WorldWideScience

Sample records for lines aligned parallel

  1. Parallel Lines

    Directory of Open Access Journals (Sweden)

    James G. Worner

    2017-05-01

    Full Text Available James Worner is an Australian-based writer and scholar currently pursuing a PhD at the University of Technology Sydney. His research seeks to expose masculinities lost in the shadow of Australia’s Anzac hegemony while exploring new opportunities for contemporary historiography. He is the recipient of the Doctoral Scholarship in Historical Consciousness at the university’s Australian Centre of Public History and will be hosted by the University of Bologna during 2017 on a doctoral research writing scholarship.   ‘Parallel Lines’ is one of a collection of stories, The Shapes of Us, exploring liminal spaces of modern life: class, gender, sexuality, race, religion and education. It looks at lives, like lines, that do not meet but which travel in proximity, simultaneously attracted and repelled. James’ short stories have been published in various journals and anthologies.

  2. Parallel plate transmission line transformer

    NARCIS (Netherlands)

    Voeten, S.J.; Brussaard, G.J.H.; Pemen, A.J.M.

    2011-01-01

    A Transmission Line Transformer (TLT) can be used to transform high-voltage nanosecond pulses. These transformers rely on the fact that the length of the pulse is shorter than the transmission lines used. This allows connecting the transmission lines in parallel at the input and in series at the

  3. Implementation of a Parallel Protein Structure Alignment Service on Cloud

    Directory of Open Access Journals (Sweden)

    Che-Lun Hung

    2013-01-01

    Full Text Available Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform.

  4. Accelerator and transport line survey and alignment

    International Nuclear Information System (INIS)

    Ruland, R.E.

    1991-10-01

    This paper summarizes the survey and alignment processes of accelerators and transport lines and discusses the propagation of errors associated with these processes. The major geodetic principles governing the survey and alignment measurement space are introduced and their relationship to a lattice coordinate system shown. The paper continues with a broad overview about the activities involved in the step sequence from initial absolute alignment to final smoothing. Emphasis is given to the relative alignment of components, in particular to the importance of incorporating methods to remove residual systematic effects in surveying and alignment operations. Various approaches to smoothing used at major laboratories are discussed. 47 refs., 19 figs., 1 tab

  5. SWAMP+: multiple subsequence alignment using associative massive parallelism

    Energy Technology Data Exchange (ETDEWEB)

    Steinfadt, Shannon Irene [Los Alamos National Laboratory; Baker, Johnnie W [KENT STATE UNIV.

    2010-10-18

    A new parallel algorithm SWAMP+ incorporates the Smith-Waterman sequence alignment on an associative parallel model known as ASC. It is a highly sensitive parallel approach that expands traditional pairwise sequence alignment. This is the first parallel algorithm to provide multiple non-overlapping, non-intersecting subsequence alignments with the accuracy of Smith-Waterman. The efficient algorithm provides multiple alignments similar to BLAST while creating a better workflow for the end users. The parallel portions of the code run in O(m+n) time using m processors. When m = n, the algorithmic analysis becomes O(n) with a coefficient of two, yielding a linear speedup. Implementation of the algorithm on the SIMD ClearSpeed CSX620 confirms this theoretical linear speedup with real timings.

  6. A Set of Annotation Interfaces for Alignment of Parallel Corpora

    Directory of Open Access Journals (Sweden)

    Singh Anil Kumar

    2014-09-01

    Full Text Available Annotation interfaces for parallel corpora which fit in well with other tools can be very useful. We describe a set of annotation interfaces which fulfill this criterion. This set includes a sentence alignment interface, two different word or word group alignment interfaces and an initial version of a parallel syntactic annotation alignment interface. These tools can be used for manual alignment, or they can be used to correct automatic alignments. Manual alignment can be performed in combination with certain kinds of linguistic annotation. Most of these interfaces use a representation called the Shakti Standard Format that has been found to be very robust and has been used for large and successful projects. It ties together the different interfaces, so that the data created by them is portable across all tools which support this representation. The existence of a query language for data stored in this representation makes it possible to build tools that allow easy search and modification of annotated parallel data.

  7. Long Read Alignment with Parallel MapReduce Cloud Platform

    Science.gov (United States)

    Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki

    2015-01-01

    Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms. PMID:26839887

  8. Long Read Alignment with Parallel MapReduce Cloud Platform

    Directory of Open Access Journals (Sweden)

    Ahmed Abdulhakim Al-Absi

    2015-01-01

    Full Text Available Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner’s Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms.

  9. Mobile and replicated alignment of arrays in data-parallel programs

    Science.gov (United States)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    When a data-parallel language like FORTRAN 90 is compiled for a distributed-memory machine, aggregate data objects (such as arrays) are distributed across the processor memories. The mapping determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. A common approach is to break the mapping into two stages: first, an alignment that maps all the objects to an abstract template, and then a distribution that maps the template to the processors. We solve two facets of the problem of finding alignments that reduce residual communication: we determine alignments that vary in loops, and objects that should have replicated alignments. We show that loop-dependent mobile alignment is sometimes necessary for optimum performance, and we provide algorithms with which a compiler can determine good mobile alignments for objects within do loops. We also identify situations in which replicated alignment is either required by the program itself (via spread operations) or can be used to improve performance. We propose an algorithm based on network flow that determines which objects to replicate so as to minimize the total amount of broadcast communication in replication. This work on mobile and replicated alignment extends our earlier work on determining static alignment.

  10. PLAST: parallel local alignment search tool for database comparison

    Directory of Open Access Journals (Sweden)

    Lavenier Dominique

    2009-10-01

    Full Text Available Abstract Background Sequence similarity searching is an important and challenging task in molecular biology and next-generation sequencing should further strengthen the need for faster algorithms to process such vast amounts of data. At the same time, the internal architecture of current microprocessors is tending towards more parallelism, leading to the use of chips with two, four and more cores integrated on the same die. The main purpose of this work was to design an effective algorithm to fit with the parallel capabilities of modern microprocessors. Results A parallel algorithm for comparing large genomic banks and targeting middle-range computers has been developed and implemented in PLAST software. The algorithm exploits two key parallel features of existing and future microprocessors: the SIMD programming model (SSE instruction set and the multithreading concept (multicore. Compared to multithreaded BLAST software, tests performed on an 8-processor server have shown speedup ranging from 3 to 6 with a similar level of accuracy. Conclusion A parallel algorithmic approach driven by the knowledge of the internal microprocessor architecture allows significant speedup to be obtained while preserving standard sensitivity for similarity search problems.

  11. No alignment of cattle along geomagnetic field lines found

    OpenAIRE

    Hert, J.; Jelinek, L.; Pekarek, L.; Pavlicek, A.

    2011-01-01

    This paper presents a study of the body orientation of domestic cattle on free pastures in several European states, based on Google satellite photographs. In sum, 232 herds with 3412 individuals were evaluated. Two independent groups participated in our study and came to the same conclusion that, in contradiction to the recent findings of other researchers, no alignment of the animals and of their herds along geomagnetic field lines could be found. Several possible reasons for this discrepanc...

  12. Micropore extrusion-induced alignment transition from perpendicular to parallel of cylindrical domains in block copolymers.

    Science.gov (United States)

    Qu, Ting; Zhao, Yongbin; Li, Zongbo; Wang, Pingping; Cao, Shubo; Xu, Yawei; Li, Yayuan; Chen, Aihua

    2016-02-14

    The orientation transition from perpendicular to parallel alignment of PEO cylindrical domains of PEO-b-PMA(Az) films has been demonstrated by extruding the block copolymer (BCP) solutions through a micropore of a plastic gastight syringe. The parallelized orientation of PEO domains induced by this micropore extrusion can be recovered to perpendicular alignment via ultrasonication of the extruded BCP solutions and subsequent annealing. A plausible mechanism is proposed in this study. The BCP films can be used as templates to prepare nanowire arrays with controlled layers, which has enormous potential application in the field of integrated circuits.

  13. DIALIGN P: Fast pair-wise and multiple sequence alignment using parallel processors

    Directory of Open Access Journals (Sweden)

    Kaufmann Michael

    2004-09-01

    Full Text Available Abstract Background Parallel computing is frequently used to speed up computationally expensive tasks in Bioinformatics. Results Herein, a parallel version of the multi-alignment program DIALIGN is introduced. We propose two ways of dividing the program into independent sub-routines that can be run on different processors: (a pair-wise sequence alignments that are used as a first step to multiple alignment account for most of the CPU time in DIALIGN. Since alignments of different sequence pairs are completely independent of each other, they can be distributed to multiple processors without any effect on the resulting output alignments. (b For alignments of large genomic sequences, we use a heuristics by splitting up sequences into sub-sequences based on a previously introduced anchored alignment procedure. For our test sequences, this combined approach reduces the program running time of DIALIGN by up to 97%. Conclusions By distributing sub-routines to multiple processors, the running time of DIALIGN can be crucially improved. With these improvements, it is possible to apply the program in large-scale genomics and proteomics projects that were previously beyond its scope.

  14. Parallel inhomogeneity and the Alfven resonance. 1: Open field lines

    Science.gov (United States)

    Hansen, P. J.; Harrold, B. G.

    1994-01-01

    In light of a recent demonstration of the general nonexistence of a singularity at the Alfven resonance in cold, ideal, linearized magnetohydrodynamics, we examine the effect of a small density gradient parallel to uniform, open ambient magnetic field lines. To lowest order, energy deposition is quantitatively unaffected but occurs continuously over a thickened layer. This effect is illustrated in a numerical analysis of a plasma sheet boundary layer model with perfectly absorbing boundary conditions. Consequences of the results are discussed, both for the open field line approximation and for the ensuing closed field line analysis.

  15. Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.

    Science.gov (United States)

    Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias

    2011-01-01

    The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.

  16. Structural hierarchy in flow-aligned hexagonally self-organized microphases with parallel polyelectrolytic structures

    NARCIS (Netherlands)

    Ruotsalainen, T; Torkkeli, M; Serimaa, R; Makela, T; Maki-Ontto, R; Ruokolainen, J; ten Brinke, G; Ikkala, O; Mäkelä, Tapio; Mäki-Ontto, Riikka

    2003-01-01

    We report a novel structural hierarchy where a flow-aligned hexagonal self-organized structure is combined with a polyelectrolytic self-organization on a smaller length scale and where the two structures are mutually parallel. Polystyrene-block-poly(4-vinylpyridine) (PS-block-P4VP) is selected with

  17. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.

    Science.gov (United States)

    Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo

    2016-07-19

    Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .

  18. Highly parallel line-based image coding for many cores.

    Science.gov (United States)

    Peng, Xiulian; Xu, Jizheng; Zhou, You; Wu, Feng

    2012-01-01

    Computers are developing along with a new trend from the dual-core and quad-core processors to ones with tens or even hundreds of cores. Multimedia, as one of the most important applications in computers, has an urgent need to design parallel coding algorithms for compression. Taking intraframe/image coding as a start point, this paper proposes a pure line-by-line coding scheme (LBLC) to meet the need. In LBLC, an input image is processed line by line sequentially, and each line is divided into small fixed-length segments. The compression of all segments from prediction to entropy coding is completely independent and concurrent at many cores. Results on a general-purpose computer show that our scheme can get a 13.9 times speedup with 15 cores at the encoder and a 10.3 times speedup at the decoder. Ideally, such near-linear speeding relation with the number of cores can be kept for more than 100 cores. In addition to the high parallelism, the proposed scheme can perform comparatively or even better than the H.264 high profile above middle bit rates. At near-lossless coding, it outperforms H.264 more than 10 dB. At lossless coding, up to 14% bit-rate reduction is observed compared with H.264 lossless coding at the high 4:4:4 profile.

  19. Robustness of average Stokes polarimetry characterization of digitally addressed parallel-aligned LCoS displays

    OpenAIRE

    Martínez Guardiola, Francisco Javier; Márquez Ruiz, Andrés; Gallego Rico, Sergi; Ortuño Sánchez, Manuel; Francés Monllor, Jorge; Beléndez Vázquez, Augusto; Pascual Villalobos, Inmaculada

    2014-01-01

    Parallel-aligned liquid crystal on silicon (PA-LCoS) displays have become the most attractive spatial light modulator device for a wide range of applications, due to their superior resolution and light efficiency, added to their phase-only capability. Recently we proposed a novel polarimetric method, based on Stokes polarimetry, enabling the characterization of their linear retardance and the magnitude of their associated phase fluctuations, if existent, as it happens in most of digital backp...

  20. BitPAl: a bit-parallel, general integer-scoring sequence alignment algorithm.

    Science.gov (United States)

    Loving, Joshua; Hernandez, Yozen; Benson, Gary

    2014-11-15

    Mapping of high-throughput sequencing data and other bulk sequence comparison applications have motivated a search for high-efficiency sequence alignment algorithms. The bit-parallel approach represents individual cells in an alignment scoring matrix as bits in computer words and emulates the calculation of scores by a series of logic operations composed of AND, OR, XOR, complement, shift and addition. Bit-parallelism has been successfully applied to the longest common subsequence (LCS) and edit-distance problems, producing fast algorithms in practice. We have developed BitPAl, a bit-parallel algorithm for general, integer-scoring global alignment. Integer-scoring schemes assign integer weights for match, mismatch and insertion/deletion. The BitPAl method uses structural properties in the relationship between adjacent scores in the scoring matrix to construct classes of efficient algorithms, each designed for a particular set of weights. In timed tests, we show that BitPAl runs 7-25 times faster than a standard iterative algorithm. Source code is freely available for download at http://lobstah.bu.edu/BitPAl/BitPAl.html. BitPAl is implemented in C and runs on all major operating systems. jloving@bu.edu or yhernand@bu.edu or gbenson@bu.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  1. Survey and alignment of high energy physics accelerators and transport lines

    International Nuclear Information System (INIS)

    Ruland, R.E.

    1992-11-01

    This talk summarizes the survey and alignment processes of accelerators and transport lines and discusses the propagation of errors associated with these processes. The major geodetic principles governing the survey and alignment measurement space are revisited and their relationship to a lattice coordinate system shown. The paper continues with a broad overview about the activities involved in the step by step sequence from initial absolute alignment to final smoothing. Emphasis is given to the relative alignment of components, in particular to the importance of incorporating methods to remove residual systematic effects in surveying and alignment operations

  2. Model-driven product line engineering for mapping parallel algorithms to parallel computing platforms

    NARCIS (Netherlands)

    Arkin, Ethem; Tekinerdogan, Bedir

    2016-01-01

    Mapping parallel algorithms to parallel computing platforms requires several activities such as the analysis of the parallel algorithm, the definition of the logical configuration of the platform, the mapping of the algorithm to the logical configuration platform and the implementation of the

  3. Cost-effective parallel optical interconnection module based on fully passive-alignment process

    Science.gov (United States)

    Son, Dong Hoon; Heo, Young Soon; Park, Hyoung-Jun; Kang, Hyun Seo; Kim, Sung Chang

    2017-11-01

    In optical interconnection technology, high-speed and large data transitions with low error rate and cost reduction are key issues for the upcoming 8K media era. The researchers present notable types of optical manufacturing structures of a four-channel parallel optical module by fully passive alignment, which are able to reduce manufacturing time and cost. Each of the components, such as vertical-cavity surface laser/positive-intrinsic negative-photodiode array, microlens array, fiber array, and receiver (RX)/transmitter (TX) integrated circuit, is integrated successfully using flip-chip bonding, die bonding, and passive alignment with a microscope. Clear eye diagrams are obtained by 25.78-Gb/s (for TX) and 25.7-Gb/s (for RX) nonreturn-to-zero signals of pseudorandom binary sequence with a pattern length of 231 to 1. The measured responsivity and minimum sensitivity of the RX are about 0.5 A/W and ≤-6.5 dBm at a bit error rate (BER) of 10-12, respectively. The optical power margin at a BER of 10-12 is 7.5 dB, and cross talk by the adjacent channel is ≤1 dB.

  4. MSAProbs-MPI: parallel multiple sequence aligner for distributed-memory systems.

    Science.gov (United States)

    González-Domínguez, Jorge; Liu, Yongchao; Touriño, Juan; Schmidt, Bertil

    2016-12-15

    MSAProbs is a state-of-the-art protein multiple sequence alignment tool based on hidden Markov models. It can achieve high alignment accuracy at the expense of relatively long runtimes for large-scale input datasets. In this work we present MSAProbs-MPI, a distributed-memory parallel version of the multithreaded MSAProbs tool that is able to reduce runtimes by exploiting the compute capabilities of common multicore CPU clusters. Our performance evaluation on a cluster with 32 nodes (each containing two Intel Haswell processors) shows reductions in execution time of over one order of magnitude for typical input datasets. Furthermore, MSAProbs-MPI using eight nodes is faster than the GPU-accelerated QuickProbs running on a Tesla K20. Another strong point is that MSAProbs-MPI can deal with large datasets for which MSAProbs and QuickProbs might fail due to time and memory constraints, respectively. Source code in C ++ and MPI running on Linux systems as well as a reference manual are available at http://msaprobs.sourceforge.net CONTACT: jgonzalezd@udc.esSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Parallel field line and stream line tracing algorithms for space physics applications

    Science.gov (United States)

    Toth, G.; de Zeeuw, D.; Monostori, G.

    2004-05-01

    Field line and stream line tracing is required in various space physics applications, such as the coupling of the global magnetosphere and inner magnetosphere models, the coupling of the solar energetic particle and heliosphere models, or the modeling of comets, where the multispecies chemical equations are solved along stream lines of a steady state solution obtained with single fluid MHD model. Tracing a vector field is an inherently serial process, which is difficult to parallelize. This is especially true when the data corresponding to the vector field is distributed over a large number of processors. We designed algorithms for the various applications, which scale well to a large number of processors. In the first algorithm the computational domain is divided into blocks. Each block is on a single processor. The algorithm folows the vector field inside the blocks, and calculates a mapping of the block surfaces. The blocks communicate the values at the coinciding surfaces, and the results are interpolated. Finally all block surfaces are defined and values inside the blocks are obtained. In the second algorithm all processors start integrating along the vector field inside the accessible volume. When the field line leaves the local subdomain, the position and other information is stored in a buffer. Periodically the processors exchange the buffers, and continue integration of the field lines until they reach a boundary. At that point the results are sent back to the originating processor. Efficiency is achieved by a careful phasing of computation and communication. In the third algorithm the results of a steady state simulation are stored on a hard drive. The vector field is contained in blocks. All processors read in all the grid and vector field data and the stream lines are integrated in parallel. If a stream line enters a block, which has already been integrated, the results can be interpolated. By a clever ordering of the blocks the execution speed can be

  6. Significance of the Lateral Humeral Line for Evaluating Radiocapitellar Alignment in Children.

    Science.gov (United States)

    Souder, Christopher D; Roocroft, Joanna H; Edmonds, Eric W

    The radiocapitellar line (RCL) was originally described for evaluation of the alignment of the RC joint on lateral images of the elbow. Although, many authors have translated the utilization of RCL into coronal imaging, previous studies have not been performed to confirm validity. The purpose of this paper was to identify an accurate way of evaluating pediatric RC alignment in the coronal plane. Thirty-seven anteroposterior (AP) radiographs of 37 children were evaluated to determine the position of the RC joint in the coronal plane. All had acceptable magnetic resonance imaging (MRI) studies available for comparison. The lateral humeral line (LHL), consisting of a line along the lateral edge of the ossified condyle of the distal humerus parallel to the axis of the distal humeral shaft, was studied as it related to the lateral cortex of the radial neck. Three children with a confirmed diagnosis of a Bado III, lateral displaced radius, Monteggia fracture were also evaluated. The LHL passed along the edge of or lateral to the radial neck on all AP radiographs and all MRI studies. The RCL failed to intersect the capitellum on 2 AP radiographs. On MRI, the RCL also passed lateral to the capitellar ossification center in 3 patients. In addition, the RCL was seen passing through the capitellum at a mean of the lateral 30% (range, 0% to 64%) on AP radiographs and 26% (range, 0% to 48%) on MRI. For all 3 children with a Bado III Monteggia fracture, the LHL crossed the radial neck and the RCL did not intersect the capitellum. The RCL can fail to intersect the capitellar ossification center on AP radiographs and MRI in pediatric elbows without injury. The LHL consistently lies lateral to the radial neck in normal elbows and medial to the lateral aspect of the radial neck on all Bado III fracture-dislocations. It, therefore, can be used as an adjunct in evaluating the RC joint on AP imaging. The RCL most commonly intersects the lateral one third of the ossification center on

  7. Parallel transport of long mean-free-path plasma along open magnetic field lines: Parallel heat flux

    International Nuclear Information System (INIS)

    Guo Zehua; Tang Xianzhu

    2012-01-01

    In a long mean-free-path plasma where temperature anisotropy can be sustained, the parallel heat flux has two components with one associated with the parallel thermal energy and the other the perpendicular thermal energy. Due to the large deviation of the distribution function from local Maxwellian in an open field line plasma with low collisionality, the conventional perturbative calculation of the parallel heat flux closure in its local or non-local form is no longer applicable. Here, a non-perturbative calculation is presented for a collisionless plasma in a two-dimensional flux expander bounded by absorbing walls. Specifically, closures of previously unfamiliar form are obtained for ions and electrons, which relate two distinct components of the species parallel heat flux to the lower order fluid moments such as density, parallel flow, parallel and perpendicular temperatures, and the field quantities such as the magnetic field strength and the electrostatic potential. The plasma source and boundary condition at the absorbing wall enter explicitly in the closure calculation. Although the closure calculation does not take into account wave-particle interactions, the results based on passing orbits from steady-state collisionless drift-kinetic equation show remarkable agreement with fully kinetic-Maxwell simulations. As an example of the physical implications of the theory, the parallel heat flux closures are found to predict a surprising observation in the kinetic-Maxwell simulation of the 2D magnetic flux expander problem, where the parallel heat flux of the parallel thermal energy flows from low to high parallel temperature region.

  8. Effect of field-aligned-beam in parallel diffusion of energetic particles in the Earth's foreshock

    Science.gov (United States)

    Matsukiyo, S.; Nakanishi, K.; Otsuka, F.; Kis, A.; Lemperger, I.; Hada, T.

    2016-12-01

    Diffusive shock acceleration (DSA) is one of the plausible acceleration mechanisms of cosmic rays. In the standard DSA model the partial density of the accelerated particles, diffused into upstream, exponentially decreases as the distance to the shock increases. Kis et al. (GRL, 31, L20801, 2004) examined the density gradients of energetic ions upstream of the bow shock with high accuracy by using Cluster data. They estimated the diffusion coefficients of energetic ions for the event in February 18, 2003 and showed that the obtained diffusion coefficients are significantly smaller than those estimated in the past statistical study. This implies that particle acceleration at the bow shock can be more efficient than considered before. Here, we focus on the effect of the field-aligned-beam (FAB) which is often observed in the foreshock, and examine how the FAB affects the efficiency of diffusion of the energetic ions by performing test particle simulations. The upstream turbulence is given by the superposition of parallel Alfven waves with power-law energy spectrum with random phase approximation. In the spectrum we further add a peak corresponding to the waves resonantly generated by the FAB. The dependence of the diffusion coefficient on the presence of the FAB as well as total energy of the turbulence, power-law index of the turbulence, and intensity of FAB oriented waves are discussed.

  9. Automated measurement of bolometer line of sight alignment and characteristics for application in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Penzel, Florian Olivier

    2015-07-01

    The line of sight (LOS) alignment and characteristic of a bolometer camera used in a fusion experiment is a crucial parameter for the measurement accuracy of the diagnostic. A robot based LOS measurement device has been developed which allows the fully automatic measurement of the two dimensional transmission function of a bolometer camera. It has been used to optimize camera prototypes for ITER and has been successfully operated in the fusion experiment ASDEX Upgrade in order to measure the LOS alignment.

