poly(vinyl chloride) based outer membrane of tailored composition. The former arrangement was designed to suppress or compensate cation- and anion-exchange, using mobile perchlorate ions and poly(4-styrenesulfonate) or dodecylbenzenesulfonate anions as immobilized dopants. The following systems were used: (i) polypyrrole layers doped simultaneously by two kinds of anions, both mobile and immobilized in the polymer layer; (ii) bilayers of polypyrrole with anion exchanging inner layer and cation-exchanging outer layer; (iii) polypyrrole doped by surfactant dodecylbenzenesulfonate ions, which inhibit ion exchange on the polymer/solution interface. For the above systems, recorded potentials have been found to be practically independent of electrolyte concentration. The best results, profound stability of potentials, have been obtained for poly(3,4-ethylenedioxythiophene) or polypyrrole doped by poly(4-styrenesulfonate) anions covered by a poly(vinyl chloride) based membrane, containing both anion- and cation-exchangers as well as solid potassium chloride and silver chloride with metallic silver. Differently to the cases (i)-(iii) these electrodes are much less sensitive to the influence of redox and pH interferences. This arrangement has been also characterized using electrochemical impedance spectroscopy and chronopotentiometry.

  2. Polymers and Cross-Linking: A CORE Experiment to Help Students Think on the Submicroscopic Level

    Science.gov (United States)

    Bruce, Mitchell R. M.; Bruce, Alice E.; Avargil, Shirly; Amar, Francois G.; Wemyss, Thomas M.; Flood, Virginia J.

    2016-01-01

    The Polymers and Cross-Linking experiment is presented via a new three phase learning cycle: CORE (Chemical Observations, Representations, Experimentation), which is designed to model productive chemical inquiry and to promote a deeper understanding about the chemistry operating at the submicroscopic level. The experiment is built on two familiar…

  3. Effect of dose on radiation-induced conductivity in polymers

    International Nuclear Information System (INIS)

    Tyutnev, A.P.; Saenko, V.S.; Pozhidaev, E.D.; Ikhsanov, R.Sh.

    2007-01-01

    Numerical simulation of radiation-induced conductivity in polymers upon long-term irradiation on the basis of the generalized Rose-Fowler-Vaisberg model, which allows for both dipolar carrier transport and generation of radiation traps during irradiation, was performed. The unusual properties of radiation-induced conductivity, such as the appearance of a maximum on current transients, the absence of a steady state, and a substantial difference between these curves for the first and subsequent irradiation, are rationalized in terms of the formation of free radicals, the major feature of radiolysis in the chemical aspect. This interpretation does not require the involvement of degradation or crosslinking processes, unlike other interpretations that appear in the literature. With the use of low-density polyethylene as an example, it was shown that radiation-induced conductivity both upon pulse and continuous irradiation can satisfactorily be described with the unified set of parameters of the generalized Rose-Fowler-Vaisberg model [ru

  4. Investigation of Polymer Liquid Crystals

    Science.gov (United States)

    Han, Kwang S.

    1996-01-01

    The positron annihilation lifetime spectroscopy (PALS) using a low energy flux generator may provide a reasonably accurate technique for measuring molecular weights of linear polymers and characterization of thin polyimide films in terms of their dielectric constants and hydrophobity etc. Among the tested samples are glassy poly arylene Ether Ketone films, epoxy and other polyimide films. One of the proposed techniques relates the free volume cell size (V(sub f)) with sample molecular weight (M) in a manner remarkably similar to that obtained by Mark Houwink (M-H) between the inherent viscosity (eta) and molecular wieght of polymer solution. The PALS has also demonstrated that free-volume cell size in thermoset is a versatile, useful parameter that relates directly to the polymer segmental molecular weight, the cross-link density, and the coefficient of thermal expansion. Thus, a determination of free volume cell size provides a viable basis for complete microstructural characterization of thermoset polyimides and also gives direct information about the cross-link density and coefficient of expansion of the test samples. Seven areas of the research conducted are reported here.

  5. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing; Ben, Teng; Xu, Shixian; Qiu, Shilun

    2014-01-01

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous

  6. Potential profile in a conducting polymer strip

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Vlachopoulos, Nikolaos

    2002-01-01

    Many conjugated polymers show an appreciable difference in volume between their oxidized and reduced forms. This property can be utilized in soft electrochemically driven actuators, "artificial muscles". Several geometries have been proposed for the conversion of the volume expansion into useful...... mechanical work. In a particularly simple geometry, the length change of polymer strips is exploited. The polymer strips are connected to the driving circuit at the end of the strip that is attached to the support of the device. The other end of the strip is connected to the load. The advantage of this set...

  7. Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites

    Science.gov (United States)

    Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.

    2010-01-01

    Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity

  8. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube.

    Science.gov (United States)

    Jung, Haejong; Yu, Seunggun; Bae, Nam-Seok; Cho, Suk Man; Kim, Richard Hahnkee; Cho, Sung Hwan; Hwang, Ihn; Jeong, Beomjin; Ryu, Ji Su; Hwang, Junyeon; Hong, Soon Man; Koo, Chong Min; Park, Cheolmin

    2015-07-22

    Design of materials to be heat-conductive in a preferred direction is a crucial issue for efficient heat dissipation in systems using stacked devices. Here, we demonstrate a facile route to fabricate polymer composites with directional thermal conduction. Our method is based on control of the orientation of fillers with anisotropic heat conduction. Melt-compression of solution-cast poly(vinylidene fluoride) (PVDF) and graphene nanoflake (GNF) films in an L-shape kinked tube yielded a lightweight polymer composite with the surface normal of GNF preferentially aligned perpendicular to the melt-flow direction, giving rise to a directional thermal conductivity of approximately 10 W/mK at 25 vol % with an anisotropic thermal conduction ratio greater than six. The high directional thermal conduction was attributed to the two-dimensional planar shape of GNFs readily adaptable to the molten polymer flow, compared with highly entangled carbon nanotubes and three-dimensional graphite fillers. Furthermore, our composite with its density of approximately 1.5 g/cm(3) was mechanically stable, and its thermal performance was successfully preserved above 100 °C even after multiple heating and cooling cycles. The results indicate that the methodology using an L-shape kinked tube is a new way to achieve polymer composites with highly anisotropic thermal conduction.

  9. Novel patternable and conducting metal-polymer nanocomposites: a step towards advanced mutlifunctional materials

    Science.gov (United States)

    Rodríguez-Cantó, Pedro J.; Martínez-Marco, Mariluz; Abargues, Rafael; Latorre-Garrido, Victor; Martínez-Pastor, Juan P.

    2013-03-01

    In this work, we present a novel patternable conducting nanocomposite containing gold nanoparticles. Here, the in-situ polymerization of 3T is carried out using HAuCl4 as oxidizing agent inside PMMA as host matrix. During the bake step, the gold salt is also reduced from Au(III) to Au(0) generating Au nanoparticles in the interpenetrating polymer network (IPN) system. We found that this novel multifunctional resist shows electrical conductivity and plasmonic properties as well as potential patterning capability provided by the host matrix. The resulting nanocomposite has been investigated by TEM and UV-Vis spectroscopy. Electrical characterization was also conducted for different concentration of 3T and Au(III) following a characteristic percolation behaviour. Conductivities values from 10-5 to 10 S/cm were successfully obtained depending on the IPN formulation. Moreover, The Au nanoparticles generated exhibited a localized surface plasmon resonance at around 520 nm. This synthetic approach is of potential application to modify the conductivity of numerous insulating polymers and synthesize Au nanoparticles preserving to some extent their physical and chemical properties. In addition, combination of optical properties (Plasmonics), electrical, and lithographic capability in the same material allows for the design of materials with novel functionalities and provides the basis for next generation devices.

  10. Construction of 3D Skeleton for Polymer Composites Achieving a High Thermal Conductivity.

    Science.gov (United States)

    Yao, Yimin; Sun, Jiajia; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2018-03-01

    Owing to the growing heat removal issue in modern electronic devices, electrically insulating polymer composites with high thermal conductivity have drawn much attention during the past decade. However, the conventional method to improve through-plane thermal conductivity of these polymer composites usually yields an undesired value (below 3.0 Wm -1 K -1 ). Here, construction of a 3D phonon skeleton is reported composed of stacked boron nitride (BN) platelets reinforced with reduced graphene oxide (rGO) for epoxy composites by the combination of ice-templated and infiltrating methods. At a low filler loading of 13.16 vol%, the resulting 3D BN-rGO/epoxy composites exhibit an ultrahigh through-plane thermal conductivity of 5.05 Wm -1 K -1 as the best thermal-conduction performance reported so far for BN sheet-based composites. Theoretical models qualitatively demonstrate that this enhancement results from the formation of phonon-matching 3D BN-rGO networks, leading to high rates of phonon transport. The strong potential application for thermal management has been demonstrated by the surface temperature variations of the composites with time during heating and cooling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis and characterization of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane.

    Directory of Open Access Journals (Sweden)

    Joy Wei Yi Liew

    Full Text Available Polymer electrolyte membranes based on the natural polymer κ-carrageenan were modified and characterized for application in electrochemical devices. In general, pure κ-carrageenan membranes show a low ionic conductivity. New membranes were developed by chemically modifying κ-carrageenan via phosphorylation to produce O-methylene phosphonic κ-carrageenan (OMPC, which showed enhanced membrane conductivity. The membranes were prepared by a solution casting method. The chemical structure of OMPC samples were characterized using Fourier transform infrared spectroscopy (FTIR, 1H nuclear magnetic resonance (1H NMR spectroscopy and 31P nuclear magnetic resonance (31P NMR spectroscopy. The conductivity properties of the membranes were investigated by electrochemical impedance spectroscopy (EIS. The characterization demonstrated that the membranes had been successfully produced. The ionic conductivity of κ-carrageenan and OMPC were 2.79 × 10-6 S cm-1 and 1.54 × 10-5 S cm-1, respectively. The hydrated membranes showed a two orders of magnitude higher ionic conductivity than the dried membranes.

  12. Radiation induced synthesis of conducting polymers and their metal nano-composites

    International Nuclear Information System (INIS)

    Cui, Zhenpeng

    2017-01-01

    The aim of the present work is to demonstrate the versatility of the gamma (γ)-rays based radiolytic method and to extend our methodology to the synthesis of various conducting polymers (CPs) in water in different experimental conditions. Poly(3,4-ethylenedioxy-thiophene) (PEDOT) and poly-pyrrole (PPy) conjugated polymers were successfully prepared and characterized in solution and after deposition by complementary spectroscopic and microscopic techniques. Also their thermal stability and their electrical conductivity were studied and compared with those of CPs prepared by conventional methods. The influence of the nature of radiation-induced oxidizing radicals, of the ionic strength, of the medium, of the pH, of the presence of surfactant-based soft templates on the growth mechanism, on the efficiency of polymerization, on the morphology of the obtained CPs as well as on their absorption and conducting properties was checked. Also, the radiolytic method was extend to the synthesis of CPs/noble metal nano-composites. Different preparation methodologies were developed based on two-step method and one-pot method, by using oxidation route or reduction route. Our new radiolytic strategy described and extended in this manuscript opens the way for the preparation of different kinds of CPs and CPs nano-composites not only in aqueous solutions but also in various environments foreshadowing many promising applications.. (author)

  13. Conductive Polymer Microelectrodes for on-chip measurement of transmitter release from living cells

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Matteucci, Marco; Taboryski, Rafael J.

    2012-01-01

    driven cell trapping inside closed chip devices. Conductive polymer microelectrodes were used to measure transmitter release using electrochemical methods such as cyclic voltammetry and constant potential amperometry. By measuring the oxidation current at a cyclic voltammogram, the concentration...

  14. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical-Chiral Sensors.

    Science.gov (United States)

    Ibanez, Jorge G; Rincón, Marina E; Gutierrez-Granados, Silvia; Chahma, M'hamed; Jaramillo-Quintero, Oscar A; Frontana-Uribe, Bernardo A

    2018-05-09

    Conducting polymers (CPs), thanks to their unique properties, structures made on-demand, new composite mixtures, and possibility of deposit on a surface by chemical, physical, or electrochemical methodologies, have shown in the last years a renaissance and have been widely used in important fields of chemistry and materials science. Due to the extent of the literature on CPs, this review, after a concise introduction about the interrelationship between electrochemistry and conducting polymers, is focused exclusively on the following applications: energy (energy storage devices and solar cells), use in environmental remediation (anion and cation trapping, electrocatalytic reduction/oxidation of pollutants on CP based electrodes, and adsorption of pollutants) and finally electroanalysis as chemical sensors in solution, gas phase, and chiral molecules. This review is expected to be comprehensive, authoritative, and useful to the chemical community interested in CPs and their applications.

  15. FTIR Spectroscopic and DC Ionic conductivity Studies of PVDF-HFP: LiBF4: EC Plasticized Polymer Electrolyte Membrane

    Science.gov (United States)

    Sangeetha, M.; Mallikarjun, A.; Jaipal Reddy, M.; Siva Kumar, J.

    2017-08-01

    In the present paper; the FTIR and Temperature dependent DC Ionic conductivity studies of polymer (80 Wt% PVDF-HFP) with inorganic lithium tetra fluoroborate salt (20 Wt% LiBF4) as ionic charge carrier and plasticized with various weight ratios of Ethylene carbonate plasticizer (10 Wt% to 70 Wt% EC) as gel polymer electrolytes. Solution casting method is used for the preparation of plasticized polymer-salt electrolyte films. FTIR analysis shows the good complexation between PVDF-HFP: LiBF4 and the presence of functional groups in the plasticized polymer-salt electrolyte membrane. Also the analysis and results show that the highest DC ionic conductivity of 1.66 × 10-3 SCm -1 was found at 373 K for a particular concentration of 80 Wt% PVDF-HFP: 20 Wt% LiBF4: 40 Wt% EC porous gel type polymer-salt plasticized porous membrane. Increase of temperature results expansion and segmental motion of polymer chain that generates free volume in turn promotes hopping of the lithium ions satisfying Vogel-Tammann-Fulcher equation.

  16. Conducting Polymers

    Indian Academy of Sciences (India)

    would exhibit electronic conductivity, their conductivities (of compressed pellets) were indeed measured by others, and were found to be .... Polyaniline. Polyphenylene. Polypheny lene- vinylene. Table 1. G!NeRAl I ARTICl! structure. Maximum conductivity Stem Stability. Processability. ~. 1.5 x 105. Reacts with Film not n air.

  17. High-throughput screening of ionic conductivity in polymer membranes

    International Nuclear Information System (INIS)

    Zapata, Pedro; Basak, Pratyay; Carson Meredith, J.

    2009-01-01

    Combinatorial and high-throughput techniques have been successfully used for efficient and rapid property screening in multiple fields. The use of these techniques can be an advantageous new approach to assay ionic conductivity and accelerate the development of novel materials in research areas such as fuel cells. A high-throughput ionic conductivity (HTC) apparatus is described and applied to screening candidate polymer electrolyte membranes for fuel cell applications. The device uses a miniature four-point probe for rapid, automated point-to-point AC electrochemical impedance measurements in both liquid and humid air environments. The conductivity of Nafion 112 HTC validation standards was within 1.8% of the manufacturer's specification. HTC screening of 40 novel Kynar poly(vinylidene fluoride) (PVDF)/acrylic polyelectrolyte (PE) membranes focused on varying the Kynar type (5x) and PE composition (8x) using reduced sample sizes. Two factors were found to be significant in determining the proton conducting capacity: (1) Kynar PVDF series: membranes containing a particular Kynar PVDF type exhibited statistically identical mean conductivity as other membranes containing different Kynar PVDF types that belong to the same series or family. (2) Maximum effective amount of polyelectrolyte: increments in polyelectrolyte content from 55 wt% to 60 wt% showed no statistically significant effect in increasing conductivity. In fact, some membranes experienced a reduction in conductivity.

  18. Cross-Linked Poly(vinylidene fluoride-co-hexafluoropropene (PVDF-co-HFP Gel Polymer Electrolyte for Flexible Li-Ion Battery Integrated with Organic Light Emitting Diode (OLED

    Directory of Open Access Journals (Sweden)

    Ilhwan Kim

    2018-04-01

    Full Text Available Here, we fabricate poly(vinylidene fluoride-co-hexafluoropropene (PVDF-co-HFP by electrospinning for a gel polymer electrolyte (GPE for use in flexible Li-ion batteries (LIBs. As a solvent, we use N-methyl-2-pyrrolidone (NMP, which helps produce the cross-linked morphology of PVDF-co-HFP separator, owing to its low volatility. The cross-linked PVDF-co-HFP separator shows an uptake rate higher than that of a commercialized polypropylene (PP separator. Moreover, the PVDF-co-HFP separator shows an ionic conductivity of 2.3 × 10−3 S/cm at room temperature, comparable with previously reported values. An LIB full-cell assembled with the PVDF-co-HFP-based GPE shows capacities higher than its counterpart with the commercialized PP separator, confirming that the cross-linked PVDF-co-HFP separator provides highly efficient ionic conducting pathways. In addition, we integrate a flexible LIB cell using the PVDF-co-HFP GPE with a flexible organic light emitting diode (OLED, demonstrating a fully flexible unit of LIB and OLED.

  19. Selenium containing conducting polymer based pyranose oxidase biosensor for glucose detection.

    Science.gov (United States)

    Gokoglan, Tugba Ceren; Soylemez, Saniye; Kesik, Melis; Toksabay, Sinem; Toppare, Levent

    2015-04-01

    A novel amperometric pyranose oxidase (PyOx) biosensor based on a selenium containing conducting polymer has been developed for the glucose detection. For this purpose, a conducting polymer; poly(4,7-bis(thieno[3,2-b]thiophen-2-yl)benzo[c][1,2,5] selenadiazole) (poly(BSeTT)) was synthesized via electropolymerisation on gold electrode to examine its matrix property for glucose detection. For this purpose, PyOx was used as the model enzyme and immobilised via physical adsorption technique. Amperometric detection of consumed oxygen was monitored at -0.7 V vs Ag reference electrode in a phosphate buffer (50 mM, pH 7.0). K(M)(app), Imax, LOD and sensitivity were calculated as 0.229 mM, 42.37 nA, 3.3 × 10(-4)nM and 6.4 nA/mM cm(2), respectively. Scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS) and cyclic voltammetry (CV) techniques were used to monitor changes in surface morphologies and to run electrochemical characterisations. Finally, the constructed biosensor was applied for the determination of glucose in beverages successfully. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Reaction factors for photo-electrochemical deposition of metal silver on polypyrrole as conducting polymer

    International Nuclear Information System (INIS)

    Kawakita, Jin; Boter, Jelmer M.; Shova, Neupane; Fujihira, Hiroshi; Chikyow, Toyohiro

    2015-01-01

    Composite of metal and conducting polymer is expected for electrical application by the use of their advantages. For improvement of the composite’s characteristics, it is important to control formation rate and structure of the composites obtained by simultaneous metal deposition and polymerization under photo irradiation. The purpose of this research was to reveal the effects of UV irradiation and dopant type for conducting polymer on photo-electrochemical deposition of metal. Cathodic polarization curves for silver deposition on polypyrrole doped with different types of anion at different intensity of the UV light were compared. Deposited particles were evaluated by the statistical analysis. The experimental results showed that silver deposition on polypyrrole was enhanced by UV introduction and depended on the dopant type.

  1. Reactive polymer fused deposition manufacturing

    Science.gov (United States)

    Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander

    2017-05-16

    Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.

  2. Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes

    International Nuclear Information System (INIS)

    Liao, C.-S.; Ye, W.-B.

    2004-01-01

    The oligo(ethylene oxide) modified layered double hydroxide (LDH) prepared by template method was added as a nanoscale nucleating agent into poly(ethylene oxide) (PEO) to form PEO/OLDH nanocomposite electrolytes. The effects of OLDH addition on morphology and conductivities of nanocomposite electrolytes were studied using wide-angle X-ray diffractometer, polarized optical microscopy, differential scanning calorimetry and ionic conductivity measurement. The results show that the exfoliated morphology of nanocomposites is formed due to the surface modification of LDH layers with PEO matrix compatible oligo(ethylene oxide)s. The nanoscale dispersed OLDH layers inhibit the crystal growth of PEO crystallites and result in a plenty amount of intercrystalline grain boundary within PEO/OLDH nanocomposites. The ionic conductivities of nanocomposite electrolytes are enhanced by three orders of magnitude compared to the pure PEO polymer electrolytes at ambient temperature. It can be attributed to the ease transport of Li + along intercrystalline amorphous phase. This novel nanocomposite electrolytes system with high conductivities will be benefited to fabricate the thin-film type of Li-polymer secondary battery

  3. Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks

    NARCIS (Netherlands)

    Head, D.A.; Levine, A.M.; Mac Kintosh, F.C.

    2003-01-01

    Semiflexible polymers such as filamentous actin (F-actin) play a vital role in the mechanical behavior of cells, yet the basic properties of cross-linked F-actin networks remain poorly understood. To address this issue, we have performed numerical studies of the linear response of homogeneous and

  4. Conducting polymer scaffolds for electrical control of cellular functions (Conference Presentation)

    Science.gov (United States)

    Inal, Sahika; Wan, Alwin M.; Williams, Tiffany V.; Giannelis, Emmanuel P.; Fischbach-Teschl, Claudia; Gourdon, Delphine; Owens, Róisín. M.; Malliaras, George G.

