WorldWideScience

Sample records for lines image specific

  1. On line portal imaging

    Munro, Peter

    1996-01-01

    Purpose/Objective: The purpose of this presentation is to examine the various imaging devices that have been developed for portal imaging; describe some of the image registration methods that have been developed to determine geometric errors quantitatively; discuss some of the ways that portal imaging has been incorporated into routine clinical practice; describe quality assurance procedures for these devices, and discuss the use of portal imaging devices for dosimetry applications. Discussion: Verification of patient positioning has always been an important aspect of external beam radiation therapy. Over the past decade many portal imaging devices have been developed by individual investigators and most accelerator manufacturers now offer 'on-line' portal imaging systems. The commercial devices can be classified into three categories: T.V. camera-based systems, liquid ionisation chamber systems, and amorphous silicon systems. Many factors influence the quality of images generated by these portal imaging systems. These include factors which are unavoidable (e.g., low subject contrast), factors which depend upon the individual imaging device forming the image (e.g., dose utilisation, spatial resolution) as well as factors which depend upon the characteristics of the linear accelerator irradiating the imaging system (x-ray source size, image magnification). The characteristics of individual imaging systems, such as spatial resolution, temporal response, and quantum utilisation will be discussed. One of the major advantages of on-line portal imaging is that many quantitative techniques have been developed to detect errors in patient positioning. The general approach is to register anatomic structures on a portal image with the same structures on a digitized simulator film. Once the anatomic structures have been registered, any discrepancies in the position of the patient can be identified. However, the task is not nearly as straight-forward as it sounds. One problem

  2. On line portal imaging

    Munro, Peter

    1997-01-01

    Purpose/Objective: The purpose of this presentation is to examine the various imaging devices that have been developed for portal imaging, describe some of the image registration methods that have been developed to determine geometric errors quantitatively, and discuss how portal imaging has been incorporated into clinical practice. Discussion: Verification of patient positioning has always been an important aspect of external beam radiation therapy. Over the past decade many portal imaging devices have been developed by individual investigators and most accelerator manufacturers now offer 'on-line' portal imaging systems. The commercial devices include T.V. camera-based systems, liquid ionisation chamber systems, and shortly, flat panel systems. The characteristics of these imaging systems will be discussed. In addition, other approaches such as the use of kilovoltage x-ray sources, video monitoring, and ultrasound have been proposed for improving patient positioning. Some of the advantages of these approaches will be discussed. One of the major advantages of on-line portal imaging is that many quantitative techniques have been developed to detect errors in patient positioning. The general approach is to register anatomic structures on a portal image with the same structures on a digitized simulator film. Once the anatomic structures have been registered, any discrepancies in the position of the patient can be identified. One problem is finding a common frame of reference for the simulator and portal images, since the location of the radiation field within the pixel matrix may differ for the two images. As a result, a common frame of reference has to be established before the anatomic structures in the images can be registered - generally by registering radiation field edges identified in the simulator and portal images. In addition, distortions in patient geometry or rotations out of the image plane can confound the image registration techniques. Despite the

  3. On line portal imaging

    Munro, Peter

    1995-01-01

    Purpose/Objective: The purpose of this presentation is to review the physics of imaging with high energy x-ray beams; examine the various imaging devices that have been developed for portal imaging; describe some of the image registration methods that have been developed to determine errors in patient positioning quantitatively; and discuss some of the ways that portal imaging has been incorporated into routine clinical practice. Verification of patient positioning has always been an important aspect of external beam radiation therapy. Checks of patient positioning have generally been done with film, however, film suffers from a number of drawbacks, such as poor image display and delays due to film development. Over the past decade many portal imaging devices have been developed by individual investigators and most accelerator manufacturers now offer 'on-line' portal imaging systems, which are intended to overcome the limitations of portal films. The commercial devices can be classified into three categories: T.V. camera-based systems, liquid ionisation chamber systems, and amorphous silicon systems. Many factors influence the quality of images generated by these portal imaging systems. These include factors which are unavoidable (e.g., low subject contrast), factors which depend upon the individual imaging device forming the image (e.g., dose utilisation, spatial resolution) as well as factors which depend upon the characteristics of the linear accelerator irradiating the imaging system (x-ray source size, image magnification). The fundamental factors which limit image quality and the characteristics of individual imaging systems, such as spatial resolution, temporal response, and quantum utilisation will be discussed. One of the major advantages of on-line portal imaging is that many quantitative techniques have been developed to detect errors in patient positioning. The general approach is to register anatomic structures on a portal image with the same

  4. Dielectric image line groove antennas for millimeterwaves

    Solbach, K.; Wolff, I.

    Grooves in the ground plane of dielectric image lines are proposed as a new radiating structure. A figure is included showing the proposed groove structure as a discontinuity in a dielectric image line. A wave incident on the dielectric image line is partly reflected by the discontinuity, partly transmitted across the groove, and partly radiated into space above the line. In a travelling-wave antenna, a number of grooves are arranged below a dielectric guide, with spacings around one guide wavelength to produce a beam in the upper half space. A prescribed aperture distribution can be effected by tapering the series radiation resistance of the grooves. This can be done by adjusting the depths of the grooves with a constant width or by varying the widths of the grooves with a constant depth. Attention is also given to circular grooves. Here, the widths of the holes are chosen so that they can be considered as waveguides operating far below the cut-off frequency of the fundamental circular waveguide mode.

  5. Combined echo offset (Dixon) and line volume chemical shift imaging as a clinical imaging protocol

    Listerud, J.; Chan, T.; Lenkinski, R.E.; Kressel, H.Y.; Chao, P.W.

    1989-01-01

    The authors have studied the sensitivity and specificity of the line-volume chemical-shift imaging (CSI) method as compared with the Dixon method they have recently implemented on a Signa, which supports a variety of options. Potential sources or error for the Dixon method include line broadening due to susceptibility, field inhomogeneity, and errors form olefinic resonances associated with fat, which behave like water in the Dixon regime. The authors investigate whether a combined Dixon/line-volume CSI method could be used to improve the placement of the line volume and to provide higher sensitivity and specificity than does the Dixon method alone

  6. Spotting Separator Points at Line Terminals in Compressed Document Images for Text-line Segmentation

    R, Amarnath; Nagabhushan, P.

    2017-01-01

    Line separators are used to segregate text-lines from one another in document image analysis. Finding the separator points at every line terminal in a document image would enable text-line segmentation. In particular, identifying the separators in handwritten text could be a thrilling exercise. Obviously it would be challenging to perform this in the compressed version of a document image and that is the proposed objective in this research. Such an effort would prevent the computational burde...

  7. Evaluation of the wavelet image two-line coder

    Rein, Stephan Alexander; Fitzek, Frank Hanns Paul; Gühmann, Clemens

    2015-01-01

    This paper introduces the wavelet image two-line (Wi2l) coding algorithm for low complexity compression of images. The algorithm recursively encodes an image backwards reading only two lines of a wavelet subband, which are read in blocks of 512 bytes from flash memory. It thus only requires very ...

  8. Advances in bacterial specific imaging

    Wareham, David; Das, Satya; London Univ.

    2005-01-01

    Nuclear medicine is a powerful diagnostic technique able to detect inflammatory foci in human disease. A wide range of agents have been evaluated for their ability to distinguish lesions due to microbial infection from those due to sterile inflammation. Advances continue to be made on the use of radiolabelled antibiotics which as well as being highly specific in the diagnosis of infection may be useful in monitoring the treatment and course of disease. Here we provide an update on in-vitro and clinical studies with a number of established and novel radiopharmaceuticals. (author)

  9. On image tube spectrophotometry of weak emission lines

    Duflot, R.

    1979-01-01

    The usual precision of image tube spectrophotometry measures relative to low intensity lines can be improved by the 'method of two lines'. This operating process tested on H II galactic regions leads to a precision of 13%. (Auth.)

  10. Reliable Line Matching Algorithm for Stereo Images with Topological Relationship

    WANG Jingxue

    2017-11-01

    Full Text Available Because of the lack of relationships between matching line and adjacent lines in the process of individual line matching, and the weak reliability of the individual line descriptor facing on discontinue texture, this paper presents a reliable line matching algorithm for stereo images with topological relationship. The algorithm firstly generates grouped line pairs from lines extracted from the reference image and searching image according to the basic topological relationships such as distance and angle between the lines. Then it takes the grouped line pairs as matching primitives, and matches these grouped line pairs by using epipolar constraint, homography constraint, quadrant constraint and gray correlation constraint of irregular triangle in order. And finally, it resolves the corresponding line pairs into two pairs of corresponding individual lines, and obtains one to one matching results after the post-processing of integrating, fitting, and checking. This paper adopts digital aerial images and close-range images with typical texture features to deal with the parameter analysis and line matching, and the experiment results demonstrate that the proposed algorithm in this paper can obtain reliable line matching results.

  11. Advances in bacterial specific imaging

    David Wareham

    2005-10-01

    Full Text Available Nuclear medicine is a powerful diagnostic technique able to detect inflammatory foci in human disease. A wide range of agents have been evaluated for their ability to distinguish lesions due to microbial infection from those due to sterile inflammation. Advances continue to be made on the use of radiolabelled antibiotics which as well as being highly specific in the diagnosis of infection may be useful in monitoring the treatment and course of disease. Here we provide an update on in-vitro and clinical studies with a number of established and novel radiopharmaceuticalsA medicina nuclear é uma técnica poderosa de diagnóstico capaz de detectar focos inflamatórios em doenças humanas. Uma ampla gama de agentes tem sido avaliada em sua capacidade de distinguir lesões, devidas a infecções microbianas daquelas causadas por inflamações estéreis. Avanços continuam sendo realizados no uso de antibióticos radiomarcados que, da mesma forma que têm sido usados no diagnóstico altamente específico de infecções, podem ser úteis na monitoração do tratamento e do curso da doença. Neste estudo, nós apresentamos uma atualização sobre estudos in vitro e clínicos, com alguns novos radiofármacos e outros já consagrados.

  12. Remote Sensing Image Registration with Line Segments and Their Intersections

    Chengjin Lyu

    2017-05-01

    Full Text Available Image registration is a basic but essential step for remote sensing image processing, and finding stable features in multitemporal images is one of the most considerable challenges in the field. The main shape contours of artificial objects (e.g., roads, buildings, farmlands, and airports can be generally described as a group of line segments, which are stable features, even in images with evident background changes (e.g., images taken before and after a disaster. In this study, a registration method that uses line segments and their intersections is proposed for multitemporal remote sensing images. First, line segments are extracted in image pyramids to unify the scales of the reference image and the test image. Then, a line descriptor based on the gradient distribution of local areas is constructed, and the segments are matched in image pyramids. Lastly, triplets of intersections of matching lines are selected to estimate affine transformation between two images. Additional corresponding intersections are provided based on the estimated transformation, and an iterative process is adopted to remove outliers. The performance of the proposed method is tested on a variety of optical remote sensing image pairs, including synthetic and real data. Compared with existing methods, our method can provide more accurate registration results, even in images with significant background changes.

  13. Determination of line edge roughness in low-dose top-down scanning electron microscopy images

    Verduin, T.; Kruit, P.; Hagen, C.W.

    2014-01-01

    We investigated the off-line metrology for line edge roughness (LER) determination by using the discrete power spectral density (PSD). The study specifically addresses low-dose scanning electron microscopy (SEM) images in order to reduce the acquisition time and the risk of resist shrinkage. The

  14. MICROARRAY IMAGE GRIDDING USING GRID LINE REFINEMENT TECHNIQUE

    V.G. Biju

    2015-05-01

    Full Text Available An important stage in microarray image analysis is gridding. Microarray image gridding is done to locate sub arrays in a microarray image and find co-ordinates of spots within each sub array. For accurate identification of spots, most of the proposed gridding methods require human intervention. In this paper a fully automatic gridding method which enhances spot intensity in the preprocessing step as per a histogram based threshold method is used. The gridding step finds co-ordinates of spots from horizontal and vertical profile of the image. To correct errors due to the grid line placement, a grid line refinement technique is proposed. The algorithm is applied on different image databases and results are compared based on spot detection accuracy and time. An average spot detection accuracy of 95.06% depicts the proposed method’s flexibility and accuracy in finding the spot co-ordinates for different database images.

  15. LINE-BASED REGISTRATION OF DSM AND HYPERSPECTRAL IMAGES

    J. Avbelj

    2013-04-01

    Full Text Available Data fusion techniques require a good registration of all the used datasets. In remote sensing, images are usually geo-referenced using the GPS and IMU data. However, if more precise registration is required, image processing techniques can be employed. We propose a method for multi-modal image coregistration between hyperspectral images (HSI and digital surface models (DSM. The method is divided in three parts: object and line detection of the same object in HSI and DSM, line matching and determination of transformation parameters. Homogeneous coordinates are used to implement matching and adjustment of transformation parameters. The common object in HSI and DSM are building boundaries. They have apparent change in height and material, that can be detected in DSM and HSI, respectively. Thus, before the matching and transformation parameter computation, building outlines are detected and adjusted in HSI and DSM. We test the method on a HSI and two DSM, using extracted building outbounds and for comparison also extracted lines with a line detector. The results show that estimated building boundaries provide more line assignments, than using line detector.

  16. Image Mosaic Method Based on SIFT Features of Line Segment

    Jun Zhu

    2014-01-01

    Full Text Available This paper proposes a novel image mosaic method based on SIFT (Scale Invariant Feature Transform feature of line segment, aiming to resolve incident scaling, rotation, changes in lighting condition, and so on between two images in the panoramic image mosaic process. This method firstly uses Harris corner detection operator to detect key points. Secondly, it constructs directed line segments, describes them with SIFT feature, and matches those directed segments to acquire rough point matching. Finally, Ransac method is used to eliminate wrong pairs in order to accomplish image mosaic. The results from experiment based on four pairs of images show that our method has strong robustness for resolution, lighting, rotation, and scaling.

  17. 3D Power Line Extraction from Multiple Aerial Images

    Jaehong Oh

    2017-09-01

    Full Text Available Power lines are cables that carry electrical power from a power plant to an electrical substation. They must be connected between the tower structures in such a way that ensures minimum tension and sufficient clearance from the ground. Power lines can stretch and sag with the changing weather, eventually exceeding the planned tolerances. The excessive sags can then cause serious accidents, while hindering the durability of the power lines. We used photogrammetric techniques with a low-cost drone to achieve efficient 3D mapping of power lines that are often difficult to approach. Unlike the conventional image-to-object space approach, we used the object-to-image space approach using cubic grid points. We processed four strips of aerial images to automatically extract the power line points in the object space. Experimental results showed that the approach could successfully extract the positions of the power line points for power line generation and sag measurement with the elevation accuracy of a few centimeters.

  18. Imaging specific cellular glycan structures using glycosyltransferases via click chemistry.

    Wu, Zhengliang L; Person, Anthony D; Anderson, Matthew; Burroughs, Barbara; Tatge, Timothy; Khatri, Kshitij; Zou, Yonglong; Wang, Lianchun; Geders, Todd; Zaia, Joseph; Sackstein, Robert

    2018-02-01

    Heparan sulfate (HS) is a polysaccharide fundamentally important for biologically activities. T/Tn antigens are universal carbohydrate cancer markers. Here, we report the specific imaging of these carbohydrates using a mesenchymal stem cell line and human umbilical vein endothelial cells (HUVEC). The staining specificities were demonstrated by comparing imaging of different glycans and validated by either removal of target glycans, which results in loss of signal, or installation of target glycans, which results in gain of signal. As controls, representative key glycans including O-GlcNAc, lactosaminyl glycans and hyaluronan were also imaged. HS staining revealed novel architectural features of the extracellular matrix (ECM) of HUVEC cells. Results from T/Tn antigen staining suggest that O-GalNAcylation is a rate-limiting step for O-glycan synthesis. Overall, these highly specific approaches for HS and T/Tn antigen imaging should greatly facilitate the detection and functional characterization of these biologically important glycans. © The Author(s) 2017. Published by Oxford University Press.

  19. CT imaging vs. traditional radiographic imaging for evaluating Harris Lines in tibiae

    Primeau, Charlotte; Jakobsen, Lykke Schrøder; Lynnerup, Niels

    2016-01-01

    This paper is the first to systematically investigate computer tomography (CT) images vs. ordinary flat plane radiography for evaluating Harris Lines (HL) on tibiae. Harris Lines are traditionally investigated using radiographic images and recorded as either present or absent, or by counting...

  20. Concept for Specific Lines of Business, Energy Saving Tourism

    Jilek, W.

    1998-01-01

    In the spirit of the objectives of the Energy Plan 1995 in order to make more efficient use of energy and thus to reduce energy requirements, to promote the use of renewable energies, and to attach maximum importance to the ecological compatibility of the energy systems, among other project the provincial government of Styria is pursuing the option of consulting small and medium-sized enterprises in a target manner. Three years after being launched, this Ecological Company Consulting scheme for various lines of business is now producing successful results, demonstrating that energy saving, business profit and ecology can go hand in hand by example of numerous pilot projects. Trade-specific concepts have been elaborated for foodstuffs, carpenters and car repair and sales firms, bakeries and hairdressers and, most recently, for tourist industry business /hotels, bars, restaurants, etc.). The province of Styria, represented by the Energy Commissioner and the department of waste management, is co-operating closely in the Ecological Company Consulting scheme with the Styrian Chamber of Commerce and the Economy Promotion Institute (Wirtschaftsfoerderungsinstitut). In several cases, other provinces, the Federal Ministry of Environmental, Youth and Family Affairs, and the Federal Chamber of Commerce have adopted the results of this co-operation, while in some cases subsidy schemes are linked to these trade-specific concepts. In the course of the scheme, the aim is to investigate energy requirements, saving potentials and questions of waste management. (author)

  1. Dehazed Image Quality Assessment by Haze-Line Theory

    Song, Yingchao; Luo, Haibo; Lu, Rongrong; Ma, Junkai

    2017-06-01

    Images captured in bad weather suffer from low contrast and faint color. Recently, plenty of dehazing algorithms have been proposed to enhance visibility and restore color. However, there is a lack of evaluation metrics to assess the performance of these algorithms or rate them. In this paper, an indicator of contrast enhancement is proposed basing on the newly proposed haze-line theory. The theory assumes that colors of a haze-free image are well approximated by a few hundred distinct colors, which form tight clusters in RGB space. The presence of haze makes each color cluster forms a line, which is named haze-line. By using these haze-lines, we assess performance of dehazing algorithms designed to enhance the contrast by measuring the inter-cluster deviations between different colors of dehazed image. Experimental results demonstrated that the proposed Color Contrast (CC) index correlates well with human judgments of image contrast taken in a subjective test on various scene of dehazed images and performs better than state-of-the-art metrics.

  2. Tumour imaging with non specific substances

    Pompe, W.B. van der.

    1978-01-01

    A short introduction concerning tumour imaging in nuclear medicine is given as well as the formulation of the problem treated in this thesis. In a literature review the most important tumour imaging radiopharmaceuticals used until now are described together with their clinical significance in the diagnosis of malignancy. The mechanism of uptake and subcellular distribution of most of the radiopharmaceuticals reviewed are discussed in chapter three with special reference to gallium-citrate. An ionic model to explain the distribution patterns of a number of these tumour imaging radiopharmaceuticals in normal and pathological tissues has been proposed. Evidence for the validity of this model is presented with specific reference to the ionic state of the reagents concerned. EXperimental evidence to support the proposed model is presented, with reference to the biologic behaviour of the radiopharmaceuticals in normal and pathological tissues. A limited number of selected case reports demonstrate how the results of the earlier described investigations can be applied to explain phenomena observed in clinical studies with ionic substances. The results obtained are discussed and the validity of the data with respect to the proposed model has been investigated. (Auth.)

  3. Aliasing effects in digital images of line-pair phantoms

    Albert, Michael; Beideck, Daniel J.; Bakic, Predrag R.; Maidment, Andrew D.A.

    2002-01-01

    Line-pair phantoms are commonly used for evaluating screen-film systems. When imaged digitally, aliasing effects give rise to additional periodic patterns. This paper examines one such effect that medical physicists are likely to encounter, and which can be used as an indicator of super-resolution

  4. Highly parallel line-based image coding for many cores.

    Peng, Xiulian; Xu, Jizheng; Zhou, You; Wu, Feng

    2012-01-01

    Computers are developing along with a new trend from the dual-core and quad-core processors to ones with tens or even hundreds of cores. Multimedia, as one of the most important applications in computers, has an urgent need to design parallel coding algorithms for compression. Taking intraframe/image coding as a start point, this paper proposes a pure line-by-line coding scheme (LBLC) to meet the need. In LBLC, an input image is processed line by line sequentially, and each line is divided into small fixed-length segments. The compression of all segments from prediction to entropy coding is completely independent and concurrent at many cores. Results on a general-purpose computer show that our scheme can get a 13.9 times speedup with 15 cores at the encoder and a 10.3 times speedup at the decoder. Ideally, such near-linear speeding relation with the number of cores can be kept for more than 100 cores. In addition to the high parallelism, the proposed scheme can perform comparatively or even better than the H.264 high profile above middle bit rates. At near-lossless coding, it outperforms H.264 more than 10 dB. At lossless coding, up to 14% bit-rate reduction is observed compared with H.264 lossless coding at the high 4:4:4 profile.

  5. Snapshot imaging Fraunhofer line discriminator for detection of plant fluorescence

    Gupta Roy, S.; Kudenov, M. W.

    2015-05-01

    Non-invasive quantification of plant health is traditionally accomplished using reflectance based metrics, such as the normalized difference vegetative index (NDVI). However, measuring plant fluorescence (both active and passive) to determine photochemistry of plants has gained importance. Due to better cost efficiency, lower power requirements, and simpler scanning synchronization, detecting passive fluorescence is preferred over active fluorescence. In this paper, we propose a high speed imaging approach for measuring passive plant fluorescence, within the hydrogen alpha Fraunhofer line at ~656 nm, using a Snapshot Imaging Fraunhofer Line Discriminator (SIFOLD). For the first time, the advantage of snapshot imaging for high throughput Fraunhofer Line Discrimination (FLD) is cultivated by our system, which is based on a multiple-image Fourier transform spectrometer and a spatial heterodyne interferometer (SHI). The SHI is a Sagnac interferometer, which is dispersion compensated using blazed diffraction gratings. We present data and techniques for calibrating the SIFOLD to any particular wavelength. This technique can be applied to quantify plant fluorescence at low cost and reduced complexity of data collection.

  6. The Imaging and Medical Beam Line at the Australian Synchrotron

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin

    2010-07-01

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the `Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1—monochromatic and white—to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  7. Future plans for the MP line (Both general and specific)

    Underwood, D.G.

    1988-01-01

    This talk consists of three sections. Topics range from suggestions of possible physics, which are presented to provoke thought and discussion about the distant future, to specific goals of E-704 for the next running period. The sections are on physics issues, possible upgrades of the beam and experimental apparatus, and goals for the next running period. 4 refs., 5 figs

  8. GrinLine identification using digital imaging and Adobe Photoshop.

    Bollinger, Susan A; Brumit, Paula C; Schrader, Bruce A; Senn, David R

    2009-03-01

    The purpose of this study was to outline a method by which an antemortem photograph of a victim can be critically compared with a postmortem photograph in an effort to facilitate the identification process. Ten subjects, between 27 and 55 years old provided historical pictures of themselves exhibiting a broad smile showing anterior teeth to some extent (a grin). These photos were termed "antemortem" for the purpose of the study. A digital camera was used to take a current photo of each subject's grin. These photos represented the "postmortem" images. A single subject's "postmortem" photo set was randomly selected to be the "unknown victim." These combined data of the unknown and the 10 antemortem subjects were digitally stored and, using Adobe Photoshop software, the images were sized and oriented for comparative analysis. The goal was to devise a technique that could facilitate the accurate determination of which "antemortem" subject was the "unknown." The generation of antemortem digital overlays of the teeth visible in a grin and the comparison of those overlays to the images of the postmortem dentition is the foundation of the technique. The comparisons made using the GrinLine Identification Technique may assist medical examiners and coroners in making identifications or exclusions.

  9. Magnetic imaging and machine vision NDT for the on-line inspection of stainless steel strips

    Ricci, M; Ficola, A; Fravolini, M L; Battaglini, L; Palazzi, A; Burrascano, P; Valigi, P; Appolloni, L; Cervo, S; Rocchi, C

    2013-01-01

    An on-line inspection system for stainless steel strips has been developed on an annealing and pickling line at the Acciai Speciali Terni S.p.A. steel mill. Besides a machine vision apparatus, the system contextually exploits a magnetic imaging system designed and realized for the specific application. The main goal of the research is represented by the fusion of the information provided by the two apparatuses that can improve the detection and classification tasks by enlarging the set of detectable defects. In this paper, the development, the calibration and the characteristics of the magnetic imaging apparatus are detailed and experimental results obtained both in laboratory and in situ are reported. A comparative analysis of the performances of the two devices is also reported based on preliminary results and some conclusions and perspectives are drawn. (paper)

  10. An image overall complexity evaluation method based on LSD line detection

    Li, Jianan; Duan, Jin; Yang, Xu; Xiao, Bo

    2017-04-01

    In the artificial world, whether it is the city's traffic roads or engineering buildings contain a lot of linear features. Therefore, the research on the image complexity of linear information has become an important research direction in digital image processing field. This paper, by detecting the straight line information in the image and using the straight line as the parameter index, establishing the quantitative and accurate mathematics relationship. In this paper, we use LSD line detection algorithm which has good straight-line detection effect to detect the straight line, and divide the detected line by the expert consultation strategy. Then we use the neural network to carry on the weight training and get the weight coefficient of the index. The image complexity is calculated by the complexity calculation model. The experimental results show that the proposed method is effective. The number of straight lines in the image, the degree of dispersion, uniformity and so on will affect the complexity of the image.

  11. Automatic Delineation of On-Line Head-And-Neck Computed Tomography Images: Toward On-Line Adaptive Radiotherapy

    Zhang Tiezhi; Chi Yuwei; Meldolesi, Elisa; Yan Di

    2007-01-01

    Purpose: To develop and validate a fully automatic region-of-interest (ROI) delineation method for on-line adaptive radiotherapy. Methods and Materials: On-line adaptive radiotherapy requires a robust and automatic image segmentation method to delineate ROIs in on-line volumetric images. We have implemented an atlas-based image segmentation method to automatically delineate ROIs of head-and-neck helical computed tomography images. A total of 32 daily computed tomography images from 7 head-and-neck patients were delineated using this automatic image segmentation method. Manually drawn contours on the daily images were used as references in the evaluation of automatically delineated ROIs. Two methods were used in quantitative validation: (1) the dice similarity coefficient index, which indicates the overlapping ratio between the manually and automatically delineated ROIs; and (2) the distance transformation, which yields the distances between the manually and automatically delineated ROI surfaces. Results: Automatic segmentation showed agreement with manual contouring. For most ROIs, the dice similarity coefficient indexes were approximately 0.8. Similarly, the distance transformation evaluation results showed that the distances between the manually and automatically delineated ROI surfaces were mostly within 3 mm. The distances between two surfaces had a mean of 1 mm and standard deviation of <2 mm in most ROIs. Conclusion: With atlas-based image segmentation, it is feasible to automatically delineate ROIs on the head-and-neck helical computed tomography images in on-line adaptive treatments

  12. Using photoshop filters to create anatomic line-art medical images.

    Kirsch, Jacobo; Geller, Brian S

    2006-08-01

    There are multiple ways to obtain anatomic drawings suitable for publication or presentations. This article demonstrates how to use Photoshop to alter digital radiologic images to create line-art illustrations in a quick and easy way. We present two simple to use methods; however, not every image can adequately be transformed and personal preferences and specific changes need to be applied to each image to obtain the desired result. There are multiple ways to obtain anatomic drawings suitable for publication or to prepare presentations. Medical illustrators have always played a major role in the radiology and medical education process. Whether used to teach a complex surgical or radiologic procedure, to define typical or atypical patterns of the spread of disease, or to illustrate normal or aberrant anatomy, medical illustration significantly affects learning (). However, if you are not an accomplished illustrator, the alternatives can be expensive (contacting a professional medical illustrator or buying an already existing stock of digital images) or simply not necessarily applicable to what you are trying to communicate. The purpose of this article is to demonstrate how using Photoshop (Adobe Systems, San Jose, CA) to alter digital radiologic images we can create line-art illustrations in a quick, inexpensive, and easy way in preparation for electronic presentations and publication.

  13. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  14. Improvement in dose escalation using off-line and on-line image feedback in the intensity modulated beam design for prostate cancer treatment

    Yan, D.; Birkner, M.; Nuesslin, F.; Wong, J.; Martinez, A.

    2001-01-01

    Purpose: To test the capability of dose escalation in the IMRT process where the organ/patient temporal geometric variation, measured using either off-line or on-line treatment CT and portal images, are adapted for the optimal design of intensity modulated beam. Materials and Methods: Retrospective study was performed on five prostate cancer patients with multiple CT scans (14∼17/patient) and daily portal images obtained during the treatment course. These images were used to determine the displacements of each subvolume in the organs of interest caused by the daily patient setup and internal organ motion/deformation. The temporal geometric information was processed in order of treatment time and fed into an inverse planning system. The inverse planning engine was specifically implemented to adapt the design of intensity modulated beam to the temporal subvolume displacement and patient internal density changes. Three image feedback strategies were applied to each patient and evaluated with respect to the capability of safe dose escalation. The first one is off-line image feedback, which designs the beam intensity based on the patient images measured within the first week of treatment. The second is an on-line 'the target of the day' strategy, which designs the beam intensity in daily bases by using 'the image of the day' alone. The last one is also the on-line based. However, it designs the instantaneous beam intensity based on also dose distribution in each organ of interest received prior to the current treatment. For each of the treatment strategies, the minimum dose delivered to the CTV was determined by applying the identical normal tissue constraints of partial dose/volumes. This minimum dose was used to represent the treatment dose for each patient. Results: The off-line strategy appears feasible after 5 days of image feedback. The average treatment dose among the patients can be 10% higher than the one in the conventional IMRT treatment where the inverse

  15. Feature Extraction in Sequential Multimedia Images: with Applications in Satellite Images and On-line Videos

    Liang, Yu-Li

    Multimedia data is increasingly important in scientific discovery and people's daily lives. Content of massive multimedia is often diverse and noisy, and motion between frames is sometimes crucial in analyzing those data. Among all, still images and videos are commonly used formats. Images are compact in size but do not contain motion information. Videos record motion but are sometimes too big to be analyzed. Sequential images, which are a set of continuous images with low frame rate, stand out because they are smaller than videos and still maintain motion information. This thesis investigates features in different types of noisy sequential images, and the proposed solutions that intelligently combined multiple features to successfully retrieve visual information from on-line videos and cloudy satellite images. The first task is detecting supraglacial lakes above ice sheet in sequential satellite images. The dynamics of supraglacial lakes on the Greenland ice sheet deeply affect glacier movement, which is directly related to sea level rise and global environment change. Detecting lakes above ice is suffering from diverse image qualities and unexpected clouds. A new method is proposed to efficiently extract prominent lake candidates with irregular shapes, heterogeneous backgrounds, and in cloudy images. The proposed system fully automatize the procedure that track lakes with high accuracy. We further cooperated with geoscientists to examine the tracked lakes and found new scientific findings. The second one is detecting obscene content in on-line video chat services, such as Chatroulette, that randomly match pairs of users in video chat sessions. A big problem encountered in such systems is the presence of flashers and obscene content. Because of various obscene content and unstable qualities of videos capture by home web-camera, detecting misbehaving users is a highly challenging task. We propose SafeVchat, which is the first solution that achieves satisfactory

  16. Production of prostate-specific antigen by a breast cancer cell line, Sk-Br-3

    Kamali Sarvestani, E.; Ghaderi, A.

    2002-01-01

    Prostate-specific antigen is a 33-KDa serine protease that is produced predominantly by prostate epithelium. However, it has been shown that about 30-40% of female breast tumors produce prostate-specific antigen and its production is associated with the presence of estrogen and progesterone receptors. We have now developed a new tissue culture system to study prostate-specific antigen production in breast cancer and its association with prognostic factors such as progesterone receptor and c-erbB-2. For this purpose we investigated the ability of prostate-specific antigen production in five different cell lines, including two breast cancer cell lines, Sk-Br-3 and MDA-MB-453. The prostate-specific antigen in tissue culture supernatant and cytoplasm of the Sk-Br-3 cell line was detected by western blotting and immunoperoxidase, respectively. Furthermore, we found lower expression of c-erbB-2 in Sk-Br-3 than non-prostate-specific antigen producer breast cancer cell line, MDA-MB-453. Progesterone receptor was expressed by both prostate-specific antigen-positive and -negative cell lines and only the intensity of staining and the number of positive cells in Sk-Br-3 population was higher than MDA-MB-453. According to our findings prostate-specific antigen can be considered as a good prognostic factor in breast cancer and we suggest that these two cell lines are a good in vitro model to study the relationship of different breast cancer prognostic factors and their regulations

  17. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping

    Tingting Cui

    2016-12-01

    Full Text Available For multi-sensor integrated systems, such as the mobile mapping system (MMS, data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.

  18. Recent development of fluorescent imaging for specific detection of tumors

    Nakata, Eiji; Morii, Takashi; Uto, Yoshihiro; Hori, Hitoshi

    2011-01-01

    Increasing recent studies on fluorescent imaging for specific detection of tumors are described here on strategies of molecular targeting, metabolic specificity and hypoxic circumstance. There is described an instance of a conjugate of antibody and pH-activable fluorescent ligand, which specifically binds to the tumor cells, is internalized in the cellular lysozomes where their pH is low, and then is activated to become fluorescent only in viable tumor cells. For the case of metabolic specificity, excessive loading of the precursor (5-aminolevulinic acid) of protoporphyrin IX (ppIX), due to their low activity to convert ppIX to heme B, results in making tumors observable in red as ppIX emits fluorescence (red, 585 nm) when excited by blue ray of 410 nm. Similarly, imaging with indocyanine green which is accumulated in hepatoma cells is reported in success in detection of small lesion and metastasis when the dye is administered during operation. Reductive reactions exceed in tumor hypoxic conditions, of which feature is usable for imaging. Conjugates of nitroimidazole and fluorescent dye are reported to successfully image tumors by nitro reduction. Authors' UTX-12 is a non-fluorescent nitroaromatic derivative of pH-sensitive fluorescent dye seminaphtharhodafluor (SNARF), and is designed for the nitro group, the hypoxia-responding sensor, to be reduced in tumor hypoxic conditions and then for the aromatic moiety to be cleaved to release free SNARF. Use of hypoxia-inducible factor-1 (HIF-1) for imaging has been also reported in many. As above, studies on fluorescent imaging for specific detection of tumors are mostly at fundamental step but its future is conceivably promising along with advances in other technology like fluorescent endoscopy and multimodal imaging. (author)

  19. [The characters and specific features of new human embryonic stem cells lines].

    Krylova, T A; Kol'tsova, A M; Zenin, V V; Gordeeva, O F; Musorina, A S; Goriachaia, T S; Shlykova, S A; Kamenetskaia, Iu K; Pinaev, G P; Polianskaia, G G

    2009-01-01

    Four continuous human embryonic stem cell lines (SC1, SC2, SC3 and SC4), derived from the blastocysts has been described. The cell lines were cultivated on mitotically inactivated human feeder cells. The cell lines SC1 and SC2 have passed through 150 population doublings and the cell lines SC3 and SC4 -- near 120 populations doublings, which exceeds Hayflick limit sufficiently. These cell lines maintain high activity of alkaline phosphatase, expression of transcription factor OCT-4 and cell surface antigens (SSEA-4, TRA-1-60 and TRA-1-81), confirming their ESC status and human specificity. Immunofluorescent detection of antigens, characteristic of ectoderm, endoderm and mesoderm confirms the ability of these cells to retain their pluripotency under in vitro condition. PCR analysis revealed expression of six genes specific for pluripotent cells (OCT-4, NANOG, DPPA3/STELLA, TDGF/CRIPTO and LEFTYA). Correlation between the level of proliferative activity and the character of DNA-bound fluorescent staining was found. Fluorescent dyes, Hoechst 33342 and PI, produced diffuse staining of the nuclei in slowly proliferating cells of the SC1 and SC2 lines. In contrast, in actively proliferating cells of the SC3 and SC4 lines, the clear staining of the nuclei was observed. Upon changing the cultivation condition, proliferative activity of SC3 and SC4 lines decreased and became similar to that of SC1 and SC2 lines. The character of the fluorescent staining of all these lines was also shown to be similar. These results show that quality of the fluorescent staining with Hoechst 33342 and PI reflects the level of proliferation. Possible causes and mechanisms of this feature of human ESC are discussed.

  20. Slots in dielectric image line as mode launchers and circuit elements

    Solbach, K.

    1981-01-01

    A planar resonator model is used to investigate slots in the ground plane of dielectric image lines. An equivalent circuit representation of the slot discontinuity is obtained, and the launching efficiency of the slot as a mode launcher is analyzed. Slots are also shown to be useful in the realization of dielectric image line array antennas. It is found that the slot discontinuity can be shown as a T-junction of the dielectric image line and a metal waveguide. The launching efficiency is found to increase with the dielectric constant of the dielectric image line, exhibiting a maximum value for guides whose height is slightly less than half a wavelength in the dielectric medium. The measured launching efficiencies of low permittivity dielectric image lines are found to be in good agreement with calculated values

  1. Using Adobe Acrobat to create high-resolution line art images.

    Woo, Hyoun Sik; Lee, Jeong Min

    2009-08-01

    The purpose of this article is to introduce a method for using Adobe Acrobat to make high-resolution and high-quality line art images. High-resolution and high-quality line art images for radiology journal submission can be generated using Adobe Acrobat as a steppingstone, and the customized PDF conversion settings can be used for converting hybrid images, including both bitmap and vector components.

  2. Registration of Urban Aerial Image and LiDAR Based on Line Vectors

    Qinghong Sheng

    2017-09-01

    Full Text Available In a traditional registration of a single aerial image with airborne light detection and ranging (LiDAR data using linear features that regard line direction as a control or linear features as constraints in the solution, lacking the constraint of linear position leads to the error propagation of the adjustment model. To solve this problem, this paper presents a line vector-based registration mode (LVR in which image rays and LiDAR lines are expressed by a line vector that integrates the line direction and the line position. A registration equation of line vector is set up by coplanar imaging rays and corresponding control lines. Three types of datasets consisting of synthetic, theInternational Society for Photogrammetry and Remote Sensing (ISPRS test project, and real aerial data are used. A group of progressive experiments is undertaken to evaluate the robustness of the LVR. Experimental results demonstrate that the integrated line direction and the line position contributes a great deal to the theoretical and real accuracies of the unknowns, as well as the stability of the adjustment model. This paper provides a new suggestion that, for a single image and LiDAR data, registration in urban areas can be accomplished by accommodating rich line features.

  3. Image of a line is not shrunk but neglected. Absence of crossover in unilateral spatial neglect.

    Ishiai, Sumio; Koyama, Yasumasa; Nakano, Naomi; Seki, Keiko; Nishida, Yoichiro; Hayashi, Kazuko

    2004-01-01

    Patients with left unilateral spatial neglect following right hemisphere lesions usually err rightward when bisecting a horizontal line. For very short lines (e.g. 25 mm), however, leftward errors or seemingly 'right' neglect is often observed. To explain this paradox of crossover in the direction of errors, rather complicated models have been introduced as to the distribution of attention. Neglect may be hypothesized to occur in representational process of a line or estimation of the midpoint on the formed image, or both. We devised a line image task using a computer display with a touch panel and approached the representational image of a line to be bisected. Three patients with typical left neglect were presented with a line and forced to see its whole extent with cueing to the left endpoint. After disappearance of the line, they pointed to the right endpoint, the left endpoint, or the subjective midpoint according to their representational image. The line image between the reproduced right and left endpoints was appropriately formed for the 200 mm lines. However, the images for the shorter 25 and 100 mm lines were longer than the physical lengths with overextension to the left side. These results proved the context effect that short lines may be perceived longer when they are presented in combination with longer lines. One of our patients had an extensive lesion that involved the frontal, temporal, and parietal lobes, and the other two had a lesion restricted to the posterior right hemisphere. The image for a fully perceived line may be represented far enough into left space even when left neglect occurs after a lesion that involves the right parietal lobe. The patients with neglect placed the subjective midpoint rightward from the centre of the stimulus line for the 100 and 200 mm lines and leftward for the 25 mm lines. This crossover of bisection errors disappeared when the displacement of the subjective midpoint was measured from the centre of the

  4. Screening and Establishment of Human Lung Cancer Cell Lines 
with Organ-specific Metastasis Potential

    Qinghua ZHOU

    2014-03-01

    Full Text Available Background and objective Cancer metastasis is not only the malignant marker and characteristics, but also the main cause of failure to cure and lose their life in the patients with lung cancer. Lung cancer metastasis has organ-specific characteristics. The most common sites of lung cancer metastasis are mediastinal lymph node, brain, bone, liver and adrenal gland. The aim of this study is to screen and establish lung cancer cell model with organ-specific metastasis potential with human high-metastatic large cell lung cancer cell line L9981 established by our laboratory previously, and to provide cell models for studying the mechanisms and signal regulation of organ-specific metastasis of lung cancer. Materials and methods The parent lung cancer cell line, L9981-Luc, was inoculated in the armpit of nude mice. The live animal imaging system, IVIS-200, was used to detect the lung cancer organ-specific metastasis every week. When the organ-specific metastasis were established, the nude mices bearing the lung cancer were sacrificed when they became moribund. Under sterile conditions, the organs (mediastinal lymph nodes, lung, spinal column and brain with lung cancer organ-specific metastasis were removed and the metastasized nodules were dissected free of connective tissue and blood clots, and rinsed twice with medium. The metastasized nodules were finely minced using sterile scalpel blades in medium, and the cells were seeded in tissue culture dishes. Then, the cells with organ-specific metastasis potential were reinoculated into the armpit of nude mice, respectively. This processes were repeated to establish the organ-specific metastatic sublines of L9981-Luc cell line more than 10 times. Finally, the organ-specific metastasis sublines of L9981-Luc were screened and established, which the four cell lines have the characteristics only metastasized to brian, lung, bone and mediastinal lymph node. Results A group of organ-specific metastasis cell

  5. RNA-Mediated Gene Duplication and Retroposons: Retrogenes, LINEs, SINEs, and Sequence Specificity

    2013-01-01

    A substantial number of “retrogenes” that are derived from the mRNA of various intron-containing genes have been reported. A class of mammalian retroposons, long interspersed element-1 (LINE1, L1), has been shown to be involved in the reverse transcription of retrogenes (or processed pseudogenes) and non-autonomous short interspersed elements (SINEs). The 3′-end sequences of various SINEs originated from a corresponding LINE. As the 3′-untranslated regions of several LINEs are essential for retroposition, these LINEs presumably require “stringent” recognition of the 3′-end sequence of the RNA template. However, the 3′-ends of mammalian L1s do not exhibit any similarity to SINEs, except for the presence of 3′-poly(A) repeats. Since the 3′-poly(A) repeats of L1 and Alu SINE are critical for their retroposition, L1 probably recognizes the poly(A) repeats, thereby mobilizing not only Alu SINE but also cytosolic mRNA. Many flowering plants only harbor L1-clade LINEs and a significant number of SINEs with poly(A) repeats, but no homology to the LINEs. Moreover, processed pseudogenes have also been found in flowering plants. I propose that the ancestral L1-clade LINE in the common ancestor of green plants may have recognized a specific RNA template, with stringent recognition then becoming relaxed during the course of plant evolution. PMID:23984183

  6. Registration of airborne LiDAR data and aerial images based on straight lines and POS data

    Du, Quanye; Xu, Biao; Cao, Hui

    2009-10-01

    This paper presents a registration method which based on straight lines primitive. Firstly, 2D straight lines are extracted from aerial images using Canny operator and straight line fitting. In the similar way, 3D straight lines are extracted from LiDAR range images which derive from laser scanning point cloud. Secondly, 3D straight lines are projected to aerial images using collinearity equations and Position and Orientation System (POS) data. Then the corresponding lines are determined by straight line error. At last, each image's new exterior orientation elements are calculated by generalized point (straight line) photogrammetry.

  7. Identification of genome-specific transcripts in wheat–rye translocation lines

    Tong Geon Lee

    2015-09-01

    Full Text Available Studying gene expression in wheat–rye translocation lines is complicated due to the presence of homeologs in hexaploid wheat and high levels of synteny between wheat and rye genomes (Naranjo and Fernandez-Rueda, 1991 [1]; Devos et al., 1995 [2]; Lee et al., 2010 [3]; Lee et al., 2013 [4]. To overcome limitations of current gene expression studies on wheat–rye translocation lines and identify genome-specific transcripts, we developed a custom Roche NimbleGen Gene Expression microarray that contains probes derived from the sequence of hexaploid wheat, diploid rye and diploid progenitors of hexaploid wheat genome (Lee et al., 2014. Using the array developed, we identified genome-specific transcripts in a wheat–rye translocation line (Lee et al., 2014. Expression data are deposited in the NCBI Gene Expression Omnibus (GEO under accession number GSE58678. Here we report the details of the methods used in the array workflow and data analysis.

  8. A non-iterative twin image elimination method with two in-line digital holograms

    Kim, Jongwu; Lee, Heejung; Jeon, Philjun; Kim, Dug Young

    2018-02-01

    We propose a simple non-iterative in-line holographic measurement method which can effectively eliminate a twin image in digital holographic 3D imaging. It is shown that a twin image can be effectively eliminated with only two measured holograms by using a simple numerical propagation algorithm and arithmetic calculations.

  9. Video library for video imaging detection at intersection stop lines.

    2010-04-01

    The objective of this activity was to record video that could be used for controlled : evaluation of video image vehicle detection system (VIVDS) products and software upgrades to : existing products based on a list of conditions that might be diffic...

  10. Coastal Ocean Ecosystem Dynamics Imager Pointing Line-of-Sight Solution Development and Testing

    National Aeronautics and Space Administration — A stable pointing line of sight solution is developed and tested in support of the Coastal Ocean Ecosystem Dynamics Imager for the GEOstationary Coastal and Air...

  11. Cholangiocarcinoma in Cirrhosis: Value of Hepatocyte Specific Magnetic Resonance Imaging.

    Piscaglia, Fabio; Iavarone, Massimo; Galassi, Marzia; Vavassori, Sara; Renzulli, Matteo; Forzenigo, Laura Virginia; Granito, Alessandro; Salvatore, Veronica; Sangiovanni, Angelo; Golfieri, Rita; Colombo, Massimo; Bolondi, Luigi

    2015-10-01

    The diagnosis of intrahepatic cholangiocellular carcinoma (ICC) remains elusive at imaging, which is a critical issue in cirrhotic patients in whom a diagnosis of hepatocellular carcinoma (HCC) can be established only by imaging. The aim of the study was to evaluate the potential of MRI in the diagnosis of ICC in cirrhosis using 'hepatocyte-specific' Gadolinium (Gd)-based contrast agents. Sixteen histologically proven and retrospectively identified ICCs on cirrhosis were investigated with hepatocyte-specific magnetic resonance contrast agents (6 in Bologna with Gd-EOB-DTPA and 10 in Milan with Gd-BOPTA). The control group consisted of 41 consecutively and prospectively collected nodules (31 HCCs) imaged with Gd-EOB-DTPA. Fifteen ICC nodules (94%) displayed hypointensity in the hepatobiliary phase, suggesting malignancy. Thirteen cholangiocarcinomas (81%) showed hyperenhancement in the venous phase. Only 2 cholangiocarcinoma nodules showed hypoenhancement in the venous phase, corresponding to washout, in both cases preceded by rim enhancement in arterial phase. All the hepatocarcinomas showed hypointensity in hepatobiliary phase, but was always preceded by hypointensity in the venous phase; arterial rim enhancement was never observed in any hepatocarcinoma or regenerative nodule. MRI with hepatocyte-specific Gd-based contrast agents showed a pattern of malignancy in almost all the ICCs, concurrently avoiding misdiagnosis with hepatocarcinoma. These findings suggest a greater diagnostic capacity for this technique compared with the results of MRI with conventional contrast agents reported in the literature in this setting. © 2015 S. Karger AG, Basel.

  12. The VTTVIS line imaging spectrometer - principles, error sources, and calibration

    Jørgensen, R.N.

    2002-01-01

    work describing the basic principles, potential error sources, and/or adjustment and calibration procedures. This report fulfils the need for such documentationwith special focus on the system at KVL. The PGP based system has several severe error sources, which should be removed prior any analysis......Hyperspectral imaging with a spatial resolution of a few mm2 has proved to have a great potential within crop and weed classification and also within nutrient diagnostics. A commonly used hyperspectral imaging system is based on the Prism-Grating-Prism(PGP) principles produced by Specim Ltd...... in off-axis transmission efficiencies, diffractionefficiencies, and image distortion have a significant impact on the instrument performance. Procedures removing or minimising these systematic error sources are developed and described for the system build at KVL but can be generalised to other PGP...

  13. A New Approach to Line Simplification Based on Image Processing: A Case Study of Water Area Boundaries

    Yilang Shen

    2018-01-01

    Full Text Available Line simplification is an important component of map generalization. In recent years, algorithms for line simplification have been widely researched, and most of them are based on vector data. However, with the increasing development of computer vision, analysing and processing information from unstructured image data is both meaningful and challenging. Therefore, in this paper, we present a new line simplification approach based on image processing (BIP, which is specifically designed for raster data. First, the key corner points on a multi-scale image feature are detected and treated as candidate points. Then, to capture the essence of the shape within a given boundary using the fewest possible segments, the minimum-perimeter polygon (MPP is calculated and the points of the MPP are defined as the approximate feature points. Finally, the points after simplification are selected from the candidate points by comparing the distances between the candidate points and the approximate feature points. An empirical example was used to test the applicability of the proposed method. The results showed that (1 when the key corner points are detected based on a multi-scale image feature, the local features of the line can be extracted and retained and the positional accuracy of the proposed method can be maintained well; and (2 by defining the visibility constraint of geographical features, this method is especially suitable for simplifying water areas as it is aligned with people’s visual habits.

  14. Identification of parental line specific effects of MLF2 on resistance to coccidiosis in chickens

    2011-01-01

    Background MLF2 was the candidate gene associated with coccidiosis resistance in chickens. Although single marker analysis supported the association between MLF2 and coccidiosis resistance, causative mutation relevant to coccidiosis was not identified yet. Thus, this study suggested segregation analysis of MLF2 haplotype and the association test of the other candidate genes using improved data transformation. Results A haplotype probably originated from one parental line was found out of 4 major haplotypes of MLF2. Frequency of this haplotype was 0.2 in parental chickens and its offspring in 12 families. Allele substitution effect of the MLF2 haplotype originated from a specific line was associated with increased body weight and fecal egg count explaining coccidiosis resistance. Nevertheless Box-Cox transformation was able to improve normality; association test did not produce obvious different results compared with analysis with log transformed phenotype. Conclusion Allele substitution effect analysis and classification of MLF2 haplotype identified the segregation of haplotype associated with coccidiosis resistance. The haplotype originated from a specific parental line was associated with improving disease resistance. Estimating effect of MLF2 haplotype on coccidiosis resistance will provide useful information for selecting animals or lines for future study. PMID:21645301

  15. Development and design of a line imaging spectrometer sampler (LISS) - A user manual

    Jørgensen, R.N.; Rasmussen, P.

    2002-01-01

    The objective of this report is to develop and describe the software for a Line Imaging Spectrometer Sampler (LISS) to perform measurements of spectra combined with a digital RGB photo of a measurant. Secondly this report should enable users to performmeasurements with the system. The measuring...... are developed as a Graphical User Interfaced (GUI) hosted by Matlab Release 12 from Mathworks. This GUI enables the operator to perform measurements from alldevices simultaneously together with notes specific for the measurant and store all the data in one Matlab data structure. The software includes dynamic...... exposure of the two CCD cameras ensuring optimal use of 16 bit range under unstable illuminationconditions. A routine, handling dark frame subtraction in a robust manner minimising the effect of hot pixels is also included. This report enables a novice user to perform measurements with LISS relatively easy...

  16. On-line monitoring of fluid bed granulation by photometric imaging.

    Soppela, Ira; Antikainen, Osmo; Sandler, Niklas; Yliruusi, Jouko

    2014-11-01

    This paper introduces and discusses a photometric surface imaging approach for on-line monitoring of fluid bed granulation. Five granule batches consisting of paracetamol and varying amounts of lactose and microcrystalline cellulose were manufactured with an instrumented fluid bed granulator. Photometric images and NIR spectra were continuously captured on-line and particle size information was extracted from them. Also key process parameters were recorded. The images provided direct real-time information on the growth, attrition and packing behaviour of the batches. Moreover, decreasing image brightness in the drying phase was found to indicate granule drying. The changes observed in the image data were also linked to the moisture and temperature profiles of the processes. Combined with complementary process analytical tools, photometric imaging opens up possibilities for improved real-time evaluation fluid bed granulation. Furthermore, images can give valuable insight into the behaviour of excipients or formulations during product development. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Off-line data processing and display for computed tomographic images (EMI brain)

    Takizawa, Masaomi; Maruyama, Kiyoshi; Yano, Kesato; Takenaka, Eiichi.

    1978-01-01

    Processing and multi-format display for the CT (EMI) scan data have been tried by using an off-line small computer and an analog memory. Four or six CT images after processing are displayed on the CRT by a small computer with a 16 kilo-words core memory and an analog memory. Multi-format display of the CT image can be selected as follows; multi-slice display, continuative multi-window display, separate multi-window display, and multi-window level display. Electronic zooming for the real size viewing can give magnified CT image with one of displayed images if necessary. Image substraction, edge enhancement, smoothing, non-linear gray scale display, and synthesized image for the plane tomography reconstracted by the normal CT scan data, have been tried by the off-line data processing. A possibility for an effective application of the data base with CT image was obtained by these trials. (auth.)

  18. Correspondence of line segments between two perpective images ...

    In order to permit the localization and the navigation of a mobile robot within an interior environment, we have built a stereoscopic sensor and implemented all the algorithms which allow to obtain 3D coordinates of real objects from data images. Sensor uses two mini cameras with vertical disposition. Processing on the ...

  19. Line-scan macro-scale Raman chemical imaging for authentication of powdered foods and ingredients

    Adulteration and fraud for powdered foods and ingredients are rising food safety risks that threaten consumers’ health. In this study, a newly developed line-scan macro-scale Raman imaging system using a 5 W 785 nm line laser as excitation source was used to authenticate the food powders. The system...

  20. Line-Scan Hyperspectral Imaging Techniques for Food Safety and Quality Applications

    Jianwei Qin

    2017-01-01

    Full Text Available Hyperspectral imaging technologies in the food and agricultural area have been evolving rapidly over the past 15 years owing to tremendous interest from both academic and industrial fields. Line-scan hyperspectral imaging is a major method that has been intensively researched and developed using different physical principles (e.g., reflectance, transmittance, fluorescence, Raman, and spatially resolved spectroscopy and wavelength regions (e.g., visible (VIS, near infrared (NIR, and short-wavelength infrared (SWIR. Line-scan hyperspectral imaging systems are mainly developed and used for surface inspection of food and agricultural products using area or line light sources. Some of these systems can also be configured to conduct spatially resolved spectroscopy measurements for internal or subsurface food inspection using point light sources. This paper reviews line-scan hyperspectral imaging techniques, with introduction, demonstration, and summarization of existing and emerging techniques for food and agricultural applications. The main topics include related spectroscopy techniques, line-scan measurement methods, hardware components and systems, system calibration methods, and spectral and image analysis techniques. Applications in food safety and quality are also presented to reveal current practices and future trends of line-scan hyperspectral imaging techniques.

  1. Modes in Component Behavior Specification via EBP and their Application in Product Lines

    Kofroň, Jan; Plášil, František; Šerý, O.

    2009-01-01

    Roč. 51, č. 1 (2009), s. 31-41 ISSN 0950-5849 R&D Projects: GA AV ČR 1ET400300504 Grant - others:GA ČR(CZ) GA201/08/0266 Institutional research plan: CEZ:AV0Z10300504 Keywords : behavior specification * component modes * software product lines Subject RIV: JC - Computer Hardware ; Software Impact factor: 1.821, year: 2009

  2. Establishment of monoclonal HCC cell lines with organ site-specific tropisms

    Wan, Jinliang; Wen, Duo; Dong, Lili; Tang, Jun; Liu, Dongli; Liu, Yang; Tao, Zhonghua; Gao, Dongmei; Sun, Huichuan; Cao, Ya; Fan, Jia; Wu, Weizhong

    2015-01-01

    Organ site-specific metastasis is an ominous feature for most poor-prognostic hepatocellular carcinoma (HCC) patients. Cancer cell lines and animal models are indispensable for investigating the molecular mechanisms of organ specific tropism. However, till now, little is known about the drivers in HCC metastatic tropism, and also no effective way has been developed to block the process of tropistic metastasis. In this study, we established several monoclonal HCC cell lines from HCCLM3-RFP together with their xenograft models, and then analyzed their metastatic potentials and tropisms using in-vitro and in-vivo assays, and finally elucidated the driving forces of HCC tropistic metastases. Six monoclonal cell lines with different organ site-specific tropism were established successfully. SPARC, VCAM1 and ANGPTL4 were found positively correlated with the potentials of lung metastasis, while ITGA1 had a positive relation to lymph node metastasis of enterocoelia. By our powerful platforms, HCC metastatic tropisms in clinic could be easily mimicked and recapitulated for exploring the bilateral interactions between tumor and its microenvironment, elucidating the drivers of HCC metastatic tropisms, and testing anti-cancer effects of newly developed agent in pre-clinical stage. The online version of this article (doi:10.1186/s12885-015-1692-0) contains supplementary material, which is available to authorized users

  3. Specific diagnosis of hepatocellular carcinoma by delayed hepatobiliary imaging

    Hasegawa, Y.; Nakano, S.; Ibuka, K.

    1986-01-01

    For assessment of the value of delayed hepatobiliary imaging with technetium 99m (/sup 99m/Tc)-(Sn)-N-pyridoxyl-5-methyltryptophan (/sup 99m/Tc-PMT) for specific diagnosis of hepatocellular carcinoma, 88 patients with various malignant and benign liver diseases (49 with hepatocellular carcinoma, 4 with cholangiocellular carcinoma, 10 with metastatic liver carcinoma, 2 with liver cysts, 2 with liver hemangioma, 1 with liver abscess, 2 with intrahepatic lithiasis, 12 with liver cirrhosis, and 6 with chronic hepatitis) were studied. In 20 (41%) of the 49 patients with hepatocellular carcinoma, greater uptake of /sup 99m/Tc-PMT by the tumor than by the surrounding liver tissue was seen in delayed hepatobiliary images, whereas in eight patients (16%), equilibrated uptake was seen. No increased uptake of the radioisotope by hepatic lesions was seen in 21 patients with localized liver diseases other than hepatoma. Moreover, in 18 patients with diffuse liver diseases, no focal accumulation of the radioisotope was seen in delayed /sup 99m/Tc-PMT images. In addition, of 28 patients with hepatocellular carcinoma in whom the serum alpha-fetoprotein level showed little or no increase, 12 showed increased uptake of /sup 99m/Tc-PMT by the tumor. In assessing delayed /sup 99m/Tc-PMT images, however, it was necessary to consider following complications: accumulation of tracer in obstructed and dilated biliary trees; retention of radioactivity in nonneoplastic liver tissues; difficulties in evaluating /sup 99m/Tc-PMT uptake by small hepatic tumors; overlapping of radioactivity in the gut and gallbladder in delayed /sup 99m/Tc-PMT images of tumors. This study indicates that delayed /sup 99m/Tc-PMT images can be useful in the diagnosis of hepatocellular carcinoma

  4. Off-line image analysis for froth flotation of coal

    Citir, C.; Aktas, Z.; Berber, R. [Ankara University, Ankara (Turkey). Faculty of Engineering

    2004-05-15

    Froth flotation is an effective process for separating sulphur and fine minerals from coal. Such pre-cleaning of coal is necessary in order to reduce the environmental and operational problems in power plants. The separation depends very much on particle surface properties, and the selectivity can be improved by addition of a reagent. Image analysis can be used to determine the amount of reagent, by using the relation between surface properties and froth bubble sizes. This work reports some improvements in the efficiency of the image analysis, and in determination of bubble diameter distribution towards developing froth-based flotation models. Ultimate benefit of the technique would allow a pre-determined reagent addition profile to be identified for controlling the separation process.

  5. Tc-99m labeled Sparfloxacin: A specific infection imaging agent

    Singh, A.K.; Verma, J.; Bhatnagar, A.; Ali, A.

    2003-01-01

    Radiolabeled antibiotics are being used for the specific diagnosis of infection by exploiting their specific binding properties to the bacterial component, thereby making it possible to differentiate infection from sterile lesions. A new radiopharmaceutical, Tc-99m Sparfloxacin has been developed for infection imaging. Sparfloxacin is a quinolone based broad-spectrum antibiotic, which is more potent than Ciprofloxacin. Radiolabeling of Sparfloxacin with Tc-99m was standardized using direct labeling protocol. Labeling efficiency, in-vitro and in-vivo stability, blood kinetics and organ distribution studies (in balb/c mice and New Zealand White Rabbits at different time interval up to 24hrs) were carried out. Biological activity of Sparfloxacin after its labeling with Tc-99m was evaluated with S.aureus using Peptone water (DIFCO) as media. Turpentine oil (100 μl) in left thigh and S.aureus (100μl of 3x10 7 cells) in right thigh were injected intramuscularly to create sterile and infective inflammation respectively in six New Zealand white rabbits. The localization kinetics of the radiolabeled complex were studied in the animal model by injecting 70-75MBq of Tc-99m Sparfloxacin intravenously in the ear of rabbit and the images were taken with a Gamma-camera (ECIL) at different post-injection time intervals. Standardized protocol produced >95% labeled complex. About 8% of tracer leached out at 24 hrs when incubated in serum at 37 0 C, confirming high stability of the complex. Blood clearance in rabbit revealed biphasic pattern and 50% of the complex clears from the blood within 5 min. Biodistribution studies in balb/c mice showed hepatobiliary route of excretion. Presence of insignificant amount of tracer at 24 hrs in the stomach confirmed high in vivo stability of the complex. Imaging in rabbits showed significant concentration of tracer in lesions with infection. Typical imaging patterns revealed initial accumulation of radiotracer in both sterile inflammatory

  6. Micro-tattoo guided OCT imaging of site specific inflammation

    Phillips, Kevin G.; Choudhury, Niloy; Samatham, Ravikant V.; Singh, Harvinder; Jacques, Steven L.

    2010-02-01

    Epithelial biologists studying human skin diseases such as cancer formation and psoriasis commonly utilize mouse models to characterize the interplay among cells and intracellular signal transduction pathways that result in programmed changes in gene expression and cellular behaviors. The information obtained from animal models is useful only when phenotypic presentations of disease recapitulate those observed in humans. Excision of tissues followed by histochemical analysis is currently the primary means of establishing the morphological presentation. Non invasive imaging of animal models provides an alternate means to characterize tissue morphology associated with the disease of interest in vivo. While useful, the ability to perform in vivo imaging at different time points in the same tissue location has been a challenge. This information is key to understanding site specific changes as the imaged tissue can now be extracted and analyzed for mRNA expression. We present a method employing a micro-tattoo to guide optical coherence tomography (OCT) imaging of ultraviolet induced inflammation over time in the same tissue locations.