  10. On the Parallel Elliptic Single/Multigrid Solutions about Aligned and Nonaligned Bodies Using the Virtual Machine for Multiprocessors

    Directory of Open Access Journals (Sweden)

    A. Averbuch

    1994-01-01

    Full Text Available Parallel elliptic single/multigrid solutions around an aligned and nonaligned body are presented and implemented on two multi-user and single-user shared memory multiprocessors (Sequent Symmetry and MOS and on a distributed memory multiprocessor (a Transputer network. Our parallel implementation uses the Virtual Machine for Muli-Processors (VMMP, a software package that provides a coherent set of services for explicitly parallel application programs running on diverse multiple instruction multiple data (MIMD multiprocessors, both shared memory and message passing. VMMP is intended to simplify parallel program writing and to promote portable and efficient programming. Furthermore, it ensures high portability of application programs by implementing the same services on all target multiprocessors. The performance of our algorithm is investigated in detail. It is seen to fit well the above architectures when the number of processors is less than the maximal number of grid points along the axes. In general, the efficiency in the nonaligned case is higher than in the aligned case. Alignment overhead is observed to be up to 200% in the shared-memory case and up to 65% in the message-passing case. We have demonstrated that when using VMMP, the portability of the algorithms is straightforward and efficient.

  11. SF-FDTD analysis of a predictive physical model for parallel aligned liquid crystal devices

    Science.gov (United States)

    Márquez, Andrés.; Francés, Jorge; Martínez, Francisco J.; Gallego, Sergi; Alvarez, Mariela L.; Calzado, Eva M.; Pascual, Inmaculada; Beléndez, Augusto

    2017-08-01

    Recently we demonstrated a novel and simplified model enabling to calculate the voltage dependent retardance provided by parallel aligned liquid crystal devices (PA-LCoS) for a very wide range of incidence angles and any wavelength in the visible. To our knowledge it represents the most simplified approach still showing predictive capability. Deeper insight into the physics behind the simplified model is necessary to understand if the parameters in the model are physically meaningful. Since the PA-LCoS is a black-box where we do not have information about the physical parameters of the device, we cannot perform this kind of analysis using the experimental retardance measurements. In this work we develop realistic simulations for the non-linear tilt of the liquid crystal director across the thickness of the liquid crystal layer in the PA devices. We consider these profiles to have a sine-like shape, which is a good approximation for typical ranges of applied voltage in commercial PA-LCoS microdisplays. For these simulations we develop a rigorous method based on the split-field finite difference time domain (SF-FDTD) technique which provides realistic retardance values. These values are used as the experimental measurements to which the simplified model is fitted. From this analysis we learn that the simplified model is very robust, providing unambiguous solutions when fitting its parameters. We also learn that two of the parameters in the model are physically meaningful, proving a useful reverse-engineering approach, with predictive capability, to probe into internal characteristics of the PA-LCoS device.

  12. A high-quality narrow passband filter for elastic SV waves via aligned parallel separated thin polymethylmethacrylate plates

    OpenAIRE

    Jun Zhang; Yaolu Liu; Wensheng Yan; Ning Hu

    2017-01-01

    We designed a high-quality filter that consists of aligned parallel polymethylmethacrylate (PMMA) thin plates with small gaps for elastic SV waves propagate in metals. Both the theoretical model and the full numerical simulation show the transmission spectrum of the elastic SV waves through such a filter has several sharp peaks with flawless transmission within the investigated frequencies. These peaks can be readily tuned by manipulating the geometry parameters of the PMMA plates. Our invest...

  13. Integrated configurable equipment selection and line balancing for mass production with serial-parallel machining systems

    Science.gov (United States)

    Battaïa, Olga; Dolgui, Alexandre; Guschinsky, Nikolai; Levin, Genrikh

    2014-10-01

    Solving equipment selection and line balancing problems together allows better line configurations to be reached and avoids local optimal solutions. This article considers jointly these two decision problems for mass production lines with serial-parallel workplaces. This study was motivated by the design of production lines based on machines with rotary or mobile tables. Nevertheless, the results are more general and can be applied to assembly and production lines with similar structures. The designers' objectives and the constraints are studied in order to suggest a relevant mathematical model and an efficient optimization approach to solve it. A real case study is used to validate the model and the developed approach.

  14. Alignment Compensation for Bending Radius in TT40 and TI 8 Transfer Line Magnets

    CERN Document Server

    Weterings, W

    2003-01-01

    The BEATCH file for the TI 8 transfer lines specifies the position of the bending magnets assuming that the beam enters and exits at the centre of the vacuum pipe. In order to distribute the deflected beam evenly inside the vacuum tube, the alignment has to be compensated by moving the magnets half of the beam deflection away from the centre of the bending radius. In this note the saggitas of the various TT40 and TI 8 magnets are calculated and the alignment displacements tabulated for future reference.

  15. Alignment Compensation for Bending Radius in TI 2 Transfer Line Magnets

    CERN Document Server

    Weterings, W

    2004-01-01

    The optics file for the TI 2 transfer lines specifies the position of the bending magnets assuming that the beam enters and exists at the centre of the vacuum pipe. In order to disbribute the deflected beam evenly inside the vacuum tube, the alignment has to be compensated by moving the magnets half of the beam deflection away from the centre of the bending radius. In this note the saggitas of the various TI 2 magnets are calculated and the alignment displacements tabulated for future reference.

  16. On-line event reconstruction using a parallel in-memory data base

    OpenAIRE

    Argante, E; Van der Stok, P D V; Willers, Ian Malcolm

    1995-01-01

    PORS is a system designed for on-line event reconstruction in high energy physics (HEP) experiments. It uses the CPREAD reconstruction program. Central to the system is a parallel in-memory database which is used as communication medium between parallel workers. A farming control structure is implemented with PORS in a natural way. The database provides structured storage of data with a short life time. PORS serves as a case study for the construction of a methodology on how to apply parallel...

  17. A high-quality narrow passband filter for elastic SV waves via aligned parallel separated thin polymethylmethacrylate plates

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2017-08-01

    Full Text Available We designed a high-quality filter that consists of aligned parallel polymethylmethacrylate (PMMA thin plates with small gaps for elastic SV waves propagate in metals. Both the theoretical model and the full numerical simulation show the transmission spectrum of the elastic SV waves through such a filter has several sharp peaks with flawless transmission within the investigated frequencies. These peaks can be readily tuned by manipulating the geometry parameters of the PMMA plates. Our investigation finds that the same filter performs well for different metals where the elastic SV waves propagated.

  18. HAlign-II: efficient ultra-large multiple sequence alignment and phylogenetic tree reconstruction with distributed and parallel computing.

    Science.gov (United States)

    Wan, Shixiang; Zou, Quan

    2017-01-01

    Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types. Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction. The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource. THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.

  19. Passing in Command Line Arguments and Parallel Cluster/Multicore Batching in R with batch.

    Science.gov (United States)

    Hoffmann, Thomas J

    2011-03-01

    It is often useful to rerun a command line R script with some slight change in the parameters used to run it - a new set of parameters for a simulation, a different dataset to process, etc. The R package batch provides a means to pass in multiple command line options, including vectors of values in the usual R format, easily into R. The same script can be setup to run things in parallel via different command line arguments. The R package batch also provides a means to simplify this parallel batching by allowing one to use R and an R-like syntax for arguments to spread a script across a cluster or local multicore/multiprocessor computer, with automated syntax for several popular cluster types. Finally it provides a means to aggregate the results together of multiple processes run on a cluster.

  20. BuddySuite: Command-Line Toolkits for Manipulating Sequences, Alignments, and Phylogenetic Trees.

    Science.gov (United States)

    Bond, Stephen R; Keat, Karl E; Barreira, Sofia N; Baxevanis, Andreas D

    2017-06-01

    The ability to manipulate sequence, alignment, and phylogenetic tree files has become an increasingly important skill in the life sciences, whether to generate summary information or to prepare data for further downstream analysis. The command line can be an extremely powerful environment for interacting with these resources, but only if the user has the appropriate general-purpose tools on hand. BuddySuite is a collection of four independent yet interrelated command-line toolkits that facilitate each step in the workflow of sequence discovery, curation, alignment, and phylogenetic reconstruction. Most common sequence, alignment, and tree file formats are automatically detected and parsed, and over 100 tools have been implemented for manipulating these data. The project has been engineered to easily accommodate the addition of new tools, is written in the popular programming language Python, and is hosted on the Python Package Index and GitHub to maximize accessibility. Documentation for each BuddySuite tool, including usage examples, is available at http://tiny.cc/buddysuite_wiki. All software is open source and freely available through http://research.nhgri.nih.gov/software/BuddySuite. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.

  1. Elastic Alignment of Microscopic Images Using Parallel Processing on CUDA-Supported Graphics Processor Units

    Czech Academy of Sciences Publication Activity Database

    Michálek, Jan; Čapek, M.; Janáček, Jiří; Kubínová, Lucie

    2010-01-01

    Roč. 16, Suppl.2 (2010), s. 730-731 ISSN 1431-9276. [Microscopy and Microanalysis 2010. Portland, 01.08.2010-05.08.2010] R&D Projects: GA ČR(CZ) GA102/08/0691; GA ČR(CZ) GA304/09/0733; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509 Keywords : elastic alignment * CUDA * confocal microscopy Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.179, year: 2010

  2. Alignment of dipole magnet in micro-beam line of HIRFL

    International Nuclear Information System (INIS)

    Wang Shaoming; Chen Wenjun; Yang Shengli; Cai Guozhu; Guo Yizhen; Zhou Guangming; Man Kaidi; Song Mingtao

    2010-01-01

    Microbeam irradiation facility is an experiment platform, which can reduce the beam-spot on the irradiated sample to micrometer level, and can accurately locate and count the radioactive particles. It is a powerful research tool for the irradiation material science, irradiation biology, irradiation biomedicine and micro mechanical machining. The microbeam irradiation facility requires the precise work for installation and alignment. These conditions make magnet's change for directions and positions because the location space of dipole magnets in micro-beam line of HIRFL (Heavy Ion Research Facility in Lanzhou) is very small. It is a challenge for the installation and alignment work of magnets. It was solved by transforming coordinates of benchmarks of magnets, which controlled the error of magnet setup within error tolerance range. (authors)

  3. Line filter design of parallel interleaved VSCs for high power wind energy conversion systems

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus

    2015-01-01

    The Voltage Source Converters (VSCs) are often connected in parallel in a Wind Energy Conversion System (WECS) to match the high power rating of the modern wind turbines. The effect of the interleaved carriers on the harmonic performance of the parallel connected VSCs is analyzed in this paper...... limit. In order to achieve the desired filter performance with optimal values of the filter parameters, the use of a LC trap branch with the conventional LCL filter is proposed. The expressions for the resonant frequencies of the proposed line filter are derived and used in the design to selectively...

  4. Parallel diffusion calculation for the PHAETON on-line multiprocessor computer

    International Nuclear Information System (INIS)

    Collart, J.M.; Fedon-Magnaud, C.; Lautard, J.J.

    1987-04-01

    The aim of the PHAETON project is the design of an on-line computer in order to increase the immediate knowledge of the main operating and safety parameters in power plants. A significant stage is the computation of the three dimensional flux distribution. For cost and safety reason a computer based on a parallel microprocessor architecture has been studied. This paper presents a first approach to parallelized three dimensional diffusion calculation. A computing software has been written and built in a four processors demonstrator. We present the realization in progress, concerning the final equipment. 8 refs

  5. Simple and robust generation of ultrafast laser pulse trains using polarization-independent parallel-aligned thin films

    Science.gov (United States)

    Wang, Andong; Jiang, Lan; Li, Xiaowei; Wang, Zhi; Du, Kun; Lu, Yongfeng

    2018-05-01

    Ultrafast laser pulse temporal shaping has been widely applied in various important applications such as laser materials processing, coherent control of chemical reactions, and ultrafast imaging. However, temporal pulse shaping has been limited to only-in-lab technique due to the high cost, low damage threshold, and polarization dependence. Herein we propose a novel design of ultrafast laser pulse train generation device, which consists of multiple polarization-independent parallel-aligned thin films. Various pulse trains with controllable temporal profile can be generated flexibly by multi-reflections within the splitting films. Compared with other pulse train generation techniques, this method has advantages of compact structure, low cost, high damage threshold and polarization independence. These advantages endow it with high potential for broad utilization in ultrafast applications.

  6. Line roughness improvements on self-aligned quadruple patterning by wafer stress engineering

    Science.gov (United States)

    Liu, Eric; Ko, Akiteru; Biolsi, Peter; Chae, Soo Doo; Hsieh, Chia-Yun; Kagaya, Munehito; Lee, Choongman; Moriya, Tsuyoshi; Tsujikawa, Shimpei; Suzuki, Yusuke; Okubo, Kazuya; Imai, Kiyotaka

    2018-04-01

    In integrated circuit and memory devices, size shrinkage has been the most effective method to reduce production cost and enable the steady increment of the number of transistors per unit area over the past few decades. In order to reduce the die size and feature size, it is necessary to minimize pattern formation in the advance node development. In the node of sub-10nm, extreme ultra violet lithography (EUV) and multi-patterning solutions based on 193nm immersionlithography are the two most common options to achieve the size requirement. In such small features of line and space pattern, line width roughness (LWR) and line edge roughness (LER) contribute significant amount of process variation that impacts both physical and electrical performances. In this paper, we focus on optimizing the line roughness performance by using wafer stress engineering on 30nm pitch line and space pattern. This pattern is generated by a self-aligned quadruple patterning (SAQP) technique for the potential application of fin formation. Our investigation starts by comparing film materials and stress levels in various processing steps and material selection on SAQP integration scheme. From the cross-matrix comparison, we are able to determine the best stack of film selection and stress combination in order to achieve the lowest line roughness performance while obtaining pattern validity after fin etch. This stack is also used to study the step-by-step line roughness performance from SAQP to fin etch. Finally, we will show a successful patterning of 30nm pitch line and space pattern SAQP scheme with 1nm line roughness performance.

  7. Preparation and gas-sensing property of parallel-aligned ZnO ...

    Indian Academy of Sciences (India)

    binding energy (60 meV) and a large bandgap (3·37 eV) energy, has many ... Con- siderable efforts have been made to fabricate ZnO nanowires, nanobelts .... In such a case, the data could be fitted to a straight line .... The re-oxidation pro-.

  8. Cubic systems with invariant affine straight lines of total parallel multiplicity seven

    Directory of Open Access Journals (Sweden)

    Alexandru Suba

    2013-12-01

    Full Text Available In this article, we study the planar cubic differential systems with invariant affine straight lines of total parallel multiplicity seven. We classify these system according to their geometric properties encoded in the configurations of invariant straight lines. We show that there are only 17 different topological phase portraits in the Poincar\\'e disc associated to this family of cubic systems up to a reversal of the sense of their orbits, and we provide representatives of every class modulo an affine change of variables and rescaling of the time variable.

  9. Transmission line theory for long plasma production by radio frequency discharges between parallel-plate electrodes

    International Nuclear Information System (INIS)

    Nonaka, S.

    1991-01-01

    In order to seek for a radio frequency (RF) eigen-mode of waves in producing a plasma between a pair of long dielectric-covered parallel-plate RF electrodes, this paper analyzed all normal modes propagating along the electrodes by solving Maxwell's equations. The result showed that only an odd surface wave mode will produce the plasma in usual experimental conditions, which will become a basic transmission line theory when use of such long electrodes for on-line mass-production of amorphous silicon solar cells

  10. Implementation of a microcomputer based distance relay for parallel transmission lines

    International Nuclear Information System (INIS)

    Phadke, A.G.; Jihuang, L.

    1986-01-01

    Distance relaying for parallel transmission lines is a difficult application problem with conventional phase and ground distance relays. It is known that for cross-country faults involving dissimilar phases and ground, three phase tripping may result. This paper summarizes a newly developed microcomputer based relay which is capable of classifying the cross-country fault correctly. The paper describes the principle of operation and results of laboratory tests of this relay

  11. Parallel Hough Transform-Based Straight Line Detection and Its FPGA Implementation in Embedded Vision

    Directory of Open Access Journals (Sweden)

    Nam Ling

    2013-07-01

    Full Text Available Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness.

  12. Parallel Hough Transform-based straight line detection and its FPGA implementation in embedded vision.

    Science.gov (United States)

    Lu, Xiaofeng; Song, Li; Shen, Sumin; He, Kang; Yu, Songyu; Ling, Nam

    2013-07-17

    Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness.

  13. Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons

    International Nuclear Information System (INIS)

    De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Quaresima, Claudio; Cricenti, Antonio; Olivieri, Bruno; Dávila, Maria E; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy

    2013-01-01

    The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.

  14. Parallel and Perpendicular Alignment of Anisotropic Particles in Free Liquid Microjets and Emerging Microdroplets.

    Science.gov (United States)

    Schlenk, Mathias; Hofmann, Eddie; Seibt, Susanne; Rosenfeldt, Sabine; Schrack, Lukas; Drechsler, Markus; Rothkirch, Andre; Ohm, Wiebke; Breu, Josef; Gekle, Stephan; Förster, Stephan

    2018-04-24

    Liquid microjets play a key role in fiber spinning, inkjet printing, and coating processes. In all of these applications, the liquid jets carry dispersed particles whose spatial and orientational distributions within the jet critically influence the properties of the fabricated structures. Despite its importance, there is currently no knowledge about the orientational distribution of particles within microjets and droplets. Here, we demonstrate a microfluidic device that allows to determine the local particle distribution and orientation by X-ray scattering. Using this methodology, we discovered unexpected changes in the particle orientation upon exiting the nozzle to form a free jet, and upon jet break-up into droplets, causing an unusual biaxial particle orientation. We show how flow and aspect ratio determine the flow orientation of anisotropic particles. Furthermore, we demonstrate that the observed phenomena are a general characteristic of anisotropic particles. Our findings greatly enhance our understanding of particle orientation in free jets and droplets and provide a rationale for controlling particle alignment in liquid jet-based fabrication methodologies.

  15. Cloud-Coffee: implementation of a parallel consistency-based multiple alignment algorithm in the T-Coffee package and its benchmarking on the Amazon Elastic-Cloud.

    Science.gov (United States)

    Di Tommaso, Paolo; Orobitg, Miquel; Guirado, Fernando; Cores, Fernado; Espinosa, Toni; Notredame, Cedric

    2010-08-01

    We present the first parallel implementation of the T-Coffee consistency-based multiple aligner. We benchmark it on the Amazon Elastic Cloud (EC2) and show that the parallelization procedure is reasonably effective. We also conclude that for a web server with moderate usage (10K hits/month) the cloud provides a cost-effective alternative to in-house deployment. T-Coffee is a freeware open source package available from http://www.tcoffee.org/homepage.html

  16. Parallel superconducting strip-line detectors: reset behaviour in the single-strip switch regime

    International Nuclear Information System (INIS)

    Casaburi, A; Heath, R M; Tanner, M G; Hadfield, R H; Cristiano, R; Ejrnaes, M; Nappi, C

    2014-01-01

    Superconducting strip-line detectors (SSLDs) are an important emerging technology for the detection of single molecules in time-of-flight mass spectrometry (TOF-MS). We present an experimental investigation of a SSLD laid out in a parallel configuration, designed to address selected single strip-lines operating in the single-strip switch regime. Fast laser pulses were tightly focused onto the device, allowing controllable nucleation of a resistive region at a specific location and study of the subsequent device response dynamics. We observed that in this regime, although the strip-line returns to the superconducting state after triggering, no effective recovery of the bias current occurs, in qualitative agreement with a phenomenological circuit simulation that we performed. Moreover, from theoretical considerations and by looking at the experimental pulse amplitude distribution histogram, we have the first confirmation of the fact that the phenomenological London model governs the current redistribution in these large area devices also after detection events. (paper)

  17. Line-plane broadcasting in a data communications network of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Berg, Jeremy E.; Blocksome, Michael A.; Smith, Brian E.

    2010-06-08

    Methods, apparatus, and products are disclosed for line-plane broadcasting in a data communications network of a parallel computer, the parallel computer comprising a plurality of compute nodes connected together through the network, the network optimized for point to point data communications and characterized by at least a first dimension, a second dimension, and a third dimension, that include: initiating, by a broadcasting compute node, a broadcast operation, including sending a message to all of the compute nodes along an axis of the first dimension for the network; sending, by each compute node along the axis of the first dimension, the message to all of the compute nodes along an axis of the second dimension for the network; and sending, by each compute node along the axis of the second dimension, the message to all of the compute nodes along an axis of the third dimension for the network.

  18. Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia - Version 4.01.1

    Science.gov (United States)

    Wright, Michael J.; White, Todd; Mangini, Nancy

    2009-01-01

    Data-Parallel Line Relaxation (DPLR) code is a computational fluid dynamic (CFD) solver that was developed at NASA Ames Research Center to help mission support teams generate high-value predictive solutions for hypersonic flow field problems. The DPLR Code Package is an MPI-based, parallel, full three-dimensional Navier-Stokes CFD solver with generalized models for finite-rate reaction kinetics, thermal and chemical non-equilibrium, accurate high-temperature transport coefficients, and ionized flow physics incorporated into the code. DPLR also includes a large selection of generalized realistic surface boundary conditions and links to enable loose coupling with external thermal protection system (TPS) material response and shock layer radiation codes.

  19. Wideband Dual-Polarization Patch Antenna Array With Parallel Strip Line Balun Feeding

    DEFF Research Database (Denmark)

    Zhang, Jin; Lin, Xianqi; Nie, Liying

    2016-01-01

    A wideband dual-polarization patch antenna array is proposed in this letter. The array is fed by a parallel strip line balun, which is adopted to generate 180° phase shift in a wide frequency range. In addition, this balun has simple structure, very small phase shift error, and good ports isolati...... is higher than 30 dB. The simulation and measurement turns out to be similar. This antenna array can be used in TD-LTE base stations, and the design methods are also useful to other wideband microstrip antennas....

  20. Single crystalline growth of a soluble organic semiconductor in a parallel aligned liquid crystal solvent using rubbing-treated polyimide films

    Science.gov (United States)

    Matsuzaki, Tomoya; Shibata, Yosei; Takeda, Risa; Ishinabe, Takahiro; Fujikake, Hideo

    2017-01-01

    For directional control of organic single crystals, we propose a crystal growth method using liquid crystal as the solvent. In this study, we examined the formation of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) single crystals using a parallel aligned liquid crystal (LC) cell and rubbing-treated polyimide films in order to clarify the effects of LC alignment on anisotropic C8-BTBT crystal growth. Based on the results, we found that the crystal growth direction of C8-BTBT single crystals was related to the direction of the aligned LC molecules because of rubbing treatment. Moreover, by optical evaluation, we found that the C8-BTBT single crystals have a aligned molecular structure.

  1. Airport object extraction based on visual attention mechanism and parallel line detection

    Science.gov (United States)

    Lv, Jing; Lv, Wen; Zhang, Libao

    2017-10-01

    Target extraction is one of the important aspects in remote sensing image analysis and processing, which has wide applications in images compression, target tracking, target recognition and change detection. Among different targets, airport has attracted more and more attention due to its significance in military and civilian. In this paper, we propose a novel and reliable airport object extraction model combining visual attention mechanism and parallel line detection algorithm. First, a novel saliency analysis model for remote sensing images with airport region is proposed to complete statistical saliency feature analysis. The proposed model can precisely extract the most salient region and preferably suppress the background interference. Then, the prior geometric knowledge is analyzed and airport runways contained two parallel lines with similar length are detected efficiently. Finally, we use the improved Otsu threshold segmentation method to segment and extract the airport regions from the salient map of remote sensing images. The experimental results demonstrate that the proposed model outperforms existing saliency analysis models and shows good performance in the detection of the airport.