    2016-09-01

    Considering the limited physiological relevance of 2D cell culture experiments, significant effort was devoted to the development of materials that could more accurately recreate the in vivo cellular microenvironment, and support 3D cell cultures in vitro. (1) One such class of materials is conducting polymers, which are promising due to their compliant mechanical properties, compatibility with biological systems, mixed electrical and ionic conductivity, and ability to form porous structures. (2) In this work, we report the fabrication of a single component, macroporous scaffold made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) via an ice-templating method. (3) PEDOT:PSS scaffolds offer tunable pore size, morphology and shape through facile changes in preparation conditions, and are capable of supporting 3D cell cultures due to their biocompatibility and tissue-like elasticity. Moreover, these materials are functional: they exhibit excellent electrochemical switching behavior and significantly lower impedance compared to films. Their electrochemical activity enables their use in the active channel of a state of the art diagnostic tool in the field of bioelectronics, i.e., the organic electrochemical transistor (OECT). The inclusion of cells within the porous architecture affects the impedance of the electrically-conducting polymer network and, thus, may be used as a method to quantify cell growth. The adhesion and pro-angiogenic secretions of mouse fibroblasts cultured within the scaffolds can be controlled by switching the electrochemical state of the polymer prior to cell-seeding. In summary, these smart materials hold promise not only as extracellular matrix-mimicking structures for cell culture, but also as high-performance bioelectronic tools for diagnostic and signaling applications. References [1] M. Holzwarth, P. X. Ma, Journal of Materials Chemistry, 21, 10243-10251 (2011). [2] L. H. Jimison, J. Rivnay, R. M. Owens, in Organic

  5. Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors

    International Nuclear Information System (INIS)

    Zhong, Xiongwei; Tang, Jun; Cao, Lujie; Kong, Weiguang; Sun, Zheng; Cheng, Hua; Lu, Zhouguang; Pan, Hui; Xu, Baomin

    2017-01-01

    Highlights: •A facile method to prepare gel polymer electrolyte with high conductivity is proposed. •A flexible symmetric capacitor based on the prepared GPE shows ultra-flexibility. •The capacitor with high voltage can power up a 3.0 V LED even bended to a angle of 180°. -- Abstract: It is highly desirable to develop flexible solid-state electrochemical double-layer capacitors (EDLCs) with non-liquid electrolyte. However, it is still a great challenge to prepare gel polymer electrolyte (GPE) possessing high ionic conductivity and good mechanical property. In this work, a simple and novel method to improve the conductivity and mechanical properties of GPE film for their applications as electrolyte and separator in EDLC is presented. The GPE film is prepared by cross-linking ionic liquid (IL) with poly (ethylene oxide) (PEO) and benzophenone (Bp) followed by ultraviolet (UV) irradiation. Then, a non-woven cellulose separator (FPC) is used to absorb the GPE. By tuning the mass ratio (n) between IL and PEO, the flexible EDLC cooperated with low-cost active carbon and the electrolyte film with n = 10 has a high capacitance of 70.84 F∙g −1 , a wide and stable electrochemical window of 3.5 V, an energy density of 30.13 Wh∙kg −1 and a power density of 874.8 W∙kg −1 at a current density of 1 A∙g −1 , which can drive a 3.0 V light-emitting diode (LED). Importantly, the excellent performance of the flexible and low-cost EDLC can be maintained at a bending angle up to 180°, indicating the ultra-flexibility. It is expected that the IL-PEO-FPC electrolyte film is a promising candidate of GPE for flexible devices and energy storage systems.

  6. Graphene-Conducting Polymer Nanocomposites for Enhancing Electrochemical Capacitive Energy Storage

    DEFF Research Database (Denmark)

    Shen, Fei; Pankratov, Dmitry; Chi, Qijin

    2017-01-01

    The evolution of power generation, expansion of transportation and electrification, and popularization of portable electronic devices have altogether posed growing demands for more efficient energy storage systems. Supercapacitors, as one of major electrochemical energy storage devices, have...... recently received intensive attention. In this minireview, our focus is on graphene-conducting polymer nanocomposites and their applications in supercapacitors that have potential to perform high power and energy density, fast charge/discharge rate, low cost and eco-friendly operation conditions. We first...

  7. Cross-linked sulfonated aromatic ionomers via SO2 bridges: Conductivity properties

    Science.gov (United States)

    Di Vona, M. L.; Pasquini, L.; Narducci, R.; Pelzer, K.; Donnadio, A.; Casciola, M.; Knauth, P.

    2013-12-01

    The proton conductivity of SPEEK membranes in situ cross-linked by thermal treatment at 180 °C for various times was investigated by impedance spectroscopy. The conductivity measurements were made on fully humidified membranes between 25 and 65 °C and on membranes exposed to different relative humidity between 80 and 140 °C. The Ionic Exchange Capacity (IEC) was determined by acid-base titration and the water uptake by gravimetry. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking and hydration number. A curve of proton conductivity vs. hydration number allows predicting that in order to reach a value of 0.1 S/cm at 100 °C a hydration number above 20 is necessary. The measured conductivity at this temperature is 0.16 S/cm for a hydration number of 60.

  8. Polymer and Polymer Gel of Liquid Crystalline Semiconductors

    Institute of Scientific and Technical Information of China (English)

    Teppei Shimakawa; Naoki Yoshimoto; Jun-ichi Hanna

    2004-01-01

    It prepared a polymer and polymer gel of a liquid crystalline (LC) semiconductor having a 2-phenylnaphthalene moiety and studied their charge carrier transport properties by the time-of-flight technique. It is found that polyacrylate having the mesogenic core moiety of 2-phenylnaphtalene (PNP-acrylate) exhibited a comparable mobility of 10-4cm2/Vs in smectic A phase to those in smectic A (SmA) phase of small molecular liquid crystals with the same core moiety, e.g., 6-(4'-octylphenyl)- 2-dodecyloxynaphthalene (8-PNP-O12), and an enhanced mobility up to 10-3cm2/Vs in the LC-glassy phase at room temperature, when mixed with a small amount of 8-PNP-O12. On the other hand, the polymer gel consisting of 20 wt %-hexamethylenediacrylate (HDA)-based cross-linked polymer and 8-PNP-O12 exhibited no degraded mobility when cross-linked at the mesophase. These results indicate that the polymer and polymer composite of liquid crystalline semiconductors provide us with an easy way to realize a quality organic semiconductor thin film for the immediate device applications.

  9. Ionic conductivity and dielectric permittivity of polymer electrolyte plasticized with polyethylene glycol

    Science.gov (United States)

    Das, S.; Ghosh, A.

    2016-05-01

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.

  10. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide).

    Science.gov (United States)

    Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi

    2016-01-13

    High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.

  11. Photomodulation spectroscopy of photocarrier dynamics, electronic defects and morphology of conducting polymers

    International Nuclear Information System (INIS)

    Vardeny, Z.V.

    1993-01-01

    A variety of techniques were used: CW photomodulation, photomodulation in femtosecond and picosecond time ranges, CW resonant Raman scattering, transient photoinduced Raman scattering, electro-absorption, degenerate four-wave mixing, spin dependent photomodulation, and absorption detected magnetic resonance. The following conducting polymers were studied: polyacetylene, polythiophene, polydiacetylene 4-BCMU, polydiethynylsilanes, polysilane embedded in a-Si:H matrix, and fullerenes

  12. Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-02-01

    Full Text Available We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  13. The application of radiothermoluminescence method to the analysis of polymers and polymer composites

    International Nuclear Information System (INIS)

    Nikol'skii, V.G.

    1982-01-01

    The basic results concerning the examination of copolymers, cross-linked polymers and polyblends structure, obtained by means of radiothermoluminescence method, are reviewed. The main emphasis is on the glow curve shape analysis that allows: a) to determine quantitatively the random copolymer composition; b) to reveal the existence of blocks in macromolecules; c) to examine the grafted copolymer distribution in polymer matrix; d) to estimate the degree of cross-linking both for individual polymers and heterogeneous polyblends; e) to study the mutual solubility of polymers. (author)

  14. Influence of prehistory of polymer samples on radiation electric conductivity induced by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Aleksanina, O S; Sichkar' , V P; Vajsberg, S Eh [Nauchno-Issledovatel' skij Fiziko-Khimicheskij Inst., Moscow (USSR)

    1984-05-01

    Radiation electric conductivity of PS films prepared from solutions in various solvents at various initial concentrations and temperatures and various power of absorbed dose (..gamma..-radiation of /sup 60/Co) has been measured. The results are compared with the change of density of films and existing theoretical concepts of the role of microvoids and free volume in electrical conductivity of a polymer.

  15. Influence of prehistory of polymer samples on radiation electric conductivity induced by ionizing radiation

    International Nuclear Information System (INIS)

    Aleksanina, O.S.; Sichkar', V.P.; Vajsberg, S.Eh.

    1984-01-01

    Radiation electric conductivity of PS films prepared from solutions in various solvents at various initial concentrations and temperatures and various power of absorbed dose (γ-radiation of 60 Co) has been measured. The results are compared with the change of density of films and existing theoretical concepts of the role of microvoids and free volume in electrical conductivity of a polymer

  16. Iodide-conducting polymer electrolytes based on poly-ethylene glycol and MgI2: Synthesis and structural characterization

    International Nuclear Information System (INIS)

    Vittadello, Michele; Waxman, David I.; Sideris, Paul J.; Gan Zhehong; Vezzù, Keti; Negro, Enrico; Safari, Ahmad; Greenbaum, Steve G.; Di Noto, Vito

    2011-01-01

    A major obstacle for a viable technological development of dye sensitized solar cells (DSSCs) is still the synthesis of a high performance iodide-conducting polymer electrolyte. Here we present a series of eight electrolytic complexes with formula PEG1000/(MgI 2 ) x (I 2 ) y (0.0038 ≤ x ≤ 0.5801, 0 ≤ y ≤ 0.0636). The synthesis involves the preparation of a disordered form of MgI 2 by a metallorganic route, which enables us to dissolve high amounts of salt in the chosen polymer host. The thermal analysis of the resulting polymer electrolytes was performed using modulated differential scanning calorimetry measurements. Vibrational studies were carried out using medium FT-IR, far FT-IR and FT-Raman. The variation of the CO and OH stretching modes in the medium infrared, as a function of the mole-to-mole ratio n Mg /n O , was investigated by Gaussian decomposition to provide insight into the polymer–polymer and salt–polymer interactions in these materials. The FT-Raman spectra confirmed and complemented the vibrational assignment. The conductivity study of these systems was performed by electrical spectroscopy in the frequency interval 10 mHz–10 MHz. The direct current conductivity (σ DC ) profiles versus the reciprocal temperature exhibited a Vögel-Tamman-Fülcher (VTF) behavior. The best σ DC at 50 °C was 5 × 10 −5 S cm −1 . The overall results indicate the presence of bivalent, monovalent and neutral species, Mg 2+ , [MgI] + and MgI 2 , respectively, which participate in the conduction process. These results are consistent with what was previously observed in PEG400-based systems doped with δ-MgCl 2 . The presence of at least one Mg site containing a distribution in parameters was observed using 25 Mg solid state magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. The site has been assigned to a Mg complex involving the coordination by oxygen atoms of the polymer backbone.

  17. Transparent Conductive Adhesives for Tandem Solar Cells Using Polymer-Particle Composites

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Talysa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lee, Benjamin G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schnabel, Manuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Warren, Emily L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stradins, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tamboli, Adele C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-14

    Transparent conductive adhesives (TCAs) can enable conductivity between two substrates, which is useful for a wide range of electronic devices. Here, we have developed a TCA composed of a polymer-particle blend with ethylene-vinyl acetate as the transparent adhesive and metal-coated flexible poly(methyl methacrylate) microspheres as the conductive particles that can provide conductivity and adhesion regardless of the surface texture. This TCA layer was designed to be nearly transparent, conductive in only the out-of-plane direction, and of practical adhesive strength to hold the substrates together. The series resistance was measured at 0.3 and 0.8 O cm2 for 8 and 0.2% particle coverage, respectively, while remaining over 92% was transparent in both cases. For applications in photovoltaic devices, such as mechanically stacked multijunction III-V/Si cells, a TCA with 1% particle coverage will have less than 0.5% power loss due to the resistance and less than 1% shading loss to the bottom cell.

  18. Electrical conductivity of polyaniline doped PVC–PMMA polymer ...

    Indian Academy of Sciences (India)

    which has now become one of the hot topics of research. (Radhakrishnan 2001). ... and sensitive methods for studying the polymer structure. (Ferraro and Walkar ... acceptor mixed polymers doped with polyaniline, was measured to identify ...

  19. Estimating and understanding the efficiency of nanoparticles in enhancing the conductivity of carbon nanotube/polymer composites

    KAUST Repository

    Mora Cordova, Angel

    2018-05-22

    Carbon nanotubes (CNTs) have been widely used to improve the electrical conductivity of polymers. However, not all CNTs actively participate in the conduction of electricity since they have to be close to each other to form a conductive network. The amount of active CNTs is rarely discussed as it is not captured by percolation theory. However, this amount is a very important information that could be used in a definition of loading efficiency for CNTs (and, in general, for any nanofiller). Thus, we develop a computational tool to quantify the amount of CNTs that actively participates in the conductive network. We then use this quantity to propose a definition of loading efficiency. We compare our results with an expression presented in the literature for the fraction of percolated CNTs (although not presented as a definition of efficiency). We found that this expression underestimates the fraction of percolated CNTs. We thus propose an improved estimation. We also study how efficiency changes with CNT loading and the CNT aspect ratio. We use this concept to study the size of the representative volume element (RVE) for polymers loaded with CNTs, which has received little attention in the past. Here, we find the size of RVE based on both loading efficiency and electrical conductivity such that the scales of “morphological” and “functional” RVEs can be compared. Additionally, we study the relations between particle and network properties (such as efficiency, CNT conductivity and junction resistance) and the conductivity of CNT/polymer composites. We present a series of recommendations to improve the conductivity of a composite based on our simulation results.

  20. Estimating and understanding the efficiency of nanoparticles in enhancing the conductivity of carbon nanotube/polymer composites

    KAUST Repository

    Mora Cordova, Angel; Han, Fei; Lubineau, Gilles

    2018-01-01

    Carbon nanotubes (CNTs) have been widely used to improve the electrical conductivity of polymers. However, not all CNTs actively participate in the conduction of electricity since they have to be close to each other to form a conductive network. The amount of active CNTs is rarely discussed as it is not captured by percolation theory. However, this amount is a very important information that could be used in a definition of loading efficiency for CNTs (and, in general, for any nanofiller). Thus, we develop a computational tool to quantify the amount of CNTs that actively participates in the conductive network. We then use this quantity to propose a definition of loading efficiency. We compare our results with an expression presented in the literature for the fraction of percolated CNTs (although not presented as a definition of efficiency). We found that this expression underestimates the fraction of percolated CNTs. We thus propose an improved estimation. We also study how efficiency changes with CNT loading and the CNT aspect ratio. We use this concept to study the size of the representative volume element (RVE) for polymers loaded with CNTs, which has received little attention in the past. Here, we find the size of RVE based on both loading efficiency and electrical conductivity such that the scales of “morphological” and “functional” RVEs can be compared. Additionally, we study the relations between particle and network properties (such as efficiency, CNT conductivity and junction resistance) and the conductivity of CNT/polymer composites. We present a series of recommendations to improve the conductivity of a composite based on our simulation results.

  1. Heat conduction in chain polymer liquids: molecular dynamics study on the contributions of inter- and intramolecular energy transfer.

    Science.gov (United States)

    Ohara, Taku; Yuan, Tan Chia; Torii, Daichi; Kikugawa, Gota; Kosugi, Naohiro

    2011-07-21

    In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.

  2. Reversible light-controlled conductance switching of azobenzene-based metal/polymer nanocomposites

    International Nuclear Information System (INIS)

    Pakula, Christina; Zaporojtchenko, Vladimir; Strunskus, Thomas; Faupel, Franz; Zargarani, Dordaneh; Herges, Rainer

    2010-01-01

    We present a new concept of light-controlled conductance switching based on metal/polymer nanocomposites with dissolved chromophores that do not have intrinsic current switching ability. Photoswitchable metal/PMMA nanocomposites were prepared by physical vapor deposition of Au and Pt clusters, respectively, onto spin-coated thin poly(methylmethacrylate) films doped with azo-dye molecules. High dye concentrations were achieved by functionalizing the azo groups with tails and branches, thus enhancing solubility. The composites show completely reversible optical switching of the absorption bands upon alternating irradiation with UV and blue light. We also demonstrate reversible light-controlled conductance switching. This is attributed to changes in the metal cluster separation upon isomerization based on model experiments where analogous conductance changes were induced by swelling of the composite films in organic vapors and by tensile stress.

  3. Characterization of healable polymers

    Science.gov (United States)

    Nielsen, C.; Weizman, Or; Nemat-Nasser, Sia

    2010-04-01

    Materials with an internal mechanism for damage repair would be valuable in isolated environments where access is difficult or impossible. Current work is focused on characterizing neat polymers with reformable cross-linking bonds. These bonds are thermally reversible, the result of a Diels-Alder cycloaddition between furan and maleimide monomers. Candidate polymers are examined using modulated differential scanning calorimetry (DSC) to confirm the presence of reversible bonding. One polymer, 2MEP3FT, was expected to have these bonds, but none were observed. A second polymer, 2MEP4FS, with a modified furan monomer does exhibit reversible bonding. Further DSC testing and dynamic mechanical thermal analyses (DMA) are conducted to determine material properties such as glass transition temperature, storage modulus and quality of the polymerization. Healing efficiency is established using the double cleavage drilled compression (DCDC) fracture test. A column of material with a central hole is subjected to axial compression, driving cracks up and down the sample. After unloading, the cracks are healed, and the sample is retested. Comparing the results gives a quantitative evaluation of healing.

  4. Investigation of anisotropic thermal transport in cross-linked polymers

    Science.gov (United States)

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  5. The material combining conducting polymer and ionic liquid: hydrogen bonding interactions between polyaniline and imidazolium salt

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Dybal, Jiří; Trchová, Miroslava

    2014-01-01

    Roč. 197, November (2014), s. 168-174 ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : conducting polymer * conductivity * imidazolium salt Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.252, year: 2014

  6. Conducting polymers based counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Veerender, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Saxena, Vibha, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gusain, Abhay, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Jha, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Koiry, S. P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Chauhan, A. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Aswal, D. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gupta, S. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

    2014-04-24

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  7. All-Solid-State Textile Batteries Made from Nano-Emulsion Conducting Polymer Inks for Wearable Electronics

    Directory of Open Access Journals (Sweden)

    Tapani Ryhänen

    2012-08-01

    Full Text Available A rollable and all-solid-state textile lithium battery based on fabric matrix and polymer electrolyte that allows flexibility and fast-charging capability is reported. When immerged into poly(3,4-ethylenedioxythiophene (PEDOT nano-emulsion inks, an insulating fabric is converted into a conductive battery electrode for a fully solid state lithium battery with the highest specific energy capacity of 68 mAh/g. This is superior to most of the solid-state conducting polymer primary and/or secondary batteries reported. The bending radius of such a textile battery is less than 1.5 mm while lightening up an LED. This new material combination and inherent flexibility is well suited to provide an energy source for future wearable and woven electronics.

  8. Radiation Synthesis of Superabsorbent Polymers Based on Natural Polymers

    International Nuclear Information System (INIS)

    Sen, Murat; Hayrabolulu, Hande

    2010-01-01

    The objectives of proposed research contract were first synthesize superabsorbent polymers based on natural polymers to be used as disposable diapers and soil conditioning materials in agriculture, horticulture and other super adsorbent using industries. We have planned to use the natural polymers; locust beam gum, tara gum, guar gum and sodium alginate on the preparation of natural superabsorbent polymers(SAP). The aqueous solution of natural polymers and their blends with trace amount of monomer and cross-linking agents will be irradiated in paste like conditions by gamma rays for the preparation of cross-linked superabsorbent systems. The water absorption and deswellling capacity of prepared super adsorbents and retention capacity, absorbency under load, suction power, swelling pressure and pet-rewet properties will be determined. Use of these materials instead of synthetic super absorbents will be examined by comparing the performance of finished products. The experimental studies achieved in the second year of project mainly on the effect of radiation on the chemistry of sodium alginate polymers in different irradiation conditions and structure-property relationship particularly with respect to radiation induced changes on the molecular weight of natural polymers and preliminary studies on the synthesis of natural-synthetic hydride super adsorbent polymers were given in details

  9. Controlled Aloin Release from Crosslinked Polyacrylamide Hydrogels: Effects of Mesh Size, Electric Field Strength and a Conductive Polymer

    Directory of Open Access Journals (Sweden)

    Anuvat Sirivat

    2013-10-01

    Full Text Available The aim of this paper is to investigate the effects of hydrogel mesh size, a conductive polymer, and electric field strength on controlled drug delivery phenomena using drug-loaded polyacrylamide hydrogels prepared at various crosslinking ratios both with and without a conductive polymer system. Poly(p-phenylene vinylene, PPV, as the model conductive polymer, was used to study its ability to control aloin released from aloin-doped poly(p-phenylene vinylene/polyacrylamide hydrogel (aloin-doped PPV/PAAM. In the passive release, the diffusion of aloin from five aloin-doped PPV/PAAM hydrogel systems each was delayed ranging from during the first three hours to during the first 14 h due to the ionic interaction between the anionic drug and PPV. After the delayed periods, aloin could diffuse continuously into the buffer solution through the PAAM matrix. The amount of aloin released from the aloin-doped PPV/PAAM rose with increasing electric field strength as a result of the three mechanisms: the expansion of PPV chains inside the hydrogel, iontophoresis, and the electroporation of the matrix pore size, combined. Furthermore, the conductive polymer and the electric field could be used in combination to regulate the amount of release drug to a desired level, to control the release rate, and to switch the drug delivery on/off.