  7. Chicken lines divergently selected for antibody responses to sheep red blood cells show line-specific differences in sensitivity to immunomodulation by diet. Part I: Humoral parameters

    Adriaansen-Tennekes, R.; Vries Reilingh, de G.; Nieuwland, M.G.B.; Parmentier, H.K.; Savelkoul, H.F.J.

    2009-01-01

    Individual differences in nutrient sensitivity have been suggested to be related with differences in stress sensitivity. Here we used layer hens divergently selected for high and low specific antibody responses to SRBC (i.e., low line hens and high line hens), reflecting a genetically based

  8. Detection of the power lines in UAV remote sensed images using spectral-spatial methods.

    Bhola, Rishav; Krishna, Nandigam Hari; Ramesh, K N; Senthilnath, J; Anand, Gautham

    2018-01-15

    In this paper, detection of the power lines on images acquired by Unmanned Aerial Vehicle (UAV) based remote sensing is carried out using spectral-spatial methods. Spectral clustering was performed using Kmeans and Expectation Maximization (EM) algorithm to classify the pixels into the power lines and non-power lines. The spectral clustering methods used in this study are parametric in nature, to automate the number of clusters Davies-Bouldin index (DBI) is used. The UAV remote sensed image is clustered into the number of clusters determined by DBI. The k clustered image is merged into 2 clusters (power lines and non-power lines). Further, spatial segmentation was performed using morphological and geometric operations, to eliminate the non-power line regions. In this study, UAV images acquired at different altitudes and angles were analyzed to validate the robustness of the proposed method. It was observed that the EM with spatial segmentation (EM-Seg) performed better than the Kmeans with spatial segmentation (Kmeans-Seg) on most of the UAV images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Progesterone-specific stimulation of triglyceride biosynthesis in a breast cancer cell line (T-47D)

    Judge, S.M.; Chatterton, R.T. Jr.

    1983-01-01

    The purpose of this study was to examine the lactogenic response of human mammary cancer cell lines to hormones in vitro. Progesterone was found to stimulate the incorporation of 14C from [14C]acetate into triglycerides (TG) and to promote accumulation of TG with a fatty acid composition similar to that of human milk fat in T-47D cells. Lipid droplets were observed in larger numbers without concomitant accumulation of casein granules in cells incubated with progesterone, but secretion of lipid into the medium did not occur. An effect of progesterone on TG accumulation was detectable after 12 hr and was maximal at 72 hr. Increasing doses of progesterone (10(-9) to 10(-5) M) caused a progressive increase in TG accumulation. The presence of cortisol and/or prolactin did not alter TG formation nor the dose response of the cells to progesterone. The growth rate of T-47D cells was not altered by the presence of progesterone in the medium. Neither of the human mammary cancer cell lines, MCF-7 and HBL-100, nor the human fibroblast cell lines, 28 and 857, responded to progesterone. The data indicate that, while the normally lactogenic hormones do not stimulate milk product biosynthesis in the cell lines tested, progesterone specifically stimulated synthesis and accumulation of TG in the T-47D cells

  10. Comparison of Two Mouse Ameloblast-like Cell Lines for Enamel-specific Gene Expression

    Juni eSarkar

    2014-07-01

    Full Text Available Ameloblasts are ectoderm-derived cells that produce an extracellular enamel matrix that mineralizes to form enamel. The development and use of immortalized cell lines, with a stable phenotype, is an important contribution to biological studies as it allows for the investigation of molecular activities without the continuous need for animals. In this study we compare the expression profiles of enamel-specific genes in two mouse derived ameloblast-like cell lines: LS8 and ALC cells. Quantitative PCR analysis indicates that, relative to each other, LS8 cells express greater mRNA levels for genes that define secretory-stage activities (Amelx, Ambn, Enam and Mmp20, while ALC express greater mRNA levels for genes that define maturation-stage activities (Odam and Klk4. Western blot analyses show that Amelx, Ambn and Odam proteins are detectable in ALC, but not LS8 cells. Unstimulated ALC cells form calcified nodules, while LS8 cells do not. These data provide greater insight as to the suitability of both cell lines to contribute to biological studies on enamel formation and biomineralization, and highlight some of the strengths and weaknesses when relying on enamel epithelial organ-derived cell lines to study molecular activities of amelogenesis.

  11. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Kotasidis Fotis A.; Kotasidis Fotis A.; Angelis Georgios I.; Anton-Rodriguez Jose; Matthews Julian C.; Reader Andrew J.; Reader Andrew J.; Zaidi Habib; Zaidi Habib; Zaidi Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However due to the short half life of clinically used isotopes other long lived isotopes not used in clinical practice are used to perform the PSF measurements. As such non optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction usuall...

  12. Image guided IMRT dosimetry using anatomy specific MOSFET configurations.

    Amin, Md Nurul; Norrlinger, Bern; Heaton, Robert; Islam, Mohammad

    2008-06-23

    We have investigated the feasibility of using a set of multiple MOSFETs in conjunction with the mobile MOSFET wireless dosimetry system, to perform a comprehensive and efficient quality assurance (QA) of IMRT plans. Anatomy specific MOSFET configurations incorporating 5 MOSFETs have been developed for a specially designed IMRT dosimetry phantom. Kilovoltage cone beam computed tomography (kV CBCT) imaging was used to increase the positional precision and accuracy of the detectors and phantom, and so minimize dosimetric uncertainties in high dose gradient regions. The effectiveness of the MOSFET based dose measurements was evaluated by comparing the corresponding doses measured by an ion chamber. For 20 head and neck IMRT plans the agreement between the MOSFET and ionization chamber dose measurements was found to be within -0.26 +/- 0.88% and 0.06 +/- 1.94% (1 sigma) for measurement points in the high dose and low dose respectively. A precision of 1 mm in detector positioning was achieved by using the X-Ray Volume Imaging (XVI) kV CBCT system available with the Elekta Synergy Linear Accelerator. Using the anatomy specific MOSFET configurations, simultaneous measurements were made at five strategically located points covering high dose and low dose regions. The agreement between measurements and calculated doses by the treatment planning system for head and neck and prostate IMRT plans was found to be within 0.47 +/- 2.45%. The results indicate that a cylindrical phantom incorporating multiple MOSFET detectors arranged in an anatomy specific configuration, in conjunction with image guidance, can be utilized to perform a comprehensive and efficient quality assurance of IMRT plans.

  13. EXTRACTION OF ROOF LINES FROM HIGH-RESOLUTION IMAGES BY A GROUPING METHOD

    A. P. Dal Poz

    2016-06-01

    Full Text Available This paper proposes a method for extracting groups of straight lines that represent roof boundaries and roof ridgelines from highresolution aerial images using corresponding Airborne Laser Scanner (ALS roof polyhedrons as initial approximations. The proposed method is based on two main steps. First, straight lines that are candidates to represent roof ridgelines and roof boundaries of a building are extracted from the aerial image. Second, a group of straight lines that represent roof boundaries and roof ridgelines of a selected building is obtained through the optimization of a Markov Random Field (MRF-based energy function using the genetic algorithm optimization method. The formulation of this energy function considers several attributes, such as the proximity of the extracted straight lines to the corresponding projected ALS-derived roof polyhedron and the rectangularity (extracted straight lines that intersect at nearly 90°. Experimental results are presented and discussed in this paper.

  14. LINE-BASED MULTI-IMAGE MATCHING FOR FAÇADE RECONSTRUCTION

    T. A. Teo

    2012-07-01

    Full Text Available This research integrates existing LOD 2 building models and multiple close-range images for façade structural lines extraction. The major works are orientation determination and multiple image matching. In the orientation determination, Speeded Up Robust Features (SURF is applied to extract tie points automatically. Then, tie points and control points are combined for block adjustment. An object-based multi-images matching is proposed to extract the façade structural lines. The 2D lines in image space are extracted by Canny operator followed by Hough transform. The role of LOD 2 building models is to correct the tilt displacement of image from different views. The wall of LOD 2 model is also used to generate hypothesis planes for similarity measurement. Finally, average normalized cross correlation is calculated to obtain the best location in object space. The test images are acquired by a nonmetric camera Nikon D2X. The total number of image is 33. The experimental results indicate that the accuracy of orientation determination is about 1 pixel from 2515 tie points and 4 control points. It also indicates that line-based matching is more flexible than point-based matching.

  15. Optical scatterometry system for detecting specific line edge roughness of resist gratings subjected to detector noises

    Lee, Yen-Min; Li, Jia-Han; Cheng, Hsin-Hung; Wang, Fu-Min; Shen, Yu-Tian; Tsai, Kuen-Yu; Shieh, Jason J; Chen, Alek C

    2014-01-01

    The Fourier scatterometry model was used to measure the ZEP 520A electron beam resist lines with specific line edge roughness (LER). By obtaining the pupils via an objective lens, the angle-resolved diffraction spectrum was collected efficiently without additional mechanical scanning. The concavity of the pupil was considered as the weight function in specimen recognition. A series of white noises was examined in the model, and the tolerant white noise levels for different system numerical apertures (NAs) were reported. Our numerical results show that the scatterometry model of a higher NA can identify a target with a higher white noise level. Moreover, the fabricated ZEP 520A electron beam resist gratings with LER were measured by using our model, and the fitting results were matched with scanning electron microscope measurements. (paper)

  16. In vivo metabolite-specific imaging in tumor

    Hurd, R.E.; Freeman, D.M.

    1988-01-01

    The authors have developed a practical method using proton MR imaging to map the level and distribution of metabolites in vivo. Of particular interest to the biochemist and the clinician is the presence of excess lactic acid in tissues, indicating hypoxia such as is found in certain solid tumors, or in ischemia that would occur during cardiac infarct or stroke. A two-dimensional double quantum coherence technique has been optimized to greatly reduce signal intensity from biologic water and to provide unambiguous editing of the lactic acid resonance from interfering lipid resonances. The method was tested using a General Electric 2.0-T CSI instrument fitted with actively shielded gradients. Two-dimensional double quantum coherence lactic acid edited images were obtained from an implanted RIF-1 tumor in C3H mice, showing heterogeneous distribution of lactic acid within the tumor. Very little lipid signal with respect to the lactic acid methyl resonance was observed. The lactic acid concentration of the tumor was determined to be 10 μmol/g wet by enzymatic assay. Metabolite-specific imaging using double quantum coherence transfer promises to yield noninvasive information about lactic acid levels and distribution in vivo at low field, relatively quickly, with low radio frequency power disposition and without the need for complex presaturation pulses

  17. Research and application on imaging technology of line structure light based on confocal microscopy

    Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen

    2009-11-01

    In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.

  18. Side-Scan Sonar Image Mosaic Using Couple Feature Points with Constraint of Track Line Positions

    Jianhu Zhao

    2018-06-01

    Full Text Available To obtain large-scale seabed surface image, this paper proposes a side-scan sonar (SSS image mosaic method using couple feature points (CFPs with constraint of track line positions. The SSS geocoded images are firstly used to form a coarsely mosaicked one and the overlapping areas between adjacent strip images can be determined based on geographic information. Inside the overlapping areas, the feature point (FP detection and registration operation are adopted for both strips. According to the detected CFPs and track line positions, an adjustment model is established to accommodate complex local distortions as well as ensure the global stability. This proposed method effectively solves the problem of target ghosting or dislocation and no accumulated errors arise in the mosaicking process. Experimental results show that the finally mosaicked image correctly reflects the object distribution, which is meaningful for understanding and interpreting seabed topography.

  19. Improved Seam-Line Searching Algorithm for UAV Image Mosaic with Optical Flow.

    Zhang, Weilong; Guo, Bingxuan; Li, Ming; Liao, Xuan; Li, Wenzhuo

    2018-04-16

    Ghosting and seams are two major challenges in creating unmanned aerial vehicle (UAV) image mosaic. In response to these problems, this paper proposes an improved method for UAV image seam-line searching. First, an image matching algorithm is used to extract and match the features of adjacent images, so that they can be transformed into the same coordinate system. Then, the gray scale difference, the gradient minimum, and the optical flow value of pixels in adjacent image overlapped area in a neighborhood are calculated, which can be applied to creating an energy function for seam-line searching. Based on that, an improved dynamic programming algorithm is proposed to search the optimal seam-lines to complete the UAV image mosaic. This algorithm adopts a more adaptive energy aggregation and traversal strategy, which can find a more ideal splicing path for adjacent UAV images and avoid the ground objects better. The experimental results show that the proposed method can effectively solve the problems of ghosting and seams in the panoramic UAV images.

  20. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to

  1. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Kotasidis, Fotis A. [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom); Angelis, Georgios I. [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia); Anton-Rodriguez, Jose; Matthews, Julian C. [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Reader, Andrew J. [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King' s College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30 001, Groningen 9700 RB (Netherlands)

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  2. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  3. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  4. Empirical gradient threshold technique for automated segmentation across image modalities and cell lines.

    Chalfoun, J; Majurski, M; Peskin, A; Breen, C; Bajcsy, P; Brady, M

    2015-10-01

    New microscopy technologies are enabling image acquisition of terabyte-sized data sets consisting of hundreds of thousands of images. In order to retrieve and analyze the biological information in these large data sets, segmentation is needed to detect the regions containing cells or cell colonies. Our work with hundreds of large images (each 21,000×21,000 pixels) requires a segmentation method that: (1) yields high segmentation accuracy, (2) is applicable to multiple cell lines with various densities of cells and cell colonies, and several imaging modalities, (3) can process large data sets in a timely manner, (4) has a low memory footprint and (5) has a small number of user-set parameters that do not require adjustment during the segmentation of large image sets. None of the currently available segmentation methods meet all these requirements. Segmentation based on image gradient thresholding is fast and has a low memory footprint. However, existing techniques that automate the selection of the gradient image threshold do not work across image modalities, multiple cell lines, and a wide range of foreground/background densities (requirement 2) and all failed the requirement for robust parameters that do not require re-adjustment with time (requirement 5). We present a novel and empirically derived image gradient threshold selection method for separating foreground and background pixels in an image that meets all the requirements listed above. We quantify the difference between our approach and existing ones in terms of accuracy, execution speed, memory usage and number of adjustable parameters on a reference data set. This reference data set consists of 501 validation images with manually determined segmentations and image sizes ranging from 0.36 Megapixels to 850 Megapixels. It includes four different cell lines and two image modalities: phase contrast and fluorescent. Our new technique, called Empirical Gradient Threshold (EGT), is derived from this reference

  5. Chicken lines divergently selected for antibody responses to sheep red blood cells show line-specific differences in sensitivity to immunomodulation by diet. Part I: Humoral parameters.

    Adriaansen-Tennekes, R; de Vries Reilingh, G; Nieuwland, M G B; Parmentier, H K; Savelkoul, H F J

    2009-09-01

    Individual differences in nutrient sensitivity have been suggested to be related with differences in stress sensitivity. Here we used layer hens divergently selected for high and low specific antibody responses to SRBC (i.e., low line hens and high line hens), reflecting a genetically based differential immune competence. The parental line of these hens was randomly bred as the control line and was used as well. Recently, we showed that these selection lines differ in their stress reactivity; the low line birds show a higher hypothalamic-pituitary-adrenal (HPA) axis reactivity. To examine maternal effects and neonatal nutritional exposure on nutrient sensitivity, we studied 2 subsequent generations. This also created the opportunity to examine egg production in these birds. The 3 lines were fed 2 different nutritionally complete layer feeds for a period of 22 wk in the first generation. The second generation was fed from hatch with the experimental diets. At several time intervals, parameters reflecting humoral immunity were determined such as specific antibody to Newcastle disease and infectious bursal disease vaccines; levels of natural antibodies binding lipopolysaccharide, lipoteichoic acid, and keyhole limpet hemocyanin; and classical and alternative complement activity. The most pronounced dietary-induced effects were found in the low line birds of the first generation: specific antibody titers to Newcastle disease vaccine were significantly elevated by 1 of the 2 diets. In the second generation, significant differences were found in lipoteichoic acid natural antibodies of the control and low line hens. At the end of the observation period of egg parameters, a significant difference in egg weight was found in birds of the high line. Our results suggest that nutritional differences have immunomodulatory effects on innate and adaptive humoral immune parameters in birds with high HPA axis reactivity and affect egg production in birds with low HPA axis reactivity.

  6. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9.

    Ren, Xingjie; Sun, Jin; Housden, Benjamin E; Hu, Yanhui; Roesel, Charles; Lin, Shuailiang; Liu, Lu-Ping; Yang, Zhihao; Mao, Decai; Sun, Lingzhu; Wu, Qujie; Ji, Jun-Yuan; Xi, Jianzhong; Mohr, Stephanie E; Xu, Jiang; Perrimon, Norbert; Ni, Jian-Quan

    2013-11-19

    The ability to engineer genomes in a specific, systematic, and cost-effective way is critical for functional genomic studies. Recent advances using the CRISPR-associated single-guide RNA system (Cas9/sgRNA) illustrate the potential of this simple system for genome engineering in a number of organisms. Here we report an effective and inexpensive method for genome DNA editing in Drosophila melanogaster whereby plasmid DNAs encoding short sgRNAs under the control of the U6b promoter are injected into transgenic flies in which Cas9 is specifically expressed in the germ line via the nanos promoter. We evaluate the off-targets associated with the method and establish a Web-based resource, along with a searchable, genome-wide database of predicted sgRNAs appropriate for genome engineering in flies. Finally, we discuss the advantages of our method in comparison with other recently published approaches.

  7. New properties of the V-line Radon transform and their imaging applications

    Truong, T T; Nguyen, M K

    2015-01-01

    This paper reports on new aspects of the so-called V-line Radon transforms (RTs) complementing those reported in an earlier work. These new properties are nicely uncovered and described with Cartesian coordinates. In particular, we show that the V-line RT belongs to the class of RTs on curves in the plane which can be mapped onto the standard RT on straight lines and thereby are fully characterizable and invertible. Next, we show that the effect of geometric inversion on the V-line RT is to produce a new RT on a pair of supplementary circular arcs, which provides a new access to image reconstruction in the so-called Norton's modality of Compton scatter tomography, a front runner in the race for alternatives to current emission imaging. (paper)

  8. Evaluation of an in-line particle imaging tool for monitoring twin-screw granulation performance

    Kumar, Ashish; Dhondt, Jens; De Leersnyder, Fien

    2015-01-01

    system. Off-line sieving was used as reference particle size analysis method. A twin-screw granulator which is part of the Consigma system was used to granulate a placebo formulation composed of lactose and polyvinylpyrrolidone (PVP; 97.5:2.5% w/w). PVP was dissolvedin water, which was used......). The volumetric size distribution obtained from the in-line measurements of the granules leaving the twin-screw granulator using the Eyecon™ camera was compared with the off-line measurements obtainedby sieving of the granule samples collected before and after the drying unit operation. For the intermediate size...... range (diameter 250–1000 μm), the Eyecon™ measurements showed to be promising as they were in agreement with off-line measurement results obtained before the drying unit. However, the image analysis algorithm and data post-processing of the Eyecon™ images for the fines and oversized ranges require...

  9. AUTOMATIC GLOBAL REGISTRATION BETWEEN AIRBORNE LIDAR DATA AND REMOTE SENSING IMAGE BASED ON STRAIGHT LINE FEATURES

    Z. Q. Liu

    2018-04-01

    Full Text Available An automatic global registration approach for point clouds and remote sensing image based on straight line features is proposed which is insensitive to rotational and scale transformation. First, the building ridge lines and contour lines in point clouds are automatically detected as registration primitives by integrating region growth and topology identification. Second, the collinear condition equation is selected as registration transformation function which is based on rotation matrix described by unit quaternion. The similarity measure is established according to the distance between the corresponding straight line features from point clouds and the image in the same reference coordinate system. Finally, an iterative Hough transform is adopted to simultaneously estimate the parameters and obtain correspondence between registration primitives. Experimental results prove the proposed method is valid and the spectral information is useful for the following classification processing.

  10. Irradiation specifically sensitises solid tumour cell lines to TRAIL mediated apoptosis

    Marini, Patrizia; Schmid, Angelika; Jendrossek, Verena; Faltin, Heidrun; Daniel, Peter T; Budach, Wilfried; Belka, Claus

    2005-01-01

    TRAIL (tumor necrosis factor related apoptosis inducing ligand) is an apoptosis inducing ligand with high specificity for malignant cell systems. Combined treatment modalities using TRAIL and cytotoxic drugs revealed highly additive effects in different tumour cell lines. Little is known about the efficacy and underlying mechanistic effects of a combined therapy using TRAIL and ionising radiation in solid tumour cell systems. Additionally, little is known about the effect of TRAIL combined with radiation on normal tissues. Tumour cell systems derived from breast- (MDA MB231), lung- (NCI H460) colorectal- (Colo 205, HCT-15) and head and neck cancer (FaDu, SCC-4) were treated with a combination of TRAIL and irradiation using two different time schedules. Normal tissue cultures from breast, prostate, renal and bronchial epithelia, small muscle cells, endothelial cells, hepatocytes and fibroblasts were tested accordingly. Apoptosis was determined by fluorescence microscopy and western blot determination of PARP processing. Upregulation of death receptors was quantified by flow cytometry. The combined treatment of TRAIL with irradiation strongly increased apoptosis induction in all treated tumour cell lines compared to treatment with TRAIL or irradiation alone. The synergistic effect was most prominent after sequential application of TRAIL after irradiation. Upregulation of TRAIL receptor DR5 after irradiation was observed in four of six tumour cell lines but did not correlate to tumour cell sensitisation to TRAIL. TRAIL did not show toxicity in normal tissue cell systems. In addition, pre-irradiation did not sensitise all nine tested human normal tissue cell cultures to TRAIL. Based on the in vitro data, TRAIL represents a very promising candidate for combination with radiotherapy. Sequential application of ionising radiation followed by TRAIL is associated with an synergistic induction of cell death in a large panel of solid tumour cell lines. However, TRAIL receptor

  11. Specific feature of magnetooptical images of stray fields of magnets of various geometrical shapes

    Ivanov, V. E.; Koveshnikov, A. V.; Andreev, S. V.

    2017-08-01

    Specific features of magnetooptical images (MOIs) of stray fields near the faces of prismatic hard magnetic elements have been studied. Attention has primarily been focused on MOIs of fields near faces oriented perpendicular to the magnetic moment of hard magnetic elements. With regard to the polar sensitivity, MOIs have practically uniform brightness and geometrically they coincide with the figures of the bases of the elements. With regard to longitudinal sensitivity, MOIs consist of several sectors, the number of which is determined by the number of angles of the image. Each angle is divided by the bisectrix into two sectors of different brightnesses; therefore, the MOI of a triangular magnet consists of three sectors. A rectangle consists of four sectors separated by the bisectrices of the interior angles. In all types of figures, these lines converge at the center of the figure and form a singular point of the source or sink type.

  12. Using Regularization to Infer Cell Line Specificity in Logical Network Models of Signaling Pathways

    Sébastien De Landtsheer

    2018-05-01

    Full Text Available Understanding the functional properties of cells of different origins is a long-standing challenge of personalized medicine. Especially in cancer, the high heterogeneity observed in patients slows down the development of effective cures. The molecular differences between cell types or between healthy and diseased cellular states are usually determined by the wiring of regulatory networks. Understanding these molecular and cellular differences at the systems level would improve patient stratification and facilitate the design of rational intervention strategies. Models of cellular regulatory networks frequently make weak assumptions about the distribution of model parameters across cell types or patients. These assumptions are usually expressed in the form of regularization of the objective function of the optimization problem. We propose a new method of regularization for network models of signaling pathways based on the local density of the inferred parameter values within the parameter space. Our method reduces the complexity of models by creating groups of cell line-specific parameters which can then be optimized together. We demonstrate the use of our method by recovering the correct topology and inferring accurate values of the parameters of a small synthetic model. To show the value of our method in a realistic setting, we re-analyze a recently published phosphoproteomic dataset from a panel of 14 colon cancer cell lines. We conclude that our method efficiently reduces model complexity and helps recovering context-specific regulatory information.

  13. Image Quality Enhancement Using the Direction and Thickness of Vein Lines for Finger-Vein Recognition

    Young Ho Park

    2012-10-01

    Full Text Available On the basis of the increased emphasis placed on the protection of privacy, biometric recognition systems using physical or behavioural characteristics such as fingerprints, facial characteristics, iris and finger-vein patterns or the voice have been introduced in applications including door access control, personal certification, Internet banking and ATM machines. Among these, finger-vein recognition is advantageous in that it involves the use of inexpensive and small devices that are difficult to counterfeit. In general, finger-vein recognition systems capture images by using near infrared (NIR illumination in conjunction with a camera. However, such systems can face operational difficulties, since the scattering of light from the skin can make capturing a clear image difficult. To solve this problem, we proposed new image quality enhancement method that measures the direction and thickness of vein lines. This effort represents novel research in four respects. First, since vein lines are detected in input images based on eight directional profiles of a grey image instead of binarized images, the detection error owing to the non-uniform illumination of the finger area can be reduced. Second, our method adaptively determines a Gabor filter for the optimal direction and width on the basis of the estimated direction and thickness of a detected vein line. Third, by applying this optimized Gabor filter, a clear vein image can be obtained. Finally, the further processing of the morphological operation is applied in the Gabor filtered image and the resulting image is combined with the original one, through which finger-vein image of a higher quality is obtained. Experimental results from application of our proposed image enhancement method show that the equal error rate (EER of finger-vein recognition decreases to approximately 0.4% in the case of a local binary pattern-based recognition and to approximately 0.3% in the case of a wavelet transform

  14. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning

    2017-12-01

    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  15. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  16. Evaluation of an improved technique for automated center lumen line definition in cardiovascular image data

    Gratama van Andel, Hugo A.F.; Meijering, Erik; Vrooman, Henri A.; Stokking, Rik; Lugt, Aad van der; Monye, Cecile de

    2006-01-01

    The aim of the study was to evaluate a new method for automated definition of a center lumen line in vessels in cardiovascular image data. This method, called VAMPIRE, is based on improved detection of vessel-like structures. A multiobserver evaluation study was conducted involving 40 tracings in clinical CTA data of carotid arteries to compare VAMPIRE with an established technique. This comparison showed that VAMPIRE yields considerably more successful tracings and improved handling of stenosis, calcifications, multiple vessels, and nearby bone structures. We conclude that VAMPIRE is highly suitable for automated definition of center lumen lines in vessels in cardiovascular image data. (orig.)

  17. Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields

    Shihui, Y.; Jiehai, J.; Minhan, J.

    1985-01-01

    A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.

  18. Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system

    Breitbach, Elizabeth K.; Maltz, Jonathan S.; Gangadharan, Bijumon; Bani-Hashemi, Ali; Anderson, Carryn M.; Bhatia, Sudershan K.; Stiles, Jared; Edwards, Drake S.; Flynn, Ryan T.

    2011-01-01

    Purpose: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd 2 O 2 S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator. The IBL produces a greater fluence of keV-range photons than the TBL, to which the detector response is more optimal, and the SPA is a more efficient scintillator than the LFB. Methods: A prototype IBL + SPA system was installed on a Siemens Oncor linear accelerator equipped with the MVision TM image guided radiation therapy (IGRT) system. A SPA strip consisting of four neighboring tiles and measuring 40 cm by 10.96 cm in the crossplane and inplane directions, respectively, was installed in the flat panel imager. Head- and pelvis-sized phantom images were acquired at doses ranging from 3 to 60 cGy with three MVCBCT configurations: TBL + LFB, IBL + LFB, and IBL + SPA. Phantom image quality at each dose was quantified using the contrast-to-noise ratio (CNR) and modulation transfer function (MTF) metrics. Head and neck, thoracic, and pelvic (prostate) cancer patients were imaged with the three imaging system configurations at multiple doses ranging from 3 to 15 cGy. The systems were assessed qualitatively from the patient image data. Results: For head and neck and pelvis-sized phantom images, imaging doses of 3 cGy or greater, and relative electron densities of 1.09 and 1.48, the CNR average improvement factors for imaging system change of TBL + LFB to IBL + LFB, IBL + LFB to IBL + SPA, and TBL + LFB to IBL + SPA were 1.63 (p -8 ), 1.64 (p -13 ), 2.66 (p -9 ), respectively. For all imaging doses, soft tissue contrast was more

  19. TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and DEMs, Part 2: Line Segments Linking and Merging

    Mehdi Rahnama

    2014-11-01

    Full Text Available Extraction and interpretation of tectonic lineaments is one of the routines for mapping large areas using remote sensing data. However, this is a subjective and time-consuming process. It is difficult to choose an optimal lineament extraction method in order to reduce subjectivity and obtain vectors similar to what an analyst would manually extract. The objective of this study is the implementation, evaluation and comparison of Hough transform, segment merging and polynomial fitting methods towards automated tectonic lineament mapping. For this purpose we developed a new MATLAB-based toolbox (TecLines. The proposed toolbox capabilities were validated using a synthetic Digital Elevation Model (DEM and tested along in the Andarab fault zone (Afghanistan where specific fault structures are known. In this study, we used filters in both frequency and spatial domains and the tensor voting framework to produce binary edge maps. We used the Hough transform to extract linear image discontinuities. We used B-spline as a polynomial curve fitting method to eliminate artificial line segments that are out of interest and to link discontinuous segments with similar trends. We performed statistical analyses in order to compare the final image discontinuities maps with existing references map.

  20. LINES

    Minas Bakalchev

    2015-10-01

    Full Text Available The perception of elements in a system often creates their interdependence, interconditionality, and suppression. The lines from a basic geometrical element have become the model of a reductive world based on isolation according to certain criteria such as function, structure, and social organization. Their traces are experienced in the contemporary world as fragments or ruins of a system of domination of an assumed hierarchical unity. How can one release oneself from such dependence or determinism? How can the lines become less “systematic” and forms more autonomous, and less reductive? How is a form released from modernistic determinism on the new controversial ground? How can these elements or forms of representation become forms of action in the present complex world? In this paper, the meaning of lines through the ideas of Le Corbusier, Leonidov, Picasso, and Hitchcock is presented. Spatial research was made through a series of examples arising from the projects of the architectural studio “Residential Transformations”, which was a backbone for mapping the possibilities ranging from playfulness to exactness, as tactics of transformation in the different contexts of the contemporary world.

  1. Mapping low- and high-density clouds in astrophysical nebulae by imaging forbidden line emission

    Steiner, J. E.; Menezes, R. B.; Ricci, T. V.; Oliveira, A. S.

    2009-06-01

    Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density-sensitive forbidden lines into images of emission from high- and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density-sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high- and low-density limit using a four- and five-level atom approximation. In order to illustrate the method, we applied it to Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (GMOS-IFU) data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low- and high-density clouds; for this reason, we call it `the ld/hd imaging method'. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States); the Science and Technology Facilities Council (United Kingdom); the National Research Council (Canada), CONICYT (Chile); the Australian Research Council (Australia); Ministério da Ciência e Tecnologia (Brazil) and Secretaria de Ciencia y Tecnologia (Argentina). E-mail: steiner@astro.iag.usp.br

  2. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.

    Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke

    2013-12-15

    The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. ISP-50 Specifications for a Direct Vessel Injection Line Break Test with the ATLAS

    Choi, Ki Yong; Baek, Won Pil; Kim, Yeon Sik; Park, Hyun Sik; Cho, Seok; Kang, Kyoung Ho; Choi, Nam Hyun; Min, Kyoung Ho

    2009-06-01

    An OECD/NEA International Standard Problem Exercise (ISP) focussing on a DVI line break simulation result with the ATLAS was approved by the NEA Committee on the Safety of Nuclear Installation (CSNI) meeting in December 2008 and was numbered by ISP-50. The ISP-50 program will be operated by an operating agency, KAERI for three years starting from the physical year 2009. Fourteen international organizations confirmed their participation in the ISP-50, including NRC (USA), JAEA, JNES (Japan), GRS (Germany), KFKI-AEKI (Hungary), EDO Gidropress (Russia), VTT, Fortum (Finland), NRI (Czech Republic), Univ. of Pisa (Italy), KINS, KNF, KOPEC, and KAERI (Korea). In addition, KTH in Sweden and HSE in UK are considering late participation. Recently, NPIC and CIAE in China hope to join the ISP-50. As for the safety analysis codes, nine codes are expected to be used for the ISP-50: MARS-3D, RELAP5- 3D, RELAP5, TRACE, CATHARE, APROS, ATHELET, TRAP, and KORSAR. It is the first ISP exercise in Korea in which a domestic test facility is utilized by international nuclear society and this exercise will contribute to extending our physical understanding on thermal hydraulic phenomena during the DVI line break accidents and to verifying the best-estimate thermal-hydraulic safety analysis codes. This report was prepared to define technical specifications of the ISP-50 exercise according the guideline provided by OECD/CSNI. It includes general objectives, phases, deliverables to participants, parameters required for comparison and the time table

  4. NMR imaging of solids with multiple-pulse line narrowing and radiofrequency gradients

    Werner, M.H.

    1993-01-01

    The usual methods of magnetic resonance imaging fail in rigid solids due to the line-shape contributions of dipolar coupling, chemical shift dispersion and anisotropy, and bulk magnetic susceptibility. This dissertation presents a new method of solid-stage imaging by nuclear magnetic resonance which averages away these contributions with multiple-pulse line-narrowing and encodes spatial information with pulsed radiofrequency field gradients. This method is closely related to simultaneously developed methods utilizing pulsed DC gradients, and offers similar improvements in sensitivity and resolution. The advantage of rf gradients is that they can be rapidly switched without inducing eddy currents in the probe or the magnet. In addition, the phases and amplitudes of the rf gradients can be switched by equipment which is already part of an NMR spectrometer capable of solid-state spectroscopy. The line-narrowing and gradient pulses originate in separate rf circuits tuned to the same frequency. Interactions between the circuits have been minimized by a method of active Q-switching which employs PIN diodes in the matching networks of these circuits. Both one- and two-dimensional images are presented. The latter are obtained by a novel method in which the two dimensions of imaging transverse to the static magnetic field are encoded by two orthogonal components of a single rf gradient. A π/2 phase shift of the rf phase relative to that of the line-narrowing pulses selects one component or the other. This arrangement allows the solid-state analogs of versatile imaging sequences based on Fourier imaging and eliminates the need for sample rotation and back-projection methods. Coherent averaging theory is used to analyze this imaging technique and exact numerical simulations on several coupled spins are discussed. These lend insight to the residual linewidth and its dependence on pixel position as well as to the range of applicability of this technique

  5. A line array based near field imaging technique for characterising acoustical properties of elongated targets

    Driessen, F.P.G.

    1995-01-01

    With near field imaging techniques the acoustical pressure waves at distances other than the recorded can be calculated. Normally, acquisition on a two dimensional plane is necessary and extrapolation is performed by a Rayleigh integral. A near field single line instead of two dimensional plane

  6. On-Line Monitoring of Instrument Channel Performance: Volume 3: Applications to Nuclear Power Plant Technical Specification Instrumentation

    Davis, E.; Rasmussen, B.

    2004-01-01

    This report is a guide for a technical specification change submittal and subsequent implementation of on-line monitoring for safety-related applications. This report is the third in a three-volume set. Volume 1, ''Guidelines for Model Development and Implementation'', presents the various tasks that must be completed to prepare models for and to implement an on-line monitoring system

  7. Multidirectional Scanning Model, MUSCLE, to Vectorize Raster Images with Straight Lines

    Ibrahim Baz

    2008-04-01

    Full Text Available This paper presents a new model, MUSCLE (Multidirectional Scanning for Line Extraction, for automatic vectorization of raster images with straight lines. The algorithm of the model implements the line thinning and the simple neighborhood methods to perform vectorization. The model allows users to define specified criteria which are crucial for acquiring the vectorization process. In this model, various raster images can be vectorized such as township plans, maps, architectural drawings, and machine plans. The algorithm of the model was developed by implementing an appropriate computer programming and tested on a basic application. Results, verified by using two well known vectorization programs (WinTopo and Scan2CAD, indicated that the model can successfully vectorize the specified raster data quickly and accurately.

  8. Imaging spectrophotometry of ionized gas in NGC 1068. I - Kinematics of the narrow-line region

    Cecil, Gerald; Bland, Jonathan; Tully, R. Brent

    1990-01-01

    The kinematics of collisionally excited forbidden N II 6548, 6583 across the inner 1 arcmin diameter of the nearby Seyfert galaxy NGC 1068 is mapped using an imaging Fabry-Perot interferometer and low-noise CCD. The stack of monochromatic images, which spatially resolved the high-velocity gas, was analyzed for kinematic and photometric content. Profiles agree well with previous long-slit work, and their complete spatial coverage makes it possible to constrain the gas volume distribution. It is found that the narrow-line region is distributed in a thick center-darkened, line-emitting cylinder that envelopes the collimated radio jet. Three distinct kinematic subsystems, of which the cylinder is composed, are discussed in detail. Detailed behavior of the emission-line profiles, at the few points in the NE quadrant with simple kinematics, argues that the ionized gas develops a significant component of motion perpendicular to the jet axis.

  9. Partition calculation for zero-order and conjugate image removal in digital in-line holography.

    Ma, Lihong; Wang, Hui; Li, Yong; Jin, Hongzhen

    2012-01-16

    Conventional digital in-line holography requires at least two phase-shifting holograms to reconstruct an original object without zero-order and conjugate image noise. We present a novel approach in which only one in-line hologram and two intensity values (namely the object wave intensity and the reference wave intensity) are required. First, by subtracting the two intensity values the zero-order diffraction can be completely eliminated. Then, an algorithm, called partition calculation, is proposed to numerically remove the conjugate image. A preliminary experimental result is given to confirm the proposed method. The method can simplify the procedure of phase-shifting digital holography and improve the practical feasibility for digital in-line holography.

  10. Confocal non-line-of-sight imaging based on the light-cone transform

    O’Toole, Matthew; Lindell, David B.; Wetzstein, Gordon

    2018-03-01

    How to image objects that are hidden from a camera’s view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.

  11. Image analysis for the detection and quantification of concrete bugholes in a tunnel lining

    Isamu Yoshitake

    2018-06-01

    Full Text Available A measurement and quantification system for concrete bugholes (surface air voids on sidewalls was developed to quantify the surface quality of tunnel-lining concrete. The developed system uses and evaluates red/green/blue values of color images taken by a commercial digital still camera. A comparative test shows that the developed system has higher accuracy than image analyses using thresholding and can estimate bugholes with accuracy almost equal to that of a detailed visual inspection. The results confirm that even small bugholes (<1 mm can be detected in color image analysis, whereas such bugholes are hardly detected in the detailed visual survey. In addition, color image analysis improves the calculations of the area of multiple bugholes distributed randomly over a concrete surface. Fundamental tests employing image analysis demonstrate that the prevalence of bugholes increases with an increase in the negative angle of the concrete form and a decrease in concrete workability. The system is applicable to the quantitative evaluation of a concrete surface having visible and invisible bugholes. Results indicate that the developed color image analysis can contribute to the reasonable and appropriate evaluation of bugholes and replace a detailed survey that requires much human resource and has a long inspection time. Keywords: Bughole, Image analysis, Surface quality, Tunnel lining concrete, Laboratory test, Inspection

  12. A semi-automatic method for extracting thin line structures in images as rooted tree network

    Brazzini, Jacopo [Los Alamos National Laboratory; Dillard, Scott [Los Alamos National Laboratory; Soille, Pierre [EC - JRC

    2010-01-01

    This paper addresses the problem of semi-automatic extraction of line networks in digital images - e.g., road or hydrographic networks in satellite images, blood vessels in medical images, robust. For that purpose, we improve a generic method derived from morphological and hydrological concepts and consisting in minimum cost path estimation and flow simulation. While this approach fully exploits the local contrast and shape of the network, as well as its arborescent nature, we further incorporate local directional information about the structures in the image. Namely, an appropriate anisotropic metric is designed by using both the characteristic features of the target network and the eigen-decomposition of the gradient structure tensor of the image. Following, the geodesic propagation from a given seed with this metric is combined with hydrological operators for overland flow simulation to extract the line network. The algorithm is demonstrated for the extraction of blood vessels in a retina image and of a river network in a satellite image.

  13. Experimental study of a DMD based compressive line sensing imaging system in the turbulence environment

    Ouyang, Bing; Hou, Weilin; Gong, Cuiling; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.

    2016-05-01

    The Compressive Line Sensing (CLS) active imaging system has been demonstrated to be effective in scattering mediums, such as turbid coastal water through simulations and test tank experiments. Since turbulence is encountered in many atmospheric and underwater surveillance applications, a new CLS imaging prototype was developed to investigate the effectiveness of the CLS concept in a turbulence environment. Compared with earlier optical bench top prototype, the new system is significantly more robust and compact. A series of experiments were conducted at the Naval Research Lab's optical turbulence test facility with the imaging path subjected to various turbulence intensities. In addition to validating the system design, we obtained some unexpected exciting results - in the strong turbulence environment, the time-averaged measurements using the new CLS imaging prototype improved both SNR and resolution of the reconstructed images. We will discuss the implications of the new findings, the challenges of acquiring data through strong turbulence environment, and future enhancements.

  14. Vessel Segmentation in Retinal Images Using Multi-scale Line Operator and K-Means Clustering.

    Saffarzadeh, Vahid Mohammadi; Osareh, Alireza; Shadgar, Bita

    2014-04-01

    Detecting blood vessels is a vital task in retinal image analysis. The task is more challenging with the presence of bright and dark lesions in retinal images. Here, a method is proposed to detect vessels in both normal and abnormal retinal fundus images based on their linear features. First, the negative impact of bright lesions is reduced by using K-means segmentation in a perceptive space. Then, a multi-scale line operator is utilized to detect vessels while ignoring some of the dark lesions, which have intensity structures different from the line-shaped vessels in the retina. The proposed algorithm is tested on two publicly available STARE and DRIVE databases. The performance of the method is measured by calculating the area under the receiver operating characteristic curve and the segmentation accuracy. The proposed method achieves 0.9483 and 0.9387 localization accuracy against STARE and DRIVE respectively.

  15. Digital twin image elimination in soft x-ray in-line holography

    Koren, G.; Joyeux, D.

    1993-01-01

    In-line holography is attractive for X-ray microscopy due to its recording simplicity. A drawback of this method is the superposition of the virtual and real images, in which structures and details can be modified or lost. This superposition effectively limits the application of in-line holography to X-ray microscopy. The authors present an iterative constrained algorithm for twin image elimination from Gabor holograms of finite support objects. It is based in the different spatial extent of both images, together with a finite support constraint. The conditions under which the algorithm is applicable will be presented, together with an alternative Monte Carlo method for holograms of complex objects recorded in the shadow region

  16. Expression image data of Drosophila GAL4 enhancer trap lines - GETDB | LSDB Archive [Life Science Database Archive metadata

    Full Text Available List Contact us GETDB Expression image data of Drosophila GAL4 enhancer trap lines Data detail Data name Exp...ta contents 3,075 expression image data by developmental stages of Drosophila Images are classified into the...escription Download License Update History of This Database Site Policy | Contact Us Expression image data of Drosophila GAL4 enhancer trap lines - GETDB | LSDB Archive ... ...ression image data of Drosophila GAL4 enhancer trap lines DOI 10.18908/lsdba.nbdc00236-004 Description of da

  17. Imaging of the CO snow line in a solar nebula analog.

    Qi, Chunhua; Öberg, Karin I; Wilner, David J; D'Alessio, Paola; Bergin, Edwin; Andrews, Sean M; Blake, Geoffrey A; Hogerheijde, Michiel R; van Dishoeck, Ewine F

    2013-08-09

    Planets form in the disks around young stars. Their formation efficiency and composition are intimately linked to the protoplanetary disk locations of "snow lines" of abundant volatiles. We present chemical imaging of the carbon monoxide (CO) snow line in the disk around TW Hya, an analog of the solar nebula, using high spatial and spectral resolution Atacama Large Millimeter/Submillimeter Array observations of diazenylium (N2H(+)), a reactive ion present in large abundance only where CO is frozen out. The N2H(+) emission is distributed in a large ring, with an inner radius that matches CO snow line model predictions. The extracted CO snow line radius of ~30 astronomical units helps to assess models of the formation dynamics of the solar system, when combined with measurements of the bulk composition of planets and comets.

  18. An analysis of line-drawings based upon automatically inferred grammar and its application to chest x-ray images

    Nakayama, Akira; Yoshida, Yuuji; Fukumura, Teruo

    1984-01-01

    There is a technique using inferring grammer as image- structure analyzing technique. This technique involves a few problems if it is applied to naturally obtained images, as the practical grammatical technique for two-dimensional image is not established. The authors developed a technique which solved the above problems for the main purpose of the automated structure analysis of naturally obtained image. The first half of this paper describes on the automatic inference of line drawing generation grammar and the line drawing analysis based on that automatic inference. The second half of the paper reports on the actual analysis. The proposed technique is that to extract object line drawings out of the line drawings containing noise. The technique was evaluated for its effectiveness with an example of extracting rib center lines out of thin line chest X-ray images having practical scale and complexity. In this example, the total number of characteristic points (ends, branch points and intersections) composing line drawings per one image was 377, and the total number of line segments composing line drawings was 566 on average per sheet. The extraction ratio was 86.6 % which seemed to be proper when the complexity of input line drawings was considered. Further, the result was compared with the identified rib center lines with the automatic screening system AISCR-V3 for comparison with the conventional processing technique, and it was satisfactory when the versatility of this method was considered. (Wakatsuki, Y.)

  19. ALMA MULTI-LINE IMAGING OF THE NEARBY STARBURST NGC 253

    Meier, David S. [New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 (United States); Walter, Fabian; Zschaechner, Laura K. [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Bolatto, Alberto D.; Veilleux, Sylvain; Warren, Steven R. [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States); Leroy, Adam K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Ott, Jürgen [National Radio Astronomy Observatory, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Rosolowsky, Erik [Department of Physics, University of Alberta, Edmonton, AB T6G 2E1 (Canada); Weiß, Axel [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Zwaan, Martin A., E-mail: dmeier@nmt.edu [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany)

    2015-03-01

    We present spatially resolved (∼50 pc) imaging of molecular gas species in the central kiloparsec of the nearby starburst galaxy NGC 253, based on observations taken with the Atacama Large Millimeter/submillimeter Array. A total of 50 molecular lines are detected over a 13 GHz bandwidth imaged in the 3 mm band. Unambiguous identifications are assigned for 27 lines. Based on the measured high CO/C{sup 17}O isotopic line ratio (≳350), we show that {sup 12}CO(1-0) has moderate optical depths. A comparison of the HCN and HCO{sup +} with their {sup 13}C-substituted isotopologues shows that the HCN(1-0) and HCO{sup +}(1-0) lines have optical depths at least comparable to CO(1-0). H{sup 13}CN/H{sup 13}CO{sup +} (and H{sup 13}CN/HN{sup 13}C) line ratios provide tighter constraints on dense gas properties in this starburst. SiO has elevated abundances across the nucleus. HNCO has the most distinctive morphology of all the bright lines, with its global luminosity dominated by the outer parts of the central region. The dramatic variation seen in the HNCO/SiO line ratio suggests that some of the chemical signatures of shocked gas are being erased in the presence of dominating central radiation fields (traced by C{sub 2}H and CN). High density molecular gas tracers (including HCN, HCO{sup +}, and CN) are detected at the base of the molecular outflow. We also detect hydrogen β recombination lines that, like their α counterparts, show compact, centrally peaked morphologies, distinct from the molecular gas tracers. A number of sulfur based species are mapped (CS, SO, NS, C{sub 2}S, H{sub 2}CS, and CH{sub 3}SH) and have morphologies similar to SiO.

  20. Hybrid phase retrieval algorithm for solving the twin image problem in in-line digital holography

    Zhao, Jie; Wang, Dayong; Zhang, Fucai; Wang, Yunxin

    2010-10-01

    For the reconstruction in the in-line digital holography, there are three terms overlapping with each other on the image plane, named the zero order term, the real image and the twin image respectively. The unwanted twin image degrades the real image seriously. A hybrid phase retrieval algorithm is presented to address this problem, which combines the advantages of two popular phase retrieval algorithms. One is the improved version of the universal iterative algorithm (UIA), called the phase flipping-based UIA (PFB-UIA). The key point of this algorithm is to flip the phase of the object iteratively. It is proved that the PFB-UIA is able to find the support of the complicated object. Another one is the Fienup algorithm, which is a kind of well-developed algorithm and uses the support of the object as the constraint among the iteration procedure. Thus, by following the Fienup algorithm immediately after the PFB-UIA, it is possible to produce the amplitude and the phase distributions of the object with high fidelity. The primary simulated results showed that the proposed algorithm is powerful for solving the twin image problem in the in-line digital holography.

  1. Indirect imaging of cardiac-specific transgene expression using a bidirectional two-step transcriptional amplification strategy

    Chen, I Y; Gheysens, O; Ray, S

    2010-01-01

    in a cardiac cell line and the myocardium, while minimizing expression in non-cardiac cell lines and the liver. In vitro, the TSTA system significantly enhanced cTnT-mediated reporter gene expression with moderate preservation of cardiac specificity. After intramyocardial and hydrodynamic tail vein delivery...... genes, firefly luciferase (fluc) and Renilla luciferase (hrluc), driven by the cardiac troponin T (cTnT) promoter. The vector was characterized in vitro and in living mice using luminometry and bioluminescence imaging to assess its ability to mediate strong, correlated reporter gene expression...

  2. Introducing an on-line adaptive procedure for prostate image guided intensity modulate proton therapy.

    Zhang, M; Westerly, D C; Mackie, T R

    2011-08-07

    With on-line image guidance (IG), prostate shifts relative to the bony anatomy can be corrected by realigning the patient with respect to the treatment fields. In image guided intensity modulated proton therapy (IG-IMPT), because the proton range is more sensitive to the material it travels through, the realignment may introduce large dose variations. This effect is studied in this work and an on-line adaptive procedure is proposed to restore the planned dose to the target. A 2D anthropomorphic phantom was constructed from a real prostate patient's CT image. Two-field laterally opposing spot 3D-modulation and 24-field full arc distal edge tracking (DET) plans were generated with a prescription of 70 Gy to the planning target volume. For the simulated delivery, we considered two types of procedures: the non-adaptive procedure and the on-line adaptive procedure. In the non-adaptive procedure, only patient realignment to match the prostate location in the planning CT was performed. In the on-line adaptive procedure, on top of the patient realignment, the kinetic energy for each individual proton pencil beam was re-determined from the on-line CT image acquired after the realignment and subsequently used for delivery. Dose distributions were re-calculated for individual fractions for different plans and different delivery procedures. The results show, without adaptive, that both the 3D-modulation and the DET plans experienced delivered dose degradation by having large cold or hot spots in the prostate. The DET plan had worse dose degradation than the 3D-modulation plan. The adaptive procedure effectively restored the planned dose distribution in the DET plan, with delivered prostate D(98%), D(50%) and D(2%) values less than 1% from the prescription. In the 3D-modulation plan, in certain cases the adaptive procedure was not effective to reduce the delivered dose degradation and yield similar results as the non-adaptive procedure. In conclusion, based on this 2D phantom

  3. Patient-specific quantification of image quality: An automated method for measuring spatial resolution in clinical CT images

    Sanders, Jeremiah, E-mail: jeremiah.sanders@duke.edu [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Clinical Imaging Physics Group, Duke University, Durham, North Carolina 27710 (United States); Hurwitz, Lynne [Department of Radiology, Duke University, Durham, North Carolina 27710 (United States); Samei, Ehsan [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Clinical Imaging Physics Group, Duke University, Durham, North Carolina 27710 and Departments of Physics, Biomedical Engineering, Electrical and Computer Engineering, Duke University, Durham, North Carolina 27710 (United States)

    2016-10-15

    Purpose: To develop and validate an automated technique for evaluating the spatial resolution characteristics of clinical computed tomography (CT) images. Methods: Twenty one chest and abdominopelvic clinical CT datasets were examined in this study. An algorithm was developed to extract a CT resolution index (RI) analogous to the modulation transfer function from clinical CT images by measuring the edge-spread function (ESF) across the patient’s skin. A polygon mesh of the air-skin boundary was created. The faces of the mesh were then used to measure the ESF across the air-skin interface. The ESF was differentiated to obtain the line-spread function (LSF), and the LSF was Fourier transformed to obtain the RI. The algorithm’s ability to detect the radial dependence of the RI was investigated. RIs measured with the proposed method were compared with a conventional phantom-based method across two reconstruction algorithms (FBP and iterative) using the spatial frequency at 50% RI, f{sub 50}, as the metric for comparison. Three reconstruction kernels were investigated for each reconstruction algorithm. Finally, an observer study was conducted to determine if observers could visually perceive the differences in the measured blurriness of images reconstructed with a given reconstruction method. Results: RI measurements performed with the proposed technique exhibited the expected dependencies on the image reconstruction. The measured f{sub 50} values increased with harder kernels for both FBP and iterative reconstruction. Furthermore, the proposed algorithm was able to detect the radial dependence of the RI. Patient-specific measurements of the RI were comparable to the phantom-based technique, but the patient data exhibited a large spread in the measured f{sub 50}, indicating that some datasets were blurrier than others even when the projection data were reconstructed with the same reconstruction algorithm and kernel. Results from the observer study substantiated this

  4. Reference line-pair values of panoramic radiographs using an arch-form phantom stand to assess clinical image quality

    Choi, Da Hye; Choi, Bo Ram; Huh, Kyung Hoe; Heo, Min Suk; Choi, Soon Chul; Choi, Jin Woo; Yi, Won Jin; Lee, Sam Sun

    2013-01-01

    This study was performed to suggest reference line-pair values of panoramic images with clinically desirable qualities using an arch-form phantom stand. The line-pair test phantom was chosen. A real skull model was selected for setting the arch-form model of the phantom stand. The phantom stand had slits in four regions (incisor, premolar, molar, TMJ). Four raw images of the test phantom in each region and one raw image of the real skull were converted into 50 test phantom images and 50 skull phantom images with various line-pair values. 50 post-processed real skull phantom images were divided into 4 groups and were randomly submitted to 14 evaluators. Image quality was graded on a 4 point scale (1. good, 2. normal, 3. poor but interpretable, and 4. not interpretable). The reference line pair was determined as the first line-pair value scored less than 2 points. The mean scores tended to decrease as the line-pair values increased. The reference line-pair values were 3.19 LP/mm in the incisor, 2.32 LP/mm in the premolar and TMJ, and 1.88 LP/mm in the molar region. Image quality evaluation methods and criteria should be able to assess various regions considering the characteristics of panoramic systems. This study suggested overall and regional reference line-pair values and established a set of standard values for them.

  5. Reference line-pair values of panoramic radiographs using an arch-form phantom stand to assess clinical image quality

    Choi, Da Hye; Choi, Bo Ram; Huh, Kyung Hoe; Heo, Min Suk; Choi, Soon Chul [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Choi, Jin Woo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Dankook University, Cheonan (Korea, Republic of); Yi, Won Jin; Lee, Sam Sun [Dept. of Oral and Maxillofacial Radiology, BK21 Craniomaxillofacial Life Science, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2013-03-15

    This study was performed to suggest reference line-pair values of panoramic images with clinically desirable qualities using an arch-form phantom stand. The line-pair test phantom was chosen. A real skull model was selected for setting the arch-form model of the phantom stand. The phantom stand had slits in four regions (incisor, premolar, molar, TMJ). Four raw images of the test phantom in each region and one raw image of the real skull were converted into 50 test phantom images and 50 skull phantom images with various line-pair values. 50 post-processed real skull phantom images were divided into 4 groups and were randomly submitted to 14 evaluators. Image quality was graded on a 4 point scale (1. good, 2. normal, 3. poor but interpretable, and 4. not interpretable). The reference line pair was determined as the first line-pair value scored less than 2 points. The mean scores tended to decrease as the line-pair values increased. The reference line-pair values were 3.19 LP/mm in the incisor, 2.32 LP/mm in the premolar and TMJ, and 1.88 LP/mm in the molar region. Image quality evaluation methods and criteria should be able to assess various regions considering the characteristics of panoramic systems. This study suggested overall and regional reference line-pair values and established a set of standard values for them.

  6. The effect of sidewall roughness on line edge roughness in top-down scanning electron microscopy images

    Verduin, T.; Lokhorst, S. R.; Kruit, P.; Hagen, C. W.

    2015-03-01

    We have investigated in a numerical study the determination of sidewall roughness (SWR) from top down scanning electron microscopy (SEM) images. In a typical metrology application, top-down SEM images are acquired in a (critical-dimension) SEM and the roughness is analyzed. However, the true size, shape and roughness characteristics of resist features are not fully investigated in the analysis of top-down SEM images. In reality, rough resist features are complex three-dimensional structures and the characterization naturally extends to the analysis of SWR. In this study we randomly generate images of rough lines and spaces, where the lines are made of PMMA on a silicon substrate. The lines that we study have a length of 2 µm, a width of 32nm and a height of 32 nm. The SWR is modeled by using the power spectral density (PSD) function of Palasantzas, which characterizes roughness by the standard deviation σ, correlation length ξ and roughness exponent α . The actual roughness is generated by application of the method of Thorsos in two dimensions. The images are constructed by using a home-built program for simulating electron-specimen interactions. The program that we have developed is optimized for complex arbitrary geometries and large number of incident low energy primary electrons by using multi-core CPUs and GPUs. The program uses the dielectric function model for inelastic scattering events and has an implementation specifically for low energy electrons. A satisfactory comparison is made between the secondary electron yields from the home-built program and another program found in literature. In order to reduce the risk of shrinkage, we use a beam energy of 300 eV and a spot size of 3 nm. Each pixel is exposed with 20 electrons on average (≍ 276 µC/cm2), following the Poisson distribution to account for illumination shot noise. We have assumed that the detection of electrons is perfect and does not introduce additional noise. We measure line edge

  7. Specificity of the tomography implementation in electric arc domain - Validity in medical imaging

    Benech, Julie

    2008-01-01

    The aim of these works was to implement a new experimental method to characterize 3D thermal plasmas by emission spectroscopy. The method used is based on tomographic technique which is widely used in medical imaging nowadays. However, tomography that we have developed and applied to electric arc is specific as the number of accessible projections angles is strongly limited: 4 projections our case against basically 64 in medical imaging. The particularity of our experimental tomographic system is that measurements are resolved both spectrally and spatially. The spectral resolution is necessary to determine the temperature values from method based on atomic line intensity. The spatial resolution is needed to simultaneously acquire the whole width of the plasma and so to reconstruct a whole cross-section in only one acquisition. One of the principal objective was to realize the experimental system of four-view tomography for thermal plasmas. Thanks to this device, we showed that the characterization of non-axisymmetric plasma is possible and that it enables to reconstruct 3D temperature maps. Finally, our tomographic method is applied with medical imaging data acquired in SPECT (Single Photon Emission Computed Tomography). These tests allowed validating the use of our tomographic reconstruction technique in SPECT, particularly the used iterative algebraic algorithm and the limited-view configuration. (author) [fr

  8. Microscope self-calibration based on micro laser line imaging and soft computing algorithms

    Apolinar Muñoz Rodríguez, J.

    2018-06-01

    A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.

  9. Optimization of X-ray phase-contrast imaging based on in-line holography

    Wu Xizeng; Liu Hong; Yan Aimin

    2005-01-01

    This paper introduces a newly conceived formalism for clinical in-line phase-contrast X-ray imaging. The new formalism applies not only to ideal 'thin' objects analyzed in previous studies, but also applies to the real-world tissues used in actual clinical practice. Moreover we have identified the four clinically important factors that affect phase-contrast characteristics. These factors are: (1) body part attenuation (2) the spatial coherence of incident X-rays from an X-ray tube (3) the polychromatic nature of the X-ray source and (4) radiation dose to patients for clinical applications. Techniques of phase image-reconstruction based on the new X-ray in-line holography theory are discussed. Numerical simulations are described which were used to validate the theory. The design parameters of an optimal clinical phase-contrast mammographic imaging system which were determined based on the new theory, and validated in the simulations, are presented. The theory, image reconstruction algorithms, and numerical simulation techniques presented in this paper can be applied widely to clinical diagnostic X-ray imaging applications

  10. Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2006-04-04

    Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.

  11. FogBank: a single cell segmentation across multiple cell lines and image modalities.

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary

    2014-12-30

    Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies. We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation. First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce. We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images. FogBank produces single cell segmentation from confluent cell

  12. Development of a portable computed tomographic scanner for on-line imaging of industrial piping systems

    Jaafar Abdullah; Mohd Arif Hamzah; Mohd Soyapi Mohd Yusof; Mohd Fitri Abdul Rahman; Fadil IsmaiI; Rasif Mohd Zain

    2003-01-01

    Computed tomography (CT) technology is being increasingly developed for industrial application. This paper presents the development of a portable computed tomographic scanner for on?line imaging of industrial piping systems. The theoretical approach, the system hardware, the data acquisition system and the adopted algorithm for image reconstruction are discussed. The scanner has large potential to be used to determine the extent of corrosion under insulation (CUI), to detect blockages, to measure the thickness of deposit/materials built-up on the walls and to improve understanding of material flow in pipelines. (Author)

  13. Assessing mesoscale material response under shock & isentropic compression via high-resolution line-imaging VISAR.

    Hall, Clint Allen; Furnish, Michael David; Podsednik, Jason W.; Reinhart, William Dodd; Trott, Wayne Merle; Mason, Joshua

    2003-10-01

    Of special promise for providing dynamic mesoscale response data is the line-imaging VISAR, an instrument for providing spatially resolved velocity histories in dynamic experiments. We have prepared two line-imaging VISAR systems capable of spatial resolution in the 10-20 micron range, at the Z and STAR facilities. We have applied this instrument to selected experiments on a compressed gas gun, chosen to provide initial data for several problems of interest, including: (1) pore-collapse in copper (two variations: 70 micron diameter hole in single-crystal copper) and (2) response of a welded joint in dissimilar materials (Ta, Nb) to ramp loading relative to that of a compression joint. The instrument is capable of resolving details such as the volume and collapse history of a collapsing isolated pore.

  14. Expansion of Smartwatch Touch Interface from Touchscreen to Around Device Interface Using Infrared Line Image Sensors

    Lim, Soo-Chul; Shin, Jungsoon; Kim, Seung-Chan; Park, Joonah

    2015-01-01

    Touchscreen interaction has become a fundamental means of controlling mobile phones and smartwatches. However, the small form factor of a smartwatch limits the available interactive surface area. To overcome this limitation, we propose the expansion of the touch region of the screen to the back of the user’s hand. We developed a touch module for sensing the touched finger position on the back of the hand using infrared (IR) line image sensors, based on the calibrated IR intensity and the maxi...

  15. A technique for transferring a patient's smile line to a cone beam computed tomography (CBCT) image.

    Bidra, Avinash S

    2014-08-01

    Fixed implant-supported prosthodontic treatment for patients requiring a gingival prosthesis often demands that bone and implant levels be apical to the patient's maximum smile line. This is to avoid the display of the prosthesis-tissue junction (the junction between the gingival prosthesis and natural soft tissues) and prevent esthetic failures. Recording a patient's lip position during maximum smile is invaluable for the treatment planning process. This article presents a simple technique for clinically recording and transferring the patient's maximum smile line to cone beam computed tomography (CBCT) images for analysis. The technique can help clinicians accurately determine the need for and amount of bone reduction required with respect to the maximum smile line and place implants in optimal positions. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Spectral survey of helium lines in a linear plasma device for use in HELIOS imaging

    Ray, H. B.; Biewer, T. M.; Fehling, D. T.; Isler, R. C.; Unterberg, E. A.