  2. GPU-based, parallel-line, omni-directional integration of measured acceleration field to obtain the 3D pressure distribution

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2016-11-01

    A PIV based method to reconstruct the volumetric pressure field by direct integration of the 3D material acceleration directions has been developed. Extending the 2D virtual-boundary omni-directional method (Omni2D, Liu & Katz, 2013), the new 3D parallel-line omni-directional method (Omni3D) integrates the material acceleration along parallel lines aligned in multiple directions. Their angles are set by a spherical virtual grid. The integration is parallelized on a Tesla K40c GPU, which reduced the computing time from three hours to one minute for a single realization. To validate its performance, this method is utilized to calculate the 3D pressure fields in isotropic turbulence and channel flow using the JHU DNS Databases (http://turbulence.pha.jhu.edu). Both integration of the DNS acceleration as well as acceleration from synthetic 3D particles are tested. Results are compared to other method, e.g. solution to the Pressure Poisson Equation (e.g. PPE, Ghaemi et al., 2012) with Bernoulli based Dirichlet boundary conditions, and the Omni2D method. The error in Omni3D prediction is uniformly low, and its sensitivity to acceleration errors is local. It agrees with the PPE/Bernoulli prediction away from the Dirichlet boundary. The Omni3D method is also applied to experimental data obtained using tomographic PIV, and results are correlated with deformation of a compliant wall. ONR.

  3. A study of parallelism of the occlusal plane and ala-tragus line.

    Science.gov (United States)

    Sadr, Katayoun; Sadr, Makan

    2009-01-01

    Orientation of the occlusal plane is one of the most important clinical procedures in prostho-dontic rehabilitation of edentulous patients. The aim of this study was to define the best posterior reference point of ala-tragus line for orientation of occlusal plane for complete denture fabrication. Fifty-three dental students (27 females and 26 males) with complete natural dentition and Angel's Class I occlusal relationship were selected. The subjects were photographed in natural head position while clenching on a Fox plane. After tracing the photographs, the angles between the following lines were measured: the occlusal plane (Fox plane) and the superior border of ala-tragus, the occlusal plane (Fox plane) and the middle of ala-tragus as well as the occlusal plane (Fox plane) and the inferior border of ala-tragus. Descriptive statistics, one sample t-test and independent t-test were used. P value less than 0.05 was considered significant. There was no parallelism between the occlusal plane and ala-tragus line with three different posterior ends and one sample t-test showed that the angles between them were significantly different from zero (pplane. The superior border of the tragus is suggested as the posterior reference for ala-tragus line.

  4. Optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Delay Lines and Alignment

    Science.gov (United States)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Fixsen, Dale; Sampler, Henry; Mentzell, Eric; Veach, Todd; Silverberg, Robert F.; Furst, Stephen; hide

    2016-01-01

    We present the optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) as it gets ready for launch. BETTII is an 8-meter baseline far-infrared (30-90 microns) interferometer mission with capabilities of spatially resolved spectroscopy aimed at studying star formation and galaxy evolution. The instrument collects light from its two arms, makes them interfere, divides them into two science channels (30-50 microns and 60-90 microns), and focuses them onto the detectors. It also separates out the NIR light (1-2.5 microns) and uses it for tip-tilt corrections of the telescope pointing. Currently, all the optical elements have been fabricated, heat treated, coated appropriately and are mounted on their respective assemblies. We are presenting the optical design challenges for such a balloon borne spatio-spectral interferometer, and discuss how they have been mitigated. The warm and cold delay lines are an important part of this optics train. The warm delay line corrects for path length differences between the left and the right arm due to balloon pendulation, while the cold delay line is aimed at introducing a systematic path length difference, thereby generating our interferograms from where we can derive information about the spectra. The details of their design and the results of the testing of these opto-mechanical parts are also discussed. The sensitivities of different optical elements on the interferograms produced have been determined with the help of simulations using FRED software package. Accordingly, an alignment plan is drawn up which makes use of a laser tracker, a CMM, theodolites and a LUPI interferometer.

  5. Parallel Evolution under Chemotherapy Pressure in 29 Breast Cancer Cell Lines Results in Dissimilar Mechanisms of Resistance

    DEFF Research Database (Denmark)

    Tegze, Balint; Szallasi, Zoltan Imre; Haltrich, Iren

    2012-01-01

    Background: Developing chemotherapy resistant cell lines can help to identify markers of resistance. Instead of using a panel of highly heterogeneous cell lines, we assumed that truly robust and convergent pattern of resistance can be identified in multiple parallel engineered derivatives of only...

  6. High-spin states beyond the proton drip-line: Quasiparticle alignments in {sup 113}Cs

    Energy Technology Data Exchange (ETDEWEB)

    Wady, P.T. [School of Engineering, University of the West of Scotland, Paisley, PA1 2BE (United Kingdom); Scottish Universities Physics Alliance (United Kingdom); Smith, J.F., E-mail: John.F.Smith@uws.ac.uk [School of Engineering, University of the West of Scotland, Paisley, PA1 2BE (United Kingdom); Scottish Universities Physics Alliance (United Kingdom); Hadinia, B. [School of Engineering, University of the West of Scotland, Paisley, PA1 2BE (United Kingdom); Scottish Universities Physics Alliance (United Kingdom); Cullen, D.M.; Freeman, S.J. [School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Darby, I.G. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE (United Kingdom); Eeckhaudt, S.; Grahn, T.; Greenlees, P.T.; Jones, P.M.; Julin, R.; Juutinen, S.; Kettunen, H.; Leino, M.; Leppänen, A.-P. [Department of Physics, University of Jyväskylä, FIN-40014, Jyväskylä (Finland); McGuirk, B.M. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE (United Kingdom); Nieminen, P.; Nyman, M. [Department of Physics, University of Jyväskylä, FIN-40014, Jyväskylä (Finland); Page, R.D. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE (United Kingdom); Pakarinen, J. [Department of Physics, University of Jyväskylä, FIN-40014, Jyväskylä (Finland); and others

    2015-01-05

    Excited states have been studied in the deformed proton emitter {sup 113}Cs. Gamma-ray transitions have been unambiguously assigned to {sup 113}Cs by correlation with its characteristic proton decay, using the method of recoil-decay tagging. Two previously identified rotational bands have been observed and extended to tentative spins of 45/2 and 51/2ħ, with excitation energies over 8 MeV above the lowest state. These are the highest angular momenta and excitation energies observed to date in any nucleus beyond the proton drip-line. Transitions in the bands have been rearranged compared to previous work. A study of aligned angular momenta, in comparison to the predictions of Woods–Saxon cranking calculations, is consistent with the most intense band being based on the πg{sub 7/2}[422]3/2{sup +} configuration, which would contradict the earlier πh{sub 11/2} assignment, and with the second band being based on the πd{sub 5/2}[420]1/2{sup +} configuration. The data suggest that the band based upon the πh{sub 11/2} configuration is not observed.

  7. Getting Your Peaks in Line: A Review of Alignment Methods for NMR Spectral Data

    Directory of Open Access Journals (Sweden)

    Trung Nghia Vu

    2013-04-01

    Full Text Available One of the most significant challenges in the comparative analysis of Nuclear Magnetic Resonance (NMR metabolome profiles is the occurrence of shifts between peaks across different spectra, for example caused by fluctuations in pH, temperature, instrument factors and ion content. Proper alignment of spectral peaks is therefore often a crucial preprocessing step prior to downstream quantitative analysis. Various alignment methods have been developed specifically for this purpose. Other methods were originally developed to align other data types (GC, LC, SELDI-MS, etc., but can also be applied to NMR data. This review discusses the available methods, as well as related problems such as reference determination or the evaluation of alignment quality. We present a generic alignment framework that allows for comparison and classification of different alignment approaches according to their algorithmic principles, and we discuss their performance.

  8. Multi-objective optimization algorithms for mixed model assembly line balancing problem with parallel workstations

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2016-12-01

    Full Text Available This paper deals with mixed model assembly line (MMAL balancing problem of type-I. In MMALs several products are made on an assembly line while the similarity of these products is so high. As a result, it is possible to assemble several types of products simultaneously without any additional setup times. The problem has some particular features such as parallel workstations and precedence constraints in dynamic periods in which each period also effects on its next period. The research intends to reduce the number of workstations and maximize the workload smoothness between workstations. Dynamic periods are used to determine all variables in different periods to achieve efficient solutions. A non-dominated sorting genetic algorithm (NSGA-II and multi-objective particle swarm optimization (MOPSO are used to solve the problem. The proposed model is validated with GAMS software for small size problem and the performance of the foregoing algorithms is compared with each other based on some comparison metrics. The NSGA-II outperforms MOPSO with respect to some comparison metrics used in this paper, but in other metrics MOPSO is better than NSGA-II. Finally, conclusion and future research is provided.

  9. Simulation based assembly and alignment process ability analysis for line replaceable units of the high power solid state laser facility

    International Nuclear Information System (INIS)

    Wang, Junfeng; Lu, Cong; Li, Shiqi

    2016-01-01

    Highlights: • Discrete event simulation is applied to analyze the assembly and alignment process ability of LRUs in SG-III facility. • The overall assembly and alignment process of LRUs with specific characteristics is described. • An extended-directed graph is proposed to express the assembly and alignment process of LRUs. • Different scenarios have been simulated to evaluate assembling process ability of LRUs and decision making is supported to ensure the construction millstone. - Abstract: Line replaceable units (LRUs) are important components of the very large high power solid state laser facilities. The assembly and alignment process ability of LRUs will impact the construction milestone of facilities. This paper describes the use of discrete event simulation method for assembly and alignment process analysis of LRUs in such facilities. The overall assembly and alignment process for LRUs is presented based on the layout of the optics assembly laboratory and the process characteristics are analyzed. An extended-directed graph is proposed to express the assembly and alignment process of LRUs. Taking the LRUs of disk amplifier system in Shen Guang-III (SG-III) facility as the example, some process simulation models are built based on the Quest simulation platform. The constraints, such as duration, equipment, technician and part supply, are considered in the simulation models. Different simulation scenarios have been carried out to evaluate the assembling process ability of LRUs. The simulation method can provide a valuable decision making and process optimization tool for the optics assembly laboratory layout and the process working out of such facilities.

  10. Simulation based assembly and alignment process ability analysis for line replaceable units of the high power solid state laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junfeng; Lu, Cong; Li, Shiqi, E-mail: sqli@hust.edu.cn

    2016-11-15

    Highlights: • Discrete event simulation is applied to analyze the assembly and alignment process ability of LRUs in SG-III facility. • The overall assembly and alignment process of LRUs with specific characteristics is described. • An extended-directed graph is proposed to express the assembly and alignment process of LRUs. • Different scenarios have been simulated to evaluate assembling process ability of LRUs and decision making is supported to ensure the construction millstone. - Abstract: Line replaceable units (LRUs) are important components of the very large high power solid state laser facilities. The assembly and alignment process ability of LRUs will impact the construction milestone of facilities. This paper describes the use of discrete event simulation method for assembly and alignment process analysis of LRUs in such facilities. The overall assembly and alignment process for LRUs is presented based on the layout of the optics assembly laboratory and the process characteristics are analyzed. An extended-directed graph is proposed to express the assembly and alignment process of LRUs. Taking the LRUs of disk amplifier system in Shen Guang-III (SG-III) facility as the example, some process simulation models are built based on the Quest simulation platform. The constraints, such as duration, equipment, technician and part supply, are considered in the simulation models. Different simulation scenarios have been carried out to evaluate the assembling process ability of LRUs. The simulation method can provide a valuable decision making and process optimization tool for the optics assembly laboratory layout and the process working out of such facilities.

  11. Parallel evolution under chemotherapy pressure in 29 breast cancer cell lines results in dissimilar mechanisms of resistance.

    Directory of Open Access Journals (Sweden)

    Bálint Tegze

    Full Text Available BACKGROUND: Developing chemotherapy resistant cell lines can help to identify markers of resistance. Instead of using a panel of highly heterogeneous cell lines, we assumed that truly robust and convergent pattern of resistance can be identified in multiple parallel engineered derivatives of only a few parental cell lines. METHODS: Parallel cell populations were initiated for two breast cancer cell lines (MDA-MB-231 and MCF-7 and these were treated independently for 18 months with doxorubicin or paclitaxel. IC50 values against 4 chemotherapy agents were determined to measure cross-resistance. Chromosomal instability and karyotypic changes were determined by cytogenetics. TaqMan RT-PCR measurements were performed for resistance-candidate genes. Pgp activity was measured by FACS. RESULTS: All together 16 doxorubicin- and 13 paclitaxel-treated cell lines were developed showing 2-46 fold and 3-28 fold increase in resistance, respectively. The RT-PCR and FACS analyses confirmed changes in tubulin isofom composition, TOP2A and MVP expression and activity of transport pumps (ABCB1, ABCG2. Cytogenetics showed less chromosomes but more structural aberrations in the resistant cells. CONCLUSION: We surpassed previous studies by parallel developing a massive number of cell lines to investigate chemoresistance. While the heterogeneity caused evolution of multiple resistant clones with different resistance characteristics, the activation of only a few mechanisms were sufficient in one cell line to achieve resistance.

  12. Characterization of DNA repair phenotypes of Xeroderma pigmentosum cell lines by a paralleled in vitro test

    International Nuclear Information System (INIS)

    Raffin, A.L.

    2009-06-01

    DNA is constantly damaged modifying the genetic information for which it encodes. Several cellular mechanisms as the Base Excision Repair (BER) and the Nucleotide Excision Repair (NER) allow recovering the right DNA sequence. The Xeroderma pigmentosum is a disease characterised by a deficiency in the NER pathway. The aim of this study was to propose an efficient and fast test for the diagnosis of this disease as an alternative to the currently available UDS test. DNA repair activities of XP cell lines were quantified using in vitro miniaturized and paralleled tests in order to establish DNA repair phenotypes of XPA and XPC deficient cells. The main advantage of the tests used in this study is the simultaneous measurement of excision or excision synthesis (ES) of several lesions by only one cellular extract. We showed on one hand that the relative ES of the different lesions depend strongly on the protein concentration of the nuclear extract tested. Working at high protein concentration allowed discriminating the XP phenotype versus the control one, whereas it was impossible under a certain concentration's threshold. On the other hand, while the UVB irradiation of control cells stimulated their repair activities, this effect was not observed in XP cells. This study brings new information on the XPA and XPC protein roles during BER and NER and underlines the complexity of the regulations of DNA repair processes. (author)

  13. Slit shaped microwave induced atmospheric pressure plasma based on a parallel plate transmission line resonator

    Science.gov (United States)

    Kang, S. K.; Seo, Y. S.; Lee, H. Wk; Aman-ur-Rehman; Kim, G. C.; Lee, J. K.

    2011-11-01

    A new type of microwave-excited atmospheric pressure plasma source, based on the principle of parallel plate transmission line resonator, is developed for the treatment of large areas in biomedical applications such as skin treatment and wound healing. A stable plasma of 20 mm width is sustained by a small microwave power source operated at a frequency of 700 MHz and a gas flow rate of 0.9 slm. Plasma impedance and plasma density of this plasma source are estimated by fitting the calculated reflection coefficient to the measured one. The estimated plasma impedance shows a decreasing trend while estimated plasma density shows an increasing trend with the increase in the input power. Plasma uniformity is confirmed by temperature and optical emission distribution measurements. Plasma temperature is sustained at less than 40 °C and abundant amounts of reactive species, which are important agents for bacteria inactivation, are detected over the entire plasma region. Large area treatment ability of this newly developed device is verified through bacteria inactivation experiment using E. coli. Sterilization experiment shows a large bacterial killing mark of 25 mm for a plasma treatment time of 10 s.

  14. A 32-channel lattice transmission line array for parallel transmit and receive MRI at 7 tesla.

    Science.gov (United States)

    Adriany, Gregor; Auerbach, Edward J; Snyder, Carl J; Gözübüyük, Ark; Moeller, Steen; Ritter, Johannes; Van de Moortele, Pierre-François; Vaughan, Tommy; Uğurbil, Kâmil

    2010-06-01

    Transmit and receive RF coil arrays have proven to be particularly beneficial for ultra-high-field MR. Transmit coil arrays enable such techniques as B(1) (+) shimming to substantially improve transmit B(1) homogeneity compared to conventional volume coil designs, and receive coil arrays offer enhanced parallel imaging performance and SNR. Concentric coil arrangements hold promise for developing transceiver arrays incorporating large numbers of coil elements. At magnetic field strengths of 7 tesla and higher where the Larmor frequencies of interest can exceed 300 MHz, the coil array design must also overcome the problem of the coil conductor length approaching the RF wavelength. In this study, a novel concentric arrangement of resonance elements built from capacitively-shortened half-wavelength transmission lines is presented. This approach was utilized to construct an array with whole-brain coverage using 16 transceiver elements and 16 receive-only elements, resulting in a coil with a total of 16 transmit and 32 receive channels. (c) 2010 Wiley-Liss, Inc.

  15. Design of a chemical batch plant : a study of dedicated parallel lines with intermediate storage and the plant performance

    OpenAIRE

    Verbiest, Floor; Cornelissens, Trijntje; Springael, Johan

    2016-01-01

    Abstract: Production plants worldwide face huge challenges in satisfying high service levels and outperforming competition. These challenges require appropriate strategic decisions on plant design and production strategies. In this paper, we focus on multiproduct chemical batch plants, which are typically equipped with multiple production lines and intermediate storage tanks. First we extend the existing MI(N) LP design models with the concept of parallel production lines, and optimise the as...

  16. Design and fabrication of a self-aligned parallel-plate-type silicon micromirror minimizing the effect of misalignment

    International Nuclear Information System (INIS)

    Yoo, Byung-Wook; Jin, Joo-Young; Jang, Yun-Ho; Kim, Yong-Kweon; Park, Jae-Hyoung

    2009-01-01

    This paper describes a self-alignment method whereby a mirror actuation voltage, corresponding to a specific tilting angle, is unvarying in terms of misalignment during fabrication. A deep silicon etching process is proposed to penetrate the top silicon layer (the micromirror layer) and an amorphous silicon layer (the addressing electrode layer) together, through an aluminum mask pattern, in order to minimize the misalignment effect on the micromirror actuation. The size of a fabricated mirror plate is 250 × 250 × 4 µm 3 . A pair of amorphous silicon electrodes under the mirror plate is about half the size of the mirror plate individually. Numerical analysis associated with calculating the pull-in voltage and the bonding misalignment is performed to verify the self-alignment concepts focused upon in this paper. Curves of the applied voltage versus the tilt angle of the self-aligned micromirror are observed using a position sensing detector in order to compare the measurement results with MATLAB analysis of the expected static deflections. Although a 3.7 µm misalignment is found between the mirror plate and the electrodes, in the direction perpendicular to the shallow trench of the electrodes, before the self-alignment process, the measured pull-in voltage has been found to be 103.4 V on average; this differs from the pull-in voltage of a perfectly aligned micromirror by only 0.67%. Regardless of the unpredictable misalignments in repetitive photolithography and bonding, the tilting angles corresponding to the driving voltages are proved to be uniform along the single axis as well as conform to the results of analytical analysis

  17. Advanced mathematical on-line analysis in nuclear experiments. Usage of parallel computing CUDA routines in standard root analysis

    Science.gov (United States)

    Grzeszczuk, A.; Kowalski, S.

    2015-04-01

    Compute Unified Device Architecture (CUDA) is a parallel computing platform developed by Nvidia for increase speed of graphics by usage of parallel mode for processes calculation. The success of this solution has opened technology General-Purpose Graphic Processor Units (GPGPUs) for applications not coupled with graphics. The GPGPUs system can be applying as effective tool for reducing huge number of data for pulse shape analysis measures, by on-line recalculation or by very quick system of compression. The simplified structure of CUDA system and model of programming based on example Nvidia GForce GTX580 card are presented by our poster contribution in stand-alone version and as ROOT application.

  18. Real-Time Straight-Line Detection for XGA-Size Videos by Hough Transform with Parallelized Voting Procedures.

    Science.gov (United States)

    Guan, Jungang; An, Fengwei; Zhang, Xiangyu; Chen, Lei; Mattausch, Hans Jürgen

    2017-01-30

    The Hough Transform (HT) is a method for extracting straight lines from an edge image. The main limitations of the HT for usage in actual applications are computation time and storage requirements. This paper reports a hardware architecture for HT implementation on a Field Programmable Gate Array (FPGA) with parallelized voting procedure. The 2-dimensional accumulator array, namely the Hough space in parametric form (ρ, θ), for computing the strength of each line by a voting mechanism is mapped on a 1-dimensional array with regular increments of θ. Then, this Hough space is divided into a number of parallel parts. The computation of (ρ, θ) for the edge pixels and the voting procedure for straight-line determination are therefore executable in parallel. In addition, a synchronized initialization for the Hough space further increases the speed of straight-line detection, so that XGA video processing becomes possible. The designed prototype system has been synthesized on a DE4 platform with a Stratix-IV FPGA device. In the application of road-lane detection, the average processing speed of this HT implementation is 5.4ms per XGA-frame at 200 MHz working frequency.

  19. FMIT alignment cart

    International Nuclear Information System (INIS)

    Potter, R.C.; Dauelsberg, L.B.; Clark, D.C.; Grieggs, R.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility alignment cart must perform several functions. It must serve as a fixture to receive the drift-tube girder assembly when it is removed from the linac tank. It must transport the girder assembly from the linac vault to the area where alignment or disassembly is to take place. It must serve as a disassembly fixture to hold the girder while individual drift tubes are removed for repair. It must align the drift tube bores in a straight line parallel to the girder, using an optical system. These functions must be performed without violating any clearances found within the building. The bore tubes of the drift tubes will be irradiated, and shielding will be included in the system for easier maintenance

  20. Parallelism at Cern: real-time and off-line applications in the GP-MIMD2 project

    International Nuclear Information System (INIS)

    Calafiura, P.

    1997-01-01

    A wide range of general purpose high-energy physics applications, ranging from Monte Carlo simulation to data acquisition, from interactive data analysis to on-line filtering, have been ported, or developed, and run in parallel on IBM SP-2 and Meiko CS-2 CERN large multi-processor machines. The ESPRIT project GP-MIMD2 has been a catalyst for the interest in parallel computing at CERN. The project provided the 128 processor Meiko CS-2 system that is now succesfully integrated in the CERN computing environment. The CERN experiment NA48 was involved in the GP-MIMD2 project since the beginning. NA48 physicists run, as part of their day-to-day work, simulation and analysis programs parallelized using the message passing interface MPI. The CS-2 is also a vital component of the experiment data acquisition system and will be used to calibrate in real-time the 13000 channels liquid krypton calorimeter. (orig.)

  1. Attempt to identify the functional areas of the cerebral cortex on CT slices parallel to the orbito-meatal line

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Hirotaka; Okuda, Junichiro; Nishikawa, Takashi; Nishimura, Tsuyoshi (Osaka Univ. (Japan). Faculty of Medicine); Shiraishi, Junzo

    1982-06-01

    In order to identify the functional brain areas, such as Broca's area, on computed tomography slices parallel to the orbito-meatal line, the numbers of Brodmann's cortical mapping were shown on a diagram of representative brain sections parallel to the orbito-meatal line. Also, we described a method, using cerebral sulci as anatomical landmarks, for projecting lesions shown by CT scan onto the lateral brain diagram. The procedures were as follows. The distribution of lesions on CT slices was determined by the identification of major cerebral sulci and fissures, such as the Sylvian fissure, the central sulcus, and the superior frontal sulcus. Those lesions were then projected onto the lateral diagram by comparing each CT slice with the horizontal diagrams of brain sections. The method was demonstrated in three cases developing neuropsychological symptoms.

  2. 600 GHz resonant mode in a parallel array of Josephson tunnel junctions connected by superconducting microstrip lines

    DEFF Research Database (Denmark)

    Kaplunenko, V. K.; Larsen, Britt Hvolbæk; Mygind, Jesper

    1994-01-01

    on experimental and numerical investigations of a resonant step observed at a voltage corresponding to 600 GHz in the dc current-voltage characteristic of a parallel array of 20 identical small NbAl2O3Nb Josephson junctions interconnected by short sections of superconducting microstrip line. The junctions...... are mutually phase locked due to collective interaction with the line sections excited close to the half wavelength resonance. The phase locking range can be adjusted by means of an external dc magnetic field and the step size varies periodically with the magnetic field. The largest step corresponds...