  10. Highly processable method for the construction of miniature conducting polymer moisture sensors

    Science.gov (United States)

    McGovern, Scott T.; Spinks, Geoffrey M.; Wallace, Gordon G.

    2005-02-01

    A polymer blend incorporating polyaniline (PAn) was used as a sensing medium in the construction of a resistance based humidity sensor. Aniline monomer was polymerised to PAn emeraldine salt (ES) in the presence of poly (butyl acrylate-co-vinyl acetate) and the processable blend was developed by redissolving 1-2 w/w% of the resulting sensing polymer residue in dichloromethane (DCM). Some of this residue was washed in ammonia solution to de-dope the PAn to emeraldine base (EB) to act as a protective layer on the surface of the sensing polymer. This residue was then washed with distilled water until a neutral pH was realised with the waste water, dried and redissolved in DCM at 1-2 w/w% to create a processable blend barrier polymer solution. The final sensor design utilised 125μm polyester insulated platinum wire as conducting electrodes that were dip coated in the PAn ES blend solution and dried in a desiccator. A protective coating was then applied by dip coating in the EB blend solution. The sensors had an overall final thickness of less than 200μm and showed high sensitivity to humidity, low resistance, and good reversibility without hysteresis. The EB protective layer was shown to give more stable and predictable responses to the sensors when placed inside curing epoxies. Polymer based thin film humidity sensors have the advantage that the high processability of the material allows for simple fabrication of a range of geometries including smaller sensor designs. Such sensors may find uses in detecting water content in a number of areas including composite materials, electronic textiles, food/electronics packaging and corrosion detection.

  11. High-aggregate-capacity visible light communication links using stacked multimode polymer waveguides and micro-pixelated LED arrays

    Science.gov (United States)

    Bamiedakis, N.; McKendry, J. J. D.; Xie, E.; Gu, E.; Dawson, M. D.; Penty, R. V.; White, I. H.

    2018-02-01

    In recent years, light emitting diodes (LEDs) have gained renewed interest for use in visible light communication links (VLC) owing to their potential use as both high-quality power-efficient illumination sources as well as low-cost optical transmitters in free-space and guided-wave links. Applications that can benefit from their use include optical wireless systems (LiFi and Internet of Things), in-home and automotive networks, optical USBs and short-reach low-cost optical interconnects. However, VLC links suffer from the limited LED bandwidth (typically 100 MHz). As a result, a combination of novel LED devices, advanced modulation formats and multiplexing methods are employed to overcome this limitation and achieve high-speed (>1 Gb/s) data transmission over such links. In this work, we present recent advances in the formation of high-aggregate-capacity low cost guided wave VLC links using stacked polymer multimode waveguides and matching micro-pixelated LED (μLED) arrays. μLEDs have been shown to exhibit larger bandwidths (>200 MHz) than conventional broad-area LEDs and can be formed in large array configurations, while multimode polymer waveguides enable the formation of low-cost optical links onto standard PCBs. Here, three- and four-layered stacks of multimode waveguides, as well as matching GaN μLED arrays, are fabricated in order to generate high-density yet low-cost optical interconnects. Different waveguide topologies are implemented and are investigated in terms of loss and crosstalk performance. The initial results presented herein demonstrate good intrinsic crosstalk performance and indicate the potential to achieve >= 0.5 Tb/s/mm2 aggregate interconnection capacity using this low-cost technology.

  12. A Morphology Study of Nanofiller Networks in Polymer Nanocomposites: Improving Their Electrical Conductivity through Better Doping Strategies

    KAUST Repository

    Mora, Angel

    2018-02-01

    Over the past years, research efforts have focused on adding highly conductive nanoparticles, such as carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs), into polymers to improve their electrical conductivity or to tailor their piezoresistive behavior. Resultant materials are typically described by the weight or volume fractions of their nanoparticles. The weight/volume fraction alone is a very global quantity, making it a poor evaluator of a doping configuration. Knowing which particles actually participate in improving electrical conductivity can optimize the doping strategy. Additionally, conductive particles are only capable of charge transfer over a very short range, thus most of them do not form part of the conduction path. Thus, understanding how these particles are arranged is necessary to increase their efficiency. First, this work focuses on polymers loaded with CNTs. A computational modeling strategy based on a full morphological analysis of the CNT network is presented to systematically analyze conductive networks and show how particles are arranged. A definition of loading efficiency is provided based on the results obtained from this morphology analysis. This study provides useful guidelines for designing these types of materials based on important features, such as representative volume element, nanotube tortuosity and length, tunneling cutoff distance, and efficiency. Second, a computational approach is followed to study the conductive network formed by hybrid particles in polymer nanocomposites. These hybrid particles are synthesized by growing CNTs on the surfaces of GNPs. The objective of this study is to show that the higher electrical conductivity of these composites is due to the hybrids forming a segregated structure. Polymers loaded with hybrid particles have shown a higher electrical conductivity compared with classical carbon fillers: only CNTs, only GNPs or mixed CNTs and GNPs. This is done to understand and compare the doping

  13. A new composite consisting of electrosynthesized conducting polymers, graphene sheets and biosynthesized gold nanoparticles for biosensing acute lymphoblastic leukemia.

    Science.gov (United States)

    Mazloum-Ardakani, Mohammad; Barazesh, Behnaz; Khoshroo, Alireza; Moshtaghiun, Mohammad; Sheikhha, Mohammad Hasan

    2018-06-01

    In this work we report the synthesis of a stable composite with excellent electrical properties, on the surface of a biosensor. Conductive polymers offer both high electrical conductivity and mechanical strength. Many reports have focused on synthesizing conductive polymers with the aid of high-cost enzymes. In the current work we introduce a novel electrochemical, one-step, facile and cost effective procedure for synthesizing poly (catechol), without using expensive enzymes. The poly (catechol) conductivity was enhanced by modification with graphene sheets and biosynthesized gold nanoparticles. Four different robust methods, DPV, EIS, CV and chronoamperometry, were used to monitor the biosensor modifications. The peak currents of the catechol (an electroactive probe) were linearly related to the logarithm of the concentrations of target DNA in the range 100.0 μM to 10.0 pM, with a detection limit of 1.0 pM for the DNA strand. The current work investigates a new, stable composite consisting of conductive polymers and nanoparticles, which was applied to the detection of acute lymphoblastic leukemia. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Evaluation of solid polymer electrolytes for use in conducting polymer/nanotube actuators

    Science.gov (United States)

    Lewis, Trevor W.; Kim, B. C.; Spinks, Geoffrey M.; Wallace, Gordon G.

    2000-06-01

    The stringent requirements for a solid polymer electrolyte (SPE) in solid state devices such as batteries or supercapacitors are even more demanding when used in electromechanical actuators. Not only is the SPE expected to exhibit good conductivity, mechanical properties, adhesion and mechanical/electrical stability, but it must also be flexible, maintained good adhesion while flexing, be easily processible and be able to function in air. In this work polyacrylonitrile and Kynar based non-aqueous SPEs and water based polyacrylamide hydrogel ion source/sinks containing various perchlorate salts were tested for their applicability to polypyrrole and carbon nanotube actuators and supercapacitors. The results indicate that the optimum SPE for both polypyrrole and carbon nanotube actuators would be a polyacrylonitrile plasticized with propylene carbonate and ethylene carbonate containing 1.0M NaClO4. It is also apparent that the same SPE would be the most suitable for supercapacitor applications with these materials.

  15. Conductive polymer layers to limit transfer of fuel reactants to catalysts of fuel cells to reduce reactant crossover

    Science.gov (United States)

    Stanis, Ronald J.; Lambert, Timothy N.

    2016-12-06

    An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.

  16. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking.

    Science.gov (United States)

    Chen, I-Wen Peter; Liang, Richard; Zhao, Haibo; Wang, Ben; Zhang, Chuck

    2011-12-02

    Carbon nanotube (CNT) sheets or buckypapers have demonstrated promising electrical conductivity and mechanical performance. However, their electrical conductivity is still far below the requirements for engineering applications, such as using as a substitute for copper mesh, which is currently used in composite aircraft structures for lightning strike protection. In this study, different CNT buckypapers were stretched to increase their alignment, and then subjected to conjugational cross-linking via chemical functionalization. The conjugationally cross-linked buckypapers (CCL-BPs) demonstrated higher electrical conductivity of up to 6200 S cm( - 1), which is more than one order increase compared to the pristine buckypapers. The CCL-BPs also showed excellent doping stability in over 300 h in atmosphere and were resistant to degradation at elevated temperatures. The tensile strength of the stretched CCL-BPs reached 220 MPa, which is about three times that of pristine buckypapers. We attribute these property improvements to the effective and stable conjugational cross-links of CNTs, which can simultaneously improve the electrical conductivity, doping stability and mechanical properties. Specifically, the electrical conductivity increase resulted from improving the CNT alignment and inter-tube electron transport capability. The conjugational cross-links provide effective 3D conductive paths to increase the mobility of electrons among individual nanotubes. The stable covalent bonding also enhances the thermal stability and load transfer. The significant electrical and mechanical property improvement renders buckypaper a multifunctional material for various applications, such as conducting composites, battery electrodes, capacitors, etc.

  17. All-solid-state ion-selective silicone rubber membrane electrodes with a new conducting polymer

    International Nuclear Information System (INIS)

    Park, Eun Rang; Chung, Yeon Joon; Hwang, Sun Woo

    2012-01-01

    New conducting polymers containing heterocyclic rings with carbazole, ethylene dioxythiophene (EDOT) and benzobisthiazole were synthesized and the characterized by using organic spectroscopic methods. Potentiometric ion-selective membrane electrodes (ISMEs) have been extensively used for ion analysis in clinical, environmental, and industrial fields owing to their wide response range (4 to 7 orders of magnitude), no effect of sample turbidity, fast response time, and ease of miniaturization. Considerable attention has been given to alternative use of room-temperature vulcanizing (RTV)-type silicone rubber (SR) owing to its strong adhesion and high thermal durability. Unfortunately, the high membrane resistance of SR-based ion-selective membranes (ISMs) (2 to 3 higher orders of magnitude compared to those of poly(vinyl chloride)(PVC)-based ones) has significantly restricted their application. Herein, we demonstrate a new method to reduce the membrane resistance via addition of a new conducting polymer into the SR-based ISMs.

  18. Ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-02-15

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  19. Light-induced cross-linking and post-cross-linking modification of polyglycidol.

    Science.gov (United States)

    Marquardt, F; Bruns, M; Keul, H; Yagci, Y; Möller, M

    2018-02-08

    The photoinduced radical generation process has received renewed interest due to its economic and ecological appeal. Herein the light-induced cross-linking of functional polyglycidol and its post-cross-linking modification are presented. Linear polyglycidol was first functionalized with a tertiary amine in a two-step reaction. Dimethylaminopropyl functional polyglycidol was cross-linked in a UV-light mediated reaction with camphorquinone as a type II photoinitiator. The cross-linked polyglycidol was further functionalized by quaternization with various organoiodine compounds. Aqueous dispersions of the cross-linked polymers were investigated by means of DLS and zeta potential measurements. Polymer films were evaluated by DSC and XPS.

  20. Hybrid nanocomposites based on conducting polymer and silicon nanowires for photovoltaic application

    International Nuclear Information System (INIS)

    Chehata, Nadia; Ltaief, Adnen; Ilahi, Bouraoui; Salem, Bassem; Bouazizi, Abdelaziz; Maaref, Hassen; Baron, Thierry

    2014-01-01

    Hybrid nanocomposites based on a nanoscale combination of organic and inorganic semiconductors are a promising way to enhance the performance of solar cells through a higher aspect ratio of the interface and the good processability of polymers. Nanocomposites are based on a heterojunction network between poly (2-methoxy-5-(2-ethyhexyl-oxy)-p-phenylenevinylene) (MEH-PPV) as an organic electron donor and silicon nanowires (SiNWs) as an inorganic electron acceptor. Nanowires (NWs) seem to be a promising material for this purpose, as they provide a large surface area for contact with the polymer and a designated conducting pathway whilst their volume is low. In this paper, silicon nanowires are introduced by mixing them into the polymer matrix. Hybrid nanocomposites films were deposited onto ITO substrate by spin coating method. Optical properties and photocurrent response were investigated. Charge transfer between the polymer and SiNWs has been demonstrated through photoluminescence measurements. The photocurrent density of ITO/MEH-PPV:SiNWs/Al structures have been obtained by J–V characteristics. The J sc value is about 0.39 µA/cm 2 . - Highlights: • SiNWs synthesis by Vapor–Liquid–Solid (VLS) mechanism. • SiNWs contribution to absorption spectra enhancement of MEH-PPV:SiNWs nanocomposites. • Decrease of PL intensity of MEH-PPV by addition of SiNWs. • Charge transfer process was taken place. • ITO/MEH-PPV:SiNWs/Al structure shows a photovoltaic effect, with a FF of 0.32

  1. Preparation of polymer composite nanomembranes with a conductivity asymmetry

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Satulu, B.; Mitu, B.; Dinescu, G.

    2009-01-01

    The structure and charge transport properties of the poly(ethylene terephthalate) track membrane modified by a pyrrole plasma have been studied. It was found that polymer deposition on the surface of a track membrane via the plasma polymerization of pyrrole results in the creation of a composite nanomembrane that, in the case of the formation of a semipermeable layer covering the pores, possesses conductivity asymmetry in electrolyte solutions - a rectification effect similar to that of a p-n junction in semiconductors. It is caused by presence in the membrane of two layers with different functional groups and also by the pore geometry. Such a type of membranes can be used for creation of chemical and biochemical sensors

  2. The role of MgBr2 to enhance the ionic conductivity of PVA/PEDOT:PSS polymer composite

    Directory of Open Access Journals (Sweden)

    Eslam M. Sheha

    2015-07-01

    Full Text Available A solid polymer electrolyte system based on poly(vinyl alcohol (PVA and poly(3,4-Etylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS complexed with magnesium bromide (MgBr2 salt was prepared using solution cast technique. The ionic conductivity is observed to increase with increasing MgBr2 concentration. The maximum conductivity was found to be 9.89 × 10−6 S/cm for optimum polymer composite film (30 wt.% MgBr2 at room temperature. The increase in the conductivity is attributed to the increase in the number of ions as the salt concentration is increased. This has been proven by dielectric studies. The increase in conductivity is also attributable to the increase in the fraction of amorphous region in the electrolyte films as confirmed by their structural, thermal, electrical and optical properties.

  3. Investigations on the Mechanical Properties of Conducting Polymer Coating-Substrate Structures and Their Influencing Factors

    Directory of Open Access Journals (Sweden)

    Xin Hua

    2009-12-01

    Full Text Available This review covers recent advances and work on the microstructure features, mechanical properties and cracking processes of conducting polymer film/coatingsubstrate structures under different testing conditions. An attempt is made to characterize and quantify the relationships between mechanical properties and microstructure features. In addition, the film cracking mechanism on the micro scale and some influencing factors that play a significant role in the service of the film-substrate structure are presented. These investigations cover the conducting polymer film/coating nucleation process, microstructure-fracture characterization, translation of brittle-ductile fractures, and cracking processes near the largest inherent macromolecule defects under thermal-mechanical loadings, and were carried out using in situ scanning electron microscopy (SEM observations, as a novel method for evaluation of interface strength and critical failure stress.

  4. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers.

    Science.gov (United States)

    Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Zhang, Quanyu; Luo, Zhuojing

    2010-04-01

    Electrical stimulation (ES) can dramatically enhance neurite outgrowth through conductive polymers and accelerate peripheral nerve regeneration in animal models of nerve injury. Therefore, conductive tissue engineering graft in combination with ES is a potential treatment for neural injuries. Conductive tissue engineering graft can be obtained by seeding Schwann cells on conductive scaffold. However, when ES is applied through the conductive scaffold, the impact of ES on Schwann cells has never been investigated. In this study, a biodegradable conductive composite made of conductive polypyrrole (PPy, 2.5%) and biodegradable chitosan (97.5%) was prepared in order to electrically stimulate Schwann cells. The tolerance of Schwann cells to ES was examined by a cell apoptosis assay. The growth of the cells was characterized using DAPI staining and a MTT assay. mRNA and protein levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in Schwann cells were assayed by RT-PCR and Western blotting, and the amount of NGF and BDNF secreted was determined by an ELISA assay. The results showed that the PPy/chitosan membranes supported cell adhesion, spreading, and proliferation with or without ES. Interestingly, ES applied through the PPy/chitosan composite dramatically enhanced the expression and secretion of NGF and BDNF when compared with control cells without ES. These findings highlight for the first time the possibility of enhancing nerve regeneration in conductive scaffolds through ES-increased neurotrophin secretion.

  5. Thiolated and S-protected hydrophobically modified cross-linked poly(acrylic acid)--a new generation of multifunctional polymers.

    Science.gov (United States)

    Bonengel, Sonja; Haupstein, Sabine; Perera, Glen; Bernkop-Schnürch, Andreas

    2014-10-01

    The aim of this study was to create a novel multifunctional polymer by covalent attachment of l-cysteine to the polymeric backbone of hydrophobically modified cross-linked poly(acrylic acid) (AC1030). Secondly, the free thiol groups of the resulting thiomer were activated using 2-mercaptonicotinic acid (2-MNA) to provide full reactivity and stability. Within this study, 1167.36 μmol cysteine and 865.72 μmol 2-MNA could be coupled per gram polymer. Studies evaluating mucoadhesive properties revealed a 4-fold extended adherence time to native small intestinal mucosa for the thiomer (AC1030-cysteine) as well as an 18-fold prolonged adhesion for the preactivated thiomer (AC1030-Cyst-2-MNA) compared to the unmodified polymer. Modification of the polymer led to a higher tablet stability concerning the thiomer and the S-protected thiomer, but a decelerated water uptake could be observed only for the preactivated thiomer. Neither the novel conjugates nor the unmodified polymer showed severe toxicity on Caco-2 cells. Evaluation of emulsification capacity proofed the ability to incorporate lipophilic compounds like medium chain triglycerides and the preservation of the emulsifying properties after the modifications. According to these results thiolated AC1030 as well as the S-protected thiolated polymer might provide a promising tool for solid and semisolid formulations in pharmaceutical development. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Electrochemical and Thermal Studies of Prepared Conducting Chitosan Biopolymer Film

    International Nuclear Information System (INIS)

    Hlaing Hlaing Oo; Kyaw Naing; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    In this paper, chitosan based conducting bipolymer films were prepared by casting and solvent evaporating technique. All prepared chitosan films were of pale yellow colour, transparent, and smooth. Sulphuric acid was chosen as the cross-linking agent. It enhanced conduction pathway in cross-linked chitosan films. Mechanical properties, solid-state, and thermal behavior of prepared chitosan fimls were studied by means of a material testing machine, powder X-ray diffractometry (XRD), thermogravimetric analysis (TG-DTG), and differential scanning calorimetry (DSC). By the XRD diffraction pattern, high molecular weight of chitosan product indicates the semi-crystalline nature, but the prepared chitosan film and doped chitosan film indicate significantly lower in crystallinity prove which of the amorphous characteristics. In addition, DSC thermogram of pure chitosan film exhibited exothermic peak around at 300 C, indicating polymer decomposition of chitosan molecules in chitosan films. Furthermore, these DSC thermograms clearly showed that while pure chitosan film display exothermal decomposition, the doped chitosan films mainly endothermic characteristics. The ionic conductivity of doped chitosan films were in the order of 10 to 10 S cm , which is in the range of semi-conductor. These results showed that cross-linked chitoson films may be used as polymer electrolyte film to fabricate solid state electrochemical cells

  7. PEG encapsulated by porous triamide-linked polymers as support for solid-liquid phase change materials for energy storage

    Science.gov (United States)

    Andriamitantsoa, Radoelizo S.; Dong, Wenjun; Gao, Hongyi; Wang, Ge

    2017-03-01

    A series of porous triamide-linked polymers labeled as PTP were prepared by condensation of 1,3,5-benzenetricarbonyl trichloride with benzene-1,4-diamine (A), 4,4‧-methylenediamine (B) and 1,3,5-triazine-2,4,6-triamine (C) respectively. The as-synthesized polymers exhibit permanent porosity and high surface areas which guarantee to hold polyethylene glycol (PEG) molecules in their network for shape-stabilized phase change materials. They possess different effects on the phase change properties of the composite due to their different porosities. PTP-A have intrinsic well-ordered morphology, microstructure and good enough pores to keep the PCMs compared to PTP-B and PTP-C. PEG 2000 used as PCMs could be retained up to 85 wt% in PTP-A polymer materials and these composites were defined as form-stable composite PCMs without the leakage of melted PCM. The thermal study revealed a good storage effect of encapsulated polymer and the enthalpy of melting increases in the order PTP-C PCMs.

  8. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element.