    2016-11-01

    Fast visible cameras and a filterscope are used to examine the visible light emission from Oak Ridge National Laboratory's Proto-MPEX. The filterscope has been configured to perform helium line ratio measurements using emission lines at 667.9, 728.1, and 706.5 nm. The measured lines should be mathematically inverted and the ratios compared to a collisional radiative model (CRM) to determine Te and ne. Increasing the number of measurement chords through the plasma improves the inversion calculation and subsequent Te and ne localization. For the filterscope, one spatial chord measurement requires three photomultiplier tubes (PMTs) connected to pellicle beam splitters. Multiple, fast visible cameras with narrowband filters are an alternate technique for performing these measurements with superior spatial resolution. Each camera contains millions of pixels; each pixel is analogous to one filterscope PMT. The data can then be inverted and the ratios compared to the CRM to determine 2-dimensional "images" of Te and ne in the plasma. An assessment is made in this paper of the candidate He I emission lines for an imaging technique.

  17. Aerial image geolocalization by matching its line structure with route map

    Kunina, I. A.; Terekhin, A. P.; Khanipov, T. M.; Kuznetsova, E. G.; Nikolaev, D. P.

    2017-03-01

    The classic way of aerial photographs geolocation is to bind their local coordinates to a geographic coordinate system using GPS and IMU data. At the same time the possibility of geolocation in a jammed navigation field is also of interest for practical purposes. In this paper we consider one approach to visual localization relatively to a vector road map without GPS. We suggest a geolocalization algorithm which detects image line segments and looks for a geometrical transformation which provides the best mapping between the obtained segments set and line segments in the road map. We consider IMU and altimeter data still known which allows to work with orthorectified images. The problem is hence reduced to a search for a transformation which contains an arbitrary shift and bounded rotation and scaling relatively to the vector map. These parameters are estimated using RANSAC by matching straight line segments from the image to vector map segments. We also investigate how the proposed algorithm's stability is influenced by segment coordinates (two spatial and one angular).

  18. Specifications Used for ASA24® Digital Images

    The Children's Nutrition Research Center's (CNRC) at the Baylor College of Medicine developed a food photography system to photograph precise portion sizes of a large number of food items to create quality standardized images used for dietary recall protocols.

  19. Optimization of Proton CT Detector System and Image Reconstruction Algorithm for On-Line Proton Therapy.

    Chae Young Lee

    Full Text Available The purposes of this study were to optimize a proton computed tomography system (pCT for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors for pCT. The system consisted of four silicon strip detectors for particle tracking and a calorimeter to measure the residual energies of the individual protons. The optimized pCT system design was then adjusted to ensure that the solution to a CS-based convex optimization problem would converge to yield the desired pCT images after a reasonable number of iterative corrections. In particular, we used a total variation-based formulation that has been useful in exploiting prior knowledge about the minimal variations of proton attenuation characteristics in the human body. Examinations performed using our CS algorithm showed that high-quality pCT images could be reconstructed using sets of 72 projections within 20 iterations and without any streaks or noise, which can be caused by under-sampling and proton starvation. Moreover, the images yielded by this CS algorithm were found to be of higher quality than those obtained using other reconstruction algorithms. The optimized pCT scanner system demonstrated the potential to perform high-quality pCT during on-line image-guided proton therapy, without increasing the imaging dose, by applying our CS based proton CT reconstruction algorithm. Further, we make our optimized detector system and CS-based proton CT reconstruction algorithm potentially useful in on-line proton therapy.

  20. ON-Line Monitoring of Instrument Channel Performance: Volume 3: Applications to Nuclear Power Plant Technical Specification Instrumentation

    E Davis, B Rasmussen

    2004-12-31

    This report is a guide for a technical specification change submittal and subsequent implementation of on-line monitoring for safety-related applications. This report is the third in a three-volume set. Volume 1, ''Guidelines for Model Development and Implementation'', presents the various tasks that must be completed to prepare models for and to implement an on-line monitoring system.

  1. Determination of line edge roughness in low dose top-down scanning electron microscopy images

    Verduin, T.; Kruit, P.; Hagen, C. W.

    2014-04-01

    We investigated off-line metrology for LER determination in low-dose SEM images to reduce the acquisition time and the risk of shrinkage. Our first attempts are based on filtering noisy (experimental) SEM images and use peak detection to measure the edge displacements and calculating the discrete PSD. However, the result of the filtering is that the power spectrum of the filter leaks into the PSD. So it is better to avoid a filter at all. We subsequently developed a method to detect edge displacements without the use of a filter. This method considers the signal profile of a SEM by integrating an experimental image of lines in the direction of the edges. The signal profile of an isolated edge is modeled as two merged Gaussians. This signal profile is then fitted against the raw (unfiltered) data of the edge pattern using an interior trust-region-reflective minimization procedure. This gives the edge displacements without the use of a filter and a filter-free version of the discrete PSD is obtained. The determination of edge displacements without the use of a filter, enables us to study how much noise is acceptable and still determine LER. To answer this question we generate random lines using the model of Palasantzas and the algorithm of Thorsos. This gives random generated edge displacements for typical values of experimental lines for the parameters of the model: 2 μm long lines (256 pixels), a correlation length ξ of 25 nm and a roughness exponent of 0.75. A noise-free top-down SEM-like image of lines is created by shifting the profile signal according to the random generated edge displacements. The image is further processed by adding Poisson-distributed noise. We consider three noise cases where the average electron density is about 2, 20 and 200 electrons per pixel. This corresponds to a charge density of (in respective order) 10 μC/cm2, 100 μC/cm2 and 1000 μC/cm2. The edge displacements of the random generated images are determined using our new

  2. Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs

    Sensakovic, William F.; O'Dell, M.C.; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura

    2016-01-01

    Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA"2 by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image processing

  3. Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs

    Sensakovic, William F.; O' Dell, M.C.; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura [Florida Hospital, Imaging Administration, Orlando, FL (United States)

    2016-10-15

    Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA{sup 2} by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image

  4. Automatic localization of the prostate for on-line or off-line image-guided radiotherapy

    Smitsmans, Monique H.P.; Wolthaus, Jochem W.H.; Artignan, Xavier; Bois, Josien de; Jaffray, David A.; Lebesque, Joos V.; Herk, Marcel van

    2004-01-01

    Purpose: With higher radiation dose, higher cure rates have been reported in prostate cancer patients. The extra margin needed to account for prostate motion, however, limits the level of dose escalation, because of the presence of surrounding organs at risk. Knowledge of the precise position of the prostate would allow significant reduction of the treatment field. Better localization of the prostate at the time of treatment is therefore needed, e.g. using a cone-beam computed tomography (CT) system integrated with the linear accelerator. Localization of the prostate relies upon manual delineation of contours in successive axial CT slices or interactive alignment and is fairly time-consuming. A faster method is required for on-line or off-line image-guided radiotherapy, because of prostate motion, for patient throughput and efficiency. Therefore, we developed an automatic method to localize the prostate, based on 3D gray value registration. Methods and materials: A study was performed on conventional repeat CT scans of 19 prostate cancer patients to develop the methodology to localize the prostate. For each patient, 8-13 repeat CT scans were made during the course of treatment. First, the planning CT scan and the repeat CT scan were registered onto the rigid bony structures. Then, the delineated prostate in the planning CT scan was enlarged by an optimum margin of 5 mm to define a region of interest in the planning CT scan that contained enough gray value information for registration. Subsequently, this region was automatically registered to a repeat CT scan using 3D gray value registration to localize the prostate. The performance of automatic prostate localization was compared to prostate localization using contours. Therefore, a reference set was generated by registering the delineated contours of the prostates in all scans of all patients. Gray value registrations that showed large differences with respect to contour registrations were detected with a χ 2

  5. 2-DE analysis of breast cancer cell lines 1833 and 4175 with distinct metastatic organ-specific potentials: Comparison with parental cell line MDA-MB-231

    Selicharová, Irena; Šanda, Miloslav; Mládková, Jana; Ohri, S. S.; Vashishta, A.; Fusek, M.; Jiráček, Jiří; Vetvicka, V.

    2008-01-01

    Roč. 19, č. 5 (2008), s. 1237-1244 ISSN 1021-335X R&D Projects: GA MZd NR8323 Grant - others:NIH(US) ROI CAA082159-03 Institutional research plan: CEZ:AV0Z40550506 Keywords : breast cancer * cell line * 2-DE * organ-specific metastases Subject RIV: CE - Biochemistry Impact factor: 1.524, year: 2008

  6. Ground-Wave Propagation Effects on Transmission Lines through Error Images

    Uribe-Campos Felipe Alejandro

    2014-07-01

    Full Text Available Electromagnetic transient calculation of overhead transmission lines is strongly influenced by the natural resistivity of the ground. This varies from 1-10K (Ω·m depending on several media factors and on the physical composition of the ground. The accuracy on the calculation of a system transient response depends in part in the ground return model, which should consider the line geometry, the electrical resistivity and the frequency dependence of the power source. Up to date, there are only a few reports on the specialized literature about analyzing the effects produced by the presence of an imperfectly conducting ground of transmission lines in a transient state. A broad range analysis of three of the most often used ground-return models for calculating electromagnetic transients of overhead transmission lines is performed in this paper. The behavior of modal propagation in ground is analyzed here into effects of first and second order. Finally, a numerical tool based on relative error images is proposed in this paper as an aid for the analyst engineer to estimate the incurred error by using approximate ground-return models when calculating transients of overhead transmission lines.

  7. On-line, continuous monitoring in solar cell and fuel cell manufacturing using spectral reflectance imaging

    Sopori, Bhushan; Rupnowski, Przemyslaw; Ulsh, Michael

    2016-01-12

    A monitoring system 100 comprising a material transport system 104 providing for the transportation of a substantially planar material 102, 107 through the monitoring zone 103 of the monitoring system 100. The system 100 also includes a line camera 106 positioned to obtain multiple line images across a width of the material 102, 107 as it is transported through the monitoring zone 103. The system 100 further includes an illumination source 108 providing for the illumination of the material 102, 107 transported through the monitoring zone 103 such that light reflected in a direction normal to the substantially planar surface of the material 102, 107 is detected by the line camera 106. A data processing system 110 is also provided in digital communication with the line camera 106. The data processing system 110 is configured to receive data output from the line camera 106 and further configured to calculate and provide substantially contemporaneous information relating to a quality parameter of the material 102, 107. Also disclosed are methods of monitoring a quality parameter of a material.

  8. Establishing imaging sensor specifications for digital still cameras

    Kriss, Michael A.

    2007-02-01

    Digital Still Cameras, DSCs, have now displaced conventional still cameras in most markets. The heart of a DSC is thought to be the imaging sensor, be it Full Frame CCD, and Interline CCD, a CMOS sensor or the newer Foveon buried photodiode sensors. There is a strong tendency by consumers to consider only the number of mega-pixels in a camera and not to consider the overall performance of the imaging system, including sharpness, artifact control, noise, color reproduction, exposure latitude and dynamic range. This paper will provide a systematic method to characterize the physical requirements of an imaging sensor and supporting system components based on the desired usage. The analysis is based on two software programs that determine the "sharpness", potential for artifacts, sensor "photographic speed", dynamic range and exposure latitude based on the physical nature of the imaging optics, sensor characteristics (including size of pixels, sensor architecture, noise characteristics, surface states that cause dark current, quantum efficiency, effective MTF, and the intrinsic full well capacity in terms of electrons per square centimeter). Examples will be given for consumer, pro-consumer, and professional camera systems. Where possible, these results will be compared to imaging system currently on the market.

  9. Spatial Specificity in Spatiotemporal Encoding and Fourier Imaging

    Goerke, Ute

    2015-01-01

    Purpose Ultrafast imaging techniques based on spatiotemporal-encoding (SPEN), such as RASER (rapid acquisition with sequential excitation and refocusing), is a promising new class of sequences since they are largely insensitive to magnetic field variations which cause signal loss and geometric distortion in EPI. So far, attempts to theoretically describe the point-spread-function (PSF) for the original SPEN-imaging techniques have yielded limited success. To fill this gap a novel definition for an apparent PSF is proposed. Theory Spatial resolution in SPEN-imaging is determined by the spatial phase dispersion imprinted on the acquired signal by a frequency-swept excitation or refocusing pulse. The resulting signal attenuation increases with larger distance from the vertex of the quadratic phase profile. Methods Bloch simulations and experiments were performed to validate theoretical derivations. Results The apparent PSF quantifies the fractional contribution of magnetization to a voxel’s signal as a function of distance to the voxel. In contrast, the conventional PSF represents the signal intensity at various locations. Conclusion The definition of the conventional PSF fails for SPEN-imaging since only the phase of isochromats, but not the amplitude of the signal varies. The concept of the apparent PSF is shown to be generalizable to conventional Fourier- imaging techniques. PMID:26712657

  10. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography

    Weng, Jiawen; Clark, David C.; Kim, Myung K.

    2016-05-01

    A numerical reconstruction method based on compressive sensing (CS) for self-interference incoherent digital holography (SIDH) is proposed to achieve sectional imaging by single-shot in-line self-interference incoherent hologram. The sensing operator is built up based on the physical mechanism of SIDH according to CS theory, and a recovery algorithm is employed for image restoration. Numerical simulation and experimental studies employing LEDs as discrete point-sources and resolution targets as extended sources are performed to demonstrate the feasibility and validity of the method. The intensity distribution and the axial resolution along the propagation direction of SIDH by angular spectrum method (ASM) and by CS are discussed. The analysis result shows that compared to ASM the reconstruction by CS can improve the axial resolution of SIDH, and achieve sectional imaging. The proposed method may be useful to 3D analysis of dynamic systems.

  11. Microbubbles as contrast agent for in-line x-ray phase-contrast imaging

    Xi Yan; Zhao Jun; Tang Rongbiao; Wang Yujie

    2011-01-01

    In the present study, we investigated the potential of gas-filled microbubbles as contrast agents for in-line x-ray phase-contrast imaging (PCI) in biomedical applications. When imaging parameters are optimized, the microbubbles function as microlenses that focus the incoming x-rays to form bright spots, which can significantly enhance the image contrast. Since microbubbles have been shown to be safe contrast agents in clinical ultrasonography, this contrast-enhancement procedure for PCI may have promising utility in biomedical applications, especially when the dose of radiation is a serious concern. In this study, we performed both numerical simulations and ex vivo experiments to investigate the formation of the contrast and the effectiveness of microbubbles as contrast agents in PCI.

  12. On-line video image processing system for real-time neutron radiography

    Fujine, S; Yoneda, K; Kanda, K [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1983-09-15

    The neutron radiography system installed at the E-2 experimental hole of the KUR (Kyoto University Reactor) has been used for some NDT applications in the nuclear field. The on-line video image processing system of this facility is introduced in this paper. A 0.5 mm resolution in images was obtained by using a super high quality TV camera developed for X-radiography viewing a NE-426 neutron-sensitive scintillator. The image of the NE-426 on a CRT can be observed directly and visually, thus many test samples can be sequentially observed when necessary for industrial purposes. The video image signals from the TV camera are digitized, with a 33 ms delay, through a video A/D converter (ADC) and can be stored in the image buffer (32 KB DRAM) of a microcomputer (Z-80) system. The digitized pictures are taken with 16 levels of gray scale and resolved to 240 x 256 picture elements (pixels) on a monochrome CRT, with the capability also to display 16 distinct colors on a RGB video display. The direct image of this system could be satisfactory for penetrating the side plates to test MTR type reactor fuels and for the investigation of moving objects.

  13. Are patient specific meshes required for EIT head imaging?

    Jehl, Markus; Aristovich, Kirill; Faulkner, Mayo; Holder, David

    2016-06-01

    Head imaging with electrical impedance tomography (EIT) is usually done with time-differential measurements, to reduce time-invariant modelling errors. Previous research suggested that more accurate head models improved image quality, but no thorough analysis has been done on the required accuracy. We propose a novel pipeline for creation of precise head meshes from magnetic resonance imaging and computed tomography scans, which was applied to four different heads. Voltages were simulated on all four heads for perturbations of different magnitude, haemorrhage and ischaemia, in five different positions and for three levels of instrumentation noise. Statistical analysis showed that reconstructions on the correct mesh were on average 25% better than on the other meshes. However, the stroke detection rates were not improved. We conclude that a generic head mesh is sufficient for monitoring patients for secondary strokes following head trauma.

  14. Flux line lattice melting transition in YBa2Cu3O6.94 observed in specific heat experiments

    Roulin, M.; Junod, A.; Walker, E.

    1996-01-01

    When a magnetic field penetrates a type II superconductor, it forms a lattice of thin quantized filaments called magnetic vortices. Resistance, magnetization, and neutron diffraction experiments have shown that the vortex lattice of high-temperature superconductors can melt along a line in the field-temperature plane. The calorimetric signature of melting on this line was observed in a high-accuracy adiabatic specific heat experiment performed on YBa 2 Cu 3 O 6.94 . The specific heat of the vortex liquid was greater than that of the vortex solid. 17 refs., 3 figs

  15. Line x-ray source for diffraction enhanced imaging in clinical and industrial applications

    Wang, Xiaoqin

    Mammography is one type of imaging modalities that uses a low-dose x-ray or other radiation sources for examination of breasts. It plays a central role in early detection of breast cancers. The material similarity of tumor-cell and health cell, breast implants surgery and other factors, make the breast cancers hard to visualize and detect. Diffraction enhanced imaging (DEI), first proposed and investigated by D. Chapman is a new x-ray radiographic imaging modality using monochromatic x-rays from a synchrotron source, which produced images of thick absorbing objects that are almost completely free of scatter. It shows dramatically improved contrast over standard imaging when applied to the same phantom. The contrast is based not only on attenuation but also on the refraction and diffraction properties of the sample. This imaging method may improve image quality of mammography, other medical applications, industrial radiography for non-destructive testing and x-ray computed tomography. However, the size, and cost, of a synchrotron source limits the application of the new modality to be applicable at clinical levels. This research investigates the feasibility of a designed line x-ray source to produce intensity compatible to synchrotron sources. It is composed of a 2-cm in length tungsten filament, installed on a carbon steel filament cup (backing plate), as the cathode and a stationary oxygen-free copper anode with molybdenum coating on the front surface serves as the target. Characteristic properties of the line x-ray source were computationally studied and the prototype was experimentally investigated. SIMIION code was used to computationally study the electron trajectories emanating from the filament towards the molybdenum target. A Faraday cup on the prototype device, proof-of-principle, was used to measure the distribution of electrons on the target, which compares favorably to computational results. The intensities of characteristic x-ray for molybdenum

  16. Determining fast orientation changes of multi-spectral line cameras from the primary images

    Wohlfeil, Jürgen

    2012-01-01

    Fast orientation changes of airborne and spaceborne line cameras cannot always be avoided. In such cases it is essential to measure them with high accuracy to ensure a good quality of the resulting imagery products. Several approaches exist to support the orientation measurement by using optical information received through the main objective/telescope. In this article an approach is proposed that allows the determination of non-systematic orientation changes between every captured line. It does not require any additional camera hardware or onboard processing capabilities but the payload images and a rough estimate of the camera's trajectory. The approach takes advantage of the typical geometry of multi-spectral line cameras with a set of linear sensor arrays for different spectral bands on the focal plane. First, homologous points are detected within the heavily distorted images of different spectral bands. With their help a connected network of geometrical correspondences can be built up. This network is used to calculate the orientation changes of the camera with the temporal and angular resolution of the camera. The approach was tested with an extensive set of aerial surveys covering a wide range of different conditions and achieved precise and reliable results.

  17. Testing for myositis specific autoantibodies: Comparison between line blot and immunoprecipitation assays in 57 myositis sera.

    Cavazzana, Ilaria; Fredi, Micaela; Ceribelli, Angela; Mordenti, Cristina; Ferrari, Fabio; Carabellese, Nice; Tincani, Angela; Satoh, Minoru; Franceschini, Franco

    2016-06-01

    To analyze the performance of a line blot assay for the identification of autoantibodies in sera of patients affected by myositis, compared with immunoprecipitation (IP) as gold standard. 66 sera of patients with myositis (23 polymyositis, 8 anti-synthetase syndromes, 29 dermatomyositis and 6 overlap syndromes) were tested by commercial LB (Euroimmun, Lubeck, Germany); 57 sera were analyzed also by IP of K562 cell extract radiolabeled with (35)S-methionine. Inter-rater agreement was calculated with Cohen's k coefficient. Myositis-specific antibodies (MSA) were detected in 36/57 sera (63%) by IP and in 39/66 sera (59%) by LB. The most frequent MSA found by LB were anti-Jo1 and anti-Mi2 found in 15% (10/66) of sera, followed by anti-NXP2 and anti-SRP detected in 106% (7/66) of sera. Anti-TIF1gamma and anti-MDA5 were found in 6 (9%) and 5 sera (7.6%), respectively. A good agreement between methods was found only for anti-TIF1γ, anti-MDA5 and anti-NXP-2 antibodies, while a moderate agreement was estimated for anti-Mi2 and anti-EJ. By contrast, a high discordance rate for the detection of anti-Jo1 antibodies was evident (k: 0.3). Multiple positivity for MSA were found in 11/66 (17%) by LB and 0/57 by IP (p: 0001). Comparing the clinical features of these 11 sera, we found total discrepancies between assays in 3 sera (27.3%), a relative discrepancy due to the occurrence of one discordant autoantibody (not confirmed by IP) in 5 cases (45.5%) and a total discrepancy between LB and IP results, but with a relative concordance with clinical features were found in other 3 sera (27.3%). The semiquantitative results do not support the interpretation of the data. The use of LB assay allowed the detection of new MSA, such as anti-MDA5, anti-MJ and anti-TIF1gamma antibodies, previously not found with routine methods. However, the high prevalence of multiple positivities and the high discondant rate of anti-Jo1 antibodies could create some misinterpretation of the results from the

  18. Electronically rotated and translated field-free line generation for open bore magnetic particle imaging.

    Top, Can Barış; Ilbey, Serhat; Güven, Hüseyin Emre

    2017-12-01

    We propose a coil arrangement for open bore field-free line (FFL) magnetic particle imaging (MPI) system, which is suitable for accessing the subject from the sides. The purpose of this study is twofold, to show that the FFL can be rotated and translated electronically in a volume of interest with this arrangement and to analyze the current, voltage and power requirements for a 1 T/m gradient human sized scanner for a 200 mm diameter × 200 mm height cylindrical field of view (FOV). We used split coils side by side with alternating current directions to generate a field-free line. Employing two of these coil groups, one of which is rotated 90 degrees with respect to the other, a rotating FFL was generated. We conducted numerical simulations to show the feasibility of this arrangement for three-dimensional (3D) electronical scan of the FFL. Using simulations, we obtained images of a two-dimensional (2D) in silico dot phantom for a human size scanner with system matrix-based reconstruction. Simulations showed that the FFL can be generated and rotated in one plane and can be translated in two axes, allowing for 3D imaging of a large subject with the proposed arrangement. Human sized scanner required 63-215 kW power for the selection field coils to scan the focus inside the FOV. The proposed setup is suitable for FFL MPI imaging with an open bore configuration without the need for mechanical rotation, which is preferable for clinical usage in terms of imaging time and patient access. Further studies are necessary to determine the limitations imposed by peripheral nerve stimulation, and to optimize the system parameters and the sequence design. © 2017 American Association of Physicists in Medicine.

  19. In-line X-ray lensless imaging with lithium fluoride film detectors

    Bonfigli, F.; Cecilia, A.; Bateni, S. Heidari; Nichelatti, E.; Pelliccia, D.; Somma, F.; Vagovic, P.; Vincenti, M.A.; Baumbach, T.; Montereali, R.M.

    2013-01-01

    In this work, we present preliminary in-line X-ray lensless projection imaging results at a synchrotron facility by using novel solid-state detectors based on non-destructive readout of photoluminescent colour centres in lithium fluoride thin films. The peculiarities of LiF radiation detectors are high spatial resolution on a large field of view, wide dynamic range, versatility and simplicity of use. These properties offered the opportunity to test a broadband X-ray synchrotron source for lensless projection imaging experiments at the TopoTomo beamline of the ANKA synchrotron facility by using a white beam spectrum (3–40 keV). Edge-enhancement effects were observed for the first time on a test object; they are discussed and compared with simulations, on the basis of the colour centre photoluminescence linear response found in the investigated irradiation conditions. -- Highlights: ► We performed broadband X-ray imaging at synchrotron by novel LiF imaging detectors. ► X-ray phase contrast experiments on LiF crystals and thin films were performed. ► Photoluminescent high-quality X-images on a LiF film only 1 μm thick were obtained. ► Edge-enhancement effects were detected and compared with simulations. ► A linearity of colour centre fluorescence response of LiF film was found

  20. In-Line Sorting of Harumanis Mango Based on External Quality Using Visible Imaging

    Mohd Firdaus Ibrahim

    2016-10-01

    Full Text Available The conventional method of grading Harumanis mango is time-consuming, costly and affected by human bias. In this research, an in-line system was developed to classify Harumanis mango using computer vision. The system was able to identify the irregularity of mango shape and its estimated mass. A group of images of mangoes of different size and shape was used as database set. Some important features such as length, height, centroid and parameter were extracted from each image. Fourier descriptor and size-shape parameters were used to describe the mango shape while the disk method was used to estimate the mass of the mango. Four features have been selected by stepwise discriminant analysis which was effective in sorting regular and misshapen mango. The volume from water displacement method was compared with the volume estimated by image processing using paired t-test and Bland-Altman method. The result between both measurements was not significantly different (P > 0.05. The average correct classification for shape classification was 98% for a training set composed of 180 mangoes. The data was validated with another testing set consist of 140 mangoes which have the success rate of 92%. The same set was used for evaluating the performance of mass estimation. The average success rate of the classification for grading based on its mass was 94%. The results indicate that the in-line sorting system using machine vision has a great potential in automatic fruit sorting according to its shape and mass.

  1. In-Line Sorting of Harumanis Mango Based on External Quality Using Visible Imaging.

    Ibrahim, Mohd Firdaus; Ahmad Sa'ad, Fathinul Syahir; Zakaria, Ammar; Md Shakaff, Ali Yeon

    2016-10-27

    The conventional method of grading Harumanis mango is time-consuming, costly and affected by human bias. In this research, an in-line system was developed to classify Harumanis mango using computer vision. The system was able to identify the irregularity of mango shape and its estimated mass. A group of images of mangoes of different size and shape was used as database set. Some important features such as length, height, centroid and parameter were extracted from each image. Fourier descriptor and size-shape parameters were used to describe the mango shape while the disk method was used to estimate the mass of the mango. Four features have been selected by stepwise discriminant analysis which was effective in sorting regular and misshapen mango. The volume from water displacement method was compared with the volume estimated by image processing using paired t -test and Bland-Altman method. The result between both measurements was not significantly different (P > 0.05). The average correct classification for shape classification was 98% for a training set composed of 180 mangoes. The data was validated with another testing set consist of 140 mangoes which have the success rate of 92%. The same set was used for evaluating the performance of mass estimation. The average success rate of the classification for grading based on its mass was 94%. The results indicate that the in-line sorting system using machine vision has a great potential in automatic fruit sorting according to its shape and mass.

  2. In-Line Sorting of Harumanis Mango Based on External Quality Using Visible Imaging

    Ibrahim, Mohd Firdaus; Ahmad Sa’ad, Fathinul Syahir; Zakaria, Ammar; Md Shakaff, Ali Yeon

    2016-01-01

    The conventional method of grading Harumanis mango is time-consuming, costly and affected by human bias. In this research, an in-line system was developed to classify Harumanis mango using computer vision. The system was able to identify the irregularity of mango shape and its estimated mass. A group of images of mangoes of different size and shape was used as database set. Some important features such as length, height, centroid and parameter were extracted from each image. Fourier descriptor and size-shape parameters were used to describe the mango shape while the disk method was used to estimate the mass of the mango. Four features have been selected by stepwise discriminant analysis which was effective in sorting regular and misshapen mango. The volume from water displacement method was compared with the volume estimated by image processing using paired t-test and Bland-Altman method. The result between both measurements was not significantly different (P > 0.05). The average correct classification for shape classification was 98% for a training set composed of 180 mangoes. The data was validated with another testing set consist of 140 mangoes which have the success rate of 92%. The same set was used for evaluating the performance of mass estimation. The average success rate of the classification for grading based on its mass was 94%. The results indicate that the in-line sorting system using machine vision has a great potential in automatic fruit sorting according to its shape and mass. PMID:27801799

  3. Computer aided solution for segmenting the neuron line in hippocampal microscope images

    Albaidhani, Tahseen; Jassim, Sabah; Al-Assam, Hisham

    2017-05-01

    The brain Hippocampus component is known to be responsible for memory and spatial navigation. Its functionality depends on the status of different blood vessels within the Hippocampus and is severely impaired by Alzheimer's disease as a result blockage of increasing number of blood vessels by accumulation of amyloid-beta (Aβ) protein. Accurate counting of blood vessels within the Hippocampus of mice brain, from microscopic images, is an active research area for the understanding of Alzheimer's disease. Here, we report our work on automatic detection of the Region of Interest, i.e. the region in which blood vessels are located. This area typically falls between the hippocampus edge and the line of neurons within the Hippocampus. This paper proposes a new method to detect and exclude the neuron line to improve the accuracy of blood vessel counting because some neurons on it might lead to false positive cases as they look like blood vessels. Our proposed solution is based on using trainable segmentation approach with morphological operations, taking into account variation in colour, intensity values, and image texture. Experiments on a sufficient number of microscopy images of mouse brain demonstrate the effectiveness of the developed solution in preparation for blood vessels counting.

  4. Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs.

    Sensakovic, William F; O'Dell, M Cody; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura

    2016-10-01

    Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA(2) by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image

  5. Spectral survey of helium lines in a linear plasma device for use in HELIOS imaging

    Ray, H. B., E-mail: rayhb@ornl.gov [University of Tennessee, Knoxville, Tennessee 37996 (United States); Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Biewer, T. M.; Fehling, D. T.; Isler, R. C.; Unterberg, E. A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2016-11-15

    Fast visible cameras and a filterscope are used to examine the visible light emission from Oak Ridge National Laboratory’s Proto-MPEX. The filterscope has been configured to perform helium line ratio measurements using emission lines at 667.9, 728.1, and 706.5 nm. The measured lines should be mathematically inverted and the ratios compared to a collisional radiative model (CRM) to determine T{sub e} and n{sub e}. Increasing the number of measurement chords through the plasma improves the inversion calculation and subsequent T{sub e} and n{sub e} localization. For the filterscope, one spatial chord measurement requires three photomultiplier tubes (PMTs) connected to pellicle beam splitters. Multiple, fast visible cameras with narrowband filters are an alternate technique for performing these measurements with superior spatial resolution. Each camera contains millions of pixels; each pixel is analogous to one filterscope PMT. The data can then be inverted and the ratios compared to the CRM to determine 2-dimensional “images” of T{sub e} and n{sub e} in the plasma. An assessment is made in this paper of the candidate He I emission lines for an imaging technique.

  6. Development of an On-Line Surgeon-Specific Operating Room Time Prediction System (Experience with the Michigan Surgical Monitors)

    Brown, Allan C.D.; Schmidt, Nancy M.

    1984-01-01

    The development of a micro-computer application for the on-line prediction of surgeon-specific operating room time using an IBM - PCXT is described. The reasons leading to the project, together with an assessment of the Condor 20 relational database management system as the basis for the application are discussed.

  7. Patient-specific estimation of detailed cochlear shape from clinical CT images

    Kjer, H Martin; Fagertun, Jens; Wimmer, Wilhelm

    2018-01-01

    of the detailed patient-specific cochlear shape from CT images. From a collection of temporal bone [Formula: see text]CT images, we build a cochlear statistical deformation model (SDM), which is a description of how a human cochlea deforms to represent the observed anatomical variability. The model is used...... for regularization of a non-rigid image registration procedure between a patient CT scan and a [Formula: see text]CT image, allowing us to estimate the detailed patient-specific cochlear shape. We test the accuracy and precision of the predicted cochlear shape using both [Formula: see text]CT and CT images...

  8. An integrated on-line irradiation and in situ live cell imaging system

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen, E-mail: gen.yang@pku.edu.cn; Wang, Yugang

    2015-09-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO{sub 2}, O{sub 2} concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia.

  9. An integrated on-line irradiation and in situ live cell imaging system

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen; Wang, Yugang

    2015-01-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO 2 , O 2 concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia

  10. An integrated on-line irradiation and in situ live cell imaging system

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen; Wang, Yugang

    2015-09-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO2, O2 concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia.

  11. Registration of Aerial Image with Airborne LiDAR Data Based on Plücker Line

    SHENG Qinghong

    2015-07-01

    Full Text Available Registration of aerial image with airborne LiDAR data is a key to feature extraction. A registration model based on Plücker line is proposed. The relative position and attitude relationship between the conjugate lines in LiDAR and image is determined based on Plücker linear equation, which describes line transformation in space, then coplanarity condition equation is established. Finally, coordinate transformation between image point and corresponding LiDAR point is achieved by the spiral movement of Plücker lines in the image. The registration model of Plücker linear coplanarity condition equation is simple, and jointly describes the rotation and translation to avoid coupling error between them, so the accuracy is approved. This research provides technical support for high-quality earth spatial information acquisition.

  12. A review of functional imaging studies on category-specificity

    Gerlach, Christian

    2007-01-01

    such as familiarity and visual complexity. Of the most consistent activations found, none appear to be selective for natural objects or artefacts. The findings reviewed are compatible with theories of category-specificity that assume a widely distributed conceptual system not organized by category....

  13. 7 CFR 1755.397 - RUS performance specification for line concentrators.

    2010-01-01

    ... part 51. Copies of these standards are available for inspection during normal business hours at RUS.... (ii) There should be provisions for such types of lines as ground start, loop start, regular... surface of the protectors. Means for easy identification of pairs shall be provided. (v) Protectors shall...

  14. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    Sun, Weiyuan; Liu, Zhiguo; Sun, Tianxi; Peng, Song; Ma, Yongzhong; Ding, Xunliang

    2014-01-01

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays

  15. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-05-11

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays.

  16. A concept to collect neutron and x-ray images on the same line of sight at NIF

    Merrill, F. E., E-mail: fmerrill@lanl.gov; Danly, C. R.; Grim, G. P.; Volegov, P. L.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Izumi, N.; Jedlovec, D.; Fittinghoff, D. N.; Pak, A.; Park, H.-S. [Livermore National Laboratory, Livermore, California 94551 (United States)

    2014-11-15

    Neutron and x-ray images are collected at the National Ignition Facility (NIF) to measure the size and shape of inertial confinement fusion implosions. The x-ray images provide a measure of the size and shape of the hot region of the deuterium-tritium fuel while the neutron images provide a measure of the size and shape of the burning plasma. Although these two types of images are collected simultaneously, they are not collected along the same line of sight (LOS). One 14 MeV neutron image is collected on the NIF equator, and two x-ray images are collected along the polar axis and nearly perpendicular to the neutron imaging line of sight on the equator. Both measurements use pinhole apertures to form the images, but existing x-ray imaging provides time-resolved measurements while the neutron images are time-integrated. Detailed comparisons of the x-ray and neutron images can provide information on the fuel assembly, but these studies have been limited because the implosions are not azimuthally symmetric and the images are collected along different LOS. We have developed a conceptual design of a time-integrated x-ray imaging system that could be added to the existing neutron imaging LOS. This new system would allow these detailed studies, providing important information on the fuel assembly of future implosions. Here we present this conceptual design and the expected performance characteristics.

  17. A concept to collect neutron and x-ray images on the same line of sight at NIF.

    Merrill, F E; Danly, C R; Izumi, N; Jedlovec, D; Fittinghoff, D N; Grim, G P; Pak, A; Park, H-S; Volegov, P L; Wilde, C H

    2014-11-01

    Neutron and x-ray images are collected at the National Ignition Facility (NIF) to measure the size and shape of inertial confinement fusion implosions. The x-ray images provide a measure of the size and shape of the hot region of the deuterium-tritium fuel while the neutron images provide a measure of the size and shape of the burning plasma. Although these two types of images are collected simultaneously, they are not collected along the same line of sight (LOS). One 14 MeV neutron image is collected on the NIF equator, and two x-ray images are collected along the polar axis and nearly perpendicular to the neutron imaging line of sight on the equator. Both measurements use pinhole apertures to form the images, but existing x-ray imaging provides time-resolved measurements while the neutron images are time-integrated. Detailed comparisons of the x-ray and neutron images can provide information on the fuel assembly, but these studies have been limited because the implosions are not azimuthally symmetric and the images are collected along different LOS. We have developed a conceptual design of a time-integrated x-ray imaging system that could be added to the existing neutron imaging LOS. This new system would allow these detailed studies, providing important information on the fuel assembly of future implosions. Here we present this conceptual design and the expected performance characteristics.

  18. The account of sagging of wires at definition of specific potential factors of air High-Voltage Power Transmission Lines

    Suslov V.M.

    2005-12-01

    Full Text Available The opportunity approached is shown, but more exact as it is usually accepted, the account of sagging of wires at definition of specific potential factors air High-Voltage Power Transmission Lines. The technique of reception of analytical expressions is resulted. For an opportunity of comparison traditional expressions for specific potential factors are resulted also. Communication of the offered and traditional analytical expressions is shown. Offered analytical expressions are not difficult for programming on a personal computer of any class and besides they allow to make an estimation of an error of traditional expressions by means of parallel definition of specific potential factors by both ways.

  19. A heuristic approach to edge detection in on-line portal imaging

    McGee, Kiaran P.; Schultheiss, Timothy E.; Martin, Eric E.

    1995-01-01

    Purpose: Portal field edge detection is an essential component of several postprocessing techniques used in on-line portal imaging, including field shape verification, selective contrast enhancement, and treatment setup error detection. Currently edge detection of successive fractions in a multifraction portal image series involves the repetitive application of the same algorithm. As the number of changes in the field is small compared to the total number of fractions, standard edge detection algorithms essentially recalculate the same field shape numerous times. A heuristic approach to portal edge detection has been developed that takes advantage of the relatively few changes in the portal field shape throughout a fractionation series. Methods and Materials: The routine applies a standard edge detection routine to calculate an initial field edge and saves the edge information. Subsequent fractions are processed by applying an edge detection operator over a small region about each point of the previously defined contour, to determine any shifts in the field shape in the new image. Failure of this edge check indicates that a significant change in the field edge has occurred, and the original edge detection routine is applied to the image. Otherwise the modified edge contour is used to define the new edge. Results: Two hundred and eighty-one portal images collected from an electronic portal imaging device were processed by the edge detection routine. The algorithm accurately calculated each portal field edge, as well as reducing processing time in subsequent fractions of an individual portal field by a factor of up to 14. Conclusions: The heuristic edge detection routine is an accurate and fast method for calculating portal field edges and determining field edge setup errors

  20. A new image reconstruction method for 3-D PET based upon pairs of near-missing lines of response

    Kawatsu, Shoji [Department of Radiology, Kyoritu General Hospital, 4-33 Go-bancho, Atsuta-ku, Nagoya-shi, Aichi 456-8611 (Japan) and Department of Brain Science and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3, Gengo Moriaka-cho, Obu-shi, Aichi 474-8522 (Japan)]. E-mail: b6rgw@fantasy.plala.or.jp; Ushiroya, Noboru [Department of General Education, Wakayama National College of Technology, 77 Noshima, Nada-cho, Gobo-shi, Wakayama 644-0023 (Japan)

    2007-02-01

    We formerly introduced a new image reconstruction method for three-dimensional positron emission tomography, which is based upon pairs of near-missing lines of response. This method uses an elementary geometric property of lines of response, namely that two lines of response which originate from radioactive isotopes located within a sufficiently small voxel, will lie within a few millimeters of each other. The effectiveness of this method was verified by performing a simulation using GATE software and a digital Hoffman phantom.

  1. Development of one control and one tumor-specific induced pluripotent stem cell line from laryngeal carcinoma patient

    Yamin Zhang

    2017-12-01

    Full Text Available Skin fibroblasts and tumor fibroblasts were extracted from a 64-year old male patient clinically diagnosed with laryngeal carcinoma. Control and tumor specific induced pluripotent stem cells were reprogrammed with 5 reprogramming factors, Klf-4, c-Myc, Oct-4, Sox-2, and Lin-28, using the messenger RNA reprogramming system. The transgene-free iPSC lines showed pluripotency, confirmed by immunofluorescence staining. The iPSC lines also showed normal karyotype, and could form embryoid bodies in vitro and differentiate into the 3 germ layers in vivo. This in vitro cellular model can be used to study the oncogenesis and pathogenesis of laryngeal carcinoma.

  2. The Image Quality Translator – A Way to Support Specification of Imaging Requirements

    Kejser, Ulla Bøgvad; Bech, Mogens

    2015-01-01

    Archives, libraries, and museums run numerous imaging projects to digitize physical works and collections of cultural heritage. This study presents a tool called the 'Image Quality Translator' that is being designed at the Royal Library to support the planning of digitization projects and to make...... the process of specifying and controlling imaging requirements more efficient. The tool seeks to translate between the language used by collection managers and curators to express needs for image quality, and the more technical terms and metrics used by imaging experts and photographers to express...

  3. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study

    Shao, Yiping; Sun, Xishan; Lou, Kai; Zhu, Xiaorong R.; Mirkovic, Dragon; Poenisch, Falk; Grosshans, David

    2014-07-01

    We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ˜50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A 22Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (<1%) after each beam, due mainly to the neutron exposure of SSPM that increased the dark-count noise. This minor effect was corrected offline with a shifting 350-650 keV energy window for each dataset. The results show a fast converging of activity-ranges measured by the prototype PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy.

  4. Serum-free media formulations are cell line-specific and require optimization for microcarrier culture.

    Tan, Kah Yong; Teo, Kim Leng; Lim, Jessica F Y; Chen, Allen K L; Choolani, Mahesh; Reuveny, Shaul; Chan, Jerry; Oh, Steve Kw

    2015-08-01

    Mesenchymal stromal cells (MSCs) are being investigated as potential cell therapies for many different indications. Current methods of production rely on traditional monolayer culture on tissue-culture plastic, usually with the use of serum-supplemented growth media. However, the monolayer culturing system has scale-up limitations and may not meet the projected hundreds of billions to trillions batches of cells needed for therapy. Furthermore, serum-free medium offers several advantages over serum-supplemented medium, which may have supply and contaminant issues, leading to many serum-free medium formulations being developed. We cultured seven MSC lines in six different serum-free media and compared their growth between monolayer and microcarrier culture. We show that (i) expansion levels of MSCs in serum-free monolayer cultures may not correlate with expansion in serum-containing media; (ii) optimal culture conditions (serum-free media for monolayer or microcarrier culture) differ for each cell line; (iii) growth in static microcarrier culture does not correlate with growth in stirred spinner culture; (iv) and that early cell attachment and spreading onto microcarriers does not necessarily predict efficiency of cell expansion in agitated microcarrier culture. Current serum-free media developed for monolayer cultures of MSCs may not support MSC proliferation in microcarrier cultures. Further optimization in medium composition will be required for microcarrier suspension culture for each cell line. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. AUTOMATED INSPECTION OF POWER LINE CORRIDORS TO MEASURE VEGETATION UNDERCUT USING UAV-BASED IMAGES

    M. Maurer

    2017-08-01

    Full Text Available Power line corridor inspection is a time consuming task that is performed mostly manually. As the development of UAVs made huge progress in recent years, and photogrammetric computer vision systems became well established, it is time to further automate inspection tasks. In this paper we present an automated processing pipeline to inspect vegetation undercuts of power line corridors. For this, the area of inspection is reconstructed, geo-referenced, semantically segmented and inter class distance measurements are calculated. The presented pipeline performs an automated selection of the proper 3D reconstruction method for on the one hand wiry (power line, and on the other hand solid objects (surrounding. The automated selection is realized by performing pixel-wise semantic segmentation of the input images using a Fully Convolutional Neural Network. Due to the geo-referenced semantic 3D reconstructions a documentation of areas where maintenance work has to be performed is inherently included in the distance measurements and can be extracted easily. We evaluate the influence of the semantic segmentation according to the 3D reconstruction and show that the automated semantic separation in wiry and dense objects of the 3D reconstruction routine improves the quality of the vegetation undercut inspection. We show the generalization of the semantic segmentation to datasets acquired using different acquisition routines and to varied seasons in time.

  6. Automated Inspection of Power Line Corridors to Measure Vegetation Undercut Using Uav-Based Images

    Maurer, M.; Hofer, M.; Fraundorfer, F.; Bischof, H.

    2017-08-01

    Power line corridor inspection is a time consuming task that is performed mostly manually. As the development of UAVs made huge progress in recent years, and photogrammetric computer vision systems became well established, it is time to further automate inspection tasks. In this paper we present an automated processing pipeline to inspect vegetation undercuts of power line corridors. For this, the area of inspection is reconstructed, geo-referenced, semantically segmented and inter class distance measurements are calculated. The presented pipeline performs an automated selection of the proper 3D reconstruction method for on the one hand wiry (power line), and on the other hand solid objects (surrounding). The automated selection is realized by performing pixel-wise semantic segmentation of the input images using a Fully Convolutional Neural Network. Due to the geo-referenced semantic 3D reconstructions a documentation of areas where maintenance work has to be performed is inherently included in the distance measurements and can be extracted easily. We evaluate the influence of the semantic segmentation according to the 3D reconstruction and show that the automated semantic separation in wiry and dense objects of the 3D reconstruction routine improves the quality of the vegetation undercut inspection. We show the generalization of the semantic segmentation to datasets acquired using different acquisition routines and to varied seasons in time.

  7. In Vivo Imaging of Prostate Cancer Tumors and Metastasis Using Non-Specific Fluorescent Nanoparticles in Mice

    Coralie Genevois

    2017-12-01

    Full Text Available With the growing interest in the use of nanoparticles (NPs in nanomedicine, there is a crucial need for imaging and targeted therapies to determine NP distribution in the body after systemic administration, and to achieve strong accumulation in tumors with low background in other tissues. Accumulation of NPs in tumors results from different mechanisms, and appears extremely heterogeneous in mice models and rather limited in humans. Developing new tumor models in mice, with their low spontaneous NP accumulation, is thus necessary for screening imaging probes and for testing new targeting strategies. In the present work, accumulation of LipImageTM 815, a non-specific nanosized fluorescent imaging agent, was compared in subcutaneous, orthotopic and metastatic tumors of RM1 cells (murine prostate cancer cell line by in vivo and ex vivo fluorescence imaging techniques. LipImageTM 815 mainly accumulated in liver at 24 h but also in orthotopic tumors. Limited accumulation occurred in subcutaneous tumors, and very low fluorescence was detected in metastasis. Altogether, these different tumor models in mice offered a wide range of NP accumulation levels, and a panel of in vivo models that may be useful to further challenge NP targeting properties.

  8. MR imaging of articular cartilage disorders: Specificity of fast imaging and CHESS

    Konig, H.; Sauter, R.; Kueper, K.; Deimling, M.; Vogt, M.

    1986-01-01

    MR imaging is the first imaging method that allows visualization of cartilage tissues. The authors compared standard spin-echo sequences and selective water images obtained using the CHESS method as well as fast sequences in patients with inflammatory, degenerative, and traumatic alterations of the hip, knee, and radiocarpal joint. Measurements were carried out using Magnetom imaging systems operating at 1.0 and 1.5 T. With the use of different types of surface coils high spatial resolution (pixel size, 0.5-1.0 mm; section thickness, 3-8 mm) could be obtained. Pure water images are superior for showing changes of the hyaline cartilage, whereas spin-echo sequences remain the basic procedure, especially for imaging fibrocartilage disorders

  9. Usefulness of MR coronal imaging of the ''pyramidal line''. Predictive value in motor function of stroke patients

    Satoh, Kenichi; Matsuzaki, Takayuki; Shimazaki, Mitsunori

    1997-01-01

    A coronal image was obtained along a straight line between the front edge of the medulla and the deepest point of the interpeduncular cistern in the midsagittal plane (the ''pyramidal line''). This coronal image along the pyramidal line revealed the pyramidal tract extending from the internal capsule down to the medulla. Using this technique, we studied 25 patients with motor deficit associated with cerebrovascular disease. We predicted the possibility of their recovery in the subacute stage. We were able to predict the recovery in 23 patients (92%). We conclude that a coronal image along the pyramidal line is useful for the understanding of relation between pyramidal tract and lesion and for predicting motor function. (author)

  10. Usefulness of MR coronal imaging of the ``pyramidal line``. Predictive value in motor function of stroke patients

    Satoh, Kenichi; Matsuzaki, Takayuki; Shimazaki, Mitsunori [Hakodate Red Cross Hospital, Hokkaido (Japan)

    1997-06-01

    A coronal image was obtained along a straight line between the front edge of the medulla and the deepest point of the interpeduncular cistern in the midsagittal plane (the ``pyramidal line``). This coronal image along the pyramidal line revealed the pyramidal tract extending from the internal capsule down to the medulla. Using this technique, we studied 25 patients with motor deficit associated with cerebrovascular disease. We predicted the possibility of their recovery in the subacute stage. We were able to predict the recovery in 23 patients (92%). We conclude that a coronal image along the pyramidal line is useful for the understanding of relation between pyramidal tract and lesion and for predicting motor function. (author)

  11. Line-Constrained Camera Location Estimation in Multi-Image Stereomatching.

    Donné, Simon; Goossens, Bart; Philips, Wilfried

    2017-08-23

    Stereomatching is an effective way of acquiring dense depth information from a scene when active measurements are not possible. So-called lightfield methods take a snapshot from many camera locations along a defined trajectory (usually uniformly linear or on a regular grid-we will assume a linear trajectory) and use this information to compute accurate depth estimates. However, they require the locations for each of the snapshots to be known: the disparity of an object between images is related to both the distance of the camera to the object and the distance between the camera positions for both images. Existing solutions use sparse feature matching for camera location estimation. In this paper, we propose a novel method that uses dense correspondences to do the same, leveraging an existing depth estimation framework to also yield the camera locations along the line. We illustrate the effectiveness of the proposed technique for camera location estimation both visually for the rectification of epipolar plane images and quantitatively with its effect on the resulting depth estimation. Our proposed approach yields a valid alternative for sparse techniques, while still being executed in a reasonable time on a graphics card due to its highly parallelizable nature.

  12. work specification for the construction of 33kv overhead lines across

    HOD

    obtained using the standard mathematical equations and the specifications for Aluminium Conductor Steel Reinforce ... systems. The choice of conductor depends on the cost and efficiency. ... Support structure requirements, limitations.

  13. Combined mixed approach algorithm for in-line phase-contrast x-ray imaging

    De Caro, Liberato; Scattarella, Francesco; Giannini, Cinzia; Tangaro, Sabina; Rigon, Luigi; Longo, Renata; Bellotti, Roberto

    2010-01-01

    Purpose: In the past decade, phase-contrast imaging (PCI) has been applied to study different kinds of tissues and human body parts, with an increased improvement of the image quality with respect to simple absorption radiography. A technique closely related to PCI is phase-retrieval imaging (PRI). Indeed, PCI is an imaging modality thought to enhance the total contrast of the images through the phase shift introduced by the object (human body part); PRI is a mathematical technique to extract the quantitative phase-shift map from PCI. A new phase-retrieval algorithm for the in-line phase-contrast x-ray imaging is here proposed. Methods: The proposed algorithm is based on a mixed transfer-function and transport-of-intensity approach (MA) and it requires, at most, an initial approximate estimate of the average phase shift introduced by the object as prior knowledge. The accuracy in the initial estimate determines the convergence speed of the algorithm. The proposed algorithm retrieves both the object phase and its complex conjugate in a combined MA (CMA). Results: Although slightly less computationally effective with respect to other mixed-approach algorithms, as two phases have to be retrieved, the results obtained by the CMA on simulated data have shown that the obtained reconstructed phase maps are characterized by particularly low normalized mean square errors. The authors have also tested the CMA on noisy experimental phase-contrast data obtained by a suitable weakly absorbing sample consisting of a grid of submillimetric nylon fibers as well as on a strongly absorbing object made of a 0.03 mm thick lead x-ray resolution star pattern. The CMA has shown a good efficiency in recovering phase information, also in presence of noisy data, characterized by peak-to-peak signal-to-noise ratios down to a few dBs, showing the possibility to enhance with phase radiography the signal-to-noise ratio for features in the submillimetric scale with respect to the attenuation

  14. Standardized orthotopic xenografts in zebrafish reveal glioma cell-line-specific characteristics and tumor cell heterogeneity

    Alessandra M. Welker

    2016-02-01

    Full Text Available Glioblastoma (GBM is a deadly brain cancer, for which few effective drug treatments are available. Several studies have used zebrafish models to study GBM, but a standardized approach to modeling GBM in zebrafish was lacking to date, preventing comparison of data across studies. Here, we describe a new, standardized orthotopic xenotransplant model of GBM in zebrafish. Dose-response survival assays were used to define the optimal number of cells for tumor formation. Techniques to measure tumor burden and cell spread within the brain over real time were optimized using mouse neural stem cells as control transplants. Applying this standardized approach, we transplanted two patient-derived GBM cell lines, serum-grown adherent cells and neurospheres, into the midbrain region of embryonic zebrafish and analyzed transplanted larvae over time. Progressive brain tumor growth and premature larval death were observed using both cell lines; however, fewer transplanted neurosphere cells were needed for tumor growth and lethality. Tumors were heterogeneous, containing both cells expressing stem cell markers and cells expressing markers of differentiation. A small proportion of transplanted neurosphere cells expressed glial fibrillary acidic protein (GFAP or vimentin, markers of more differentiated cells, but this number increased significantly during tumor growth, indicating that these cells undergo differentiation in vivo. By contrast, most serum-grown adherent cells expressed GFAP and vimentin at the earliest times examined post-transplant. Both cell types produced brain tumors that contained Sox2+ cells, indicative of tumor stem cells. Transplanted larvae were treated with currently used GBM therapeutics, temozolomide or bortezomib, and this resulted in a reduction in tumor volume in vivo and an increase in survival. The standardized model reported here facilitates robust and reproducible analysis of glioblastoma tumor cells in real time and provides a

  15. Linear, Transfinite and Weighted Method for Interpolation from Grid Lines Applied to OCT Images

    Lindberg, Anne-Sofie Wessel; Jørgensen, Thomas Martini; Dahl, Vedrana Andersen

    2018-01-01

    of a square grid, but are unknown inside each square. To view these values as an image, intensities need to be interpolated at regularly spaced pixel positions. In this paper we evaluate three methods for interpolation from grid lines: linear, transfinite and weighted. The linear method does not preserve...... and the stability of the linear method further away. An important parameter influencing the performance of the interpolation methods is the upsampling rate. We perform an extensive evaluation of the three interpolation methods across a range of upsampling rates. Our statistical analysis shows significant difference...... in the performance of the three methods. We find that the transfinite interpolation works well for small upsampling rates and the proposed weighted interpolation method performs very well for all upsampling rates typically used in practice. On the basis of these findings we propose an approach for combining two OCT...

  16. In-Flight Spectral Calibration of the APEX Imaging Spectrometer Using Fraunhofer Lines

    Kuhlmann, Gerrit; Hueni, Andreas; Damm, Aalexander; Brunner, Dominik

    2015-11-01

    The Airborne Prism EXperiment (APEX) is an imaging spectrometer which allows to observe atmospheric trace gases such as nitrogen dioxide (NO2). Using a high resolution spectrum of solar Fraunhofer lines, APEX measurements collected during flight have been spectrally calibrated for centre wavelength positions (CW) and instrument slit function (ISF) and compared to the laboratory calibration. We find that CWs depend strongly on both across- and along-track position due to spectral smile and CWs dependency on ambient pressure. The width of the ISF is larger than estimated from the laboratory calibration but can be described by a linear scaling of the laboratory values. The ISF width depends on across- but not on along-track direction. The results demonstrate the importance of characterizing and monitoring the instrument performance during flight and will be used to improve the Empa APEX NO2 retrieval algorithm.

  17. Specific sensitivity of small cell lung cancer cell lines to the snake venom toxin taipoxin

    Poulsen, Thomas T; Pedersen, Nina; Perin, Mark S

    2005-01-01

    and relatively specifically expressed in SCLC, consistent with the neuroendocrine features of this cancer. Normally, NPR is exclusively expressed in neurons, where it associates with the homologous proteins neuronal pentraxins 1 and 2 (NP1 and NP2) in complexes capable of binding the snake venom neurotoxin...

  18. Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research

    Tetteh, Paul W.; Kretzschmar, Kai; Begthel, Harry; Van Den Born, Maaike; Korving, Jeroen; Morsink, Folkert; Farin, Henner; Van Es, Johan H.; Offerhaus, G. Johan A; Clevers, Hans

    2016-01-01

    Current mouse models for colorectal cancer often differ significantly from human colon cancer, being largely restricted to the small intestine. Here, we aim to develop a colon-specific inducible mouse model that can faithfully recapitulate human colon cancer initiation and progression. Carbonic

  19. ALMA IMAGING OF THE CO (6-5) LINE EMISSION IN NGC 7130

    Zhao, Yinghe [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Lu, Nanyao [National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing 100012 (China); Xu, C. Kevin; Appleton, Philip; Murphy, Eric [Infrared Processing and Analysis Center, California Institute of Technology 100-22, Pasadena, CA 91125 (United States); Gao, Yu [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Barcos-Munõz, Loreto [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Díaz-Santos, Tanio [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Charmandaris, Vassilis [Department of Physics, University of Crete, GR-71003 Heraklion (Greece); Armus, Lee [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Van der Werf, Paul [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Evans, Aaron [National Radio Astronomy Observatory, Charlottesville, VA 22904 (United States); Cao, Chen [School of Space Science and Physics, Shandong University at Weihai, Weihai, Shandong 264209 (China); Inami, Hanae, E-mail: zhaoyinghe@gmail.com [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2016-04-01

    In this paper, we report our high-resolution (0.″20 × 0.″14 or ∼70 × 49 pc) observations of the CO(6-5) line emission, which probes warm and dense molecular gas, and the 434 μm dust continuum in the nuclear region of NGC 7130, obtained with the Atacama Large Millimeter Array (ALMA). The CO line and dust continuum fluxes detected in our ALMA observations are 1230 ± 74 Jy km s{sup −1} and 814 ± 52 mJy, respectively, which account for 100% and 51% of their total fluxes. We find that the CO(6-5) and dust emissions are generally spatially correlated, but their brightest peaks show an offset of ∼70 pc, suggesting that the gas and dust emissions may start decoupling at this physical scale. The brightest peak of the CO(6-5) emission does not spatially correspond to the radio continuum peak, which is likely dominated by an active galactic nucleus (AGN). This, together with our additional quantitative analysis, suggests that the heating contribution of the AGN to the CO(6-5) emission in NGC 7130 is negligible. The CO(6-5) and the extinction-corrected Pa-α maps display striking differences, suggestive of either a breakdown of the correlation between warm dense gas and star formation at linear scales of <100 pc or a large uncertainty in our extinction correction to the observed Pa-α image. Over a larger scale of ∼2.1 kpc, the double-lobed structure found in the CO(6-5) emission agrees well with the dust lanes in the optical/near-infrared images.

  20. On-line MR imaging for dose validation of abdominal radiotherapy

    Glitzner, M; Crijns, S P M; De Senneville, B Denis; Kontaxis, C; Prins, F M; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial.Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static anatomy throughout the treatment. However, intra- and interfraction anatomy is dynamic and changes can be significant.In this paper, we investigate the use of an MR-linac as a dose tracking modality for the validation of treatments in abdominal targets where both respiratory and long-term peristaltic and drift motion occur.The on-line MR imaging capability of the modality provides the means to perform respiratory gating of both delivery and acquisition yielding a model-free respiratory motion management under free breathing conditions.In parallel to the treatment, the volumetric patient anatomy was captured and used to calculate the applied dose. Subsequently, the individual doses were warped back to the planning grid to obtain the actual dose accumulated over the entire treatment duration. Ultimately, the planned dose was validated by comparison with the accumulated dose.Representative for a site subject to breathing modulation, two kidney cases (25 Gy target dose) demonstrated the working principle on volunteer data and simulated delivery. The proposed workflow successfully showed its ability to track local dosimetric changes. Integration of the on-line anatomy information could reveal local dose variations  −2.3–1.5 Gy in the target volume of a volunteer dataset. In the adjacent organs at risk, high local dose errors ranging from  −2.5 to 1.9 Gy could be traced back. (paper)

  1. On-line MR imaging for dose validation of abdominal radiotherapy

    Glitzner, M.; Crijns, S. P. M.; de Senneville, B. Denis; Kontaxis, C.; Prins, F. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2015-11-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial. Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static anatomy throughout the treatment. However, intra- and interfraction anatomy is dynamic and changes can be significant. In this paper, we investigate the use of an MR-linac as a dose tracking modality for the validation of treatments in abdominal targets where both respiratory and long-term peristaltic and drift motion occur. The on-line MR imaging capability of the modality provides the means to perform respiratory gating of both delivery and acquisition yielding a model-free respiratory motion management under free breathing conditions. In parallel to the treatment, the volumetric patient anatomy was captured and used to calculate the applied dose. Subsequently, the individual doses were warped back to the planning grid to obtain the actual dose accumulated over the entire treatment duration. Ultimately, the planned dose was validated by comparison with the accumulated dose. Representative for a site subject to breathing modulation, two kidney cases (25 Gy target dose) demonstrated the working principle on volunteer data and simulated delivery. The proposed workflow successfully showed its ability to track local dosimetric changes. Integration of the on-line anatomy information could reveal local dose variations  -2.3-1.5 Gy in the target volume of a volunteer dataset. In the adjacent organs at risk, high local dose errors ranging from  -2.5 to 1.9 Gy could be traced back.

  2. ALMA IMAGING OF THE CO (6-5) LINE EMISSION IN NGC 7130

    Zhao, Yinghe; Lu, Nanyao; Xu, C. Kevin; Appleton, Philip; Murphy, Eric; Gao, Yu; Barcos-Munõz, Loreto; Díaz-Santos, Tanio; Charmandaris, Vassilis; Armus, Lee; Van der Werf, Paul; Evans, Aaron; Cao, Chen; Inami, Hanae

    2016-01-01

    In this paper, we report our high-resolution (0.″20 × 0.″14 or ∼70 × 49 pc) observations of the CO(6-5) line emission, which probes warm and dense molecular gas, and the 434 μm dust continuum in the nuclear region of NGC 7130, obtained with the Atacama Large Millimeter Array (ALMA). The CO line and dust continuum fluxes detected in our ALMA observations are 1230 ± 74 Jy km s −1 and 814 ± 52 mJy, respectively, which account for 100% and 51% of their total fluxes. We find that the CO(6-5) and dust emissions are generally spatially correlated, but their brightest peaks show an offset of ∼70 pc, suggesting that the gas and dust emissions may start decoupling at this physical scale. The brightest peak of the CO(6-5) emission does not spatially correspond to the radio continuum peak, which is likely dominated by an active galactic nucleus (AGN). This, together with our additional quantitative analysis, suggests that the heating contribution of the AGN to the CO(6-5) emission in NGC 7130 is negligible. The CO(6-5) and the extinction-corrected Pa-α maps display striking differences, suggestive of either a breakdown of the correlation between warm dense gas and star formation at linear scales of <100 pc or a large uncertainty in our extinction correction to the observed Pa-α image. Over a larger scale of ∼2.1 kpc, the double-lobed structure found in the CO(6-5) emission agrees well with the dust lanes in the optical/near-infrared images

  3. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Wang, Junfeng [Department of Astronomy, Physics Building, Xiamen University Xiamen, Fujian, 361005 (China); Storchi-Bergmann, Thaisa, E-mail: walter.maksym@cfa.harvard.edu [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-07-20

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  4. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-07-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O III], [S II], and Hα, as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ˜10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include Hα evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  5. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-01-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  6. Automated analysis of heterogeneous carbon nanostructures by high-resolution electron microscopy and on-line image processing

    Toth, P.; Farrer, J.K.; Palotas, A.B.; Lighty, J.S.; Eddings, E.G.