  3. Parallel-aligned GaAs nanowires with (110) orientation laterally grown on [311]B substrates via the gold-catalyzed vapor-liquid-solid mode

    International Nuclear Information System (INIS)

    Zhang Guoqiang; Tateno, Kouta; Gotoh, Hideki; Nakano, Hidetoshi

    2010-01-01

    We report parallel aligned GaAs nanowires (NWs) with (110) orientation laterally grown on [311]B substrates via the vapor-liquid-solid mode and demonstrate their controllability and growth mechanism. We control the size, density, and site of the lateral NWs by using size- and density-selective Au colloidal particles and Au dot arrays defined by electron-beam lithography. The lateral NWs grow only along the [110] and [1-bar 1-bar 0] directions and formation of the stable facets of (111)B and (001) on the sides of the lateral NWs is crucial for lateral NW growth. We clarify the growth mechanism by comparing the growth results on [311]B, (311)A, and (001) substrates and the surface energy change of lateral and freestanding NWs.

  4. Advanced mathematical on-line analysis in nuclear experiments. Usage of parallel computing CUDA routines in standard root analysis

    Directory of Open Access Journals (Sweden)

    Grzeszczuk A.

    2015-01-01

    Full Text Available Compute Unified Device Architecture (CUDA is a parallel computing platform developed by Nvidia for increase speed of graphics by usage of parallel mode for processes calculation. The success of this solution has opened technology General-Purpose Graphic Processor Units (GPGPUs for applications not coupled with graphics. The GPGPUs system can be applying as effective tool for reducing huge number of data for pulse shape analysis measures, by on-line recalculation or by very quick system of compression. The simplified structure of CUDA system and model of programming based on example Nvidia GForce GTX580 card are presented by our poster contribution in stand-alone version and as ROOT application.

  5. Spray coating of self-aligning passivation layer for metal grid lines

    NARCIS (Netherlands)

    Vuorinen, T.; Janka, M.; Rubingh, J.E.J.M.; Tuukkanen, S.; Groen, P.; Lupo, D.

    2014-01-01

    In applications such as organic light emitting diodes (OLEDs) or photovoltaic cells a homogenous voltage distribution in the large anode layer needs to be ensured by including a metal grid with a transparent conductor layer. To ensure sufficient conductivity, relatively thick metal lines are used,

  6. Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine.

    Science.gov (United States)

    O'Sullivan, Finbarr; Keenan, Joanne; Aherne, Sinead; O'Neill, Fiona; Clarke, Colin; Henry, Michael; Meleady, Paula; Breen, Laura; Barron, Niall; Clynes, Martin; Horgan, Karina; Doolan, Padraig; Murphy, Richard

    2017-11-07

    To identify miRNA-regulated proteins differentially expressed between Caco2 and HT-29: two principal cell line models of the intestine. Exponentially growing Caco-2 and HT-29 cells were harvested and prepared for mRNA, miRNA and proteomic profiling. mRNA microarray profiling analysis was carried out using the Affymetrix GeneChip Human Gene 1.0 ST array. miRNA microarray profiling analysis was carried out using the Affymetrix Genechip miRNA 3.0 array. Quantitative Label-free LC-MS/MS proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano system coupled to a hybrid linear ion trap/Orbitrap mass spectrometer. Peptide identities were validated in Proteome Discoverer 2.1 and were subsequently imported into Progenesis QI software for further analysis. Hierarchical cluster analysis for all three parallel datasets (miRNA, proteomics, mRNA) was conducted in the R software environment using the Euclidean distance measure and Ward's clustering algorithm. The prediction of miRNA and oppositely correlated protein/mRNA interactions was performed using TargetScan 6.1. GO biological process, molecular function and cellular component enrichment analysis was carried out for the DE miRNA, protein and mRNA lists via the Pathway Studio 11.3 Web interface using their Mammalian database. Differential expression (DE) profiling comparing the intestinal cell lines HT-29 and Caco-2 identified 1795 Genes, 168 Proteins and 160 miRNAs as DE between the two cell lines. At the gene level, 1084 genes were upregulated and 711 were downregulated in the Caco-2 cell line relative to the HT-29 cell line. At the protein level, 57 proteins were found to be upregulated and 111 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Finally, at the miRNAs level, 104 were upregulated and 56 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Gene ontology (GO) analysis of the DE mRNA identified cell adhesion, migration and ECM organization, cellular lipid

  7. Operating system design of parallel computer for on-line management of nuclear pressurised water reactor cores

    International Nuclear Information System (INIS)

    Gougam, F.

    1991-04-01

    This study is part of the PHAETON project which aims at increasing the knowledge of safety parameters of PWR core and reducing operating margins during the reactor cycle. The on-line system associates a simulator process to compute the three dimensional flux distribution and an acquisition process of reactor core parameters from the central instrumentation. The 3D flux calculation is the most time consuming. So, for cost and safety reasons, the PHAETON project proposes an approach which is to parallelize the 3D diffusion calculation and to use a computer based on parallel processor architecture. This paper presents the design of the operating system on which the application is executed. The routine interface proposed, includes the main operations necessary for programming a real time and parallel application. The primitives include: task management, data transfer, synchronisation by event signalling and by using the rendez-vous mechanisms. The primitives which are proposed use standard softwares like real-time kernel and UNIX operating system [fr

  8. A New Track Reconstruction Algorithm suitable for Parallel Processing based on Hit Triplets and Broken Lines

    Directory of Open Access Journals (Sweden)

    Schöning André

    2016-01-01

    Full Text Available Track reconstruction in high track multiplicity environments at current and future high rate particle physics experiments is a big challenge and very time consuming. The search for track seeds and the fitting of track candidates are usually the most time consuming steps in the track reconstruction. Here, a new and fast track reconstruction method based on hit triplets is proposed which exploits a three-dimensional fit model including multiple scattering and hit uncertainties from the very start, including the search for track seeds. The hit triplet based reconstruction method assumes a homogeneous magnetic field which allows to give an analytical solutions for the triplet fit result. This method is highly parallelizable, needs fewer operations than other standard track reconstruction methods and is therefore ideal for the implementation on parallel computing architectures. The proposed track reconstruction algorithm has been studied in the context of the Mu3e-experiment and a typical LHC experiment.

  9. Geometrical reasoning in the primary school, the case of parallel lines

    OpenAIRE

    Sinclair, Nathalie; Jones, Keith

    2009-01-01

    During the primary school years, children are typically expected to develop ways of explaining their mathematical reasoning. This paper reports on ideas developed during an analysis of data from a project which involved young children (aged 5-7 years old) in a whole-class situation using dynamic geometry software (specifically Sketchpad). The focus is a classroom episode in which the children try to decide whether two lines that they know continue (but cannot see all of the continuation) will...

  10. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators.

    Science.gov (United States)

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru

    2013-09-01

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.

  11. High-voltage isolation transformer for sub-nanosecond rise time pulses constructed with annular parallel-strip transmission lines.

    Science.gov (United States)

    Homma, Akira

    2011-07-01

    A novel annular parallel-strip transmission line was devised to construct high-voltage high-speed pulse isolation transformers. The transmission lines can easily realize stable high-voltage operation and good impedance matching between primary and secondary circuits. The time constant for the step response of the transformer was calculated by introducing a simple low-frequency equivalent circuit model. Results show that the relation between the time constant and low-cut-off frequency of the transformer conforms to the theory of the general first-order linear time-invariant system. Results also show that the test transformer composed of the new transmission lines can transmit about 600 ps rise time pulses across the dc potential difference of more than 150 kV with insertion loss of -2.5 dB. The measured effective time constant of 12 ns agreed exactly with the theoretically predicted value. For practical applications involving the delivery of synchronized trigger signals to a dc high-voltage electron gun station, the transformer described in this paper exhibited advantages over methods using fiber optic cables for the signal transfer system. This transformer has no jitter or breakdown problems that invariably occur in active circuit components.

  12. Computational split-field finite-difference time-domain evaluation of simplified tilt-angle models for parallel-aligned liquid-crystal devices

    Science.gov (United States)

    Márquez, Andrés; Francés, Jorge; Martínez, Francisco J.; Gallego, Sergi; Álvarez, Mariela L.; Calzado, Eva M.; Pascual, Inmaculada; Beléndez, Augusto

    2018-03-01

    Simplified analytical models with predictive capability enable simpler and faster optimization of the performance in applications of complex photonic devices. We recently demonstrated the most simplified analytical model still showing predictive capability for parallel-aligned liquid crystal on silicon (PA-LCoS) devices, which provides the voltage-dependent retardance for a very wide range of incidence angles and any wavelength in the visible. We further show that the proposed model is not only phenomenological but also physically meaningful, since two of its parameters provide the correct values for important internal properties of these devices related to the birefringence, cell gap, and director profile. Therefore, the proposed model can be used as a means to inspect internal physical properties of the cell. As an innovation, we also show the applicability of the split-field finite-difference time-domain (SF-FDTD) technique for phase-shift and retardance evaluation of PA-LCoS devices under oblique incidence. As a simplified model for PA-LCoS devices, we also consider the exact description of homogeneous birefringent slabs. However, we show that, despite its higher degree of simplification, the proposed model is more robust, providing unambiguous and physically meaningful solutions when fitting its parameters.

  13. A germ cell determinant reveals parallel pathways for germ line development in Caenorhabditis elegans.

    Science.gov (United States)

    Mainpal, Rana; Nance, Jeremy; Yanowitz, Judith L

    2015-10-15

    Despite the central importance of germ cells for transmission of genetic material, our understanding of the molecular programs that control primordial germ cell (PGC) specification and differentiation are limited. Here, we present findings that X chromosome NonDisjunction factor-1 (XND-1), known for its role in regulating meiotic crossover formation, is an early determinant of germ cell fates in Caenorhabditis elegans. xnd-1 mutant embryos display a novel 'one PGC' phenotype as a result of G2 cell cycle arrest of the P4 blastomere. Larvae and adults display smaller germ lines and reduced brood size consistent with a role for XND-1 in germ cell proliferation. Maternal XND-1 proteins are found in the P4 lineage and are exclusively localized to the nucleus in PGCs, Z2 and Z3. Zygotic XND-1 turns on shortly thereafter, at the ∼300-cell stage, making XND-1 the earliest zygotically expressed gene in worm PGCs. Strikingly, a subset of xnd-1 mutants lack germ cells, a phenotype shared with nos-2, a member of the conserved Nanos family of germline determinants. We generated a nos-2 null allele and show that nos-2; xnd-1 double mutants display synthetic sterility. Further removal of nos-1 leads to almost complete sterility, with the vast majority of animals without germ cells. Sterility in xnd-1 mutants is correlated with an increase in transcriptional activation-associated histone modification and aberrant expression of somatic transgenes. Together, these data strongly suggest that xnd-1 defines a new branch for PGC development that functions redundantly with nos-2 and nos-1 to promote germline fates by maintaining transcriptional quiescence and regulating germ cell proliferation. © 2015. Published by The Company of Biologists Ltd.

  14. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    Science.gov (United States)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  15. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    International Nuclear Information System (INIS)

    Cho, Y; Chang, C-C; Zou, J; Wang, L V

    2016-01-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT. (paper)

  16. Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emulsion of targets at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Malone, Robert M.; Frogget, Brent C.; Kaufman, Morris I.; Tunnell, Thomas W.; Guyton, Robert L.; Reinbachs, Imants P.; Watts, Phillip W.

    2007-01-01

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 69 feet. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. The orange alignment laser is introduced at the entrance to the two-level interferometer table and passes forward through the optical systems to the recording streak cameras. The red alignment laser is introduced in front of the recording streak cameras and passes in the reverse direction through all optical elements, out of the interferometer table, eventually reaching the target chamber center. Red laser wavelength is selected to be at the 50 percent reflection point of a special beamsplitter used to separate emission light from the Doppler-shifted interferometer light. Movable aperture cards, placed before and after lens groups, show the spread of alignments spots created by the orange and red alignment lasers. Optical elements include 1- to 15-inch-diameter mirrors, lenses with up to 10.5-inch diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot

  17. A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field.

    Science.gov (United States)

    Lu, George J; Son, Woo Sung; Opella, Stanley J

    2011-04-01

    A general method for assigning oriented sample (OS) solid-state NMR spectra of proteins is demonstrated. In principle, this method requires only a single sample of a uniformly ¹⁵N-labeled membrane protein in magnetically aligned bilayers, and a previously assigned isotropic chemical shift spectrum obtained either from solution NMR on micelle or isotropic bicelle samples or from magic angle spinning (MAS) solid-state NMR on unoriented proteoliposomes. The sequential isotropic resonance assignments are transferred to the OS solid-state NMR spectra of aligned samples by correlating signals from the same residue observed in protein-containing bilayers aligned with their normals parallel and perpendicular to the magnetic field. The underlying principle is that the resonances from the same residue have heteronuclear dipolar couplings that differ by exactly a factor of two between parallel and perpendicular alignments. The method is demonstrated on the membrane-bound form of Pf1 coat protein in phospholipid bilayers, whose assignments have been previously made using an earlier generation of methods that relied on the preparation of many selectively labeled (by residue type) samples. The new method provides the correct resonance assignments using only a single uniformly ¹⁵N-labeled sample, two solid-state NMR spectra, and a previously assigned isotropic spectrum. Significantly, this approach is equally applicable to residues in alpha helices, beta sheets, loops, and any other elements of tertiary structure. Moreover, the strategy bridges between OS solid-state NMR of aligned samples and solution NMR or MAS solid-state NMR of unoriented samples. In combination with the development of complementary experimental methods, it provides a step towards unifying these apparently different NMR approaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. An attempt to identify the functional areas of the cerebral cortex on CT slices parallel to the orbito-meatal line

    International Nuclear Information System (INIS)

    Tanabe, Hirotaka; Okuda, Junichiro; Nishikawa, Takashi; Nishimura, Tsuyoshi; Shiraishi, Junzo.

    1982-01-01

    In order to identify the functional brain areas, such as Broca's area, on computed tomography slices parallel to the orbito-meatal line, the numbers of Brodmann's cortical mapping were shown on a diagram of representative brain sections parallel to the orbito-meatal line. Also, we described a method, using cerebral sulci as anatomical landmarks, for projecting lesions shown by CT scan onto the lateral brain diagram. The procedures were as follows. The distribution of lesions on CT slices was determined by the identification of major cerebral sulci and fissures, such as the Sylvian fissure, the central sulcus, and the superior frontal sulcus. Those lesions were then projected onto the lateral diagram by comparing each CT slice with the horizontal diagrams of brain sections. The method was demonstrated in three cases developing neuropsychological symptoms. (author)

  19. Precise rotational alignment of x-ray transmission diffraction gratings

    International Nuclear Information System (INIS)

    Hill, S.L.

    1988-01-01

    Gold transmission diffraction gratings used for x-ray spectroscopy must sometimes be rotationally aligned to the axis of a diagnostic instrument to within sub-milliradian accuracy. We have fabricated transmission diffraction gratings with high line-densities (grating period of 200 and 300 nm) using uv holographic and x-ray lithography. Since the submicron features of the gratings are not optically visible, precision alignment is time consuming and difficult to verify in situ. We have developed a technique to write an optically visible alignment pattern onto these gratings using a scanning electron microscope (SEM). At high magnification (15000 X) several submicron lines of the grating are observable in the SEM, making it possible to write an alignment pattern parallel to the grating lines in an electron-beam-sensitive coating that overlays the grating. We create an alignment pattern by following a 1-cm-long grating line using the SEM's joystick-controlled translation stage. By following the same grating line we are assured the traveled direction of the SEM electron beam is parallel to the grating to better than 10 μradian. The electron-beam-exposed line-width can be large (5 to 15 μm wide) depending on the SEM magnification, and is therefore optically visible. The exposed pattern is eventually made a permanent feature of the grating by ion beam etching or gold electroplating. The pattern can be used to accurately align the grating to the axis of a diagnostic instrument. More importantly, the alignment of the grating can be quickly verified in situ

  20. New overlay measurement technique with an i-line stepper using embedded standard field image alignment marks for wafer bonding applications

    Science.gov (United States)

    Kulse, P.; Sasai, K.; Schulz, K.; Wietstruck, M.

    2017-06-01

    marks. In this work, the non-contact infrared alignment system of the Nikon i-line Stepper NSR-SF150 for both the alignment and the overlay determination of bonded wafer stacks with embedded alignment marks are used to achieve an accurate alignment between the different wafer sides. The embedded field image alignment (FIA) marks of the interface and the device wafer top layer are measured in a single measurement job. By taking the offsets between all different FIA's into account, after correcting the wafer rotation induced FIA position errors, hence an overlay for the stacked wafers can be determined. The developed approach has been validated by a standard back to front side application. The overlay was measured and determined using both, the EVG NT40 automated measurement system with special overlay marks and the measurement of the FIA marks of the front and back side layer. A comparison of both results shows mismatches in x and y translations smaller than 200 nm, which is relatively small compared to the overlay tolerances of +/-500 nm for the back to front side process. After the successful validation of the developed technique, special wafer stacks with FIA alignment marks in the bonding interface are fabricated. Due to the super IR light transparency of both doubled side polished wafers, the embedded FIA marks generate a stable and clear signal for accurate x and y wafer coordinate positioning. The FIA marks of the device wafer top layer were measured under standard condition in a developed photoresist mask without IR illumination. Following overlay calculation shows an overlay of less than 200 nm, which enables very accurate process condition for highly scaled TSV integration and advanced substrate integration into IHP's 0.25/0.13 μm SiGe:C BiCMOS technology. The presented method can be applied for both the standard back to front side process technologies and also new temporary and permanent wafer bonding applications.

  1. MOEA based design of decentralized controllers for LFC of interconnected power systems with nonlinearities, AC-DC parallel tie-lines and SMES units

    International Nuclear Information System (INIS)

    Ganapathy, S.; Velusami, S.

    2010-01-01

    A new design of Multi-Objective Evolutionary Algorithm based decentralized controllers for load-frequency control of interconnected power systems with Governor Dead Band and Generation Rate Constraint nonlinearities, AC-DC parallel tie-lines and Superconducting Magnetic Energy Storage (SMES) units, is proposed in this paper. The HVDC link is used as system interconnection in parallel with AC tie-line to effectively damp the frequency oscillations of AC system while the SMES unit provides bulk energy storage and release, thereby achieving combined benefits. The proposed controller satisfies two main objectives, namely, minimum Integral Squared Error of the system output and maximum closed-loop stability of the system. Simulation studies are conducted on a two area interconnected power system with nonlinearities, AC-DC tie-lines and SMES units. Results indicate that the proposed controller improves the transient responses and guarantees the closed-loop stability of the overall system even in the presence of system nonlinearities and with parameter changes.

  2. Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion.

    Directory of Open Access Journals (Sweden)

    Prakash Babu Narasimhan

    2018-04-01

    Full Text Available A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma or to live microfilariae (mf of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β, M2-associated (CCL13, CD206, Mreg-associated (IL-10, TGF-β, and angiogenesis associated (MMP9, VEGF genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.

  3. Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion.

    Science.gov (United States)

    Narasimhan, Prakash Babu; Akabas, Leor; Tariq, Sameha; Huda, Naureen; Bennuru, Sasisekhar; Sabzevari, Helen; Hofmeister, Robert; Nutman, Thomas B; Tolouei Semnani, Roshanak

    2018-04-01

    A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma) or to live microfilariae (mf) of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β), M2-associated (CCL13, CD206), Mreg-associated (IL-10, TGF-β), and angiogenesis associated (MMP9, VEGF) genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.

  4. On-line electrochemistry-bioaffinity screening with parallel HR-LC-MS for the generation and characterization of modified p38α kinase inhibitors.

    Science.gov (United States)

    Falck, David; de Vlieger, Jon S B; Giera, Martin; Honing, Maarten; Irth, Hubertus; Niessen, Wilfried M A; Kool, Jeroen

    2012-04-01

    In this study, an integrated approach is developed for the formation, identification and biological characterization of electrochemical conversion products of p38α mitogen-activated protein kinase inhibitors. This work demonstrates the hyphenation of an electrochemical reaction cell with a continuous-flow bioaffinity assay and parallel LC-HR-MS. Competition of the formed products with a tracer (SKF-86002) that shows fluorescence enhancement in the orthosteric binding site of the p38α kinase is the readout for bioaffinity. Parallel HR-MS(n) experiments provided information on the identity of binders and non-binders. Finally, the data produced with this on-line system were compared to electrochemical conversion products generated off-line. The electrochemical conversion of 1-{6-chloro-5-[(2R,5S)-4-(4-fluorobenzyl)-2,5-dimethylpiperazine-1-carbonyl]-3aH-indol-3-yl}-2-morpholinoethane-1,2-dione resulted in eight products, three of which showed bioaffinity in the continuous-flow p38α bioaffinity assay used. Electrochemical conversion of BIRB796 resulted, amongst others, in the formation of the reactive quinoneimine structure and its corresponding hydroquinone. Both products were detected in the p38α bioaffinity assay, which indicates binding to the p38α kinase.

  5. Precision alignment device

    Science.gov (United States)

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  6. Stability of arsenic peptides in plant extracts: off-line versus on-line parallel elemental and molecular mass spectrometric detection for liquid chromatographic separation.

    Science.gov (United States)

    Bluemlein, Katharina; Raab, Andrea; Feldmann, Jörg

    2009-01-01

    The instability of metal and metalloid complexes during analytical processes has always been an issue of an uncertainty regarding their speciation in plant extracts. Two different speciation protocols were compared regarding the analysis of arsenic phytochelatin (As(III)PC) complexes in fresh plant material. As the final step for separation/detection both methods used RP-HPLC simultaneously coupled to ICP-MS and ES-MS. However, one method was the often used off-line approach using two-dimensional separation, i.e. a pre-cleaning step using size-exclusion chromatography with subsequent fraction collection and freeze-drying prior to the analysis using RP-HPLC-ICP-MS and/or ES-MS. This approach revealed that less than 2% of the total arsenic was bound to peptides such as phytochelatins in the root extract of an arsenate exposed Thunbergia alata, whereas the direct on-line method showed that 83% of arsenic was bound to peptides, mainly as As(III)PC(3) and (GS)As(III)PC(2). Key analytical factors were identified which destabilise the As(III)PCs. The low pH of the mobile phase (0.1% formic acid) using RP-HPLC-ICP-MS/ES-MS stabilises the arsenic peptide complexes in the plant extract as well as the free peptide concentration, as shown by the kinetic disintegration study of the model compound As(III)(GS)(3) at pH 2.2 and 3.8. But only short half-lives of only a few hours were determined for the arsenic glutathione complex. Although As(III)PC(3) showed a ten times higher half-life (23 h) in a plant extract, the pre-cleaning step with subsequent fractionation in a mobile phase of pH 5.6 contributes to the destabilisation of the arsenic peptides in the off-line method. Furthermore, it was found that during a freeze-drying process more than 90% of an As(III)PC(3) complex and smaller free peptides such as PC(2) and PC(3) can be lost. Although the two-dimensional off-line method has been used successfully for other metal complexes, it is concluded here that the fractionation and

  7. Study on Distribution Reliability with Parallel and On-site Distributed Generation Considering Protection Miscoordination and Tie Line

    Science.gov (United States)

    Chaitusaney, Surachai; Yokoyama, Akihiko

    In distribution system, Distributed Generation (DG) is expected to improve the system reliability as its backup generation. However, DG contribution in fault current may cause the loss of the existing protection coordination, e.g. recloser-fuse coordination and breaker-breaker coordination. This problem can drastically deteriorate the system reliability, and it is more serious and complicated when there are several DG sources in the system. Hence, the above conflict in reliability aspect unavoidably needs a detailed investigation before the installation or enhancement of DG is done. The model of composite DG fault current is proposed to find the threshold beyond which existing protection coordination is lost. Cases of protection miscoordination are described, together with their consequences. Since a distribution system may be tied with another system, the issues of tie line and on-site DG are integrated into this study. Reliability indices are evaluated and compared in the distribution reliability test system RBTS Bus 2.