    Science.gov (United States)

    Lakshmi, Dhana; Bossi, Alessandra; Whitcombe, Michael J; Chianella, Iva; Fowler, Steven A; Subrahmanyam, Sreenath; Piletska, Elena V; Piletsky, Sergey A

    2009-05-01

    One of the difficulties with using molecularly imprinted polymers (MIPs) and other electrically insulating materials as the recognition element in electrochemical sensors is the lack of a direct path for the conduction of electrons from the active sites to the electrode. We have sought to address this problem through the preparation and characterization of novel hybrid materials combining a catalytic MIP, capable of oxidizing the template, catechol, with an electrically conducting polymer. In this way a network of "molecular wires" assists in the conduction of electrons from the active sites within the MIP to the electrode surface. This was made possible by the design of a new monomer that combines orthogonal polymerizable functionality; comprising an aniline group and a methacrylamide. Conducting films were prepared on the surface of electrodes (Au on glass) by electropolymerization of the aniline moiety. A layer of MIP was photochemically grafted over the polyaniline, via N,N'-diethyldithiocarbamic acid benzyl ester (iniferter) activation of the methacrylamide groups. Detection of catechol by the hybrid-MIP sensor was found to be specific, and catechol oxidation was detected by cyclic voltammetry at the optimized operating conditions: potential range -0.6 V to +0.8 V (vs Ag/AgCl), scan rate 50 mV/s, PBS pH 7.4. The calibration curve for catechol was found to be linear to 144 microM, with a limit of detection of 228 nM. Catechol and dopamine were detected by the sensor, whereas analogues and potentially interfering compounds, including phenol, resorcinol, hydroquinone, serotonin, and ascorbic acid, had minimal effect (< or = 3%) on the detection of either analyte. Non-imprinted hybrid electrodes and bare gold electrodes failed to give any response to catechol at concentrations below 0.5 mM. Finally, the catalytic properties of the sensor were characterized by chronoamperometry and were found to be consistent with Michaelis-Menten kinetics.

  9. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  10. A conducting polymer artificial muscle with 12% linear strain

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Sommer-Larsen, P.

    2003-01-01

    in a freely suspended polymer foil in response to a potential change and it includes attention to the composition of the polymer, to the synthesis conditions, and involves microstructuring of the polymer. As such, an analysis of the influence of the alkyl chain length on the properties of PPy doped with ABSs...... has shown that the obtainable strain decreases with increasing chain length for alkyl chains longer than C$-8$/....

  11. Conductive polymer composites with double percolated architecture of carbon nanoparticles and ceramic microparticles for high heat dissipation and sharp PTC switching

    International Nuclear Information System (INIS)

    Droval, G; Feller, J F; Salagnac, P; Glouannec, P

    2008-01-01

    In classical self-limiting heating devices where conductive polymer composites (CPC) are used, one of the main problems to solve is the stability of properties with time. Different strategies are proposed to stabilize the morphologies during the structuring of these heterogeneous materials. Some of them are well known in the use of co-continuous polymer blends or confinement but the interest of this work is to combine different structuring methods such as volume exclusion, adsorption and multiple percolations to achieve original properties. In fact the CPC developed exhibit enhanced heat dissipation and thermal stability (up to 180 °C), independent adjustability of electrical and thermal conductivity, and a sharp and large amplitude PTC effect. These original results were obtained with a co-continuous structure associating a thermally conductive polymer phase (syndiotactic poly(styrene) (sPS) filled with aluminum oxide (Al 2 O 3 ) or boron nitride (BN)) with an electrically conductive polymer phase (high-density poly(ethylene)) (hdPE) filled with carbon nanoparticles (CNP) in appropriate proportions

  12. Conductive and photoactive nature of conjugated polymer based on thiophene functionalized thiazole or benzothiadiazole

    Directory of Open Access Journals (Sweden)

    K. Mahesh

    2018-03-01

    Full Text Available New poly (thiophene vinyl thiazole (PTVT and poly (thiophene vinyl benzothiadiazole (PTVBT was synthesized by Wittig condensation route. The absorption maximum of PTVT and PTVBT appeared at 376 and 410 nm in a solution state, and it was red-shifted to 417 and 510 nm in a thin film state. The optical band gaps were 1.7 and 1.5 eV calculated from thin film absorption edges of the polymer. The photoluminescence spectra of PTVT and PTVBT have an emission peak at 457 nm with bluish green and 487 nm with greenish-yellow fluorescence in THF solution. Both polymers showed a short fluorescence decay time (τ1 of 2.31 and 0.73 ns respectively. Furthermore, the aggregation-caused quenching (ACQ phenomenon observed in both polymers in decreased fluorescence intensity with different water fractions. The lower electrochemical band gaps were achieved for both polymers (1.4, and 1.3 eV from cyclic voltammetry. Both polymers have a granular shaped morphology with good surface roughness was observed using AFM. High thermal stability was observed with 8% weight loss at 400 °C for PTVT and 6% weight loss at 460°C for PTVBT. The highest electrical conductivity was observed from electrochemical impedance measurement which was 7.68·10–6 Ω–1·cm–1 for PTVBT.

  13. Application of polymers cross-linked by electron beam irradiation to electric wire industry

    International Nuclear Information System (INIS)

    Oda, Eisuke

    1976-01-01

    Applications of the polymers cross-linked by electron beam irradiation to electric wire industry as an example of dully developed utilization are reviewed. The report is divided into five parts, namely 1) radiation sources and irradiation processes, 2) development of crosslinking materials, 3) accumulation of electric charge and accumulation of heat, 4) examples of application, and 5) future prospect. Such a phenomenon as discharge destruction pattern (Lichtenberg figure) must be solved, when cable insulation materials are cross-linked by electron beam irradiation. The measures for preventing the discharge destruction are required, especially when the layers of polyethylene insulation for high voltage cables are irradiated. The accumulation of heat causes the troubles in foaming, degeneration and wire running of high potential cables, when the layers of insulation are thick. Effective promoters for cross-linking must be studied to reduce the radiation dose. The irradiators capable of irradiating wires uniformly are desirable. Electron beam accelerators will be used, as far as the radiation dose of 10 or more Mrad is required for cross-linking irradiation. If the dose of one tenth or less of the above value is required, gamma-ray sources (RI) are rather easily applicable than focused strong beam. The utilization of spent nuclear fuel is desirable. (Iwakiri, K.)

  14. Modification and structuring of conducting polymer films on insulating substrates by ion beam treatment

    International Nuclear Information System (INIS)

    Asmus, T.; Wolf, Gerhard K.

    2000-01-01

    Besides the commonly used procedures of UV-, X-ray and electron beam lithography, surface structuring by ion beam processes represents an alternative route to receive patterns in the nanometre-micrometre scale. In this work we focused on changes of surface properties of the polymer materials induced by ion irradiation and on reproducing hexagonal and square patterns in the micrometre scale. To achieve a better understanding of modification and structuring of insulating and conducting polymers by ion beam treatment we investigated effects of 14 keV Ar + bombardment on thin films of doped conducting polyethoxithiophene (PEOT) and polyethylenedioxithiophene (PEDT) on polyethersulfone (PES) as insulating substrate within the fluence range from 10 14 to 10 17 ions/cm 2 . Changes of surface properties like wettability, solubility, topology and electrochemical behaviour have been studied by contact angle technique, AFM/LFM, cyclovoltammetry and electrochemical microelectrode. By irradiation through copper masks structured patterns were achieved. These patterns can be converted by galvanic or electroless copper deposition in structured metal layers

  15. Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures

    International Nuclear Information System (INIS)

    Mansoor, I; Liu, Y; Stoeber, B; Häfeli, U O

    2013-01-01

    Transdermal drug delivery using microneedles is a technique to potentially replace hypodermic needles for injection of many vaccines and drugs. Fabrication of hollow metallic microneedles so far has been associated with time-consuming steps that restrict batch production of these devices. Here, we are presenting a novel method for making metallic microneedles with any desired height, spacing, and lumen size. In our process, we use solvent casting to coat a mold, which contains an array of pillars, with a conductive polymer composite layer. The conductive layer is then used as a seed layer in a metal electrodeposition process. To characterize the process, the conductivity of the polymer composite with respect to different filler concentrations was investigated. In addition, plasma etching of the polymer was characterized. The electroplating process was also studied further to control the thickness of the microneedle array plate. The strength of the microneedle devices was evaluated through a series of compression tests, while their performance for transdermal drug delivery was tested by injection of 2.28 µm fluorescent microspheres into animal skin. The fabricated metallic microneedles seem appropriate for subcutaneous delivery of drugs and microspheres. (paper)

  16. Calculation of the band structure of 2d conducting polymers using the network model

    International Nuclear Information System (INIS)

    Sabra, M. K.; Suman, H.

    2007-01-01

    the network model has been used to calculate the band structure the gap energy and Fermi level of conducting polymers in two dimensions. For this purpose, a geometrical classification of possible polymer chains configurations in two dimensions has been introduced leading to a classification of the unit cells based on the number of bonds in them. The model has been applied to graphite in 2D, represented by a three bonds unit cell, and, as a new case, the anti-parallel Polyacetylene chains (PA) in two dimensions, represented by a unit cell with four bons. The results are in good agreement with the first principles calculations. (author)

  17. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings

    KAUST Repository

    Yao, Yan; Liu, Nian; McDowell, Matthew T.; Pasta, Mauro; Cui, Yi

    2012-01-01

    For silicon nanowires (Si NWs) to be used as a successful high capacity lithium-ion battery anode material, improvements in cycling stability are required. Here we show that a conductive polymer surface coating on the Si NWs improves cycling stability; coating with PEDOT causes the capacity retention after 100 charge-discharge cycles to increase from 30% to 80% over bare NWs. The improvement in cycling stability is attributed to the conductive coating maintaining the mechanical integrity of the cycled Si material, along with preserving electrical connections between NWs that would otherwise have become electrically isolated during volume changes. © 2012 The Royal Society of Chemistry.

  18. Zwitterionic peptide anchored to conducting polymer PEDOT for the development of antifouling and ultrasensitive electrochemical DNA sensor.

    Science.gov (United States)

    Wang, Guixiang; Han, Rui; Su, Xiaoli; Li, Yinan; Xu, Guiyun; Luo, Xiliang

    2017-06-15

    Zwitterionic peptides were anchored to a conducting polymer of citrate doped poly(3,4-ethylenedioxythiophene) (PEDOT) via the nickel cation coordination, and the obtained peptide modified PEDOT, with excellent antifouling ability and good conductivity, was further used for the immobilization of a DNA probe to construct an electrochemical biosensor for the breast cancer marker BRCA1. The DNA biosensor was highly sensitive (with detection limit of 0.03fM) and selective, and it was able to detect BRCA1 in 5% (v/v) human plasma with satisfying accuracy and low fouling. The marriage of antifouling and biocompatible peptides with conducting polymers opened a new avenue to construct electrochemical biosensors capable of assaying targets in complex biological media with high sensitivity and without biofouling. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications.

    Science.gov (United States)

    Allison, Linden; Hoxie, Steven; Andrew, Trisha L

    2017-06-29

    Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene). A variety of textile electronic devices are built from the conductive fibers and fabrics thus obtained, including: physiochemical sensors, thermoelectric fibers/fabrics, heated garments, artificial muscles and textile supercapacitors. In all these cases, electrical performance and device ruggedness is determined by the morphology of the conducting polymer active layer on the fiber or fabric substrate. Tremendous variation in active layer morphology can be observed with different coating or dyeing conditions. Here, we summarize various methods used to create fiber- and fabric-based devices and highlight the influence of the coating method on active layer morphology and device stability.

  20. Ion beam application for improved polymer surface properties

    International Nuclear Information System (INIS)

    Lee, E.H.; Rao, G.R.; Lewis, M.B.; Mansur, L.K.

    1992-01-01

    Various polymeric materials were subjected to bombardment by different energetic ions with energies ranging from 200 to 1000 keV. Tests showed substantial improvements in hardness, wear resistance, oxidation resistance, resistance to chemicals, and electrical conductivity. The magnitude of property changes was strongly dependent upon ion species, energy, dose, and polymer structure. Both hardness and electrical conductivity increased with ion energy and dose. These properties were apparently related to the effectiveness of cross-linking. Ion species with a large electronic stopping cross-section are expected to produce more crosslinking. It is believed that the polymer property improvements are commensurate with the extent of crosslinking, which is responsible for the formation of three-dimensionally-connected, carbon-rich, rigid networks. 22 refs, 5 figs

  1. Fundamental studies of low velocity impact resistance of graphite fiber reinforced polymer matrix composites

    International Nuclear Information System (INIS)

    Bowles, K.J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T/sub G/ and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. Linear polymers, which contain no active groups for cross-linking, do not toughen composites because the fiber-matrix interfacial bond is not of sufficient strength to prevent interfacial failure from occurring. Toughness must be built into the basic polymer backbone and cross-linking structure

  2. Freeze Drying Improves the Shelf-Life of Conductive Polymer Modified Neural Electrodes

    Directory of Open Access Journals (Sweden)

    Himadri S. Mandal

    2015-08-01

    Full Text Available Coating microelectrodes with conductive polymer is widely recognized to decrease impedance and improve performance of implantable neural devices during recording and stimulation. A concern for wide-spread use of this approach is shelf-life, i.e., the electrochemical stability of the coated microelectrodes prior to use. In this work, we investigated the possibility of using the freeze-drying process in order to retain the native low impedance state and, thereby, improve the shelf-life of conductive polymer poly(3,4-ethylenedioxythiophene (PEDOT-PSS modified neural electrodes. Control PEDOT-PSS coated microelectrodes demonstrated a significant increase in impedance at 1 kHz after 41–50 days of room temperature storage. Based on equivalent circuit modeling derived from electrochemical impedance spectroscopy, this increase in impedance could be largely attributed to a decrease in the interfacial capacitance consistent with a collapse and closing of the porous structure of the polymeric coating. Time-dependent electrochemical impedance measurements revealed higher stability of the freeze-dried coated microelectrodes compared to the controls, such that impedance values after 41–50 days appeared to be indistinguishable from the initial levels. This suggests that freeze drying PEDOT-PSS coated microelectrodes correlates with enhanced electrochemical stability during shelf storage.

  3. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing

    2014-05-22

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well-defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g−1 and a high electric conductivity of 0.125 S cm−1 when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.

  4. FTIR spectroscopy and thermodynamics of hydrogen adsorbed in a cross-linked polymer.

    Science.gov (United States)

    Spoto, Giuseppe; Vitillo, Jenny G; Cocina, Donato; Damin, Alessandro; Bonino, Francesca; Zecchina, Adriano

    2007-09-28

    The adsorption of H(2) in a cross-linked poly(styrene-co-divinylbenzene) (St-DVB) microporous polymer (BET surface area 920 m(2) g(-1)) is studied by volumetric and gravimetric methods, FTIR spectroscopy at variable temperature (300-14 K) and ab initio calculations. At 77 K the polymer reversibly stores up to 1.3 mass% H(2) at a pressure of 1 bar and 1.8 mass% at 10 bar. The adsorption process involves the specific interaction of H(2) with the structural phenyl rings through weak dispersive forces. The interacting molecules become IR active and give rise to vibrational and rotational-vibrational manifestations which are affected by the temperature, the contact time and the H(2) equilibrium pressure. The spectra of the H(2)/St-DVB system reported here represent the first IR evidence of the adsorption of hydrogen on unsaturated molecules. The adsorption enthalpy is evaluated by the VTIR (variable temperature IR spectroscopy) method (C. Otero Areán et al., Phys. Chem. Chem. Phys., 2007, DOI: 10.1039/b615535a) and compared with the results of ab initio calculations for the H(2)/benzene interaction and with literature data.

  5. New Secondary Batteries Using Electronically Conductive Polymer Cathodes

    Science.gov (United States)

    Martin, Charles R.; White, Ralph E.

    1991-01-01

    A Li/Polypyrrole secondary battery was designed and built, and the effect of controlling the morphology of the polymer on enhancement of counterion diffusion in the polymer phase was explored. The experimental work was done at Colorado State University, while the mathematical modeling of the battery was done at Texas A and M University. Manuscripts and publications resulting from the project are listed.

  6. A conductive polymer based electronic nose for early detection of Penicillium digitatum in post-harvest oranges

    International Nuclear Information System (INIS)

    Gruber, Jonas; Nascimento, Henry M.; Yamauchi, Elaine Y.; Li, Rosamaria W.C.; Esteves, Carlos H.A.; Rehder, Gustavo P.; Gaylarde, Christine C.; Shirakawa, Márcia A.

    2013-01-01

    We describe the construction of an electronic nose, comprising four chemiresistive sensors formed by the deposition of thin conductive polymer films onto interdigitated electrodes, attached to a personal computer via a data acquisition board. This e-nose was used to detect biodeterioration of oranges colonized by Penicillium digitatum. Significant responses were obtained after only 24 h of incubation i.e. at an early stage of biodeterioration, enabling remedial measures to be taken in storage facilities and efficiently distinguishing between good and poor quality fruits. The instrument has a very low analysis time of 40 s. - Highlights: • Early detection of Penicillium digitatum in oranges • Low cost electronic nose based on conductive polymers • Efficient distinction between good and poor quality fruits

  7. A conductive polymer based electronic nose for early detection of Penicillium digitatum in post-harvest oranges

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Jonas, E-mail: jogruber@iq.usp.br [Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo, SP (Brazil); Nascimento, Henry M. [Sociedade Brasileira de Microbiologia, São Paulo, SP (Brazil); Yamauchi, Elaine Y. [Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo, SP (Brazil); Li, Rosamaria W.C. [Centro Universitário Estácio Radial São Paulo, São Paulo, SP (Brazil); Esteves, Carlos H.A. [Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo, SP (Brazil); Rehder, Gustavo P. [Escola Politécnica, Universidade de São Paulo, São Paulo, SP (Brazil); Gaylarde, Christine C. [University of Portsmouth, Portsmouth (United Kingdom); Shirakawa, Márcia A. [Escola Politécnica, Universidade de São Paulo, São Paulo, SP (Brazil)

    2013-07-01

    We describe the construction of an electronic nose, comprising four chemiresistive sensors formed by the deposition of thin conductive polymer films onto interdigitated electrodes, attached to a personal computer via a data acquisition board. This e-nose was used to detect biodeterioration of oranges colonized by Penicillium digitatum. Significant responses were obtained after only 24 h of incubation i.e. at an early stage of biodeterioration, enabling remedial measures to be taken in storage facilities and efficiently distinguishing between good and poor quality fruits. The instrument has a very low analysis time of 40 s. - Highlights: • Early detection of Penicillium digitatum in oranges • Low cost electronic nose based on conductive polymers • Efficient distinction between good and poor quality fruits.

  8. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Namrata, E-mail: ntripat@ilstu.edu [Department of Physics, Illinois State University, Normal, IL 61790 (United States); Thakur, Awalendra K. [Department of Physics, Indian Institute of Technology Patna, Bihar 800013 (India); Shukla, Archana [Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology, Bombay 721302 (India); Marx, David T. [Department of Physics, Illinois State University, Normal, IL 61790 (United States)

    2015-07-15

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA{sub 4}LiClO{sub 4} dispersed with nano-CeO{sub 2} powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε′) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  9. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Science.gov (United States)

    Tripathi, Namrata; Thakur, Awalendra K.; Shukla, Archana; Marx, David T.

    2015-07-01

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA4LiClO4 dispersed with nano-CeO2 powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε‧) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  10. Conducting Polymer Actuators: Prospects and Limitations

    DEFF Research Database (Denmark)

    Skaarup, Steen

    Actuators constructed with a conjugated polymer as the active part have been predicted to have a number of highly desirable properties: Large mechanical strength, high power density, i.e. high actuation speeds possible, sufficient maximum strain values, high reversibility and safe, low voltages (...

  11. Structural symmetry breaking of silicon containing polymers and their relation with electrical conductivity and Raman active vibrations

    Science.gov (United States)

    Cabrera, Alejandro; González, Carmen; Tagle, Luis; Terraza, Claudio; Volkmann, Ulrich; Barriga, Andrés; Ramos, Esteban; Pavez, Maximiliano

    2011-03-01

    The incorporation of silicon into the polymeric main chain or side groups can provide an enhancement in chemical, physical and mechanical properties. We report an efficient method for the synthesis of polymers containing silicon in the main chain, from the polycondensation reactions of four optically active carboxylic diacid. The solubility of the polymers, the molecular weight, the glass transition and the thermal stability were studied by standard techniques. Raman spectroscopy was used to probe the conformation of stretching modes as function of the temperature. The conductivity measurements indicated that the alignment of the molecules is a crucial parameter for electrical performance. When the polymers were exposed to iodine, charge transfer increased their mobility and decreased their optical band gaps. These novel properties highlight the possibility to generate alternative active opto-electronics polymers.

  12. Conducting polymer film-based immunosensors using carbon nanotube/antibodies doped polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Phuong Dinh, E-mail: phuongdinhtam@gmail.com [Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (Viet Nam); Hieu, Nguyen Van [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (Viet Nam)

    2011-09-15

    Carbon nanotube/polypyrrole/antibodies polymer films were synthesized successfully on microelectrodes by electrochemical deposition. Electropolymerization was performed at optimal range between -0.8 and +0.8 V at a scan rate of 50 mV s{sup -1} in an electrochemical mini-cell containing monomer pyrroles, carbon nanotubes, and goat IgGs. The conducting polymer films were characterized by Fourier transform infrared spectrometry, Raman spectra, and Field emission scanning electron microscopy. And then, it was prepared for immunosensor application to determine anti-goat IgGs. The results show that a linear range between 0.05 and 0.7 {mu}g ml{sup -1} for anti-goat IgGs detection was observed for immunosensor, a detection limit as low as 0.05 {mu}g ml{sup -1} and a response time of 1 min. The effect parameters of electropolymerization process on immunosensor response are also studied. It found that the immunosensor well active in 1.5 mg ml{sup -1} CNT concentration, 2.5 mM pyrrole, 10 {mu}g ml{sup -1} goat IgGs.

  13. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  14. Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.