    2013-01-01

    High-resolution electron microscopy is an efficient tool for characterizing heterogeneous nanostructures; however, currently the analysis is a laborious and time-consuming manual process. In order to be able to accurately and robustly quantify heterostructures, one must obtain a statistically high number of micrographs showing images of the appropriate sub-structures. The second step of analysis is usually the application of digital image processing techniques in order to extract meaningful structural descriptors from the acquired images. In this paper it will be shown that by applying on-line image processing and basic machine vision algorithms, it is possible to fully automate the image acquisition step; therefore, the number of acquired images in a given time can be increased drastically without the need for additional human labor. The proposed automation technique works by computing fields of structural descriptors in situ and thus outputs sets of the desired structural descriptors in real-time. The merits of the method are demonstrated by using combustion-generated black carbon samples. - Highlights: ► The HRTEM analysis of heterogeneous nanostructures is a tedious manual process. ► Automatic HRTEM image acquisition and analysis can improve data quantity and quality. ► We propose a method based on on-line image analysis for the automation of HRTEM image acquisition. ► The proposed method is demonstrated using HRTEM images of soot particles

  7. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines

    Víctor A. Solarte

    2015-01-01

    Full Text Available Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20–254, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90% in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  8. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines.

    Solarte, Víctor A; Rosas, Jaiver E; Rivera, Zuly J; Arango-Rodríguez, Martha L; García, Javier E; Vernot, Jean-Paul

    2015-01-01

    Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20-25)4, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90%) in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  9. SATB1 regulates SPARC expression in K562 cell line through binding to a specific sequence in the third intron

    Li, K.; Cai, R.; Dai, B.B.; Zhang, X.Q.; Wang, H.J.; Ge, S.F.; Xu, W.R.; Lu, J.

    2007-01-01

    Special AT-rich binding protein 1 (SATB1), a cell type-specific nuclear matrix attachment region (MAR) DNA-binding protein, tethers to a specific DNA sequence and regulates gene expression through chromatin remodeling and HDAC (histone deacetylase complex) recruitment. In this study, a SATB1 eukaryotic expression plasmid was transfected into the human erythroleukemia K562 cell line and individual clones that stably over-expressed the SATB1 protein were isolated. Microarray analysis revealed that hundreds of genes were either up- or down-regulated in the SATB1 over-expressing K562 cell lines. One of these was the extra-cellular matrix glycoprotein, SPARC (human secreted protein acidic and rich in cysteine). siRNA knock-down of SATB1 also reduced SPARC expression, which was consistent with elevated SPARC levels in the SATB1 over-expressing cell line. Bioinformatics software Mat-inspector showed that a 17 bp DNA sequence in the third intron of SPARC possessed a high potential for SATB1 binding; a finding confirmed by Chromatin immunoprecipitation (ChIP) with anti-SATB1 antibody. Our results show for the first time that forced-expression of SATB1 in K562 cells triggers SPARC up-regulation by binding to a 17 bp DNA sequence in the third intron

  10. Generation and functional analysis of T cell lines and clones specific for schistosomula released products (SRP-A).

    Damonneville, M; Velge, F; Verwaerde, C; Pestel, J; Auriault, C; Capron, A

    1987-01-01

    Antigens present in the products released by the larval stage of schistosome (SRP-A) were shown to induce a strong cytotoxic and protective IgE response both in the rat and the monkey. T cell lines and clones specific for SRP-A or 26 kD antigens which are the main target of the cytotoxic IgE have been derived. The passive transfer of SRP-A specific T lymphocytes into infected rats led to an increase of the IgE response, conferring a significant level of protection to the rats. In coculture assays in vitro, these cell lines significantly enhanced the production of IgE by SRP-A sensitized rat spleen cells. This helper effect on the IgE response was confirmed with 26 kD T cell clone supernatants. Moreover, supernatants obtained after stimulation with phorbol myristate acetate were able to enhance the IgE production of a hybridoma B cell line (B48-14) producing a monoclonal IgE antibody, cytotoxic for the schistosomula. PMID:3498590

  11. Generation and functional analysis of T cell lines and clones specific for schistosomula released products (SRP-A).

    Damonneville, M; Velge, F; Verwaerde, C; Pestel, J; Auriault, C; Capron, A

    1987-08-01

    Antigens present in the products released by the larval stage of schistosome (SRP-A) were shown to induce a strong cytotoxic and protective IgE response both in the rat and the monkey. T cell lines and clones specific for SRP-A or 26 kD antigens which are the main target of the cytotoxic IgE have been derived. The passive transfer of SRP-A specific T lymphocytes into infected rats led to an increase of the IgE response, conferring a significant level of protection to the rats. In coculture assays in vitro, these cell lines significantly enhanced the production of IgE by SRP-A sensitized rat spleen cells. This helper effect on the IgE response was confirmed with 26 kD T cell clone supernatants. Moreover, supernatants obtained after stimulation with phorbol myristate acetate were able to enhance the IgE production of a hybridoma B cell line (B48-14) producing a monoclonal IgE antibody, cytotoxic for the schistosomula.

  12. Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research.

    Tetteh, Paul W; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; Morsink, Folkert; Farin, Henner; van Es, Johan H; Offerhaus, G Johan A; Clevers, Hans

    2016-10-18

    Current mouse models for colorectal cancer often differ significantly from human colon cancer, being largely restricted to the small intestine. Here, we aim to develop a colon-specific inducible mouse model that can faithfully recapitulate human colon cancer initiation and progression. Carbonic anhydrase I (Car1) is a gene expressed uniquely in colonic epithelial cells. We generated a colon-specific inducible Car1 CreER knock-in (KI) mouse with broad Cre activity in epithelial cells of the proximal colon and cecum. Deletion of the tumor suppressor gene Apc using the Car1 CreER KI caused tumor formation in the cecum but did not yield adenomas in the proximal colon. Mutation of both Apc and Kras yielded microadenomas in both the cecum and the proximal colon, which progressed to macroadenomas with significant morbidity. Aggressive carcinomas with some invasion into lymph nodes developed upon combined induction of oncogenic mutations of Apc, Kras, p53, and Smad4 Importantly, no adenomas were observed in the small intestine. Additionally, we observed tumors from differentiated Car1-expressing cells with Apc/Kras mutations, suggesting that a top-down model of intestinal tumorigenesis can occur with multiple mutations. Our results establish the Car1 CreER KI as a valuable mouse model to study colon-specific tumorigenesis and metastasis as well as cancer-cell-of-origin questions.

  13. Recognizing Banknote Fitness with a Visible Light One Dimensional Line Image Sensor

    Tuyen Danh Pham

    2015-08-01

    Full Text Available In general, dirty banknotes that have creases or soiled surfaces should be replaced by new banknotes, whereas clean banknotes should be recirculated. Therefore, the accurate classification of banknote fitness when sorting paper currency is an important and challenging task. Most previous research has focused on sensors that used visible, infrared, and ultraviolet light. Furthermore, there was little previous research on the fitness classification for Indian paper currency. Therefore, we propose a new method for classifying the fitness of Indian banknotes, with a one-dimensional line image sensor that uses only visible light. The fitness of banknotes is usually determined by various factors such as soiling, creases, and tears, etc. although we just consider banknote soiling in our research. This research is novel in the following four ways: first, there has been little research conducted on fitness classification for the Indian Rupee using visible-light images. Second, the classification is conducted based on the features extracted from the regions of interest (ROIs, which contain little texture. Third, 1-level discrete wavelet transformation (DWT is used to extract the features for discriminating between fit and unfit banknotes. Fourth, the optimal DWT features that represent the fitness and unfitness of banknotes are selected based on linear regression analysis with ground-truth data measured by densitometer. In addition, the selected features are used as the inputs to a support vector machine (SVM for the final classification of banknote fitness. Experimental results showed that our method outperforms other methods.

  14. Recognizing Banknote Fitness with a Visible Light One Dimensional Line Image Sensor.

    Pham, Tuyen Danh; Park, Young Ho; Kwon, Seung Yong; Nguyen, Dat Tien; Vokhidov, Husan; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo

    2015-08-27

    In general, dirty banknotes that have creases or soiled surfaces should be replaced by new banknotes, whereas clean banknotes should be recirculated. Therefore, the accurate classification of banknote fitness when sorting paper currency is an important and challenging task. Most previous research has focused on sensors that used visible, infrared, and ultraviolet light. Furthermore, there was little previous research on the fitness classification for Indian paper currency. Therefore, we propose a new method for classifying the fitness of Indian banknotes, with a one-dimensional line image sensor that uses only visible light. The fitness of banknotes is usually determined by various factors such as soiling, creases, and tears, etc. although we just consider banknote soiling in our research. This research is novel in the following four ways: first, there has been little research conducted on fitness classification for the Indian Rupee using visible-light images. Second, the classification is conducted based on the features extracted from the regions of interest (ROIs), which contain little texture. Third, 1-level discrete wavelet transformation (DWT) is used to extract the features for discriminating between fit and unfit banknotes. Fourth, the optimal DWT features that represent the fitness and unfitness of banknotes are selected based on linear regression analysis with ground-truth data measured by densitometer. In addition, the selected features are used as the inputs to a support vector machine (SVM) for the final classification of banknote fitness. Experimental results showed that our method outperforms other methods.

  15. Position-specific isotope analysis by on-line pyrolysis coupled to IRMS

    Gilbert, A.; Suda, K.; Yamada, K.; Ueno, Y.; Yoshida, N.

    2016-12-01

    Position-specific isotopic analyses (PSIA) provide unique information regarding the sources, sinks and processes related to natural molecules. For instance, PSIA of short-chain hydrocarbons could lead to temperature of formation and maturity of natural gas reservoirs [1][2]. In the last decade, quantitative Nuclear Magnetic Resonance (NMR) specrometry has been used for PSIA of organic molecules such as glucose or n-alkanes [3][4]. However, due to its low sensitivity, application to low amount geochemical samples remains challenging. In 1997, Corso & Brenna proposed to adapt a pyrolysis furnace to an isotope ratio mass spectrometer, making it possible the thermal degradation of the target molecule and the subsequent analysis of the d13C values of the fragments formed [5]. Starting from fatty acid methyl esters they demonstrated the absence of rearrangement during pyrolytic degradation and could determine the d13C value of carboxyl C-atom position. We adapted the system for the full characterization of position-specific isotope composition of small molecules (ethanol, acetic acid, alanine, propane). Nanomole amount of sample can be analyzed with a precision on intramolecular d13C values of 1‰ or lower [2]. We recently analyzed abiotic and thermogenic propane samples both from the field and from lab simulations. PSIA of propane shows systematic differences of position-specific isotope composition between thermogenic and abiotic samples. While the former show 13C-depletion on the terminal C-atom position - consistent with thermal cracking kinetic models [6] - abiotic samples show little or no preference for terminal or central 13C-isotopomer. These results emphasize the potential of PSIA to trace the the processes associated with organic molecules production. [1] Piasecki et al. 2016 GCA 188, 58 [2] Gilbert et al. 2016 GCA 177, 205 [3] Gilbert et al. 2012 PNAS, 109, 18204 [4] Gilbert et al. 2013 Org. Geochem, 62, 56 [5] Corso & Brenna 1997 PNAS, 94, 1049 [6] Tang et

  16. Evaluation of the specificity of radionuclide myocardial imaging for detecting CAD

    Liu Xiujie

    1992-01-01

    In order to evaluate the specificity of radionuclide myocardial perfusion imaging for detecting coronary artery disease (CAD), 50 patients with normal coronary arteriography and radionuclide myocardial perfusion scintigraphy were analysed. The results from 201 T1 (20 cases) and 99m Tc-MIBI (30 cases) studies showed that out of 33 patients with no organic cardiovascular disease, 29 had normal myocardial imaging, and the specificity of radionuclide myocardial imaging for detecting CAD was 87.8%. 4 normal young women had false positive myocardial imaging. Out of 17 patients with cardiovascular disease and normal coronary arteriography, 15 patients had abnormal myocardial imaging. The final clinical diagnoses of these 15 patients were: 4 patients with hypertrophic cardiomyopathy, 3 with old myocardial infarction, 2 with myocarditis, 3 with small coronary vessel disease, 1 with congestive cardiomyopathy, and 2 with other cardiac disorder. The points of differentiation between CAD and other cardiovascular disease using radionuclide techniques were discussed

  17. Development of a SEM-based low-energy in-line electron holography microscope for individual particle imaging.

    Adaniya, Hidehito; Cheung, Martin; Cassidy, Cathal; Yamashita, Masao; Shintake, Tsumoru

    2018-05-01

    A new SEM-based in-line electron holography microscope has been under development. The microscope utilizes conventional SEM and BF-STEM functionality to allow for rapid searching of the specimen of interest, seamless interchange between SEM, BF-STEM and holographic imaging modes, and makes use of coherent low-energy in-line electron holography to obtain low-dose, high-contrast images of light element materials. We report here an overview of the instrumentation and first experimental results on gold nano-particles and carbon nano-fibers for system performance tests. Reconstructed images obtained from the holographic imaging mode of the new microscope show substantial image contrast and resolution compared to those acquired by SEM and BF-STEM modes, demonstrating the feasibility of high-contrast imaging via low-energy in-line electron holography. The prospect of utilizing the new microscope to image purified biological specimens at the individual particle level is discussed and electron optical issues and challenges to further improve resolution and contrast are considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A Preliminary Comparison of Three Dimensional Particle Tracking and Sizing using Plenoptic Imaging and Digital In-line Holography

    Guildenbecher, Daniel Robert; Munz, Elise Dahnke; Farias, Paul Abraham; Thurow, Brian S [Auburn U

    2015-12-01

    Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenotpic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.

  19. Specific developed phantoms and software to assess radiological equipment image quality

    Verdu, G., E-mail: gverdu@iqn.upv.es [Universidad Politecnica de Valencia (Spain). Dept. de Ingenieria Quimica y Nuclear; Mayo, P., E-mail: p.mayo@titaniast.com [TITANIA Servicios Teconologicos, Valencia (Spain); Rodenas, F., E-mail: frodenas@mat.upv.es [Universidad Politecnica de Valencia (Spain). Dept. de Matematica Aplicada; Campayo, J.M., E-mail: j.campayo@lainsa.com [Logistica y Acondicionamientos Industriales S.A.U (LAINSA), Valencia (Spain)

    2011-07-01

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be automatized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques, etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (mAs). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (author)

  20. Specific developed phantoms and software to assess radiological equipment image quality

    Verdu, G.; Rodenas, F.

    2011-01-01

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be automatized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques, etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (mAs). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (author)

  1. Use of a line-pair resolution phantom for comprehensive quality assurance of electronic portal imaging devices based on fundamental imaging metrics

    Gopal, Arun; Samant, Sanjiv S.

    2009-01-01

    Image guided radiation therapy solutions based on megavoltage computed tomography (MVCT) involve the extension of electronic portal imaging devices (EPIDs) from their traditional role of weekly localization imaging and planar dose mapping to volumetric imaging for 3D setup and dose verification. To sustain the potential advantages of MVCT, EPIDs are required to provide improved levels of portal image quality. Therefore, it is vital that the performance of EPIDs in clinical use is maintained at an optimal level through regular and rigorous quality assurance (QA). Traditionally, portal imaging QA has been carried out by imaging calibrated line-pair and contrast resolution phantoms and obtaining arbitrarily defined QA indices that are usually dependent on imaging conditions and merely indicate relative trends in imaging performance. They are not adequately sensitive to all aspects of image quality unlike fundamental imaging metrics such as the modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) that are widely used to characterize detector performance in radiographic imaging and would be ideal for QA purposes. However, due to the difficulty of performing conventional MTF measurements, they have not been used for routine clinical QA. The authors present a simple and quick QA methodology based on obtaining the MTF, NPS, and DQE of a megavoltage imager by imaging standard open fields and a bar-pattern QA phantom containing 2 mm thick tungsten line-pair bar resolution targets. Our bar-pattern based MTF measurement features a novel zero-frequency normalization scheme that eliminates normalization errors typically associated with traditional bar-pattern measurements at megavoltage x-ray energies. The bar-pattern QA phantom and open-field images are used in conjunction with an automated image analysis algorithm that quickly computes the MTF, NPS, and DQE of an EPID system. Our approach combines the fundamental advantages of

  2. Isolation of oogenesis-specific genes transcribed in the germ-line of Calliphora erythrocephala and Drosophila melanogaster

    Tucker, M.A.

    1988-01-01

    Poly(A) + RNA from early or mid-stage ovarian follicles of C. erythrocephala was used to generate radiolabelled oogenesis-specific cDNA probes for screening the phage libraries. A cDNA probe made from mid-stage embryo poly(A) + RNA was used as the differential screening probe. Thus plaques hybridizing to the two oogenesis-specific probes but not the mid-stage embryo probe were selected as potentially containing oogenesis-specific genes. Two further rounds of screening were used to eliminate false positives and, after plaque purification, restriction digests of the remaining clones were screened by Southern blot hybridization to identify DNA fragments transcribed in an oogenesis-specific manner. In situ hybridization to sections of ovarian follicles has been used to determine the cell types within the follicles in which the various genes are expressed. Radiolabelled RNA probes for four of the C. erythrocephala oogenesis-specific clones and the two D. melanogaster clones have been hybridized to ovarian follicles. Further studies have been concentrated on the two germ-line transcribed, oogenesis-specific clones isolated from the D. melanogaster clone library. Detailed genetic mapping of the DA clone and of these mutations was performed to determine which mutations might represent the DA gene. cDNA clones have been isolated for the transcribed region of clone DA and have been used to further define the transcription unit from this region of the D. melanogaster genome

  3. In vivo cation exchange in quantum dots for tumor-specific imaging.

    Liu, Xiangyou; Braun, Gary B; Qin, Mingde; Ruoslahti, Erkki; Sugahara, Kazuki N

    2017-08-24

    In vivo tumor imaging with nanoprobes suffers from poor tumor specificity. Here, we introduce a nanosystem, which allows selective background quenching to gain exceptionally tumor-specific signals. The system uses near-infrared quantum dots and a membrane-impermeable etchant, which serves as a cation donor. The etchant rapidly quenches the quantum dots through cation exchange (ionic etching), and facilitates renal clearance of metal ions released from the quantum dots. The quantum dots are intravenously delivered into orthotopic breast and pancreas tumors in mice by using the tumor-penetrating iRGD peptide. Subsequent etching quenches excess quantum dots, leaving a highly tumor-specific signal provided by the intact quantum dots remaining in the extravascular tumor cells and fibroblasts. No toxicity is noted. The system also facilitates the detection of peritoneal tumors with high specificity upon intraperitoneal tumor targeting and selective etching of excess untargeted quantum dots. In vivo cation exchange may be a promising strategy to enhance specificity of tumor imaging.The imaging of tumors in vivo using nanoprobes has been challenging due to the lack of sufficient tumor specificity. Here, the authors develop a tumor-specific quantum dot system that permits in vivo cation exchange to achieve selective background quenching and high tumor-specific imaging.

  4. Cell-type-specific responses of RT4 neural cell lines to dibutyryl-cAMP: branch determination versus maturation

    Droms, K.; Sueoka, N.

    1987-01-01

    This report describes the induction of cell-type-specific maturation, by dibutyryl-cAMP and testololactone, of neuronal and glial properties in a family of cell lines derived from a rat peripheral neurotumor, RT4. This maturation allows further understanding of the process of determination because of the close lineage relationship between the cell types of the RT4 family. The RT4 family is characterized by the spontaneous conversion of one of the cell types, RT4-AC (stem-cell type), to any of three derivative cell types, RT4-B, RT4-D, or RT4-E, with a frequency of about 10(-5). The RT4-AC cells express some properties characteristic of both neuronal and glial cells. Of these neural properties expressed by RT4-AC cells, only the neuronal properties are expressed by the RT4-B and RT4-E cells, and only the glial properties are expressed by the RT4-D cells. This in vitro cell-type conversion of RT4-AC to three derivative cell types is a branch point for the coordinate regulation of several properties and seems to resemble determination in vivo. In our standard culture conditions, several other neuronal and glial properties are not expressed by these cell types. However, addition of dibutyryl-cAMP induces expression of additional properties, in a cell-type-specific manner: formation of long cellular processes in the RT4-B8 and RT4-E5 cell lines and expression of high-affinity uptake of gamma-aminobutyric acid, by a glial-cell-specific mechanism, in the RT4-D6-2 cell line. These new properties are maximally expressed 2-3 days after addition of dibutyryl-cAMP

  5. The development of a line-scan imaging algorithm for the detection of fecal contamination on leafy geens

    Yang, Chun-Chieh; Kim, Moon S.; Chuang, Yung-Kun; Lee, Hoyoung

    2013-05-01

    This paper reports the development of a multispectral algorithm, using the line-scan hyperspectral imaging system, to detect fecal contamination on leafy greens. Fresh bovine feces were applied to the surfaces of washed loose baby spinach leaves. A hyperspectral line-scan imaging system was used to acquire hyperspectral fluorescence images of the contaminated leaves. Hyperspectral image analysis resulted in the selection of the 666 nm and 688 nm wavebands for a multispectral algorithm to rapidly detect feces on leafy greens, by use of the ratio of fluorescence intensities measured at those two wavebands (666 nm over 688 nm). The algorithm successfully distinguished most of the lowly diluted fecal spots (0.05 g feces/ml water and 0.025 g feces/ml water) and some of the highly diluted spots (0.0125 g feces/ml water and 0.00625 g feces/ml water) from the clean spinach leaves. The results showed the potential of the multispectral algorithm with line-scan imaging system for application to automated food processing lines for food safety inspection of leafy green vegetables.

  6. Influence Of Specific Mechanical Energy On Cornmeal Viscosity Measured By An On-line System During Twin-screw Extrusion

    Chang Y.K.; Martinez-Bustos F.; Park T.S.; Kokini J.L.

    1999-01-01

    The influence of specific mechanical energy (SME) on cornmeal viscosity during the twin-screw extrusion at feed moisture contents of 25 and 30% and screw speeds in the range from 100 to 500 rpm was measured. Cornmeal was extruded in a co-rotating, intermeshing twin-screw coupled to a slit die rheometer. One approach to the on-line rheological measurement is to use a slit die with the extruder. In the present work it was show that shear viscosity decreased as a function of SME. The viscosity o...

  7. Dust Density Distribution and Imaging Analysis of Different Ice Lines in Protoplanetary Disks

    Pinilla, P. [Department of Astronomy/Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Pohl, A. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Stammler, S. M.; Birnstiel, T., E-mail: pinilla@email.arizona.edu [University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Scheinerstr. 1, D-81679 Münich (Germany)

    2017-08-10

    Recent high angular resolution observations of protoplanetary disks at different wavelengths have revealed several kinds of structures, including multiple bright and dark rings. Embedded planets are the most used explanation for such structures, but there are alternative models capable of shaping the dust in rings as it has been observed. We assume a disk around a Herbig star and investigate the effect that ice lines have on the dust evolution, following the growth, fragmentation, and dynamics of multiple dust size particles, covering from 1 μ m to 2 m sized objects. We use simplified prescriptions of the fragmentation velocity threshold, which is assumed to change radially at the location of one, two, or three ice lines. We assume changes at the radial location of main volatiles, specifically H{sub 2}O, CO{sub 2}, and NH{sub 3}. Radiative transfer calculations are done using the resulting dust density distributions in order to compare with current multiwavelength observations. We find that the structures in the dust density profiles and radial intensities at different wavelengths strongly depend on the disk viscosity. A clear gap of emission can be formed between ice lines and be surrounded by ring-like structures, in particular between the H{sub 2}O and CO{sub 2} (or CO). The gaps are expected to be shallower and narrower at millimeter emission than at near-infrared, opposite to model predictions of particle trapping. In our models, the total gas surface density is not expected to show strong variations, in contrast to other gap-forming scenarios such as embedded giant planets or radial variations of the disk viscosity.

  8. Neon-like Iron Ion Lines Measured in NIFS/Large Helical Device (LHD) and Hinode /EUV Imaging Spectrometer (EIS)

    Watanabe, Tetsuya; Hara, Hirohisa [National Astronomical Observatory, National Institutes of Natural Sciences 2-21-1 Osawa Mitaka Tokyo, 181-8588 (Japan); Murakami, Izumi; Kato, Daiji; Morita, Shigeru [SOKENDAI (Graduate University for Advanced Studies) Hayama, Miura-gun, Kanagawa, 240-0193 (Japan); Sakaue, Hiroyuki A.; Suzuki, Chihiro; Tamura, Naoki [National Institute for Fusion Science, National Institutes of Natural Sciences 322-6 Oroshi-cho, Toki Gifu, 509-5292 (Japan); Yamamoto, Norimasa [Chubu University 1200 Matsumoto-cho, Kasugai Aichi, 487-0027 (Japan); Nakamura, Nobuyuki, E-mail: watanabe@uvlab.mtk.nao.ac.jp [The University of Electro-Communications 1-5-1 Chofugaoka, Chofu Tokyo, 182-8585 (Japan)

    2017-06-10

    Line intensities emerging from the Ne-sequence iron ion (Fe xvii) are measured in the laboratory, by the Large Helical Device at the National Institute for Fusion Science, and in the solar corona by the EUV Imaging Spectrometer (EIS) on board the Hinode mission. The intensity ratios of Fe xvii λ 204.6/ λ 254.8 are derived in the laboratory by unblending the contributions of the Fe xiii and xii line intensities. They are consistent with theoretical predictions and solar observations, the latter of which endorses the in-flight radiometric calibrations of the EIS instrument. The still remaining temperature-dependent behavior of the line ratio suggests the contamination of lower-temperature iron lines that are blended with the λ 204.6 line.

  9. Non-Maxwellian Analysis of the Transition-region Line Profiles Observed by the Interface Region Imaging Spectrograph

    Dudík, Jaroslav; Dzifčáková, Elena [Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov (Czech Republic); Polito, Vanessa; Testa, Paola [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 58, Cambridge, MA 02138 (United States); Zanna, Giulio Del, E-mail: dudik@asu.cas.cz [Department of Applied Mathematics and Theoretical Physics, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2017-06-10

    We investigate the nature of the spectral line profiles for transition-region (TR) ions observed with the Interface Region Imaging Spectrograph (IRIS) . In this context, we analyzed an active-region observation performed by IRIS in its 1400 Å spectral window. The TR lines are found to exhibit significant wings in their spectral profiles, which can be well fitted with a non-Maxwellian κ distribution. The fit with a κ distribution can perform better than a double-Gaussian fit, especially for the strongest line, Si iv 1402.8 Å. Typical values of κ found are about 2, occurring in a majority of spatial pixels where the TR lines are symmetric, i.e., the fit can be performed. Furthermore, all five spectral lines studied (from Si iv, O iv, and S iv) appear to have the same full-width at half-maximum irrespective of whether the line is an allowed or an intercombination transition. A similar value of κ is obtained for the electron distribution by the fitting of the line intensities relative to Si iv 1402.8 Å, if photospheric abundances are assumed. The κ distributions, however, do not remove the presence of non-thermal broadening. Instead, they actually increase the non-thermal width. This is because, for κ distributions, TR ions are formed at lower temperatures. The large observed non-thermal width lowers the opacity of the Si iv line sufficiently enough for this line to become optically thin.

  10. Imaging of gene expression in live pancreatic islet cell lines using dual-isotope SPECT.

    Tai, Joo Ho; Nguyen, Binh; Wells, R Glenn; Kovacs, Michael S; McGirr, Rebecca; Prato, Frank S; Morgan, Timothy G; Dhanvantari, Savita

    2008-01-01

    We are combining nuclear medicine with molecular biology to establish a sensitive, quantitative, and tomographic method with which to detect gene expression in pancreatic islet cells in vivo. Dual-isotope SPECT can be used to image multiple molecular events simultaneously, and coregistration of SPECT and CT images enables visualization of reporter gene expression in the correct anatomic context. We have engineered pancreatic islet cell lines for imaging with SPECT/CT after transplantation under the kidney capsule. INS-1 832/13 and alphaTC1-6 cells were stably transfected with a herpes simplex virus type 1-thymidine kinase-green fluorescent protein (HSV1-thymidine kinase-GFP) fusion construct (tkgfp). After clonal selection, radiolabel uptake was determined by incubation with 5-(131)I-iodo-1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)uracil ((131)I-FIAU) (alphaTC1-6 cells) or (123)I-FIAU (INS-1 832/13 cells). For the first set of in vivo experiments, SPECT was conducted after alphaTC1-6/tkgfp cells had been labeled with either (131)I-FIAU or (111)In-tropolone and transplanted under the left kidney capsule of CD1 mice. Reconstructed SPECT images were coregistered to CT. In a second study using simultaneous acquisition dual-isotope SPECT, INS-1 832/13 clone 9 cells were labeled with (111)In-tropolone before transplantation. Mice were then systemically administered (123)I-FIAU and data for both (131)I and (111)In were acquired simultaneously. alphaTC1-6/tkgfp cells showed a 15-fold greater uptake of (131)I-FIAU, and INS-1/tkgfp cells showed a 12-fold greater uptake of (123)I-FIAU, compared with that of wild-type cells. After transplantation under the kidney capsule, both reporter gene expression and location of cells could be visualized in vivo with dual-isotope SPECT. Immunohistochemistry confirmed the presence of glucagon- and insulin-positive cells at the site of transplantation. Dual-isotope SPECT is a promising method to detect gene expression in and location of

  11. Novel Infiltration Diagnostics based on Laser-line Scanning and Infrared Temperature Field Imaging

    Wang, Xinwei [Iowa State Univ., Ames, IA (United States)

    2017-12-08

    This project targets the building energy efficiency problems induced by building infiltration/leaks. The current infiltration inspection techniques often require extensive visual inspection and/or whole building pressure test. These current techniques cannot meet more than three of the below five criteria of ideal infiltration diagnostics: 1. location and extent diagnostics, 2. building-level application, 3. least surface preparation, 4. weather-proof, and 5. non-disruption to building occupants. These techniques are either too expensive or time consuming, and often lack accuracy and repeatability. They are hardly applicable to facades/facades section. The goal of the project was to develop a novel infiltration diagnostics technology based on laser line-scanning and simultaneous infrared temperature imaging. A laboratory scale experimental setup was designed to mimic a model house of well-defined pressure difference below or above the outside pressure. Algorithms and Matlab-based programs had been developed for recognition of the hole location in infrared images. Our experiment based on laser wavelengths of 450 and 1550 nm and laser beam diameters of 4-25 mm showed that the location of the holes could be identified using laser heating; the diagnostic approach however could not readily distinguish between infiltration and non-infiltration points. To significantly improve the scanning throughput and recognition accuracy, a second approach was explored, developed, and extensively tested. It incorporates a liquid spray on the surface to induce extra phase change cooling effect. In this spray method, we termed it as PECIT (Phase-change Enhanced Cooling Infrared Thermography), phase-change enhanced cooling was used, which significantly amplifies the effect of air flow (infiltration and exfiltration). This heat transfer method worked extremely well to identify infiltration and exfiltration locations with high accuracy and increased throughput. The PECIT technique was

  12. Integration of on-line imaging, plan adaptation and radiation delivery: proof of concept using digital tomosynthesis

    Mestrovic, Ante; Otto, Karl; Nichol, Alan; Clark, Brenda G

    2009-01-01

    The main objective of this manuscript is to propose a new approach to on-line adaptive radiation therapy (ART) in which daily image acquisition, plan adaptation and radiation delivery are integrated together and performed concurrently. A method is described in which on-line ART is performed based on intra-fractional digital tomosynthesis (DTS) images. Intra-fractional DTS images were reconstructed as the gantry rotated between treatment positions. An edge detection algorithm was used to automatically segment the DTS images as the gantry arrived at each treatment position. At each treatment position, radiation was delivered based on the treatment plan re-optimized for the most recent DTS image contours. To investigate the feasibility of this method, a model representing a typical prostate, bladder and rectum was used. To simulate prostate deformations, three clinically relevant, non-rigid deformations (small, medium and large) were modeled by systematically deforming the original anatomy. Using our approach to on-line ART, the original treatment plan was successfully adapted to arrive at a clinically acceptable plan for all three non-rigid deformations. In conclusion, we have proposed a new approach to on-line ART in which plan adaptation is performed based on intra-fractional DTS images. The study findings indicate that this approach can be used to re-optimize the original treatment plan to account for non-rigid anatomical deformations. The advantages of this approach are 1) image acquisition and radiation delivery are integrated in a single gantry rotation around the patient, reducing the treatment time, and 2) intra-fractional DTS images can be used to detect and correct for patient motion prior to the delivery of each beam (intra-fractional patient motion).

  13. TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and DEMs, Part 1: Line Segment Detection and Extraction

    Mehdi Rahnama

    2014-06-01

    Full Text Available Geological structures, such as faults and fractures, appear as image discontinuities or lineaments in remote sensing data. Geologic lineament mapping is a very important issue in geo-engineering, especially for construction site selection, seismic, and risk assessment, mineral exploration and hydrogeological research. Classical methods of lineaments extraction are based on semi-automated (or visual interpretation of optical data and digital elevation models. We developed a freely available Matlab based toolbox TecLines (Tectonic Lineament Analysis for locating and quantifying lineament patterns using satellite data and digital elevation models. TecLines consists of a set of functions including frequency filtering, spatial filtering, tensor voting, Hough transformation, and polynomial fitting. Due to differences in the mathematical background of the edge detection and edge linking procedure as well as the breadth of the methods, we introduce the approach in two-parts. In this first study, we present the steps that lead to edge detection. We introduce the data pre-processing using selected filters in spatial and frequency domains. We then describe the application of the tensor-voting framework to improve position and length accuracies of the detected lineaments. We demonstrate the robustness of the approach in a complex area in the northeast of Afghanistan using a panchromatic QUICKBIRD-2 image with 1-meter resolution. Finally, we compare the results of TecLines with manual lineament extraction, and other lineament extraction algorithms, as well as a published fault map of the study area.

  14. Line-Enhanced Deformable Registration of Pulmonary Computed Tomography Images Before and After Radiation Therapy With Radiation-Induced Fibrosis

    Sensakovic, William F.; Maxim, Peter; Diehn, Maximilian; Loo, Billy W.; Xing, Lei

    2018-01-01

    Purpose: The deformable registration of pulmonary computed tomography images before and after radiation therapy is challenging due to anatomic changes from radiation fibrosis. We hypothesize that a line-enhanced registration algorithm can reduce landmark error over the entire lung, including the irradiated regions, when compared to an intensity-based deformable registration algorithm. Materials: Two intensity-based B-spline deformable registration algorithms of pre-radiation therapy and post-radiation therapy images were compared. The first was a control intensity–based algorithm that utilized computed tomography images without modification. The second was a line enhancement algorithm that incorporated a Hessian-based line enhancement filter prior to deformable image registration. Registrations were evaluated based on the landmark error between user-identified landmark pairs and the overlap ratio. Results: Twenty-one patients with pre-radiation therapy and post-radiation therapy scans were included. The median time interval between scans was 1.2 years (range: 0.3-3.3 years). Median landmark errors for the line enhancement algorithm were significantly lower than those for the control algorithm over the entire lung (1.67 vs 1.83 mm; P 5 Gy (2.25 vs 3.31; P 5 Gy dose interval demonstrated a significant inverse relationship with post-radiation therapy fibrosis enhancement after line enhancement filtration (Pearson correlation coefficient = −0.48; P = .03). Conclusion: The line enhancement registration algorithm is a promising method for registering images before and after radiation therapy. PMID:29343206

  15. Line-scanning confocal microscopy for high-resolution imaging of upconverting rare-earth-based contrast agents

    Higgins, Laura M.; Zevon, Margot; Ganapathy, Vidya; Sheng, Yang; Tan, Mei Chee; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-01-01

    Abstract. Rare-earth (RE) doped nanocomposites emit visible luminescence when illuminated with continuous wave near-infrared light, making them appealing candidates for use as contrast agents in biomedical imaging. However, the emission lifetime of these materials is much longer than the pixel dwell times used in scanning intravital microscopy. To overcome this limitation, we have developed a line-scanning confocal microscope for high-resolution, optically sectioned imaging of samples labeled with RE-based nanomaterials. Instrument performance is quantified using calibrated test objects. NaYF4:Er,Yb nanocomposites are imaged in vitro, and in ex vivo tissue specimens, with direct comparison to point-scanning confocal microscopy. We demonstrate that the extended pixel dwell time of line-scanning confocal microscopy enables subcellular-level imaging of these nanomaterials while maintaining optical sectioning. The line-scanning approach thus enables microscopic imaging of this emerging class of contrast agents for preclinical studies, with the potential to be adapted for real-time in vivo imaging in the clinic. PMID:26603495

  16. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion

    Simpson, R., E-mail: raspberry@lanl.gov; Danly, C.; Fatherley, V. E.; Merrill, F. E.; Volegov, P.; Wilde, C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Christensen, K.; Fittinghoff, D.; Grim, G. P.; Izumi, N.; Jedlovec, D.; Skulina, K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-12-15

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.

  17. On-line cone beam CT image guidance for vocal cord tumor targeting

    Osman, Sarah O.S.; Boer, Hans C.J. de; Astreinidou, Eleftheria; Gangsaas, Anne; Heijmen, Ben J.M.; Levendag, Peter C.

    2009-01-01

    Background and purpose: We are developing a technique for highly focused vocal cord irradiation in early glottic carcinoma to optimally treat a target volume confined to a single cord. This technique, in contrast with the conventional methods, aims at sparing the healthy vocal cord. As such a technique requires sub-mm daily targeting accuracy to be effective, we investigate the accuracy achievable with on-line kV-cone beam CT (CBCT) corrections. Materials and methods: CBCT scans were obtained in 10 early glottic cancer patients in each treatment fraction. The grey value registration available in X-ray volume imaging (XVI) software (Elekta, Synergy) was applied to a volume of interest encompassing the thyroid cartilage. After application of the thus derived corrections, residue displacements with respect to the planning CT scan were measured at clearly identifiable relevant landmarks. The intra- and inter-observer variations were also measured. Results: While before correction the systematic displacements of the vocal cords were as large as 2.4 ± 3.3 mm (cranial-caudal population mean ± SD Σ), daily CBCT registration and correction reduced these values to less than 0.2 ± 0.5 mm in all directions. Random positioning errors (SD σ) were reduced to less than 1 mm. Correcting only for translations and not for rotations did not appreciably affect this accuracy. The residue random displacements partly stem from intra-observer variations (SD = 0.2-0.6 mm). Conclusion: The use of CBCT for daily image guidance in combination with standard mask fixation reduced systematic and random set-up errors of the vocal cords to <1 mm prior to the delivery of each fraction dose. Thus, this facilitates the high targeting precision required for a single vocal cord irradiation.

  18. SEGMENTATION OF ENVIRONMENTAL TIME LAPSE IMAGE SEQUENCES FOR THE DETERMINATION OF SHORE LINES CAPTURED BY HAND-HELD SMARTPHONE CAMERAS

    M. Kröhnert

    2017-09-01

    Full Text Available The relevance of globally environmental issues gains importance since the last years with still rising trends. Especially disastrous floods may cause in serious damage within very short times. Although conventional gauging stations provide reliable information about prevailing water levels, they are highly cost-intensive and thus just sparsely installed. Smartphones with inbuilt cameras, powerful processing units and low-cost positioning systems seem to be very suitable wide-spread measurement devices that could be used for geo-crowdsourcing purposes. Thus, we aim for the development of a versatile mobile water level measurement system to establish a densified hydrological network of water levels with high spatial and temporal resolution. This paper addresses a key issue of the entire system: the detection of running water shore lines in smartphone images. Flowing water never appears equally in close-range images even if the extrinsics remain unchanged. Its non-rigid behavior impedes the use of good practices for image segmentation as a prerequisite for water line detection. Consequently, we use a hand-held time lapse image sequence instead of a single image that provides the time component to determine a spatio-temporal texture image. Using a region growing concept, the texture is analyzed for immutable shore and dynamic water areas. Finally, the prevalent shore line is examined by the resultant shapes. For method validation, various study areas are observed from several distances covering urban and rural flowing waters with different characteristics. Future work provides a transformation of the water line into object space by image-to-geometry intersection.

  19. Segmentation of Environmental Time Lapse Image Sequences for the Determination of Shore Lines Captured by Hand-Held Smartphone Cameras

    Kröhnert, M.; Meichsner, R.

    2017-09-01

    The relevance of globally environmental issues gains importance since the last years with still rising trends. Especially disastrous floods may cause in serious damage within very short times. Although conventional gauging stations provide reliable information about prevailing water levels, they are highly cost-intensive and thus just sparsely installed. Smartphones with inbuilt cameras, powerful processing units and low-cost positioning systems seem to be very suitable wide-spread measurement devices that could be used for geo-crowdsourcing purposes. Thus, we aim for the development of a versatile mobile water level measurement system to establish a densified hydrological network of water levels with high spatial and temporal resolution. This paper addresses a key issue of the entire system: the detection of running water shore lines in smartphone images. Flowing water never appears equally in close-range images even if the extrinsics remain unchanged. Its non-rigid behavior impedes the use of good practices for image segmentation as a prerequisite for water line detection. Consequently, we use a hand-held time lapse image sequence instead of a single image that provides the time component to determine a spatio-temporal texture image. Using a region growing concept, the texture is analyzed for immutable shore and dynamic water areas. Finally, the prevalent shore line is examined by the resultant shapes. For method validation, various study areas are observed from several distances covering urban and rural flowing waters with different characteristics. Future work provides a transformation of the water line into object space by image-to-geometry intersection.

  20. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure

    Yuanqiang Ren

    2017-05-01

    Full Text Available Structural health monitoring (SHM of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.

  1. Expansion of Smartwatch Touch Interface from Touchscreen to Around Device Interface Using Infrared Line Image Sensors

    Soo-Chul Lim

    2015-07-01

    Full Text Available Touchscreen interaction has become a fundamental means of controlling mobile phones and smartwatches. However, the small form factor of a smartwatch limits the available interactive surface area. To overcome this limitation, we propose the expansion of the touch region of the screen to the back of the user’s hand. We developed a touch module for sensing the touched finger position on the back of the hand using infrared (IR line image sensors, based on the calibrated IR intensity and the maximum intensity region of an IR array. For complete touch-sensing solution, a gyroscope installed in the smartwatch is used to read the wrist gestures. The gyroscope incorporates a dynamic time warping gesture recognition algorithm for eliminating unintended touch inputs during the free motion of the wrist while wearing the smartwatch. The prototype of the developed sensing module was implemented in a commercial smartwatch, and it was confirmed that the sensed positional information of the finger when it was used to touch the back of the hand could be used to control the smartwatch graphical user interface. Our system not only affords a novel experience for smartwatch users, but also provides a basis for developing other useful interfaces.

  2. Expansion of Smartwatch Touch Interface from Touchscreen to Around Device Interface Using Infrared Line Image Sensors.

    Lim, Soo-Chul; Shin, Jungsoon; Kim, Seung-Chan; Park, Joonah

    2015-07-09

    Touchscreen interaction has become a fundamental means of controlling mobile phones and smartwatches. However, the small form factor of a smartwatch limits the available interactive surface area. To overcome this limitation, we propose the expansion of the touch region of the screen to the back of the user's hand. We developed a touch module for sensing the touched finger position on the back of the hand using infrared (IR) line image sensors, based on the calibrated IR intensity and the maximum intensity region of an IR array. For complete touch-sensing solution, a gyroscope installed in the smartwatch is used to read the wrist gestures. The gyroscope incorporates a dynamic time warping gesture recognition algorithm for eliminating unintended touch inputs during the free motion of the wrist while wearing the smartwatch. The prototype of the developed sensing module was implemented in a commercial smartwatch, and it was confirmed that the sensed positional information of the finger when it was used to touch the back of the hand could be used to control the smartwatch graphical user interface. Our system not only affords a novel experience for smartwatch users, but also provides a basis for developing other useful interfaces.

  3. On-Line GIS Analysis and Image Processing for Geoportal Kielce/poland Development

    Hejmanowska, B.; Głowienka, E.; Florek-Paszkowski, R.

    2016-06-01

    GIS databases are widely available on the Internet, but mainly for visualization with limited functionality; very simple queries are possible i.e. attribute query, coordinate readout, line and area measurements or pathfinder. A little more complex analysis (i.e. buffering or intersection) are rare offered. Paper aims at the concept of Geoportal functionality development in the field of GIS analysis. Multi-Criteria Evaluation (MCE) is planned to be implemented in web application. OGC Service is used for data acquisition from the server and results visualization. Advanced GIS analysis is planned in PostGIS and Python programming. In the paper an example of MCE analysis basing on Geoportal Kielce is presented. Other field where Geoportal can be developed is implementation of processing new available satellite images free of charge (Sentinel-2, Landsat 8, ASTER, WV-2). Now we are witnessing a revolution in access to the satellite imagery without charge. This should result in an increase of interest in the use of these data in various fields by a larger number of users, not necessarily specialists in remote sensing. Therefore, it seems reasonable to expand the functionality of Internet's tools for data processing by non-specialists, by automating data collection and prepared predefined analysis.

  4. Expansion of Smartwatch Touch Interface from Touchscreen to Around Device Interface Using Infrared Line Image Sensors

    Lim, Soo-Chul; Shin, Jungsoon; Kim, Seung-Chan; Park, Joonah

    2015-01-01

    Touchscreen interaction has become a fundamental means of controlling mobile phones and smartwatches. However, the small form factor of a smartwatch limits the available interactive surface area. To overcome this limitation, we propose the expansion of the touch region of the screen to the back of the user’s hand. We developed a touch module for sensing the touched finger position on the back of the hand using infrared (IR) line image sensors, based on the calibrated IR intensity and the maximum intensity region of an IR array. For complete touch-sensing solution, a gyroscope installed in the smartwatch is used to read the wrist gestures. The gyroscope incorporates a dynamic time warping gesture recognition algorithm for eliminating unintended touch inputs during the free motion of the wrist while wearing the smartwatch. The prototype of the developed sensing module was implemented in a commercial smartwatch, and it was confirmed that the sensed positional information of the finger when it was used to touch the back of the hand could be used to control the smartwatch graphical user interface. Our system not only affords a novel experience for smartwatch users, but also provides a basis for developing other useful interfaces. PMID:26184202

  5. ON-LINE GIS ANALYSIS AND IMAGE PROCESSING FOR GEOPORTAL KIELCE/POLAND DEVELOPMENT

    B. Hejmanowska

    2016-06-01

    Full Text Available GIS databases are widely available on the Internet, but mainly for visualization with limited functionality; very simple queries are possible i.e. attribute query, coordinate readout, line and area measurements or pathfinder. A little more complex analysis (i.e. buffering or intersection are rare offered. Paper aims at the concept of Geoportal functionality development in the field of GIS analysis. Multi-Criteria Evaluation (MCE is planned to be implemented in web application. OGC Service is used for data acquisition from the server and results visualization. Advanced GIS analysis is planned in PostGIS and Python programming. In the paper an example of MCE analysis basing on Geoportal Kielce is presented. Other field where Geoportal can be developed is implementation of processing new available satellite images free of charge (Sentinel-2, Landsat 8, ASTER, WV-2. Now we are witnessing a revolution in access to the satellite imagery without charge. This should result in an increase of interest in the use of these data in various fields by a larger number of users, not necessarily specialists in remote sensing. Therefore, it seems reasonable to expand the functionality of Internet's tools for data processing by non-specialists, by automating data collection and prepared predefined analysis.

  6. Facile Fabrication of Animal-Specific Positioning Molds For Multi-modality Molecular Imaging

    Park, Jeong Chan; Oh, Ji Eun; Woo, Seung Tae

    2008-01-01

    Recently multi-modal imaging system has become widely adopted in molecular imaging. We tried to fabricate animal-specific positioning molds for PET/MR fusion imaging using easily available molding clay and rapid foam. The animal-specific positioning molds provide immobilization and reproducible positioning of small animal. Herein, we have compared fiber-based molding clay with rapid foam in fabricating the molds of experimental animal. The round bottomed-acrylic frame, which fitted into microPET gantry, was prepared at first. The experimental mice was anesthetized and placed on the mold for positioning. Rapid foam and fiber-based clay were used to fabricate the mold. In case of both rapid foam and the clay, the experimental animal needs to be pushed down smoothly into the mold for positioning. However, after the mouse was removed, the fabricated clay needed to be dried completely at 60 .deg. C in oven overnight for hardening. Four sealed pipe tips containing [ 18 F]FDG solution were used as fiduciary markers. After injection of [ 18 F]FDG via tail vein, microPET scanning was performed. Successively, MRI scanning was followed in the same animal. Animal-specific positioning molds were fabricated using rapid foam and fiber-based molding clay for multimodality imaging. Functional and anatomical images were obtained with microPET and MRI, respectively. The fused PET/MR images were obtained using freely available AMIDE program. Animal-specific molds were successfully prepared using easily available rapid foam, molding clay and disposable pipet tips. Thanks to animal-specific molds, fusion images of PET and MR were co-registered with negligible misalignment

  7. Numerical suppression of the twin image in in-line holography of a volume of micro-objects

    Denis, L; Fournier, C; Fournel, T; Ducottet, C

    2008-01-01

    We address the twin-image problem that arises in holography due to the lack of phase information in intensity measurements. This problem is of great importance in in-line holography where spatial elimination of the twin image cannot be carried out as in off-axis holography. A unifying description of existing digital suppression methods is given in the light of deconvolution techniques. Holograms of objects spread in 3D cannot be processed through available approaches. We suggest an iterative algorithm and demonstrate its efficacy on both simulated and real data. This method is suitable to enhance the reconstructed images from a digital hologram of small objects

  8. Material specific X-ray imaging using an energy-dispersive pixel detector

    Egan, Christopher K., E-mail: christopher.egan@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul [STFC Rutherford Appleton Laboratory, Harwell, Didcot, Oxfordshire OX11 0QX (United Kingdom); Jacques, Simon D.M.; Cernik, Robert J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-04-01

    By imaging the X-ray spectral properties or ‘colours’ we have shown how material specific imaging can be performed. Using a pixelated energy-dispersive X-ray detector we record the absorbed and emitted hard X-radiation and measure the energy (colour) and intensity of the photons. Using this technology, we are not only able to obtain attenuation contrast but also to image chemical (elemental) variations inside objects, potentially opening up a very wide range of applications from materials science to medical diagnostics.

  9. Molecular Imaging Agents Specific for the Annulus Fibrosus of the Intervertebral Disk

    Summer L. Gibbs-Strauss

    2010-05-01

    Full Text Available Low back pain is a prevalent medical condition that is difficult to diagnose and treat. Current imaging methods are unable to correlate pain reliably with spinal structures, and surgical removal of painful damaged or degenerating disks is technically challenging. A contrast agent specific for the intervertebral disk could assist in the detection, diagnosis, and surgical treatment of low back pain. The styryl pyridinium (FM fluorophores were characterized and structure-activity relationships between chemical structure and in vivo uptake were established. Two novel FM fluorophores with improved optical properties for imaging the intervertebral disks were synthesized and evaluated in mice, rats, and pigs. After a single systemic injection, eight of eight FM fluorophores provided high-contrast imaging of the trigeminal ganglia, whereas six of eight provided high-contrast imaging of the dorsal root ganglia. Unexpectedly, three of eight FM fluorophores provided high-contrast imaging of annulus fibrosus tissue of the intervertebral disks, confirmed histologically. We present the first known contrast agent specific for the intervertebral disks and identify the chemical structural motif that mediates uptake. FM fluorophores could be used for image-guided surgery to assist in the removal of intervertebral disk and lay the foundation for derivatives for magnetic resonance imaging and positron emission tomography.

  10. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    Danly, C. R.; Day, T. H.; Herrmann, H.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N.; Izumi, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-04-15

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  11. Audit of a policy of magnetic resonance imaging with diffusion-weighted imaging as first-line neuroimaging for in-patients with clinically suspected acute stroke

    Buckley, B.T.; Wainwright, A.; Meagher, T.; Briley, D.

    2003-01-01

    AIM: To audit the feasibility and use of diffusion-weighted (DW) magnetic resonance imaging (MRI) as initial neuroimaging for in-patients with clinically suspected acute stroke. MATERIALS AND METHODS: In April 2000, MRI with DW and T2-weighted sequence was locally instituted as initial neuroimaging for patients with clinically suspected acute stroke. This retrospective study reviewed imaging performed for in-patients with suspected acute stroke over a 9-month period. Data were collected on image type, result and need for repeat imaging. RESULTS: During the study period, 124 patients had neuroimaging for suspected cerebrovascular accident, and 119 were MRI safe. Eighty-eight (73.9%) patients underwent DW MRI as first-line investigation. Five patients were not MRI safe and 31 had computed tomography (CT) as first-line imaging due to lack of available MRI capacity. Repeat neuroimaging was performed in 16 (12.9%) patients. Study times were comparable for both types of neuroimaging: a mean of 13 min for MRI and 11 min for CT. CONCLUSION: The audit standard was achieved in 88 (73.9%) patients. The use of DW MRI as a first-line investigation for patients with a clinical diagnosis of acute stroke is achievable in a district general hospital setting

  12. Audit of a policy of magnetic resonance imaging with diffusion-weighted imaging as first-line neuroimaging for in-patients with clinically suspected acute stroke

    Buckley, B.T.; Wainwright, A.; Meagher, T.; Briley, D

    2003-03-01

    AIM: To audit the feasibility and use of diffusion-weighted (DW) magnetic resonance imaging (MRI) as initial neuroimaging for in-patients with clinically suspected acute stroke. MATERIALS AND METHODS: In April 2000, MRI with DW and T2-weighted sequence was locally instituted as initial neuroimaging for patients with clinically suspected acute stroke. This retrospective study reviewed imaging performed for in-patients with suspected acute stroke over a 9-month period. Data were collected on image type, result and need for repeat imaging. RESULTS: During the study period, 124 patients had neuroimaging for suspected cerebrovascular accident, and 119 were MRI safe. Eighty-eight (73.9%) patients underwent DW MRI as first-line investigation. Five patients were not MRI safe and 31 had computed tomography (CT) as first-line imaging due to lack of available MRI capacity. Repeat neuroimaging was performed in 16 (12.9%) patients. Study times were comparable for both types of neuroimaging: a mean of 13 min for MRI and 11 min for CT. CONCLUSION: The audit standard was achieved in 88 (73.9%) patients. The use of DW MRI as a first-line investigation for patients with a clinical diagnosis of acute stroke is achievable in a district general hospital setting.

  13. Large-scale building scenes reconstruction from close-range images based on line and plane feature

    Ding, Yi; Zhang, Jianqing

    2007-11-01

    Automatic generate 3D models of buildings and other man-made structures from images has become a topic of increasing importance, those models may be in applications such as virtual reality, entertainment industry and urban planning. In this paper we address the main problems and available solution for the generation of 3D models from terrestrial images. We first generate a coarse planar model of the principal scene planes and then reconstruct windows to refine the building models. There are several points of novelty: first we reconstruct the coarse wire frame model use the line segments matching with epipolar geometry constraint; Secondly, we detect the position of all windows in the image and reconstruct the windows by established corner points correspondences between images, then add the windows to the coarse model to refine the building models. The strategy is illustrated on image triple of college building.

  14. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.

    Peng, Tao; Hang, Howard C

    2016-11-02

    Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.

  15. Medical Image Processing for Fully Integrated Subject Specific Whole Brain Mesh Generation

    Chih-Yang Hsu

    2015-05-01

    Full Text Available Currently, anatomically consistent segmentation of vascular trees acquired with magnetic resonance imaging requires the use of multiple image processing steps, which, in turn, depend on manual intervention. In effect, segmentation of vascular trees from medical images is time consuming and error prone due to the tortuous geometry and weak signal in small blood vessels. To overcome errors and accelerate the image processing time, we introduce an automatic image processing pipeline for constructing subject specific computational meshes for entire cerebral vasculature, including segmentation of ancillary structures; the grey and white matter, cerebrospinal fluid space, skull, and scalp. To demonstrate the validity of the new pipeline, we segmented the entire intracranial compartment with special attention of the angioarchitecture from magnetic resonance imaging acquired for two healthy volunteers. The raw images were processed through our pipeline for automatic segmentation and mesh generation. Due to partial volume effect and finite resolution, the computational meshes intersect with each other at respective interfaces. To eliminate anatomically inconsistent overlap, we utilized morphological operations to separate the structures with a physiologically sound gap spaces. The resulting meshes exhibit anatomically correct spatial extent and relative positions without intersections. For validation, we computed critical biometrics of the angioarchitecture, the cortical surfaces, ventricular system, and cerebrospinal fluid (CSF spaces and compared against literature values. Volumina and surface areas of the computational mesh were found to be in physiological ranges. In conclusion, we present an automatic image processing pipeline to automate the segmentation of the main intracranial compartments including a subject-specific vascular trees. These computational meshes can be used in 3D immersive visualization for diagnosis, surgery planning with haptics

  16. RGB Color Cube-Based Histogram Specification for Hue-Preserving Color Image Enhancement

    Kohei Inoue

    2017-07-01

    Full Text Available A large number of color image enhancement methods are based on the methods for grayscale image enhancement in which the main interest is contrast enhancement. However, since colors usually have three attributes, including hue, saturation and intensity of more than only one attribute of grayscale values, the naive application of the methods for grayscale images to color images often results in unsatisfactory consequences. Conventional hue-preserving color image enhancement methods utilize histogram equalization (HE for enhancing the contrast. However, they cannot always enhance the saturation simultaneously. In this paper, we propose a histogram specification (HS method for enhancing the saturation in hue-preserving color image enhancement. The proposed method computes the target histogram for HS on the basis of the geometry of RGB (rad, green and blue color space, whose shape is a cube with a unit side length. Therefore, the proposed method includes no parameters to be set by users. Experimental results show that the proposed method achieves higher color saturation than recent parameter-free methods for hue-preserving color image enhancement. As a result, the proposed method can be used for an alternative method of HE in hue-preserving color image enhancement.

  17. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models

    Dhou, S; Hurwitz, M; Cai, W; Rottmann, J; Williams, C; Wagar, M; Berbeco, R; Lewis, J H; Mishra, P; Li, R; Ionascu, D

    2015-01-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. (paper)

  18. Application of off-line image processing for optimization in chest computed radiography using a low cost system.

    Muhogora, Wilbroad E; Msaki, Peter; Padovani, Renato

    2015-03-08

     The objective of this study was to improve the visibility of anatomical details by applying off-line postimage processing in chest computed radiography (CR). Four spatial domain-based external image processing techniques were developed by using MATLAB software version 7.0.0.19920 (R14) and image processing tools. The developed techniques were implemented to sample images and their visual appearances confirmed by two consultant radiologists to be clinically adequate. The techniques were then applied to 200 chest clinical images and randomized with other 100 images previously processed online. These 300 images were presented to three experienced radiologists for image quality assessment using standard quality criteria. The mean and ranges of the average scores for three radiologists were characterized for each of the developed technique and imaging system. The Mann-Whitney U-test was used to test the difference of details visibility between the images processed using each of the developed techniques and the corresponding images processed using default algorithms. The results show that the visibility of anatomical features improved significantly (0.005 ≤ p ≤ 0.02) with combinations of intensity values adjustment and/or spatial linear filtering techniques for images acquired using 60 ≤ kVp ≤ 70. However, there was no improvement for images acquired using 102 ≤ kVp ≤ 107 (0.127 ≤ p ≤ 0.48). In conclusion, the use of external image processing for optimization can be effective in chest CR, but should be implemented in consultations with the radiologists.

  19. In-line phase-contrast stereoscopic X-ray imaging for radiological purposes: An initial experimental study

    Siegbahn, E.A.; Coan, P.; Zhou, S.-A.; Bravin, A.; Brahme, A.

    2011-01-01

    We report results from a pilot study in which the in-line propagation-based phase-contrast imaging technique is combined with the stereoscopic method. Two phantoms were imaged at several sample-detector distances using monochromatic, 30 keV, X-rays. High contrast- and spatial-resolution phase-contrast stereoscopic pairs of X-ray images were constructed using the anaglyph approach and a vivid stereoscopic effect was demonstrated. On the other hand, images of the same phantoms obtained with a shorter sample-to-detector distance, but otherwise the same experimental conditions (i.e. the same X-ray energy and absorbed radiation dose), corresponding to the conventional attenuation-based imaging mode, hardly revealed stereoscopic effects because of the lower image contrast produced. These results have confirmed our hypothesis that stereoscopic X-ray images of samples with objects composed of low-atomic-number elements are considerably improved if phase-contrast imaging is used. It is our belief that the high-resolution phase-contrast stereoscopic method will be a valuable new medical imaging tool for radiologists and that it will be of help to enhance the diagnostic capability in the examination of patients in future clinical practice, even though further efforts will be needed to optimize the system performance.

  20. Characterization of a human cell line stably over-expressing the candidate oncogene, dual specificity phosphatase 12.

    Erica L Cain

    2011-04-01

    Full Text Available Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the "driver" gene(s within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21-1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6 and the dual specificity phosphatase 12 (dusp12. While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized.To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1 which is implicated in metastasis.Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted.

  1. An automated, quantitative, and case-specific evaluation of deformable image registration in computed tomography images

    Kierkels, R. G. J.; den Otter, L. A.; Korevaar, E. W.; Langendijk, J. A.; van der Schaaf, A.; Knopf, A. C.; Sijtsema, N. M.

    2018-02-01

    A prerequisite for adaptive dose-tracking in radiotherapy is the assessment of the deformable image registration (DIR) quality. In this work, various metrics that quantify DIR uncertainties are investigated using realistic deformation fields of 26 head and neck and 12 lung cancer patients. Metrics related to the physiologically feasibility (the Jacobian determinant, harmonic energy (HE), and octahedral shear strain (OSS)) and numerically robustness of the deformation (the inverse consistency error (ICE), transitivity error (TE), and distance discordance metric (DDM)) were investigated. The deformable registrations were performed using a B-spline transformation model. The DIR error metrics were log-transformed and correlated (Pearson) against the log-transformed ground-truth error on a voxel level. Correlations of r  ⩾  0.5 were found for the DDM and HE. Given a DIR tolerance threshold of 2.0 mm and a negative predictive value of 0.90, the DDM and HE thresholds were 0.49 mm and 0.014, respectively. In conclusion, the log-transformed DDM and HE can be used to identify voxels at risk for large DIR errors with a large negative predictive value. The HE and/or DDM can therefore be used to perform automated quality assurance of each CT-based DIR for head and neck and lung cancer patients.