  8. Power-flow control and stability enhancement of four parallel-operated offshore wind farms using a line-commutated HVDC link

    DEFF Research Database (Denmark)

    Wang, Li; Wang, Kuo-Hua; Lee, Wei-Jen

    2010-01-01

    This paper presents an effective control scheme using a line-commutated high-voltage direct-current (HVDC) link with a designed rectifier current regulator (RCR) to simultaneously perform both power-fluctuation mitigation and damping improvement of four parallel-operated 80-MW offshore wind farms...... delivering generated power to a large utility grid. The proposed RCR of the HVDC link is designed by using modal control theory to contribute adequate damping to the studied four offshore wind farms under various wind speeds. A systematic analysis using a frequency-domain approach based on eigenvalue...... characteristics to the studied offshore wind farms under various wind speeds but also effectively mitigate power fluctuations of the offshore wind farms under wind-speed disturbance conditions....

  9. Pairwise Sequence Alignment Library

    Energy Technology Data Exchange (ETDEWEB)

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.

  10. VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Atek, H.; Colbert, J.; Shim, H. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Siana, B.; Bridge, C. [Department of Astronomy, Caltech, Pasadena, CA 91125 (United States); Scarlata, C. [Department of Astronomy, University of Minnesota-Twin Cities, Minneapolis, MN 55455 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); McCarthy, P.; Dressler, A.; Hathi, N. P. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Teplitz, H. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Henry, A.; Martin, C. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bunker, A. J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Fosbury, R. A. E. [Space Telescope-European Coordinating Facility, Garching bei Muenchen (Germany)

    2011-12-20

    The WFC3 Infrared Spectroscopic Parallel Survey uses the Hubble Space Telescope (HST) infrared grism capabilities to obtain slitless spectra of thousands of galaxies over a wide redshift range including the peak of star formation history of the universe. We select a population of very strong emission-line galaxies with rest-frame equivalent widths (EWs) higher than 200 A. A total of 176 objects are found over the redshift range 0.35 < z < 2.3 in the 180 arcmin{sup 2} area that we have analyzed so far. This population consists of young and low-mass starbursts with high specific star formation rates (sSFR). After spectroscopic follow-up of one of these galaxies with Keck/Low Resolution Imaging Spectrometer, we report the detection at z = 0.7 of an extremely metal-poor galaxy with 12 + log(O/H) =7.47 {+-} 0.11. After estimating the active galactic nucleus fraction in the sample, we show that the high-EW galaxies have higher sSFR than normal star-forming galaxies at any redshift. We find that the nebular emission lines can substantially affect the total broadband flux density with a median brightening of 0.3 mag, with some examples of line contamination producing brightening of up to 1 mag. We show that the presence of strong emission lines in low-z galaxies can mimic the color-selection criteria used in the z {approx} 8 dropout surveys. In order to effectively remove low-redshift interlopers, deep optical imaging is needed, at least 1 mag deeper than the bands in which the objects are detected. Without deep optical data, most of the interlopers cannot be ruled out in the wide shallow HST imaging surveys. Finally, we empirically demonstrate that strong nebular lines can lead to an overestimation of the mass and the age of galaxies derived from fitting of their spectral energy distribution (SED). Without removing emission lines, the age and the stellar mass estimates are overestimated by a factor of 2 on average and up to a factor of 10 for the high-EW galaxies

  11. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    Most of the work in muon alignment since December 2009 has focused on the geometry reconstruction from the optical systems and improvements in the internal alignment of the DT chambers. The barrel optical alignment system has progressively evolved from reconstruction of single active planes to super-planes (December 09) to a new, full barrel reconstruction. Initial validation studies comparing this full barrel alignment at 0T with photogrammetry provide promising results. In addition, the method has been applied to CRAFT09 data, and the resulting alignment at 3.8T yields residuals from tracks (extrapolated from the tracker) which look smooth, suggesting a good internal barrel alignment with a small overall offset with respect to the tracker. This is a significant improvement, which should allow the optical system to provide a start-up alignment for 2010. The end-cap optical alignment has made considerable progress in the analysis of transfer line data. The next set of alignment constants for CSCs will there...

  12. Precise synaptic efficacy alignment suggests potentiation dominated learning

    Directory of Open Access Journals (Sweden)

    Christoph eHartmann

    2016-01-01

    Full Text Available Recent evidence suggests that parallel synapses from the same axonal branch onto the same dendritic branch have almost identical strength. It has been proposed that this alignment is only possible through learning rules that integrate activity over long time spans. However, learning mechanisms such as spike-timing-dependent plasticity (STDP are commonly assumed to be temporally local. Here, we propose that the combination of temporally local STDP and a multiplicative synaptic normalization mechanism is sufficient to explain the alignment of parallel synapses.To address this issue, we introduce three increasingly complex models: First, we model the idealized interaction of STDP and synaptic normalization in a single neuron as a simple stochastic process and derive analytically that the alignment effect can be described by a so-called Kesten process. From this we can derive that synaptic efficacy alignment requires potentiation-dominated learning regimes. We verify these conditions in a single-neuron model with independent spiking activities but more realistic synapses. As expected, we only observe synaptic efficacy alignment for long-term potentiation-biased STDP. Finally, we explore how well the findings transfer to recurrent neural networks where the learning mechanisms interact with the correlated activity of the network. We find that due to the self-reinforcing correlations in recurrent circuits under STDP, alignment occurs for both long-term potentiation- and depression-biased STDP, because the learning will be potentiation dominated in both cases due to the potentiating events induced by correlated activity. This is in line with recent results demonstrating a dominance of potentiation over depression during waking and normalization during sleep. This leads us to predict that individual spine pairs will be more similar in the morning than they are after sleep depriviation.In conclusion, we show that synaptic normalization in conjunction with

  13. LINES

    Directory of Open Access Journals (Sweden)

    Minas Bakalchev

    2015-10-01

    Full Text Available The perception of elements in a system often creates their interdependence, interconditionality, and suppression. The lines from a basic geometrical element have become the model of a reductive world based on isolation according to certain criteria such as function, structure, and social organization. Their traces are experienced in the contemporary world as fragments or ruins of a system of domination of an assumed hierarchical unity. How can one release oneself from such dependence or determinism? How can the lines become less “systematic” and forms more autonomous, and less reductive? How is a form released from modernistic determinism on the new controversial ground? How can these elements or forms of representation become forms of action in the present complex world? In this paper, the meaning of lines through the ideas of Le Corbusier, Leonidov, Picasso, and Hitchcock is presented. Spatial research was made through a series of examples arising from the projects of the architectural studio “Residential Transformations”, which was a backbone for mapping the possibilities ranging from playfulness to exactness, as tactics of transformation in the different contexts of the contemporary world.

  14. Alignment of CEBAF cryomodules

    International Nuclear Information System (INIS)

    Schneider, W.J.; Bisognano, J.J.; Fischer, J.

    1993-06-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, when completed, will house a 4 GeV recirculating accelerator. Each of the accelerator's two linacs contains 160 superconducting radio frequency (SRF) 1497 MHz niobium cavities in 20 cryomodules. Alignments of the cavities within the cryomodule with respect to beam axis is critical to achieving the optimum accelerator performance. This paper discusses the rationale for the current specification on cavity mechanical alignment: 2 mrad (rms) applied to the 0.5 m active length cavities. We describe the tooling that was developed to achieve the tolerance at the time of cavity pair assembly, to preserve and integrate alignment during cryomodule assembly, and to translate alignment to appropriate installation in the beam line

  15. Beyond Alignment

    DEFF Research Database (Denmark)

    Beyond Alignment: Applying Systems Thinking to Architecting Enterprises is a comprehensive reader about how enterprises can apply systems thinking in their enterprise architecture practice, for business transformation and for strategic execution. The book's contributors find that systems thinking...

  16. Decreased CSF-flow artefacts in T2 imaging of the cervical spine with periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER/BLADE)

    International Nuclear Information System (INIS)

    Ragoschke-Schumm, Andreas; Schmidt, Peter; Mayer, Thomas E.; Schumm, Julia; Reimann, Georg; Mentzel, Hans-Joachim; Kaiser, Werner A.

    2011-01-01

    The cervical spine is prone to artefacts in T2 MR-imaging due to patient movements and cerebrospinal fluid flow. The periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER/BLADE) acquisition method was developed to reduce motion artefacts. We sought to determine if T2-BLADE is superior to T2-TSE with conventional k-space reading. Twenty-five patients were examined using a 1.5 T MR-scanner. T2-weighted imaging of the cervical spine in sagittal and axial orientation using conventional or BLADE k-space reading was performed. Spinal cord, subarachnoid space, vertebrae and discs were evaluated by two independent observers using a scale from 0 (non-diagnostic) to 3 (excellent). Interobserver correlation was assessed as Cohen's kappa. Results of Mann-Whitney U test with p < 0.05 were regarded as significant. Furthermore, the investigators were asked for subjective evaluation in consensus. Overall interobserver accuracy of κ = 0.91 was obtained. Comparison of sagittal images showed better values for all investigated structures in T2-BLADE: spinal cord (TSE/BLADE: 1.52/2.04; p < 0.001), subarachnoid space (1.36/2.06; p < 0.001) and vertebrae/discs (1.66/2.86; p < 0.001). Comparison of axial images showed better values in T2-BLADE for spinal cord (1.68/1.86; p = 0.149) and vertebrae/discs (1.0/1.96: p < 0.001) while subarachnoid space was better to be evaluated in conventional T2-TSE (1.94/1.12; p < 0.001). In sagittal orientation, motion- and CSF-flow artefacts were reduced in T2-BLADE. In axial orientation, however, CSF-flow artefacts were pronounced in T2-BLADE. The image quality of the sagittal T2-BLADE sequences was significantly better than the T2-TSE and acquired in less time. In axial orientation, increased CSF-flow artefacts may reduce accuracy of structures in the subarachnoid space. (orig.)

  17. Parallel rendering

    Science.gov (United States)

    Crockett, Thomas W.

    1995-01-01

    This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.

  18. Parallel computations

    CERN Document Server

    1982-01-01

    Parallel Computations focuses on parallel computation, with emphasis on algorithms used in a variety of numerical and physical applications and for many different types of parallel computers. Topics covered range from vectorization of fast Fourier transforms (FFTs) and of the incomplete Cholesky conjugate gradient (ICCG) algorithm on the Cray-1 to calculation of table lookups and piecewise functions. Single tridiagonal linear systems and vectorized computation of reactive flow are also discussed.Comprised of 13 chapters, this volume begins by classifying parallel computers and describing techn

  19. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach

    International Nuclear Information System (INIS)

    Uyar, Tansel; Çökeliler, Dilek; Doğan, Mustafa; Koçum, Ismail Cengiz; Karatay, Okan; Denkbaş, Emir Baki

    2016-01-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m 3 (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was found

  20. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach

    Energy Technology Data Exchange (ETDEWEB)

    Uyar, Tansel [Department of Biomedical Engineering, Başkent University Bağlıca Campus, 06530 Ankara (Turkey); Çökeliler, Dilek, E-mail: cokeliler@baskent.edu.tr [Department of Biomedical Engineering, Başkent University Bağlıca Campus, 06530 Ankara (Turkey); Doğan, Mustafa [Department of Electrical and Electronics Engineering, Başkent University, Ankara 06180 (Turkey); Koçum, Ismail Cengiz [Department of Biomedical Engineering, Başkent University Bağlıca Campus, 06530 Ankara (Turkey); Karatay, Okan [Department of Electrical and Electronics Engineering, Başkent University, Ankara 06180 (Turkey); Denkbaş, Emir Baki [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey)

    2016-05-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m{sup 3} (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was

  1. On-line image guidance for frameless stereotactic radiotherapy of lung malignancies by cone beam CT: Comparison between target localization and alignment on bony anatomy

    International Nuclear Information System (INIS)

    Masi, Laura; Casamassima, Franco; Menichelli, Claudia; Pasciuti, Katia; Doro, Raffaela; Polli, Caterina; D'imporzano, Elena; Bonucci, Ivano

    2008-01-01

    Introduction. Free-breathing stereotactic radiotherapy for lung malignancies requires reliable prediction of respiratory motion and accurate target localization. A protocol was adopted for reproducibility and reduction of respiratory motion and for target localization by CBCT image guidance. Tumor respiratory displacements and tumor positioning errors relative to bony anatomy alignment are analyzed. Materials and method. Image guided SRT was performed for 99 lung malignancies. Two groups of patients were considered: group A did not perform any breathing control; group B controlled visually their respiratory cycle and volumes on an Active Breathing Coordinator (ABC) monitor during the acquisition of simulation CT and CBCT, and treatment delivery. GTV on end inhale and exhale CT data sets were fused in an ITV and the extent of tumor motion evaluated between these 2 phases. A pre-treatment CBCT was acquired and aligned to the reference CT using bony anatomy; for tumor positioning the ITV contour on the reference CT was matched to the visible tumor on CBCT. Interobserver variability of tumor positioning was evaluated. ITV and CBCT tumor dimensions were compared. Results. 3D tumor breathing displacement (mean±SD) was significantly higher for group A (14.7±9.9 mm) than for group B (4.7±3.1 mm). The detected differences between tumor and bony structure alignment below 3 mm were 68% for group B and 45% for group A, reaching statistical significance. Interobserver variability was 1.7±1.1 mm (mean±SD). Dimensions of tumor image on CBCT were consistent with ITV dimensions for group B (max difference 14%). Conclusions. The adopted protocol seems effective in reducing respiratory internal movements and margin. Tumor positioning errors relative to bony anatomy are also reduced. However bony anatomy as a surrogate of the target may still lead to some relevant positioning errors. Target visualization on CBCT is essential for an accurate localization in lung SRT

  2. The Subaru FMOS galaxy redshift survey (FastSound). V. Intrinsic alignments of emission-line galaxies at z ˜ 1.4

    Science.gov (United States)

    Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto

    2018-04-01

    Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.

  3. Parallel algorithms

    CERN Document Server

    Casanova, Henri; Robert, Yves

    2008-01-01

    ""…The authors of the present book, who have extensive credentials in both research and instruction in the area of parallelism, present a sound, principled treatment of parallel algorithms. … This book is very well written and extremely well designed from an instructional point of view. … The authors have created an instructive and fascinating text. The book will serve researchers as well as instructors who need a solid, readable text for a course on parallelism in computing. Indeed, for anyone who wants an understandable text from which to acquire a current, rigorous, and broad vi

  4. Problems with earth fault detecting relays assigned to parallel cables or overhead lines; Probleme bei der Erdschlussortung mit wattmetrischen Erdschlussrichtungsrelais bei parallelen Kabeln oder Leitungen

    Energy Technology Data Exchange (ETDEWEB)

    Birkner, P.; Foerg, R. [Lech-Elektrizitaetswerke AG, Augsburg (Germany)

    1998-06-29

    For practical conditions one can find currents in underground electrical conductors like cable coverings earthed on both sides. As an example these currents are due to the alternating current system of the railroad or to the alternating current system of a Peterson coil, that tries to find a minimum resistance way from the transformer station to the place of the earth fault. Currents like these create a series voltage in the cable by inductive coupling. The voltage depends on the type and the length of the cable. The series voltages of all three phases form a zero sequence system. Taking into consideration that two cable systems running parallel to another, under certain circumstances it is possible to achieve a circulating zero sequence current. Additionally there is a shift voltage between the neutral point and the earth in the case of an earth fault in another place in the grid. The combination of these two factors can cause a malfunction of the earth fault detecting relays that are assigned to the parallel cable system. (orig.) [Deutsch] Im Erdreich vorhandene elektrische Leiter, z.B. die beidseitig geerdeten Schirme von Energiekabeln, werden in der Praxis nicht selten von Stroemen beaufschlagt. Dabei kann es sich z.B. auch um den Wechselstrom einer Petersenspule, der sich im Erdschlussfall einen widerstandsminimierten Weg vom Umspannwerk zur Fehlerstelle sucht, handeln. Ueber induktive Einkopplung entsteht im Leiter des Kabels eine Laengsspannung. Deren Hoehe ist vom Kabeltyp und der Kabellaenge abhaengig. Liegt als Netzkonfiguration eine Doppelleitung vor, die parallel betrieben wird, so koennen sich unter gewissen Randbedingungen kreisende Nullstroeme ausbilden. Diese wiederum koennen bei Vorhandensein einer Verlagerungsspannung zu einem Fehlansprechen von wattmetrischen Erdschlussrichtungsrelais fuehren. (orig.)

  5. Microwave and Millimeter Wave Properties of Vertically-Aligned Single Wall Carbon Nanotubes Films

    Science.gov (United States)

    Haddadi, K.; Tripon-Canseliet, C.; Hivin, Q.; Ducournau, G.; Teo, E.; Coquet, P.; Tay, B. K.; Lepilliet, S.; Avramovic, V.; Chazelas, J.; Decoster, D.

    2016-05-01

    We present the experimental determination of the complex permittivity of vertically aligned single wall carbon nanotubes (SWCNTs) films grown on quartz substrates in the microwave regime from 10 MHz up to 67 GHz, with the electrical field perpendicular to the main axis of the carbon nanotubes (CNTs), based on coplanar waveguide transmission line approach together with the measurement of the microwave impedance of top metalized vertically—aligned SWCNTs grown on conductive silicon substrates up to 26 GHz. From coplanar waveguide measurements, we obtain a real part of the permittivity almost equal to unity, which is interpreted in terms of low carbon atom density (3 × 1019 at/cm3) associated with a very low imaginary part of permittivity (vertically aligned CNTs bundle equivalent to a low resistance reveals a good conductivity (3 S/cm) parallel to the CNTs axis. From these two kinds of data, we experimentally demonstrate the tensor nature of the vertically grown CNTs bundles.

  6. Conductance of auroral magnetic field lines

    International Nuclear Information System (INIS)

    Weimer, D.R.; Gurnett, D.A.; Goertz, C.K.

    1986-01-01

    DE-1 high-resolution double-probe electric-field data and simultaneous magnetic-field measurements are reported for two 1981 events with large electric fields which reversed over short distances. The data are presented graphically and analyzed in detail. A field-line conductance of about 1 nmho/sq m is determined for both upward and downward currents, and the ionospheric conductivity is shown, in the short-wavelength limit, to have little effect on the relationship between the (N-S) electric and (E-W) magnetic fields above the potential drop parallel to the magnetic-field lines. The results are found to be consistent with a linear relationship between the field-aligned current density and the parallel potential drop. 14 references

  7. PORTA: A three-dimensional multilevel radiative transfer code for modeling the intensity and polarization of spectral lines with massively parallel computers

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Jiří; Trujillo Bueno, J.

    2013-01-01

    Roč. 557, September (2013), A143/1-A143/15 ISSN 0004-6361 R&D Projects: GA ČR GPP209/12/P741 Grant - others:EU(XE) COST action MP1104 Institutional support: RVO:67985815 Keywords : line formation * magnetic fields * numerical methods Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  8. Antares automatic beam alignment system

    International Nuclear Information System (INIS)

    Appert, Q.; Swann, T.; Sweatt, W.; Saxman, A.

    1980-01-01

    Antares is a 24-beam-line CO 2 laser system for controlled fusion research, under construction at Los Alamos Scientific Laboratory (LASL). Rapid automatic alignment of this system is required prior to each experiment shot. The alignment requirements, operational constraints, and a developed prototype system are discussed. A visible-wavelength alignment technique is employed that uses a telescope/TV system to view point light sources appropriately located down the beamline. Auto-alignment is accomplished by means of a video centroid tracker, which determines the off-axis error of the point sources. The error is nulled by computer-driven, movable mirrors in a closed-loop system. The light sources are fiber-optic terminations located at key points in the optics path, primarily at the center of large copper mirrors, and remotely illuminated to reduce heating effects

  9. Fixture for aligning motor assembly

    Science.gov (United States)

    Shervington, Roger M.; Vaghani, Vallabh V.; Vanek, Laurence D.; Christensen, Scott A.

    2009-12-08

    An alignment fixture includes a rotor fixture, a stator fixture and a sensor system which measures a rotational displacement therebetween. The fixture precisely measures rotation of a generator stator assembly away from a NULL position referenced by a unique reference spline on the rotor shaft. By providing an adjustable location of the stator assembly within the housing, the magnetic axes within each generator shall be aligned to a predetermined and controlled tolerance between the generator interface mounting pin and the reference spline on the rotor shaft. Once magnetically aligned, each generator is essentially a line replaceable unit which may be readily mounted to any input of a multi-generator gearbox assembly with the assurance that the magnetic alignment will be within a predetermined tolerance.

  10. Identification of phenylbutyrate-generated metabolites in Huntington disease patients using parallel liquid chromatography/electrochemical array/mass spectrometry and off-line tandem mass spectrometry.

    Science.gov (United States)

    Ebbel, Erika N; Leymarie, Nancy; Schiavo, Susan; Sharma, Swati; Gevorkian, Sona; Hersch, Steven; Matson, Wayne R; Costello, Catherine E

    2010-04-15

    Oral sodium phenylbutyrate (SPB) is currently under investigation as a histone deacetylation (HDAC) inhibitor in Huntington disease (HD). Ongoing studies indicate that symptoms related to HD genetic abnormalities decrease with SPB therapy. In a recently reported safety and tolerability study of SPB in HD, we analyzed overall chromatographic patterns from a method that employs gradient liquid chromatography with series electrochemical array, ultraviolet (UV), and fluorescence (LCECA/UV/F) for measuring SPB and its metabolite phenylacetate (PA). We found that plasma and urine from SPB-treated patients yielded individual-specific patterns of approximately 20 metabolites that may provide a means for the selection of subjects for extended trials of SPB. The structural identification of these metabolites is of critical importance because their characterization will facilitate understanding the mechanisms of drug action and possible side effects. We have now developed an iterative process with LCECA, parallel LCECA/LCMS, and high-performance tandem MS for metabolite characterization. Here we report the details of this method and its use for identification of 10 plasma and urinary metabolites in treated subjects, including indole species in urine that are not themselves metabolites of SPB. Thus, this approach contributes to understanding metabolic pathways that differ among HD patients being treated with SPB. Copyright 2010 Elsevier Inc. All rights reserved.

  11. The rigors of aligning performance

    OpenAIRE

    Hart, Andrew; Lucas, James

    2015-01-01

    Approved for public release; distribution is unlimited This Joint Applied Project addresses what can be done within the Naval Facilities Engineering Command Northwest community to better align its goals among competing interests from various stakeholders, while balancing the operational and regulatory constraints that often conflict with stakeholder goals and objectives. As a cross-functional organization, competing interests among the various business lines, support lines, and other stake...

  12. Magnetic field-aligned particle precipitation

    International Nuclear Information System (INIS)

    Carlson, W.

    1985-01-01

    Magnetic field-aligned particle fluxes are a common auroral phenomenon. Precipitating field-aligned electrons are seen in the vicinity of auroral arcs as suprathermal bursts, as well as superimposed on the more isotropic inverted V electron precipitation. Electron distribution functions reveal two distinct source populations for the inverted V and field-aligned electron components, and also suggest possible acceleration mechanisms. The inverted V electrons are a hot, boundary plasma sheet population that gains the full parallel acceleration. The field-aligned component appears to originate from cold ionospheric electrons that may be distributed throughout the acceleration region. A turbulent parallel field might explain the apparent lifetime of cold electrons in the acceleration region

  13. Parallel computation

    International Nuclear Information System (INIS)

    Jejcic, A.; Maillard, J.; Maurel, G.; Silva, J.; Wolff-Bacha, F.