    Science.gov (United States)

    Nguyen, Thao M; Lee, Sebin; Lee, Sang Bok

    2014-10-01

    To uptake and release hydrophilic model drugs and insulin in a novel conductive polymer (CP) nanotube transdermal patch. The externally controlled transdermal delivery of model drugs and insulin were tested ex vivo and results were compared with CP films. The unique intrinsic properties of CPs provide electrostatic interaction between the model drugs and polymer backbone. When a pulsed potential was applied, the drug delivery release profile mimics that of injection delivery. With a constant potential applied, the release rate constants of the patch system were up to three-times faster than the control (0 V) and released approximately 80% more drug molecules over 24 h. The CP nanotube transdermal patch represents a new and promising drug method, specifically for hydrophilic molecules, which have been a large obstacle for conventional transdermal drug delivery systems.

  15. Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid

    Directory of Open Access Journals (Sweden)

    Beleze Fábio A.

    2001-01-01

    Full Text Available In this paper we report the synthesis and characterization of novel organic-inorganic hybrid materials between the crystalline antimonic acid (CAA and two conductive polymers: polypyrrole and polyaniline. The hybrids were obtained by in situ oxidative polymerization of monomers by the Sb(V present in the pyrochlore-like CAA structure. The materials were characterized by infrared and Raman spectroscopy, X-ray diffraction, cyclic voltammetry, CHN elemental analysis and electronic paramagnetic resonance spectroscopy. The results showed that both polymers were formed in their oxidized form, with the CAA structure acting as a counter anion.

  16. Ion pair reinforced semi-interpenetrating polymer network for direct methanol fuel cell applications.

    Science.gov (United States)

    Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang

    2012-06-07

    This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.

  17. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    Science.gov (United States)

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cotton fabric coated with conducting polymers and its application in monitoring of carnivorous plant response

    Czech Academy of Sciences Publication Activity Database

    Bajgar, V.; Penhaker, M.; Martinková, L.; Pavlovič, A.; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2016-01-01

    Roč. 16, č. 4 (2016), 498_1-498_12 ISSN 1424-8220 R&D Projects: GA TA ČR(CZ) TE01020022 Institutional support: RVO:61389013 Keywords : conducting polymers * plant neurobiology * polyaniline Subject RIV: CG - Electrochemistry Impact factor: 2.677, year: 2016

  19. Carbon nanotubes with silver nanoparticle decoration and conductive polymer coating for improving the electrical conductivity of polycarbonate composites

    KAUST Repository

    Patole, Archana S.

    2015-01-01

    We proposed a strategy to enhance the conductivity of polycarbonate by using three-phase hybrid metallic/non-metallic fillers. Ethylene diamine (EDA) functionalized multiwalled carbon nanotubes (MWCNT-EDA) are first decorated with silver nanoparticles. These Ag/ MWCNT-EDA fillers are then coated with a conductive layer of ethylene glycol treated PEDOT: PSS (poly [3,4-ethylenedioxythiophene]: poly [styrenesulfonate]) (EP). In such an approach, the MWCNT backbone is covered by a highly conductive coating made of Ag nanoparticles surrounded by EP. To understand how Ag and EP form a highly conductive coating, the effect of different wt% of Ag nanoparticles on EP was studied. Ag nanoparticles around the size of 128 ± 28 nmeffectively lowered the volume resistivity of bulk EP, resulting in a highly conducting Ag/EP blend. We found that in the final Ag/MWCNT-EDA/EP assembly, the EP coating enhances the electrical conductivity in two ways: (1) it is an efficient dispersing agent that helps in achieving a uniform dispersion of the Ag/MWCNT-EDA and (2) it acts as a conductive bridge between particles (Ag and MWCNT-EDA), reducing the particle to particle resistivity. When inserted into polycarbonate, this three-phase blend successfully reduced the volume resistivity of the polymer by two orders of magnitude compared with previous approaches.

  20. Preparation and Characterization of Conducting Polymer Latices by Chemical Polymerization of Aniline or Anisidine in Presence of Latex: Study of Their Electroactivity and Anti-Corrosion Properties

    Directory of Open Access Journals (Sweden)

    Bakhshali Massoumi

    2013-06-01

    Full Text Available Poly (vinylacetate-co-butylmethacrylate was prepared in presence of potassium persulphate as an oxidizing agent in aqueous solution of dodecylbenzene sulfonate sodium as an emulsifying agent. Then, aniline was polymerized by chemical oxidation method at three different concentrations of aniline monomer (0.1, 0.2 and 0.3 M in toluene in presence of poly(vinylacetate-co-butylmethacrylate in order to obtain polyaniline/poly(vinylacetate-co-butylmethacrylate. To prepare conducting-latex of polyanisidine/poly(vinylacetate-co-butylmethacrylate the same method was employed as above for aniline monomer in obtaining conducting polyaniline/poly(vinylacetate-co-butylmethacrylate latex. In addition, the purification of conducting-latex polymers, polyaniline/poly(vinylacetate-co-butylmethacrylate and polyanisidine/poly(vinylacetate-co-butylmethacrylate was conducted and preparation of tin layer films of conducting-latex polymers was carried out by casting method on glassy lames. The electroactivity properties of the prepared latex-polymers, polyaniline/poly(vinylacetate-co-butylmethacrylate and polyanisidine/poly(vinylacetate-co-butylmethacrylate were investigated by cyclic voltammetery (CV. The voltamogrames showed that the latex films were electroactive. Because of conductivity and electroactivity, the obtained films may find applications in anti-corrosion coatings. The anti-corrosion properties of conducting-latex polymers were studied on aluminum surface by impedance technique. The structure of the prepared conducting-latex polymers was confirmed by Fourier transform infrared (FTIR. Finally, the electrical conductivity of synthesized conducting-latex polymers, polyaniline/poly(vinylacetate-co-butylmethacrylate and polyanisidine/poly(vinylacetate-co-butylmethacrylate was measured by four probe technique.

  1. Electrochemical and Computational Studies on the Electrocatalytic Effect of Conducting Polymers toward the Redox Reactions of Thiadiazole-Based Thiolate Compounds

    KAUST Repository

    Rodríguez-Calero, Gabriel G.; Lowe, Michael A.; Kiya, Yasuyuki; Abruña, Héctor D.

    2010-01-01

    We have studied the electrocatalytic effects of polythiophene-based conducting polymers toward the redox reactions of the dilithium salt of the thiadiazole-based dithiol compound 2,5-dimercapto-1,3,4-thiodiazole (DMcT-2Li) via cyclic voltammetry (CV), rotating-disk electrode voltammetry, and electrochemical impedance spectroscopy (EIS). We have found that the electrocatalytic activity of the conducting polymers is strongly influenced by the potential range over which the polymers are electrically conductive (i.e., window of conductivity), which was tuned by employing different electron-donating groups at the 3- or 3,4-positions of polythiophene (PTh). Both poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-propylenedioxythiophene) (PProDOT), whose windows of conductivity exhibited a good overlap with the formal potential for the dimerization process of DMcT-2Li; E0′ d (?0.54 V versus Ag/Ag+) exhibited electrocatalytic activity toward both the oxidation and reduction processes of DMcT-2Li. On the other hand, PTh, poly(3-methylthiophene) (PMTh), and poly(3,4- dimethoxythiophene) (PDMTh), whose windows of conductivity did not overlap with E0′d, did not exhibit electrocatalytic activity. The standard charge transfer rate constants for the dimerization process of DMcT-2Li at PEDOT, PProDOT, and PDMTh film-modified glassy carbon electrodes (GCEs) were estimated to be 7.4 - 10?4, 3.2 - 10?4, and 6.9 - 10?5 cm/s while the rate constant was 6.3 - 10?5 cm/s at an unmodified GCE. Moreover, EIS studies for PEDOT, PProDOT, and PDMTh film-modified GCEs indicated the smallest charge transfer resistance for a PEDOT film and highest for a PDMTh film at E0′d, indicating that the higher the electrical conductivity of a film at E 0′d the higher the electrocatalytic activity toward the redox reactions of DMcT-2Li. These results clearly indicate that in order to accelerate the redox reactions of DMcT-2Li (and likely of other organosulfur compounds) the window of conductivity

  2. Electrochemical and Computational Studies on the Electrocatalytic Effect of Conducting Polymers toward the Redox Reactions of Thiadiazole-Based Thiolate Compounds

    KAUST Repository

    Rodríguez-Calero, Gabriel G.

    2010-04-08

    We have studied the electrocatalytic effects of polythiophene-based conducting polymers toward the redox reactions of the dilithium salt of the thiadiazole-based dithiol compound 2,5-dimercapto-1,3,4-thiodiazole (DMcT-2Li) via cyclic voltammetry (CV), rotating-disk electrode voltammetry, and electrochemical impedance spectroscopy (EIS). We have found that the electrocatalytic activity of the conducting polymers is strongly influenced by the potential range over which the polymers are electrically conductive (i.e., window of conductivity), which was tuned by employing different electron-donating groups at the 3- or 3,4-positions of polythiophene (PTh). Both poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-propylenedioxythiophene) (PProDOT), whose windows of conductivity exhibited a good overlap with the formal potential for the dimerization process of DMcT-2Li; E0′ d (?0.54 V versus Ag/Ag+) exhibited electrocatalytic activity toward both the oxidation and reduction processes of DMcT-2Li. On the other hand, PTh, poly(3-methylthiophene) (PMTh), and poly(3,4- dimethoxythiophene) (PDMTh), whose windows of conductivity did not overlap with E0′d, did not exhibit electrocatalytic activity. The standard charge transfer rate constants for the dimerization process of DMcT-2Li at PEDOT, PProDOT, and PDMTh film-modified glassy carbon electrodes (GCEs) were estimated to be 7.4 - 10?4, 3.2 - 10?4, and 6.9 - 10?5 cm/s while the rate constant was 6.3 - 10?5 cm/s at an unmodified GCE. Moreover, EIS studies for PEDOT, PProDOT, and PDMTh film-modified GCEs indicated the smallest charge transfer resistance for a PEDOT film and highest for a PDMTh film at E0′d, indicating that the higher the electrical conductivity of a film at E 0′d the higher the electrocatalytic activity toward the redox reactions of DMcT-2Li. These results clearly indicate that in order to accelerate the redox reactions of DMcT-2Li (and likely of other organosulfur compounds) the window of conductivity

  3. Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework.

    Science.gov (United States)

    Ishiwata, Takumi; Furukawa, Yuki; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki

    2013-04-10

    Until now, seamless fusion of metal-organic frameworks (MOFs) and covalently cross-linked polymer gels (PG) at molecular level has been extremely rare, since these two matters have been regarded as opposite, that is, hard versus soft. In this report, we demonstrate transformation of cubic MOF crystals to PG via inner cross-linking of the organic linkers in the void space of MOF, followed by decomposition of the metal coordination. The obtained PG behaved as a polyelectrolyte gel, indicating the high content of ionic groups inside. Metal ions were well adsorbed in the PG due to its densely packed carboxylate groups. A chimera-type hybrid material consisting of MOF and PG was obtained by partial hydrolysis of resulting cross-linked MOF. The shape of resulting PG network well reflected the crystal structure of MOF employed as a template. Our results will connect the two different network materials that have been ever studied in the two different fields to provide new soft and hard hybrid materials, and the unique copolymerization in the large void space of the MOF will open a new horizon toward "ideal network polymers" never prepared before now.

  4. Design, Synthesis, and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy Storage

    Science.gov (United States)

    2016-03-31

    cross- linked , reversible ion gels exhibit among the highest ionic conductivities (>10 –2 S/cm) of known solvent-free, non-aqueous polymer...TFSA], the styrene domains were cross- linked by annealing at elevated temperature for ca. 20 min. The high ionic conductivity (ca. 10 mS/cm) of the...main innovations were the development of ion gels, materials that combine an ionic liquid with a gelating block copolymer to give mechanical strength

  5. All Polymer Micropump

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen

    2008-01-01

    In this thesis an all polymer micropump, and the fabrication method required to fabricate this, are examined. Polymer microfluidic. devices are of major scientific interest because they can combine complicated chemical and biological analys~s in cheap and disposable devices. The electrode system...... in the micropump is based on the conducting polymer poly(3,4 ethylenedioxythiophene) (PEDOT). The majority of the work conducted was therefore aimed at developing methods for patterning and processing PEDOT. First a method was developed, where the conducting polymer PEDOT can be integrated into non...... of the substrate, the PEDOT is integrated into the non-conductive polymer. The result is a material that retains the good conductivity of PEDOT, but gains the mechanical stability of the substrate. The best results were obtained for PEDOTjPMMA. The new mechanically stable PEDOTjPMMA was micro-patterned using clean...

  6. Modified resistivity-strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes

    NARCIS (Netherlands)

    Lin, L.; Deng, H.; Gao, X.; Zhang, S.M.; Bilotti, E.; Peijs, A.A.J.M.; Fu, Q.

    2013-01-01

    Eutectic metal particles and carbon nanotubes are incorporated into a thermoplastic polyurethane matrix through a simple but efficient method, melt compounding, to tune the resistivity-strain behavior of conductive polymer composite (CPC) fibers. Such a combination of conductive fillers is rarely

  7. Role of beta 1-4 linked polymers in the biofilm structure of marine Pseudomonas sp. CE-2 on 304 stainless steel coupons.

    Science.gov (United States)

    Jain, Anand; Bhosle, Narayan B

    2008-01-01

    Pseudomonas sp CE-2 cells attach and form biofilms on 304-stainless steel (SS) coupons. A series of experiments were carried out in order to understand the role of exopolysaccharides (EPS) in the formation and maintenance of CE-2 biofilms on SS coupons. The biofilm density and EPS concentration increased over the period of incubation and the highest values for both were recorded after 72 h. Calcofluor and the lectin concanavalin A (Con A) showed a positive interaction with 72-h old biofilms, indicating the presence of beta 1-4 linked polymers, and alpha-d-glucose and alpha-d-mannose in the biofilm matrix of CE-2. When the CE-2 cells were grown in the presence of calcofluor (200 microg ml(-1)), biofilm formation was significantly reduced (approximately 85%). Conversely, the lectins Con A or WGA did not influence the CE-2 biofilms on the SS coupons. Furthermore, treatment with cellulase, an enzyme specific for the degradation of beta 1-4 linked polymers, removed substantial amounts of CE-2 biofilm from SS coupons. These results strongly suggest the involvement of beta 1-4 linked polymers in the formation and maintenance of Pseudomonas sp. CE-2 biofilms on SS coupons.

  8. Conductive Polymer Porous Film with Tunable Wettability and Adhesion

    Directory of Open Access Journals (Sweden)

    Yuqi Teng

    2015-04-01

    Full Text Available A conductive polymer porous film with tunable wettability and adhesion was fabricated by the chloroform solution of poly(3-hexylthiophene (P3HT and [6,6]-phenyl-C61-butyricacid-methyl-ester (PCBM via the freeze drying method. The porous film could be obtained from the solution of 0.8 wt%, whose pore diameters ranged from 50 nm to 500 nm. The hydrophobic porous surface with a water contact angle (CA of 144.7° could be transferred into a hydrophilic surface with CA of 25° by applying a voltage. The water adhesive force on the porous film increased with the increase of the external voltage. The electro-controllable wettability and adhesion of the porous film have potential application in manipulating liquid collection and transportation.

  9. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Science.gov (United States)

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  10. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  11. Current-voltage characteristics of individual conducting polymer nanotubes and nanowires

    Institute of Scientific and Technical Information of China (English)

    Long Yun-ze; Yin Zhi-Hua; Li Meng-Meng; Gu Chang-Zhi; Duvail Jean-Luc; Jin Ai-zi; Wan Mei-xiang

    2009-01-01

    We report the current-voltage (Ⅰ-Ⅴ) characteristics of individual polypyrrole nanotubes and poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires in a temperature range from 300 K to 2 K. Considering the complex structures of such quasi-one-dimensional systems with an array of ordered conductive regions separated by disordered barriers, we use the extended fluctuation-induced tunneling (FIT) and thermal excitation model (Kaiser expression) to fit the temperature and electric-field dependent Ⅰ-Ⅴ curves. It is found that the Ⅰ-Ⅴ data measured at higher temperatures or higher voltages can be well fitted by the Kaiser expression. However, the low-temperature data around the zero bias clearly deviate from those obtained from this model. The deviation (or zero-bias conductance suppression)could be possibly ascribed to the occurrence of the Coulomb-gap in the density of states near the Femi level and/or the enhancement of electron-electron interaction resulting from nanosize effects, which have been revealed in the previous studies on low-temperature electronic transport in conducting polymer films, pellets and nanostructures. In addition,similar Ⅰ-Ⅴ characteristics and deviation are also observed in an isolated K0.27MnO2 nanowire.

  12. Electrode-Impregnable and Cross-Linkable Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymer Electrolytes with High Ionic Conductivity and a Large Voltage Window for Flexible Solid-State Supercapacitors.

    Science.gov (United States)

    Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho

    2017-10-04

    We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.

  13. Conductivity through Polymer Electrolytes and Its Implications in Lithium-Ion Batteries: Real-World Application of Periodic Trends

    Science.gov (United States)

    Compton, Owen C.; Egan, Martin; Kanakaraj, Rupa; Higgins, Thomas B.; Nguyen, SonBinh T.

    2012-01-01

    Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory…

  14. Highly water-dispersible, mixed ionic-electronic conducting, polymer acid-doped polyanilines as ionomers for direct methanol fuel cells.

    Science.gov (United States)

    Murthy, Arun; Manthiram, Arumugam

    2011-06-28

    Highly water-dispersible polymer acid-doped polyanilines have been synthesized and evaluated as an alternative for expensive Nafion ionomers in the anode of direct methanol fuel cells (DMFC). These polymers as ionomers lead to higher performance in single cell DMFC compared to Nafion ionomers due to mixed ionic-electronic conduction, water dispersibility, and co-catalytic activity. This journal is © The Royal Society of Chemistry 2011

  15. pH-induced inversion of water-in-oil emulsions to oil-in-water high internal phase emulsions (HIPEs) using core cross-linked star (CCS) polymer as interfacial stabilizer.

    Science.gov (United States)

    Chen, Qijing; Deng, Xiaoyong; An, Zesheng

    2014-06-01

    A pH-responsive core cross-linked star (CCS) polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) arms was used as an interfacial stabilizer for emulsions containing toluene (80 v%) and water (20 v%). In the pH range of 12.1-9.3, ordinary water-in-oil emulsions were formed. Intermediate multiple emulsions of oil-in-water-in-oil and water-in-oil-in-water were formed at pH 8.6 and 7.5, respectively. Further lowering the pH resulted in the formation of gelled high internal phase emulsions of oil-in-water type in the pH range of 6.4-0.6. The emulsion behavior was correlated with interfacial tension, conductivity and configuration of the CCS polymer at different pH. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10-4 S cm-1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  17. Light harvesting by dye linked conducting polymers

    DEFF Research Database (Denmark)

    Nielsen, Kim Troensegaard

    2006-01-01

    The fact that the fossil fuel is finite and that the detrimental long-term effects of letting CO2 into our atmosphere exist, have created an enormous interest in developing new, cheap, renewable and less polluting energy resources. One of the most obviousabundant sources of energy in the solar...... system is the sun. Unfortunately the well developed silicon solar cells are very costly to produce. In an attempt to produce cheap and flexible solar cells, plastic solar cells have received a lot of attention inthe last decades. There are still a lot of parameters to optimize if the plastic solar cell...... an nconductor and a pconductor. The facts that the charge carrier separation only happens at the heterojunctionslimits the thickness of the active layer in solar cells and thereby the effectiveness of the solar cells. In this project the charge carrier separation is attempted optimized by making plastic solar...

  18. Soft capacitor fibers using conductive polymers for electronic textiles

    Science.gov (United States)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-11-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its cross section the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using the fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometers of fibers can be obtained from a single preform with fiber diameters ranging between 500 and 1000 µm. A typical measured capacitance of our fibers is 60-100 nF m-1 and it is independent of the fiber diameter. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kΩ m L-1, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, the absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage.

  19. Soft capacitor fibers using conductive polymers for electronic textiles

    International Nuclear Information System (INIS)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-01-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its cross section the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using the fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometers of fibers can be obtained from a single preform with fiber diameters ranging between 500 and 1000 µm. A typical measured capacitance of our fibers is 60–100 nF m −1 and it is independent of the fiber diameter. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kΩ m L −1 , which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, the absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage

  20. Characterization of poly(3,4-ethylenedioxythiophene):tosylate conductive polymer microelectrodes for transmitter detection

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Vreeland, Richard F.; Heien, Michael L.

    2012-01-01

    applications such as capillary electrophoresis, high-performance liquid chromatography, and constant potential amperometry at living cells. Band electrodes with widths down to 3 μm were fabricated on polymer substrates using UV lithographic methods. The electrodes are electrochemically stable in a range......In this paper we investigate the physical and electrochemical properties of micropatterned poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:tosylate) microelectrodes for neurochemical detection. PEDOT:tosylate is a promising conductive polymer electrode material for chip-based bioanalytical...... between −200 mV and 700 mV vs. Ag/AgCl and show a relatively low resistance. A wide range of transmitters is shown to oxidize readily on the electrodes. Kinetic rate constants and half wave potentials are reported. The capacitance per area was found to be high (1670 ± 130 μF cm−2) compared to other thin...

  1. Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix

    International Nuclear Information System (INIS)

    Kochetov, R; Andritsch, T; Morshuis, P H F; Smit, J J; Korobko, A V; Picken, S J

    2011-01-01

    In this paper the thermal conductivity of epoxy-based composite materials is analysed. Two- and three-phase Lewis-Nielsen models are proposed for fitting the experimental values of the thermal conductivity of epoxy-based polymer composites. Various inorganic nano- and micro- particles were used, namely aluminium oxide, aluminium nitride, magnesium oxide and silicon dioxide with average particle size between 20 nm and 20 μm. It is shown that the filler-matrix interface plays a dominant role in the thermal conduction process of the nanocomposites. The two-phase model was proposed as an initial step for describing systems containing 2 constituents, i.e. an epoxy matrix and an inorganic filler. The three-phase model was introduced to specifically address the properties of the interfacial zone between the host polymer and the surface modified nanoparticles.