  2. Upregulation of meiosis-specific genes in lymphoma cell lines following genotoxic insult and induction of mitotic catastrophe

    Kalejs, Martins; Ivanov, Andrey; Plakhins, Gregory; Cragg, Mark S; Emzinsh, Dzintars; Illidge, Timothy M; Erenpreisa, Jekaterina

    2006-01-01

    We have previously reported that p53 mutated radioresistant lymphoma cell lines undergo mitotic catastrophe after irradiation, resulting in metaphase arrest and the generation of endopolyploid cells. A proportion of these endopolyploid cells then undergo a process of de-polyploidisation, stages of which are partially reminiscent of meiotic prophase. Furthermore, expression of meiosis-specific proteins of the cancer/testis antigens group of genes has previously been reported in tumours. We therefore investigated whether expression of meiosis-specific genes was associated with the polyploidy response in our tumour model. Three lymphoma cell lines, Namalwa, WI-L2-NS and TK6, of varying p53 status were exposed to a single 10 Gy dose of gamma radiation and their responses assessed over an extended time course. DNA flow cytometry and mitotic counts were used to assess the kinetics and extent of polyploidisation and mitotic progression. Expression of meiotic genes was analysed using RT-PCR and western blotting. In addition, localisation of the meiotic cohesin REC8 and its relation to centromeres was analysed by immunofluorescence. The principal meiotic regulator MOS was found to be significantly post-transcriptionally up-regulated after irradiation in p53 mutated but not p53 wild-type lymphoma cells. The maximum expression of MOS coincided with the maximal fraction of metaphase arrested cells and was directly proportional to both the extent of the arrest and the number of endopolyploid cells that subsequently emerged. The meiotic cohesin REC8 was also found to be up-regulated after irradiation, linking sister chromatid centromeres in the metaphase-arrested and subsequent giant cells. Finally, RT-PCR revealed expression of the meiosis-prophase genes, DMC1, STAG3, SYCP3 and SYCP1. We conclude that multiple meiotic genes are aberrantly activated during mitotic catastrophe in p53 mutated lymphoma cells after irradiation. Furthermore, we suggest that the coordinated expression

  3. Plasmodium falciparum parasites expressing pregnancy-specific variant surface antigens adhere strongly to the choriocarcinoma cell line BeWo

    Haase, Rikke N; Megnekou, Rosette; Lundquist, Maja

    2006-01-01

    Placenta-sequestering Plasmodium falciparum parasites causing pregnancy-associated malaria express pregnancy-specific variant surface antigens (VSA(PAM)). We report here that VSA(PAM)-expressing patient isolates adhere strongly to the choriocarcinoma cell line BeWo and that the BeWo line can...... be used to efficiently select for VSA(PAM) expression in vitro....

  4. Gender differences in colour naming performance for gender specific body shape images.

    Elliman, N A; Green, M W; Wan, W K

    1998-03-01

    Males are increasingly subjected to pressures to conform to aesthetic body stereotypes. There is, however, comparatively little published research on the aetiology of male body shape concerns. Two experiments are presented, which investigate the relationship between gender specific body shape concerns and colour-naming performance. Each study comprised a between subject design, in which each subject was tested on a single occasion. A pictorial version of a modified Stroop task was used in both studies. Subjects colour-named gender specific obese and thin body shape images and semantically homogeneous neutral images (birds) presented in a blocked format. The first experiment investigated female subjects (N = 68) and the second investigated males (N = 56). Subjects also completed a self-report measure of eating behaviour. Currently dieting female subjects exhibited significant colour-naming differences between obese and neutral images. A similar pattern of colour-naming performance was found to be related to external eating in the male subjects.

  5. A Domain Specific Language for Performance Evaluation of Medical Imaging Systems

    van den Berg, Freek; Remke, Anne Katharina Ingrid; Haverkort, Boudewijn R.H.M.; Turau, Volker; Kwiatkowska, Marta; Mangharam, Rahul; Weyer, Christoph

    2014-01-01

    We propose iDSL, a domain specific language and toolbox for performance evaluation of Medical Imaging Systems. iDSL provides transformations to MoDeST models, which are in turn converted into UPPAAL and discrete-event MODES models. This enables automated performance evaluation by means of model

  6. Patient-specific lean body mass can be estimated from limited-coverage computed tomography images.

    Devriese, Joke; Beels, Laurence; Maes, Alex; van de Wiele, Christophe; Pottel, Hans

    2018-06-01

    In PET/CT, quantitative evaluation of tumour metabolic activity is possible through standardized uptake values, usually normalized for body weight (BW) or lean body mass (LBM). Patient-specific LBM can be estimated from whole-body (WB) CT images. As most clinical indications only warrant PET/CT examinations covering head to midthigh, the aim of this study was to develop a simple and reliable method to estimate LBM from limited-coverage (LC) CT images and test its validity. Head-to-toe PET/CT examinations were retrospectively retrieved and semiautomatically segmented into tissue types based on thresholding of CT Hounsfield units. LC was obtained by omitting image slices. Image segmentation was validated on the WB CT examinations by comparing CT-estimated BW with actual BW, and LBM estimated from LC images were compared with LBM estimated from WB images. A direct method and an indirect method were developed and validated on an independent data set. Comparing LBM estimated from LC examinations with estimates from WB examinations (LBMWB) showed a significant but limited bias of 1.2 kg (direct method) and nonsignificant bias of 0.05 kg (indirect method). This study demonstrates that LBM can be estimated from LC CT images with no significant difference from LBMWB.

  7. Quality Assurance of Onboard Megavoltage Computed Tomography Imaging and Target Localization Systems for On- and Off-Line Image-Guided Radiotherapy

    Langen, Katja M.; Meeks, Sanford L.; Pouliot, Jean

    2008-01-01

    We reviewed the quality assurance procedures that have been used to test fan- and cone-beam megavoltage-based in-room imaging systems. Phantom-based tests have been used to establish the geometric accuracy and precision of megavoltage-based systems. However, the clinical implementation of any system is accompanied by challenges that are best tested in a clinical setting using clinical images. To objectively judge and monitor image quality, a set of standard tests and phantoms can be used. The image noise and spatial and contrast resolution have been assessed using standard computed tomography phantoms. The dose to the patient resulting from the imaging procedure can be determined using calculations or measurements. The off-line use of patient images is of interest for the evaluation of dosimetric changes throughout the treatment course. The accuracy of the dosimetric calculations based on the megavoltage images has been tested for the fan- and cone-beam systems. Some of the described tests are typically performed before the clinical implementation of the imaging system; others are suited to monitor the system's performances

  8. Scan-Less Line Field Optical Coherence Tomography, with Automatic Image Segmentation, as a Measurement Tool for Automotive Coatings

    Samuel Lawman

    2017-04-01

    Full Text Available The measurement of the thicknesses of layers is important for the quality assurance of industrial coating systems. Current measurement techniques only provide a limited amount of information. Here, we show that spectral domain Line Field (LF Optical Coherence Tomography (OCT is able to return to the user a cross sectional B-Scan image in a single shot with no mechanical moving parts. To reliably extract layer thicknesses from such images of automotive paint systems, we present an automatic graph search image segmentation algorithm. To show that the algorithm works independently of the OCT device, the measurements are repeated with a separate time domain Full Field (FF OCT system. This gives matching mean thickness values within the standard deviations of the measured thicknesses across each B-Scan image. The combination of an LF-OCT with graph search segmentation is potentially a powerful technique for the quality assurance of non-opaque industrial coating layers.

  9. Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform.

    Hui, Jingjing; Bao, Lei; Li, Siqiao; Zhang, Yi; Feng, Yimei; Ding, Lin; Ju, Huangxian

    2017-07-03

    Live cell imaging of protein-specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole-cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein-specific glycoform information is reported. The proof-of-concept protocol developed for MUC1-specific terminal galactose/N-acetylgalactosamine (Gal/GalNAc) combines affinity binding, off-on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. New Method for Simultaneous Species-Specific Identification of Equine Strongyles (Nematoda, Strongylida) by Reverse Line Blot Hybridization▿

    Traversa, Donato; Iorio, Raffaella; Klei, Thomas R.; Kharchenko, Vitaliy A.; Gawor, Jakub; Otranto, Domenico; Sparagano, Olivier A. E.

    2007-01-01

    The ability of a reverse line blot (RLB) assay to identify 13 common species of equine small strongyles (cyathostomins) and to discriminate them from three Strongylus spp. (large strongyles) was demonstrated. The assay relied on the specific hybridization of PCR-amplified intergenic spacer DNA fragments of the nuclear ribosomal DNA to membrane-bound species-specific probes. All cyathostomins examined were unequivocally identified and simultaneously discriminated from each other and from three large strongyles (Strongylus edentatus, Strongylus equinus, and Strongylus vulgaris). This assay will enable the accurate and rapid identification of equine cyathostomins irrespective of their life cycle stage, opening important avenues for a better understanding of their biology and epidemiology and of the pathogenesis of cyathostomin-associated disease. In particular, this RLB method promises to be a powerful diagnostic tool to determine the roles of individual species in the pathogenesis of mixed infections and to elucidate some aspects of cyathostominosis. Also, it could represent a basic step toward the development of a rapid and simple molecular test for the early detection of drug-resistant genotypes of horse strongyle species. PMID:17626168

  11. On-line analysis of biosignals for the automation of total and specific sleep deprivation in the rat

    ENNIO A VIVALDI

    2008-12-01

    Full Text Available A computer-based system that automates sleep studies, including sleep deprivation paradigms, is described. The system allows for total or REM-specific sleep deprivation and is based on a reliable, fast-responding, on-line state detection algorithm linked to a dependable intervention device. Behavioral state detection is achieved by dimensión reduction of short-term EEG power spectrum. Interventions are made by serial outputs to servomotors that move a cage with different patterns and variable intensity. The system can adapt itself to individual characteristics and to changes in recording conditions. Customized protocols can be designed by defining the states or stages to be deprived, including scheduling temporal patterns. A detailed analysis of the relevant signáis during and after deprivation is readily available. Data is presented from two experimental designs in rats. One consisted of specific REM-sleep short-term deprivation and the other of 10-hour total sleep deprivation. An outline of conceptual and practical considerations involved in the automation of laboratory set-ups oriented to biosignal analysis is provided. Careful monitoring of sleep EEG variables during sleep deprivation suggests peculiarities of brain functioning in that condition. A corollary is that sleep deprivation should not be considered to be merely a forced prolonged wakefulness.

  12. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F. (Hagedorn Research Laboratory, Gentofte (Denmark))

    1988-09-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression.

  13. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F.

    1988-01-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression

  14. Melting of the flux line lattice observed by specific heat experiments in YBa2Cu3O7-δ

    Roulin, M.; Junod, A.; Erb, A.; Walker, E.

    1996-01-01

    High resolution adiabatic specific heat experiments on YBa 2 Cu 3 O 7-δ (0≤δ≤0.05) are performed in magnetic fields from 0 to 14 T (B parallel c and B perpendicular c). In a 0.3 gram, twinned crystal with strong pinning, a step is consistently observed at the melting temperature T m of the vortex solid up to a critical point that depends on δ. The field B m and step temperature T m obey the relation B m =B m0 (δ)(1-T m /T c ) ∼4/3 . The anisotropy of B m and that of the upper critical field B c2 are found to be equal. Alternatively, in a 18 mg, twinned crystal of high purity with low pinning, first-order-like specific heat peaks are observed on the melting line from 8 to 14 T. The entropy under these peaks is ∼0.5 k B /vortex/bilayer. These characteristic features are attributed to the melting of a vortex glass in the former case and that of a vortex lattice in the latter case

  15. Image registration algorithm for high-voltage electric power live line working robot based on binocular vision

    Li, Chengqi; Ren, Zhigang; Yang, Bo; An, Qinghao; Yu, Xiangru; Li, Jinping

    2017-12-01

    In the process of dismounting and assembling the drop switch for the high-voltage electric power live line working (EPL2W) robot, one of the key problems is the precision of positioning for manipulators, gripper and the bolts used to fix drop switch. To solve it, we study the binocular vision system theory of the robot and the characteristic of dismounting and assembling drop switch. We propose a coarse-to-fine image registration algorithm based on image correlation, which can improve the positioning precision of manipulators and bolt significantly. The algorithm performs the following three steps: firstly, the target points are marked respectively in the right and left visions, and then the system judges whether the target point in right vision can satisfy the lowest registration accuracy by using the similarity of target points' backgrounds in right and left visions, this is a typical coarse-to-fine strategy; secondly, the system calculates the epipolar line, and then the regional sequence existing matching points is generated according to neighborhood of epipolar line, the optimal matching image is confirmed by calculating the similarity between template image in left vision and the region in regional sequence according to correlation matching; finally, the precise coordinates of target points in right and left visions are calculated according to the optimal matching image. The experiment results indicate that the positioning accuracy of image coordinate is within 2 pixels, the positioning accuracy in the world coordinate system is within 3 mm, the positioning accuracy of binocular vision satisfies the requirement dismounting and assembling the drop switch.

  16. Image matching for digital close-range stereo photogrammetry based on constraints of Delaunay triangulated network and epipolar-line

    Zhang, K.; Sheng, Y. H.; Li, Y. Q.; Han, B.; Liang, Ch.; Sha, W.

    2006-10-01

    In the field of digital photogrammetry and computer vision, the determination of conjugate points in a stereo image pair, referred to as "image matching," is the critical step to realize automatic surveying and recognition. Traditional matching methods encounter some problems in the digital close-range stereo photogrammetry, because the change of gray-scale or texture is not obvious in the close-range stereo images. The main shortcoming of traditional matching methods is that geometric information of matching points is not fully used, which will lead to wrong matching results in regions with poor texture. To fully use the geometry and gray-scale information, a new stereo image matching algorithm is proposed in this paper considering the characteristics of digital close-range photogrammetry. Compared with the traditional matching method, the new algorithm has three improvements on image matching. Firstly, shape factor, fuzzy maths and gray-scale projection are introduced into the design of synthetical matching measure. Secondly, the topology connecting relations of matching points in Delaunay triangulated network and epipolar-line are used to decide matching order and narrow the searching scope of conjugate point of the matching point. Lastly, the theory of parameter adjustment with constraint is introduced into least square image matching to carry out subpixel level matching under epipolar-line constraint. The new algorithm is applied to actual stereo images of a building taken by digital close-range photogrammetric system. The experimental result shows that the algorithm has a higher matching speed and matching accuracy than pyramid image matching algorithm based on gray-scale correlation.

  17. Registration for Optical Multimodal Remote Sensing Images Based on FAST Detection, Window Selection, and Histogram Specification

    Xiaoyang Zhao

    2018-04-01

    Full Text Available In recent years, digital frame cameras have been increasingly used for remote sensing applications. However, it is always a challenge to align or register images captured with different cameras or different imaging sensor units. In this research, a novel registration method was proposed. Coarse registration was first applied to approximately align the sensed and reference images. Window selection was then used to reduce the search space and a histogram specification was applied to optimize the grayscale similarity between the images. After comparisons with other commonly-used detectors, the fast corner detector, FAST (Features from Accelerated Segment Test, was selected to extract the feature points. The matching point pairs were then detected between the images, the outliers were eliminated, and geometric transformation was performed. The appropriate window size was searched and set to one-tenth of the image width. The images that were acquired by a two-camera system, a camera with five imaging sensors, and a camera with replaceable filters mounted on a manned aircraft, an unmanned aerial vehicle, and a ground-based platform, respectively, were used to evaluate the performance of the proposed method. The image analysis results showed that, through the appropriate window selection and histogram specification, the number of correctly matched point pairs had increased by 11.30 times, and that the correct matching rate had increased by 36%, compared with the results based on FAST alone. The root mean square error (RMSE in the x and y directions was generally within 0.5 pixels. In comparison with the binary robust invariant scalable keypoints (BRISK, curvature scale space (CSS, Harris, speed up robust features (SURF, and commercial software ERDAS and ENVI, this method resulted in larger numbers of correct matching pairs and smaller, more consistent RMSE. Furthermore, it was not necessary to choose any tie control points manually before registration

  18. Generation and characterization of peptide-specific, MHC-restricted cytotoxic T lymphocyte (CTL) and helper T cell lines from unprimed T cells under microculture conditions.

    Sambhara, S R; Upadhya, A G; Miller, R G

    1990-06-12

    We describe a microculture system for the generation of CTL and T helper cells against peptides. Tryptic digest and cyanogen bromide fragments of chicken ovalbumin and synthetic peptides of ovalbumin (323-339) and influenza virus (NP 365-380) were used to generate CTL and T helper lines from unprimed T cells. These lines were both peptide-specific and MHC-restricted. The relative ease of generating peptide-specific, MHC-restricted CTL and helper T cell lines with as few as 10(6) unprimed lymphocytes can be an efficient method of detecting potential immunogenic determinants of an antigen.

  19. Probing Xylan-Specific Raman Bands for Label-Free Imaging Xylan in Plant Cell Wall

    Zeng, Yining; Yarbrough, John M.; Mittal, Ashutosh; Tucker, Melvin P.; Vinzant, Todd; Himmel, Michael E.

    2015-06-15

    Xylan constitutes a significant portion of biomass (e.g. 22% in corn stover used in this study). Xylan is also an important source of carbohydrates, besides cellulose, for renewable and sustainable energy applications. Currently used method for the localization of xylan in biomass is to use fluorescence confocal microscope to image the fluorescent dye labeled monoclonal antibody that specifically binds to xylan. With the rapid adoption of the Raman-based label-free chemical imaging techniques in biology, identifying Raman bands that are unique to xylan would be critical for the implementation of the above label-free techniques for in situ xylan imaging. Unlike lignin and cellulose that have long be assigned fingerprint Raman bands, specific Raman bands for xylan remain unclear. The major challenge is the cellulose in plant cell wall, which has chemical units highly similar to that of xylan. Here we report using xylanase to specifically remove xylan from feedstock. Under various degree of xylan removal, with minimum impact to other major cell wall components, i.e. lignin and cellulose, we have identified Raman bands that could be further tested for chemical imaging of xylan in biomass in situ.

  20. Artificial lateral-line system for imaging dipole sources using Beamforming techniques

    Dagamseh, A.M.K.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    In nature, fish have the ability to localize prey, school, navigate, etc. using the lateral-line organ [1]. Here we present the use of biomimetic artificial hair-based flow-sensors arranged as lateral-line system in combination with beamforming techniques for dipole source localization in air.

  1. Image isocon observations of emission lines in the spectrum of lambda Cephei

    Hutchings, J.B.; Sanyal, A.

    1976-01-01

    Line profiles of the lambda lambda 4640, 4686 emission lines were observed in the spectrum of lambda Cep, with high time resolution, and high signal-to-noise ratio. Profile changes above the 1 percent level can occur within hours. Possible periodicities in profile changes suggest a connection with rapid stellar rotation. The lambda 4686 profile is consistent with a rotating nonspherical envelope

  2. TU-G-201-00: Imaging Equipment Specification and Selection in Radiation Oncology Departments

    NONE

    2015-06-15

    This session will update therapeutic physicists on technological advancements and radiation oncology features of commercial CT, MRI, and PET/CT imaging systems. Also described are physicists’ roles in every stage of equipment selection, purchasing, and operation, including defining specifications, evaluating vendors, making recommendations, and optimal and safe use of imaging equipment in radiation oncology environment. The first presentation defines important terminology of CT and PET/CT followed by a review of latest innovations, such as metal artifact reduction, statistical iterative reconstruction, radiation dose management, tissue classification by dual energy CT and spectral CT, improvement in spatial resolution and sensitivity in PET, and potentials of PET/MR. We will also discuss important technical specifications and items in CT and PET/CT purchasing quotes and their impacts. The second presentation will focus on key components in the request for proposal for a MRI simulator and how to evaluate vendor proposals. MRI safety issues in radiation Oncology, including MRI scanner Zones (4-zone design), will be discussed. Basic MR terminologies, important functionalities, and advanced features, which are relevant to radiation therapy, will be discussed. In the third presentation, justification of imaging systems for radiation oncology, considerations in room design and construction in a RO department, shared use with diagnostic radiology, staffing needs and training, clinical/research use cases and implementation, will be discussed. The emphasis will be on understanding and bridging the differences between diagnostic and radiation oncology installations, building consensus amongst stakeholders for purchase and use, and integrating imaging technologies into the radiation oncology environment. Learning Objectives: Learn the latest innovations of major imaging systems relevant to radiation therapy Be able to describe important technical specifications of CT, MRI

  3. Panoramic imaging and virtual reality — filling the gaps between the lines

    Chapman, David; Deacon, Andrew

    Close range photogrammetry projects rely upon a clear and unambiguous specification of end-user requirements to inform decisions relating to the format, coverage, accuracy and complexity of the final deliverable. Invariably such deliverables will be a partial and incomplete abstraction of the real world where the benefits of higher accuracy and increased complexity must be traded against the cost of the project. As photogrammetric technologies move into the digital era, computerisation offers opportunities for the photogrammetrist to revisit established mapping traditions in order to explore new markets. One such market is that for three-dimensional Virtual Reality (VR) models for clients who have previously had little exposure to the capabilities, and limitations, of photogrammetry and may have radically different views on the cost/benefit trade-offs in producing geometric models. This paper will present some examples of the authors' recent experience of such markets, drawn from a number of research and commercial projects directed towards the modelling of complex man-made objects. This experience seems to indicate that suitably configured digital image archives may form an important deliverable for a wide range of photogrammetric projects and supplement, or even replace, more traditional CAD models.

  4. Gaucher disease in the liver on hepatocyte specific contrast agent enhanced MR imaging

    Ayyala, Rama S.; Teot, Lisa A.; Perez Rossello, Jeanette M.

    2017-01-01

    Gaucher disease is a hereditary lipid storage disorder that affects the enzyme beta glucocerebrosidase, causing accumulation of glucocerebroside in macrophages of the reticuloendothelial system. Accumulation can occur in the liver and spleen, manifesting as hepatosplenomegaly, as well as within the bone marrow. Hepatic involvement is usually diffuse but can occasionally manifest as focal liver lesions. We present a case of a 2-year-old boy with Gaucher disease and an infiltrating liver lesion detected on imaging, which was pathologically shown to be focal changes related to the disease. Imaging characteristics of this lesion using hepatocyte specific contrast agent enhanced MRI, which have not been previously discussed in the literature, are described. (orig.)

  5. Gaucher disease in the liver on hepatocyte specific contrast agent enhanced MR imaging

    Ayyala, Rama S. [Morgan Stanley Children' s Hospital, Department of Radiology, Columbia University Medical Center, New York, NY (United States); Teot, Lisa A. [Boston Children' s Hospital, Department of Pathology, Harvard Medical School, Boston, MA (United States); Perez Rossello, Jeanette M. [Boston Children' s Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States)

    2017-04-15

    Gaucher disease is a hereditary lipid storage disorder that affects the enzyme beta glucocerebrosidase, causing accumulation of glucocerebroside in macrophages of the reticuloendothelial system. Accumulation can occur in the liver and spleen, manifesting as hepatosplenomegaly, as well as within the bone marrow. Hepatic involvement is usually diffuse but can occasionally manifest as focal liver lesions. We present a case of a 2-year-old boy with Gaucher disease and an infiltrating liver lesion detected on imaging, which was pathologically shown to be focal changes related to the disease. Imaging characteristics of this lesion using hepatocyte specific contrast agent enhanced MRI, which have not been previously discussed in the literature, are described. (orig.)

  6. Epithelial cell specific properties and genetic complementation in a delta F508 cystic fibrosis nasal polyp cell line.

    Kunzelmann, K; Lei, D C; Eng, K; Escobar, L C; Koslowsky, T; Gruenert, D C

    1995-09-01

    Analysis of vectorial ion transport and protein trafficking in transformed cystic fibrosis (CF) epithelial cells has been limited because the cells tend to lose their tight junctions with multiple subcultures. To elucidate ion transport and protein trafficking in CF epithelial cells, a polar cell line with apical and basolateral compartments will facilitate analysis of the efficacy of different gene therapy strategies in a "tight epithelium" in vitro. This study investigates the genotypic and phenotypic properties of a CF nasal polyp epithelial, delta F508 homozygote, cell line that has tight junctions pre-crisis. The cells (sigma CFNPE14o-) were transformed with an origin-of-replication defective SV40 plasmid. They develop transepithelial resistance in Ussing chambers and are defective in cAMP-dependent Cl- transport as measured by efflux of radioactive Cl-, short circuit current (Isc), or whole-cell patch clamp. Stimulation of the cells by bradykinin, histamine, or ATP seems to activate both K(+)- and Ca(+2)-dependent Cl- transport. Measurement of 36Cl- efflux following stimulation with A23187 and ionomycin indicate a Ca(+2)-dependent Cl- transport. Volume regulatory capacity of the cells is indicated by cell swelling conductance. Expression of the CF transmembrane conductance regulator mRNA was indicated by RT-PCR amplification. When cells are grown at 26 degrees C for 48 h there is no indication of cAMP-dependent Cl- as has been previously indicated in heterologous expression systems. Antibodies specific for secretory cell antigens indicate the presence of antigens found in goblet, serous, and mucous cells; in goblet and serous cells; or in goblet and mucous cells; but not antigens found exclusively in mucous or serous cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Specific receptors for epidermal growth factor in human bone tumour cells and its effect on synthesis of prostaglandin E2 by cultured osteosarcoma cell line

    Hirata, Y.; Uchihashi, M.; Nakashima, H.; Fujita, T.; Matsukura, S.; Matsui, K.

    1984-01-01

    Using tumour cell lines derived from human bone tumours, specific binding sites for epidermal growth factor (EGF), a potent growth stimulator in many tissues, and its effect on synthesis of prostaglandin (PG) E 2 , a potent bone-resorbing factor, by cultured osteosarcoma cell line were studied. Three tumour cell lines, one osteosarcoma (HOSO) and two giant cell tumours of the bone (G-1 and G-2), all possessed specific binding sites for 125 I-labelled EGF: the apparent dissociation constant was approximately 4-10 x 10 -10 M and the maximal binding capacity was 50 000-80 000 sites/cell. EGF had no mitogenic effect in these cell lines. However, these cell lines did not have specific binding sites for 125 I-labelled parathyroid hormone (PTH) or calcitonin. HOSO line produced and secreted PGE 2 into medium, while no significant amount of PGE 2 was demonstrated in G-1 or G-2 line. EGF significantly stimulated PGE 2 production in HOSO line in a dose-dependent manner (0.5-50 ng/ml); its stimulatory effect was completely abolished by indomethacin, an inhibitor of PG biosynthesis. Exogenous PGE 1 significantly stimulated cyclic AMP formation in HOSO line, whereas PGFsub(2α) PTH, calcitonin, or EGF had no effect. None of these calcium-regulating hormones affected cyclic AMP generation in either G-1 of G-2 line. These data indicate that human bone tumour cells have specific EGF receptors unrelated to cell growth, and suggest that EGF may be involved in bone resorption through a PGE 2 -mediated process in human osseous tissues. (author)

  8. A model of primate visual cortex based on category-specific redundancies in natural images

    Malmir, Mohsen; Shiry Ghidary, S.

    2010-12-01

    Neurophysiological and computational studies have proposed that properties of natural images have a prominent role in shaping selectivity of neurons in the visual cortex. An important property of natural images that has been studied extensively is the inherent redundancy in these images. In this paper, the concept of category-specific redundancies is introduced to describe the complex pattern of dependencies between responses of linear filters to natural images. It is proposed that structural similarities between images of different object categories result in dependencies between responses of linear filters in different spatial scales. It is also proposed that the brain gradually removes these dependencies in different areas of the ventral visual hierarchy to provide a more efficient representation of its sensory input. The authors proposed a model to remove these redundancies and trained it with a set of natural images using general learning rules that are developed to remove dependencies between responses of neighbouring neurons. Results of experiments demonstrate the close resemblance of neuronal selectivity between different layers of the model and their corresponding visual areas.

  9. Assessment of General and Specific Combining Ability and Heterosis of Some Cucumber (Cucumis sativus L. Lines for Vegetative Traits

    Fatemeh Moradipour

    2017-10-01

    Full Text Available Introduction: Cucumber (Cucumis sativus L. is one of the most widely cultivated vegetables. Plant length is a quantitative trait is controlled by many genes. These traits are difficult to study due to the complex nature of their inheritance. The combining ability estimation is useful in determining the breeding value of cucumber lines by suggesting the appropriate use in a breeding program. In studying combining ability, the most commonly utilized experimental approach is the diallel design. General combining ability is a measure of additive genetic action; and specific combining ability (SCA is deviation from additivity. General combining ability is a main effect and SCA is an interaction. The aim is to determine the breeding value of the cross. Heterosis has been utilized to exploit dominance variance through production of hybrids. There are reports on positive and negative heterosis in cucumber however, there are differences between reports. This research was conducted to estimate general and specific combining ability and heterosis in cucumber inbred lines and hybrids to produce hybrids with high yield and quality. Material and Methods: In the spring of 2014, the seven parental lines and their 21 F1 hybrid were planted at the University of Guilan, in loamy sand field. Three replications were arranged in a randomized complete block design. The sandy loam soil was prepared by plowing and disking and formed into raised beds by plowed and harrow prior to plant establishment. Rows were on 1 m centers and plants were about 25 cm apart in the row. Prior to planting 150 kg·ha-1 of nitrogen from urea and 100 kg·ha-1 of phosphorous from triple superphosphate and 80 kg·ha-1 of potassium sulfate was applied. Side dressing with the same amount of nitrogen and phosphorus occurred at 50% flowering stage. Irrigation with 250 m3·ha-1, three times weekly, was begun at plant first flowering. In each replication, 12 individuals of each line or hybrid were

  10. Magnetic resonance imaging of prostate cancer cell lines labled with manganese chloride in vitro

    Zhuang Wenquan; Fan Huishuang; Zhang Xiaoling; Xiang Xianhong; Tang Yubo; Mao Lijuan; Zou Xuenong

    2010-01-01

    Objective: To assess the feasibility and security of prostate cancer cell lines (PC-3) labeled with manganese chloride (MnCl 2 ) for magnetic resonance imaging (MRI) in vitro. Methods: The PC-3 that purchased from American Type Culture Collection (ATCC) were recovered, cultured and amplified. The PC-3 were cultured in F-12 HAM'S medium with different concentrations of MnCl 2 in cell incubator and collected for MRI after 1 hour. The labeled cells were also collected for MRI in different amount and different time after labeling. The labeled cells were incubated with verapamil for 4 hours and the changes of the labeled cellular signal intensities were recorded in different time. Cell Counting Kit-8 (CCK-8) was used to determine the activities of the labeled cells. Results: The PC-3 labeled with MnCl 2 were high signal intensities on T 1 -weighted MRI. There were statistically significant differences between labeled cells and unlabeled cells (P 2 . The signal intensity obviously decreased after 24 hours and became to normal signal intensity of unlabeled PC-3 after 72 hours. The PC-3 labeled with 1.0 mM MnCl 2 solution showed high signal intensity on T 1 -weighted MRI with the minimum cell amount of 5.0 x 10 5 and lasted to 72 hours after a 4 hours incubation with verapamil. After 4 hours labeling, except the concentration of 0.1 mM, the other concentrations of MnCl 2 (>0.1 mM) had a certain toxicity on PC-3 (P 0.05). Conclusion: The PC-3 could be labeled with MnCl 2 and appears high signal intensity on T 1 -weighted MRI. The PC-3 can be safety labeled with MnCl 2 in concentrations which were equal or less than 1.0 mM, but the duration of Mn +2 in PC-3 is shorter. Calcium channel blocker (verapamil) may be extend the duration of PC-3 labeled with MnCl 2 . (authors)

  11. Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer using a PSMA inhibitor as a homing ligand.

    Kularatne, Sumith A; Wang, Kevin; Santhapuram, Hari-Krishna R; Low, Philip S

    2009-01-01

    Prostate cancer (PCa) is a major cause of mortality and morbidity in Western society today. Current methods for detecting PCa are limited, leaving most early malignancies undiagnosed and sites of metastasis in advanced disease undetected. Major deficiencies also exist in the treatment of PCa, especially metastatic disease. In an effort to improve both detection and therapy of PCa, we have developed a PSMA-targeted ligand that delivers attached imaging and therapeutic agents selectively to PCa cells without targeting normal cells. The PSMA-targeted radioimaging agent (DUPA-(99m)Tc) was found to bind PSMA-positive human PCa cells (LNCaP cell line) with nanomolar affinity (K(D) = 14 nM). Imaging and biodistribution studies revealed that DUPA-(99m)Tc localizes primarily to LNCaP cell tumor xenografts in nu/nu mice (% injected dose/gram = 11.3 at 4 h postinjection; tumor-to-muscle ratio = 75:1). Two PSMA-targeted optical imaging agents (DUPA-FITC and DUPA-rhodamine B) were also shown to efficiently label PCa cells and to internalize and traffic to intracellular endosomes. A PSMA-targeted chemotherapeutic agent (DUPA-TubH) was demonstrated to kill PSMA-positive LNCaP cells in culture (IC(50) = 3 nM) and to eliminate established tumor xenografts in nu/nu mice with no detectable weight loss. Blockade of tumor targeting upon administration of excess PSMA inhibitor (PMPA) and the absence of targeting to PSMA-negative tumors confirmed the specificity of each of the above targeted reagents for PSMA. Tandem use of the imaging and therapeutic agents targeted to the same receptor could allow detection, staging, monitoring, and treatment of PCa with improved accuracy and efficacy.

  12. Hollow-cathode lamps as optical frequency standards: the influence of optical imaging on the line-strength ratios

    Huke, Philipp; Tal-Or, Lev; Sarmiento, Luis Fernando; Reiners, Ansgar

    2016-07-01

    Hollow cathode discharge lamps (HCLs) have been successfully used in recent years as calibration sources of optical astronomical spectrographs. The numerous narrow metal lines have stable wavelengths, which makes them well suited for m/s calibration accuracy of high-resolution spectrographs, while the buffer-gas lines are less stable and less useful. Accordingly, an important property is the metal-to-gas line-strength ratio (Rmetal/gas). Processes inside the lamp cause the light to be emitted from different regions between the cathode and the anode leaing to the emission of different beams with different values of Rmetal/gas. We used commercially- available HCLs to measure and characterize these beams with respect to their spatial distribution, their angle of propagation relative to the optical axis, and their values of Rmetal/gas. We conclude that a good imaging of an HCL into a fiber-fed spectrograph would consist of an aperture close to its front window in order to filter out the parts of the beam with low Rmetal/gas, and of a lens to collimate the important central beam. We show that Rmetal/gas can be further improved with only minor adjustments of the imaging parameters, and that the imaging scheme that yields the highest Rmetal/gas does not necessarily provide the highest flux.

  13. Relations of image quality in on-line portal images and individual patient parameters for pelvic field radiotherapy

    Heuvel, F. van den; Neve, W. de; Coghe, M.; Verellen, D.; Storme, G.

    1992-01-01

    The aims of the present study involving 566 pelvic fields on 13 patients were: 1. To study the machine- and patient-related factors influencing image quality. 2. To study the factors related to machine, patient and patient set-up, influencing the errors of field set-up. 3. To develop a method for predicting the camera settings. The OPI device consisted of a fluorescent screen scanned by a video camera. An image quality score on a scale 0-5 was given for 546/566 fields. In a univariate analysis, open field subtraction adversely affected the score. The image score of anterior fields was significantly better than that of posterior fields. Multivariate stepwise logistic regression showed that, in addition to anterior or posterior field and subtraction, gender was also a significant predictor of image score. Errors requiring field adjustments were detected on 289/530 (54.5%) evaluable fields or 229/278 (82.4%) evaluable patient set-ups. Multivariate logistic regression showed that the probability of performing an adjustment was significantly related to gender, image quality and AP-PA diameter. The magnitude of adjustments made in the lateral direction correlated significantly with patient bulk. The camera kV level with gain held constant showed an exponential dependency on dose rate at the image detector plate and can thus be predicted by treatment planning. (orig.)

  14. Design of site specific radiopharmaceuticals for tumor imaging. (Parts I and II)

    Van Dort, M.E.

    1983-01-01

    Part I. Synthetic methods were developed for the preparation of several iodinated benzoic acid hydrazides as labeling moieties for indirect tagging of carbonyl-containing bio-molecules and potential tumor-imaging agents. Biodistribution studies conducted in mice on the derivatives having the I-125 label ortho to a phenolic OH demonstrated a rapid in vivo deiodination. Part II. The reported high melanin binding affinity of quinoline and other heterocyclic antimalarial drugs led to the development of many analogues of such molecules as potential melanoma-imaging agents. Once such analogue iodochloroquine does exhibit high melanin binding, but has found limited clinical use due to appreciable accumulation in non-target tissues such as the adrenal cortex and inner ear. This project developed a new series of candidate melanoma imaging agents which would be easier to radio-label, could yield higher specific activity product, and which might demonstrate more favorable pharmacokinetic and dosimetric characteristics compared to iodochloroquine

  15. Generation of a Tph2 Conditional Knockout Mouse Line for Time- and Tissue-Specific Depletion of Brain Serotonin

    Migliarini, Sara; Pacini, Giulia; Pasqualetti, Massimo

    2015-01-01

    Serotonin has been gaining increasing attention during the last two decades due to the dual function of this monoamine as key regulator during critical developmental events and as neurotransmitter. Importantly, unbalanced serotonergic levels during critical temporal phases might contribute to the onset of neuropsychiatric disorders, such as schizophrenia and autism. Despite increasing evidences from both animal models and human genetic studies have underpinned the importance of serotonin homeostasis maintenance during central nervous system development and adulthood, the precise role of this molecule in time-specific activities is only beginning to be elucidated. Serotonin synthesis is a 2-step process, the first step of which is mediated by the rate-limiting activity of Tph enzymes, belonging to the family of aromatic amino acid hydroxylases and existing in two isoforms, Tph1 and Tph2, responsible for the production of peripheral and brain serotonin, respectively. In the present study, we generated and validated a conditional knockout mouse line, Tph2 flox/flox, in which brain serotonin can be effectively ablated with time specificity. We demonstrated that the Cre-mediated excision of the third exon of Tph2 gene results in the production of a Tph2 null allele in which we observed the near-complete loss of brain serotonin, as well as the growth defects and perinatal lethality observed in serotonin conventional knockouts. We also revealed that in mice harbouring the Tph2 null allele, but not in wild-types, two distinct Tph2 mRNA isoforms are present, namely Tph2Δ3 and Tph2Δ3Δ4, with the latter showing an in-frame deletion of amino acids 84–178 and coding a protein that could potentially retain non-negligible enzymatic activity. As we could not detect Tph1 expression in the raphe, we made the hypothesis that the Tph2Δ3Δ4 isoform can be at the origin of the residual, sub-threshold amount of serotonin detected in the brain of Tph2 null/null mice. Finally, we set

  16. Investigation of SP94 Peptide as a Specific Probe for Hepatocellular Carcinoma Imaging and Therapy

    Li, Yanli; Hu, Yan; Xiao, Jie; Liu, Guobing; Li, Xiao; Zhao, Yanzhao; Tan, Hui; Shi, Hongcheng; Cheng, Dengfeng

    2016-01-01

    SP94 (SFSIIHTPILPL), a novel peptide, has shown specific binding to hepatocellular carcinoma (HCC) cells. We aimed to investigate the capability of SP94 as a targeting probe for HCC imaging and therapy following labeling with technetium-99m (99mTc) and rhenium-188 (188Re). HYNIC-SP94 was prepared by solid phase synthesis and then labeled with 99mTc. Cell competitive binding, internalization assay, in vitro and in vivo stability, biodistribution and micro-single photon emission computed tomography /computed tomography (SPECT/CT) imaging studies were performed to investigate the capability of 99mTc tricine-EDDA/HYNIC-SP94 as a specific HCC imaging probe. Initial promising targeting results inspired evaluation of its therapeutic effect when labeled by 188Re. HYNIC-SP94 was then labeled again with 188Re to perform cell apoptosis, microSPECT/CT imaging evaluation and immunohistochemistry. Huh-7 cells exhibited typical apoptotic changes after 188Re irradiation. According to 99mTc tricine-EDDA/HYNIC-SP94 microSPECT/CT imaging, tumor uptake was significantly decreased compared with that of pre-treatment with 188Re-HYNIC-SP94. The immunohistochemistry also displayed obvious necrosis and apoptosis as well as inhibition of proliferation in the 188Re-HYNIC-SP94 treatment group. The results supported that 99mTc tricine-EDDA/HYNIC-SP94 is able to target HCC cells and 188Re-HYNIC- SP94 holds potential as a therapeutic agent for HCC, making 99mTc/188Re-HYNIC-SP94 a promising targeting probe for HCC imaging and therapy. PMID:27649935

  17. Learning Category-Specific Dictionary and Shared Dictionary for Fine-Grained Image Categorization.

    Gao, Shenghua; Tsang, Ivor Wai-Hung; Ma, Yi

    2014-02-01

    This paper targets fine-grained image categorization by learning a category-specific dictionary for each category and a shared dictionary for all the categories. Such category-specific dictionaries encode subtle visual differences among different categories, while the shared dictionary encodes common visual patterns among all the categories. To this end, we impose incoherence constraints among the different dictionaries in the objective of feature coding. In addition, to make the learnt dictionary stable, we also impose the constraint that each dictionary should be self-incoherent. Our proposed dictionary learning formulation not only applies to fine-grained classification, but also improves conventional basic-level object categorization and other tasks such as event recognition. Experimental results on five data sets show that our method can outperform the state-of-the-art fine-grained image categorization frameworks as well as sparse coding based dictionary learning frameworks. All these results demonstrate the effectiveness of our method.

  18. Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emulsion of targets at the National Ignition Facility (NIF)

    Malone, Robert M.; Frogget, Brent C.; Kaufman, Morris I.; Tunnell, Thomas W.; Guyton, Robert L.; Reinbachs, Imants P.; Watts, Phillip W.

    2007-01-01

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 69 feet. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. The orange alignment laser is introduced at the entrance to the two-level interferometer table and passes forward through the optical systems to the recording streak cameras. The red alignment laser is introduced in front of the recording streak cameras and passes in the reverse direction through all optical elements, out of the interferometer table, eventually reaching the target chamber center. Red laser wavelength is selected to be at the 50 percent reflection point of a special beamsplitter used to separate emission light from the Doppler-shifted interferometer light. Movable aperture cards, placed before and after lens groups, show the spread of alignments spots created by the orange and red alignment lasers. Optical elements include 1- to 15-inch-diameter mirrors, lenses with up to 10.5-inch diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot

  19. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  20. Integrating dynamic and distributed compressive sensing techniques to enhance image quality of the compressive line sensing system for unmanned aerial vehicles application

    Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Cuiling

    2017-07-01

    The compressive line sensing imaging system adopts distributed compressive sensing (CS) to acquire data and reconstruct images. Dynamic CS uses Bayesian inference to capture the correlated nature of the adjacent lines. An image reconstruction technique that incorporates dynamic CS in the distributed CS framework was developed to improve the quality of reconstructed images. The effectiveness of the technique was validated using experimental data acquired in an underwater imaging test facility. Results that demonstrate contrast and resolution improvements will be presented. The improved efficiency is desirable for unmanned aerial vehicles conducting long-duration missions.

  1. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  2. Epifluorescent imaging study of the effect of anti-diabetic drug metformin on colorectal cancer cell lines in vitro

    Venkatasubramani P

    2017-12-01

    Full Text Available Metformin, a widely used anti-diabetic drug, has recently been associated with inhibition of cell proliferation in multiple cancers. However, it is not clear if the reduction in proliferation on treatment with metformin is a result of cell death or slowdown in the rate of growth of cancer cells, because cell viability assays measure only the number of cells at the beginning and end of the experiment. The aim of this study is to utilize a fluorescent imaging technique to directly follow cell death overtime in order to investigate the effect of metformin on colorectal cancer cells HCT116 and SW480. Epifluorescent imaging analysis carried out using ImageXpress Micro XLS High-Content Imaging System show that there is no significant change in cell death observed in the cancer cell lines, as compared to the control, over multiple closely spaced time points, suggesting that metformin in pharmacological doses may not be an effective inducer of cell death in these colon cancer cell lines.

  3. Visual Perception-Based Statistical Modeling of Complex Grain Image for Product Quality Monitoring and Supervision on Assembly Production Line.

    Jinping Liu

    Full Text Available Computer vision as a fast, low-cost, noncontact, and online monitoring technology has been an important tool to inspect product quality, particularly on a large-scale assembly production line. However, the current industrial vision system is far from satisfactory in the intelligent perception of complex grain images, comprising a large number of local homogeneous fragmentations or patches without distinct foreground and background. We attempt to solve this problem based on the statistical modeling of spatial structures of grain images. We present a physical explanation in advance to indicate that the spatial structures of the complex grain images are subject to a representative Weibull distribution according to the theory of sequential fragmentation, which is well known in the continued comminution of ore grinding. To delineate the spatial structure of the grain image, we present a method of multiscale and omnidirectional Gaussian derivative filtering. Then, a product quality classifier based on sparse multikernel-least squares support vector machine is proposed to solve the low-confidence classification problem of imbalanced data distribution. The proposed method is applied on the assembly line of a food-processing enterprise to classify (or identify automatically the production quality of rice. The experiments on the real application case, compared with the commonly used methods, illustrate the validity of our method.

  4. Visual Perception-Based Statistical Modeling of Complex Grain Image for Product Quality Monitoring and Supervision on Assembly Production Line.

    Liu, Jinping; Tang, Zhaohui; Zhang, Jin; Chen, Qing; Xu, Pengfei; Liu, Wenzhong

    2016-01-01

    Computer vision as a fast, low-cost, noncontact, and online monitoring technology has been an important tool to inspect product quality, particularly on a large-scale assembly production line. However, the current industrial vision system is far from satisfactory in the intelligent perception of complex grain images, comprising a large number of local homogeneous fragmentations or patches without distinct foreground and background. We attempt to solve this problem based on the statistical modeling of spatial structures of grain images. We present a physical explanation in advance to indicate that the spatial structures of the complex grain images are subject to a representative Weibull distribution according to the theory of sequential fragmentation, which is well known in the continued comminution of ore grinding. To delineate the spatial structure of the grain image, we present a method of multiscale and omnidirectional Gaussian derivative filtering. Then, a product quality classifier based on sparse multikernel-least squares support vector machine is proposed to solve the low-confidence classification problem of imbalanced data distribution. The proposed method is applied on the assembly line of a food-processing enterprise to classify (or identify) automatically the production quality of rice. The experiments on the real application case, compared with the commonly used methods, illustrate the validity of our method.

  5. In vivo fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe

    Zhao, Menglong; Dong, Lili; Liu, Zhuang; Yang, Shuohui

    2018-01-01

    Background Glypican-3 (GPC3) is highly expressed in most of the hepatocellular carcinomas (HCCs), even in small HCCs. It may be used as a potential biomarker for early detection of HCC. The aptamer is a promising targeting agent with unique advantages over antibody. This study was to introduce a novel GPC3 specific aptamer (AP613-1), to verify its specific binding property in vitro, and to evaluate its targeting efficiency in vivo by performing near-infrared (NIR) fluorescence imaging on an HCC xenograft model. Methods AP613-1 was generated from the systematic evolution of ligands by exponential enrichment. Flow cytometry and aptamer-based immunofluorescence imaging were performed to verify the binding affinity of AP613-1 to GPC3 in vitro. NIR Fluorescence images of nude mice with unilateral (n=12) and bilateral (n=4) subcutaneous xenograft tumors were obtained. Correlation between the tumor fluorescence intensities in vivo and ex vivo was analyzed. Results AP613-1 could specifically bind to GPC3 in vitro. In vivo and ex vivo tumors, fluorescence intensities were in excellent correlation (Pfluorescence intensity is significantly higher in tumors given Alexa Fluor 750 (AF750) labeled AP613-1 than in those given AF750 labeled initial ssDNA library both in vivo (Pfluorescence intensities than A549 tumors both in vivo (P=0.016) and ex vivo (P=0.004). Conclusions AP613-1 displays a specific binding affinity to GPC3 positive HCC. Fluorescently labeled AP613-1 could be used as an imaging probe to subcutaneous HCC in xenograft models. PMID:29675356

  6. X-ray imaging of the Cr and Fe lines from Cassiopeia A

    Maeda, Y.; Sato, T.; Tsunemi, H.; Bamba, A.; Vink, J.; Terada, Y.; Takeda, T.; Sawada, M.; Gandhi, P.; Matsumoto, H.; Uchiyama, Y.; Helder, E.A.; Hiraga, J.; Hughes, J.P.; Kokubun, M.; Tamagawa, T.; Tsuboi, Y.; Ishida, M.; Petre, R.; Mitsuda, K.

    2014-01-01

    Follow-up Suzaku X-ray observations of a young supernova remnant Cassiopeia A carried out with a long exposure of ˜ 165 ksec in 2012. Owing to the high statistics of the data, the map of Cr-K line is made. The flux map of Cr-K line is similar to that of Fe-K. The similarity indicates that the

  7. Verification Image of The Veins on The Back Palm with Modified Local Line Binary Pattern (MLLBP) and Histogram

    Prijono, Agus; Darmawan Hangkawidjaja, Aan; Ratnadewi; Saleh Ahmar, Ansari

    2018-01-01

    The verification to person who is used today as a fingerprint, signature, personal identification number (PIN) in the bank system, identity cards, attendance, easily copied and forged. This causes the system not secure and is vulnerable to unauthorized persons to access the system. In this research will be implemented verification system using the image of the blood vessels in the back of the palms as recognition more difficult to imitate because it is located inside the human body so it is safer to use. The blood vessels located at the back of the human hand is unique, even humans twins have a different image of the blood vessels. Besides the image of the blood vessels do not depend on a person’s age, so it can be used for long term, except in the case of an accident, or disease. Because of the unique vein pattern recognition can be used in a person. In this paper, we used a modification method to perform the introduction of a person based on the image of the blood vessel that is using Modified Local Line Binary Pattern (MLLBP). The process of matching blood vessel image feature extraction using Hamming Distance. Test case of verification is done by calculating the percentage of acceptance of the same person. Rejection error occurs if a person was not matched by the system with the data itself. The 10 person with 15 image compared to 5 image vein for each person is resulted 80,67% successful Another test case of the verification is done by verified two image from different person that is forgery, and the verification will be true if the system can rejection the image forgery. The ten different person is not verified and the result is obtained 94%.

  8. Automated tissue classification of pediatric brains from magnetic resonance images using age-specific atlases

    Metzger, Andrew; Benavides, Amanda; Nopoulos, Peg; Magnotta, Vincent

    2016-03-01

    The goal of this project was to develop two age appropriate atlases (neonatal and one year old) that account for the rapid growth and maturational changes that occur during early development. Tissue maps from this age group were initially created by manually correcting the resulting tissue maps after applying an expectation maximization (EM) algorithm and an adult atlas to pediatric subjects. The EM algorithm classified each voxel into one of ten possible tissue types including several subcortical structures. This was followed by a novel level set segmentation designed to improve differentiation between distal cortical gray matter and white matter. To minimize the req uired manual corrections, the adult atlas was registered to the pediatric scans using high -dimensional, symmetric image normalization (SyN) registration. The subject images were then mapped to an age specific atlas space, again using SyN registration, and the resulting transformation applied to the manually corrected tissue maps. The individual maps were averaged in the age specific atlas space and blurred to generate the age appropriate anatomical priors. The resulting anatomical priors were then used by the EM algorithm to re-segment the initial training set as well as an independent testing set. The results from the adult and age-specific anatomical priors were compared to the manually corrected results. The age appropriate atlas provided superior results as compared to the adult atlas. The image analysis pipeline used in this work was built using the open source software package BRAINSTools.

  9. Site-specific confocal fluorescence imaging of biological microstructures in a turbid medium

    Saloma, Caesar; Palmes-Saloma, Cynthia; Kondoh, Hisato

    1998-01-01

    Normally transparent biological structures in a turbid medium are imaged using a laser confocal microscope and multiwavelength site-specific fluorescence labelling. The spatial filtering capability of the detector pinhole in the confocal microscope limits the number of scattered fluorescent photons that reach the photodetector. Simultaneous application of different fluorescent markers on the same sample site minimizes photobleaching by reducing the excitation time for each marker. A high-contrast grey-level image is also produced by summing confocal images of the same site taken at different fluorescence wavelengths. Monte Carlo simulations are performed to obtain the quantitative behaviour of confocal fluorescence imaging in turbid media. Confocal images of the following samples were also obtained: (i) 15 μm diameter fluorescent spheres placed 1.16 mm deep beneath an aqueous suspension of 0.0823 μm diameter polystyrene latex spheres, and (ii) hindbrain of a whole-mount mouse embryo (age 10 days) that was stained to fluoresce at 515 nm and 580 nm peak wavelengths. Expression of RNA transcripts of a gene within the embryo hindbrain was detected by a fluorescence-based whole-mount in situ hybridization procedure that we recently tested. (author)

  10. Dual Nuclear/Fluorescence Imaging Potantial of Zinc(II) Phthalocyanine in MIA PaCa-2 Cell Line.

    Lambrecht, Fatma Yurt; Ince, Mine; Er, Ozge; Ocakoglu, Kasim; Sarı, Fatma Aslıhan; Kayabasi, Cagla; Gunduz, Cumhur

    2016-01-01

    Pancreatic cancer is very common and difficult to diagnose in early stage. Imaging systems for diagnosing cancer have many disadvantages. However, combining different imaging modalities offers synergistic advantages. Optical imaging is the most multidirectional and widely used imaging modality in both clinical practice and research. In present study, Zinc(II) phthalocyanine [Zn(II)Pc] was synthesized, labeled with iodine- 131 and in vitro study was carried out. The intracellular uptake studies of radiolabeled Zn(II)Pc were performed in WI-38 [ATCC CCL-75™, tissue: human fibroblast lung] and MIA PaCa-2 [ATCC CRL-1420™, tissue: human epithelial pancreas carcinoma] cell lines. The intracellular uptake efficiency of radiolabeled Zn(II)Pc in MIA PaCa-2 cells was determined two times higher than WI-38 cells. Also, fluorescence imaging (FI) efficiency of synthesized Zn(II)Pc was investigated in MIA PaCa-2 cells and significant uptake was observed. Zn(II)Pc might be used as a new agent for dual fluorescence/nuclear imaging for pancreatic cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. CHEMICAL IMAGING OF THE CO SNOW LINE IN THE HD 163296 DISK

    Qi, Chunhua; Öberg, Karin I.; Andrews, Sean M.; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bergin, Edwin A. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Hughes, A. Meredith [Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Hogherheijde, Michiel [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); D’Alessio, Paola [Centro de Radioastronomi´a y Astrofísica, Universidad Nacional Autónoma de México, 58089 Morelia, Michoacán, México (Mexico)

    2015-11-10

    The condensation fronts (snow lines) of H{sub 2}O, CO, and other abundant volatiles in the midplane of a protoplanetary disk affect several aspects of planet formation. Locating the CO snow line, where the CO gas column density is expected to drop substantially, based solely on CO emission profiles, is challenging. This has prompted an exploration of chemical signatures of CO freeze-out. We present ALMA Cycle 1 observations of the N{sub 2}H{sup +} J = 3−2 and DCO{sup +} J = 4−3 emission lines toward the disk around the Herbig Ae star HD 163296 at ∼0.″5 (60 AU) resolution, and evaluate their utility as tracers of the CO snow line location. The N{sub 2}H{sup +} emission is distributed in a ring with an inner radius at 90 AU, corresponding to a midplane temperature of 25 K. This result is consistent with a new analysis of optically thin C{sup 18}O data, which implies a sharp drop in CO abundance at 90 AU. Thus N{sub 2}H{sup +} appears to be a robust tracer of the midplane CO snow line. The DCO{sup +} emission also has a ring morphology, but neither the inner nor the outer radius coincide with the CO snow line location of 90 AU, indicative of a complex relationship between DCO{sup +} emission and CO freeze-out in the disk midplane. Compared to TW Hya, CO freezes out at a higher temperature in the disk around HD 163296 (25 versus 17 K in the TW Hya disk), perhaps due to different ice compositions. This highlights the importance of actually measuring the CO snow line location, rather than assuming a constant CO freeze-out temperature for all disks.

  12. Optic Tract Edema: A Highly Specific Magnetic Resonance Imaging Finding for the Diagnosis of Craniopharyngiomas

    Hirunpat, S.; Tanomkiat, W.; Sriprung, H.; Chetpaophan, J. [Prince of Songkla Univ., Hat Yai (Thailand). Dept. of Radiology and Epidemiology Unit

    2005-07-01

    Purpose: To clarify the accuracy, sensitivity, and specificity of optic tract edema in the diagnosis of craniopharyngiomas. Material and Methods: Preoperative magnetic resonance images (MRIs) of 49 patients (between May 1996 and March 2003) who had a diagnosis of parasellar masses were blindly reviewed by two radiologists. The spread of edema surrounding the tumor on the coronal TSE T2-weighted images was analyzed. Sensitivity and specificity were calculated based on the numbers in this series and also pooled numbers from previous known reported series. Results: Edema along the optic tracts was detected in 7 of 1 craniopharyngiomas, giving a sensitivity of 63.6% (95% CI{approx_equal}30.8-89.1) for our series and 66.7% (95% CI{approx_equal}47.2-82.7) for the pooled numbers. The specificity was 00% (95% CI{approx_equal}90.7-100.0) for our series and 93.9% (95% CI{approx_equal}87.1-97.7) for the pooled numbers. None of the 28 pituitary macroadenomas, 4 meningiomas, 2 hypothalamic astrocytomas, 2 germinomas, mixed-germ cell tumor and arachnoid cyst in our study showed edema of the optic pathways. Conclusion: Optic tract edema, commonly seen in craniopharyngiomas, is a useful MR finding for distinguishing craniopharyngiomas from other parasellar tumors with considerable sensitivity and high specificity.

  13. Optic Tract Edema: A Highly Specific Magnetic Resonance Imaging Finding for the Diagnosis of Craniopharyngiomas

    Hirunpat, S.; Tanomkiat, W.; Sriprung, H.; Chetpaophan, J.

    2005-01-01

    Purpose: To clarify the accuracy, sensitivity, and specificity of optic tract edema in the diagnosis of craniopharyngiomas. Material and Methods: Preoperative magnetic resonance images (MRIs) of 49 patients (between May 1996 and March 2003) who had a diagnosis of parasellar masses were blindly reviewed by two radiologists. The spread of edema surrounding the tumor on the coronal TSE T2-weighted images was analyzed. Sensitivity and specificity were calculated based on the numbers in this series and also pooled numbers from previous known reported series. Results: Edema along the optic tracts was detected in 7 of 1 craniopharyngiomas, giving a sensitivity of 63.6% (95% CI≅30.8-89.1) for our series and 66.7% (95% CI≅47.2-82.7) for the pooled numbers. The specificity was 00% (95% CI≅90.7-100.0) for our series and 93.9% (95% CI≅87.1-97.7) for the pooled numbers. None of the 28 pituitary macroadenomas, 4 meningiomas, 2 hypothalamic astrocytomas, 2 germinomas, mixed-germ cell tumor and arachnoid cyst in our study showed edema of the optic pathways. Conclusion: Optic tract edema, commonly seen in craniopharyngiomas, is a useful MR finding for distinguishing craniopharyngiomas from other parasellar tumors with considerable sensitivity and high specificity

  14. In-line X-ray phase-contrast imaging of murine liver microvasculature ex vivo

    Li Beilei; Xu Min; Shi Hongcheng; Chen Shaoliang; Wu Weizhong; Peng Guanyun; Zhang Xi; Peng Yifeng

    2012-01-01

    Imaging blood vessels is of importance for determining the vascular distribution of organs and tumors. Phase-contrast X-ray imaging can reveal the vessels in much more detail than conventional X-ray absorption method. Visualizing murine liver microvasculature ex vivo with phase-contrast X-ray imaging was performed at Shanghai Synchrotron Radiation Facility. Barium sulfate and physiological saline were used as contrast agents for the blood vessels. Blood vessels of <Φ20 μm could be detected by replacing resident blood with physiological saline or barium sulfate. An entire branch of the portal vein (from the main axial portal vein to the ninth generation of branching) could be captured in a single phase-contrast image. It is demonstrated that selective angiography based on phase contrast X-ray imaging, with a physiological material of low Z elements (such as saline) being the contrast agent, is a viable imaging strategy. Further efforts will be focused on using the technique to image tumor angiogenesis. (authors)

  15. Magnetic resonance imaging of the ear for patient-specific reconstructive surgery.

    Luc Nimeskern

    Full Text Available INTRODUCTION: Like a fingerprint, ear shape is a unique personal feature that should be reconstructed with a high fidelity during reconstructive surgery. Ear cartilage tissue engineering (TE advantageously offers the possibility to use novel 3D manufacturing techniques to reconstruct the ear, thus allowing for a detailed auricular shape. However it also requires detailed patient-specific images of the 3D cartilage structures of the patient's intact contralateral ear (if available. Therefore the aim of this study was to develop and evaluate an imaging strategy for acquiring patient-specific ear cartilage shape, with sufficient precision and accuracy for use in a clinical setting. METHODS AND MATERIALS: Magnetic resonance imaging (MRI was performed on 14 volunteer and six cadaveric auricles and manually segmented. Reproducibility of cartilage volume (Cg.V, surface (Cg.S and thickness (Cg.Th was assessed, to determine whether raters could repeatedly define the same volume of interest. Additionally, six cadaveric auricles were harvested, scanned and segmented using the same procedure, then dissected and scanned using high resolution micro-CT. Correlation between MR and micro-CT measurements was assessed to determine accuracy. RESULTS: Good inter- and intra-rater reproducibility was observed (precision errors 0.82, but low for Cg.Th (0.95 demonstrated high accuracy. DISCUSSION AND CONCLUSION: This study demonstrated that precision and accuracy of the proposed method was high enough to detect patient-specific variation in ear cartilage geometry. The present study provides a clinical strategy to access the necessary information required for the production of 3D ear scaffolds for TE purposes, including detailed patient-specific shape. Furthermore, the protocol is applicable in daily clinical practice with existing infrastructure.

  16. On-line MR imaging for dose validation of abdominal radiotherapy

    Glitzner, M; Crijns, S P M; de Senneville, B Denis; Kontaxis, C; Prins, F M; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial.Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static

  17. Acquiring additional delayed PET images improves sensitivity and specificity in oncology cases

    Lamki, L.M.; Barron, B.J.; Mullani, N.; Joseph, U.; Ehert, E.

    2002-01-01

    Aim: This study looked into utility of acquiring PET images at 2-3 hours in addition to the standard whole body PET done at 1-hour after FDG injection in certain oncology cases. The objective is to evaluate whether the delayed additional images can decipher equivocal foci of FDG accumulation commonly seen in oncology patients. Typical example is the bowel activity that moves with time. Materials and Methods: PET protocol at our Institution in patients with colon Cancer, Pancreas Ca, Ovarian Ca and Breast Ca include a whole body PET (6-7 bed positions) done at 1-hour after 15 mCi F-18-FDG followed by select limited area PET scan (typically 2 bed stops over the area of interest) at 2-3 hours. Acquisition was undertaken on Siemens ECAT-EXACT Camera - 2-D acquisition and 8 mins. per bed position (5 mins. Emission and 3 mins. Transmission), 16.3 cm FOV and then Iterative Reconstruction. Results: Analysis of the first 115 patients who had additional delayed images resulted in 80% of patients where delayed images helped in interpretation. In 70% of these, delayed images helped in identifying physiological structures, e.g., ureters, bowel, blood vessels and muscles versus pathology. In 25%, they actually helped in identifying malignancy, e.g. more definite FDG accumulation. Almost all helped to boost the confidence of the reader. The contribution was mainly in differentiating bowel and ureter activity from cancer in the abdomen, as these change position with time. In case of pancreas and breast cancer, delayed images contributed in clarifying tumor metabolic activity as well. Inflammation and motion artifacts could also be better defined and so was muscle uptake. Conclusion: (1) Additional delayed PET imaging is very helpful in certain cancers in identifying more lesions and avoiding pitfalls. (2) They can yield higher sensitivity and specificity for colon, ovarian, breast and pancreas cancers. (3) Identification of physiologic structures and differentiation of these from

  18. An innovative pre-targeting strategy for tumor cell specific imaging and therapy.

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-09-21

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the "biotin-avidin" interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.

  19. Specific NIST projects in support of the NIJ Concealed Weapon Detection and Imaging Program

    Paulter, Nicholas G.