    1997-01-01

    The work in the field of parallel processing has developed as research activities using several numerical Monte Carlo simulations related to basic or applied current problems of nuclear and particle physics. For the applications utilizing the GEANT code development or improvement works were done on parts simulating low energy physical phenomena like radiation, transport and interaction. The problem of actinide burning by means of accelerators was approached using a simulation with the GEANT code. A program of neutron tracking in the range of low energies up to the thermal region has been developed. It is coupled to the GEANT code and permits in a single pass the simulation of a hybrid reactor core receiving a proton burst. Other works in this field refers to simulations for nuclear medicine applications like, for instance, development of biological probes, evaluation and characterization of the gamma cameras (collimators, crystal thickness) as well as the method for dosimetric calculations. Particularly, these calculations are suited for a geometrical parallelization approach especially adapted to parallel machines of the TN310 type. Other works mentioned in the same field refer to simulation of the electron channelling in crystals and simulation of the beam-beam interaction effect in colliders. The GEANT code was also used to simulate the operation of germanium detectors designed for natural and artificial radioactivity monitoring of environment

  14. Processing semblances induced through inter-postsynaptic functional LINKs, presumed biological parallels of K-lines proposed for building artificial intelligence

    Directory of Open Access Journals (Sweden)

    Kunjumon I Vadakkan

    2011-07-01

    Full Text Available The internal sensation of memory, which is available only to the owner of an individual nervous system, is difficult to analyze for its basic elements of operation. We hypothesize that associative learning induces the formation of functional LINK between the postsynapses. During memory retrieval, the activation of either postsynapse re-activates the functional LINK evoking a semblance of sensory activity arriving at its opposite postsynapse, nature of which defines the basic unit of virtual internal sensation - namely, semblion. Neuronal networks that undergo continuous oscillatory activity at certain levels of their organization induce semblions enabling the system to continuously learn, self-organize, and demonstrate instantiation, features that can be utilized for developing artificial intelligence (AI. Suitability of the inter-postsynaptic functional LINKs to meet the expectations of Minsky’s K-lines, basic elements of a memory theory generated to develop AI and methods to replicate semblances outside the nervous system are explained.

  15. DIDA: Distributed Indexing Dispatched Alignment.

    Directory of Open Access Journals (Sweden)

    Hamid Mohamadi

    Full Text Available One essential application in bioinformatics that is affected by the high-throughput sequencing data deluge is the sequence alignment problem, where nucleotide or amino acid sequences are queried against targets to find regions of close similarity. When queries are too many and/or targets are too large, the alignment process becomes computationally challenging. This is usually addressed by preprocessing techniques, where the queries and/or targets are indexed for easy access while searching for matches. When the target is static, such as in an established reference genome, the cost of indexing is amortized by reusing the generated index. However, when the targets are non-static, such as contigs in the intermediate steps of a de novo assembly process, a new index must be computed for each run. To address such scalability problems, we present DIDA, a novel framework that distributes the indexing and alignment tasks into smaller subtasks over a cluster of compute nodes. It provides a workflow beyond the common practice of embarrassingly parallel implementations. DIDA is a cost-effective, scalable and modular framework for the sequence alignment problem in terms of memory usage and runtime. It can be employed in large-scale alignments to draft genomes and intermediate stages of de novo assembly runs. The DIDA source code, sample files and user manual are available through http://www.bcgsc.ca/platform/bioinfo/software/dida. The software is released under the British Columbia Cancer Agency License (BCCA, and is free for academic use.

  16. Accelerating large-scale protein structure alignments with graphics processing units

    Directory of Open Access Journals (Sweden)

    Pang Bin

    2012-02-01

    Full Text Available Abstract Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs. As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU.

  17. Alignments of the galaxies in and around the Virgo cluster with the local velocity shear

    International Nuclear Information System (INIS)

    Lee, Jounghun; Rey, Soo Chang; Kim, Suk

    2014-01-01

    Observational evidence is presented for the alignment between the cosmic sheet and the principal axis of the velocity shear field at the position of the Virgo cluster. The galaxies in and around the Virgo cluster from the Extended Virgo Cluster Catalog that was recently constructed by Kim et al. are used to determine the direction of the local sheet. The peculiar velocity field reconstructed from the Sloan Digital Sky Survey Data Release 7 is analyzed to estimate the local velocity shear tensor at the Virgo center. Showing first that the minor principal axis of the local velocity shear tensor is almost parallel to the direction of the line of sight, we detect a clear signal of alignment between the positions of the Virgo satellites and the intermediate principal axis of the local velocity shear projected onto the plane of the sky. Furthermore, the dwarf satellites are found to appear more strongly aligned than their normal counterparts, which is interpreted as an indication of the following. (1) The normal satellites and the dwarf satellites fall in the Virgo cluster preferentially along the local filament and the local sheet, respectively. (2) The local filament is aligned with the minor principal axis of the local velocity shear while the local sheet is parallel to the plane spanned by the minor and intermediate principal axes. Our result is consistent with the recent numerical claim that the velocity shear is a good tracer of the cosmic web.

  18. Assembly and Alignment of Ship Power Plants in Modern Shipbuilding

    OpenAIRE

    A. O. Mikhailov; K. N. Morozov

    2013-01-01

    Fine alignment of main ship power plants mechanisms and shaft lines provides long-term and failure-free performance of propulsion system while fast and high-quality installation of mechanisms and shaft lines decreases common labor intensity. For checking shaft line allowed stress and setting its alignment it is required to perform calculations considering various stages of life cycle. In 2012 JSC SSTC developed special software complex “Shaftline” for calculation of align...

  19. Processing Semblances Induced through Inter-Postsynaptic Functional LINKs, Presumed Biological Parallels of K-Lines Proposed for Building Artificial Intelligence

    Science.gov (United States)

    Vadakkan, Kunjumon I.

    2011-01-01

    The internal sensation of memory, which is available only to the owner of an individual nervous system, is difficult to analyze for its basic elements of operation. We hypothesize that associative learning induces the formation of functional LINK between the postsynapses. During memory retrieval, the activation of either postsynapse re-activates the functional LINK evoking a semblance of sensory activity arriving at its opposite postsynapse, nature of which defines the basic unit of internal sensation – namely, the semblion. In neuronal networks that undergo continuous oscillatory activity at certain levels of their organization re-activation of functional LINKs is expected to induce semblions, enabling the system to continuously learn, self-organize, and demonstrate instantiation, features that can be utilized for developing artificial intelligence (AI). This paper also explains suitability of the inter-postsynaptic functional LINKs to meet the expectations of Minsky’s K-lines, basic elements of a memory theory generated to develop AI and methods to replicate semblances outside the nervous system. PMID:21845180

  20. Parallel R

    CERN Document Server

    McCallum, Ethan

    2011-01-01

    It's tough to argue with R as a high-quality, cross-platform, open source statistical software product-unless you're in the business of crunching Big Data. This concise book introduces you to several strategies for using R to analyze large datasets. You'll learn the basics of Snow, Multicore, Parallel, and some Hadoop-related tools, including how to find them, how to use them, when they work well, and when they don't. With these packages, you can overcome R's single-threaded nature by spreading work across multiple CPUs, or offloading work to multiple machines to address R's memory barrier.

  1. Parallel Solid-Phase Synthesis Using a New Diethylsilylacetylenic Linker and Leading to Mestranol Derivatives with Potent Antiproliferative Activities on Multiple Cancer Cell Lines.

    Science.gov (United States)

    Dutour, Raphael; Maltais, Rene; Perreault, Martin; Roy, Jenny; Poirier, Donald

    2018-03-07

    RM-133 belongs to a new family of aminosteroid derivatives demonstrating interesting anticancer properties, as confirmed in vivo in four mouse cancer xenograft models. However, the metabolic stability of RM-133 needs to be improved. After investigation, the replacement of its androstane scaffold by a more stable estrane scaffold led to the development of the mestranol derivative RM-581. Using solid-phase strategy involving five steps, we quickly synthesized a series of RM-581 analogs using the recently-developed diethylsilyl acetylenic linker. To establish structure-activity relationships, we then investigated their antiproliferative potency on a panel of cancer cell lines from various cancers (breast, prostate, ovarian and pancreatic). Some of the mestranol derivatives have shown in vitro anticancer activities that are close to, or better than those observed for RM-581. Compound 23, a mestranol derivative having a ((3,5-dimethylbenzoyl)-L-prolyl)piperazine side chain at position C2, was found to be active as an antiproliferative agent (IC50 = 0.38 ± 0.34 to 3.17 ± 0.10 µM) and to be twice as active as RM-581 on LNCaP, PC-3, MCF-7, PANC-1 and OVCAR-3 cancer cells (IC50 = 0.56 ± 0.30, 0.89 ± 0.63, 1.36 ± 0.31, 2.47 ± 0.91 and 3.17 ± 0.10 µM, respectively). Easily synthesized in good yields by both solid-phase organic synthesis and classic solution-phase chemistry, this promising candidate could be used as an antiproliferative agent on a variety of cancers, notably pancreatic and ovarian cancers, both having very bad prognoses. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Parallelization Issues and Particle-In Codes.

    Science.gov (United States)

    Elster, Anne Cathrine

    1994-01-01

    "Everything should be made as simple as possible, but not simpler." Albert Einstein. The field of parallel scientific computing has concentrated on parallelization of individual modules such as matrix solvers and factorizers. However, many applications involve several interacting modules. Our analyses of a particle-in-cell code modeling charged particles in an electric field, show that these accompanying dependencies affect data partitioning and lead to new parallelization strategies concerning processor, memory and cache utilization. Our test-bed, a KSR1, is a distributed memory machine with a globally shared addressing space. However, most of the new methods presented hold generally for hierarchical and/or distributed memory systems. We introduce a novel approach that uses dual pointers on the local particle arrays to keep the particle locations automatically partially sorted. Complexity and performance analyses with accompanying KSR benchmarks, have been included for both this scheme and for the traditional replicated grids approach. The latter approach maintains load-balance with respect to particles. However, our results demonstrate it fails to scale properly for problems with large grids (say, greater than 128-by-128) running on as few as 15 KSR nodes, since the extra storage and computation time associated with adding the grid copies, becomes significant. Our grid partitioning scheme, although harder to implement, does not need to replicate the whole grid. Consequently, it scales well for large problems on highly parallel systems. It may, however, require load balancing schemes for non-uniform particle distributions. Our dual pointer approach may facilitate this through dynamically partitioned grids. We also introduce hierarchical data structures that store neighboring grid-points within the same cache -line by reordering the grid indexing. This alignment produces a 25% savings in cache-hits for a 4-by-4 cache. A consideration of the input data's effect on

  3. Unified Alignment of Protein-Protein Interaction Networks.

    Science.gov (United States)

    Malod-Dognin, Noël; Ban, Kristina; Pržulj, Nataša

    2017-04-19

    Paralleling the increasing availability of protein-protein interaction (PPI) network data, several network alignment methods have been proposed. Network alignments have been used to uncover functionally conserved network parts and to transfer annotations. However, due to the computational intractability of the network alignment problem, aligners are heuristics providing divergent solutions and no consensus exists on a gold standard, or which scoring scheme should be used to evaluate them. We comprehensively evaluate the alignment scoring schemes and global network aligners on large scale PPI data and observe that three methods, HUBALIGN, L-GRAAL and NATALIE, regularly produce the most topologically and biologically coherent alignments. We study the collective behaviour of network aligners and observe that PPI networks are almost entirely aligned with a handful of aligners that we unify into a new tool, Ulign. Ulign enables complete alignment of two networks, which traditional global and local aligners fail to do. Also, multiple mappings of Ulign define biologically relevant soft clusterings of proteins in PPI networks, which may be used for refining the transfer of annotations across networks. Hence, PPI networks are already well investigated by current aligners, so to gain additional biological insights, a paradigm shift is needed. We propose such a shift come from aligning all available data types collectively rather than any particular data type in isolation from others.

  4. Aligning the unalignable: bacteriophage whole genome alignments.

    Science.gov (United States)

    Bérard, Sèverine; Chateau, Annie; Pompidor, Nicolas; Guertin, Paul; Bergeron, Anne; Swenson, Krister M

    2016-01-13

    In recent years, many studies focused on the description and comparison of large sets of related bacteriophage genomes. Due to the peculiar mosaic structure of these genomes, few informative approaches for comparing whole genomes exist: dot plots diagrams give a mostly qualitative assessment of the similarity/dissimilarity between two or more genomes, and clustering techniques are used to classify genomes. Multiple alignments are conspicuously absent from this scene. Indeed, whole genome aligners interpret lack of similarity between sequences as an indication of rearrangements, insertions, or losses. This behavior makes them ill-prepared to align bacteriophage genomes, where even closely related strains can accomplish the same biological function with highly dissimilar sequences. In this paper, we propose a multiple alignment strategy that exploits functional collinearity shared by related strains of bacteriophages, and uses partial orders to capture mosaicism of sets of genomes. As classical alignments do, the computed alignments can be used to predict that genes have the same biological function, even in the absence of detectable similarity. The Alpha aligner implements these ideas in visual interactive displays, and is used to compute several examples of alignments of Staphylococcus aureus and Mycobacterium bacteriophages, involving up to 29 genomes. Using these datasets, we prove that Alpha alignments are at least as good as those computed by standard aligners. Comparison with the progressive Mauve aligner - which implements a partial order strategy, but whose alignments are linearized - shows a greatly improved interactive graphic display, while avoiding misalignments. Multiple alignments of whole bacteriophage genomes work, and will become an important conceptual and visual tool in comparative genomics of sets of related strains. A python implementation of Alpha, along with installation instructions for Ubuntu and OSX, is available on bitbucket (https://bitbucket.org/thekswenson/alpha).

  5. Sample size effect on the determination of the irreversibility line of high-Tc superconductors

    International Nuclear Information System (INIS)

    Li, Q.; Suenaga, M.; Li, Q.; Freltoft, T.

    1994-01-01

    The irreversibility lines of a high-J c superconducting Bi 2 Sr 2 Ca 2 Cu 3 O x /Ag tape were systematically measured upon a sequence of subdivisions of the sample. The irreversibility field H r (T) (parallel to the c axis) was found to change approximately as L 0.13 , where L is the effective dimension of the superconducting tape. Furthermore, it was found that the irreversibility line for a grain-aligned Bi 2 Sr 2 Ca 2 Cu 3 O x specimen can be approximately reproduced by the extrapolation of this relation down to a grain size of a few tens of micrometers. The observed size effect could significantly obscure the real physical meaning of the irreversibility lines. In addition, this finding surprisingly indicated that the Bi 2 Sr 2 Ca 2 Cu 2 O x /Ag tape and grain-aligned specimen may have similar flux line pinning strength

  6. All about alignment

    CERN Multimedia

    2006-01-01

    The ALICE absorbers, iron wall and superstructure have been installed with great precision. The ALICE front absorber, positioned in the centre of the detector, has been installed and aligned. Weighing more than 400 tonnes, the ALICE absorbers and the surrounding support structures have been installed and aligned with a precision of 1-2 mm, hardly an easy task but a very important one. The ALICE absorbers are made of three parts: the front absorber, a 35-tonne cone-shaped structure, and two small-angle absorbers, long straight cylinder sections weighing 18 and 40 tonnes. The three pieces lined up have a total length of about 17 m. In addition to these, ALICE technicians have installed a 300-tonne iron filter wall made of blocks that fit together like large Lego pieces and a surrounding metal support structure to hold the tracking and trigger chambers. The absorbers house the vacuum chamber and are also the reference surface for the positioning of the tracking and trigger chambers. For this reason, the ab...

  7. Alignment of Partnering with Construction IT

    Directory of Open Access Journals (Sweden)

    Eleni Papadonikolaki

    2017-11-01

     As the construction industry evolves into an information-driven sector, the alignment of construction IT with inter-organisational management is preeminent for managing the inherent complexities of the industry. In parallel, embracing inter-organisational approaches for information management such as BIM is a promisingway forward for SCM and construction management.

  8. Automatic target alignment of the Helios laser system

    International Nuclear Information System (INIS)

    Liberman, I.; Viswanathan, V.K.; Klein, M.; Seery, B.D.

    1980-01-01

    An automatic target-alignment technique for the Helios laser facility is reported and verified experimentally. The desired alignment condition is completely described by an autocollimation test. A computer program examines the autocollimated return pattern from the surrogate target and correctly describes any changes required in mirror orientation to yield optimum targe alignment with either aberrated or misaligned beams. Automated on-line target alignment is thus shown to be feasible

  9. LHCb: Experience with LHCb alignment software on first data

    CERN Multimedia

    Deissenroth, M

    2009-01-01

    We report results obtained with different track-based algorithms for the alignment of the LHCb detector with first data. The large-area Muon Detector and Outer Tracker have been aligned with a large sample of tracks from cosmic rays. The three silicon detectors --- VELO, TT-station and Inner Tracker --- have been aligned with beam-induced events from the LHC injection line. We compare the results from the track-based alignment with expectations from detector survey.

  10. GRILLIX. A 3D turbulence code for magnetic fusion devices based on a field line map

    International Nuclear Information System (INIS)

    Stegmeir, Andreas Korbinian

    2015-01-01

    The complex geometry in the scrape-off layer of tokamaks poses problems to existing turbulence codes. The usually employed field aligned coordinates become ill defined at the separatrix. Therefore the parallel code GRILLIX was developed, which is based on a field line map. This allows simulations in additional complex geometries, especially across the separatrix. A new discretisation, based on the support operator method, for the highly anisotropic diffusion was developed and applied to a simple turbulence model (Hasegawa-Wakatani).

  11. ALIGNMENTS OF GROUP GALAXIES WITH NEIGHBORING GROUPS

    International Nuclear Information System (INIS)

    Wang Yougang; Chen Xuelei; Park, Changbom; Yang Xiaohu; Choi, Yun-Young

    2009-01-01

    Using a sample of galaxy groups found in the Sloan Digital Sky Survey Data Release 4, we measure the following four types of alignment signals: (1) the alignment between the distributions of the satellites of each group relative to the direction of the nearest neighbor group (NNG); (2) the alignment between the major axis direction of the central galaxy of the host group (HG) and the direction of the NNG; (3) the alignment between the major axes of the central galaxies of the HG and the NNG; and (4) the alignment between the major axes of the satellites of the HG and the direction of the NNG. We find strong signal of alignment between the satellite distribution and the orientation of central galaxy relative to the direction of the NNG, even when the NNG is located beyond 3r vir of the host group. The major axis of the central galaxy of the HG is aligned with the direction of the NNG. The alignment signals are more prominent for groups that are more massive and with early-type central galaxies. We also find that there is a preference for the two major axes of the central galaxies of the HG and NNG to be parallel for the system with both early central galaxies, however, not for the systems with both late-type central galaxies. For the orientation of satellite galaxies, we do not find any significant alignment signals relative to the direction of the NNG. From these four types of alignment measurements, we conclude that the large-scale environment traced by the nearby group affects primarily the shape of the host dark matter halo, and hence also affects the distribution of satellite galaxies and the orientation of central galaxies. In addition, the NNG directly affects the distribution of the satellite galaxies by inducing asymmetric alignment signals, and the NNG at very small separation may also contribute a second-order impact on the orientation of the central galaxy in the HG.

  12. Pattern-Driven Automatic Parallelization

    Directory of Open Access Journals (Sweden)

    Christoph W. Kessler

    1996-01-01

    Full Text Available This article describes a knowledge-based system for automatic parallelization of a wide class of sequential numerical codes operating on vectors and dense matrices, and for execution on distributed memory message-passing multiprocessors. Its main feature is a fast and powerful pattern recognition tool that locally identifies frequently occurring computations and programming concepts in the source code. This tool also works for dusty deck codes that have been "encrypted" by former machine-specific code transformations. Successful pattern recognition guides sophisticated code transformations including local algorithm replacement such that the parallelized code need not emerge from the sequential program structure by just parallelizing the loops. It allows access to an expert's knowledge on useful parallel algorithms, available machine-specific library routines, and powerful program transformations. The partially restored program semantics also supports local array alignment, distribution, and redistribution, and allows for faster and more exact prediction of the performance of the parallelized target code than is usually possible.

  13. Alignment in double capture processes

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Benhenni, M.; Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.

    1993-01-01

    The electron spectra emitted when a double capture occurs in N 7+ +He and Ne 8+ +He systems at 10 qkeV collisional energy, allow us to determine the angular distributions of the 3 ell 3 ell ' lines through a special spectra fitting procedure which includes interferences between neighbouring states. It is found that the doubly excited states populated in double capture processes are generally aligned

  14. Alignment in double capture processes

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Benhenni, M.; Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A. (IRSAMC, URA CNRS 770, Univ. Paul Sabatier, 118 rte de Narbonne, 31062 Toulouse Cedex (France))

    1993-06-05

    The electron spectra emitted when a double capture occurs in N[sup 7+]+He and Ne[sup 8+]+He systems at 10 qkeV collisional energy, allow us to determine the angular distributions of the 3[ell]3[ell] [prime] lines through a special spectra fitting procedure which includes interferences between neighbouring states. It is found that the doubly excited states populated in double capture processes are generally aligned.

  15. Characterization of DNA repair phenotypes of Xeroderma pigmentosum cell lines by a paralleled in vitro test; Phenotypage de la reparation de l'ADN de lignees Xeroderma pigmentosum, par un test in vitro multiparametrique

    Energy Technology Data Exchange (ETDEWEB)

    Raffin, A.L.

    2009-06-15

    DNA is constantly damaged modifying the genetic information for which it encodes. Several cellular mechanisms as the Base Excision Repair (BER) and the Nucleotide Excision Repair (NER) allow recovering the right DNA sequence. The Xeroderma pigmentosum is a disease characterised by a deficiency in the NER pathway. The aim of this study was to propose an efficient and fast test for the diagnosis of this disease as an alternative to the currently available UDS test. DNA repair activities of XP cell lines were quantified using in vitro miniaturized and paralleled tests in order to establish DNA repair phenotypes of XPA and XPC deficient cells. The main advantage of the tests used in this study is the simultaneous measurement of excision or excision synthesis (ES) of several lesions by only one cellular extract. We showed on one hand that the relative ES of the different lesions depend strongly on the protein concentration of the nuclear extract tested. Working at high protein concentration allowed discriminating the XP phenotype versus the control one, whereas it was impossible under a certain concentration's threshold. On the other hand, while the UVB irradiation of control cells stimulated their repair activities, this effect was not observed in XP cells. This study brings new information on the XPA and XPC protein roles during BER and NER and underlines the complexity of the regulations of DNA repair processes. (author)

  16. Automatic Loop Parallelization via Compiler Guided Refactoring

    DEFF Research Database (Denmark)

    Larsen, Per; Ladelsky, Razya; Lidman, Jacob

    For many parallel applications, performance relies not on instruction-level parallelism, but on loop-level parallelism. Unfortunately, many modern applications are written in ways that obstruct automatic loop parallelization. Since we cannot identify sufficient parallelization opportunities...... for these codes in a static, off-line compiler, we developed an interactive compilation feedback system that guides the programmer in iteratively modifying application source, thereby improving the compiler’s ability to generate loop-parallel code. We use this compilation system to modify two sequential...... benchmarks, finding that the code parallelized in this way runs up to 8.3 times faster on an octo-core Intel Xeon 5570 system and up to 12.5 times faster on a quad-core IBM POWER6 system. Benchmark performance varies significantly between the systems. This suggests that semi-automatic parallelization should...