  2. Polypyrrole-vanadium oxide nanocomposite: polymer dominates crystallanity and oxide dominates conductivity

    Science.gov (United States)

    Roy, Swarup; Mishra, Suryakant; Yogi, Priyanka; Saxena, Shailendra K.; Mishra, Vikash; Sagdeo, Pankaj R.; Kumar, Rajesh

    2018-01-01

    A hybrid nanocomposite of polypyrrole (Ppy)-V2O5 has been fabricated and characterized for better understanding of material enabling one to use this for appropriate application as the nanocomposite shows better thermal stability. The characterization has been done using XRD, FT-IR, FESEM, and UV-Vis for their structure, surface morphology, respectively, along with TGA and two-probe method used for checking thermal stability, and DC electrical conductance and dielectric behavior of the electrical phenomena of sample. The analysis of XRD demonstrates that crystallinity of nanocomposites is the same as that of the polymer, even though interaction between conducting Ppy and V2O5 is present as evident from FT-IR spectroscopy. A variation in bandgap, in comparison with Ppy, is observed when V2O5 is added into it. The microstructural study of nanocomposites shows encapsulation of V2O5 particles in Ppy matrix with changes in morphology with increase in doping. Conductance results show that electrical conductivity of Ppy decayed on adding V2O5. It has also been found that addition of V2O5 in Ppy has noticeable effect on the dielectric properties.

  3. Certain laws governing the influence of high molecular polymer additives on specific electrical conductivity and viscosity of zincate alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrenko, V.Ye.; Toropetsera, T.N.; Zubov, M.S.

    1983-01-01

    A study was made of the influence of polymer additives of different nature: polyelectrolyte, copolymer of ethylene with maleic anhydride, polymethacrylic acid and nonpolyectrolyte copolymer of vinyl alcohol with vinyleneglycol and polyvinyleneglycol on specific electrical conductance and viscosity of the zincate alkaline solution. It is indicated that with an increase in the content of additives, the specific conductance of the solution diminishes according to a linear law, while the viscosity rises. The additives of polyelectrolyte nature reduce more strongly the specific conductance and increase the viscosity than the nonpolyelectrolyte additives. From a comparison of the data on specific conductance and viscosity the following conclusion is drawn: the more the polymer ''structures'' the zincate alkaline solution, the more strongly it reduces its specific electrical conductance.

  4. Flexible multimode polymer waveguides for high-speed short-reach communication links

    Science.gov (United States)

    Bamiedakis, N.; Shi, F.; Chu, D.; Penty, R. V.; White, I. H.

    2018-02-01

    Multimode polymer waveguides have attracted great interest for use in high-speed short-reach communication links as they can be cost-effectively integrated onto standard PCBs using conventional methods of the electronics industry and provide low loss (30 GHz×m) interconnection. The formation of such waveguides on flexible substrates can further provide flexible low-weight low-thickness interconnects and offer additional freedom in the implementation of high-speed short-reach optical links. These attributes make these flexible waveguides particularly attractive for use in low-cost detachable chip-to-chip links and in environments where weight and shape conformity become important, such as in cars and aircraft. However, the highly-multimoded nature of these waveguides raises important questions about their performance under severe flex due to mode loss and mode coupling. In this work therefore, we investigate the loss, crosstalk and bandwidth performance of such waveguides under out-of plane bending and in-plane twisting under different launch conditions and carry out data transmission tests at 40 Gb/s on a 1 m long spiral flexible waveguide under flexure. Excellent optical transmission characteristics are obtained while robust loss, crosstalk and bandwidth performance are demonstrated under flexure. Error-free (BER<10-12) 40 Gb/s data transmission is achieved over the 1 m long spiral waveguide for a 180° bend with a 4 mm radius. The obtained results demonstrate the excellent optical and mechanical properties of this technology and highlight its potential for use in real-world systems.

  5. Electrical conduction of a XLPE nanocomposite

    Science.gov (United States)

    Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi

    2014-07-01

    The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.

  6. Acid Blue dyes in polypyrrole synthesis: the control of polymer morphology at nanoscale in the promotion of high conductivity and the reduction of cytotoxicity

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Li, Yu; Acharya, Udit; Panthi, Yadu Ram; Pfleger, Jiří; Humpolíček, P.; Trchová, Miroslava; Stejskal, Jaroslav

    2018-01-01

    Roč. 237, March (2018), s. 40-49 ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA17-04109S Institutional support: RVO:61389013 Keywords : Acid Blue * conducting polymer * conductivity Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.435, year: 2016

  7. Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications

    KAUST Repository

    Xia, Chuan

    2015-01-14

    Conducting polymers such as polyaniline (PAni) show a great potential as pseudocapacitor materials for electrochemical energy storage applications. Yet, the cycling instability of PAni resulting from structural alteration is a major hurdle to its commercial application. Here, the development of nanostructured PAni-RuO2 core-shell arrays as electrodes for highly stable pseudocapacitors with excellent energy storage performance is reported. A thin layer of RuO2 grown by atomic layer deposition (ALD) on PAni nanofibers plays a crucial role in stabilizing the PAni pseudocapacitors and improving their energy density. The pseudocapacitors, which are based on optimized PAni-RuO2 core-shell nanostructured electrodes, exhibit very high specific capacitance (710 F g-1 at 5 mV s-1) and power density (42.2 kW kg-1) at an energy density of 10 Wh kg-1. Furthermore, they exhibit remarkable capacitance retention of ≈88% after 10 000 cycles at very high current density of 20 A g-1, superior to that of pristine PAni-based pseudocapacitors. This prominently enhanced electrochemical stability successfully demonstrates the buffering effect of ALD coating on PAni, which provides a new approach for the preparation of metal-oxide/conducting polymer hybrid electrodes with excellent electrochemical performance.

  8. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    Science.gov (United States)

    Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-02-01

    Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles

  9. Multiscale modification of the conductive PEDOT:PSS polymer for the analysis of biological mixtures in a super-hydrophobic drop

    KAUST Repository

    Coppedè, Nicola

    2016-03-18

    Conducting polymers are materials displaying high electrical conductivity, easy of fabrication, flexibility and biocompatibility, for this, they are routinely employed in organic electronics, printed electronics, and bioelectronics. Organic electrochemical transistors (OECTs) are a second generation of organic thin transistors, in which the insulator layer is an electrolyte medium and the conductive polymer is electrochemically active. OECT devices have been demonstrated in chemical and biological sensing: while accurate in determining the size of individual ions in solution, similar devices break down if challenged with complex mixtures. Here, we combine a conductive PEODOT:PSS polymer with a super-hydrophobic scheme to obtain a family of advanced devices, in which the ability to manipulate a biological solution couples to a precise texture of the substrate (which incorporates five micro-electrodes in a line, and each is a site specific measurement point), and this permits to realize time and space resolved analysis of a solution. While the competition between convection and diffusion in a super-hydrophobic drop operates the separation of different species based on their size and charge, the described device delivers the ability to register a similar difference. In the following, we demonstrate the device in the sensing of a solution in which CTAB and adrenaline are separated with good sensitivity, selectivity and reliability.

  10. Multiscale modification of the conductive PEDOT:PSS polymer for the analysis of biological mixtures in a super-hydrophobic drop

    KAUST Repository

    Coppedè , Nicola; Ferrara, Lorenzo; Bifulco, Paolo; Villani, Marco; Iannotta, Salvatore; Zappettini, Andrea; Cesarelli, Mario; Di Fabrizio, Enzo M.; Gentile, Francesco

    2016-01-01

    Conducting polymers are materials displaying high electrical conductivity, easy of fabrication, flexibility and biocompatibility, for this, they are routinely employed in organic electronics, printed electronics, and bioelectronics. Organic electrochemical transistors (OECTs) are a second generation of organic thin transistors, in which the insulator layer is an electrolyte medium and the conductive polymer is electrochemically active. OECT devices have been demonstrated in chemical and biological sensing: while accurate in determining the size of individual ions in solution, similar devices break down if challenged with complex mixtures. Here, we combine a conductive PEODOT:PSS polymer with a super-hydrophobic scheme to obtain a family of advanced devices, in which the ability to manipulate a biological solution couples to a precise texture of the substrate (which incorporates five micro-electrodes in a line, and each is a site specific measurement point), and this permits to realize time and space resolved analysis of a solution. While the competition between convection and diffusion in a super-hydrophobic drop operates the separation of different species based on their size and charge, the described device delivers the ability to register a similar difference. In the following, we demonstrate the device in the sensing of a solution in which CTAB and adrenaline are separated with good sensitivity, selectivity and reliability.

  11. Ordered conducting polymer multilayer films and its application for hole injection layers in organic light-emitting devices

    International Nuclear Information System (INIS)

    Xu Jianhua; Yang Yajie; Yu Junsheng; Jiang Yadong

    2009-01-01

    We reported a controlled architecture growth of layer-ordered multilayer film of poly(3,4-ethylene dioxythiophene) (PEDOT) via a modified Langmuir-Blodgett (LB) method. An in situ polymerization of 3,4-ethylene dioxythiophene (EDOT) monomer in multilayer LB film occurred for the formation of ordered conducting polymer embedded multilayer film. The well-distribution of conducting polymer particles was characterized by secondary-ion mass spectrometry (SIMS). The conducting film consisting of ordered PEDOT ultrathin layers was investigated as a hole injection layer for organic light-emitting diodes (OLEDs). The results showed that, compared to conventional spin-coating PEDOT film and electrostatic self-assembly (ESA) film, the improved performance of OLEDs was obtained after using ordered PEDOT LB film as hole injection layer. It also indicated that well-ordered structure of hole injection layer was attributed to the improvement of OLED performance, leading to the increase of charged carrier mobility in hole injection layer and the recombination rate of electrons and holes in the electroluminescent layer.

  12. Development of multilayer conducting polymer actuator for power application

    Science.gov (United States)

    Ikushima, Kimiya; Kudoh, Yuji; Hiraoka, Maki; Yokoyama, Kazuo; Nagamitsu, Sachio

    2009-03-01

    In late years many kinds of home-use robot have been developed to assist elderly care and housework. Most of these robots are designed with conventional electromagnetic motors. For safety it is desirable to replace these electromagnetic motors with artificial muscle. However, an actuator for such a robot is required to have simple structure, low driving voltage, high stress generation, high durability, and operability in the air. No polymer actuator satisfying all these requirements has been realized yet. To meet these we took following two approaches focusing on conducting polymer actuators which can output high power in the air. (Approach 1) We have newly developed an actuator by multiply laminating ionic liquid infiltrated separators and polypyrrole films. Compared with conventional actuator that is driven in a bath of ionic liquid, the new actuator can greatly increase generated stress since the total sectional area is tremendously small. In our experiment, the new actuator consists of minimum unit with thickness of 128um and has work/weight ratio of 0.92J/kg by laminating 9 units in 0.5Hz driving condition. In addition, the driving experiment has shown a stable driving characteristic even for 10,000 cycles durability test. Furthermore, from our design consideration, it has been found that the work/weight ratio can be improved up to 8J/kg (1/8 of mammalian muscle of 64J/kg) in 0.1Hz by reducing the thickness of each unit to 30um. (Approach 2) In order to realize a simplified actuator structure in the air without sealing, we propose the use of ionic liquid gel. The actuation characteristic of suggested multilayered actuator using ionic liquid gel is simulated by computer. The result shows that performance degradation due to the use of ionic liquid gel is negligible small when ionic liquid gel with the elasticity of 3kPa or less is used. From above two results it is concluded that the proposed multilayerd actuator is promising for the future robotic applications

  13. A preliminary assessment of the effects of radiation on polymer properties

    International Nuclear Information System (INIS)

    Dickson, L.W.

    1988-01-01

    The literature on the effects of radiation on the properties of various polymers and composites has been briefly reviewed for the purpose of identifying polymeric materials that could be irradiated to improve their performance. Radiation treatment of polymers may lead to cross-linking or chain scission reactions, depending on the chemical nature of the polymer. Cross-linking generally leads to an improvement in the mechanical properties of the polymer. Chain scission leads to deterioration in mechanical properties. The properties of irradiated polymers also depend on the degree of polymer crystallinity and the irradiation conditions, including dose rate and the presence of oxygen, cross-linking agents and other additives. A 30% increase in the tensile strength of many polymers may be obtained by radiation cross-linking under appropriate conditions. 40 refs

  14. Effect of epoxidation level on thermal properties and ionic conductivity of epoxidized natural rubber solid polymer nanocomposite electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Harun, Fatin; Chan, Chin Han; Winie, Tan [Faculty of Applied Sciences, UniversitiTeknologi MARA (UiTM), Shah Alam, 40450 Selangor Darul Ehsan (Malaysia); Sim, Lai Har; Zainal, Nurul Fatahah Asyqin [Center of Foundation Studies, PuncakAlam Campus, UniversitiTeknologi MARA, 40430 Selangor Darul Ehsan (Malaysia)

    2015-08-28

    Effect of epoxide content on the thermal and conductivity properties of epoxidized natural rubber (ENR) solid polymer nanocomposite electrolytes was investigated. Commercial available epoxidized natural rubber having 25 (ENR25) and 50 mole% (ENR50) epoxide, respectively were incorporated with lithium perchlorate (LiClO{sub 4}) salt and titanium dioxide (TiO{sub 2}) nanofiller via solution casting method. The solid polymer nanocomposite electrolytes were characterized by differential scanning calorimetry (DSC) and impedance spectroscopy (IS) for their thermal properties and conductivity, respectively. It was evident that introduction of LiClO{sub 4} causes a greater increase in glass transition temperature (T{sub g}) and ionic conductivity of ENR50 as compared to ENR25. Upon addition of TiO{sub 2} in ENR/LiClO{sub 4} system, a remarkable T{sub g} elevation was observed for both ENRs where ENR50 reveals a more pronounced changes. It is interesting to note that they exhibit different phenomenon in ionic conductivity with TiO{sub 2} loading where ENR25 shows enhancement of conductivity while ENR50 shows declination.

  15. Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension

    Czech Academy of Sciences Publication Activity Database

    Galář, P.; Khun, J.; Kopecký, D.; Scholtz, V.; Trchová, Miroslava; Fučíková, A.; Jirešová, J.; Fišer, L.

    2017-01-01

    Roč. 7, 08 November (2017), s. 1-10, č. článku 15068. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA17-04109S Institutional support: RVO:61389013 Keywords : conductive polymer * polypyrrole * plasma Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.259, year: 2016

  16. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    Science.gov (United States)

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  17. Developments and Control of Biocompatible Conducting Polymer for Intracorporeal Continuum Robots.

    Science.gov (United States)

    Chikhaoui, Mohamed Taha; Benouhiba, Amine; Rougeot, Patrick; Rabenorosoa, Kanty; Ouisse, Morvan; Andreff, Nicolas

    2018-04-30

    Dexterity of robots is highly required when it comes to integration for medical applications. Major efforts have been conducted to increase the dexterity at the distal parts of medical robots. This paper reports on developments toward integrating biocompatible conducting polymers (CP) into inherently dexterous concentric tube robot paradigm. In the form of tri-layer thin structures, CP micro-actuators produce high strains while requiring less than 1 V for actuation. Fabrication, characterization, and first integrations of such micro-actuators are presented. The integration is validated in a preliminary telescopic soft robot prototype with qualitative and quantitative performance assessment of accurate position control for trajectory tracking scenarios. Further, CP micro-actuators are integrated to a laser steering system in a closed-loop control scheme with displacements up to 5 mm. Our first developments aim toward intracorporeal medical robotics, with miniaturized actuators to be embedded into continuum robots.

  18. Nano-composite of PtRu alloy electrocatalyst and electronically conducting polymer for use as the anode in a direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jongho Choi; Kyungwon Park; Hyekyung Lee; Youngmin Kim; Jaesuk Lee; Yungeun Sung [Kwangju Inst. of Science and Technology, Dept. of Materials Science and Engineering, Gwangju (Korea)

    2003-08-15

    Nano-composites comprised of PtRu alloy nanoparticles and an electronically conducting polymer for the anode electrode in direct methanol fuel cell (DMFC) were prepared. Two conducting polymers of poly(N-vinyl carbazole) and poly(9-(4-vinyl-phenyl)carbazole) were used for the nano-composite electrodes. Structural analyses were carried out using Fourier transform nuclear magnetic resonance spectroscopy, AC impedance spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Electrocatalytic activities were investigated by voltammetry and chronoamperometry in a 2 M CH{sub 3}OH/{sub 0.5} M H{sub 2}SO{sub 4} solution and the data compared with a carbon-supported PtRu electrode. XRD patterns indicated good alloy formation and nano-composite formation was confirmed by TEM. Electrochemical measurements and DMFC unit-cell tests indicate that the nano-composites could be useful in a DMFC, but its performance would be slightly lower than that of a carbon-supported electrode. The interfacial property between the PtRu-polymer nano-composite anode and the polymer electrolyte was good, as evidenced by scanning electron microscopy. For better performance in a DMFC, a higher electric conductivity of the polymer and a lower catalyst loss are needed in nano-composite electrodes. (Author)

  19. Effects of Supercritical CO 2 Conditioning on Cross-Linked Polyimide Membranes

    KAUST Repository

    Kratochvil, Adam M.

    2010-05-25

    The effects of supercritical CO2 (scCO2) conditioning on high-performance cross-linked polyimide membranes is examined through gas permeation and sorption experiments. Under supercritical conditions, the cross-linked polymers do not exhibit a structural reorganization of the polymer matrix that was observed in the non-cross-linkable, free acid polymer. Pure gas permeation isotherms and mixed gas permeabilities and selectivities show the cross-linked polymers to be much more stable to scCO2 conditioning than the free acid polymer. In fact, following scCO2 conditioning, the mixed gas CO2 permeabilities of the cross-linked polymers increased while the CO2/CH4 separation factors remained relatively unchanged. This response highlights the stability and high performance of these cross-linked membranes in aggressive environments. In addition, this response reveals the potential for the preconditioning of cross-linked polymer membranes to enhance productivity without sacrificing efficiency in practical applications which, in effect, provides another tool to \\'tune\\' membrane properties for a given separation. Finally, the dual mode model accurately describes the sorption and dilation characteristics of the cross-linked polymers. The changes in the dual mode sorption model parameters before and after the scCO2 exposure also provide insights into the alterations in the different glassy samples due to the cross-linking and scCO2 exposure. © 2010 American Chemical Society.

  20. Molecular dynamics modeling of polymer flammability

    International Nuclear Information System (INIS)

    Nyden, M.R.; Brown, J.E.; Lomakin, S.M.

    1992-01-01

    Molecular dynamic simulations were used to identify factors which promote char formation during the thermal degradation of polymers. Computer movies based on these simulations, indicate that cross-linked model polymers tend to undergo further cross-linking when burned, eventually forming a high molecular weight, thermally stable char. This paper reports that the prediction was confirmed by char yield measurements made on γ and e - -irradiated polyethylene and chemically cross-linked poly(methyl methacrylate)

  1. Thermal conductivity and stability of a three-phase blend of carbon nanotubes, conductive polymer, and silver nanoparticles incorporated into polycarbonate nanocomposites

    KAUST Repository

    Patole, Archana

    2015-04-16

    Metallic and non-metallic nanofillers can be used together in the design of polycarbonate (PC) nanocomposites with improved electrical properties. Here, the preparation of three-phase blend (carbon nanotubes (CNT), silver nanoparticles, and conductive polymer) in a two-step process before incorporation in the PC is reported. First, ethylene diamine functionalized multiwall carbon nanotubes (MWCNT-EDA) were decorated with Ag nanoparticles. Next, the Ag-decorated CNTs were coated with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Due to the high thermal conductivity instrinsic to both metallic and non-metallic phases, it is expected that the thermal properties of the resulting nanocomposite would largely differ from those of pristine PC. We thus investigated in detail how this hybrid conductive blend affected properties such as the glass transition temperature, the thermal stability, and the thermal conductivity of the nanocomposite. It was found that this strategy results in improved thermal conductivity and thermal stability of the material. © 2015 Wiley Periodicals, Inc.

  2. Thermal conductivity and stability of a three-phase blend of carbon nanotubes, conductive polymer, and silver nanoparticles incorporated into polycarbonate nanocomposites

    KAUST Repository

    Patole, Archana; Ventura, Isaac Aguilar; Lubineau, Gilles

    2015-01-01

    Metallic and non-metallic nanofillers can be used together in the design of polycarbonate (PC) nanocomposites with improved electrical properties. Here, the preparation of three-phase blend (carbon nanotubes (CNT), silver nanoparticles, and conductive polymer) in a two-step process before incorporation in the PC is reported. First, ethylene diamine functionalized multiwall carbon nanotubes (MWCNT-EDA) were decorated with Ag nanoparticles. Next, the Ag-decorated CNTs were coated with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Due to the high thermal conductivity instrinsic to both metallic and non-metallic phases, it is expected that the thermal properties of the resulting nanocomposite would largely differ from those of pristine PC. We thus investigated in detail how this hybrid conductive blend affected properties such as the glass transition temperature, the thermal stability, and the thermal conductivity of the nanocomposite. It was found that this strategy results in improved thermal conductivity and thermal stability of the material. © 2015 Wiley Periodicals, Inc.