    1998-12-01

    The Electricity Division of the National Institute of Standards and Technology is developing revised performance standards for hand-held (HH) and walk-through (WT) metal weapon detectors, test procedures and systems for these detectors, and a detection/imaging system for finding concealed weapons. The revised standards will replace the existing National Institute of Justice (NIJ) standards for HH and WT devices and will include detection performance specifications as well as system specifications (environmental conditions, mechanical strength and safety, response reproducibility and repeatability, quality assurance, test reporting, etc.). These system requirements were obtained from the Law Enforcement and corrections Technology Advisory Council, an advisory council for the NIJ. Reproducible and repeatable test procedures and appropriate measurement systems will be developed for evaluating HH and WT detection performance. A guide to the technology and application of non- eddy-current-based detection/imaging methods (such as acoustic, passive millimeter-wave and microwave, active millimeter-wave and terahertz-wave, x-ray, etc.) Will be developed. The Electricity Division is also researching the development of a high- frequency/high-speed (300 GH to 1 THz) pulse-illuminated, stand- off, video-rate, concealed weapons/contraband imaging system.

  20. Automatic prostate MR image segmentation with sparse label propagation and domain-specific manifold regularization.

    Liao, Shu; Gao, Yaozong; Shi, Yinghuan; Yousuf, Ambereen; Karademir, Ibrahim; Oto, Aytekin; Shen, Dinggang

    2013-01-01

    Automatic prostate segmentation in MR images plays an important role in prostate cancer diagnosis. However, there are two main challenges: (1) Large inter-subject prostate shape variations; (2) Inhomogeneous prostate appearance. To address these challenges, we propose a new hierarchical prostate MR segmentation method, with the main contributions lying in the following aspects: First, the most salient features are learnt from atlases based on a subclass discriminant analysis (SDA) method, which aims to find a discriminant feature subspace by simultaneously maximizing the inter-class distance and minimizing the intra-class variations. The projected features, instead of only voxel-wise intensity, will be served as anatomical signature of each voxel. Second, based on the projected features, a new multi-atlases sparse label fusion framework is proposed to estimate the prostate likelihood of each voxel in the target image from the coarse level. Third, a domain-specific semi-supervised manifold regularization method is proposed to incorporate the most reliable patient-specific information identified by the prostate likelihood map to refine the segmentation result from the fine level. Our method is evaluated on a T2 weighted prostate MR image dataset consisting of 66 patients and compared with two state-of-the-art segmentation methods. Experimental results show that our method consistently achieves the highest segmentation accuracies than other methods under comparison.

  1. Automated measurement of epidermal thickness from optical coherence tomography images using line region growing

    Delacruz, Jomer; Weissman, Jesse; Gossage, Kirk

    2010-02-01

    Optical Coherence Tomography (OCT) is a non-invasive imaging modality that acquires cross sectional images of tissue in-vivo. It accelerates skin diagnosis by eliminating invasive biopsy and laborious histology in the process. Dermatologists have widely used it for looking at morphology of skin diseases such as psoriasis, dermatitis, basal cell carcinoma etc. Skin scientists have also successfully used it for looking at differences in epidermal thickness and its underlying structure with respect to age, body sites, ethnicity, gender, and other related factors. Similar to other in-vivo imaging systems, OCT images suffer from a high degree of speckle and noise content, which hinders examination of tissue structures. Most of the previous work in OCT segmentation of skin was done manually. This compromised the quality of the results by limiting the analyses to a few frames per area. In this paper, we discuss a region growing method for automatic identification of the upper and lower boundaries of the epidermis in living human skin tissue. This image analysis method utilizes images obtained from a frequency-domain OCT. This system is high-resolution and high-speed, and thus capable of capturing volumetric images of the skin in short time. The three-dimensional (3D) data provides additional information that is used in the segmentation process to help compensate for the inherent noise in the images. This method not only provides a better estimation of the epidermal thickness, but also generates a 3D surface map of the epidermal-dermal junction, from which underlying topography can be visualized and further quantified.

  2. Accurate, rapid identification of dislocation lines in coherent diffractive imaging via a min-max optimization formulation

    Ulvestad, A. [Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA; Menickelly, M. [Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439, USA; Wild, S. M. [Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439, USA

    2018-01-01

    Defects such as dislocations impact materials properties and their response during external stimuli. Imaging these defects in their native operating conditions to establish the structure-function relationship and, ultimately, to improve performance via defect engineering has remained a considerable challenge for both electron-based and x-ray-based imaging techniques. While Bragg coherent x-ray diffractive imaging (BCDI) is successful in many cases, nuances in identifying the dislocations has left manual identification as the preferred method. Derivative-based methods are also used, but they can be inaccurate and are computationally inefficient. Here we demonstrate a derivative-free method that is both more accurate and more computationally efficient than either derivative-or human-based methods for identifying 3D dislocation lines in nanocrystal images produced by BCDI. We formulate the problem as a min-max optimization problem and show exceptional accuracy for experimental images. We demonstrate a 227x speedup for a typical experimental dataset with higher accuracy over current methods. We discuss the possibility of using this algorithm as part of a sparsity-based phase retrieval process. We also provide MATLAB code for use by other researchers.

  3. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging

    Zhang, Ye; Knopf, A; Tanner, Colby; Boye, Dirk; Lomax, Antony J.

    2013-01-01

    Organ motion is a major problem for any dynamic radiotherapy delivery technique, and is particularly so for spot scanned proton therapy. On the other hand, the use of narrow, magnetically deflected proton pencil beams is potentially an ideal delivery technique for tracking tumour motion on-line. At

  4. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements.

    Lin, L; Ding, W X; Brower, D L

    2014-11-01

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.

  5. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements

    Lin, L.; Ding, W. X.; Brower, D. L.

    2014-01-01

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved

  6. Gamma-ray imaging spectrometer (GRIS): a new balloon-borne experiment for gamma-ray line astronomy

    Teegarden, B.J.; Cline, T.L.; Gehrels, N.; Porreca, G.; Tueller, J.; Leventhal, M.; Huters, A.F.; MacCallum, C.J.; Stang, P.D.

    1985-01-01

    High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. Preliminary results such as the annihilation radiation from the galactic center, the 26 Al line from the galactic plane and cyclotron lines from neutron stars may well be just the initial discoveries of a rich and as yet undeveloped field. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload NASA decided to initiate a balloon program to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments. 6 refs., 2 figs

  7. An application specific integrated circuit and data acquisition system for digital X-ray imaging

    Beuville, E.; Cederstroem, B.; Danielsson, M.; Luo, L.; Nygren, D.; Oltman, E.; Vestlund, J.

    1998-01-01

    We have developed an application specific integrated circuit (ASIC) and data acquisition system for digital X-ray imaging. The chip consists of 16 parallel channels, each containing preamplifier, shaper, comparator and a 16 bit counter. We have demonstrated noiseless single-photon counting over a threshold of 7.2 keV using Silicon detectors and are presently capable of maximum counting rates of 2 MHz per channel. The ASIC is controlled by a personal computer through a commercial PCI card, which is also used for data acquisition. The content of the 16 bit counters are loaded into a shift register and transferred to the PC at any time at a rate of 20 MHz. The system is non-complicated, low cost and high performance and is optimised for digital X-ray imaging applications. (orig.)

  8. An application specific integrated circuit and data acquisition system for digital X-ray imaging

    Beuville, E.; Cederstroem, B.; Danielsson, M.; Luo, L.; Nygren, D.; Oltman, E.; Vestlund, J. [Lawrence Berkeley National Lab., CA (United States)

    1998-04-01

    We have developed an application specific integrated circuit (ASIC) and data acquisition system for digital X-ray imaging. The chip consists of 16 parallel channels, each containing preamplifier, shaper, comparator and a 16 bit counter. We have demonstrated noiseless single-photon counting over a threshold of 7.2 keV using Silicon detectors and are presently capable of maximum counting rates of 2 MHz per channel. The ASIC is controlled by a personal computer through a commercial PCI card, which is also used for data acquisition. The content of the 16 bit counters are loaded into a shift register and transferred to the PC at any time at a rate of 20 MHz. The system is non-complicated, low cost and high performance and is optimised for digital X-ray imaging applications. (orig.). 11 refs.

  9. Zone specific fractal dimension of retinal images as predictor of stroke incidence.

    Aliahmad, Behzad; Kumar, Dinesh Kant; Hao, Hao; Unnikrishnan, Premith; Che Azemin, Mohd Zulfaezal; Kawasaki, Ryo; Mitchell, Paul

    2014-01-01

    Fractal dimensions (FDs) are frequently used for summarizing the complexity of retinal vascular. However, previous techniques on this topic were not zone specific. A new methodology to measure FD of a specific zone in retinal images has been developed and tested as a marker for stroke prediction. Higuchi's fractal dimension was measured in circumferential direction (FDC) with respect to optic disk (OD), in three concentric regions between OD boundary and 1.5 OD diameter from its margin. The significance of its association with future episode of stroke event was tested using the Blue Mountain Eye Study (BMES) database and compared against spectrum fractal dimension (SFD) and box-counting (BC) dimension. Kruskal-Wallis analysis revealed FDC as a better predictor of stroke (H = 5.80, P = 0.016, α = 0.05) compared with SFD (H = 0.51, P = 0.475, α = 0.05) and BC (H = 0.41, P = 0.520, α = 0.05) with overall lower median value for the cases compared to the control group. This work has shown that there is a significant association between zone specific FDC of eye fundus images with future episode of stroke while this difference is not significant when other FD methods are employed.

  10. ESGAR consensus statement on liver MR imaging and clinical use of liver-specific contrast agents

    Neri, E.; Boraschi, P.; Bartolozzi, C. [University of Pisa, Department of Diagnostic and Interventional Radiology, Pisa (Italy); Bali, M.A.; Matos, C. [Hopital Erasme, MRI Clinics, Department of Radiology, Bruxelles (Belgium); Ba-Ssalamah, A. [The General Hospital of the Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Brancatelli, G. [University of Palermo, Department of Radiology, Palermo (Italy); Alves, F.C. [University Hospital of Coimbra, Medical Imaging Department and Faculty of Medicine, Coimbra (Portugal); Grazioli, L. [Spedali Civili di Brescia, Department of Radiology, Brescia (Italy); Helmberger, T. [Academic Teaching Hospital of the Technical University, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Klinikum Bogenhausen, Munich (Germany); Lee, J.M. [Seoul National University College of Medicine, Division of Abdominal Imaging, Department of Radiology, Seoul (Korea, Republic of); Manfredi, R. [University of Verona, Department of Radiology, Verona (Italy); Marti-Bonmati, L. [Hospital Universitario y Politecnico La Fe, Area Clinica de Imagen Medica, Valencia (Spain); Merkle, E.M. [Universitaetsspital Basel, Klinik fuer Radiologie und Nuklearmedizin, Basel (Switzerland); Op De Beeck, B. [Antwerp University Hospital, Department of Radiology, Edegem (Belgium); Schima, W. [KH Goettlicher Heiland, Krankenhaus der Barmherzigen Schwestern and Sankt Josef-Krankenhaus, Department of Diagnostic and Interventional Radiology, Vienna (Austria); Skehan, S. [St Vincent' s University Hospital, Department of Radiology, Dublin (Ireland); Vilgrain, V. [Assistance Publique-Hopitaux de Paris, APHP, Hopital Beaujon, Radiology Department, Clichy, Paris (France); Zech, C. [Universitaetsspital Basel, Abteilungsleiter Interventionelle Radiologie, Klinik fuer Radiologie und Nuklearmedizin, Basel (Switzerland)

    2016-04-15

    To develop a consensus and provide updated recommendations on liver MR imaging and the clinical use of liver-specific contrast agents. The European Society of Gastrointestinal and Abdominal Radiology (ESGAR) formed a multinational European panel of experts, selected on the basis of a literature review and their leadership in the field of liver MR imaging. A modified Delphi process was adopted to draft a list of statements. Descriptive and Cronbach's statistics were used to rate levels of agreement and internal reliability of the consensus. Three Delphi rounds were conducted and 76 statements composed on MR technique (n = 17), clinical application of liver-specific contrast agents in benign, focal liver lesions (n = 7), malignant liver lesions in non-cirrhotic (n = 9) and in cirrhotic patients (n = 18), diffuse and vascular liver diseases (n = 12), and bile ducts (n = 13). The overall mean score of agreement was 4.84 (SD ±0.17). Full consensus was reached in 22 % of all statements in all working groups, with no full consensus reached on diffuse and vascular diseases. The consensus provided updated recommendations on the methodology, and clinical indications, of MRI with liver specific contrast agents in the study of liver diseases. (orig.)

  11. Should MR imaging be used as the first line of investigation in adult congenital heart disease

    Sivananthan, M.U. Jr.; Rees, M.R.; Verma, S.P.; Gundroo, G.M.; Ridgway, J.; Bann, K. Jr.

    1991-01-01

    This paper investigates the adequacy of MR imaging in the display of anatomy and flow in adult congenital heart disease. Seventeen adult patients with congenital heart disease were studied with a 1-T Siemens Magnatom imager. Gated spin-echo images in three orthogonal as well as selected oblique planes and gradient cine angiographic images were obtained. The results were compared with the results of echocardiography and conventional angiography. There were 9 patients with coarctation of the aorta, 3 of which were postoperative studies. MR images were adequate in the postoperative cases, and the need for angiography was avoided. Seven additional lesions (2 atrial septal defects (ASD), 2 ventricular septal defects (VSD), and 3 bicuspid aortic valves) were demonstrated that were not demonstrated with echocardiography. Four postoperative Blalock shunts were evaluated, which could not be catheterized with echocardiography (2 occlusions, 2 stenoses), and additional flow and anatomic information of the pulmonary vasculature was obtained. In the other 5 cases, 5 additional lesions were demonstrated compared with echocardiography

  12. Multiframe, Single Line-of-Sight X-Ray Imager for Burning Plasmas

    Baker, Kevin L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-28

    The purpose of this LDRD project was to demonstrate high spatial and temporal resolution x-ray imaging using optical detectors, and in particular the VISAR and OHRV diagnostics on the OMEGA laser. The x-ray source being imaged was a backlighter capsule being imploded by 39 beams of the OMEGA laser. In particular this approach utilized a semiconductor with the side facing the backlighter capsule coated with a thin aluminum layer to allow x rays to pass through the metal layer and then get absorbed in the semiconductor. The other side of the semiconductor was AR coated to allow the VISAR or OHRV probe beam to sample the phase change of the semiconductor as the x rays were absorbed in the semiconductor. This technique is capable of acquiring sub-picosecond 2-D or 1-D x-ray images, detector spatial resolution of better than 10 um and the ability to operate in a high neutron flux environment expected on ignition shots with burning plasmas. In addition to demonstrating this technique on the OMEGA laser, several designs were made to improve the phase sensitivity, temporal resolution and number of frames over the existing diagnostics currently implemented on the OMEGA laser. These designs included both 2-d imaging diagnostics as well as improved 1-D imaging diagnostics which were streaked in time.

  13. Machine-Specific Magnetic Resonance Imaging Quality Control Procedures for Stereotactic Radiosurgery Treatment Planning.

    Fatemi, Ali; Taghizadeh, Somayeh; Yang, Claus Chunli; R Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan

    2017-12-18

    Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID 3D and Quasar GRID 3D phantoms were used to evaluate the effects of static magnetic field (B 0 ) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning

  14. Site-specific induction of lymphatic malformations in a rat model for image-guided therapy

    Short, Robert F.; Shiels, William E. [Ohio State University College of Medicine and Public Health, Department of Radiology, The Children' s Radiological Institute, Children' s Hospital, Columbus, OH (United States); Sferra, Thomas J. [Ohio State University College of Medicine and Public Health, Department of Gastroenterology, The Columbus Children' s Research Institute, Children' s Hospital, Columbus, OH (United States); Nicol, Kathleen K. [Ohio State University College of Medicine and Public Health, Department of Pathology, Children' s Hospital, Columbus, OH (United States); Schofield, Minka; Wiet, Gregory J. [Ohio State University College of Medicine and Public Health, Department of Otolaryngology, Children' s Hospital, Columbus, OH (United States)

    2007-06-15

    Lymphatic malformation is a common benign mass in children and adults and is representative of a derangement in lymphangiogenesis. These lesions have high recurrence rates and significant morbidity associated with surgery. Several sclerotherapy regimens have been developed clinically to treat lymphatic malformations; however, an animal model has not been developed that is adequate to test the efficacy of image-guided therapeutic interventions. To develop an animal model suitable for evaluation of percutaneous treatments of lymphatic malformations. Male Harlan Sprague-Dawley rats (n = 9) received two US-guided injections of Incomplete Freund's Adjuvant (IFA) over a 2-week period. All nine rats were injected twice into the peritoneum (IP); a subgroup (n = 3) received additional injections into the neck. Three animals that received IP injections of saline were used as controls. The injection sites were monitored for the development of lesions by high-resolution ultrasonography at 2-week intervals for 100 days. High-resolution (4.7 Tesla) magnetic resonance imaging was then performed on two animals noted to have developed masses. The rats were sacrificed and histologic examination of the identified lesions was performed, including immunohistochemical staining for vascular (CD31) and lymphatic (Flt-4 and Prox-1) endothelium. All animals injected with IFA developed cystic lesions. The three animals injected at dual sites were noted to have both microcystic and macrocystic malformations in the neck and microcystic plaque-like lesions in the peritoneum. The macrocystic malformations ({>=}5 mm) in the neck were detected by ultrasonography and grossly later during necropsy. Histopathologic analysis revealed the cystic spaces to be lined by lymphatic endothelium supported by a connective tissue stroma. Control animals did not exhibit detectable lesions with either ultrasonography or necropsy. This model represents a promising tool for translational development of image

  15. Site-specific induction of lymphatic malformations in a rat model for image-guided therapy

    Short, Robert F.; Shiels, William E.; Sferra, Thomas J.; Nicol, Kathleen K.; Schofield, Minka; Wiet, Gregory J.

    2007-01-01

    Lymphatic malformation is a common benign mass in children and adults and is representative of a derangement in lymphangiogenesis. These lesions have high recurrence rates and significant morbidity associated with surgery. Several sclerotherapy regimens have been developed clinically to treat lymphatic malformations; however, an animal model has not been developed that is adequate to test the efficacy of image-guided therapeutic interventions. To develop an animal model suitable for evaluation of percutaneous treatments of lymphatic malformations. Male Harlan Sprague-Dawley rats (n = 9) received two US-guided injections of Incomplete Freund's Adjuvant (IFA) over a 2-week period. All nine rats were injected twice into the peritoneum (IP); a subgroup (n = 3) received additional injections into the neck. Three animals that received IP injections of saline were used as controls. The injection sites were monitored for the development of lesions by high-resolution ultrasonography at 2-week intervals for 100 days. High-resolution (4.7 Tesla) magnetic resonance imaging was then performed on two animals noted to have developed masses. The rats were sacrificed and histologic examination of the identified lesions was performed, including immunohistochemical staining for vascular (CD31) and lymphatic (Flt-4 and Prox-1) endothelium. All animals injected with IFA developed cystic lesions. The three animals injected at dual sites were noted to have both microcystic and macrocystic malformations in the neck and microcystic plaque-like lesions in the peritoneum. The macrocystic malformations (≥5 mm) in the neck were detected by ultrasonography and grossly later during necropsy. Histopathologic analysis revealed the cystic spaces to be lined by lymphatic endothelium supported by a connective tissue stroma. Control animals did not exhibit detectable lesions with either ultrasonography or necropsy. This model represents a promising tool for translational development of image

  16. On-line transmission electron microscopic image analysis of chromatin texture for differentiation of thyroid gland tumors.

    Kriete, A; Schäffer, R; Harms, H; Aus, H M

    1987-06-01

    Nuclei of the cells from the thyroid gland were analyzed in a transmission electron microscope by direct TV scanning and on-line image processing. The method uses the advantages of a visual-perception model to detect structures in noisy and low-contrast images. The features analyzed include area, a form factor and texture parameters from the second derivative stage. Three tumor-free thyroid tissues, three follicular adenomas, three follicular carcinomas and three papillary carcinomas were studied. The computer-aided cytophotometric method showed that the most significant differences were the statistics of the chromatin texture features of homogeneity and regularity. These findings document the possibility of an automated differentiation of tumors at the ultrastructural level.

  17. Diderot: a Domain-Specific Language for Portable Parallel Scientific Visualization and Image Analysis.

    Kindlmann, Gordon; Chiw, Charisee; Seltzer, Nicholas; Samuels, Lamont; Reppy, John

    2016-01-01

    Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector, and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level, mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.

  18. Derivation of transplantable 7,12-dimethylbenz[a]anthracene-induced chicken fibrosarcoma lines: differences in metastasizing properties and organ specificity

    Galton, J.E.; Xue, B.; Hochwald, G.M.; Thorbecke, G.J.

    1982-01-01

    Transplantable 7,12-dimethylbenz[a]anthracene-induced SC chicken fibrosarcoma (CHCT-NYU) lines were studied for their ability to grow in internal organs after iv injection (artificial metastases) into 1- to 3-week-old chickens. Some tumor lines were recently derived, whereas others were studied after many serial subcutaneous transplantations. Artificial metastases were seen in the stomach, pancreas, lungs, heart, and muscle, and occasionally in the kidneys and liver. Agammaglobulinemic recipients showed more extensive organ involvement than normal recipients of the same age. Whole-body ν-irradiation enhanced the incidence of artificial metastases, particularly in lungs. Antibody from the serum of a primary tumor-bearing host reduced the growth of the corresponding tumor in many organs. The metastatic pattern of line CHCT-NYU4 was a relatively stable property. However, intravenous transplantation of tumor cells from line CHCT-NYU4 taken from the liver, lungs, and pancreas of a single recipient established sublines with changes in organ specificity. After a few such serial transplants of liver-derived tumor, a line was derived that grew virtually in the liver alone. A subline with preference for growth in lungs was also obtained, but its ability to grow in the pancreas persisted. A pancreas-derived tumor line also grew in the liver and lungs. Subcutaneous transplants of tissue fragments of the lung-derived tumor line caused the appearance of spontaneous metastases in lungs. The incidence of spontaneous metastases with the lung-derived line was much greater than that with the liver-derived line or with the original CHCT-NYU4 line

  19. Context-based coding of bilevel images enhanced by digital straight line analysis

    Aghito, Shankar Manuel; Forchhammer, Søren

    2006-01-01

    , or segmentation maps are also encoded efficiently. The algorithm is not targeted at document images with text, which can be coded efficiently with dictionary-based techniques as in JBIG2. The scheme is based on a local analysis of the digital straightness of the causal part of the object boundary, which is used...... in the context definition for arithmetic encoding. Tested on individual images of standard TV resolution binary shapes and the binary layers of a digital map, the proposed algorithm outperforms PWC, JBIG, JBIG2, and MPEG-4 CAE. On the binary shapes, the code lengths are reduced by 21%, 27 %, 28 %, and 41...

  20. On-line fresh-cut lettuce quality measurement system using hyperspectral imaging

    Lettuce, which is a main type of fresh-cut vegetable, has been used in various fresh-cut products. In this study, an online quality measurement system for detecting foreign substances on the fresh-cut lettuce was developed using hyperspectral reflectance imaging. The online detection system with a s...

  1. Deep Learning-Based Banknote Fitness Classification Using the Reflection Images by a Visible-Light One-Dimensional Line Image Sensor

    Tuyen Danh Pham

    2018-02-01

    Full Text Available In automatic paper currency sorting, fitness classification is a technique that assesses the quality of banknotes to determine whether a banknote is suitable for recirculation or should be replaced. Studies on using visible-light reflection images of banknotes for evaluating their usability have been reported. However, most of them were conducted under the assumption that the denomination and input direction of the banknote are predetermined. In other words, a pre-classification of the type of input banknote is required. To address this problem, we proposed a deep learning-based fitness-classification method that recognizes the fitness level of a banknote regardless of the denomination and input direction of the banknote to the system, using the reflection images of banknotes by visible-light one-dimensional line image sensor and a convolutional neural network (CNN. Experimental results on the banknote image databases of the Korean won (KRW and the Indian rupee (INR with three fitness levels, and the Unites States dollar (USD with two fitness levels, showed that our method gives better classification accuracy than other methods.

  2. Deep Learning-Based Banknote Fitness Classification Using the Reflection Images by a Visible-Light One-Dimensional Line Image Sensor.

    Pham, Tuyen Danh; Nguyen, Dat Tien; Kim, Wan; Park, Sung Ho; Park, Kang Ryoung

    2018-02-06

    In automatic paper currency sorting, fitness classification is a technique that assesses the quality of banknotes to determine whether a banknote is suitable for recirculation or should be replaced. Studies on using visible-light reflection images of banknotes for evaluating their usability have been reported. However, most of them were conducted under the assumption that the denomination and input direction of the banknote are predetermined. In other words, a pre-classification of the type of input banknote is required. To address this problem, we proposed a deep learning-based fitness-classification method that recognizes the fitness level of a banknote regardless of the denomination and input direction of the banknote to the system, using the reflection images of banknotes by visible-light one-dimensional line image sensor and a convolutional neural network (CNN). Experimental results on the banknote image databases of the Korean won (KRW) and the Indian rupee (INR) with three fitness levels, and the Unites States dollar (USD) with two fitness levels, showed that our method gives better classification accuracy than other methods.

  3. Material-specific imaging system using energy-dispersive X-ray diffraction and spatially resolved CdZnTe detectors with potential application in breast imaging

    Barbes, Damien, E-mail: damien.barbes@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Tabary, Joachim, E-mail: joachim.tabary@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Paulus, Caroline, E-mail: caroline.paulus@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Hazemann, Jean-Louis, E-mail: jean-louis.hazemann@neel.cnrs.fr [Univ.Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Verger, Loïck, E-mail: loick.verger@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2017-03-11

    This paper presents a coherent X-ray-scattering imaging technique using a multipixel energy-dispersive system. Without any translation, the technique produces specific 1D image from data recorded by a single CdZnTe detector pixel using subpixelation techniques. The method is described in detail, illustrated by a simulation and then experimentally validated. As the main considered application of our study is breast imaging, this validation involves 2D imaging of a phantom made of plastics mimicking breast tissues. The results obtained show that our system can specifically image the phantom using a single detector pixel. For the moment, in vivo breast imaging applications remain difficult, as the dose delivered by the system is too high, but some adjustments are considered for further work.

  4. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35.

    Zhao, Menglin; Wang, Jiaxian; Luo, Manyu; Luo, Han; Zhao, Meiqi; Han, Lei; Zhang, Mengxiao; Yang, Hui; Xie, Yueqing; Jiang, Hua; Feng, Lei; Lu, Huili; Zhu, Jianwei

    2018-07-01

    Chinese hamster ovary (CHO) cells are the most widely used mammalian hosts for recombinant protein production. However, by conventional random integration strategy, development of a high-expressing and stable recombinant CHO cell line has always been a difficult task due to the heterogenic insertion and its caused requirement of multiple rounds of selection. Site-specific integration of transgenes into CHO hot spots is an ideal strategy to overcome these challenges since it can generate isogenic cell lines with consistent productivity and stability. In this study, we investigated three sites with potential high transcriptional activities: C12orf35, HPRT, and GRIK1, to determine the possible transcriptional hot spots in CHO cells, and further construct a reliable site-specific integration strategy to develop recombinant cell lines efficiently. Genes encoding representative proteins mCherry and anti-PD1 monoclonal antibody were targeted into these three loci respectively through CRISPR/Cas9 technology. Stable cell lines were generated successfully after a single round of selection. In comparison with a random integration control, all the targeted integration cell lines showed higher productivity, among which C12orf35 locus was the most advantageous in both productivity and cell line stability. Binding affinity and N-glycan analysis of the antibody revealed that all batches of product were of similar quality independent on integrated sites. Deep sequencing demonstrated that there was low level of off-target mutations caused by CRISPR/Cas9, but none of them contributed to the development process of transgene cell lines. Our results demonstrated the feasibility of C12orf35 as the target site for exogenous gene integration, and strongly suggested that C12orf35 targeted integration mediated by CRISPR/Cas9 is a reliable strategy for the rapid development of recombinant CHO cell lines.

  5. Specific image characteristics influence attitudes about chimpanzee conservation and use as pets.

    Stephen R Ross

    Full Text Available Chimpanzees are endangered in their native Africa but in the United States, they are housed not only in zoos and research centers but owned privately as pets and performers. In 2008, survey data revealed that the public is less likely to think that chimpanzees are endangered compared to other great apes, and that this is likely the result of media misportrayals in movies, television and advertisements. Here, we use an experimental survey paradigm with composite images of chimpanzees to determine the effects of specific image characteristics. We found that those viewing a photograph of a chimpanzee with a human standing nearby were 35.5% more likely to consider wild populations to be stable/healthy compared to those seeing the exact same picture without a human. Likewise, the presence of a human in the photograph increases the likelihood that they consider chimpanzees as appealing as a pet. We also found that respondents seeing images in which chimpanzees are shown in typically human settings (such as an office space were more likely to perceive wild populations as being stable and healthy compared to those seeing chimpanzees in other contexts. These findings shed light on the way that media portrayals of chimpanzees influence public attitudes about this important and endangered species.

  6. Specific image characteristics influence attitudes about chimpanzee conservation and use as pets.

    Ross, Stephen R; Vreeman, Vivian M; Lonsdorf, Elizabeth V

    2011-01-01

    Chimpanzees are endangered in their native Africa but in the United States, they are housed not only in zoos and research centers but owned privately as pets and performers. In 2008, survey data revealed that the public is less likely to think that chimpanzees are endangered compared to other great apes, and that this is likely the result of media misportrayals in movies, television and advertisements. Here, we use an experimental survey paradigm with composite images of chimpanzees to determine the effects of specific image characteristics. We found that those viewing a photograph of a chimpanzee with a human standing nearby were 35.5% more likely to consider wild populations to be stable/healthy compared to those seeing the exact same picture without a human. Likewise, the presence of a human in the photograph increases the likelihood that they consider chimpanzees as appealing as a pet. We also found that respondents seeing images in which chimpanzees are shown in typically human settings (such as an office space) were more likely to perceive wild populations as being stable and healthy compared to those seeing chimpanzees in other contexts. These findings shed light on the way that media portrayals of chimpanzees influence public attitudes about this important and endangered species.

  7. Segmenting CT prostate images using population and patient-specific statistics for radiotherapy

    Feng, Qianjin; Foskey, Mark; Chen Wufan; Shen Dinggang

    2010-01-01

    Purpose: In the segmentation of sequential treatment-time CT prostate images acquired in image-guided radiotherapy, accurately capturing the intrapatient variation of the patient under therapy is more important than capturing interpatient variation. However, using the traditional deformable-model-based segmentation methods, it is difficult to capture intrapatient variation when the number of samples from the same patient is limited. This article presents a new deformable model, designed specifically for segmenting sequential CT images of the prostate, which leverages both population and patient-specific statistics to accurately capture the intrapatient variation of the patient under therapy. Methods: The novelty of the proposed method is twofold: First, a weighted combination of gradient and probability distribution function (PDF) features is used to build the appearance model to guide model deformation. The strengths of each feature type are emphasized by dynamically adjusting the weight between the profile-based gradient features and the local-region-based PDF features during the optimization process. An additional novel aspect of the gradient-based features is that, to alleviate the effect of feature inconsistency in the regions of gas and bone adjacent to the prostate, the optimal profile length at each landmark is calculated by statistically investigating the intensity profile in the training set. The resulting gradient-PDF combined feature produces more accurate and robust segmentations than general gradient features. Second, an online learning mechanism is used to build shape and appearance statistics for accurately capturing intrapatient variation. Results: The performance of the proposed method was evaluated on 306 images of the 24 patients. Compared to traditional gradient features, the proposed gradient-PDF combination features brought 5.2% increment in the success ratio of segmentation (from 94.1% to 99.3%). To evaluate the effectiveness of online

  8. Segmenting CT prostate images using population and patient-specific statistics for radiotherapy

    Feng, Qianjin; Foskey, Mark; Chen Wufan; Shen Dinggang [Biomedical Engineering College, South Medical University, Guangzhou (China) and Department of Radiology, University of North Carolina, Chapel Hill, North Carolina 27510 (United States); Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Biomedical Engineering College, South Medical University, Guangzhou 510510 (China); Department of Radiology, University of North Carolina, Chapel Hill, North Carolina 27510 (United States)

    2010-08-15

    Purpose: In the segmentation of sequential treatment-time CT prostate images acquired in image-guided radiotherapy, accurately capturing the intrapatient variation of the patient under therapy is more important than capturing interpatient variation. However, using the traditional deformable-model-based segmentation methods, it is difficult to capture intrapatient variation when the number of samples from the same patient is limited. This article presents a new deformable model, designed specifically for segmenting sequential CT images of the prostate, which leverages both population and patient-specific statistics to accurately capture the intrapatient variation of the patient under therapy. Methods: The novelty of the proposed method is twofold: First, a weighted combination of gradient and probability distribution function (PDF) features is used to build the appearance model to guide model deformation. The strengths of each feature type are emphasized by dynamically adjusting the weight between the profile-based gradient features and the local-region-based PDF features during the optimization process. An additional novel aspect of the gradient-based features is that, to alleviate the effect of feature inconsistency in the regions of gas and bone adjacent to the prostate, the optimal profile length at each landmark is calculated by statistically investigating the intensity profile in the training set. The resulting gradient-PDF combined feature produces more accurate and robust segmentations than general gradient features. Second, an online learning mechanism is used to build shape and appearance statistics for accurately capturing intrapatient variation. Results: The performance of the proposed method was evaluated on 306 images of the 24 patients. Compared to traditional gradient features, the proposed gradient-PDF combination features brought 5.2% increment in the success ratio of segmentation (from 94.1% to 99.3%). To evaluate the effectiveness of online

  9. In situ oxidation state profiling of nickel hexacyanoferrate derivatized electrodes using line-imaging Raman spectroscopy and multivariate calibration

    Haight, S.M.; Schwartz, D.T.

    1999-01-01

    Metal hexacyanoferrate compounds show promise as electrochemically switchable ion exchange materials for use in the cleanup of radioactive wastes such as those found in storage basins and underground tanks at the Department of Energy's Hanford Nuclear Reservation. Reported is the use of line-imaging Raman spectroscopy for the in situ determination of oxidation state profiles in nickel hexacyanoferrate derivatized electrodes under potential control in an electrochemical cell. Line-imaging Raman spectroscopy is used to collect 256 contiguous Raman spectra every ∼5 microm from thin films (ca. 80 nm) formed by electrochemical derivatization of nickel electrodes. The cyanide stretching region of the Raman spectrum of the film is shown to be sensitive to iron oxidation state and is modeled by both univariate and multivariate correlations. Although both correlations fit the calibration set well, the multivariate (principle component regression or PCR) model's predictions of oxidation state are less sensitive to noise in the spectrum, yielding a much smoother oxidation state profile than the univariate model. Oxidation state profiles with spatial resolution of approximately 5 microm are shown for a nickel hexacyanoferrate derivatized electrode in reduced, intermediate, and oxidized states. In situ oxidation state profiles indicate that the 647.1 nm laser illumination photo-oxidizes the derivatized electrodes. This observation is confirmed using photoelectrochemical methods

  10. Illusory bending of a rigidly moving line segment: effects of image motion and smooth pursuit eye movements.

    Thaler, Lore; Todd, James T; Spering, Miriam; Gegenfurtner, Karl R

    2007-04-20

    Four experiments in which observers judged the apparent "rubberiness" of a line segment undergoing different types of rigid motion are reported. The results reveal that observers perceive illusory bending when the motion involves certain combinations of translational and rotational components and that the illusion is maximized when these components are presented at a frequency of approximately 3 Hz with a relative phase angle of approximately 120 degrees . Smooth pursuit eye movements can amplify or attenuate the illusion, which is consistent with other results reported in the literature that show effects of eye movements on perceived image motion. The illusion is unaffected by background motion that is in counterphase with the motion of the line segment but is significantly attenuated by background motion that is in-phase. This is consistent with the idea that human observers integrate motion signals within a local frame of reference, and it provides strong evidence that visual persistency cannot be the sole cause of the illusion as was suggested by J. R. Pomerantz (1983). An analysis of the motion patterns suggests that the illusory bending motion may be due to an inability of observers to accurately track the motions of features whose image displacements undergo rapid simultaneous changes in both space and time. A measure of these changes is presented, which is highly correlated with observers' numerical ratings of rubberiness.

  11. Technical Note: Harmonic analysis applied to MR image distortion fields specific to arbitrarily shaped volumes.

    Stanescu, T; Jaffray, D

    2018-05-25

    Magnetic resonance imaging is expected to play a more important role in radiation therapy given the recent developments in MR-guided technologies. MR images need to consistently show high spatial accuracy to facilitate RT specific tasks such as treatment planning and in-room guidance. The present study investigates a new harmonic analysis method for the characterization of complex 3D fields derived from MR images affected by system-related distortions. An interior Dirichlet problem based on solving the Laplace equation with boundary conditions (BCs) was formulated for the case of a 3D distortion field. The second-order boundary value problem (BVP) was solved using a finite elements method (FEM) for several quadratic geometries - i.e., sphere, cylinder, cuboid, D-shaped, and ellipsoid. To stress-test the method and generalize it, the BVP was also solved for more complex surfaces such as a Reuleaux 9-gon and the MR imaging volume of a scanner featuring a high degree of surface irregularities. The BCs were formatted from reference experimental data collected with a linearity phantom featuring a volumetric grid structure. The method was validated by comparing the harmonic analysis results with the corresponding experimental reference fields. The harmonic fields were found to be in good agreement with the baseline experimental data for all geometries investigated. In the case of quadratic domains, the percentage of sampling points with residual values larger than 1 mm were 0.5% and 0.2% for the axial components and vector magnitude, respectively. For the general case of a domain defined by the available MR imaging field of view, the reference data showed a peak distortion of about 12 mm and 79% of the sampling points carried a distortion magnitude larger than 1 mm (tolerance intrinsic to the experimental data). The upper limits of the residual values after comparison with the harmonic fields showed max and mean of 1.4 mm and 0.25 mm, respectively, with only 1.5% of

  12. Improved images of crustal structures in the Bergslagen, central Sweden, through seismic reprocessing of BABEL lines 1, 6 and 7

    Buntin, Sebastian; Malehmir, Alireza; Malinowski, Michał; Högdahl, Karin; Juhlin, Christopher; Buske, Stefan

    2017-04-01

    In a joint effort through the BABEL project, geoscientists from five countries acquired marine seismic data in the Baltic Sea with a total length of 2268 km in the year 1989. These consisted of near-vertical reflection and wide-angle refraction seismic data, providing insights into the subsurface down to the Moho and suggesting the existence of plate tectonics already during the Paleoproterozoic. The seismic data were acquired using a receiver group interval of 50 m and a total cable length of 3 km. In total, 60 groups of 64 hydrophones at 15 m depth were used. An airgun array consisting of six equal subarrays towed at 7.5 m depth was used to generate the seismic signal. The shot interval and the corresponding record lengths were different among the lines. A record length of 25 s and 75 m shot spacing for lines 1 and 7, respectively and 23 s and 62.5 m for line 6, respectively was used. The sampling rate was 4 ms for all three profiles. Lines 1, 6 and 7 are located at the boundary to the world-class and historical Bergslagen mineral district, and are being revisited in this study. Improved images can be used to refine previous interpretations, particularly at shallower depths (stack deconvolutions and coherency enhancements were applied. The reprocessing revealed reflections in the shallow part of the profiles, likely from major deformation (multi-phase) zones extending down to the lower crust, which were not present in the previous images. Also the images of the reflections in the deeper parts are remarkably improved. This also includes a few sub-Moho reflections. The three reprocessed profiles help constrain the nature of the northern boundary of Bergslagen and associated crustal structures. Furthermore they should assist in the planning of an onshore refraction and reflection profile, to be acquired in 2017, crossing the northern boundary of the Bergslagen district. Acknowledgments: This work is supported by the Swedish Research Council (VR) grant number 2015

  13. Specification and design of a Therapy Imaging and Model Management System (TIMMS)

    Lemke, Heinz U.; Berliner, Leonard

    2007-03-01

    Appropriate use of Information and Communication Technology (ICT) and Mechatronic (MT) systems is considered by many experts as a significant contribution to improve workflow and quality of care in the Operating Room (OR). This will require a suitable IT infrastructure as well as communication and interface standards, such as DICOM and suitable extensions, to allow data interchange between surgical system components in the OR. A conceptual design of such an infrastructure, i.e. a Therapy Imaging and Model Management System (TIMMS) will be introduced in this paper. A TIMMS should support the essential functions that enable and advance image, and in particular, patient model guided therapy. Within this concept, the image centric world view of the classical PACS technology is complemented by an IT model-centric world view. Such a view is founded in the special modelling needs of an increasing number of modern surgical interventions as compared to the imaging intensive working mode of diagnostic radiology, for which PACS was originally conceptualised and developed. A proper design of a TIMMS, taking into account modern software engineering principles, such as service oriented architecture, will clarify the right position of interfaces and relevant standards for a Surgical Assist System (SAS) in general and their components specifically. Such a system needs to be designed to provide a highly modular structure. Modules may be defined on different granulation levels. A first list of components (e.g. high and low level modules) comprising engines and repositories of an SAS, which should be integrated by a TIMMS, will be introduced in this paper.

  14. Diffusion tensor imaging of the human calf: Variation of inter- and intramuscle-specific diffusion parameters.

    Schlaffke, Lara; Rehmann, Robert; Froeling, Martijn; Kley, Rudolf; Tegenthoff, Martin; Vorgerd, Matthias; Schmidt-Wilcke, Tobias

    2017-10-01

    To investigate to what extent inter- and intramuscular variations of diffusion parameters of human calf muscles can be explained by age, gender, muscle location, and body mass index (BMI) in a specific age group (20-35 years). Whole calf muscles of 18 healthy volunteers were evaluated. Magnetic resonance imaging (MRI) was performed using a 3T scanner and a 16-channel Torso XL coil. Diffusion-weighted images were acquired to perform fiber tractography and diffusion tensor imaging (DTI) analysis for each muscle of both legs. Fiber tractography was used to separate seven lower leg muscles. Associations between DTI parameters and confounds were evaluated. All muscles were additionally separated in seven identical segments along the z-axis to evaluate intramuscular differences in diffusion parameters. Fractional anisotropy (FA) and mean diffusivity (MD) were obtained for each muscle with low standard deviations (SDs) (SD FA : 0.01-0.02; SD MD : 0.07-0.14(10 -3 )). We found significant differences in FA values of the tibialis anterior muscle (AT) and extensor digitorum longus (EDL) muscles between men and women for whole muscle FA (two-sample t-tests; AT: P = 0.0014; EDL: P = 0.0004). We showed significant intramuscular differences in diffusion parameters between adjacent segments in most calf muscles (P < 0.001). Whereas muscle insertions showed higher (SD 0.03-0.06) than muscle bellies (SD 0.01-0.03), no relationships between FA or MD with age or BMI were found. Inter- and intramuscular variations in diffusion parameters of the calf were shown, which are not related to age or BMI in this age group. Differences between muscle belly and insertion should be considered when interpreting datasets not including whole muscles. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1137-1148. © 2017 International Society for Magnetic Resonance in Medicine.

  15. In vivo tumor angiogenesis imaging with site-specific labeled 99mTc-HYNIC-VEGF

    Blankenberg, Francis G.; Backer, Marina V.; Patel, Vimalkumar; Backer, Joseph M.; Levashova, Zoia

    2006-01-01

    We recently developed a cysteine-containing peptide tag (C-tag) that allows for site-specific modification of C-tag-containing fusion proteins with a bifunctional chelator, HYNIC (hydrazine nicotinamide)-maleimide. We then constructed and expressed C-tagged vascular endothelial growth factor (VEGF) and labeled it with HYNIC. We wished to test 99m Tc-HYNIC-C-tagged VEGF ( 99m Tc-HYNIC-VEGF) for the imaging of tumor vasculature before and after antiangiogenic (low continuous dosing, metronomic) and tumoricidal (high-dose) cyclophosphamide treatment. HYNIC-maleimide was reacted with the two thiol groups of C-tagged VEGF without any effect on biologic activity in vitro. 99m Tc-HYNIC-VEGF was prepared using tin/tricine as an exchange reagent, and injected via the tail vein (200-300 μCi, 1-2 μg protein) followed by microSPECT imaging 1 h later. Sequencing analysis of HYNIC-containing peptides obtained after digestion confirmed the site-specific labeling of the two accessible thiol groups of C-tagged VEGF. Tumor vascularity was easily visualized with 99m Tc/VEGF in Balb/c mice with 4T1 murine mammary carcinoma 10 days after implantation into the left axillary fat pad in controls (12.3±5.0 tumor/bkg, n=27) along with its decrease following treatment with high (150 mg/kg q.o.d. x 4; 1.14±0.48 tumor/bkg, n=9) or low (25 mg/kg q.d. x 7; 1.03±0.18 tumor/bkg, n=9) dose cyclophosphamide. Binding specificity was confirmed by observing a 75% decrease in tumor uptake of 99m Tc/biotin-inactivated VEGF, as compared with 99m Tc-HYNIC-VEGF. 99m Tc can be loaded onto C-tagged VEGF in a site-specific fashion without reducing its bioactivity. 99m Tc-HYNIC-VEGF can be rapidly prepared for the imaging of tumor vasculature and its response to different types of chemotherapy. (orig.)

  16. Phase retrieval for X-ray in-line phase contrast imaging

    Scattarella, F.; Bellotti, R.; Tangaro, S.; Gargano, G.; Giannini, C.

    2011-01-01

    A review article about phase retrieval problem in X-ray phase contrast imaging is presented. A simple theoretical framework of Fresnel diffraction imaging by X-rays is introduced. A review of the most important methods for phase retrieval in free-propagation-based X-ray imaging and a new method developed by our collaboration are shown. The proposed algorithm, Combined Mixed Approach (CMA) is based on a mixed transfer function and transport of intensity approach, and it requires at most an initial approximate estimate of the average phase shift introduced by the object as prior knowledge. The accuracy with which this initial estimate is known determines the convenience speed of algorithm. The new proposed algorithm is based on the retrieval of both the object phase and its complex conjugate. The results obtained by the algorithm on simulated data have shown that the obtained reconstructed phase maps are characterized by particularly low normalized mean square errors. The algorithm was also tested on noisy experimental phase contrast data, showing a good efficiency in recovering phase information and enhancing the visibility of details inside soft tissues.

  17. An Interferometric Spectral Line and Imaging Survey of VY Canis Majoris in the 345 GHz Band

    Kamiński, T.; Gottlieb, C. A.; Young, K. H.; Menten, K. M.; Patel, N. A.

    2013-12-01

    A spectral line survey of the oxygen-rich red supergiant VY Canis Majoris was made between 279 and 355 GHz with the Submillimeter Array (SMA). Two hundred twenty-three spectral features from 19 molecules (not counting isotopic species of some of them) were observed, including the rotational spectra of TiO, TiO2, and AlCl for the first time in this source. The parameters and an atlas of all spectral features are presented. Observations of each line with a synthesized beam of ~0.''9, reveal the complex kinematics and morphology of the nebula surrounding VY CMa. Many of the molecules are observed in high-lying rotational levels or in excited vibrational levels. From these, it was established that the main source of the submillimeter-wave continuum (dust) and the high-excitation molecular gas (the star) are separated by about 0.''15. Apparent coincidences between the molecular gas observed with the SMA, and some of the arcs and knots observed at infrared wavelengths and in the optical scattered light by the Hubble Space Telescope are identified. The observations presented here provide important constraints on the molecular chemistry in oxygen-dominated circumstellar environments and a deeper picture of the complex circumstellar environment of VY CMa.

  18. Prediction of response to first-line chemotherapy with steamboat's imaging in lymphoma patients. A preliminary report

    Spyridonidis, T.; Apostolopoulos, D.; Giannakenas, C.; Xourgia, X.; Vasilakosa, P.; Frangos, S.; Matsouka, P.

    2004-01-01

    Full text: Sestamibi is a transport substrate for both Pgp and MRP, which are closely related to MDR (multidrug resistance), a significant factor for chemotherapy treatment failure in many cancer patients. Imaging with Tc99m-Sestamibi has been studied for predicting chemotherapy response mainly in breast and lung cancer. A few studies exist regarding lymphoma patients. In our study we included 24 consecutive lymphoma patients that were referred to our department for initial (before treatment) Ga-67 scan. All these patients were also imaged with Tc99m-Sestamibi in order to evaluate its prognostic value in predicting response to first-line chemotherapy. 20 mCi of Tc99m-Sestamibi was injected intravenously and planar images of the whole body were obtained at 15 min and 2 hours later. In 21/24 patients SPECT was performed in area of interest (most commonly in thorax) both in early and late imaging. Ratios of tumor average counts to background in early and late planar and SPECT images were calculated, also ratios of max tumor counts to background were calculated, as well as tumor washout rate. In all the estimations time decay correction was applied. A visual interpretation score was introduced for early uptake and another for Sestamibi retention in late images. Early uptake score was considered 0 in no or nearly no uptake, 1 in low uptake, 2 in moderate uptake, and 3 in high uptake. Tumor retention score was considered 0 in no retention (not or nearly not visible on late images), 1 in slight/moderate uptake (tumor better seen on early images), 2 in moderate uptake (tumor seen similar/somehow better in late images), 3 high retention (tumor definitely seen better on late images). Finally a total prognostic score (TPS) was derived by the sum of the two above-mentioned scores (uptake score plus retention score). The mean age of our patients was 48.8 ±13.9 years (range 17-80 years). 12 patients were men, and 12 women. There were 8 patients with HD and 16 with NHL. Three of

  19. Homotypic aggregation of human cell lines by HLA class II-, class Ia- and HLA-G-specific monoclonal antibodies

    Odum, Niels; Ledbetter, J A; Martin, P

    1991-01-01

    Major histocompatibility complex (MHC) class II molecules have been implicated in cell adhesion in two ways. In addition to the well-established role of class II antigens in low-affinity adhesion provided by interactions between class II and CD4, recent data indicated that class II may also induce...... adhesion between T and B cells by activating the CD18/CD11a (LFA-1) adhesion pathway. Here we report that monoclonal antibodies (mAb) against HLA-DR (L243, p4.1, HB10a, VI15) and certain broad class II reacting mAb (TU35, TU39), but not anti-DQ (TU22, Leu-10) mAb, induced homotypic aggregation of human...... class II-positive monocytic (I937) and T leukemic (HUT78) tumor cell lines and Epstein-Barr virus (EBV) transformed B-lymphoid cell lines (EBV-LCL). Class II-negative cell lines (U-937 and the EBV-LCL mutant line 616) were not induced to aggregate. An HLA-G-transfected EBV-LCL, 221-AGN...

  20. Differences in Brand Image of Online Chat Application of Blackberry Messenger, Whatsapp, and Line for Bina Nusantara University’s Student

    Kuspuji C. B. Wicaksono

    2016-05-01

    Full Text Available This article was written to find out whether there were any differences on brand image for each online chat Application such as Blackberry Messenger, Whatsapp, and LINE based on six factors of the brand image which are: benefits, attributes, cultures, values, personality, and user. Data for the research were collected from questionnaires given to respondents who had used each mention online chat application. Then each respondent was asked to give scores based on the six factors of brand image for each online chat Application. Using the ANOVA method for testing the differences between brand images for each online chat application. The result reveales that there are differences in the brand image between BlackBerry Messenger, Whatsapp, and LINE for benefits, cultures, and values. There is no difference in attributes, and personality cannot be tested. The company that creates online chat application are expected to improve their brand image to distinguish one another differently.

  1. Project W-314 specific test and evaluation plan for SN-635 transfer line (241-AY-01A to 241-AY-02A) and SN-633 transfer line tie in

    Hays, W.H.

    1998-01-01

    This Specific Test and Evaluation Plan (STEP) defines the test and evaluation activities encompassing the installation of the SN-635 transfer line for the W-314 Project. The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-635 transfer line and the tie in of SN-633 to the AY-02A pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP)

  2. Analysis and design of a coupled coaxial line TEM resonator for magnetic resonance imaging

    Benahmed, Nasreddine; Feham, Mohammed; Khelif, M'Hamed

    2006-01-01

    In this paper, we have successfully realized a numerical tool to analyse and to design an n-element unloaded coaxial line transverse electromagnetic (TEM) resonator. This numerical tool allows the determination of the primary parameters, matrices [L], [C] and [R], and simulates the frequency response of S 11 at the RF port of the designed TEM resonator. The frequency response permits evaluation of the unloaded quality factor Q 0 . As an application, we present the analysis and the design of an eight-element unloaded TEM resonator for animal studies at 4.7 T. The simulated performance has a -62.81 dB minimum reflection and a quality factor of 260 around 200 MHz

  3. Characterization of the Mucor circinelloides life cycle by on-line image analysis

    Lübbehüsen, Tina Louise; Nielsen, Jens; Mcintyre, Mhairi

    2003-01-01

    in and between the different morphological forms of the organism.Methods and Results: Mycelial growth and the transformation of hyphae into chains of arthrospores were characterized by image analysis techniques and described quantitatively. The influence of the nature (glucose and xylose) and concentration......-through cell, and combined with fluorescent microscopy which allowed new insights to bud formation. Additionally, numbers and distribution of nuclei in arthrospores, hyphae and yeasts were studied.Conclusions: The results give essential information on the morphological development of the organism...

  4. Differences in Brand Image of Online Chat Application of Blackberry Messenger, Whatsapp, and Line for Bina Nusantara University’s Student

    Kuspuji C. B. Wicaksono

    2016-01-01

    This article was written to find out whether there were any differences on brand image for each online chat Application such as Blackberry Messenger, Whatsapp, and LINE based on six factors of the brand image which are: benefits, attributes, cultures, values, personality, and user. Data for the research were collected from questionnaires given to respondents who had used each mention online chat application. Then each respondent was asked to give scores based on the six factors of brand image...

  5. Cell-specific STORM superresolution imaging reveals nanoscale organization of cannabinoid signaling

    Szabó, Szilárd I.; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G.; Henstridge, Christopher M.; Balla, Gyula Y.; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István

    2014-01-01

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell-type-, and subcellular compartment-specific manner. We therefore developed a novel approach combining cell-specific physiological and anatomical characterization with superresolution imaging, and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically-projecting GABAergic interneurons possess increased CB1 receptor number, active-zone complexity, and receptor/effector ratio compared to dendritically-projecting interneurons, in agreement with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ9-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked dramatic CB1-downregulation in a dose-dependent manner. Full receptor recovery required several weeks after cessation of Δ9-tetrahydrocannabinol treatment. These findings demonstrate that cell-type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits, and identify novel molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction. PMID:25485758

  6. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling.

    Dudok, Barna; Barna, László; Ledri, Marco; Szabó, Szilárd I; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G; Henstridge, Christopher M; Balla, Gyula Y; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István

    2015-01-01

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell type- and subcellular compartment-specific manner. We developed a new approach to this problem by combining cell-specific physiological and anatomical characterization with super-resolution imaging and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically projecting GABAergic interneurons possessed increased CB1 receptor number, active-zone complexity and receptor/effector ratio compared with dendritically projecting interneurons, consistent with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ(9)-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked marked CB1 downregulation in a dose-dependent manner. Full receptor recovery required several weeks after the cessation of Δ(9)-tetrahydrocannabinol treatment. These findings indicate that cell type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits and identify previously unknown molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction.

  7. Use of dual-point fluorodeoxyglucose imaging to enhance sensitivity and specificity.

    Schillaci, Orazio

    2012-07-01

    Positron emission tomography (PET) and positron emission tomography/computed tomography imaging with fluorodeoxyglucose (FDG) are widely used as a powerful evaluation modality in oncological nuclear medicine not only for detecting tumors but also for staging and for therapy monitoring. Nevertheless, there are numerous causes of FDG uptake in benign processes seen on PET images. In fact, the degree of FDG uptake is related to the cellular metabolic rate and the number of glucose transporters. FDG accumulation in tumors is due, in part, to an increased number of glucose transporters in malignant cells. However, FDG is not specific for neoplasms: a similar situation exists in inflammation; activated inflammatory cells demonstrate increased expression of glucose transporters. Therefore, there is growing interest in improving the specificity of FDG-PET in patients with cancer. Preliminary studies showed that in several neoplasms, the uptake of FDG continues to increase for hours after radiopharmaceutical injection, and this difference in the time course of FDG uptake could be useful to improve the accuracy of PET to distinguish benign lesions from malignant ones. Also in experimental cultures, dual-point acquisition (early at 40-60 minutes postinjection and delayed at 90-270 minutes) demonstrated that it is able to differentiate inflammatory from neoplastic tissue. In general, inflammatory tissue is expected to reduce FDG uptake as the time goes by, whereas the uptake in the neoplastic lesions is supposed to be increasing. There is evidence in the recent literature of the clinical usefulness of dual-time-point FDG-PET imaging in a wide variety of malignancies, including those of head and neck, lung, breast, gallbladder, cervix, liver, and in brain tumors. A lesion is likely to be malignant if the standard uptake value increases over time, whereas it is likely to be benign if the standard uptake value is stable or decreases. It is worth noting that in many of these

  8. Specific Radiological Imaging Findings in Patients With Hereditary Pancreatitis During a Long Follow-up of Disease

    Esch, A.A.J. van; Drenth, J.P.H.; Hermans, J.J.

    2017-01-01

    OBJECTIVES: Hereditary pancreatitis (HP) is characterized by recurrent episodes of inflammation of the pancreas. Radiological imaging is used to diagnose HP and to monitor complications. The aim of this study was to describe specific imaging findings in HP. METHODS: We retrospectively collected data

  9. Development of a PET Prostate-Specific Membrane Antigen Imaging Agent: Preclinical Translation for Future Clinical Application

    2017-10-01

    are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by...phase 0) application to the FDA by the end of the funding period. The small molecule imaging agents under study home to prostate specific membrane...funding period. The small molecule imaging agents under study home to prostate specific membrane antigen (PSMA) that is prevalent on a majority of

  10. Initial Results of Image-Guided Percutaneous Ablation as Second-Line Treatment for Symptomatic Vascular Anomalies

    Thompson, Scott M.; Callstrom, Matthew R.; McKusick, Michael A.; Woodrum, David A.

    2015-01-01

    PurposeThe purpose of this study was to determine the feasibility, safety, and early effectiveness of percutaneous image-guided ablation as second-line treatment for symptomatic soft-tissue vascular anomalies (VA).Materials and MethodsAn IRB-approved retrospective review was undertaken of all patients who underwent percutaneous image-guided ablation as second-line therapy for treatment of symptomatic soft-tissue VA during the period from 1/1/2008 to 5/20/2014. US/CT- or MRI-guided and monitored cryoablation or MRI-guided and monitored laser ablation was performed. Clinical follow-up began at one-month post-ablation.ResultsEight patients with nine torso or lower extremity VA were treated with US/CT (N = 4) or MRI-guided (N = 2) cryoablation or MRI-guided laser ablation (N = 5) for moderate to severe pain (N = 7) or diffuse bleeding secondary to hemangioma–thrombocytopenia syndrome (N = 1). The median maximal diameter was 9.0 cm (6.5–11.1 cm) and 2.5 cm (2.3–5.3 cm) for VA undergoing cryoablation and laser ablation, respectively. Seven VA were ablated in one session, one VA initially treated with MRI-guided cryoablation for severe pain was re-treated with MRI-guided laser ablation due to persistent moderate pain, and one VA was treated in a planned two-stage session due to large VA size. At an average follow-up of 19.8 months (range 2–62 months), 7 of 7 patients with painful VA reported symptomatic pain relief. There was no recurrence of bleeding at five-year post-ablation in the patient with hemangioma–thrombocytopenia syndrome. There were two minor complications and no major complications.ConclusionImage-guided percutaneous ablation is a feasible, safe, and effective second-line treatment option for symptomatic VA

  11. Initial Results of Image-Guided Percutaneous Ablation as Second-Line Treatment for Symptomatic Vascular Anomalies

    Thompson, Scott M., E-mail: Thompson.scott@mayo.edu [Mayo Clinic, Mayo Graduate School, Mayo Medical School and the Mayo Clinic Medical Scientist Training Program, College of Medicine (United States); Callstrom, Matthew R., E-mail: callstrom.matthew@mayo.edu; McKusick, Michael A., E-mail: mckusick.michael@mayo.edu; Woodrum, David A., E-mail: woodrum.david@mayo.edu [Mayo Clinic, Department of Radiology, College of Medicine (United States)

    2015-10-15

    PurposeThe purpose of this study was to determine the feasibility, safety, and early effectiveness of percutaneous image-guided ablation as second-line treatment for symptomatic soft-tissue vascular anomalies (VA).Materials and MethodsAn IRB-approved retrospective review was undertaken of all patients who underwent percutaneous image-guided ablation as second-line therapy for treatment of symptomatic soft-tissue VA during the period from 1/1/2008 to 5/20/2014. US/CT- or MRI-guided and monitored cryoablation or MRI-guided and monitored laser ablation was performed. Clinical follow-up began at one-month post-ablation.ResultsEight patients with nine torso or lower extremity VA were treated with US/CT (N = 4) or MRI-guided (N = 2) cryoablation or MRI-guided laser ablation (N = 5) for moderate to severe pain (N = 7) or diffuse bleeding secondary to hemangioma–thrombocytopenia syndrome (N = 1). The median maximal diameter was 9.0 cm (6.5–11.1 cm) and 2.5 cm (2.3–5.3 cm) for VA undergoing cryoablation and laser ablation, respectively. Seven VA were ablated in one session, one VA initially treated with MRI-guided cryoablation for severe pain was re-treated with MRI-guided laser ablation due to persistent moderate pain, and one VA was treated in a planned two-stage session due to large VA size. At an average follow-up of 19.8 months (range 2–62 months), 7 of 7 patients with painful VA reported symptomatic pain relief. There was no recurrence of bleeding at five-year post-ablation in the patient with hemangioma–thrombocytopenia syndrome. There were two minor complications and no major complications.ConclusionImage-guided percutaneous ablation is a feasible, safe, and effective second-line treatment option for symptomatic VA.

  12. Element-specific spectral imaging of multiple contrast agents: a phantom study

    Panta, R. K.; Bell, S. T.; Healy, J. L.; Aamir, R.; Bateman, C. J.; Moghiseh, M.; Butler, A. P. H.; Anderson, N. G.

    2018-02-01

    This work demonstrates the feasibility of simultaneous discrimination of multiple contrast agents based on their element-specific and energy-dependent X-ray attenuation properties using a pre-clinical photon-counting spectral CT. We used a photon-counting based pre-clinical spectral CT scanner with four energy thresholds to measure the X-ray attenuation properties of various concentrations of iodine (9, 18 and 36 mg/ml), gadolinium (2, 4 and 8 mg/ml) and gold (2, 4 and 8 mg/ml) based contrast agents, calcium chloride (140 and 280 mg/ml) and water. We evaluated the spectral imaging performances of different energy threshold schemes between 25 to 82 keV at 118 kVp, based on K-factor and signal-to-noise ratio and ranked them. K-factor was defined as the X-ray attenuation in the K-edge containing energy range divided by the X-ray attenuation in the preceding energy range, expressed as a percentage. We evaluated the effectiveness of the optimised energy selection to discriminate all three contrast agents in a phantom of 33 mm diameter. A photon-counting spectral CT using four energy thresholds of 27, 33, 49 and 81 keV at 118 kVp simultaneously discriminated three contrast agents based on iodine, gadolinium and gold at various concentrations using their K-edge and energy-dependent X-ray attenuation features in a single scan. A ranking method to evaluate spectral imaging performance enabled energy thresholds to be optimised to discriminate iodine, gadolinium and gold contrast agents in a single spectral CT scan. Simultaneous discrimination of multiple contrast agents in a single scan is likely to open up new possibilities of improving the accuracy of disease diagnosis by simultaneously imaging multiple bio-markers each labelled with a nano-contrast agent.