  17. Compiler Technology for Parallel Scientific Computation

    Directory of Open Access Journals (Sweden)

    Can Özturan

    1994-01-01

    Full Text Available There is a need for compiler technology that, given the source program, will generate efficient parallel codes for different architectures with minimal user involvement. Parallel computation is becoming indispensable in solving large-scale problems in science and engineering. Yet, the use of parallel computation is limited by the high costs of developing the needed software. To overcome this difficulty we advocate a comprehensive approach to the development of scalable architecture-independent software for scientific computation based on our experience with equational programming language (EPL. Our approach is based on a program decomposition, parallel code synthesis, and run-time support for parallel scientific computation. The program decomposition is guided by the source program annotations provided by the user. The synthesis of parallel code is based on configurations that describe the overall computation as a set of interacting components. Run-time support is provided by the compiler-generated code that redistributes computation and data during object program execution. The generated parallel code is optimized using techniques of data alignment, operator placement, wavefront determination, and memory optimization. In this article we discuss annotations, configurations, parallel code generation, and run-time support suitable for parallel programs written in the functional parallel programming language EPL and in Fortran.

  18. Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    2005-03-01

    Full Text Available We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.

  19. MICA: Multiple interval-based curve alignment

    Science.gov (United States)

    Mann, Martin; Kahle, Hans-Peter; Beck, Matthias; Bender, Bela Johannes; Spiecker, Heinrich; Backofen, Rolf

    2018-01-01

    MICA enables the automatic synchronization of discrete data curves. To this end, characteristic points of the curves' shapes are identified. These landmarks are used within a heuristic curve registration approach to align profile pairs by mapping similar characteristics onto each other. In combination with a progressive alignment scheme, this enables the computation of multiple curve alignments. Multiple curve alignments are needed to derive meaningful representative consensus data of measured time or data series. MICA was already successfully applied to generate representative profiles of tree growth data based on intra-annual wood density profiles or cell formation data. The MICA package provides a command-line and graphical user interface. The R interface enables the direct embedding of multiple curve alignment computation into larger analyses pipelines. Source code, binaries and documentation are freely available at https://github.com/BackofenLab/MICA

  20. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez.

    Since June of 2009, the muon alignment group has focused on providing new alignment constants and on finalizing the hardware alignment reconstruction. Alignment constants for DTs and CSCs were provided for CRAFT09 data reprocessing. For DT chambers, the track-based alignment was repeated using CRAFT09 cosmic ray muons and validated using segment extrapolation and split cosmic tools. One difference with respect to the previous alignment is that only five degrees of freedom were aligned, leaving the rotation around the local x-axis to be better determined by the hardware system. Similarly, DT chambers poorly aligned by tracks (due to limited statistics) were aligned by a combination of photogrammetry and hardware-based alignment. For the CSC chambers, the hardware system provided alignment in global z and rotations about local x. Entire muon endcap rings were further corrected in the transverse plane (global x and y) by the track-based alignment. Single chamber track-based alignment suffers from poor statistic...

  1. Alignment of Ion Accelerator for Surface Analysis using Theodolite and Laser Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae Sung; Seo, Dong Hyuk; Kim, Dae Il; Kim, Han Sung; Kwon, Hyeok Jung; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The method of ion accelerator alignment is used two ways which are a theodolite and laser tracker. For the alignment and maintenance of the proton linear accelerator, the laser tracker is typically used at KOMAC. While the device for alignment by using laser tracker is not installed in all ion accelerator components, it was used in parallel in two methods. In this paper, alignment methods are introduced and the result and comparison of each alignment method are presented. The ion accelerator for surface analysis has aligned using theodolite and laser tracker. The two ways for alignment have advantage as well as weakness. But alignment using laser tracker is stronger than using theodolite. Because it is based on alignment and position data and it is more detailed. Also since the beam distribution is smaller than accelerator component that is direction of beam progress, main component (ex. Magnet, Chamber, Pelletron tank, etc.) alignment using laser tracker is enough to align the ion accelerator.

  2. Evaluation of alignment marks using ASML ATHENA alignment system in 90nm BEOL process

    CERN Document Server

    Tan Chin Boon; Koh Hui Peng; Koo Chee, Kiong; Siew Yong Kong; Yeo Swee Hock

    2003-01-01

    As the critical dimension (CD) in integrated circuit (IC) device reduces, the total overlay budget needs to be more stringent. Typically, the allowable overlay error is 1/3 of the CD in the IC device. In this case, robustness of alignment mark is critical, as accurate signal is required by the scanner's alignment system to precisely align a layer of pattern to the previous layer. Alignment issue is more severe in back-end process partly due to the influenced of Chemical Mechanical Polishing (CMP), which contribute to the asymmetric or total destruction of the alignment marks. Alignment marks on the wafer can be placed along the scribe-line of the IC pattern. ASML scanner allows such type of wafer alignment using phase grating mark, known as Scribe-line Primary Mark (SPM) which can be fit into a standard 80um scribe-line. In this paper, we have studied the feasibility of introducing Narrow SPM (NSPM) to enable a smaller scribe-line. The width of NSPM has been shrunk down to 70% of the SPM and the length remain...

  3. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and J. Pivarski

    2011-01-01

    Alignment efforts in the first few months of 2011 have shifted away from providing alignment constants (now a well established procedure) and focussed on some critical remaining issues. The single most important task left was to understand the systematic differences observed between the track-based (TB) and hardware-based (HW) barrel alignments: a systematic difference in r-φ and in z, which grew as a function of z, and which amounted to ~4-5 mm differences going from one end of the barrel to the other. This difference is now understood to be caused by the tracker alignment. The systematic differences disappear when the track-based barrel alignment is performed using the new “twist-free” tracker alignment. This removes the largest remaining source of systematic uncertainty. Since the barrel alignment is based on hardware, it does not suffer from the tracker twist. However, untwisting the tracker causes endcap disks (which are aligned ...

  4. Alignment technology and applications of liquid crystal devices

    CERN Document Server

    Takatoh, Kohki; Hasegawa, Ray; Koden, Mitsushiro; Itoh, Nobuyuki; Hasegawa, Masaki

    2005-01-01

    Alignment phenomena are characteristic of liquid crystalline materials, and understanding them is critically important in understanding the essential features and behavior of liquid crystals and the performance of Liquid Crystal Devices (LCDs). Furthermore, in LCD production lines, the alignment process is of practical importance. Alignment Technologies and Applications of Liquid Crystal Devices demonstrates both the fundamental and practical aspects of alignment phenomena in liquid crystals. The physical basis of alignment phenomena is first introduced in order to aid the understanding of the various physical phenomena observed in the interface between liquid crystalline materials and alignment layer surfaces. Methods for the characterization of surfaces, which induce the alignment phenomena, and of the alignment layer itself are introduced. These methods are useful for the research of liquid crystalline materials and devices in academic research as well as in industry. In the practical sections, the alignme...

  5. Genomic multiple sequence alignments: refinement using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Lefkowitz Elliot J

    2005-08-01

    Full Text Available Abstract Background Genomic sequence data cannot be fully appreciated in isolation. Comparative genomics – the practice of comparing genomic sequences from different species – plays an increasingly important role in understanding the genotypic differences between species that result in phenotypic differences as well as in revealing patterns of evolutionary relationships. One of the major challenges in comparative genomics is producing a high-quality alignment between two or more related genomic sequences. In recent years, a number of tools have been developed for aligning large genomic sequences. Most utilize heuristic strategies to identify a series of strong sequence similarities, which are then used as anchors to align the regions between the anchor points. The resulting alignment is globally correct, but in many cases is suboptimal locally. We describe a new program, GenAlignRefine, which improves the overall quality of global multiple alignments by using a genetic algorithm to improve local regions of alignment. Regions of low quality are identified, realigned using the program T-Coffee, and then refined using a genetic algorithm. Because a better COFFEE (Consistency based Objective Function For alignmEnt Evaluation score generally reflects greater alignment quality, the algorithm searches for an alignment that yields a better COFFEE score. To improve the intrinsic slowness of the genetic algorithm, GenAlignRefine was implemented as a parallel, cluster-based program. Results We tested the GenAlignRefine algorithm by running it on a Linux cluster to refine sequences from a simulation, as well as refine a multiple alignment of 15 Orthopoxvirus genomic sequences approximately 260,000 nucleotides in length that initially had been aligned by Multi-LAGAN. It took approximately 150 minutes for a 40-processor Linux cluster to optimize some 200 fuzzy (poorly aligned regions of the orthopoxvirus alignment. Overall sequence identity increased only

  6. SESOTHO trial ("Switch Either near Suppression Or THOusand") - switch to second-line versus WHO-guided standard of care for unsuppressed patients on first-line ART with viremia below 1000 copies/mL: protocol of a multicenter, parallel-group, open-label, randomized clinical trial in Lesotho, Southern Africa.

    Science.gov (United States)

    Amstutz, Alain; Nsakala, Bienvenu Lengo; Vanobberghen, Fiona; Muhairwe, Josephine; Glass, Tracy Renée; Achieng, Beatrice; Sepeka, Mamorena; Tlali, Katleho; Sao, Lebohang; Thin, Kyaw; Klimkait, Thomas; Battegay, Manuel; Labhardt, Niklaus Daniel

    2018-02-12

    The World Health Organization (WHO) recommends viral load (VL) measurement as the preferred monitoring strategy for HIV-infected individuals on antiretroviral therapy (ART) in resource-limited settings. The new WHO guidelines 2016 continue to define virologic failure as two consecutive VL ≥1000 copies/mL (at least 3 months apart) despite good adherence, triggering switch to second-line therapy. However, the threshold of 1000 copies/mL for defining virologic failure is based on low-quality evidence. Observational studies have shown that individuals with low-level viremia (measurable but below 1000 copies/mL) are at increased risk for accumulation of resistance mutations and subsequent virologic failure. The SESOTHO trial assesses a lower threshold for switch to second-line ART in patients with sustained unsuppressed VL. In this multicenter, parallel-group, open-label, randomized controlled trial conducted in Lesotho, patients on first-line ART with two consecutive unsuppressed VL measurements ≥100 copies/mL, where the second VL is between 100 and 999 copies/mL, will either be switched to second-line ART immediately (intervention group) or not be switched (standard of care, according to WHO guidelines). The primary endpoint is viral resuppression (VL < 50 copies/mL) 9 months after randomization. We will enrol 80 patients, giving us 90% power to detect a difference of 35% in viral resuppression between the groups (assuming two-sided 5% alpha error). For our primary analysis, we will use a modified intention-to-treat set, with those lost to care, death, or crossed over considered failure to resuppress, and using logistic regression models adjusted for the prespecified stratification variables. The SESOTHO trial challenges the current WHO guidelines, assessing an alternative, lower VL threshold for patients with unsuppressed VL on first-line ART. This trial will provide data to inform future WHO guidelines on VL thresholds to recommend switch to second-line ART

  7. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    The main developments in muon alignment since March 2010 have been the production, approval and deployment of alignment constants for the ICHEP data reprocessing. In the barrel, a new geometry, combining information from both hardware and track-based alignment systems, has been developed for the first time. The hardware alignment provides an initial DT geometry, which is then anchored as a rigid solid, using the link alignment system, to a reference frame common to the tracker. The “GlobalPositionRecords” for both the Tracker and Muon systems are being used for the first time, and the initial tracker-muon relative positioning, based on the link alignment, yields good results within the photogrammetry uncertainties of the Tracker and alignment ring positions. For the first time, the optical and track-based alignments show good agreement between them; the optical alignment being refined by the track-based alignment. The resulting geometry is the most complete to date, aligning all 250 DTs, ...

  8. DNAAlignEditor: DNA alignment editor tool

    Directory of Open Access Journals (Sweden)

    Guill Katherine E

    2008-03-01

    Full Text Available Abstract Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism.

  9. Fast global sequence alignment technique

    KAUST Repository

    Bonny, Mohamed Talal; Salama, Khaled N.

    2011-01-01

    fast alignment algorithm, called 'Alignment By Scanning' (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the wellknown sequence alignment algorithms, the 'GAP' (which is heuristic) and the 'Needleman

  10. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  11. Plans for PEP survey and alignment: Status report

    International Nuclear Information System (INIS)

    Gunn, J.; Sah, R.

    1975-01-01

    This note discusses the current state of survey and alignment plans for PEP Stage I. Several surveying techniques are described; one is described in considerable detail. The survey and alignment task for PEP consists of positioning approximately 700 ring magnets, 100 injection line magnets, and 100 miscellaneous components. The alignment tolerances are tight and they are set by the requirement that closed orbit distortions must be small for proper storage ring operation. The alignment problem is aggravated by the circumstance that the storage ring components are placed in tunnels which span a large area (over 700 meters across) and which do not permit long lines of sight. 6 ref., 1 fig

  12. Liquid crystallinity driven highly aligned large graphene oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Kim, Sang Ouk, E-mail: sangouk.kim@kaist.ac.kr [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)

    2015-04-15

    Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented within flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.

  13. A parallel reconfigurable platform for efficient sequence alignment ...

    African Journals Online (AJOL)

    Bioinformatics is one of the emerging trends in today's world. The major part of bioinformatics is dealing with DNA. Analysis of DNA requires more memory and high efficient computations to produce accurate outputs. Researchers use various bioinformatics algorithms for sequencing and pattern detection techniques, but still ...

  14. A parallel reconfigurable platform for efficient sequence alignment

    African Journals Online (AJOL)

    SAM

    2014-08-13

    Aug 13, 2014 ... efficient probabilistic data structure that is used to test whether an element ... of given string with the help of hash functions; 4) ... It speeds up the data searching .... International Journal of Automation and Computing, Springer.

  15. Fast parallel event reconstruction

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    On-line processing of large data volumes produced in modern HEP experiments requires using maximum capabilities of modern and future many-core CPU and GPU architectures.One of such powerful feature is a SIMD instruction set, which allows packing several data items in one register and to operate on all of them, thus achievingmore operations per clock cycle. Motivated by the idea of using the SIMD unit ofmodern processors, the KF based track fit has been adapted for parallelism, including memory optimization, numerical analysis, vectorization with inline operator overloading, and optimization using SDKs. The speed of the algorithm has been increased in 120000 times with 0.1 ms/track, running in parallel on 16 SPEs of a Cell Blade computer.  Running on a Nehalem CPU with 8 cores it shows the processing speed of 52 ns/track using the Intel Threading Building Blocks. The same KF algorithm running on an Nvidia GTX 280 in the CUDA frameworkprovi...

  16. Control rod housing alignment

    International Nuclear Information System (INIS)

    Dixon, R.C.; Deaver, G.A.; Punches, J.R.; Singleton, G.E.; Erbes, J.G.; Offer, H.P.

    1990-01-01

    This patent describes a process for measuring the vertical alignment between a hole in a core plate and the top of a corresponding control rod drive housing within a boiling water reactor. It comprises: providing an alignment apparatus. The alignment apparatus including a lower end for fitting to the top of the control rod drive housing; an upper end for fitting to the aperture in the core plate, and a leveling means attached to the alignment apparatus to read out the difference in angularity with respect to gravity, and alignment pin registering means for registering to the alignment pin on the core plate; lowering the alignment device on a depending support through a lattice position in the top guide through the hole in the core plate down into registered contact with the top of the control rod drive housing; registering the upper end to the sides of the hole in the core plate; registering the alignment pin registering means to an alignment pin on the core plate to impart to the alignment device the required angularity; and reading out the angle of the control rod drive housing with respect to the hole in the core plate through the leveling devices whereby the angularity of the top of the control rod drive housing with respect to the hole in the core plate can be determined

  17. An Alignment of J-PARC Linac

    CERN Document Server

    Morishita, Takatoshi; Hasegawa, Kazuo; Ikegami, Masanori; Ito, Takashi; Kubota, Chikashi; Naito, Fujio; Takasaki, Eiichi; Tanaka, Hirokazu; Ueno, Akira; Yoshino, Kazuo

    2005-01-01

    J-PARC linear accelerator components are now being installed in the accelerator tunnel, whose total length is more than 400 m including the beam transport line to RCS (Rapid Cycling Synchrotron). A precise alignment of accelerator components is essential for a high quality beam acceleration. In this paper, planned alignment schemes for the installation of linac components, the fine alignment before beam acceleration, and watching the long term motion of the building are described. Guide points are placed on the floor, which acts as a reference for the initial alignment at the installation and also as a relay point for the long surveying network linking at the fine alignment. For a straight line alignment, the wire position sensor is placed on the offset position with respect to the beam center by a target holder, then a single wire can cover the accelerator cavities and the focusing magnets at the DTL-SDTL section (120m). The hydrostatic levering system (HLS) is used for watching the floor elevation (changes)...

  18. Veel kord regilaulu parallelismist, poeetilisest sünonüümiast ja analoogiast/ Once more on the parallelism of runosong, on the poetical synonymy and analogy

    Directory of Open Access Journals (Sweden)

    Mari Sarv

    2016-01-01

    Relying on her own previous research on runosongs and proverbs demonstrating the mutual dependency of alliteration and parallelism typical to runosong (Sarv 1999, 2000, 2003, the results of syntactic analysis of runosong texts in H. Metslang’s dissertation (1978, Juhan Peegel’s definition of poetical synonyms in runosong (Peegel 2004, and Ewald Lang’s concept of quasisynonymy (Lang 1987, the author proposes the definition of the canonical parallelism of runosong as follows: it is a grammatical verse parallelism where all or some of the syntactic elements of the main verse have corresponding parallels in the successive lines representing the same general notion, and interpreted in the context of the parallelism as semantically equivalent, irrespective of their semantic relations in the colloquial language (equivalence, synonymy, metonymy, metaphor, analogy, antonymy, hyponymy etc.. Because of this semantical equivalence, the parallel words can be selected and combined into the parallel verses according to their formal features enabling the metrical alignment and alliteration. The article also points to the problems with the classification of runosong parallelism to the analogous and synonymous by Wolfgang Steinitz (1934, widely used in the runosong discourse: although analogy and synonymy probably represent the most remarkable semantic relations between the parallel lines, it is not easy to make clear distinction between synonymous and analogous lines (or concepts—even in the colloquial non-poetic language the synonyms are usually not equivalent in all aspects of meaning; the regular use of poetical synonyms in runosongs makes it impossible at all—the geese, ducks, and grouses as different birds are analogous in the colloquial language, but synonymous in the runosong all denoting the group of maidens.

  19. Field aligned flows driven by neutral puffing at MAST

    Science.gov (United States)

    Waters, I.; Frerichs, H.; Silburn, S.; Feng, Y.; Harrison, J.; Kirk, A.; Schmitz, O.

    2018-06-01

    Neutral deuterium gas puffing at the high field side of the mega ampere spherical tokamak (MAST) is shown to drive carbon impurity flows that are aligned with the trajectory of the magnetic field lines in the plasma scrape-off-layer. These impurity flows were directly imaged with emissions from C2+ ions at MAST by coherence imaging spectroscopy and were qualitatively reproduced in deuterium plasmas by modeling with the EMC3-EIRENE plasma edge fluid and kinetic neutral transport code. A reduced one-dimensional momentum and particle balance shows that a localized increase in the static plasma pressure in front of the neutral gas puff yields an acceleration of the plasma due to local ionization. Perpendicular particle transport yields a decay from which a parallel length scale can be determined. Parameter scans in EMC3-EIRENE were carried out to determine the sensitivity of the deuterium plasma flow phenomena to local fueling and diffusion parameters and it is found that these flows robustly form across a wide variety of plasma conditions. Finally, efforts to couple this behavior in the background plasma directly to the impurity flows observed experimentally in MAST using a trace impurity model are discussed. These results provide insight into the fueling and exhaust features at this pivotal point of the radial and parallel particle flux balance, which is a major part of the plasma fueling and exhaust characteristics in a magnetically confined fusion device.

  20. Conformal pure radiation with parallel rays

    International Nuclear Information System (INIS)

    Leistner, Thomas; Paweł Nurowski

    2012-01-01

    We define pure radiation metrics with parallel rays to be n-dimensional pseudo-Riemannian metrics that admit a parallel null line bundle K and whose Ricci tensor vanishes on vectors that are orthogonal to K. We give necessary conditions in terms of the Weyl, Cotton and Bach tensors for a pseudo-Riemannian metric to be conformal to a pure radiation metric with parallel rays. Then, we derive conditions in terms of the tractor calculus that are equivalent to the existence of a pure radiation metric with parallel rays in a conformal class. We also give analogous results for n-dimensional pseudo-Riemannian pp-waves. (paper)

  1. Parallel Programming with Intel Parallel Studio XE

    CERN Document Server

    Blair-Chappell , Stephen

    2012-01-01

    Optimize code for multi-core processors with Intel's Parallel Studio Parallel programming is rapidly becoming a "must-know" skill for developers. Yet, where to start? This teach-yourself tutorial is an ideal starting point for developers who already know Windows C and C++ and are eager to add parallelism to their code. With a focus on applying tools, techniques, and language extensions to implement parallelism, this essential resource teaches you how to write programs for multicore and leverage the power of multicore in your programs. Sharing hands-on case studies and real-world examples, the

  2. Tidal alignment of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  3. New algorithms for parallel MRI

    International Nuclear Information System (INIS)

    Anzengruber, S; Ramlau, R; Bauer, F; Leitao, A

    2008-01-01

    Magnetic Resonance Imaging with parallel data acquisition requires algorithms for reconstructing the patient's image from a small number of measured lines of the Fourier domain (k-space). In contrast to well-known algorithms like SENSE and GRAPPA and its flavors we consider the problem as a non-linear inverse problem. However, in order to avoid cost intensive derivatives we will use Landweber-Kaczmarz iteration and in order to improve the overall results some additional sparsity constraints.

  4. Software alignment of the LHCb inner tracker sensors

    International Nuclear Information System (INIS)

    Maciuc, Florin

    2009-01-01

    This work uses the Millepede linear alignment method, which is essentially a χ 2 minimization algorithm, to determine simultaneously between 76 and 476 alignment parameters and several million track parameters. For the case of non-linear alignment models, Millepede is embedded in a Newton-Raphson iterative procedure. If needed a more robust approach is provided by adding quasi-Newton steps which minimize the approximate χ 2 model function. The alignment apparatus is applied to locally align the LHCb's Inner Tracker sensors in an a priori fixed system of coordinate. An analytic measurement model was derived as function of track parameters and alignment parameters, for the two cases: null and nonnull magnetic field. The alignment problem is equivalent to solving a linear system of equations, and usually a matrix inversion is required. In general, as consequence of global degrees of freedom or poorly constrained modes, the alignment matrix is singular or near-singular. The global degrees of freedom are obtained: directly from χ 2 function invariant transformations, and in parallel by an alignment matrix diagonalization followed by an extraction of the least constrained modes. The procedure allows to properly de ne the local alignment of the Inner Tracker. Using Monte Carlo data, the outlined procedure reconstructs the position of the IT sensors within micrometer precision or better. For rotations equivalent precision was obtained. (orig.)

  5. Software alignment of the LHCb inner tracker sensors

    Energy Technology Data Exchange (ETDEWEB)

    Maciuc, Florin

    2009-04-20

    This work uses the Millepede linear alignment method, which is essentially a {chi}{sup 2} minimization algorithm, to determine simultaneously between 76 and 476 alignment parameters and several million track parameters. For the case of non-linear alignment models, Millepede is embedded in a Newton-Raphson iterative procedure. If needed a more robust approach is provided by adding quasi-Newton steps which minimize the approximate {chi}{sup 2} model function. The alignment apparatus is applied to locally align the LHCb's Inner Tracker sensors in an a priori fixed system of coordinate. An analytic measurement model was derived as function of track parameters and alignment parameters, for the two cases: null and nonnull magnetic field. The alignment problem is equivalent to solving a linear system of equations, and usually a matrix inversion is required. In general, as consequence of global degrees of freedom or poorly constrained modes, the alignment matrix is singular or near-singular. The global degrees of freedom are obtained: directly from {chi}{sup 2} function invariant transformations, and in parallel by an alignment matrix diagonalization followed by an extraction of the least constrained modes. The procedure allows to properly de ne the local alignment of the Inner Tracker. Using Monte Carlo data, the outlined procedure reconstructs the position of the IT sensors within micrometer precision or better. For rotations equivalent precision was obtained. (orig.)