  3. A morphological investigation of conductive networks in polymers loaded with carbon nanotubes

    KAUST Repository

    Lubineau, Gilles

    2017-01-13

    Loading polymers with conductive nanoparticles, such as carbon nanotubes, is a popular approach toward improving their electrical properties. Resultant materials are typically described by the weight or volume fractions of their nanoparticles. Because these conductive particles are only capable of charge transfer over a very short range, most do not interact with the percolated paths nor do they participate to the electrical transfer. Understanding how these particles are arranged is necessary to increase their efficiency. It is of special interest to understand how these particles participate in creating percolated clusters, either in a specific or in all directions, and non-percolated clusters. For this, we present a computational modeling strategy based on a full morphological analysis of a network to systematically analyse conductive networks and show how particles are arranged. This study provides useful information for designing these types of materials and examples suitable for characterizing important features, such as representative volume element, the role of nanotube tortuosity and the role of tunneling cutoff distance.

  4. A morphological investigation of conductive networks in polymers loaded with carbon nanotubes

    KAUST Repository

    Lubineau, Gilles; Mora Cordova, Angel; Han, Fei; Odeh, I.N.; Yaldiz, R.

    2017-01-01

    Loading polymers with conductive nanoparticles, such as carbon nanotubes, is a popular approach toward improving their electrical properties. Resultant materials are typically described by the weight or volume fractions of their nanoparticles. Because these conductive particles are only capable of charge transfer over a very short range, most do not interact with the percolated paths nor do they participate to the electrical transfer. Understanding how these particles are arranged is necessary to increase their efficiency. It is of special interest to understand how these particles participate in creating percolated clusters, either in a specific or in all directions, and non-percolated clusters. For this, we present a computational modeling strategy based on a full morphological analysis of a network to systematically analyse conductive networks and show how particles are arranged. This study provides useful information for designing these types of materials and examples suitable for characterizing important features, such as representative volume element, the role of nanotube tortuosity and the role of tunneling cutoff distance.

  5. Characteristics of Electro-Optic Device Using Conducting Polymers, Polythiophene and Polypyrrole Films

    Science.gov (United States)

    Kaneto, Keiichi; Yoshino, Katsumi; Inuishi, Yoshio

    1983-07-01

    Detailed characteristics of electro-optic elements (color switching and memory) utilizing the spectral change of conducting polymers by electrochemical doping and undoping are studied. The response time of color switching, for example, red≤ftrightarrowblue in polythiophene film in the electrolyte of LiBF4/acetonitrile is 30˜100 msec under the applied voltages of -2.0{≤ftrightarrow}+4.0 V vs. Li plate. More than 103 cycles of color switch are observed quite reproducibly. Three color states of yellow green, dark brown and blue are demonstrated for polypyrrole film.

  6. Novel proton conducting polymer electrolytes based on polyparabanic acid doped with H 3PO 4 for high temperature fuel cell

    Science.gov (United States)

    Aihara, Yuichi; Sonai, Atsuo

    Three novel proton conducting polymer electrolytes based on polyparabanic acid doped with H 3PO 4 were synthesized and their use in high temperature fuel cells characterized. The precursor polymers, PMD-Im, POD-Im and PDMDP-Im, were synthesized by cyclization polymerization of diisocynanates. After doping with H 3PO 4, the ionic conductivity and the thermal degradation were studied by using the AC impedance method and thermal gravimetric analysis, respectively. These membranes showed high ionic conductivity of the order of 10 -2 S cm -1 at 423 K with good thermal stability. Their application to fuel cells was demonstrated and polarization curves were obtained at 423 K were obtained without humidification.

  7. Removal of anionic azo dyes from aqueous solution by functional ionic liquid cross-linked polymer

    International Nuclear Information System (INIS)

    Gao, Hejun; Kan, Taotao; Zhao, Siyuan; Qian, Yixia; Cheng, Xiyuan; Wu, Wenli; Wang, Xiaodong; Zheng, Liqiang

    2013-01-01

    Highlights: • Equilibrium, kinetic and thermodynamic of adsorption of dyes onto PDVB-IL was investigated. • PDVB-IL has a high adsorption capacity to treat dyes solution. • Higher adsorption capacity is due to the functional groups of PDVB-IL. • Molecular structure of dyes influences the adsorption capacity. -- Abstract: A novel functional ionic liquid based cross-linked polymer (PDVB-IL) was synthesized from 1-aminoethyl-3-vinylimidazolium chloride and divinylbenzene for use as an adsorbent. The physicochemical properties of PDVB-IL were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis. The adsorptive capacity was investigated using anionic azo dyes of orange II, sunset yellow FCF, and amaranth as adsorbates. The maximum adsorption capacity could reach 925.09, 734.62, and 547.17 mg/g for orange II, sunset yellow FCF and amaranth at 25 °C, respectively, which are much better than most of the other adsorbents reported earlier. The effect of pH value was investigated in the range of 1–8. The result shows that a low pH value is found to favor the adsorption of those anionic azo dyes. The adsorption kinetics and isotherms are well fitted by a pseudo second-order model and Langmuir model, respectively. The adsorption process is found to be dominated by physisorption. The introduction of functional ionic liquid moieties into cross-linked poly(divinylbenzene) polymer constitutes a new and efficient kind of adsorbent

  8. Mesoporous silicon oxide films and their uses as templates in obtaining nanostructured conductive polymers

    Science.gov (United States)

    Salgado, R.; Arteaga, G. C.; Arias, J. M.

    2018-04-01

    Obtaining conductive polymers (CPs) for the manufacture of OLEDs, solar cells, electrochromic devices, sensors, etc., has been possible through the use of electrochemical techniques that allow obtaining films of controlled thickness with positive results in different applications. Current trends point towards the manufacture of nanomaterials, and therefore it is necessary to develop methods that allow obtaining CPs with nanostructured morphology. This is possible by using a porous template to allow the growth of the polymeric materials. However, prior and subsequent treatments are required to separate the material from the template so that it can be evaluated in the applications mentioned above. This is why mesoporous silicon oxide films (template) are essential for the synthesis of nanostructured polymers since both the template and the polymer are obtained on the electrode surface, and therefore it is not necessary to separate the material from the template. Thus, the material can be evaluated directly in the applications mentioned above. The dimensions of the resulting nanostructures will depend on the power, time and technique used for electropolymerization as well as the monomer and the surfactant of the mesoporous film.

  9. Dielectric relaxations and conduction mechanisms in polyether-clay composite polymer electrolytes under high carbon dioxide pressure.

    Science.gov (United States)

    Kitajima, Shunsuke; Bertasi, Federico; Vezzù, Keti; Negro, Enrico; Tominaga, Yoichi; Di Noto, Vito

    2013-10-21

    The composite material P(EO/EM)-Sa consisting of synthetic saponite (Sa) dispersed in poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) is studied by "in situ" measurements using broadband electrical spectroscopy (BES) under pressurized CO2 to characterize the dynamic behavior of conductivity and the dielectric relaxations of the ion host polymer matrix. It is revealed that there are three dielectric relaxation processes associated with: (I) the dipolar motions in the short oxyethylene side chains of P(EO/EM) (β); and (II) the segmental motion of the main chains comprising the polyether components (αfast, αslow). αslow is attributed to the slow α-relaxation of P(EO/EM) macromolecules, which is hindered by the strong coordination interactions with the ions. Two conduction processes are observed, σDC and σID, which are attributed, respectively, to the bulk conductivity and the interdomain conductivity. The temperature dependence of conductivity and relaxation processes reveals that αfast and αslow are strongly correlated with σDC and σID. The "in situ" BES measurements under pressurized CO2 indicate a fast decrease in σDC at the initial CO2 treatment time resulting from the decrease in the concentration of polyether-M(n+) complexes, which is driven by the CO2 permeation. The relaxation frequency (fR) of αslow at the initial CO2 treatment time increases and shows a steep rise with time with the same behavior of the αfast mode. It is demonstrated that the interactions between polyether chains of P(EO/EM) and cations in the polymer electrolyte layers embedded in Sa are probably weakened by the low permittivity of CO2 (ε = 1.08). Thus, the formation of ion pairs in the polymer electrolyte domains of P(EO/EM)-Sa occurs, with a corresponding reduction in the concentration of ion carriers.

  10. Theoretical study on alkyne-linked carbazole polymers for blue-light multifunctional materials

    International Nuclear Information System (INIS)

    Yi Ling; Wang Xueye

    2011-01-01

    This paper studied poly[(3,6-di-tert-butyl-N-hexadecyl-1,8-carbazolylene) butadiynylene] (P1), butadiynylene-linked poly (3,6-carbazole) (P2) and butadiynylene-linked poly (2,7-carbazole) (P3) through the theoretical measurements with Gaussian 03 program package. To investigate the relationship between structures and properties of these multifunctional electroluminescent materials, their geometrical structures of ground and excited-states were optimized by B3LYP/6-31G (d) and CIS/6-31G (d) methods, respectively. The lowest excitation energies (E g 's), and the maximum absorption and emission wavelengths of these polymers were calculated by time-dependent density functional theory methods (TD-DFT). The important parameters for luminescent materials were also predicated including the ionization potentials (I p 's) and electron affinities (E a 's). The calculated results show that the highest-occupied molecular orbital (HOMO) energies lift about 0.27-0.49 eV compared to N,N'-bis(naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB), suggesting the significant improved hole-accepting and transporting abilities. In addition, substitution of alkyne for carbazole resulted in a narrow band gap and a red shift of both the absorption and emission peaks. Through above calculations, it is evidenced that these polymers can be considered as candidates for excellent OLEDs with good hole-creating abilities and high blue-light emission. - Highlights: → We studied poly [(3,6-di-tert-butyl-N-hexadecyl-1,8-carbazolylene) butadiynylene] by theoretical method. → The geometrical structures of ground and excited-states had been optimized by B3LYP/6-31G (d) and CIS/6-31G (d). → The relationship between structures and properties of these multifunctional electroluminescent materials had been investigated. → These molecules are excellent candidates for multifunctional OLED materials. → The substitution of alkyne for carbazole results in a narrow band gap and a red shift of both

  11. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes

    International Nuclear Information System (INIS)

    Peng Chuang; Jin Jun; Chen, George Z.

    2007-01-01

    Composite films of carbon nanotubes (CNTs) with polyaniline (PANI), polypyrrole (PPY) or poly[3,4-ethylenedioxythiophene] (PEDOT) were prepared via electrochemical co-deposition from solutions containing acid treated CNTs and the corresponding monomer. In the cases of PPY and PEDOT, CNTs served as the charge carriers during electro-deposition, and also acted as both the backbone of a three-dimensional micro- and nano-porous structure and the effective charge-balancing dopant within the polymer. All the composites showed improved mechanical integrity, higher electronic and ionic conductivity (even when the polymer was reduced), and exhibited larger electrode specific capacitance than the polymer alone. Under similar conditions, the capacitance was enhanced significantly in as-prepared PPY-CNT and PEDOT-CNT films. However, the fresh PANI-CNT film was electrochemically similar to PANI, but PPY-CNT and PEDOT-CNT differed noticeably from the respective polymers alone. In continuous potential cycling tests, unlike the pure polymer and other composite films, PANI-CNT performed much better in retaining the capacitance of the as-prepared film, and the possible cause is analysed

  12. Electrochemical synthesis, in situ spectroelectrochemistry of conducting indole-titanium dioxide and zinc oxide polymer nanocomposites for rechargeable batteries

    International Nuclear Information System (INIS)

    Parvin, Mohammad Hadi; Pirnia, Mahsa; Arjomandi, Jalal

    2015-01-01

    Highlights: • Two novel hybrid materials-based conducting PIn rechargeable batteries were developed. • The charge-discharging behavior of PIn-nanocomposite batteries were studied. • The characterization of samples has been done by in situ spectroelectrochemical method. • PIn-TiO 2 and ZnO nanocomposites were synthesized electrochemically on Au and ITO. • The PIn-TiO 2 and ZnO nanocomposites resistances were less than PIn. - Abstract: Electrochemical synthesis, in situ spectroelectrochemistry of conducting polyindole (PIn), polyindole-TiO 2 (PIn-TiO 2 ) and polyindole-ZnO (PIn-ZnO) nanocomposites were investigated. The PIn and polymer nanocomposites were tested electrochemically for rechargeable batteries. The films were characterized by means of CVs, in situ UV-visible, FT-IR spectroscopies, in situ resistivity measurements, energy dispersive X-ray (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The charge-discharging behavior of a Zn/1 M ZnSO 4 /PIn cell with a capacity of around 90 Ah Kg −1 and on open circuit potential of around 1.45 V was compared with Zn/1 M ZnSO 4 /PIn-nanocomposite. The potential differences of redox couples (ΔE) for nanocomposites films show very good reversibility. A positive shift of potential was observed for polymer nanocomposites during redox scan. A significant variability was observed for in situ conductivity of the PIn and polymer nanocomposites. During in situ UV-visible and FT-IR measurements, intermediate spectroscopic behavior and positive shifts of wavelengths were observed for PIn and polymer nanocomposites. The SEM, TEM and EDX of nanocomposite films show the presence of nano particle in PIn.

  13. Conducting Polymer Electrodes for Gel Electrophoresis

    OpenAIRE

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that p-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel ...

  14. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors

    Science.gov (United States)

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-01

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm

  15. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    Directory of Open Access Journals (Sweden)

    Mahnaz M Abdi

    Full Text Available A new sensing area for a sensor based on surface plasmon resonance (SPR was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+ and Hg(2+ ions. The Pb(2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+ compared to Hg(2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  16. Approaches for Making High Performance Polymer Materials from Commodity Polymers

    Institute of Scientific and Technical Information of China (English)

    Xu Xi

    2004-01-01

    A brief surrey of ongoing research work done for improving and enhancing the properties of commodity polymers by the author and author's colleagues is given in this paper. A series of high performance polymers and polymer nanomaterials were successfully prepared through irradiation and stress-induced reactions of polymers and hydrogen bonding. The methods proposed are viable, easy in operation, clean and efficient.1. The effect of irradiation source (UV light, electron beam, γ -ray and microwave), irradiation dose, irradiation time and atmosphere etc. on molecular structure of polyolefine during irradiation was studied. The basic rules of dominating oxidation, degradation and cross-linking reactions were mastered. Under the controlled conditions, cross-linking reactions are prevented, some oxygen containing groups are introduced on the molecular chain of polyolefine to facilitate the interface compatibility of their blends. A series of high performance polymer materials: u-HDPE/PA6,u-HDPE/CaCO3, u-iPP/STC, γ-HDPE/STC, γ-LLDPE/ATH, e-HDPE, e-LLDPE and m-HDPEfilled system were prepared (u- ultraviolet light irradiated, γ- γ-ray irradiated, e- electron beam irradiated, m- microwave irradiated)2. The effect of ultrasonic irradiation, jet and pan-milling on structure and changes in properties of polymers were studied. Imposition of critical stress on polymer chain can cause the scission of bonds to form macroradicals. The macroradicals formed in this way may recombine or react with monomer or other radicals to form linear, branched or cross-linked polymers or copolymers. About 20 kinds of block/graft copolymers have been synthesized from polymer-polymer or polymer-monomer through ultrasonic irradiation.Through jet-milling, the molecular weight of PVC is decreased somewhat, the intensity of its crystalline absorption bonds becomes indistinct. The processability, the yield strength, strength at break and elongation at break of PVC get increased quite a lot after

  17. Development of Multidimensional Gap Conductance model using Virtual Link Gap Element

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Chan; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The gap conductance that determines temperature gradient between pellet and cladding can be quite sensitive to gap thickness. For instance, once the gap size increases up to several micrometers in certain region, difference of pellet surface temperatures increases up to 100 Kelvin. Therefore, iterative thermo-mechanical coupled analysis is required to solve temperature distribution throughout pellet and cladding. Recently, multidimensional fuel performance codes have been being developed in the advanced countries to evaluate thermal behavior of fuel for off normal conditions and DBA(design based accident) conditions using the Finite Element Method (FEM). FRAPCON-FRAPTRAN code system, which is well known as the verified and reliable code, incorporates 1D thermal module and multidimensional mechanical module. In this code, multidimensional gap conductance model is not applied. ALCYONE developed by CEA introduces equivalent heat convection coefficient that represents multidimensional gap conductance as a function of gap thickness. BISON, which is multidimensional fuel performance code developed by INL, owns multidimensional gap conductance model using projected thermal contact. In general, thermal contact algorithm is nonlinear calculation which is expensive approach numerically. The gap conductance model for multi-dimension is difficult issue in terms of convergence and nonlinearity because gap conductance is function of gap thickness which depends on mechanical analysis at each iteration step. In this paper, virtual link gap (VLG) element has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. In terms of calculation accuracy and convergence efficiency, the proposed VLG model was evaluated. LWR fuel performance codes should incorporate thermo-mechanical loop to solve gap conductance problem, iteratively. However, gap conductance in multidimensional model is difficult issue owing to its nonlinearity and

  18. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  19. Polymers containing phosphorus groups and polyethers: from synthesis to application

    Directory of Open Access Journals (Sweden)

    Iliescu Smaranda

    2012-11-01

    Full Text Available Abstract Background Phosphorus-containing high performance polymers have aroused wide interest, mainly due to good mechanical properties and their excellent fire resistance. The flexibility of synthetic polyphosphoesters allows the development of polymers in order to obtain solid polymer electrolytes for rechargeable lithium batteries based on solid films with superior fire resistance. Results Novel linear Phosphonate-PEG polymers were synthesized by solution polycondensation of 4-chlorophenyldichlorophosphonate as a linking agent and poly(ethylene glycols with different molecular weights in the presence of triethylamine or 1-methylimidazole as acid scavenger. The yields were between 54% and 88% and inherent viscosity between 0.18-0.48 dl/g. Molar masses, Mn were about 26300 g/mol for polyphosphonates with PEG 2000 and 4600 g/mol for polyphosphonates with PEG 200. The LOI values for these polymers and membranes are in the range of 26–29. The membranes based on polyphosphonate with PEG 200 and 2000 showed conductivity between 6 × 10-8 S.cm-1 and 6 × 10-7 S.cm-1 at room temperature and total ionic transference number between 0.87- 0.96. The evolution of conductivity vs. temperature is linear. Conclusions 1-methylimidazole was found to be better HCl scavenger than triethylamine, and allowed higher yields and more eco-friendly synthesis of the Phosphonate-PEG polymers for SPE. These polymers and membranes based on these polymers showed good LOI values and indicate an improvement of the safety of lithium batteries. The membranes present conductivities around 6 × 10-7 S.cm-1at room temperature and total ionic transference number is higher for membranes based on polymers with high EG unit content. Best results yield 88%, inherent viscosities 0.48 dl/g and Mn 26000 were obtained with 1-methylimidazole and PEG 2000. These membranes based on these polymers showed good LOI values (in the range 26-29% and indicate an improvement of the safety of

  20. Study of amorphous semiconductors doped with rare earths (Gd and Er) and conducting polymers by EPR techniques and magnetic susceptibility

    International Nuclear Information System (INIS)

    Sercheli, Mauricio da Silva

    1999-01-01

    This thesis involves the study of amorphous semiconductors and conducting polymers, which have been characterized by EPR and magnetic susceptibility measurements, and to a lesser extent by Raman spectroscopy and RBS. The semiconductors were studied using thin films of silicon doped with rare earth metals, e.g. erbium and gadolinium, which had their magnetic properties studied. Using these studies we could determine the state of valence of the rare earths as well as their concentrations in the silicon matrix. According to our results, the valence of the rare earth metal ions is 3+, and we were able to conclude that 4f electronic shells could not be used for the calculation of the conducting band in this system. Furthermore, the analysis of the data on the magnetic susceptibility of the Er 3+ ion with cubic crystalline acting field, gave us the opportunity to estimate the overall splitting of their electronic states for the first time. The conducting polymers were studied using samples of poly(3-methylthiophene) doped with ClO 4 - , which show a phase transition in the range of 230 K to 130 K. The electron paramagnetic resonance also gives important information on the crystallization, doping level and the presence of polarons or bipolarons in conducting polymers. (author)

  1. Conductive polymer nanotube patch for fast and controlled in vivo transdermal drug delivery

    Science.gov (United States)

    Nguyen, Thao M.