  13. A Highly Specific Gold Nanoprobe for Live-Cell Single-Molecule Imaging

    Leduc, Cécile; Si, Satyabrata; Gautier, Jérémie; Soto-Ribeiro, Martinho; Wehrle-Haller, Bernhard; Gautreau, Alexis; Giannone, Grégory; Cognet, Laurent; Lounis, Brahim

    2013-04-01

    Single molecule tracking in live cells is the ultimate tool to study subcellular protein dynamics, but it is often limited by the probe size and photostability. Due to these issues, long-term tracking of proteins in confined and crowded environments, such as intracellular spaces, remains challenging. We have developed a novel optical probe consisting of 5-nm gold nanoparticles functionalized with a small fragment of camelid antibodies that recognize widely used GFPs with a very high affinity, which we call GFP-nanobodies. These small gold nanoparticles can be detected and tracked using photothermal imaging for arbitrarily long periods of time. Surface and intracellular GFP-proteins were effectively labeled even in very crowded environments such as adhesion sites and cytoskeletal structures both in vitro and in live cell cultures. These nanobody-coated gold nanoparticles are probes with unparalleled capabilities; small size, perfect photostability, high specificity, and versatility afforded by combination with the vast existing library of GFP-tagged proteins.

  14. Synthesis of Specific Nanoparticles for Targeting and Imaging Tumor Angiogenesis Using Electron-Beam Irradiation

    Rizza, G.; Deshayes, S.; Maurizot, V.; Clochard, M. -C.; Berthelot, T.; Baudin, C.; Déléris, G., E-mail: giancarlo.rizza@polytechnique.edu [Commissariat à l' énergie atomique (CEA), Institut Rayonnement Matière de Saclay (IRaMIS), B.P. 52, 91191 Gif Sur Yvette Cedex (France)

    2010-07-01

    We have succeeded to synthesize PVDF nanoparticles by nanoemulsion polymerization and their functionalization with a peptide that presents an anti-angiogenic activity. Resulted nanoparticles present a radius of 60 nm. From FESEM images and light scattering measurements, we deduced that they were spherical and monodisperse. The alkyl radicals induced from electron beam irradiation combine immediately with the oxygen to form peroxide radicals. Because of a high specific area and small crystallite size, the radical decay with time is evidenced from EPR measurements. Despite this radical decay, electron beam irradiation allows us to graft PAA by radical polymerization onto freshly irradiated PVDF nanoparticles and then to immobilize CBO-P11 by click chemistry via a spacer arm. Evidences of grafting were shown using HRMAS NMR and MALDI-TOF mass spectrometry. Nanoparticles functionalized with an angiogenesis-targeting agent are an attractive option for anti-tumor therapy.

  15. Synthesis of Specific Nanoparticles for Targeting and Imaging Tumor Angiogenesis Using Electron-Beam Irradiation

    Rizza, G.; Deshayes, S.; Maurizot, V.; Clochard, M.-C.; Berthelot, T.; Baudin, C.; Déléris, G.

    2010-01-01

    We have succeeded to synthesize PVDF nanoparticles by nanoemulsion polymerization and their functionalization with a peptide that presents an anti-angiogenic activity. Resulted nanoparticles present a radius of 60 nm. From FESEM images and light scattering measurements, we deduced that they were spherical and monodisperse. The alkyl radicals induced from electron beam irradiation combine immediately with the oxygen to form peroxide radicals. Because of a high specific area and small crystallite size, the radical decay with time is evidenced from EPR measurements. Despite this radical decay, electron beam irradiation allows us to graft PAA by radical polymerization onto freshly irradiated PVDF nanoparticles and then to immobilize CBO-P11 by click chemistry via a spacer arm. Evidences of grafting were shown using HRMAS NMR and MALDI-TOF mass spectrometry. Nanoparticles functionalized with an angiogenesis-targeting agent are an attractive option for anti-tumor therapy

  16. Measuring the relative extent of pulmonary infiltrates by hierarchical classification of patient-specific image features

    Tsevas, S.; Iakovidis, D. K.

    2011-11-01

    Pulmonary infiltrates are common radiological findings indicating the filling of airspaces with fluid, inflammatory exudates, or cells. They are most common in cases of pneumonia, acute respiratory syndrome, atelectasis, pulmonary oedema and haemorrhage, whereas their extent is usually correlated with the extent or the severity of the underlying disease. In this paper we propose a novel pattern recognition framework for the measurement of the extent of pulmonary infiltrates in routine chest radiographs. The proposed framework follows a hierarchical approach to the assessment of image content. It includes the following: (a) sampling of the lung fields; (b) extraction of patient-specific grey-level histogram signatures from each sample; (c) classification of the extracted signatures into classes representing normal lung parenchyma and pulmonary infiltrates; (d) the samples for which the probability of belonging to one of the two classes does not reach an acceptable level are rejected and classified according to their textural content; (e) merging of the classification results of the two classification stages. The proposed framework has been evaluated on real radiographic images with pulmonary infiltrates caused by bacterial infections. The results show that accurate measurements of the infiltration areas can be obtained with respect to each lung field area. The average measurement error rate on the considered dataset reached 9.7% ± 1.0%.

  17. High-resolution subject-specific mitral valve imaging and modeling: experimental and computational methods.

    Toma, Milan; Bloodworth, Charles H; Einstein, Daniel R; Pierce, Eric L; Cochran, Richard P; Yoganathan, Ajit P; Kunzelman, Karyn S

    2016-12-01

    The diversity of mitral valve (MV) geometries and multitude of surgical options for correction of MV diseases necessitates the use of computational modeling. Numerical simulations of the MV would allow surgeons and engineers to evaluate repairs, devices, procedures, and concepts before performing them and before moving on to more costly testing modalities. Constructing, tuning, and validating these models rely upon extensive in vitro characterization of valve structure, function, and response to change due to diseases. Micro-computed tomography ([Formula: see text]CT) allows for unmatched spatial resolution for soft tissue imaging. However, it is still technically challenging to obtain an accurate geometry of the diastolic MV. We discuss here the development of a novel technique for treating MV specimens with glutaraldehyde fixative in order to minimize geometric distortions in preparation for [Formula: see text]CT scanning. The technique provides a resulting MV geometry which is significantly more detailed in chordal structure, accurate in leaflet shape, and closer to its physiological diastolic geometry. In this paper, computational fluid-structure interaction (FSI) simulations are used to show the importance of more detailed subject-specific MV geometry with 3D chordal structure to simulate a proper closure validated against [Formula: see text]CT images of the closed valve. Two computational models, before and after use of the aforementioned technique, are used to simulate closure of the MV.

  18. Intracranial Vascular Disease Evaluation With Combined Vessel Wall Imaging And Patient Specific Hemodynamics

    Samson, Kurt; Mossa-Basha, Mahmud; Yuan, Chun; Canton, Maria De Gador; Aliseda, Alberto

    2017-11-01

    Intracranial vascular pathologies are evaluated with angiography, conventional digital subtraction angiography or non-invasive (MRI, CT). Current techniques present limitations on the resolution with which the vessel wall characteristics can be measured, presenting a major challenge to differential diagnostic of cerebral vasculopathies. A new combined approach is presented that incorporates patient-specific image-based CFD models with intracranial vessel-wall MRI (VWMRI). Comparisons of the VWMRI measurements, evaluated for the presence of wall enhancement and thin-walled regions, against CFD metrics such as wall shear stress (WSS), and oscillatory shear index (OSI) are used to understand how the new imaging technique developed can predict the influence of hemodynamics on the deterioration of the aneurysmal wall, leading to rupture. Additionally, histology of each resected aneurysm, evaluated for inflammatory infiltration and wall thickness features, is used to validate the analysis from VWMRI and CFD. This data presents a solid foundation on which to build a new framework for combined VWMRI-CFD to predict unstable wall changes in unruptured intracranial aneurysms, and support clinical monitoring and intervention decisions.

  19. Noninvasive monitoring of placenta-specific transgene expression by bioluminescence imaging.

    Xiujun Fan

    Full Text Available BACKGROUND: Placental dysfunction underlies numerous complications of pregnancy. A major obstacle to understanding the roles of potential mediators of placental pathology has been the absence of suitable methods for tissue-specific gene manipulation and sensitive assays for studying gene functions in the placentas of intact animals. We describe a sensitive and noninvasive method of repetitively tracking placenta-specific gene expression throughout pregnancy using lentivirus-mediated transduction of optical reporter genes in mouse blastocysts. METHODOLOGY/PRINCIPAL FINDINGS: Zona-free blastocysts were incubated with lentivirus expressing firefly luciferase (Fluc and Tomato fluorescent fusion protein for trophectoderm-specific infection and transplanted into day 3 pseudopregnant recipients (GD3. Animals were examined for Fluc expression by live bioluminescence imaging (BLI at different points during pregnancy, and the placentas were examined for tomato expression in different cell types on GD18. In another set of experiments, blastocysts with maximum photon fluxes in the range of 2.0E+4 to 6.0E+4 p/s/cm(2/sr were transferred. Fluc expression was detectable in all surrogate dams by day 5 of pregnancy by live imaging, and the signal increased dramatically thereafter each day until GD12, reaching a peak at GD16 and maintaining that level through GD18. All of the placentas, but none of the fetuses, analyzed on GD18 by BLI showed different degrees of Fluc expression. However, only placentas of dams transferred with selected blastocysts showed uniform photon distribution with no significant variability of photon intensity among placentas of the same litter. Tomato expression in the placentas was limited to only trophoblast cell lineages. CONCLUSIONS/SIGNIFICANCE: These results, for the first time, demonstrate the feasibility of selecting lentivirally-transduced blastocysts for uniform gene expression in all placentas of the same litter and early

  20. In Vivo Fluorescence Lifetime Imaging Monitors Binding of Specific Probes to Cancer Biomarkers

    Ardeshirpour, Yasaman; Chernomordik, Victor; Zielinski, Rafal; Capala, Jacek; Griffiths, Gary; Vasalatiy, Olga; Smirnov, Aleksandr V.; Knutson, Jay R.; Lyakhov, Ilya; Achilefu, Samuel; Gandjbakhche, Amir; Hassan, Moinuddin

    2012-01-01

    One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB) as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR) fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu)-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the “image and treat” concept, especially for early evaluation of the efficacy of the therapy. PMID:22384092

  1. In vivo fluorescence lifetime imaging monitors binding of specific probes to cancer biomarkers.

    Yasaman Ardeshirpour

    Full Text Available One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the "image and treat" concept, especially for early evaluation of the efficacy of the therapy.

  2. Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants.

    Meyer, P; Heidmann, I

    1994-05-25

    We analysed de novo DNA methylation occurring in plants obtained from the transgenic petunia line R101-17. This line contains one copy of the maize A1 gene that leads to the production of brick-red pelargonidin pigment in the flowers. Due to its integration into an unmethylated genomic region the A1 transgene is hypomethylated and transcriptionally active. Several epigenetic variants of line 17 were selected that exhibit characteristic and somatically stable pigmentation patterns, displaying fully coloured, marbled or colourless flowers. Analysis of the DNA methylation patterns revealed that the decrease in pigmentation among the epigenetic variants was correlated with an increase in methylation, specifically of the transgene DNA. No change in methylation of the hypomethylated integration region could be detected. A similar increase in methylation, specifically in the transgene region, was also observed among progeny of R101-17del, a deletion derivative of R101-17 that no longer produces pelargonidin pigments due to a deletion in the A1 coding region. Again de novo methylation is specifically directed to the transgene, while the hypomethylated character of neighbouring regions is not affected. Possible mechanisms for transgene-specific methylation and its consequences for long-term use of transgenic material are discussed.

  3. STUDIES OF NGC 6720 WITH CALIBRATED HST/WFC3 EMISSION-LINE FILTER IMAGES. I. STRUCTURE AND EVOLUTION ,

    O'Dell, C. R.; Ferland, G. J.; Henney, W. J.; Peimbert, M.

    2013-01-01

    We have performed a detailed analysis of the Ring Nebula (NGC 6720) using Hubble Space Telescope WFC3 images and derived a new three-dimensional model. Existing high spectral resolution spectra played an important supplementary role in our modeling. It is shown that the Main Ring of the nebula is an ionization-bounded irregular non-symmetric disk with a central cavity and perpendicular extended lobes pointed almost toward the observer. The faint outer halos are determined to be fossil radiation, i.e., radiation from gas ionized in an earlier stage of the nebula when it was not ionization bounded. The narrowband WFC3 filters that isolate some of the emission lines are affected by broadening on their short wavelength side and all the filters were calibrated using ground-based spectra. The filter calibration results are presented in an appendix.

  4. Biokinetics and dosimetry of target-specific radiopharmaceuticals for molecular imaging and therapy

    Ferro F, G.; Torres G, E.; Gonzalez V, A.; Murphy, C.A. de

    2006-01-01

    Molecular imaging techniques directly or indirectly monitor and record the spatiotemporal distribution of molecular or cellular processes for biochemical, biologic, diagnostic or therapeutic applications. 99m Tc-HYNlC-TOC has shown high in vitro and in vivo stability, rapid background clearance and rapid detection of somatostatin receptor-positive tumors. Therapies using radiolabeled anti-CD20 have demonstrated their efficacy in patients with B-cell non Hodgkin's Iymphoma (NHL). The aim of this study was to establish biokinetic models for 99m Tc-HYNlC-TOC and 188 Re-anti-CD20 prepared from Iyophilized kits, and to evaluate their dosimetry as target-specific radiopharmaceuticals. Whole-body images were acquired at different times after 99m Tc-HYNlC-TOC or 188 Re-anti-CD20 administration obtained from instant freeze-dried kit formulations with radiochemical purities > 95 %. Regions of interest (ROls) were drawn around source organs on each time frame. The cpm of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate time-activity curves in each organ, to adjust the biokinetic model using the SAAM software, and to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. 99m Tc-HYNlC-TOC images showed an average tumor/blood (heart) ratio of 4.3 ± 0.7 in receptor-positive tumors at 1 h and the mean radiation absorbed dose calculated for a study using 740 MBq was 24, 21.5, 5.5 and 1.0 mSv for spleen, kidneys, liver and bone marrow respectively and the effective dose was 4.4 mSv. Results showed that after administration of 7 GBq of 188 Re-anti-CD20 the absorbed dose to whole body would be 0.7 Gy (0.1 mGy/MBq) which is the indicated dose for non Hodgkin's Iymphome therapies. (Author)

  5. NEW INSTRUMENTS FOR SURVEY: ON LINE SOFTWARES FOR 3D RECONTRUCTION FROM IMAGES

    E. Fratus de Balestrini

    2012-09-01

    Full Text Available 3d scanning technologies had a significant development and have been widely used in documentation of cultural, architectural and archeological heritages. Modern methods of three-dimensional acquiring and modeling allow to represent an object through a digital model that combines visual potentialities of images (normally used for documentation to the accuracy of the survey, becoming at the same time support for the visualization that for metric evaluation of any artefact that have an historical or artistic interest, opening up new possibilities for cultural heritage's fruition, cataloging and study. Despite this development, because of the small catchment area and the 3D laser scanner's sophisticated technologies, the cost of these instruments is very high and beyond the reach of most operators in the field of cultural heritages. This is the reason why they have appeared low-cost technologies or even free, allowing anyone to approach the issues of acquisition and 3D modeling, providing tools that allow to create three-dimensional models in a simple and economical way. The research, conducted by the Laboratory of Photogrammetry of the University IUAV of Venice, of which we present here some results, is intended to figure out whether, with Arc3D, it is possible to obtain results that can be somehow comparable, in therms of overall quality, to those of the laser scanner, and/or whether it is possible to integrate them. They were carried out a series of tests on certain types of objects, models made with Arc3D, from raster images, were compared with those obtained using the point clouds from laser scanner. We have also analyzed the conditions for an optimal use of Arc3D: environmental conditions (lighting, acquisition tools (digital cameras and type and size of objects. After performing the tests described above, we analyzed the patterns generated by Arc3D to check what other graphic representations can be obtained from them: orthophotos and drawings

  6. Development and testing of MR imaging phantoms based on specifications of the American Association of Physicists in Medicine

    Mun, S.K.

    1990-01-01

    This paper reports on a set of MR imaging phantoms developed based on AAPMMR imaging specifications. The AAPMMR imaging committee defined the basic features needed to measure the image quality and performance of MR systems. The phantoms were designed by integrating the AAPM specifications into two packages, so that a maximum number of imaging parameters can be measured within a short time. In the case of a cubical phantom, section thickness, section to section gap, spatial resolution in phase encoding and read-out directions, and resonant frequency can be measured in all three directions without changing the phantom orientations. It uses square grooves for resolution and thin hot ramps for section measurements. A larger phantom can measure uniformity of signal intensity, linearity, signal-to-noise ratio, and quadrature phase error over a large field of view. The phantom has flood section, a set of square grids, and a bubble

  7. Imaging characters of the lung cancer phantoms under the simulative clinical condition performed with hard X-ray in-line holography

    Zhang, J; Chen, Y; Li, G; Jiang, X

    2013-01-01

    The simulative lung cancer tissues under the approximate clinical condition were imaged using in-line holography method with 35 keV synchrotron radiation hard X-ray. The millimeter scale simulative cancer phantoms showed adequate contrast to lung tissues in our experiment. It demonstrates that in-line holography method with synchrotron radiation hard X-ray promises to be a potential sensitive method for the early detection of lung cancer. The image contrast, standard deviation (SD) and normalized standard deviation (NSD) of different areas were calculated. It shows that the traditional method of contrast calculation does not always give a convincible result in image judgment; a standard deviation map of image taken with a proper distance of sample to detector (DSD) will correspond well to the projecting image and supply effective assistance in diagnostic judgment.

  8. Using spectral characteristics to interpret auroral imaging in the 731.9 nm O+ line

    H. Dahlgren

    2008-07-01

    Full Text Available Simultaneous observations were made of dynamic aurora during substorm activity on 26 January 2006 with three high spatial and temporal resolution instruments: the ASK (Auroral Structure and Kinetics instrument, SIF (Spectrographic Imaging Facility and ESR (EISCAT Svalbard Radar, all located on Svalbard (78° N, 16.2° E. One of the narrow field of view ASK cameras is designed to detect O+ ion emission at 731.9 nm. From the spectrographic data we have been able to determine the amount of contaminating N2 and OH emission detected in the same filter. This is of great importance to further studies using the ASK instrument, when the O+ ion emission will be used to detect flows and afterglows in active aurora. The ratio of O+ to N2 emission is dependent on the energy spectra of electron precipitation, and was found to be related to changes in the morphology of the small-scale aurora. The ESR measured height profiles of electron densities, which allowed estimates to be made of the energy spectrum of the precipitation during the events studied with optical data from ASK and SIF. It was found that the higher energy precipitation corresponded to discrete and dynamic features, including curls, and low energy precipitation corresponded to auroral signatures that were dominated by rays. The evolution of these changes on time scales of seconds is of importance to theories of auroral acceleration mechanisms.

  9. Different Expression and Localization of Phosphoinositide Specific Phospholipases C in Human Osteoblasts, Osteosarcoma Cell Lines, Ewing Sarcoma and Synovial Sarcoma

    V.Vasco

    2017-06-01

    Full Text Available Background: Bone hardness and strength depends on mineralization, which involves a complex process in which calcium phosphate, produced by bone-forming cells, was shed around the fibrous matrix. This process is strictly regulated, and a number of signal transduction systems were interested in calcium metabolism, such as the phosphoinositide (PI pathway and related phospholipase C (PLC enzymes. Objectives: Our aim was to search for common patterns of expression in osteoblasts, as well as in ES and SS. Methods: We analysed the PLC enzymes in human osteoblasts and osteosarcoma cell lines MG-63 and SaOS-2. We compared the obtained results to the expression of PLCs in samples of patients affected with Ewing sarcoma (ES and synovial sarcoma (SS. Results: In osteoblasts, MG-63 cells and SaOS-2 significant differences were identified in the expression of PLC δ4 and PLC η subfamily isoforms. Differences were also identified regarding the expression of PLCs in ES and SS. Most ES and SS did not express PLCB1, which was expressed in most osteoblasts, MG-63 and SaOS-2 cells. Conversely, PLCB2, unexpressed in the cell lines, was expressed in some ES and SS. However, PLCH1 was expressed in SaOS-2 and inconstantly expressed in osteoblasts, while it was expressed in ES and unexpressed in SS. The most relevant difference observed in ES compared to SS regarded PLC ε and PLC η isoforms. Conclusion: MG-63 and SaOS-2 osteosarcoma cell lines might represent an inappropriate experimental model for studies about the analysis of signal transduction in osteoblasts

  10. Gene expression-signature of belinostat in cell lines is specific for histone deacetylase inhibitor treatment, with a corresponding signature in xenografts

    Monks, A.; Hose, C.D.; Pezzoli, P.

    2009-01-01

    gene modulation were significantly correlated. A belinostat-gene profile was specific for HDACi in three cell lines when compared with equipotent concentrations of four mechanistically different chemotherapeutic agents: 5-fluorouracil, cisplatin, paclitaxel, and thiotepa. Belinostat- and trichostatin...... in a drug-sensitive tumor than a more resistant model. We have demonstrated a gene signature that is selectively regulated by HDACi when compared with other clinical agents allowing us to distinguish HDACi responses from those related to other mechanisms Udgivelsesdato: 2009/9...

  11. TGF-b and a specific TGF-b inhibitor regulate pericentrin B and MYH9 in glioma cell lines

    Óscar Álzate

    2006-01-01

    Full Text Available Malignant gliomas are heterogeneous, highly invasive vascular tumours. The multifunctional cytokine, transforming growth factor-beta (TGF-P, is expressed by grade III/IV gliomas and promotes tumour angiogenesis, invasión and immune escape. It has been shown previously that a small TGF-P receptor type I (TGF-(3-RI molecule inhibitor (SB-431542 blocks TGF-(3-mediated signal transduction, induction of angiogenic factor expression and cellular motility. As glioma cell lines display differential sensitivity to TGF-P, it was expected that they would also be differentially impacted by disruption of TGF-P signalling. Differential in gel expression (DIGE analysis and mass spectrometry was used in this work for determining protein regulation effects of both TGF-P and SB-431542 on human glioma cell lines. It was found that pericentrin B and non muscle myosin were differentially expressed in fragments which likely resulted from protease activation by the tumour growth mechanism. These results suggest that both pericentrin B and non-muscle myosin might be potential glioma biomarkers. Key words: DIGE, proteomics, glioma, TGF-P, mass spectrometry, non muscle myosin, pericentrin B.

  12. Power lines and birds. A summary of general and grid-specific issues; Kraftledninger og fugl. Oppsummering av generelle og nettspesifikke prob-lemstillinger

    Bevanger, Kjetil

    2011-02-15

    To achieve European-level policy goals on climate change challenges, as well securing the electricity supply within Norway, it will be necessary to increase power line construction efforts significantly, as well as to upgrade the existing grid. Statnett have estimated an approximately 40 billion NOK investment over the next 10 years will be required for the central grid. Although this is a huge investment, the length of the new transmission lines constructed will only comprise a small part of the Norwegian grid. Of approximately 193 000 km of overhead power lines in Norway the distribution grid (i.e. up to 24 kV) comprises 85%. In this report we discuss the ornithological challenges connected to the different elements of the Norwegian grid. All overhead wires pose a potential risk to flying birds; however, the risk increases with the number of lines and wire length per unit of land area. The central and regional grid, in general, represents no electrocution threat, as the distances between the phase conductors and/or the distance between a phase conductor and an earthed device is rather wide. Thus the electrocution problem is a distribution grid specific problem. Both the collision and the electrocution risk are highly species specific problems. Over the last years several research projects have collected data enabling an identification of the bird species and bird species groups facing a particular risk. However, there is still a lack of know-ledge in several respects, for example why the number of collisions is not evenly distributed along a power line section, but is frequently concentrated at a few spots. This type of knowledge is crucial to contribute to the selection of as environmentally friendly power line routing as possible when new power lines are constructed. This is also stressed in the new Energy Act of 2009. With respect to both upgrading, and to new power line constructions, underground cabling should be used to a much greater extent. This will

  13. Project W-314 specific test and evaluation plan for SN-633 transfer line (241-AX-B to 241-AY-02A)

    Hays, W.H.

    1998-01-01

    The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-633 transfer line by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP). This STEP encompasses all testing activities required to demonstrate compliance to the project design criteria as it relates to the addition of transfer line SN-633. The Project Design Specifications (PDS) identify the specific testing activities required for the Project. Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities), Factory Acceptance Tests (FATs), installation tests and inspections, Construction Acceptance Tests (CATs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). It should be noted that POTPs are not required for testing of the transfer line addition. The STEP will be utilized in conjunction with the TEP for verification and validation

  14. Implementation of intensity ratio change and line-of-sight rate change algorithms for imaging infrared trackers

    Viau, C. R.

    2012-06-01

    The use of the intensity change and line-of-sight (LOS) change concepts have previously been documented in the open-literature as techniques used by non-imaging infrared (IR) seekers to reject expendable IR countermeasures (IRCM). The purpose of this project was to implement IR counter-countermeasure (IRCCM) algorithms based on target intensity and kinematic behavior for a generic imaging IR (IIR) seeker model with the underlying goal of obtaining a better understanding of how expendable IRCM can be used to defeat the latest generation of seekers. The report describes the Intensity Ratio Change (IRC) and LOS Rate Change (LRC) discrimination techniques. The algorithms and the seeker model are implemented in a physics-based simulation product called Tactical Engagement Simulation Software (TESS™). TESS is developed in the MATLAB®/Simulink® environment and is a suite of RF/IR missile software simulators used to evaluate and analyze the effectiveness of countermeasures against various classes of guided threats. The investigation evaluates the algorithm and tests their robustness by presenting the results of batch simulation runs of surface-to-air (SAM) and air-to-air (AAM) IIR missiles engaging a non-maneuvering target platform equipped with expendable IRCM as self-protection. The report discusses how varying critical parameters such track memory time, ratio thresholds and hold time can influence the outcome of an engagement.

  15. Relationship between line spread function (LSF), or slice sensitivity profile (SSP), and point spread function (PSF) in CT image system

    Ohkubo, Masaki; Wada, Shinichi; Kobayashi, Teiji; Lee, Yongbum; Tsai, Du-Yih

    2004-01-01

    In the CT image system, we revealed the relationship between line spread function (LSF), or slice sensitivity profile (SSP), and point spread function (PSF). In the system, the following equation has been reported; I(x,y)=O(x,y) ** PSF(x,y), in which I(x,y) and O(x,y) are CT image and object function, respectively, and ** is 2-dimensional convolution. In the same way, the following 3-dimensional expression applies; I'(x,y,z)=O'(x,y,z) *** PSF'(x,y,z), in which z-axis is the direction perpendicular to the x/y-scan plane. We defined that the CT image system was separable, when the above two equations could be transformed into following equations; I(x,y)=[O(x,y) * LSF x (x)] * LSF y (y) and I'(x,y,z) =[O'(x,y,z) * SSP(z)] ** PSF(x,y), respectively, in which LSF x (x) and LSF y (y) are LSFs in x- and y-direction, respectively. Previous reports for the LSF and SSP are considered to assume the separable-system. Under the condition of separable-system, we derived following equations; PSF(x,y)=LSF x (x) ·LSF y (y) and PSF'(x,y,z)=PSF(x,y)·SSP(z). They were validated by the computer-simulations. When the study based on 1-dimensional functions of LSF and SSP are expanded to that based on 2- or 3-dimensional functions of PSF, derived equations must be required. (author)

  16. First line treatment of advanced non-small-cell lung cancer – specific focus on albumin bound paclitaxel

    Gupta N

    2013-12-01

    Full Text Available Neha Gupta, Hassan Hatoum, Grace K DyDepartment of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USAAbstract: Lung cancer is the leading cause of cancer mortality worldwide in both men and women. Non-small-cell lung cancer (NSCLC is the most common type of lung cancer, accounting for more than 80% of cases. Paclitaxel has a broad spectrum of activity against various malignancies, including NSCLC. Paclitaxel is poorly soluble in water and thus, until recently, its commercially available preparations contained a non-ionic solvent Cremophor EL®. Cremophor EL® improves the solubility of paclitaxel and allows its intravenous administration. However, certain side-effects associated with paclitaxel, such as hypersensitivity reactions, myelosuppression, and peripheral neuropathy, are known to be worsened by Cremophor®. Nanoparticle albumin-bound paclitaxel ([nab-paclitaxel] ABRAXANE® ABI-007 is a new generation formulation of paclitaxel that obviates the need for Cremophor®, resulting in a safer and faster infusion without requiring the use of premedications to avoid hypersensitivity. Albumin-binding receptor-mediated delivery and lack of sequestering Cremophor® micelles allow higher intratumoral concentration of pharmacologically active paclitaxel. Multiple clinical trials have demonstrated a superior tolerability profile of nab-paclitaxel in comparison to solvent-bound paclitaxel (sb-paclitaxel. A recent Phase III trial compared the effects of weekly nab-paclitaxel in combination with carboplatin versus sb-paclitaxel in combination with carboplatin given every 3 weeks for first line treatment of NSCLC. This trial highlights the weekly nab-paclitaxel combination as an alternate treatment option for NSCLC, with higher response rate in squamous cell NSCLC and longer survival in elderly patients. This review will focus on the properties of nab-paclitaxel and its use in the first line treatment of NSCLC.Keywords: ABI-007, Abraxane, nab

  17. Extended ellipse-line-ellipse trajectory for long-object cone-beam imaging with a mounted C-arm system

    Yu, Zhicong; Noo, Frédéric; Lauritsch, Günter; Dennerlein, Frank; Mao, Yanfei; Hornegger, Joachim

    2016-01-01

    Recent reports show that three-dimensional cone-beam (CB) imaging with a floor-mounted (or ceiling-mounted) C-arm system has become a valuable tool in interventional radiology. Currently, a circular short scan is used for data acquisition, which inevitably yields CB artifacts and a short coverage in the direction of the patient table. To overcome these two limitations, a more sophisticated data acquisition geometry is needed. This geometry should be complete in terms of Tuy’s condition and should allow continuous scanning, while being compatible with the mechanical constraints of mounted C-arm systems. Additionally, the geometry should allow accurate image reconstruction from truncated data. One way to ensure such a feature is to adopt a trajectory that provides full R-line coverage within the field-of-view (FOV). An R-line is any segment of line that connects two points on a source trajectory, and the R-line coverage is the set of points that belong to an R-line. In this work, we propose a novel geometry called the extended ellipse-line-ellipse (ELE) for long-object imaging with a mounted C-arm system. This trajectory is built from modules consisting of two elliptical arcs connected by a line. We demonstrate that the extended ELE can be configured in many ways so that full R-line coverage is guaranteed. Both tight and relaxed parametric settings are presented. All results are supported by extensive mathematical proofs provided in appendices. Our findings make the extended ELE trajectory attractive for axially-extended FOV imaging in interventional radiology. (paper)

  18. Fidaxomicin versus Vancomycin as a First-Line Treatment for Clostridium difficile-Associated Diarrhea in Specific Patient Populations: A Pharmacoeconomic Evaluation.

    Reveles, Kelly R; Backo, Jennifer L; Corvino, Frank A; Zivkovic, Marko; Broderick, Kelly C

    2017-12-01

    The reduction in recurrent Clostridium difficile-associated diarrhea (CDAD) with fidaxomicin therapy may reduce hospital readmissions and lead to lower overall CDAD costs. However, studies assessing the cost-effectiveness of fidaxomicin as first-line therapy from the U.S. hospital perspective are lacking. This study evaluated the costs associated with utilizing fidaxomicin or vancomycin as a first-line therapy for CDAD in specific patient populations from a U.S. hospital perspective. A decision-analytic model was developed to estimate total costs (hospitalization and drug costs) associated with using fidaxomicin or vancomycin as first-line therapy for a first episode and up to two recurrences of CDAD in five patient populations: general population, elderly, patients receiving concomitant antibiotics, and patients with renal impairment or cancer. The total cost of CDAD treatment using fidaxomicin first line in the general population was $14,442 per patient versus $14,179 per patient with vancomycin first line. In subgroup analyses, fidaxomicin use resulted in total hospital cost savings of $616 per patient in patients with cancer and $312 in patients with concomitant antibiotic use; vancomycin use was associated with total hospital cost savings of $243 per patient in the elderly and $371 in patients with renal impairment. Fidaxomicin as first-line CDAD therapy is associated with similar total costs as compounded vancomycin oral solution in the general population. In elderly and renally impaired patients, slight increases in hospital cost were observed with fidaxomicin therapy, and in patients with cancer or concomitant antibiotic use, hospital cost savings were observed. © 2017 Pharmacotherapy Publications, Inc.

  19. Breast-specific gamma-imaging: molecular imaging of the breast using 99mTc-sestamibi and a small-field-of-view gamma-camera.

    Jones, Elizabeth A; Phan, Trinh D; Blanchard, Deborah A; Miley, Abbe

    2009-12-01

    Breast-specific gamma-imaging (BSGI), also known as molecular breast imaging, is breast scintigraphy using a small-field-of-view gamma-camera and (99m)Tc-sestamibi. There are many different types of breast cancer, and many have characteristics making them challenging to detect by mammography and ultrasound. BSGI is a cost-effective, highly sensitive and specific technique that complements other imaging modalities currently being used to identify malignant lesions in the breast. Using the current Society of Nuclear Medicine guidelines for breast scintigraphy, Legacy Good Samaritan Hospital began conducting BSGI, breast scintigraphy with a breast-optimized gamma-camera. In our experience, optimal imaging has been conducted in the Breast Center by a nuclear medicine technologist. In addition, the breast radiologists read the BSGI images in correlation with the mammograms, ultrasounds, and other imaging studies performed. By modifying the current Society of Nuclear Medicine protocol to adapt it to the practice of breast scintigraphy with these new systems and by providing image interpretation in conjunction with the other breast imaging studies, our center has found BSGI to be a valuable adjunctive procedure in the diagnosis of breast cancer. The development of a small-field-of-view gamma-camera, designed to optimize breast imaging, has resulted in improved detection capabilities, particularly for lesions less than 1 cm. Our experience with this procedure has proven to aid in the clinical work-up of many of our breast patients. After reading this article, the reader should understand the history of breast scintigraphy, the pharmaceutical used, patient preparation and positioning, imaging protocol guidelines, clinical indications, and the role of breast scintigraphy in breast cancer diagnosis.

  20. Evaluation of width and width uniformity of near-field electrospinning printed micro and sub-micrometer lines based on optical image processing

    Zhao, Libo; Xia, Yong; Hebibul, Rahman; Wang, Jiuhong; Zhou, Xiangyang; Hu, Yingjie; Li, Zhikang; Luo, Guoxi; Zhao, Yulong; Jiang, Zhuangde

    2018-03-01

    This paper presents an experimental study using image processing to investigate width and width uniformity of sub-micrometer polyethylene oxide (PEO) lines fabricated by near-filed electrospinning (NFES) technique. An adaptive thresholding method was developed to determine the optimal gray values to accurately extract profiles of printed lines from original optical images. And it was proved with good feasibility. The mechanism of the proposed thresholding method was believed to take advantage of statistic property and get rid of halo induced errors. Triangular method and relative standard deviation (RSD) were introduced to calculate line width and width uniformity, respectively. Based on these image processing methods, the effects of process parameters including substrate speed (v), applied voltage (U), nozzle-to-collector distance (H), and syringe pump flow rate (Q) on width and width uniformity of printed lines were discussed. The research results are helpful to promote the NFES technique for fabricating high resolution micro and sub-micro lines and also helpful to optical image processing at sub-micro level.

  1. Brain stem/brain stem occipital bone ratio and the four-line view in nuchal translucency images of fetuses with open spina bifida.

    Iuculano, Ambra; Zoppi, Maria Angelica; Piras, Alessandra; Arras, Maurizio; Monni, Giovanni

    2014-09-10

    Abstract Objective: Brain stem depth/brain stem occipital bone distance (BS/BSOB ratio) and the four-line view, in images obtained for nuchal translucency (NT) screening in fetuses with open spina bifida (OSB). Methods: Single center, retrospective study based on the assessment of NT screening images of fetuses with OSB. A ratio between the BS depth and the BSOB distance was calculated (BS/BSOB ratio) and the four-line view observed, and the sensitivity for a BS/BSOB ratio superior/equal to 1, and for the lack of detection of the four-line view were calculated. Results: There were 17 cases of prenatal diagnosis OSB. In six cases, the suspicion on OSB was raised during NT screening, in six cases, the diagnosis was made before 20 weeks and in five cases during anomaly scan. The BS/BSOB ratio was superior/equal to 1 in all 17 cases, and three lines, were visualized in 15/17 images of the OSB cases, being the sensitivity 100% (95% CI, 81 to 100%) and 88% (95% CI, 65 to 96%). Conclusion: Assessment of BS/BSOB ratio and four-line view in NT images is feasible detecting affected by OSB with high sensitivity. The presence of associated anomalies or of an enlarged NT enhances the early detection.

  2. Estimation of center line and diameter of brain blood vessel using three-dimensional blood vessel matching method with head three-dimensional CTA image

    Maekawa, Masashi; Shinohara, Toshihiro; Nakayama, Masato; Nakasako, Noboru

    2010-01-01

    To support and automate the brain blood vessel disease diagnosis, a novel method to obtain the center line and the diameter of a blood vessel is proposed with a three-dimensional head computed tomographic angiography (CTA) image. Although the line thinning processing with distance transform or gray information is generally used to obtain the blood vessel center line, this method is not essentially one to obtain the center line and tends to yield extra lines depending on CTA images. In this study, the center line of the blood vessel is obtained by tracing the vessel. The blood vessel is traced by sequentially estimating the center point and direction of the blood vessel. The center point and direction of the blood vessel are estimated by taking the correlation between the blood vessel and a solid model of the blood vessel that is designed by considering noise influence. In addition, the vessel diameter is also estimated by correlating the blood vessel and the blood vessel model of which the diameter is variable. The validity of the proposed method is confirmed by experimentally applied the proposed method to an actual three-dimensional head CTA image. (author)

  3. Exercise thallium-201 myocardial imaging in left main coronary artery disease: sensitive but not specific

    Rehn, T.; Griffith, L.S.; Achuff, S.C.; Bailey, I.K.; Bulkley, B.H.; Burow, R.; Pitt, B.; Becker, L.C.

    1981-01-01

    To determine the usefulness of thallium-201 scintigraphy for identifying left main coronary artery disease, the results of scintigraphy at rest and during exercise were compared in 24 patients with 50 percent or greater narrowing of the left main coronary artery and 80 patients with 50 percent or greater narrowing of one or more of the major coronary arteries but without left main coronary involvement. By segmental analysis of the scintigrams, perfusion defects were assigned to the left anterior descending, left circumflex or right coronary artery, singly or in combination, and the pattern of simultaneous left anterior descending and circumflex arterial defects was used to identify left main coronary artery disease. Of the 24 patients with left main coronary artery disease, 22 (92 percent) had abnormal exercise scintigrams. Despite this high sensitivity, the pattern of perfusion defects was not specific; the ''left main pattern'' was found in 3 patients (13 percent) with left main coronary artery disease but also in 3 (33 percent) of 9 patients with combined left anterior descending and left circumflex arterial disease, 4 (19 percent) of 21 patients with three vessel disease and 3 (6 percent) of 50 patients with one or two vessel disease but excluding the group with left anterior descending plus left circumflex arterial disease. The pattern of perfusion defects in the patients with left main coronary artery disease was determined by the location and severity of narrowings in the coronary arteries downstream from the left main arterial lesion. Concomitant lesions in other arteries were found in all patients with left main coronary disease (one vessel in 1 patient, two vessels in 7 patients and three vessels in 16). For this reason, it is unlikely that even with improvements in radiopharmaceutical agents and imaging techniques, myocardial perfusion scintigraphy will be sufficiently specific for definitive identification of left main coronary artery disease

  4. Nonphotochemical Hole-Burning Imaging Studies of in vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye

    Walsh, Richard Joseph [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Low temperature Nonphotochemical Hole Burning (NPHB) Spectroscopy of the dye rhodamine 800 (MF680) was applied for the purpose of discerning differences between cultured normal and carcinoma ovarian surface epithelial (OSE) cells. Both the cell lines were developed and characterized at the Mayo Clinic (Rochester, MN), with the normal cell line having been transfected with a strain of temperature sensitive Simian Virus 40 Large T Antigen (SV40) for the purpose of extending the life of the cell culture without inducing permanent changes in the characteristics of the cell line. The cationic lipophilic fluorophore rhodamine 800 preferentially locates in in situ mitochondria due to the high lipid composition of mitochondria and the generation of a large negative membrane potential (relative to the cellular cytoplasm) for oxidative phosphorylation. Results presented for NPHB of MF680 located in the cells show significant differences between the two cell lines. The results are interpreted on the basis of the NPHB mechanism and characteristic interactions between the host (cellular mitochondrial) and the guest (MF680) in the burning of spectral holes, thus providing an image of the cellular ultrastructure. Hole growth kinetics (HGK) were found to differ markedly between the two cell lines, with the carcinoma cell line burning at a faster average rate for the same exposure fluence. Theoretical fits to the data suggest a lower degree of structural heterogeneity in the carcinoma cell line relative to the normal cell line. Measurement of changes in the permanent dipole moment (fΔμ) were accomplished by measurement of changes in hole width in response to the application of an external electric field (the Stark effect), and found that Δμ values for the carcinoma line were 1.5x greater than those of the SV40 antigen-free normal analogs. These findings are interpreted in terms of effects from the mitochondrial membrane potential. Results for HGK on the scale of single cells is

  5. Nonphotochemical Hole-Burning Imaging Studies of In Vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye

    Walsh, Richard Joseph [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Low temperature Nonphotochemical Hole Burning (NPHB) Spectroscopy of the dye rhodamine 800 (MF680) was applied for the purpose of discerning differences between cultured normal and carcinoma ovarian surface epithelial (OSE) cells. Both the cell lines were developed and characterized at the Mayo Clinic (Rochester, MN), with the normal cell line having been transfected with a strain of temperature sensitive Simian Virus 40 Large T Antigen (SV40) for the purpose of extending the life of the cell culture without inducing permanent changes in the characteristics of the cell line. The cationic lipophilic fluorophore rhodamine 800 preferentially locates in in situ mitochondria due to the high lipid composition of mitochondria and the generation of a large negative membrane potential (relative to the cellular cytoplasm) for oxidative phosphorylation. Results presented for NPHB of MF680 located in the cells show significant differences between the two cell lines. The results are interpreted on the basis of the NPHB mechanism and characteristic interactions between the host (cellular mitochondrial) and the guest (MF680) in the burning of spectral holes, thus providing an image of the cellular ultrastructure. Hole growth kinetics (HGK) were found to differ markedly between the two cell lines, with the carcinoma cell line burning at a faster average rate for the same exposure fluence. Theoretical fits to the data suggest a lower degree of structural heterogeneity in the carcinoma cell line relative to the normal cell line. Measurement of changes in the permanent dipole moment (fΔμ)were accomplished by measurement of changes in hole width in response to the application of an external electric field (the Stark effect), and found that Δμ values for the carcinoma line were 1.5x greater than those of the SV40 antigen-free normal analogs. These findings are interpreted in terms of effects from the mitochondrial membrane potential. Results for HGK on the scale of single cells is

  6. Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes

    Matsuzaki, Satoshi [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Presented in this dissertation is the successful demonstration that nonphotochemical hole burning (NPWB) imaging can be used to study in vitro tissue cellular systems for discerning differences in cellular ultrastructures due to cancer development. This has been accomplished with the surgically removed cancerous ovarian and analogous normal peritoneal tissues from the same patient and the application of a fluorescent mitochondrion specific dye, Molecular Probe MitoFluor Far Red 680 (MF680), commonly known as rhodamine 800, that has been proven to exhibit efficient NPHB. From the results presented in Chapters 4 and 5 , and Appendix B, the following conclusions were made: (1) fluorescence excitation spectra of MF680 and confocal microscopy images of thin sliced tissues incubated with MF680 confirm the site-specificity of the probe molecules in the cellular systems. (2) Tunneling parameters, {lambda}{sub 0} and σΛ, as well as the standard hole burning parameters (namely, γ and S), have been determined for the tissue samples by hole growth kinetics (HGK) analyses. Unlike the preliminary cultured cell studies, these parameters have not shown the ability to distinguish tissue cellular matrices surrounding the chromophores. (3) Effects of an external electric (Stark) field on the nonphotochemical holes have been used to determine the changes in permanent dipole moment (fΔμ) for MF680 in tissue samples when burn laser polarization is parallel to the Stark field. Differences are detected between fΔμs in the two tissue samples, with the cancerous tissue exhibiting a more pronounced change (1.35-fold increase) in permanent dipole moment change relative to the normal analogs. It is speculated that the difference may be related to differences in mitochondrial membrane potentials in these tissue samples. (4) In the HGK mode, hole burning imaging (HBI) of cells adhered to coverslips and cooled to liquid helium temperatures in the complete absence of

  7. Computer Software Configuration Item-Specific Flight Software Image Transfer Script Generator

    Bolen, Kenny; Greenlaw, Ronald

    2010-01-01

    A K-shell UNIX script enables the International Space Station (ISS) Flight Control Team (FCT) operators in NASA s Mission Control Center (MCC) in Houston to transfer an entire or partial computer software configuration item (CSCI) from a flight software compact disk (CD) to the onboard Portable Computer System (PCS). The tool is designed to read the content stored on a flight software CD and generate individual CSCI transfer scripts that are capable of transferring the flight software content in a given subdirectory on the CD to the scratch directory on the PCS. The flight control team can then transfer the flight software from the PCS scratch directory to the Electronically Erasable Programmable Read Only Memory (EEPROM) of an ISS Multiplexer/ Demultiplexer (MDM) via the Indirect File Transfer capability. The individual CSCI scripts and the CSCI Specific Flight Software Image Transfer Script Generator (CFITSG), when executed a second time, will remove all components from their original execution. The tool will identify errors in the transfer process and create logs of the transferred software for the purposes of configuration management.

  8. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona; Husain, Nuzhat; Srivastava, Savita; Rathore, Ram K.S.; Sarma, Manoj K.; Malik, Gyanendra K.; Das, Vinita; Pradhan, Mandakini; Pandey, Chandra M.; Narayana, Ponnada A.

    2009-01-01

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA ≤ 28 weeks for frontal cortical region and GA≤22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  9. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona [Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow, UP (India); Husain, Nuzhat; Srivastava, Savita [CSM Medical University, Department of Pathology, Lucknow (India); Rathore, Ram K.S.; Sarma, Manoj K. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Malik, Gyanendra K. [CSM Medical University, Department of Pediatrics, Lucknow (India); Das, Vinita [CSM Medical University, Department of Obstetrics and Gynecology, Lucknow (India); Pradhan, Mandakini [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics, Lucknow (India); Narayana, Ponnada A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States)

    2009-09-15

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA {<=} 28 weeks for frontal cortical region and GA{<=}22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  10. An agent harms a victim: A functional magnetic resonance imaging study on specific moral emotions

    Kedia, G.; Kedia, G.; Martinot, J.L.; Kedia, G.; Martinot, J.L.; Kedia, G.; Hilton, D.; Berthoz, S.; Wessa, M.

    2008-01-01

    The statement 'An agent harms a victim' depicts a situation that triggers moral emotions. Depending on whether the agent and the victim are the self or someone else, it can lead to four different moral emotions: self-anger ('I harm myself'), guilt ('I harm someone'), other-anger ('someone harms me'), and compassion ('someone harms someone'). In order to investigate the neural correlates of these emotions, we examined brain activation patterns elicited by variations in the agent (self vs. other) and the victim (self vs. other) of a harmful action. Twenty-nine healthy participants underwent functional magnetic resonance imaging while imagining being in situations in which they or someone else harmed themselves or someone else. Results indicated that the three emotional conditions associated with the involvement of other, either as agent or victim (guilt, other-anger, and compassion conditions), all activated structures that have been previously associated with the Theory of Mind (ToM, the attribution of mental states to others), namely, the dorsal medial prefrontal cortex, the precuneus, and the bilateral temporo-parietal junction. Moreover, the two conditions in which both the self and other were concerned by the harmful action (guilt and other-anger conditions) recruited emotional structures (i. e., the bilateral amygdala, anterior cingulate, and basal ganglia). These results suggest that specific moral emotions induce different neural activity depending on the extent to which they involve the self and other. (authors)

  11. Neon-like Iron Ion Lines Measured in NIFS/Large Helical Device (LHD) and Hinode/EUV Imaging Spectrometer (EIS)

    Watanabe, Tetsuya; Hara, Hirohisa; Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Morita, Shigeru; Suzuki, Chihiro; Tamura, Naoki; Yamamoto, Norimasa; Nakamura, Nobuyuki

    2017-06-01

    Line intensities emerging from the Ne-sequence iron ion (Fe XVII) are measured in the laboratory, by the Large Helical Device at the National Institute for Fusion Science, and in the solar corona by the EUV Imaging Spectrometer (EIS) on board the Hinode mission. The intensity ratios of Fe XVII λ 204.6/λ 254.8 are derived in the laboratory by unblending the contributions of the Fe XIII and XII line intensities. They are consistent with theoretical predictions and solar observations, the latter of which endorses the in-flight radiometric calibrations of the EIS instrument. The still remaining temperature-dependent behavior of the line ratio suggests the contamination of lower-temperature iron lines that are blended with the λ 204.6 line.

  12. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method

    Larson, David B. [Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2014-10-15

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach. (orig.)

  13. Extracellular concentration of homocysteine in human cell lines is influenced by specific inhibitors of cyst(e)ine transport.

    Hultberg, Björn

    2004-04-01

    Despite the growing evidence that plasma homocysteine is a cardiovascular risk factor, the mechanism behind the vascular injuries is still unknown. Studies of the cellular uptake systems for homocysteine are scarce, but membrane transporters of cyst(e)ine seem to be involved. In the present study the cellular uptake of extracellular homocysteine in HeLa and hepatoma cell lines is investigated by using several different transport inhibitors for cellular uptake of cyst(e)ine. It is shown that systems A and Xc- are the main transport systems for homocysteine uptake in HeLa cells. It is also confirmed that the magnitude of homocysteine uptake in hepatoma cells is lower than in HeLa cells. However, in the presence of high amounts of extracellular homocysteine both cell types exhibited a high elimination of homocysteine, which was inhibited by the presence of inhibitors of systems A or Xc-. It is possible that there is normally a high turnover of homocysteine in cell cultures, which is not detected by occasional determinations of homocysteine concentrations. The complex pattern of homocysteine production, release, uptake and distribution between different cells in the body is important to examine further in order to possibly be able to modulate the elimination of homocysteine from circulation and thereby lower the risk of cardiovascular disease.

  14. Tissue-specific signatures in the transcriptional response to Anaplasma phagocytophilum infection of Ixodes scapularis and Ixodes ricinus tick cell lines

    Pilar eAlberdi

    2016-02-01

    Full Text Available Anaplasma phagocytophilum are transmitted by Ixodes spp. ticks and have become one of the most common and relevant tick-borne pathogens due to their impact on human and animal health. Recent results have increased our understanding of the molecular interactions between Ixodes scapularis and A. phagocytophilum through the demonstration of tissue-specific molecular pathways that ensure pathogen infection, development and transmission by ticks. However, little is known about the Ixodes ricinus genes and proteins involved in the response to A. phagocytophilum infection. The tick species I. scapularis and I. ricinus are evolutionarily closely related and therefore similar responses are expected in A. phagocytophilum-infected cells. However, differences may exist between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cells associated with tissue-specific signatures of these cell lines. To address this hypothesis, the transcriptional response to A. phagocytophilum infection was characterized by RNA sequencing and compared between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cell lines. The transcriptional response to infection of I. scapularis ISE6 cells resembled that of tick hemocytes while the response in I. ricinus IRE/CTVM20 cells was more closely related to that reported previously in infected tick midguts. The inhibition of cell apoptosis by A. phagocytophilum appears to be a key adaptation mechanism to facilitate infection of both vertebrate and tick cells and was used to investigate further the tissue-specific response of tick cell lines to pathogen infection. The results supported a role for the intrinsic pathway in the inhibition of cell apoptosis by A. phagocytophilum infection of I. scapularis ISE6 cells. In contrast, the results in I. ricinus IRE/CTVM20 cells were similar to those obtained in tick midguts and suggested a role for the JAK/STAT pathway in the inhibition of apoptosis in tick cells infected with A. phagocytophilum

  15. Image Registration to Compensate for EPI Distortion in Patients with Brain Tumors: An Evaluation of Tract-Specific Effects.

    Albi, Angela; Meola, Antonio; Zhang, Fan; Kahali, Pegah; Rigolo, Laura; Tax, Chantal M W; Ciris, Pelin Aksit; Essayed, Walid I; Unadkat, Prashin; Norton, Isaiah; Rathi, Yogesh; Olubiyi, Olutayo; Golby, Alexandra J; O'Donnell, Lauren J

    2018-03-01

    Diffusion magnetic resonance imaging (dMRI) provides preoperative maps of neurosurgical patients' white matter tracts, but these maps suffer from echo-planar imaging (EPI) distortions caused by magnetic field inhomogeneities. In clinical neurosurgical planning, these distortions are generally not corrected and thus contribute to the uncertainty of fiber tracking. Multiple image processing pipelines have been proposed for image-registration-based EPI distortion correction in healthy subjects. In this article, we perform the first comparison of such pipelines in neurosurgical patient data. Five pipelines were tested in a retrospective clinical dMRI dataset of 9 patients with brain tumors. Pipelines differed in the choice of fixed and moving images and the similarity metric for image registration. Distortions were measured in two important tracts for neurosurgery, the arcuate fasciculus and corticospinal tracts. Significant differences in distortion estimates were found across processing pipelines. The most successful pipeline used dMRI baseline and T2-weighted images as inputs for distortion correction. This pipeline gave the most consistent distortion estimates across image resolutions and brain hemispheres. Quantitative results of mean tract distortions on the order of 1-2 mm are in line with other recent studies, supporting the potential need for distortion correction in neurosurgical planning. Novel results include significantly higher distortion estimates in the tumor hemisphere and greater effect of image resolution choice on results in the tumor hemisphere. Overall, this study demonstrates possible pitfalls and indicates that care should be taken when implementing EPI distortion correction in clinical settings. Copyright © 2018 by the American Society of Neuroimaging.

  16. Development of a Tc-99m labeled sigma-2 receptor-specific ligand as a potential breast tumor imaging agent

    Choi, Seok-Rye; Yang, Biao; Ploessl, Karl; Chumpradit, Sumalee; Wey, Shiaw-Pyng; Acton, Paul D.; Wheeler, Kenneth; Mach, Robert H.; Kung, Hank F.

    2001-01-01

    A novel in vivo imaging agent, 99m Tc labeled [(N-[2-((3'-N'-propyl-[3,3,1]aza-bicyclononan-3α-yl)(2''-methoxy-5- methyl-phenylcarbamate) (2-mercaptoethyl)amino)acetyl]-2-aminoethanethiolato] technetium(V) oxide), [ 99m Tc]2, displaying specific binding towards sigma-2 receptors was prepared and characterized. In vitro binding assays showed that the rhenium surrogate of [ 99m Tc]2, Re-2, displayed excellent binding affinity and selectivity towards sigma-2 receptors (K i = 2,723 and 22 nM for sigma-1 and sigma-2 receptor, respectively). Preparation of [ 99m Tc]2 was achieved by heating the S-protected starting material, 1, in the presence of acid, reducing agent (stannous glucoheptonate) and sodium [ 99m Tc]pertechnetate. The lipophilic racemic mixture was successfully prepared in 10 to 50% yield and the radiochemical purity was >98%. Separation of the isomers, peak A and peak B, was successfully achieved by using a chiralpak AD column eluted with an isocratic solvent (n-hexane/isopropanol; 3:1; v/v). The peak A and peak B appear to co-elute with the isomers of the surrogate, Re-2, under the same HPLC condition. Biodistribution studies in tumor bearing mice (mouse mammary adenocarcinoma, cell line 66, which is known to over-express sigma-2 receptors) showed that the racemic [ 99m Tc]2 localized in the tumor. Uptake in the tumor was 2.11, 1.30 and 1.11 %dose/gram at 1, 4 and 8 hr post iv injection, respectively, suggesting good uptake and retention in the tumor cells. The tumor uptake was significantly, but incompletely, blocked (about 25-30% blockage) by co-injection of 'cold' (+)pentazocine or haloperidol (1 mg/Kg). A majority of the radioactivity localized in the tumor tissue was extractable (>60%), and the HPLC analysis showed that it is the original compound, racemic [ 99m Tc]2 (>98% pure). The distribution of the purified peak A and peak B was determined in the same tumor bearing mice at 4 hr post iv injection. The tumor uptake was similar for both isomers

  17. Investigation of the use of microwave image line integrated circuits for use in radiometers and other microwave devices in X-band and above

    Knox, R. M.; Toulios, P. P.; Onoda, G. Y.

    1972-01-01

    Program results are described in which the use of a/high permittivity rectangular dielectric image waveguide has been investigated for use in microwave and millimeter wavelength circuits. Launchers from rectangular metal waveguide to image waveguide are described. Theoretical and experimental evaluations of the radiation from curved image waveguides are given. Measurements of attenuation due to conductor and dielectric losses, adhesives, and gaps between the dielectric waveguide and the image plane are included. Various passive components are described and evaluations given. Investigations of various techniques for fabrication of image waveguide circuits using ceramic waveguides are also presented. Program results support the evaluation of the image line approach as an advantageous method for realizing low loss integrated electronic circuits for X-band and above.

  18. Protocol of image guided off-line using cone beam CT megavoltage; Protocolo de imagen guiada off-line mediante Cone Beam CT de megavoltaje

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Perez Moreno, J. M.; Zucca Aparicio, D.; Minambres Moro, A.

    2013-07-01

    The goal of image guided protocols offline is to reduce systematic errors in positioning of the patient in the treatment unit, being more important than the random errors, since the systematic have one contribution in the margin of the CTV to the PTV. This paper proposes a protocol for image guided offline with the different actions to take with their threshold values evaluated previously by anatomic location in a sample of 474 patients and 4821Cone beam Megavoltaje CT (CBCT). (Author)

  19. Categorical and Specificity Differences between User-Supplied Tags and Search Query Terms for Images. An Analysis of "Flickr" Tags and Web Image Search Queries

    Chung, EunKyung; Yoon, JungWon

    2009-01-01

    Introduction: The purpose of this study is to compare characteristics and features of user supplied tags and search query terms for images on the "Flickr" Website in terms of categories of pictorial meanings and level of term specificity. Method: This study focuses on comparisons between tags and search queries using Shatford's categorization…

  20. Imaging Taurine in the Central Nervous System Using Chemically Specific X-ray Fluorescence Imaging at the Sulfur K-Edge

    Hackett, Mark J.; Paterson, Phyllis G.; Pickering, Ingrid J.; George, Graham N. (Curtin U.); (Saskatchewan)

    2016-11-15

    A method to image taurine distributions within the central nervous system and other organs has long been sought. Since taurine is small and mobile, it cannot be chemically “tagged” and imaged using conventional immuno-histochemistry methods. Combining numerous indirect measurements, taurine is known to play critical roles in brain function during health and disease and is proposed to act as a neuro-osmolyte, neuro-modulator, and possibly a neuro-transmitter. Elucidation of taurine’s neurochemical roles and importance would be substantially enhanced by a direct method to visualize alterations, due to physiological and pathological events in the brain, in the local concentration of taurine at or near cellular spatial resolution in vivo or in situ in tissue sections. We thus have developed chemically specific X-ray fluorescence imaging (XFI) at the sulfur K-edge to image the sulfonate group in taurine in situ in ex vivo tissue sections. To our knowledge, this represents the first undistorted imaging of taurine distribution in brain at 20 μm resolution. We report quantitative technique validation by imaging taurine in the cerebellum and hippocampus regions of the rat brain. Further, we apply the technique to image taurine loss from the vulnerable CA1 (cornus ammonis 1) sector of the rat hippocampus following global brain ischemia. The location-specific loss of taurine from CA1 but not CA3 neurons following ischemia reveals osmotic stress may be a key factor in delayed neurodegeneration after a cerebral ischemic insult and highlights the significant potential of chemically specific XFI to study the role of taurine in brain disease.

  1. Patient-Specific Biomechanical Model as Whole-Body CT Image Registration Tool

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Doyle, Barry; Garlapati, Revanth Reddy; Kikinis, Ron; Wittek, Adam

    2015-01-01

    Whole-body computed tomography (CT) image registration is important for cancer diagnosis, therapy planning and treatment. Such registration requires accounting for large differences between source and target images caused by deformations of soft organs/tissues and articulated motion of skeletal structures. The registration algorithms relying solely on image processing methods exhibit deficiencies in accounting for such deformations and motion. We propose to predict the deformations and moveme...

  2. The development of a highly specific radiochemical compound based on labeled 99mtc recombinant molecules for targeted imaging of cells with the overexpression of Her-2 / neu

    Olga D. Bragina

    2017-01-01

    Full Text Available Currently, there is a urgent need to search for new diagnostic methods that allow us to reveal malignant tumors with the overexpression of Her-2/neu with high accuracy. In recent years radioisotope methods have been actively developing to identify specific tumor targets, with antibodies being the “targeting” module.The purpose of the study. Creation of a chemically stable radiochemical compound for the imaging of cells with the overexpression of Her-2/neu.Materials and methods. The study was conducted using two human adenocarcinoma cell lines with expression (BT-474 and without expression (MCF-7 Her-2/neu. The specificity of the binding of the test complex with Her-2/neu receptor was determined by direct radiometric and planar scintigraphy. To evaluate the differences in quantitative characteristics between the groups a non-parametric Mann – Whitney test was used.Results. The yield of the labeled complex was more than 91% and the radiochemical frequency was more than 94%. When performing a visual scintigraphic evaluation, a much higher accumulation rate of the studied radiopharmaceutical preparation (RFP was observed in the culture of cells with overexpression of the surface Her-2/neu receptor. Direct radiometric results also demonstrated a higher accumulation of RFPs in the human BT-474 mammary adenocarcinoma cell line with Her-2/neu overexpression in comparison with the control group.Conclusion. Preclinical studies demonstrated high stability of the test compound, as well as its accumulation in the group of cells with Her-2/neu overexpression

  3. Optimization and verification of image reconstruction for a Compton camera towards application as an on-line monitor for particle therapy

    Taya, T.; Kataoka, J.; Kishimoto, A.; Tagawa, L.; Mochizuki, S.; Toshito, T.; Kimura, M.; Nagao, Y.; Kurita, K.; Yamaguchi, M.; Kawachi, N.

    2017-07-01

    Particle therapy is an advanced cancer therapy that uses a feature known as the Bragg peak, in which particle beams suddenly lose their energy near the end of their range. The Bragg peak enables particle beams to damage tumors effectively. To achieve precise therapy, the demand for accurate and quantitative imaging of the beam irradiation region or dosage during therapy has increased. The most common method of particle range verification is imaging of annihilation gamma rays by positron emission tomography. Not only 511-keV gamma rays but also prompt gamma rays are generated during therapy; therefore, the Compton camera is expected to be used as an on-line monitor for particle therapy, as it can image these gamma rays in real time. Proton therapy, one of the most common particle therapies, uses a proton beam of approximately 200 MeV, which has a range of ~ 25 cm in water. As gamma rays are emitted along the path of the proton beam, quantitative evaluation of the reconstructed images of diffuse sources becomes crucial, but it is far from being fully developed for Compton camera imaging at present. In this study, we first quantitatively evaluated reconstructed Compton camera images of uniformly distributed diffuse sources, and then confirmed that our Compton camera obtained 3 %(1 σ) and 5 %(1 σ) uniformity for line and plane sources, respectively. Based on this quantitative study, we demonstrated on-line gamma imaging during proton irradiation. Through these studies, we show that the Compton camera is suitable for future use as an on-line monitor for particle therapy.