    Transdermal drug delivery has created new applications for existing therapies and offered an alternative to the traditional oral route where drugs can prematurely metabolize in the liver causing adverse side effects. Opening the transdermal delivery route to large hydrophilic drugs is one of the greatest challenges due to the hydrophobicity of the skin. However, the ability to deliver hydrophilic drugs using a transdermal patch would provide a solution to problems of other delivery methods for hydrophilic drugs. The switching of conductive polymers (CP) between redox states cause simultaneous changes in the polymer charge, conductivity, and volume—properties that can all be exploited in the biomedical field of controlled drug delivery. Using the template synthesis method, poly(3,4-ethylenedioxythiophene (PEDOT) nanotubes were synthesized electrochemically and a transdermal drug delivery patch was successfully designed and developed. In vitro and in vivo uptake and release of hydrophilic drugs were investigated. The relationship between the strength of the applied potential and rate of drug release were also investigated. Results revealed that the strength of the applied potential is proportional to the rate of drug release; therefore one can control the rate of drug release by controlling the applied potential. The in vitro studies focused on the kinetics of the drug delivery system. It was determined that the drug released mainly followed zero-order kinetics. In addition, it was determined that applying a releasing potential to the transdermal drug delivery system lead to a higher release rate constant (up to 7 times greater) over an extended period of time (˜24h). In addition, over 24 hours, an average of 80% more model drug molecules were released with an applied potential than without. The in vivo study showed that the drug delivery system was capable of delivering model hydrophilic drugs molecules through the dermis layer of the skin within 30 minutes

  2. Biofunctionalized conductive polymers enable efficient CO2 electroreduction

    Science.gov (United States)

    Coskun, Halime; Aljabour, Abdalaziz; De Luna, Phil; Farka, Dominik; Greunz, Theresia; Stifter, David; Kus, Mahmut; Zheng, Xueli; Liu, Min; Hassel, Achim W.; Schöfberger, Wolfgang; Sargent, Edward H.; Sariciftci, Niyazi Serdar; Stadler, Philipp

    2017-01-01

    Selective electrocatalysts are urgently needed for carbon dioxide (CO2) reduction to replace fossil fuels with renewable fuels, thereby closing the carbon cycle. To date, noble metals have achieved the best performance in energy yield and faradaic efficiency and have recently reached impressive electrical-to-chemical power conversion efficiencies. However, the scarcity of precious metals makes the search for scalable, metal-free, CO2 reduction reaction (CO2RR) catalysts all the more important. We report an all-organic, that is, metal-free, electrocatalyst that achieves impressive performance comparable to that of best-in-class Ag electrocatalysts. We hypothesized that polydopamine—a conjugated polymer whose structure incorporates hydrogen-bonded motifs found in enzymes—could offer the combination of efficient electrical conduction, together with rendered active catalytic sites, and potentially thereby enable CO2RR. Only by developing a vapor-phase polymerization of polydopamine were we able to combine the needed excellent conductivity with thin film–based processing. We achieve catalytic performance with geometric current densities of 18 mA cm−2 at 0.21 V overpotential (−0.86 V versus normal hydrogen electrode) for the electrosynthesis of C1 species (carbon monoxide and formate) with continuous 16-hour operation at >80% faradaic efficiency. Our catalyst exhibits lower overpotentials than state-of-the-art formate-selective metal electrocatalysts (for example, 0.5 V for Ag at 18 mA cm−1). The results confirm the value of exploiting hydrogen-bonded sequences as effective catalytic centers for renewable and cost-efficient industrial CO2RR applications. PMID:28798958

  3. Theoretical studies of optics and charge transport in organic conducting oligomers and polymers: Rational design of improved transparent and conducting polymers

    Science.gov (United States)

    Hutchison, Geoffrey Rogers

    Theoretical studies on a variety of oligo- and polyheterocycles elucidate their optical and charge transport properties, suggesting new, improved transparent conductive polymers. First-principles calculations provide accurate methodologies for predicting both optical band gaps of neutral and cationic oligomers and intrinsic charge transfer rates. Multidimensional analysis reveals important motifs in chemical tailorability of oligoheterocycle optical and charge transport properties. The results suggest new directions for design of novel materials. Using both finite oligomer and infinite polymer calculations, the optical band gaps in polyheterocycles follow a modified particle-in-a-box formalism, scaling approximately as 1/N (where N is the number of monomer units) in short chains, saturating for long chains. Calculations demonstrate that band structure changes upon heteroatom substitution, (e.g., from polythiophene to polypyrrole) derive from heteroatom electron affinity. Further investigation of chemical variability in substituted oligoheterocycles using multidimensional statistics reveals the interplay between heteroatom and substituent in correlations between structure and redox/optical properties of neutral and cationic species. A linear correlation between band gaps of neutral and cationic species upon oxidation of conjugated oligomers, shows redshifts of optical absorption for most species and blueshifts for small band gap species. Interstrand charge-transport studies focus on two contributors to hopping-style charge transfer rates: internal reorganization energy and the electronic coupling matrix element. Statistical analysis of chemical variability of reorganization energies in oligoheterocycles proves the importance of reorganization energy in determining intrinsic charge transfer rates (e.g., charge mobility in unsubstituted oligothiophenes). Computed bandwidths across several oligothiophene crystal packing motifs show similar electron and hole bandwidths

  4. A novel conductive-polymer-based integration process for high-performance flip-chip packages

    Science.gov (United States)

    Lohokare, Saurabh

    Conductive polymers have recently attracted considerable attention for low-temperature fabrication of lead-free, reworkable, and flexible flip-chip interconnects. Using these materials, I demonstrate in this thesis a process that enables low-cost and high-resolution flip-chip interconnects using conventional micro-fabrication techniques. This fabrication process offers improved performance as compared to conventional flip-chip techniques, such as screen-printing, and allows for definition of interconnects with excellent surface uniformity and control over the bump profile. In order to demonstrate the utility and wide applicability of this process, several test implementations that serve as case studies were investigated. Specifically, novel InGaAsSb avalanche photodiodes (APDs), operating around lambda = 2m and targeted for free-space communication and biomedical spectroscopy applications, were fabricated and flip-chip-integrated to test the static electrical characteristics of the polymer bumps. Additionally, the dynamic electrical performance characteristics of the polymer bumps were studied by using AlGaAsSb/AlGaSb p-i-n photodetectors as a case study. The fabrication of these photodetectors, operating around lambda = 1.55mum and targeted for optical communication applications, was accomplished using a customized inductively coupled plasma (ICP) etch process that resulted in a low dark current and excellent speed (3dB bandwidth of 10GHz) and, responsivity (60% external quantum efficiency) characteristics. Furthermore, flip-chip integration was used to demonstrate a three-dimensional, point-to-point micro-optical interconnect, which was 2.33mm-long in a system 15.27mm3 in volume. Lastly, high-speed parallel optical interconnects were demonstrated using polymer-flip-chip-integrated 10GHz vertical-cavity surface-emitting laser (VCSEL) and DOEs. Such interconnects offer the ability to alleviate the communication bottleneck that is projected to occur in future, high

  5. Mesoscopic layered structure in conducting polymer thin film fabricated by potential-programmed electropolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Fujitsuka, Mamoru (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Nakahara, Reiko (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Iyoda, Tomokazu (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Shimidzu, Takeo (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Tomita, Shigehisa (Toray Research Center Co., Ltd., Shiga (Japan)); Hatano, Yayoi (Toray Research Center Co., Ltd., Shiga (Japan)); Soeda, Fusami (Toray Research Center Co., Ltd., Shiga (Japan)); Ishitani, Akira (Toray Research Center Co., Ltd., Shiga (Japan)); Tsuchiya, Hajime (Nitto Technical Information Center Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan)); Ohtani, Akira (Central Research Lab., Nitto Denko Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan))

    1992-11-01

    Mesoscopic layered structures in conducting polymer thin films are fabricated by the potential-programmed electropolymerization method. High lateral quality in the layered structure is realized by the improvement of polymerization conditions, i.e., a mixture of pyrrole and bithiophene as monomers, a silicon single-crystal wafer as a working electrode and propylene carbonate as a solvent. SIMS depth profiling of the resulting layered films indicates a significant linear correlation between the electric charge passed and the thickness of the individual layers on a 100 A scale. (orig.)

  6. Consequences of Morphology on Molecularly Imprinted Polymer-Ligand Recognition

    Directory of Open Access Journals (Sweden)

    Annika M. Rosengren

    2013-01-01

    Full Text Available The relationship between molecularly imprinted polymer (MIP morphology and template-rebinding over a series of warfarin-imprinted methacrylic acid co(ethylene dimethacrylate polymers has been explored. Detailed investigations of the nature of template recognition revealed that an optimal template binding was obtained with polymers possessing a narrow population of pores (~3–4 nm in the mesopore size range. Importantly, the warfarin-polymer rebinding analyses suggest strategies for regulating ligand binding capacity and specificity through variation of the degree of cross-linking, where polymers prepared with a lower degree of cross-linking afford higher capacity though non-specific in character. In contrast, the co-existence of specific and non-specific binding was found in conjunction with higher degrees of cross-linking and resultant meso- and macropore size distributions.

  7. Comparative VOCs sensing performance for conducting polymer and porphyrin functionalized carbon nanotubes based sensors

    Science.gov (United States)

    Datta, Kunal; Rushi, Arti; Ghosh, Prasanta; Shirsat, Mahendra

    2018-05-01

    We report sensors for detection of ethyl alcohol, a prominent volatile organic compound (VOC). Single walled carbon nanotubes were selected as main sensing backbone. As efficiency of sensor is dependent upon the choice of sensing materials, the performances of conducting polymer and porphyrin based sensors were compared. Chemiresistive sensing modality was adopted to observe the performance of sensors. It has been found that porphyrin based sensor shows higher affinity towards ethyl alcohol.

  8. Assimilation of NH₄Br in Polyvinyl Alcohol/Poly(N-vinyl pyrrolidone) Polymer Blend-Based Electrolyte and Its Effect on Ionic Conductivity.

    Science.gov (United States)

    Parameswaran, V; Nallamuthu, N; Devendran, P; Manikandan, A; Nagarajan, E R

    2018-06-01

    Biodegradable polymer blend electrolyte based on ammonium based salt in variation composition consisting of PVA:PVP were prepared by using solution casting technique. The obtained films have been analyzed by various technical methods like as XRD, FT-IR, TG-DSC, SEM analysis and impedance spectroscopy. The XRD and FT-IR analysis exposed the amorphous nature and structural properties of the complex formation between PVA/PVP/NH4Br. Impedance spectroscopy analysis revealed the ionic conductivity and the dielectric properties of PVA/PVP/NH4Br polymer blend electrolyte films. The maximum ionic conductivity was determined to be 6.14 × 10-5 Scm-1 for the composition of 50%PVA: 50%PVP: 10% NH4Br with low activation energy 0.3457 eV at room temperature. Solid state battery is fabricated using highest ionic conducting polymer blend as electrolyte with the configuration Zn/ZnSO4 · 7H2O (anode) ∥ 50%PVA: 50%PVP: 10% NH4Br ∥ Mn2O3 (cathode). The observed open circuit voltage is 1.2 V and its performance has been studied.

  9. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    National Research Council Canada - National Science Library

    Florjanczyk, Zbigniew

    2008-01-01

    This project report concerns studies on the synthesis of new polymer electrolytes for application in lithium and lithium-ion batteries characterized by limited participation of anions in the transport...

  10. Performance limitations of polymer electrolytes based on ethylene oxide polymers

    International Nuclear Information System (INIS)

    Buriez, Olivier; Han, Yong Bong; Hou, Jun; Kerr, John B.; Qiao, Jun; Sloop, Steven E.; Tian, Minmin; Wang, Shanger

    1999-01-01

    Studies of polymer electrolyte solutions for lithium-polymer batteries are described. Two different salts, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium trifluoromethanesulfonate (LiTf), were dissolved in a variety of polymers. The structures were all based upon the ethylene oxide unit for lithium ion solvation and both linear and comb-branch polymer architectures have been examined. Conductivity, salt diffusion coefficient and transference number measurements demonstrate the superior transport properties of the LiTFSI salt over LiTf. Data obtained on all of these polymers combined with LiTFSI salts suggest that there is a limit to the conductivity achievable at room temperature, at least for hosts containing ethylene oxide units. The apparent conductivity limit is 5 x 10-5 S/cm at 25 C. Providing that the polymer chain segment containing the ethylene oxide units is at least 5-6 units long there appears to be little influence of the polymer framework to which the solvating groups are attached. To provide adequate separator function, the mechanical properties may be disconnected from the transport properties by selection of an appropriate architecture combined with an adequately long ethylene oxide chain. For both bulk and interfacial transport of the lithium ions, conductivity data alone is insufficient to understand the processes that occur. Lithium ion transference numbers and salt diffusion coefficients also play a major role in the observed behavior and the transport properties of these polymer electrolyte solutions appear to be quite inadequate for ambient temperature performance. At present, this restricts the use of such systems to high temperature applications. Several suggestions are given to overcome these obstacles

  11. Development of label-free impedimetric platform based on new conductive polyaniline polymer and three-dimensional interdigitated electrode array for biosensor applications

    International Nuclear Information System (INIS)

    Voitechovič, E.; Bratov, A.; Abramova, N.; Razumienė, J.; Kirsanov, D.; Legin, A.; Lakshmi, D.; Piletsky, S.; Whitcombe, M.; Ivanova-Mitseva, P.K.

    2015-01-01

    Graphical abstract: Display Omitted -- Abstract: Novel label-free impedimetric platform based on a three-dimensional interdigitated electrode array (3D-IDEA) sensor and new conductive polymer as a transducer for oxidoreductases is introduced. This platform is cost-effective, simple to construct and miniaturize. Monomer of conductive polymer N-(N’,N’-diethyldithiocarbamoylethylamidoethyl) aniline (AnD) was deposited onto 3D-IDEA by chemical polymerisation. It was found that the polymer film resistance depends on the redox-potential of the solution. For the first time polyAnD was used as enzyme immobilisation matrix. Pyrroloquinolinequinone (PQQ) dependent alcohol and glucose dehydrogenases were immobilized on 3D-IDEA covered with polyAnD by two different methods. 3D-IDEA sensors with enzymes, which were immobilised by physisorption on polyAnD layer, showed specific response in the presence of 1 μM of the corresponding substrates. Obtained results revealed that PQQ dependent dehydrogenases can re-oxidize on polyAnD via direct electron transfer (DET) from enzyme active site to the polymer surface. This process can be monitored by methods of electrochemical impedance spectroscopy (EIS) and chronoamperometry. Presented study shows that EIS method gives a useful tool for research of re-oxidation process and interaction of electroactive enzymes with conducting materials giving information required to construct and develop analytical devices

  12. Electrically conductive composite material

    Science.gov (United States)

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  13. Organic conductive films for semiconductor electrodes

    Science.gov (United States)

    Frank, Arthur J.

    1984-01-01

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor overcoated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  14. New trends in radiation processing of polymers

    International Nuclear Information System (INIS)

    Chmielewski, Andrzej G.

    2005-01-01

    Nowadays, the modification of polymers covers radiation cross-linking, radiation induced polymerization (graft polymerization and curing) and the degradation of polymers. The success of radiation technology for the processing of synthetic polymers can be attributed to two reasons, namely the easiness of processing in various shapes and sizes and, secondly, most of these polymers undergo cross-linking reaction upon exposure to radiation. years, natural polymers are being looked at again with renewed interest because of their unique characteristics like inherent biocompatibility, biodegradability and easy availability. However the recent progress in the field regards development of new processing methods and technical solutions. No other break trough technologies or products based on synthetic polymers are reported recently. The future progress, both from scientific and practical points of view, concerns nanotechnology and natural polymer processing. Overview of the subject, including the works performed in the Institute of the author is presented in the paper. (author)

  15. Comparative study of PBI Cross Linked Utilizing Agents of Varying Steric Configurations

    DEFF Research Database (Denmark)

    Kirkebcek, Andreas; Aili, David; Li, Qingfeng

    2016-01-01

    ionic or covalent cross linking. When considering such, little attention is devoted to explore the effect of the sterical configuration of the cross linking agent. In this contribution three different cross linking agents are utilized to evaluate how these affects final membrane properties.......The high thermal and chemical stability of poly[2,2'-(m-phenylene)-5,5' bibenzimidazole] (PBI) accounts for its wise spread use in high temperature polymer electrolyte membrane fuel cells (HT- PEMFC). By doping the membrane with phosphoric acid (PA) ionic conductivity is obtained. Thus conductivity...... is dependent on the amount of PA present within the membrane. However mechanical properties are reduced are significantly reduced due to the plasticizing effect shown by PA [1]. This effect is due to PBI chain displacement. This effect can be lessened by use of cross linking [2-4]. This can be obtained using...

  16. Conducting polymers, buckminsterfullerenes, and carbon nanotubes: optoelectronic materials based on architectural diversity of the π-conjugated structure

    International Nuclear Information System (INIS)

    Dai, L.

    2001-01-01

    Recent discovery of superconductivity in self assembled poly(3-hexylthiophene) two-dimensional conjugated sheets indicates the possible applications of plastics even in superconducting optoelectronic devices. Just as the discovery of C 60 has created an entirely new branch of carbon chemistry, the subsequent discovery of carbon nanotubes by lijima in 1991 opened up a new era in material science and nanotechnology. These elongated nanotubes consist of carbon hexagons arranged in a concentric manner with both ends normally capped by fullerene-like structures containing pentagons. Having a conjugated all-carbon structure with unusual molecular symmetries, fullerenes and carbon nanotubes also show interesting electronic, photonic, magnetic and mechanical properties, attractive for various applications, including optical limiters, photovoltaic cells and field emitting displays. For most of the above applications, it is highly desirable to prepare ordered/micropatterned conducting polymers, fullerenes, and carbon nanotubes. Although the microfabrication of conducting polymers has been an active research area for some years, it is a very recent development for fullerenes and carbon nanotubes. Recently, we doped polyaniline (PANI) with a hydrogensulfated fullerenol derivative containing multiple -OSO 3 H groups (i.e. C 60 (OH) 6 (OSO 3 H) 6 ) to produce three-dimensional PANI conductors with a room-temperature conductivity of up to 100 S cm -1 . This value of conductivity is about six orders of magnitude higher than the typical value for C 60 doped conducting polymers. Later, in collaboration with Wan's group at the Chinese Academy of Sciences, we have also synthesized PANI nanotubes via a self assembled C 60 (OH) 6 (OSO 3 H) 6 supramolecular template using (NH 4 ) 2 S 2 O 8 as an oxidant. These results, together with the more recent discovery of a hollow sphere, self assembled by the potassium salt of pentaphenyl fullerene (Ph 5 C 60 K) in water, clearly indicate that

  17. Conductive polymer composites with carbonic fillers: Shear induced electrical behaviour

    Czech Academy of Sciences Publication Activity Database

    Starý, Zdeněk; Krückel, J.

    2018-01-01

    Roč. 139, 14 March (2018), s. 52-59 ISSN 0032-3861 R&D Projects: GA ČR(CZ) GA17-05654S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer-matrix composites * carbon fibres * electrical properties Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer sci ence Impact factor: 3.684, year: 2016

  18. The critical particle size for enhancing thermal conductivity in metal nanoparticle-polymer composites

    Science.gov (United States)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2018-02-01

    Polymers used as thermal interface materials are often filled with high-thermal conductivity particles to enhance the thermal performance. Here, we have combined molecular dynamics and the two-temperature model in 1D to investigate the impact of the metal filler size on the overall thermal conductivity. A critical particle size has been identified above which thermal conductivity enhancement can be achieved, caused by the interplay between high particle thermal conductivity and the added electron-phonon and phonon-phonon thermal boundary resistance brought by the particle fillers. Calculations on the SAM/Au/SAM (self-assembly-monolayer) system show a critical thickness Lc of around 10.8 nm. Based on the results, we define an effective thermal conductivity and propose a new thermal circuit analysis approach for the sandwiched metal layer that can intuitively explain simulation and experimental data. The results show that when the metal layer thickness decreases to be much smaller than the electron-phonon cooling length (or as the "thin limit"), the effective thermal conductivity is just the phonon portion, and electrons do not participate in thermal transport. As the thickness increases to the "thick limit," the effective thermal conductivity recovers the metal bulk value. Several factors that could affect Lc are discussed, and it is discovered that the thermal conductivity, thermal boundary resistance, and the electron-phonon coupling factor are all important in controlling Lc.

  19. Fabrication of a sulfite biosensor by the use of conducting polymer

    International Nuclear Information System (INIS)

    Hosseini, M.; Bahmani, B; Moztarzadeh, F.; Rabiee, M.

    2008-01-01

    In this research, an enzyme modified electrode has been produced during the electro polymerization of aniline through incorporation of Sulfite oxidase into a conducting polymer. Then the bioelectrochemical response of resulted sulfite biosensor was investigated at different experimental conditions. Study of the stability of the resulted sulfite biosensor revealed that formation of a passive film on the aluminum surface causes improved stability of the electro active films formed on the electrode surface. The bioelectrochemical response of the enzyme-modified electrode as a sulfite biosensor was investigated at different experimental conditions. The optimum p H and temperature were 8.5 and 35 d eg C , respectively. The apparent Michaelis-Menten constant and the activation energy of the enzyme catalyzed reaction were calculated

  20. Properties of Polymer Composites Used in High-Voltage Applications

    Directory of Open Access Journals (Sweden)

    Ilona Pleşa

    2016-04-01

    Full Text Available The present review article represents a comprehensive study on polymer micro/nanocomposites that are used in high-voltage applications. Particular focus is on the structure-property relationship of composite materials used in power engineering, by exploiting fundamental theory as well as numerical/analytical models and the influence of material design on electrical, mechanical and thermal properties. In addition to describing the scientific development of micro/nanocomposites electrical features desired in power engineering, the study is mainly focused on the electrical properties of insulating materials, particularly cross-linked polyethylene (XLPE and epoxy resins, unfilled and filled with different types of filler. Polymer micro/nanocomposites based on XLPE and epoxy resins are usually used as insulating systems for high-voltage applications, such as: cables, generators, motors, cast resin dry-type transformers, etc. Furthermore, this paper includes ample discussions regarding the advantages and disadvantages resulting in the electrical, mechanical and thermal properties by the addition of micro- and nanofillers into the base polymer. The study goals are to determine the impact of filler size, type and distribution of the particles into the polymer matrix on the electrical, mechanical and thermal properties of the polymer micro/nanocomposites compared to the neat polymer and traditionally materials used as insulation systems in high-voltage engineering. Properties such as electrical conductivity, relative permittivity, dielectric losses, partial discharges, erosion resistance, space charge behavior, electric breakdown, tracking and electrical tree resistance, thermal conductivity, tensile strength and modulus, elongation at break of micro- and nanocomposites based on epoxy resin and XLPE are analyzed. Finally, it was concluded that the use of polymer micro/nanocomposites in electrical engineering is very promising and further research work