  4. An agent harms a victim: A functional magnetic resonance imaging study on specific moral emotions

    Kedia, G. [INSERM, Inst Hlth et Med Res, U797, Res Unit Neuroimaging Psychiat, F-91401 Orsay (France); Kedia, G.; Martinot, J.L. [CEA, DSV, I2BM, SHFJ, Orsay (France); Kedia, G.; Martinot, J.L. [Univ Paris Sud, U797, Paris (France); Kedia, G.; Hilton, D. [Univ Toulouse, Toulouse (France); Berthoz, S. [Paris Descartes Univ, U797, Paris (France); Wessa, M. [Univ Heidelber, Cent Inst Mental Hlth, D-6800 Mannheim (Germany)

    2008-07-01

    The statement 'An agent harms a victim' depicts a situation that triggers moral emotions. Depending on whether the agent and the victim are the self or someone else, it can lead to four different moral emotions: self-anger ('I harm myself'), guilt ('I harm someone'), other-anger ('someone harms me'), and compassion ('someone harms someone'). In order to investigate the neural correlates of these emotions, we examined brain activation patterns elicited by variations in the agent (self vs. other) and the victim (self vs. other) of a harmful action. Twenty-nine healthy participants underwent functional magnetic resonance imaging while imagining being in situations in which they or someone else harmed themselves or someone else. Results indicated that the three emotional conditions associated with the involvement of other, either as agent or victim (guilt, other-anger, and compassion conditions), all activated structures that have been previously associated with the Theory of Mind (ToM, the attribution of mental states to others), namely, the dorsal medial prefrontal cortex, the precuneus, and the bilateral temporo-parietal junction. Moreover, the two conditions in which both the self and other were concerned by the harmful action (guilt and other-anger conditions) recruited emotional structures (i. e., the bilateral amygdala, anterior cingulate, and basal ganglia). These results suggest that specific moral emotions induce different neural activity depending on the extent to which they involve the self and other. (authors)

  5. Effect of endorsed body weight on specific absorption rate during magnetic resonance imaging

    Singh, Harish K.; Gupta, R.K.; Gujral, R.B.; Shukla, A.K.

    2001-01-01

    As a routine safety of the patients undergoing magnetic resonance imaging (MRI), the limits of radiofrequency (RF) specific absorption rate (SAR) are set by the manufacturers of all MRI systems because RF causes thermo genesis of the RF exposed tissue. It has been mandatory practice to endorse body weight and age of the patients required by the MRI systems for the SAR check. The problems arise on those patients who are critically ill, and consequently body weight could not be measured. In such cases, approximate body weight has to be endorsed. In case of underweight and overweight patients, sometimes SAR check does not permit to run the MRI pulse sequences. Also, in such cases, body weight remains the parameter which is being changed to get the MRI done. The purpose of this study is to assess the change of SAR with endorsed body weight. The change of SAR was recorded with the endorsed weight using phantoms and most commonly used T1 and T2 weighted pulse sequence on clinical MRI system. At true endorsed weight, using respective coils and the head and spine coil phantoms, the body averaged and localised SAR were found to be within limits while this was not the case with body coil phantom. Unrealistic endorsed weights are permissible for the adult age cases in all coils while using the routine T1 and T2 weighted pulse sequences. This finding is absolutely new in the field and certainly, will be of great applicability to develop a uniform and standard system of SAR checks in the patient interest. (author)

  6. Patient specific dynamic geometric models from sequential volumetric time series image data.

    Cameron, B M; Robb, R A

    2004-01-01

    Generating patient specific dynamic models is complicated by the complexity of the motion intrinsic and extrinsic to the anatomic structures being modeled. Using a physics-based sequentially deforming algorithm, an anatomically accurate dynamic four-dimensional model can be created from a sequence of 3-D volumetric time series data sets. While such algorithms may accurately track the cyclic non-linear motion of the heart, they generally fail to accurately track extrinsic structural and non-cyclic motion. To accurately model these motions, we have modified a physics-based deformation algorithm to use a meta-surface defining the temporal and spatial maxima of the anatomic structure as the base reference surface. A mass-spring physics-based deformable model, which can expand or shrink with the local intrinsic motion, is applied to the metasurface, deforming this base reference surface to the volumetric data at each time point. As the meta-surface encompasses the temporal maxima of the structure, any extrinsic motion is inherently encoded into the base reference surface and allows the computation of the time point surfaces to be performed in parallel. The resultant 4-D model can be interactively transformed and viewed from different angles, showing the spatial and temporal motion of the anatomic structure. Using texture maps and per-vertex coloring, additional data such as physiological and/or biomechanical variables (e.g., mapping electrical activation sequences onto contracting myocardial surfaces) can be associated with the dynamic model, producing a 5-D model. For acquisition systems that may capture only limited time series data (e.g., only images at end-diastole/end-systole or inhalation/exhalation), this algorithm can provide useful interpolated surfaces between the time points. Such models help minimize the number of time points required to usefully depict the motion of anatomic structures for quantitative assessment of regional dynamics.

  7. Argus+: The Future of Wide-Field, Spectral-Line Imaging at 3-mm with the Green Bank Telescope

    Maddalena, Ronald; Frayer, David; Lockman, Felix; O'Neil, Karen; White, Steven; Argus+ Collaboration

    2018-01-01

    The Robert C Byrd Green Bank Telescope has met its design goal of providing high-quality observations at 115 GHz. Observers also have access to the new, 16-pixel, 3-mm Argus receiver, which is providing high-dynamic range images over wide fields for the multitude of spectral lines between 85 and 115 GHz, including CO, 13CO, C18O, SiO, HCN, HCO+, HNC, N2H+, and CS. The small number of pixels in Argus limits its ability to map many of the most interesting objects whose extent exceeds many arc-minutes. The successful performance of Argus, and its modular design, demonstrates that receivers with many more pixels could be built for the GBT. A 12 x 12 array of the Argus design would have mapping speeds about nine times faster than Argus without suffering any degradation in performance for the outer pixels in the array. We present our plans to build the next-generation Argus instrument (Argus+) with 144-pixels, a footprint 5’x5’, and 7" resolution at 110 GHz. The project will be a collaboration between the Green Bank Observatory and university groups, who will supply key components. The key science drivers for Argus+ are studies of molecular filaments in the Milky Way, studies of molecular clouds in nearby galaxies, and the observations of rapidly evolving solar system objects.

  8. Low Reynolds number airfoil aerodynamic loads determination via line integral of velocity obtained with particle image velocimetry

    Lee, T.; Su, Y.Y. [McGill University, Department of Mechanical Engineering, Montreal, QC (Canada)

    2012-11-15

    The small magnitude lift forces generated by both a NACA 0012 airfoil and a thin flat plate at Re = 29,000 and 54,000 were determined through the line integral of velocity, obtained with particle image velocimetry, via the application of the Kutta-Joukowsky theorem. Surface pressure measurements of the NACA0012 airfoil were also obtained to validate the lift coefficient C{sub l}. The bound circulation was found to be insensitive to the size and aspect ratio of the rectangular integration loop for pre-stall angles. The present C{sub l} data were also found to agree very well with the surface pressure-determined lift coefficient for pre-stall conditions. A large variation in C{sub l} with the loop size and aspect ratio for post-stall conditions was, however, observed. Nevertheless, the present flat-plate C{sub l} data were also found to collectively agree with the published force-balance measurements at small angles of attack, despite the large disparity exhibited among the various published data at high angles. Finally, the ensemble-averaged wake velocity profiles were also used to compute the drag coefficient and, subsequently, the lift-to-drag ratio. (orig.)

  9. In vitro evaluation of a specific radiochemical compound based on 99mTc-labeled DARPinG3 for radionuclide imaging of tumors overexpressing Her-2/neu

    Bragina, O.; Larkina, M.; Stasyuk, E.; Chernov, V.; Zelchan, R.; Medvedeva, A.; Sinilkin, I.; Yusubov, M.; Skuridin, V.; Deyev, S.; Buldakov, M.

    2017-09-01

    It is still necessary to search for new informative diagnostic methods to detect malignant tumors with overexpression of Her-2/neu, which are characterized by the aggressive course of the disease, rapid rate of tumor growth and low rates of relapse-free and overall survival. In recent years, the radioisotope techniques for detection of specific tumor targets have been developing actively. Purpose: to develop a chemically stable radiochemical compound for the targeted imaging of cells overexpressing Her-2/neu. Material and methods: The study was performed using 2 cell lines. The human breast adenocarcinoma HER2-overexpressing cell line BT-474 was chosen to detect specific binding. As a control, HER2-negative human breast adenocarcinoma MCF-7 was used. The human breast adenocarcinoma BT-474 and MCF-7 cell lines were seeded in chamber-slides at the density of 35,000 cells/ml in trypsin-EDTA (PanEco) medium and grown overnight at 37°C. After that both cell lines were washed with Phosphate buffered saline (PBS) and distributed into test tubes to 1 ml (5 millions cells in each). After adding 100 µl (70 MBq) studied complex of 99mTc-DPAH- DARPinG3 was incubated for 40 min at +4°C. Washing was performed three times with buffer PBS and 5% Bovine Serum Albumin (BSA). The characteristics of the binding specificity of the test set with the HER-2/neu receptor were determined by direct radiometric and planar scintigraphy. Nonparametric Mann-Whitney test was used to assess the differences in the quantitative characteristics between groups. Results: The output of the labeled complex was more than 91%, with a radiochemical purity of more than 94%. When carrying out a visual scintigraphic assessment much greater intensity accumulation of radiotracer was observed in the studied cell culture surface receptor overexpressing Her-2/neu. The results of direct radiometric also showed higher accumulation of the radiopharmaceutical in the adenocarcinoma cell line BT-474 human breast

  10. The influence of specific mechanical energy on cornmeal viscosity measured by an on-line system during twin-screw extrusion

    CHANG, Y. K.; MARTINEZ-BUSTOS, F.; PARK, T. S.; KOKINI, J .L.

    1999-01-01

    The influence of specific mechanical energy (SME) on cornmeal viscosity during the twin-screw extrusion at feed moisture contents of 25 and 30% and screw speeds in the range from 100 to 500 rpm was measured. Cornmeal was extruded in a co-rotating, intermeshing twin-screw coupled to a slit die rheometer. One approach to the on-line rheological measurement is to use a slit die with the extruder. In the present work it was show that shear viscosity decreased as a function of SME. The viscosity o...

  11. The impact of pediatric-specific dose modulation curves on radiation dose and image quality in head computed tomography

    Santos, Joana; Paulo, Graciano [Instituto Politecnico de Coimbra, ESTESC, DMIR, Coimbra (Portugal); Foley, Shane; Rainford, Louise [University College Dublin, School of Medicine and Medical Science, Health Science Centre, Dublin 4 (Ireland); McEntee, Mark F. [The University of Sydney, Faculty of Health Sciences, Cumberland Campus, Sydney (Australia)

    2015-11-15

    The volume of CT examinations has increased with resultant increases in collective dose values over the last decade. To analyze the impact of the tube current and voltage modulation for dose values and image quality of pediatric head CT examinations. Head CT examinations were performed on anthropomorphic phantoms and four pediatric age categories before and after the introduction of dedicated pediatric curves for tube voltage and current modulation. Local diagnostic reference levels were calculated. Visual grading characteristic image quality evaluation was performed by four pediatric neuroradiologists and image noise comparisons were performed. Pediatric-specific modulation curves demonstrated a 49% decrease in mean radiation dose for phantom examinations. The local diagnostic reference levels (CTDIvol) for clinical examinations decreased by 52%, 41%, 46% and 40% for newborn, 5-, 10- and 15-year-old patients, respectively. Visual grading characteristic image quality was maintained for the majority of age categorizations (area under the curve = 0.5) and image noise measurements did not change (P = 0.693). Pediatric-specific dose modulation curves resulted in an overall mean dose reduction of 45% with no significant differences in subjective or objective image quality findings. (orig.)

  12. The impact of pediatric-specific dose modulation curves on radiation dose and image quality in head computed tomography

    Santos, Joana; Paulo, Graciano; Foley, Shane; Rainford, Louise; McEntee, Mark F.

    2015-01-01

    The volume of CT examinations has increased with resultant increases in collective dose values over the last decade. To analyze the impact of the tube current and voltage modulation for dose values and image quality of pediatric head CT examinations. Head CT examinations were performed on anthropomorphic phantoms and four pediatric age categories before and after the introduction of dedicated pediatric curves for tube voltage and current modulation. Local diagnostic reference levels were calculated. Visual grading characteristic image quality evaluation was performed by four pediatric neuroradiologists and image noise comparisons were performed. Pediatric-specific modulation curves demonstrated a 49% decrease in mean radiation dose for phantom examinations. The local diagnostic reference levels (CTDIvol) for clinical examinations decreased by 52%, 41%, 46% and 40% for newborn, 5-, 10- and 15-year-old patients, respectively. Visual grading characteristic image quality was maintained for the majority of age categorizations (area under the curve = 0.5) and image noise measurements did not change (P = 0.693). Pediatric-specific dose modulation curves resulted in an overall mean dose reduction of 45% with no significant differences in subjective or objective image quality findings. (orig.)

  13. Two new routes to make blood: Hematopoietic specification from pluripotent cell lines versus reprogramming of somatic cells.

    Singbrant, Sofie; van Galen, Peter; Lucas, Daniel; Challen, Grant; Rossi, Derrick J; Daley, George Q

    2015-09-01

    Transplantation of hematopoietic stem cells (HSCs) to treat hematologic disorders is routinely used in the clinic. However, HSC therapy is hindered by the requirements of finding human leukocyte antigen (HLA)-matched donors and attaining sufficient numbers of long-term HSCs in the graft. Therefore, ex vivo expansion of transplantable HSCs remains one of the "holy grails" of hematology. Without the ability to maintain and expand human HSCs in vitro, two complementary approaches involving cellular reprogramming to generate transplantable HSCs have emerged. Reprogrammed HSCs represent a potentially inexhaustible supply of autologous tissue. On March 18th, 2015, Dr. George Q. Daley and Dr. Derrick J. Rossi, two pioneers in the field, presented and discussed their most recent research on these topics in a webinar organized by the International Society for Experimental Hematology (ISEH). Here, we summarize these seminars and discuss the possibilities and challenges in the field of hematopoietic specification. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  14. Assembled genomic and tissue-specific transcriptomic data resources for two genetically distinct lines of Cowpea ( Vigna unguiculata (L.) Walp).

    Spriggs, Andrew; Henderson, Steven T; Hand, Melanie L; Johnson, Susan D; Taylor, Jennifer M; Koltunow, Anna

    2018-02-09

    Cowpea ( Vigna unguiculata (L.) Walp) is an important legume crop for food security in areas of low-input and smallholder farming throughout Africa and Asia. Genetic improvements are required to increase yield and resilience to biotic and abiotic stress and to enhance cowpea crop performance. An integrated cowpea genomic and gene expression data resource has the potential to greatly accelerate breeding and the delivery of novel genetic traits for cowpea. Extensive genomic resources for cowpea have been absent from the public domain; however, a recent early release reference genome for IT97K-499-35 ( Vigna unguiculata  v1.0, NSF, UCR, USAID, DOE-JGI, http://phytozome.jgi.doe.gov/) has now been established in a collaboration between the Joint Genome Institute (JGI) and University California (UC) Riverside. Here we release supporting genomic and transcriptomic data for IT97K-499-35 and a second transformable cowpea variety, IT86D-1010. The transcriptome resource includes six tissue-specific datasets for each variety, with particular emphasis on reproductive tissues that extend and support the V. unguiculata v1.0 reference. Annotations have been included in our resource to allow direct mapping to the v1.0 cowpea reference. Access to this resource provided here is supported by raw and assembled data downloads.

  15. Experiment Operating Specification for the Semiscale MOD-2C feedwater and steam line break experiment series. Appendix S-FS-6 and 7

    Boucher, T.J.; Owca, W.A.

    1985-05-01

    This document is the Semiscale MOD-2C feedwater and steam line break experiment series Experiment Operating Specification Appendix for tests S-FS-6 and S-FS-7. Test S-FS-6 is the third test in the series and simulates a 100% break in a steam generator bottom feedwater line downstream of the check valve accompanied by compounding factors (such as check valve failure, loss-of-offsite power at SIS and SIS delayed until low steam generator pressure signal). The test is terminated after plant stabilization and recovery procedures including unaffected loop steam and feed, pressurizer heater operation, pressurizer auxiliary spray operation, and normal charging/letdown operation. Test S-FS-7 is the fourth test in the series and simulates a 14.3% break in a steam generator bottom feedwater line downstream of the check valve, accompanied by compounding factors. The test is terminated after plant stabilization procedures including unaffected loop steam and feed, pressurizer heater operation, and normal charging/letdown operation. The test was followed by an affected loop secondary refill after isolating the break. The Appendix contains information on the major fluid systems, initial experiment conditions, experiment boundary conditions, and sequence of experiment events. Also included is a discussion of the scaling criteria and philosophy used to develop the experiment initial and boundary conditions and system configuration

  16. Tissue-specific MR contrast agents. Impact on imaging diagnosis and future prospects

    Yoshimitsu, Kengo; Nakayama, Tomohiro; Kakihara, Daisuke; Irie, Hiroyuki; Tajima, Tsuyoshi; Asayama, Yoshiki; Hirakawa, Masakazu; Ishigami, Kousei; Honda, Hiroshi

    2005-01-01

    tumor vascularity and precise location. Unfortunately, however, its performance in depicting tumor vascularity was suggested to be less than that of multi detector row CT (MDCT) or dynamic MR using Gd-DTPA. Further investigation is needed to determine the true usefulness of Gd-EOB-DTPA in the imaging diagnosis of liver tumors. A number of other promising tissue-specific contrast agents currently are under development, including blood pool agents, lymphatic or lymph nodal agents, blood vessel wall agents, and so on. We, as radiologists, should keep in mind that the true efficacy and roles of these tissue-specific agents need to be evaluated not only from the viewpoint of diagnostic accuracy but also with reference to their socioeconomic aspects, particularly in this era of the Diagnosis-Related Group/Prospective Payment System. (author)

  17. 3D printing of patient-specific anatomy: A tool to improve patient consent and enhance imaging interpretation by trainees.

    Liew, Yaoren; Beveridge, Erin; Demetriades, Andreas K; Hughes, Mark A

    2015-01-01

    We report the use of three-dimensional or 3D printed, patient-specific anatomy as a tool to improve informed patient consent and patient understanding in a case of posterior lumbar fixation. Next, we discuss its utility as an educational tool to enhance imaging interpretation by neurosurgery trainees.

  18. Tract-Specific Analyses of Diffusion Tensor Imaging Show Widespread White Matter Compromise in Autism Spectrum Disorder

    Shukla, Dinesh K.; Keehn, Brandon; Muller, Ralph-Axel

    2011-01-01

    Background: Previous diffusion tensor imaging (DTI) studies have shown white matter compromise in children and adults with autism spectrum disorder (ASD), which may relate to reduced connectivity and impaired function of distributed networks. However, tract-specific evidence remains limited in ASD. We applied tract-based spatial statistics (TBSS)…

  19. Immuno PET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo

    Rolle, Anna-Maria; Hasenberg, Mike; Thornton, Christopher R.

    2016-01-01

    -infected mice allowed specific localization of lung infection when combined with PET. Optical imaging with a fluorochrome-labeled version of the mAb showed colocalization with invasive hyphae. The mAb-based newly developed PET tracer [64Cu]DOTA-JF5 distinguishedIPA from bacterial lung infections and...

  20. A Novel ¹¹¹In-Labeled Anti-Prostate-Specific Membrane Antigen Nanobody for Targeted SPECT/CT Imaging of Prostate Cancer.

    Chatalic, Kristell L S; Veldhoven-Zweistra, Joke; Bolkestein, Michiel; Hoeben, Sander; Koning, Gerben A; Boerman, Otto C; de Jong, Marion; van Weerden, Wytske M

    2015-07-01

    Prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer (PCa) and a promising target for molecular imaging and therapy. Nanobodies (single-domain antibodies, VHH) are the smallest antibody-based fragments possessing ideal molecular imaging properties, such as high target specificity and rapid background clearance. We developed a novel anti-PSMA Nanobody (JVZ-007) for targeted imaging and therapy of PCa. Here, we report on the application of the (111)In-radiolabeled Nanobody for SPECT/CT imaging of PCa. A Nanobody library was generated by immunization of a llama with 4 human PCa cell lines. Anti-PSMA Nanobodies were captured by biopanning on PSMA-overexpressing cells. JVZ-007 was selected for evaluation as an imaging probe. JVZ-007 was initially produced with a c-myc-hexahistidine (his) tag allowing purification and detection. The c-myc-his tag was subsequently replaced by a single cysteine at the C terminus, allowing site-specific conjugation of chelates for radiolabeling. JVZ-007-c-myc-his was conjugated to 2-(4-isothiocyanatobenzyl)-diethylenetriaminepentaacetic acid (p-SCN-DTPA) via the lysines, whereas JVZ-007-cys was conjugated to maleimide-DTPA via the C-terminal cysteine. PSMA targeting was analyzed in vitro by cell-binding experiments using flow cytometry, autoradiography, and internalization assays with various PCa cell lines and patient-derived xenografts (PDXs). The targeting properties of radiolabeled Nanobodies were evaluated in vivo in biodistribution and SPECT/CT imaging experiments, using nude mice bearing PSMA-positive PC-310 and PSMA-negative PC-3 tumors. JVZ-007 was successfully conjugated to DTPA for radiolabeling with (111)In at room temperature. (111)In-JVZ007-c-myc-his and (111)In-JVZ007-cys internalized in LNCaP cells and bound to PSMA-expressing PDXs and, importantly, not to PSMA-negative PDXs and human kidneys. Good tumor targeting and fast blood clearance were observed for (111)In-JVZ-007-c-myc-his and (111)In

  1. Cancer-specific SNPs originate from low-level heteroplasmic variants in human mitochondrial genomes of a matched cell line pair.

    Hedberg, Annica; Knutsen, Erik; Løvhaugen, Anne Silje; Jørgensen, Tor Erik; Perander, Maria; Johansen, Steinar D

    2018-04-19

    Low-level mitochondrial heteroplasmy is a common phenomenon in both normal and cancer cells. Here, we investigate the link between low-level heteroplasmy and mitogenome mutations in a human breast cancer matched cell line by high-throughput sequencing. We identified 23 heteroplasmic sites, of which 15 were common between normal cells (Hs578Bst) and cancer cells (Hs578T). Most sites were clustered within the highly conserved Complex IV and ribosomal RNA genes. Two heteroplasmic variants in normal cells were found as fixed mutations in cancer cells. This indicates a positive selection of these variants in cancer cells. RNA-Seq analysis identified upregulated L-strand specific transcripts in cancer cells, which include three mitochondrial long non-coding RNA molecules. We hypothesize that this is due to two cancer cell-specific mutations in the control region.

  2. Haemodynamic imaging of thoracic stent-grafts by computational fluid dynamics (CFD): presentation of a patient-specific method combining magnetic resonance imaging and numerical simulations.

    Midulla, Marco; Moreno, Ramiro; Baali, Adil; Chau, Ming; Negre-Salvayre, Anne; Nicoud, Franck; Pruvo, Jean-Pierre; Haulon, Stephan; Rousseau, Hervé

    2012-10-01

    In the last decade, there was been increasing interest in finding imaging techniques able to provide a functional vascular imaging of the thoracic aorta. The purpose of this paper is to present an imaging method combining magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) to obtain a patient-specific haemodynamic analysis of patients treated by thoracic endovascular aortic repair (TEVAR). MRI was used to obtain boundary conditions. MR angiography (MRA) was followed by cardiac-gated cine sequences which covered the whole thoracic aorta. Phase contrast imaging provided the inlet and outlet profiles. A CFD mesh generator was used to model the arterial morphology, and wall movements were imposed according to the cine imaging. CFD runs were processed using the finite volume (FV) method assuming blood as a homogeneous Newtonian fluid. Twenty patients (14 men; mean age 62.2 years) with different aortic lesions were evaluated. Four-dimensional mapping of velocity and wall shear stress were obtained, depicting different patterns of flow (laminar, turbulent, stenosis-like) and local alterations of parietal stress in-stent and along the native aorta. A computational method using a combined approach with MRI appears feasible and seems promising to provide detailed functional analysis of thoracic aorta after stent-graft implantation. • Functional vascular imaging of the thoracic aorta offers new diagnostic opportunities • CFD can model vascular haemodynamics for clinical aortic problems • Combining CFD with MRI offers patient specific method of aortic analysis • Haemodynamic analysis of stent-grafts could improve clinical management and follow-up.

  3. Persistent non-specific FDG uptake on PET imaging following hip arthroplasty

    Zhuang, Hongming; Chacko, Thomas K.; Hickeson, Marc; Stevenson, Karen; Feng, Qi; Ponzo, Fabio; Alavi, Abass [Division of Nuclear Medicine, Department of Radiology, The Hospital of University of Pennsylvania, 110 Donner Building, 3400 Spruce Street, Philadelphia, PA 19104 (United States); Garino, Jonathan P. [Department of Orthopedic Surgery, The Hospital of University of Pennsylvania, Philadelphia, PA 19802 (United States)

    2002-10-01

    Hip arthroplasty is a common surgical procedure, but the diagnosis of infection associated with hip arthroplasty remains challenging. Fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) has been shown to be a promising imaging modality in settings where infection is suspected. However, inflammatory reaction to surgery can result in increased FDG uptake at various anatomic locations, which may erroneously be interpreted as sites of infection. The purpose of this study was to assess the patterns and time course of FDG accumulation following total hip replacement over an extended period of time. Firstly, in a prospective study nine patients with total hip replacement were investigated to determine the patterns of FDG uptake over time. Three FDG-PET scans were performed in each patient at about 3, 6 and 12 months post arthroplasty. Secondly, in a retrospective analysis, the medical and surgical history and FDG-PET imaging results of 710 patients who had undergone whole-body scans for the evaluation of possible malignant disorders were reviewed. The history of arthroplasty and FDG-PET findings in the hip region were reviewed for this study. Patients with symptomatic arthroplasties or related complaints during FDG-PET scanning were excluded from the analysis. During the entire study period, all nine patients enrolled in the prospective study were demonstrated to have increased FDG uptake around the femoral head or neck portion of the prosthesis that extended to the soft tissues surrounding the femur. Among the patients reviewed in the retrospective study, 18 patients with a history of 21 hip arthroplasties who were asymptomatic at the time of FDG-PET scan met the criteria for inclusion. The time interval between the hip arthroplasty and the FDG-PET study ranged from 3 months to 288 months (mean{+-}SD: 80.4{+-}86.2 months). In 81% (17 of 21) of these prostheses, increased FDG uptake could be noted around the femoral head or neck portion of the

  4. Evaluation of the impact of organ-specific dose reduction on image quality in pediatric chest computed tomography

    Boos, Johannes; Kroepil, Patric; Klee, Dirk; Heusch, Philipp; Schimmoeller, Lars; Schaper, Joerg; Antoch, Gerald; Lanzman, Rotem S.

    2014-01-01

    Organ-specific dose reduction significantly reduces the radiation exposure of radiosensitive organs. The purpose of this study was to assess the impact of a novel organ-specific dose reduction algorithm on image quality of pediatric chest CT. We included 28 children (mean age 10.9 ± 4.8 years, range 3-18 years) who had contrast-enhanced chest CT on a 128-row scanner. CT was performed at 100 kV using automated tube current modulation and a novel organ-specific dose-reduction algorithm (XCare trademark; Siemens, Forchheim, Germany). Seven children had a previous chest CT performed on a 64-row scanner at 100 kV without organ-specific dose reduction. Subjective image quality was assessed using a five-point scale (1-not diagnostic; 5-excellent). Contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were assessed in the descending aorta. Overall mean subjective image quality was 4.1 ± 0.6. In the subgroup of the seven children examined both with and without organ-specific dose reduction, subjective image quality was comparable (score 4.4 ± 0.5 with organ-specific dose reduction vs. 4.4 ± 0.7 without it; P > 0.05). There was no significant difference in mean signal-to-noise ratio and contrast-to-noise ratio with organ-specific dose reduction (38.3 ± 10.1 and 28.5 ± 8.7, respectively) and without the reduction (35.5 ± 8.5 and 26.5 ± 7.8, respectively) (P > 0.05). Volume computed tomography dose index (CTDI vol ) and size-specific dose estimates did not differ significantly between acquisitions with the organ-specific dose reduction (1.7 ± 0.8 mGy) and without the reduction (1.7 ± 0.8 mGy) (P > 0.05). Organ-specific dose reduction does not have an impact on image quality of pediatric chest CT and can therefore be used in clinical practice to reduce radiation dose of radiosensitive organs such as breast and thyroid gland. (orig.)

  5. Improvement of the design and generation of highly specific plant knockdown lines using primary synthetic microRNAs (pri-smiRNAs

    Alves Leonardo

    2010-03-01

    Full Text Available Abstract Background microRNAs (miRNAs are endogenous small non-coding RNAs that post-transcriptionally regulate gene expression. In plants, they typically show high complementarity to a single sequence motif within their target mRNAs and act by catalyzing specific mRNA cleavage and degradation. miRNAs are processed from much longer primary transcripts via precursor miRNAs containing fold-back structures. Leaving these secondary structures intact, miRNAs can be re-designed experimentally to target mRNAs of choice. Results We designed primary synthetic miRNAs (pri-smiRNAs on the basis of the primary transcript of the Arabidopsis MIR159A gene by replacing the original miR159a and the corresponding miR159a* with novel sequences, keeping the overall secondary structure as predicted by the program RNAfold. We used the program RNAhybrid to optimize smiRNA design and to screen the complete Arabidopsis transcriptome for potential off-targets. To improve the molecular cloning of the pri-smiRNA we inserted restriction sites in the original MIR159A primary transcript to easily accommodate the smiRNA/smiRNA* DNA fragment. As a proof-of-concept, we targeted the single gene encoding chalcone synthase (CHS in Arabidopsis. We demonstrate smiRNA(CHS expression and CHS mRNA cleavage in different transgenic lines. Phenotypic changes in these lines were observed for seed color and flavonol derivatives, and quantified with respect to anthocyanin content. We also tested the effect of mismatches and excess G:U base pairs on knockdown efficiency. Conclusions RNAhybrid-assisted design of smiRNAs and generation of pri-smiRNAs using a novel vector containing restriction sites greatly improves specificity and speed of the generation of stable knockdown lines for functional analyses in plants.

  6. Pan-cancer stratification of solid human epithelial tumors and cancer cell lines reveals commonalities and tissue-specific features of the CpG island methylator phenotype.

    Sánchez-Vega, Francisco; Gotea, Valer; Margolin, Gennady; Elnitski, Laura

    2015-01-01

    The term CpG island methylator phenotype (CIMP) has been used to describe widespread DNA hypermethylation at CpG-rich genomic regions affecting clinically distinct subsets of cancer patients. Even though there have been numerous studies of CIMP in individual cancer types, a uniform analysis across tissues is still lacking. We analyze genome-wide patterns of CpG island hypermethylation in 5,253 solid epithelial tumors from 15 cancer types from TCGA and 23 cancer cell lines from ENCODE. We identify differentially methylated loci that define CIMP+ and CIMP- samples, and we use unsupervised clustering to provide a robust molecular stratification of tumor methylomes for 12 cancer types and all cancer cell lines. With a minimal set of 89 discriminative loci, we demonstrate accurate pan-cancer separation of the 12 CIMP+/- subpopulations, based on their average levels of methylation. Tumor samples in different CIMP subclasses show distinctive correlations with gene expression profiles and recurrence of somatic mutations, copy number variations, and epigenetic silencing. Enrichment analyses indicate shared canonical pathways and upstream regulators for CIMP-targeted regions across cancer types. Furthermore, genomic alterations showing consistent associations with CIMP+/- status include genes involved in DNA repair, chromatin remodeling genes, and several histone methyltransferases. Associations of CIMP status with specific clinical features, including overall survival in several cancer types, highlight the importance of the CIMP+/- designation for individual tumor evaluation and personalized medicine. We present a comprehensive computational study of CIMP that reveals pan-cancer commonalities and tissue-specific differences underlying concurrent hypermethylation of CpG islands across tumors. Our stratification of solid tumors and cancer cell lines based on CIMP status is data-driven and agnostic to tumor type by design, which protects against known biases that have hindered

  7. TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and DEMs, Part 1: Line Segment Detection and Extraction

    Rahnama, Mehdi; Gloaguen, Richard

    2014-01-01

    Geological structures, such as faults and fractures, appear as image discontinuities or lineaments in remote sensing data. Geologic lineament mapping is a very important issue in geo-engineering, especially for construction site selection, seismic, and risk assessment, mineral exploration and hydrogeological research. Classical methods of lineaments extraction are based on semi-automated (or visual) interpretation of optical data and digital elevation models. We developed a freely available M...

  8. [Study on the Effects and Compensation Effect of Recording Parameters Error on Imaging Performance of Holographic Grating in On-Line Spectral Diagnose].

    Jiang, Yan-xiu; Bayanheshig; Yang, Shuo; Zhao, Xu-long; Wu, Na; Li, Wen-hao

    2016-03-01

    To making the high resolution grating, a numerical calculation was used to analyze the effect of recording parameters on groove density, focal curve and imaging performance of the grating and their compensation. Based on Fermat' s principle, light path function and aberration, the effect on imaging performance of the grating was analyzed. In the case of fixed using parameters, the error of the recording angle has a greater influence on imaging performance, therefore the gain of the weight of recording angle can improve the accuracy of the recording angle values in the optimization; recording distance has little influence on imaging performance; the relative errors of recording parameters cause the change of imaging performance of the grating; the results indicate that recording parameter errors can be compensated by adjusting its corresponding parameter. The study can give theoretical guidance to the fabrication for high resolution varied-line-space plane holographic grating in on-line spectral diagnostic and reduce the alignment difficulty by analyze the main error effect the imaging performance and propose the compensation method.

  9. Various ocular MR imaging in a mouse implanted with a new cell line of retinoblastoma and the correlation with the pathology: preliminary study

    Kim, Dong Hun; Kim, Il Joong; Yang, Jae Han; Byun, Joo Nam; Lee, Bong Jae; Kim, Jeong Hun; Yu, Young Suk

    2007-01-01

    We wanted to show various MR and correlated pathologic images of retinoblastoma in nude mouse with a new human retinoblastoma cell line (SNUOT-Rb1), which was inoculated into the intravitreous cavity. The established cell line was inoculated into the intravitreous cavity of 36 eyeballs of 18 mice and the transplanted retinoblastoma was examined for 3 months. The T1-weighted (T1WI), T2-weighted (T2WI), and contrast enhanced (Gd-DTPA) T1-weighted images were obtained with using a small loop coil. After scanning, the mice's eyeballs were extracted and the hematoxylin and eosin stained specimens were examined with a microscope. We compared the MR imagings with pathologic findings and evaluated the character of the tumors. The innoculated cells in the eyeballs of the mice grew into retinoblastoma (23/36, 64%). The eyeballs with retinoblastoma protruded externally and showed focal hemorrhage. Most tumors showed iso-signal intensity on TIWI (13/23, 57%), high signal intensity on T2WI (17/23, 74%), and good enhancement (21/23, 91%) with contrast. Almost all of the tumors (n = 21) were located in the retina and three extraretinal tumors were confirmed by pathology. Involvement of the optic nerve was suspected on MRI and this was confirmed by pathology in 6 cases and 5 cases, respectively. We could demonstrate various MR imagings of transplanted retinoblastoma by using the new tumor cell line in vivo

  10. Various ocular MR imaging in a mouse implanted with a new cell line of retinoblastoma and the correlation with the pathology: preliminary study

    Kim, Dong Hun; Kim, Il Joong; Yang, Jae Han; Byun, Joo Nam; Lee, Bong Jae [Chosun University, College of Medicine, Gwangju (Korea, Republic of); Kim, Jeong Hun; Yu, Young Suk [Seoul National University, College of Medicine, Seoul (Korea, Republic of)

    2007-05-15

    We wanted to show various MR and correlated pathologic images of retinoblastoma in nude mouse with a new human retinoblastoma cell line (SNUOT-Rb1), which was inoculated into the intravitreous cavity. The established cell line was inoculated into the intravitreous cavity of 36 eyeballs of 18 mice and the transplanted retinoblastoma was examined for 3 months. The T1-weighted (T1WI), T2-weighted (T2WI), and contrast enhanced (Gd-DTPA) T1-weighted images were obtained with using a small loop coil. After scanning, the mice's eyeballs were extracted and the hematoxylin and eosin stained specimens were examined with a microscope. We compared the MR imagings with pathologic findings and evaluated the character of the tumors. The innoculated cells in the eyeballs of the mice grew into retinoblastoma (23/36, 64%). The eyeballs with retinoblastoma protruded externally and showed focal hemorrhage. Most tumors showed iso-signal intensity on TIWI (13/23, 57%), high signal intensity on T2WI (17/23, 74%), and good enhancement (21/23, 91%) with contrast. Almost all of the tumors (n = 21) were located in the retina and three extraretinal tumors were confirmed by pathology. Involvement of the optic nerve was suspected on MRI and this was confirmed by pathology in 6 cases and 5 cases, respectively. We could demonstrate various MR imagings of transplanted retinoblastoma by using the new tumor cell line in vivo.

  11. Tissue- and Cell-Specific Cytokinin Activity in Populus × canescens Monitored by ARR5::GUS Reporter Lines in Summer and Winter.

    Paul, Shanty; Wildhagen, Henning; Janz, Dennis; Teichmann, Thomas; Hänsch, Robert; Polle, Andrea

    2016-01-01

    Cytokinins play an important role in vascular development. But knowledge on the cellular localization of this growth hormone in the stem and other organs of woody plants is lacking. The main focus of this study was to investigate the occurrence and cellular localization of active cytokinins in leaves, roots, and along the stem of Populus × canescens and to find out how the pattern is changed between summer and winter. An ARR5::GUS reporter construct was used to monitor distribution of active cytokinins in different tissues of transgenic poplar lines. Three transgenic lines tested under outdoor conditions showed no influence of ARR5::GUS reporter construct on the growth performance compared with the wild-type, but one line lost the reporter activity. ARR5::GUS activity indicated changes in the tissue- and cell type-specific pattern of cytokinin activity during dormancy compared with the growth phase. ARR5::GUS activity, which was present in the root tips in the growing season, disappeared in winter. In the stem apex ground tissue, ARR5::GUS activity was higher in winter than in summer. Immature leaves from tissue-culture grown plants showed inducible ARR5::GUS activity. Leaf primordia in summer showed ARR5::GUS activity, but not the expanded leaves of outdoor plants or leaf primordia in winter. In stem cross sections, the most prominent ARR5::GUS activity was detected in the cortex region and in the rays of bark in summer and in winter. In the cambial zone the ARR5::GUS activity was more pronounced in the dormant than in growth phase. The pith and the ray cells adjacent to the vessels also displayed ARR5::GUS activity. In silico analyses of the tissue-specific expression patterns of the whole PtRR type-A family of poplar showed that PtRR10, the closest ortholog to the Arabidopsis ARR5 gene, was usually the most highly expressed gene in all tissues. In conclusion, gene expression and tissue-localization indicate high activity of cytokinins not only in summer, but

  12. Specific methodology for capacitance imaging by atomic force microscopy: A breakthrough towards an elimination of parasitic effects

    Estevez, Ivan [Laboratoire de Génie Électrique de Paris (LGEP), UMR 8507 CNRS-Supélec, Paris-Sud and UPMC Paris 06 Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex (France); Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis (France); Chrétien, Pascal; Schneegans, Olivier; Houzé, Frédéric, E-mail: houze@lgep.supelec.fr [Laboratoire de Génie Électrique de Paris (LGEP), UMR 8507 CNRS-Supélec, Paris-Sud and UPMC Paris 06 Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex (France)

    2014-02-24

    On the basis of a home-made nanoscale impedance measurement device associated with a commercial atomic force microscope, a specific operating process is proposed in order to improve absolute (in sense of “nonrelative”) capacitance imaging by drastically reducing the parasitic effects due to stray capacitance, surface topography, and sample tilt. The method, combining a two-pass image acquisition with the exploitation of approach curves, has been validated on sets of calibration samples consisting in square parallel plate capacitors for which theoretical capacitance values were numerically calculated.

  13. Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging

    Sheikhbahaei, Sara; Solnes, Lilja B.; Javadi, Mehrbod S.; Pomper, Martin G.; Rowe, Steven P. [Johns Hopkins University School of Medicine, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Afshar-Oromieh, Ali; Haberkorn, Uwe [Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg (Germany); Eiber, Matthias [David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States); Technical University of Munich, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Ross, Ashley E.; Pienta, Kenneth J.; Allaf, Mohamad E.; Gorin, Michael A. [Johns Hopkins University School of Medicine, The James Buchanan Brady Urological Institute and Department of Urology, Baltimore, MD (United States)

    2017-11-15

    The rapidly expanding clinical adaptation of prostate-specific membrane antigen (PSMA)-targeted PET imaging in the evaluation of patients with prostate cancer has placed an increasing onus on understanding both the potential pearls of interpretation as well as limitations of this new technique. As with any new molecular imaging modality, accurate characterization of abnormalities on PSMA-targeted PET imaging can be accomplished only if one is aware of the normal distribution pattern, physiological variants of radiotracer uptake, and potential sources of false-positive and false-negative imaging findings. In recent years, a growing number of reports have come to light describing incidental non-prostatic benign or malignant pathologies with high uptake on PSMA-targeted PET imaging. In this review, we have summarized the published literature regarding the potential pearls and technical and interpretive pitfalls of this imaging modality. Knowledge of these limitations can increase the confidence of interpreting physicians and thus improve patient care. As PSMA-targeted PET is expected to be evaluated in larger prospective trials, the dissemination of potential diagnostic pitfalls and the biologic underpinning of those findings will be of increased importance. (orig.)

  14. Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging

    Sheikhbahaei, Sara; Solnes, Lilja B.; Javadi, Mehrbod S.; Pomper, Martin G.; Rowe, Steven P.; Afshar-Oromieh, Ali; Haberkorn, Uwe; Eiber, Matthias; Ross, Ashley E.; Pienta, Kenneth J.; Allaf, Mohamad E.; Gorin, Michael A.

    2017-01-01

    The rapidly expanding clinical adaptation of prostate-specific membrane antigen (PSMA)-targeted PET imaging in the evaluation of patients with prostate cancer has placed an increasing onus on understanding both the potential pearls of interpretation as well as limitations of this new technique. As with any new molecular imaging modality, accurate characterization of abnormalities on PSMA-targeted PET imaging can be accomplished only if one is aware of the normal distribution pattern, physiological variants of radiotracer uptake, and potential sources of false-positive and false-negative imaging findings. In recent years, a growing number of reports have come to light describing incidental non-prostatic benign or malignant pathologies with high uptake on PSMA-targeted PET imaging. In this review, we have summarized the published literature regarding the potential pearls and technical and interpretive pitfalls of this imaging modality. Knowledge of these limitations can increase the confidence of interpreting physicians and thus improve patient care. As PSMA-targeted PET is expected to be evaluated in larger prospective trials, the dissemination of potential diagnostic pitfalls and the biologic underpinning of those findings will be of increased importance. (orig.)

  15. Specific Radiological Imaging Findings in Patients With Hereditary Pancreatitis During a Long Follow-up of Disease.

    van Esch, Aura A J; Drenth, Joost P H; Hermans, John J

    2017-03-01

    Hereditary pancreatitis (HP) is characterized by recurrent episodes of inflammation of the pancreas. Radiological imaging is used to diagnose HP and to monitor complications. The aim of this study was to describe specific imaging findings in HP. We retrospectively collected data of HP patients with serial imaging and reviewed all radiological imaging studies (transabdominal ultrasonography, computed tomography, and magnetic resonance imaging). We included 15 HP patients, with a mean age of 32.5 years (range, 9-61 years) and mean disease duration of 24.1 years (range, 6-42 years). In total, 152 imaging studies were reviewed. Seventy-three percent of patients had a dilated main pancreatic duct (MPD) (width 3.5-18 mm). The MPD varied in size during disease course, with temporary reduction in diameter after drainage procedures. A severe dilated MPD (>10 mm) often coincided with presence of intraductal calcifications (size, 1-12 mm). In 73% of patients, pancreatic parenchyma atrophy occurred, which did not correlate with presence of exocrine or endocrine insufficiency. In HP, the MPD diameter increases with time, mostly without dilated side branches, and is often accompanied by large intraductal calcifications. The size of the MPD is independent of disease state. Atrophy of pancreatic parenchyma is not correlated with exocrine or endocrine insufficiency.

  16. Analysis of the Sensitivity and Specificity of Noninvasive Imaging Tests for the Diagnosis of Renal Artery Stenosis

    Borelli, Flavio Antonio de Oliveira; Pinto, Ibraim M. F.; Amodeo, Celso; Smanio, Paola E. P.; Kambara, Antonio M.; Petisco, Ana Claudia G.; Moreira, Samuel M.; Paiva, Ricardo Calil; Lopes, Hugo Belotti; Sousa, Amanda G. M. R.

    2013-01-01

    Aging and atherosclerosis are related to renovascular hypertension in elderly individuals. Regardless of comorbidities, renal artery stenosis is itself an important cause of cardiovascular morbidity and mortality. To define the sensitivity, specificity, positive predictive value, and negative predictive value of noninvasive imaging tests used in the diagnosis of renal artery stenosis. In a group of 61 patients recruited, 122 arteries were analized, thus permitting the definition of sensitivity, specificity, and the relative contribution of each imaging study performed (Doppler, scintigraphy and computed tomographic angiography in comparison to renal arteriography). The mean age was 65.43 years (standard deviation: 8.7). Of the variables related to the study population that were compared to arteriography, two correlated with renal artery stenosis, renal dysfunction and triglycerides. The median glomerular filtration rate was 52.8 mL/min/m 2 . Doppler showed sensitivity of 82.90%, specificity of 70%, a positive predictive value of 85% and negative predictive value of 66.70%. For tomography, sensitivity was 66.70%, specificity 80%, positive predictive value 87.50% and negative predictive value 55.20%. With these findings, we could identify the imaging tests that best detected stenosis. Tomography and Doppler showed good quality and efficacy in the diagnosis of renal artery stenosis, with Doppler having the advantage of not requiring the use of contrast medium for the assessment of a disease that is common in diabetics and is associated with renal dysfunction and severe left ventricular dysfunction

  17. Analysis of the Sensitivity and Specificity of Noninvasive Imaging Tests for the Diagnosis of Renal Artery Stenosis

    Borelli, Flavio Antonio de Oliveira, E-mail: fborelli@cardiol.br; Pinto, Ibraim M. F.; Amodeo, Celso; Smanio, Paola E. P.; Kambara, Antonio M.; Petisco, Ana Claudia G.; Moreira, Samuel M.; Paiva, Ricardo Calil; Lopes, Hugo Belotti; Sousa, Amanda G. M. R. [Instituto Dante Pazzanese de Cardiologia, São Paulo, SP (Brazil)

    2013-11-15

    Aging and atherosclerosis are related to renovascular hypertension in elderly individuals. Regardless of comorbidities, renal artery stenosis is itself an important cause of cardiovascular morbidity and mortality. To define the sensitivity, specificity, positive predictive value, and negative predictive value of noninvasive imaging tests used in the diagnosis of renal artery stenosis. In a group of 61 patients recruited, 122 arteries were analized, thus permitting the definition of sensitivity, specificity, and the relative contribution of each imaging study performed (Doppler, scintigraphy and computed tomographic angiography in comparison to renal arteriography). The mean age was 65.43 years (standard deviation: 8.7). Of the variables related to the study population that were compared to arteriography, two correlated with renal artery stenosis, renal dysfunction and triglycerides. The median glomerular filtration rate was 52.8 mL/min/m{sup 2}. Doppler showed sensitivity of 82.90%, specificity of 70%, a positive predictive value of 85% and negative predictive value of 66.70%. For tomography, sensitivity was 66.70%, specificity 80%, positive predictive value 87.50% and negative predictive value 55.20%. With these findings, we could identify the imaging tests that best detected stenosis. Tomography and Doppler showed good quality and efficacy in the diagnosis of renal artery stenosis, with Doppler having the advantage of not requiring the use of contrast medium for the assessment of a disease that is common in diabetics and is associated with renal dysfunction and severe left ventricular dysfunction.

  18. Three-dimensional imaging of the aortic vessel wall using an elastin-specific magnetic resonance contrast agent.

    Makowski, Marcus R; Preissel, Anne; von Bary, Christian; Warley, Alice; Schachoff, Sylvia; Keithan, Alexandra; Cesati, Richard R; Onthank, David C; Schwaiger, Markus; Robinson, Simon P; Botnar, René M

    2012-07-01

    The aim of this study was to demonstrate the feasibility of high-resolution 3-dimensional aortic vessel wall imaging using a novel elastin-specific magnetic resonance contrast agent (ESMA) in a large animal model. The thoracic aortic vessel wall of 6 Landrace pigs was imaged using a novel ESMA and a nonspecific control agent. On day 1, imaging was performed before and after the administration of a nonspecific control agent, gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA; Bayer Schering AG, Berlin, Germany). On day 3, identical scans were repeated before and after the administration of a novel ESMA (Lantheus Medical Imaging, North Billerica, Massachusetts). Three-dimensional inversion recovery gradient echo delayed-enhancement imaging and magnetic resonance (MR) angiography of the thoracic aortic vessel wall were performed on a 1.5-T MR scanner (Achieva; Philips Medical Systems, the Netherlands). The signal-to-noise ratio and the contrast-to-noise ratio of arterial wall enhancement, including the time course of enhancement, were assessed for ESMA and Gd-DTPA. After the completion of imaging sessions, histology, electron microscopy, and inductively coupled plasma mass spectroscopy were performed to localize and quantify the gadolinium bound to the arterial vessel wall. Administration of ESMA resulted in a strong enhancement of the aortic vessel wall on delayed-enhancement imaging, whereas no significant enhancement could be measured with Gd-DTPA. Ninety to 100 minutes after the administration of ESMA, significantly higher signal-to-noise ratio and contrast-to-noise ratio could be measured compared with the administration of Gd-DTPA (45.7 ± 9.6 vs 13.2 ± 3.5, P wall imaging using a novel ESMA in a large animal model under conditions resembling a clinical setting. Such an approach could be useful for the fast 3-dimensional assessment of the arterial vessel wall in the context of atherosclerosis, aortic aneurysms, and hypertension.

  19. Contrast-enhanced Spectral Mammography: Modality-Specific Artifacts and Other Factors Which May Interfere with Image Quality.

    Bhimani, Chandni; Li, Luna; Liao, Lydia; Roth, Robyn G; Tinney, Elizabeth; Germaine, Pauline

    2017-01-01

    Contrast-enhanced spectral mammography (CESM) uses full field digital mammography with the added benefit of intravenous contrast administration to significantly reduce false-positive and false-negative results and improve specificity while maintaining high sensitivity. For CESM to fulfill its purpose, one should be aware of possible artifacts and other factors which may interfere with image quality, and attention should be taken to minimize these factors. This pictorial demonstration will depict types of artifacts detected and other factors that interfere with image acquisition in our practice since CESM implementation. Many of the artifacts and other factors we have encountered while using CESM have simple solutions to resolve them. The illustrated artifacts and other factors interfering with image quality will serve as a useful reference to anyone using CESM. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  20. Icotinib, a potent and specific EGFR tyrosine kinase inhibitor, inhibits growth of squamous cell carcinoma cell line A431 through negatively regulating AKT signaling.

    Gao, Zhenzhen; Chen, Wei; Zhang, Xiaohua; Cai, Peifen; Fang, Xianying; Xu, Qiang; Sun, Yang; Gu, Yanhong

    2013-06-01

    Icotinib is a potent and specific epidermal growth factor receptor tyrosine kinase inhibitor. In this study, we reported that icotinib had the antitumor activity on human squamous cell carcinoma cell line A431 in vitro. Meanwhile, adhesion to fibronectin and expression of integrin α3 and β1 were significantly reduced in a dose-dependent manner after the treatment of icotinib. Moreover, icotinib induced cell cycle arrested and affected expression of various cell cycle related proteins in squamous cancer cell line A431, whereas it did not cause apoptosis. Furthermore, icotinib remarkably down-regulated phosphorylation of protein kinase B (AKT) though blocking the interaction between 3-phosphoinositide-dependent protein kinase-1 (PDK1) and AKT in A431 cells. Taken together, it is shown that the small molecular compound, icotinib, has an anti-squamous cell carcinoma activity in vitro and its antitumor mechanism is associated with the blockage of the interaction between PDK1 and AKT. These results provide a novel strategy for anti-squamous cell carcinoma therapy. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Mitochondrial Alterations by PARKIN in Dopaminergic Neurons Using PARK2 Patient-Specific and PARK2 Knockout Isogenic iPSC Lines

    Atossa Shaltouki

    2015-05-01

    Full Text Available In this study, we used patient-specific and isogenic PARK2-induced pluripotent stem cells (iPSCs to show that mutations in PARK2 alter neuronal proliferation. The percentage of TH+ neurons was decreased in Parkinson’s disease (PD patient-derived neurons carrying various mutations in PARK2 compared with an age-matched control subject. This reduction was accompanied by alterations in mitochondrial:cell volume fraction (mitochondrial volume fraction. The same phenotype was confirmed in isogenic PARK2 null lines. The mitochondrial phenotype was also seen in non-midbrain neurons differentiated from the PARK2 null line, as was the functional phenotype of reduced proliferation in culture. Whole genome expression profiling at various stages of differentiation confirmed the mitochondrial phenotype and identified pathways altered by PARK2 dysfunction that include PD-related genes. Our results are consistent with current model of PARK2 function where damaged mitochondria are targeted for degradation via a PARK2/PINK1-mediated mechanism.

  2. Inheritance of resistance to watermelon mosaic virus in the cucumber line TMG-1: tissue-specific expression and relationship to zucchini yellow mosaic virus resistance.

    Wai, T; Grumet, R

    1995-09-01

    The inbred cucumber (Cucumis sativus L.) line TMG-1 is resistant to three potyviruses:zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and the watermelon strain of papaya ringspot virus (PRSV-W). The genetics of resistance to WMV and the relationship of WMV resistance to ZYMV resistance were examined. TMG-1 was crossed with WI-2757, a susceptible inbred line. F1, F2 and backcross progeny populations were screened for resistance to WMV and/or ZYMV. Two independently assorting factors conferred resistance to WMV. One resistance was conferred by a single recessive gene from TMG-1 (wmv-2). The second resistance was conferred by an epistatic interaction between a second recessive gene from TMG-1 (wmv-3) and either a dominant gene from WI-2757 (Wmv-4) or a third recessive gene from TMG-1 (wmv-4) located 20-30 cM from wmv-3. The two resistances exhibited tissue-specific expression. Resistance conferred by wmv-2 was expressed in the cotyledons and throughout the plant. Resistance conferred by wmv-3 + Wmv-4 (or wmv-4) was expressed only in true leaves. The gene conferring resistance to ZYMV appeared to be the same as, or tightly linked to one of the WMV resistance genes, wmv-3.

  3. Fusion of domain-specific and trainable features for gender recognition from face images

    Azzopardi, George; Greco, Antonio; Saggese, Alessia; Vento, Mario

    2018-01-01

    The popularity and the appeal of systems which are able to automatically determine the gender from face images is growing rapidly. Such a great interest arises from the wide variety of applications, especially in the fields of retail and video surveillance. In recent years there have been several

  4. Hypoxia positron emission tomography imaging: combining information on perfusion and tracer retention to improve hypoxia specificity

    Busk, Morten; Munk, Ole L; Jakobsen, Steen S

    2017-01-01

    BACKGROUND: Static positron emission tomography (PET) allows mapping of tumor hypoxia, but low resolution and slow tracer retention/clearance results in poor image contrast and the risk of missing areas where hypoxic cells and necrosis are intermixed. Fully dynamic PET may improve accuracy but scan...

  5. Minimizing Patient-Specific Tracer Dose in Myocardial Perfusion Imaging Using CZT SPECT

    van Dijk, Joris David; Jager, Pieter L.; Ottervanger, Jan Paul; Slump, Cornelis H.; de Boer, Jaep; Oostdijk, Adrianus H.J.; van Dalen, Jorn A.

    Myocardial perfusion imaging (MPI) with SPECT is widely adopted in clinical practice but is associated with a relatively high radiation dose. The aim of this study was to determine the minimum product of tracer dose and scan time that will maintain diagnostic value for cadmium zinc telluride (CZT)

  6. Current techniques in postmortem imaging with specific attention to paediatric applications

    Sieswerda-Hoogendoorn, Tessa; Rijn, Rick R. van

    2010-01-01

    In this review we discuss the decline of and current controversies regarding conventional autopsies and the use of postmortem radiology as an adjunct to and a possible alternative for the conventional autopsy. We will address the radiological techniques and applications for postmortem imaging in children. (orig.)

  7. Current techniques in postmortem imaging with specific attention to paediatric applications

    Sieswerda-Hoogendoorn, Tessa; Rijn, Rick R. van [Academic Medical Centre Amsterdam, Department of Radiology, Amsterdam Zuid-Oost (Netherlands); Netherlands Forensic Institute, Department of Pathology and Toxicology, The Hague (Netherlands)

    2010-02-15

    In this review we discuss the decline of and current controversies regarding conventional autopsies and the use of postmortem radiology as an adjunct to and a possible alternative for the conventional autopsy. We will address the radiological techniques and applications for postmortem imaging in children. (orig.)

  8. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    Mukherjee, S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Patel, R J [Bhabha Atomic Research Centre, Mumbai (India). Refuelling Technology Division

    1994-12-31

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs.

  9. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    Mukherjee, S.; Ghosh, J.K.; Patel, R.J.

    1994-01-01

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs

  10. Preclinical Analysis of JAA-F11, a Specific Anti–Thomsen-Friedenreich Antibody via Immunohistochemistry and In Vivo Imaging

    Loukia G. Karacosta

    2018-04-01

    Full Text Available The tumor specificity of JAA-F11, a novel monoclonal antibody specific for the Thomsen-Friedenreich cancer antigen (TF-Ag-alpha linked, has been comprehensively studied by in vitro immunohistochemical (IHC staining of human tumor and normal tissue microarrays and in vivo biodistribution and imaging by micro-positron emission tomography imaging in breast and lung tumor models in mice. The IHC analysis detailed herein is the comprehensive biological analysis of the tumor specificity of JAA-F11 antibody performed as JAA-F11 is progressing towards preclinical safety testing and clinical trials. Wide tumor reactivity of JAA-F11, relative to the matched mouse IgG3 (control, was observed in 85% of 1269 cases of breast, lung, prostate, colon, bladder, and ovarian cancer. Staining on tissues from breast cancer cases was similar regardless of hormonal or Her2 status, and this is particularly important in finding a target on the currently untargetable triple-negative breast cancer subtype. Humanization of JAA-F11 was recently carried out as explained in a companion paper “Humanization of JAA-F11, a Highly Specific Anti–Thomsen-Friedenreich Pancarcinoma Antibody and In Vitro Efficacy Analysis” (Neoplasia 19: 716-733, 2017, and it was confirmed that humanization did not affect chemical specificity. IHC studies with humanized JAA-F11 showed similar binding to human breast tumor tissues. In vivo imaging and biodistribution studies in a mouse syngeneic breast cancer model and in a mouse-human xenograft lung cancer model with humanized 124I- JAA-F11 construct confirmed in vitro tumor reactivity and specificity. In conclusion, the tumor reactivity of JAA-F11 supports the continued development of JAA-F11 as a targeted cancer therapeutic for multiple cancers, including those with unmet need.

  11. Prostate-specific membrane antigen-based imaging in prostate cancer: impact on clinical decision making process.

    Demirkol, Mehmet Onur; Acar, Ömer; Uçar, Burcu; Ramazanoğlu, Sultan Rana; Sağlıcan, Yeşim; Esen, Tarık

    2015-05-01

    There is an ongoing need for an accurate imaging modality which can be used for staging purposes, metastatic evaluation, predicting biologic aggresiveness and investigating recurrent disease in prostate cancer. Prostate specific membrane antigen, given its favorable molecular characteristics, holds a promise as an ideal target for prostate cancer-specific nuclear imaging. In this study, we evaluated our initial results of PSMA based PET/CT imaging in prostate cancer. A total of 22 patients with a median age and serum PSA level of 68 years and 4.15 ng/ml, respectively underwent Ga-68 PSMA PET/CT in our hospital between Februrary and August 2014. Their charts were retrospectively reviewed in order to document the clinical characteristics, the indications for and the results of PSMA based imaging and the impact of Ga-68 PSMA PET/CT findings on disease management. The most common indications were rising PSA after local ± adjuvant treatment followed by staging and metastatic evaluation before definitive or salvage treatment. All except 2 patients had prostatic ± extraprostatic PSMA positive lesions. For those who had a positive result; treatment strategies were tailored accordingly. Above the PSA level of 2 ng/ml, none of the PSMA based nuclear imaging studies revealed negative results. PSMA based nuclear imaging has significantly impacted our way of handling patients with prostate cancer. Its preliminary performance in different clinical scenarios and ability to detect lesions even in low PSA values seems fairly promising and deserves to be supplemented with further clinical studies. © 2015 Wiley Periodicals, Inc.

  12. Study of verification and validation of standard welding procedure specifications guidelines for API 5L X-70 grade line pipe welding

    Qazi H. A. A.

    2017-12-01

    Full Text Available Verification and validation of welding procedure specifications for X-70 grade line pipe welding was performed as per clause 8.2, Annexure B and D of API 5L, 45th Edition to check weld integrity in its future application conditions. Hot rolled coils were imported from China, de-coiling, strip edge milling, three roller bending to from pipe, inside and outside submerged arc welding of pipe, online ultrasonic testing of weld, HAZ and pipe body, cutting at fixed random length of pipe, visual inspection of pipe, Fluoroscopic inspection of pipe, welding procedure qualification test pieces marking at weld portion of the pipe, tensile testing, guided bend testing, CVN Impact testing were performed. Detailed study was conducted to explore possible explanations and variation in mechanical properties, WPS is examined and qualified as per API 5L 45th Edition.

  13. Application of a Reverse Line Blot hybridisation assay for the species-specific identification of cyathostomins (Nematoda, Strongylida) from benzimidazole-treated horses in the Slovak Republic.

    Cernanská, Dana; Paoletti, Barbara; Králová-Hromadová, Ivica; Iorio, Raffaella; Cudeková, Patrícia; Milillo, Piermarino; Traversa, Donato

    2009-03-09

    Five horse farms located in eastern Slovakia were investigated for the presence of benzimidazole-resistant strongyles by faecal egg count reduction test and egg hatch assay. Coprocultures were prepared for each farm from faecal samples taken pre- and post-treatment and harvested larvae were molecularly examined with a Reverse Line Blot assay. Faecal egg count reduction values ranged from 0 to 52.5% and all farms were positive for benzimidazole-resistant cyathostomins. Seven benzimidazole-resistant cyathostomin species were molecularly identified on farms before and also after treatment. These data demonstrate that resistance to benzimidazoles is well established in cyathostomin populations from horse farms in the Slovak Republic and that the molecular assay was able to determine the species-specific distribution of resistant cyathostomins under field conditions.