  6. Software alignment of the LHCb inner tracker sensors

    Energy Technology Data Exchange (ETDEWEB)

    Maciuc, Florin

    2009-04-20

    This work uses the Millepede linear alignment method, which is essentially a {chi}{sup 2} minimization algorithm, to determine simultaneously between 76 and 476 alignment parameters and several million track parameters. For the case of non-linear alignment models, Millepede is embedded in a Newton-Raphson iterative procedure. If needed a more robust approach is provided by adding quasi-Newton steps which minimize the approximate {chi}{sup 2} model function. The alignment apparatus is applied to locally align the LHCb's Inner Tracker sensors in an a priori fixed system of coordinate. An analytic measurement model was derived as function of track parameters and alignment parameters, for the two cases: null and nonnull magnetic field. The alignment problem is equivalent to solving a linear system of equations, and usually a matrix inversion is required. In general, as consequence of global degrees of freedom or poorly constrained modes, the alignment matrix is singular or near-singular. The global degrees of freedom are obtained: directly from {chi}{sup 2} function invariant transformations, and in parallel by an alignment matrix diagonalization followed by an extraction of the least constrained modes. The procedure allows to properly de ne the local alignment of the Inner Tracker. Using Monte Carlo data, the outlined procedure reconstructs the position of the IT sensors within micrometer precision or better. For rotations equivalent precision was obtained. (orig.)

  7. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    Since December, the muon alignment community has focused on analyzing the data recorded so far in order to produce new DT and CSC Alignment Records for the second reprocessing of CRAFT data. Two independent algorithms were developed which align the DT chambers using global tracks, thus providing, for the first time, a relative alignment of the barrel with respect to the tracker. These results are an important ingredient for the second CRAFT reprocessing and allow, for example, a more detailed study of any possible mis-modelling of the magnetic field in the muon spectrometer. Both algorithms are constructed in such a way that the resulting alignment constants are not affected, to first order, by any such mis-modelling. The CSC chambers have not yet been included in this global track-based alignment due to a lack of statistics, since only a few cosmics go through the tracker and the CSCs. A strategy exists to align the CSCs using the barrel as a reference until collision tracks become available. Aligning the ...

  8. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2011-01-01

    The Muon Alignment work now focuses on producing a new track-based alignment with higher track statistics, making systematic studies between the results of the hardware and track-based alignment methods and aligning the barrel using standalone muon tracks. Currently, the muon track reconstruction software uses a hardware-based alignment in the barrel (DT) and a track-based alignment in the endcaps (CSC). An important task is to assess the muon momentum resolution that can be achieved using the current muon alignment, especially for highly energetic muons. For this purpose, cosmic ray muons are used, since the rate of high-energy muons from collisions is very low and the event statistics are still limited. Cosmics have the advantage of higher statistics in the pT region above 100 GeV/c, but they have the disadvantage of having a mostly vertical topology, resulting in a very few global endcap muons. Only the barrel alignment has therefore been tested so far. Cosmic muons traversing CMS from top to bottom are s...

  9. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    The main progress of the muon alignment group since March has been in the refinement of both the track-based alignment for the DTs and the hardware-based alignment for the CSCs. For DT track-based alignment, there has been significant improvement in the internal alignment of the superlayers inside the DTs. In particular, the distance between superlayers is now corrected, eliminating the residual dependence on track impact angles, and good agreement is found between survey and track-based corrections. The new internal geometry has been approved to be included in the forthcoming reprocessing of CRAFT samples. The alignment of DTs with respect to the tracker using global tracks has also improved significantly, since the algorithms use the latest B-field mapping, better run selection criteria, optimized momentum cuts, and an alignment is now obtained for all six degrees of freedom (three spatial coordinates and three rotations) of the aligned DTs. This work is ongoing and at a stage where we are trying to unders...

  10. Automated alignment of a 10-kJ laser

    International Nuclear Information System (INIS)

    Partridge, R.E.

    1979-01-01

    The complex task of aligning helios, the 10-kilojoule carbon-dioxide laser, built for fusion research at the Los Alamos Scientific Laboratory, requires computer control of steering mirrors and error sensors. The control system is a three-level minicomputer and microprocessor hierarchy which automatically aligns each of the 40 beam-line sections

  11. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  12. Practical parallel computing

    CERN Document Server

    Morse, H Stephen

    1994-01-01

    Practical Parallel Computing provides information pertinent to the fundamental aspects of high-performance parallel processing. This book discusses the development of parallel applications on a variety of equipment.Organized into three parts encompassing 12 chapters, this book begins with an overview of the technology trends that converge to favor massively parallel hardware over traditional mainframes and vector machines. This text then gives a tutorial introduction to parallel hardware architectures. Other chapters provide worked-out examples of programs using several parallel languages. Thi

  13. Parallel sorting algorithms

    CERN Document Server

    Akl, Selim G

    1985-01-01

    Parallel Sorting Algorithms explains how to use parallel algorithms to sort a sequence of items on a variety of parallel computers. The book reviews the sorting problem, the parallel models of computation, parallel algorithms, and the lower bounds on the parallel sorting problems. The text also presents twenty different algorithms, such as linear arrays, mesh-connected computers, cube-connected computers. Another example where algorithm can be applied is on the shared-memory SIMD (single instruction stream multiple data stream) computers in which the whole sequence to be sorted can fit in the

  14. Evolution of shiva laser alignment systems

    International Nuclear Information System (INIS)

    Boyd, R.D.

    1980-07-01

    The Shiva oscillator pulse is preamplified and divided into twenty beams. Each beam is then amplified, spatially filtered, directed, and focused onto a target a few hundred micrometers in size producing optical intensities up to 10 16 W/cm 2 . The laser was designed and built with three automatic alignment systems: the oscillator alignment system, which aligns each of the laser's three oscillators to a reference beamline; the chain input pointing system, which points each beam into its respective chain; and the chain output pointing, focusing and centering system which points, centers and focuses the beam onto the target. Recently the alignment of the laser's one hundred twenty spatial filter pinholes was also automated. This system uses digitized video images of back-illuminated pinholes and computer analysis to determine current positions. The offset of each current position from a desired center point is then translated into stepper motor commands and the pinhole is moved the proper distance. While motors for one pinhole are moving, the system can digitize, analyze, and send commands to other motors, allowing the system to efficiently align several pinholes in parallel

  15. Reducing beam shaper alignment complexity: diagnostic techniques for alignment and tuning

    Science.gov (United States)

    Lizotte, Todd E.

    2011-10-01

    Safe and efficient optical alignment is a critical requirement for industrial laser systems used in a high volume manufacturing environment. Of specific interest is the development of techniques to align beam shaping optics within a beam line; having the ability to instantly verify by a qualitative means that each element is in its proper position as the beam shaper module is being aligned. There is a need to reduce these types of alignment techniques down to a level where even a newbie to optical alignment will be able to complete the task. Couple this alignment need with the fact that most laser system manufacturers ship their products worldwide and the introduction of a new set of variables including cultural and language barriers, makes this a top priority for manufacturers. Tools and methodologies for alignment of complex optical systems need to be able to cross these barriers to ensure the highest degree of up time and reduce the cost of maintenance on the production floor. Customers worldwide, who purchase production laser equipment, understand that the majority of costs to a manufacturing facility is spent on system maintenance and is typically the largest single controllable expenditure in a production plant. This desire to reduce costs is driving the trend these days towards predictive and proactive, not reactive maintenance of laser based optical beam delivery systems [10]. With proper diagnostic tools, laser system developers can develop proactive approaches to reduce system down time, safe guard operational performance and reduce premature or catastrophic optics failures. Obviously analytical data will provide quantifiable performance standards which are more precise than qualitative standards, but each have a role in determining overall optical system performance [10]. This paper will discuss the use of film and fluorescent mirror devices as diagnostic tools for beam shaper module alignment off line or in-situ. The paper will also provide an overview

  16. Introduction to parallel programming

    CERN Document Server

    Brawer, Steven

    1989-01-01

    Introduction to Parallel Programming focuses on the techniques, processes, methodologies, and approaches involved in parallel programming. The book first offers information on Fortran, hardware and operating system models, and processes, shared memory, and simple parallel programs. Discussions focus on processes and processors, joining processes, shared memory, time-sharing with multiple processors, hardware, loops, passing arguments in function/subroutine calls, program structure, and arithmetic expressions. The text then elaborates on basic parallel programming techniques, barriers and race

  17. Parallel computing works!

    CERN Document Server

    Fox, Geoffrey C; Messina, Guiseppe C

    2014-01-01

    A clear illustration of how parallel computers can be successfully appliedto large-scale scientific computations. This book demonstrates how avariety of applications in physics, biology, mathematics and other scienceswere implemented on real parallel computers to produce new scientificresults. It investigates issues of fine-grained parallelism relevant forfuture supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configuredifferent massively parallel machines, design and implement basic systemsoftware, and develop

  18. Modulations of the processing of line discontinuities under selective attention conditions?

    Science.gov (United States)

    Giersch, Anne; Fahle, Manfred

    2002-01-01

    We examined whether the processing of discontinuities involved in figure-ground segmentation, like line ends, can be modulated under selective attention conditions. Subjects decided whether a gap in collinear or parallel lines was located to the right or left. Two stimuli were displayed in immediate succession. When the gaps were on the same side, reaction times (RTs) for the second stimulus increased when collinear lines followed parallel lines, or the reverse, but only when the two stimuli shared the same orientation and location. The effect did not depend on the global form of the stimuli or on the relative orientation of the gaps. A frame drawn around collinear elements affected the results, suggesting a crucial role of the "amodal" orthogonal lines produced when line ends are aligned. Including several gaps in the first stimulus also eliminated RT variations. By contrast, RT variations remained stable across several experimental blocks and were significant for interstimulus intervals from 50 to 600 msec between the two stimuli. These results are interpreted in terms of a modulation of the processing of line ends or the production of amodal lines, arising when attention is selectively drawn to a gap.

  19. Belt Aligning Revisited

    Directory of Open Access Journals (Sweden)

    Yurchenko Vadim

    2017-01-01

    parts of the conveyor, the sides of the belt wear intensively. This results in reducing the life of the belt. The reasons for this phenomenon are well investigated, but the difficulty lies in the fact that they all act simultaneously. The belt misalignment prevention can be carried out in two ways: by minimizing the effect of causes and by aligning the belt. The construction of aligning devices and errors encountered in practice are considered in this paper. Self-aligning roller supports rotational in plan view are recommended as a means of combating the belt misalignment.

  20. Hybrid vehicle motor alignment

    Science.gov (United States)

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  1. Alignment for CSR

    International Nuclear Information System (INIS)

    Wang Shoujin; Man Kaidi; Guo Yizhen; Cai Guozhu; Guo Yuhui

    2002-01-01

    Cooled Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR) belongs to China great scientific project in China. The alignment for it is very difficult because of very large area and very high accuracy. For the special case in HIRFL-CSR, some new methods and new instruments are used, including the construction of survey control network, the usage of laser tracker, and CSR alignment database system with applications developed to store and analyze data. The author describes the whole procedure of CSR alignment

  2. Methods in ALFA Alignment

    CERN Document Server

    Melendez, Jordan

    2014-01-01

    This note presents two model-independent methods for use in the alignment of the ALFA forward detectors. Using a Monte Carlo simulated LHC run at \\beta = 90m and \\sqrt{s} = 7 TeV, the Kinematic Peak alignment method is utilized to reconstruct the Mandelstam momentum transfer variable t for single-diractive protons. The Hot Spot method uses fluctuations in the hitmap density to pinpoint particular regions in the detector that could signal a misalignment. Another method uses an error function fit to find the detector edge. With this information, the vertical alignment can be determined.

  3. Effect of alignment of easy axes on dynamic magnetization of immobilized magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Takashi, E-mail: t_yoshi@ees.kyushu-u.ac.jp [Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Matsugi, Yuki; Tsujimura, Naotaka; Sasayama, Teruyoshi; Enpuku, Keiji [Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Viereck, Thilo; Schilling, Meinhard; Ludwig, Frank [Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig 38106 (Germany)

    2017-04-01

    In some biomedical applications of magnetic nanoparticles (MNPs), the particles are physically immobilized. In this study, we explore the effect of the alignment of the magnetic easy axes on the dynamic magnetization of immobilized MNPs under an AC excitation field. We prepared three immobilized MNP samples: (1) a sample in which easy axes are randomly oriented, (2) a parallel-aligned sample in which easy axes are parallel to the AC field, and (3) an orthogonally aligned sample in which easy axes are perpendicular to the AC field. First, we show that the parallel-aligned sample has the largest hysteresis in the magnetization curve and the largest harmonic magnetization spectra, followed by the randomly oriented and orthogonally aligned samples. For example, 1.6-fold increase was observed in the area of the hysteresis loop of the parallel-aligned sample compared to that of the randomly oriented sample. To quantitatively discuss the experimental results, we perform a numerical simulation based on a Fokker-Planck equation, in which probability distributions for the directions of the easy axes are taken into account in simulating the prepared MNP samples. We obtained quantitative agreement between experiment and simulation. These results indicate that the dynamic magnetization of immobilized MNPs is significantly affected by the alignment of the easy axes. - Highlights: • We clarify how the alignment of easy axis of MNP affects the AC magnetization. • Parallel-aligned immobilized MNPs exhibit the largest AC hysteresis loop. • Parallel-aligned immobilized MNPs exhibit the largest harmonic magnetization spectra. • The AC magnetization is strongly affected by the alignment of the easy axes.

  4. Series Transmission Line Transformer

    Science.gov (United States)

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  5. Incorporation of parallel electrospun fibers for improved topographical guidance in 3D nerve guides

    International Nuclear Information System (INIS)

    Jeffries, Eric M; Wang Yadong

    2013-01-01

    Three dimensional (3D) conduits facilitate nerve regeneration. Parallel microfibers have been shown to guide axon extension and Schwann cell migration on flat sheets via topographical cues. However, incorporation of aligned microfibers into 3D conduits to accelerate nerve regeneration has proven challenging. We report an electrospinning technique to incorporate parallel microfibers into 3D constructs at high surface areas while retaining an open architecture. The nerve guide consists of many microchannels lined with a thin layer of longitudinally-aligned microfibers. This design aims to maximize benefits of topographical cues without inhibiting cellular infiltration. We support this hypothesis by demonstrating efficient cell infiltration in vitro. Additionally, this new technique reduces wall thickness compared to our previous design, providing a greater total area for tissue growth. This approach results in an architecture that very closely mimics the structure of decellularized nerve but with larger microchannel diameters to encourage cell infiltration. We believe that reproducing the native architecture is the first step toward matching autograph efficacy. Furthermore, this design can be combined with other biochemical cues to promote nerve regeneration. (paper)

  6. A Cassie-Like Law Using Triple Phase Boundary Line Fractions for Faceted Droplets on Chemically Heterogeneous Surfaces

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Taboryski, Rafael Jozef

    2009-01-01

    We present experimental contact angle data for surfaces, which were surface-engineered with a hydrophobic micropattern of hexagonal geometry. The chemically heterogeneous surface of the same hexagonal pattern of defects resulted in faceted droplets of hexagonal shape. When measuring the advancing...... contact angles with a viewing position aligned parallel to rows of defects, we found that an area averaged Cassie-law failed in describing the data. By replacing the area fractions by line fractions of the triple phase boundary Line segments in the Cassie equation, we found excellent agreement with data....

  7. The magnetic properties of aligned M hexa-ferrite fibres

    International Nuclear Information System (INIS)

    Pullar, R.C.; Bhattacharya, A.K.

    2006-01-01

    Aligned and random fibres of strontium hexa ferrite (SrM, SrFe 12 O 19 ) and barium hexaferrite (BaM, BaFe 12 O 19 ) were manufactured by blow spinning from an aqueous inorganic sol-gel precursor, which was then fired to give the hexagonal ferrite fibre. Their magnetic properties were studied by VSM, investigating the evolution of these properties with firing and measurement temperature, and in particular the effects of fibre alignment. It has been predicted that aligned ferrite fibres will demonstrate an enhanced magnetisation along the axis of alignment with respect to perpendicular to the axis, and this has been demonstrated here for the first time. The optimum firing temperature was 1000 deg. C, at which point they still had submicron grains. In BaM random fibres M s =63.8 emu g -1 and H c =428.1 kA m -1 , and in SrM random fibres M s =63.3 emu g -1 and H c =452.8 kA m -1 , high values for polycrystalline materials. Fibres aligned parallel to the applied field had saturation magnetisation (M s ) values equal to those of the random fibres, whilst fibres aligned perpendicular to the field had M s values 62% and 75% lower, for BaM and SrM, respectively. There was no change in coercivity (H c ) between random or aligned fibres of any orientation, and fibres aligned 45 deg. and parallel to H appeared identical. Therefore, properties along the axis of alignment were superior when compared to measurements perpendicular to the axis of alignment, giving a directionality to the magnetisation in an otherwise randomly oriented ferrite material

  8. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    Since September, the muon alignment system shifted from a mode of hardware installation and commissioning to operation and data taking. All three optical subsystems (Barrel, Endcap and Link alignment) have recorded data before, during and after CRAFT, at different magnetic fields and during ramps of the magnet. This first data taking experience has several interesting goals: •    study detector deformations and movements under the influence of the huge magnetic forces; •    study the stability of detector structures and of the alignment system over long periods, •    study geometry reproducibility at equal fields (specially at 0T and 3.8T); •    reconstruct B=0T geometry and compare to nominal/survey geometries; •    reconstruct B=3.8T geometry and provide DT and CSC alignment records for CMSSW. However, the main goal is to recons...

  9. Biaxial magnetic grain alignment

    International Nuclear Information System (INIS)

    Staines, M.; Genoud, J.-Y.; Mawdsley, A.; Manojlovic, V.

    2000-01-01

    Full text: We describe a dynamic magnetic grain alignment technique which can be used to produce YBCO thick films with a high degree of biaxial texture. The technique is, however, generally applicable to preparing ceramics or composite materials from granular materials with orthorhombic or lower crystal symmetry and is therefore not restricted to superconducting applications. Because magnetic alignment is a bulk effect, textured substrates are not required, unlike epitaxial coated tape processes such as RABiTS. We have used the technique to produce thick films of Y-247 on untextured silver substrates. After processing to Y-123 the films show a clear enhancement of critical current density relative to identically prepared untextured or uniaxially textured samples. We describe procedures for preparing materials using magnetic biaxial grain alignment with the emphasis on alignment in epoxy, which can give extremely high texture. X-ray rocking curves with FWHM of as little as 1-2 degrees have been measured

  10. Parallel Atomistic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    HEFFELFINGER,GRANT S.

    2000-01-18

    Algorithms developed to enable the use of atomistic molecular simulation methods with parallel computers are reviewed. Methods appropriate for bonded as well as non-bonded (and charged) interactions are included. While strategies for obtaining parallel molecular simulations have been developed for the full variety of atomistic simulation methods, molecular dynamics and Monte Carlo have received the most attention. Three main types of parallel molecular dynamics simulations have been developed, the replicated data decomposition, the spatial decomposition, and the force decomposition. For Monte Carlo simulations, parallel algorithms have been developed which can be divided into two categories, those which require a modified Markov chain and those which do not. Parallel algorithms developed for other simulation methods such as Gibbs ensemble Monte Carlo, grand canonical molecular dynamics, and Monte Carlo methods for protein structure determination are also reviewed and issues such as how to measure parallel efficiency, especially in the case of parallel Monte Carlo algorithms with modified Markov chains are discussed.

  11. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    CERN Document Server

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  12. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    S. Szillasi

    2013-01-01

    The CMS detector has been gradually opened and whenever a wheel became exposed the first operation was the removal of the MABs, the sensor structures of the Hardware Barrel Alignment System. By the last days of June all 36 MABs have arrived at the Alignment Lab at the ISR where, as part of the Alignment Upgrade Project, they are refurbished with new Survey target holders. Their electronic checkout is on the way and finally they will be recalibrated. During LS1 the alignment system will be upgraded in order to allow more precise reconstruction of the MB4 chambers in Sector 10 and Sector 4. This requires new sensor components, so called MiniMABs (pictured below), that have already been assembled and calibrated. Image 6: Calibrated MiniMABs are ready for installation For the track-based alignment, the systematic uncertainties of the algorithm are under scrutiny: this study will enable the production of an improved Monte Carlo misalignment scenario and to update alignment position errors eventually, crucial...

  13. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2012-01-01

      A new muon alignment has been produced for 2012 A+B data reconstruction. It uses the latest Tracker alignment and single-muon data samples to align both DTs and CSCs. Physics validation has been performed and shows a modest improvement in stand-alone muon momentum resolution in the barrel, where the alignment is essentially unchanged from the previous version. The reference-target track-based algorithm using only collision muons is employed for the first time to align the CSCs, and a substantial improvement in resolution is observed in the endcap and overlap regions for stand-alone muons. This new alignment is undergoing the approval process and is expected to be deployed as part of a new global tag in the beginning of December. The pT dependence of the φ-bias in curvature observed in Monte Carlo was traced to a relative vertical misalignment between the Tracker and barrel muon systems. Moving the barrel as a whole to match the Tracker cures this pT dependence, leaving only the &phi...

  14. Elevation angle alignment of quasi optical receiver mirrors of collective Thomson scattering diagnostic by sawtooth measurements

    DEFF Research Database (Denmark)

    Moseev, D.; Meo, Fernando; Korsholm, Søren Bang

    2012-01-01

    require a good alignment of the optical path in the transmission line. Monitoring the alignment during the experiment greatly benefits the confidence in the CTS measurements. An in situ technique for the assessment of the elevation angle alignment of the receiver is developed. Using the CTS diagnostic...

  15. High-throughput sequence alignment using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Trapnell Cole

    2007-12-01

    Full Text Available Abstract Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.

  16. Alignment between Protostellar Outflows and Filamentary Structure

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Ian W.; Dunham, Michael M.; Myers, Philip C.; Pokhrel, Riwaj; Sadavoy, Sarah I.; Lee, Katherine I.; Goodman, Alyssa A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Vorobyov, Eduard I. [Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna, A-1060 (Austria); Tobin, John J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Pineda, Jaime E. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Offner, Stella S. R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Kristensen, Lars E. [Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark); Jørgensen, Jes K. [Niels Bohr Institute and Center for Star and Planet Formation, Copenhagen University, DK-1350 Copenhagen K. (Denmark); Bourke, Tyler L. [SKA Organization, Jodrell Bank Observatory, Lower Withington, Macclesfield, Cheshire SK11 9DL (United Kingdom); Arce, Héctor G. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Plunkett, Adele L., E-mail: ian.stephens@cfa.harvard.edu [European Southern Observatory, Av. Alonso de Cordova 3107, Vitacura, Santiago de Chile (Chile)

    2017-09-01

    We present new Submillimeter Array (SMA) observations of CO(2–1) outflows toward young, embedded protostars in the Perseus molecular cloud as part of the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey. For 57 Perseus protostars, we characterize the orientation of the outflow angles and compare them with the orientation of the local filaments as derived from Herschel observations. We find that the relative angles between outflows and filaments are inconsistent with purely parallel or purely perpendicular distributions. Instead, the observed distribution of outflow-filament angles are more consistent with either randomly aligned angles or a mix of projected parallel and perpendicular angles. A mix of parallel and perpendicular angles requires perpendicular alignment to be more common by a factor of ∼3. Our results show that the observed distributions probably hold regardless of the protostar’s multiplicity, age, or the host core’s opacity. These observations indicate that the angular momentum axis of a protostar may be independent of the large-scale structure. We discuss the significance of independent protostellar rotation axes in the general picture of filament-based star formation.

  17. Parallelization in Modern C++

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The traditionally used and well established parallel programming models OpenMP and MPI are both targeting lower level parallelism and are meant to be as language agnostic as possible. For a long time, those models were the only widely available portable options for developing parallel C++ applications beyond using plain threads. This has strongly limited the optimization capabilities of compilers, has inhibited extensibility and genericity, and has restricted the use of those models together with other, modern higher level abstractions introduced by the C++11 and C++14 standards. The recent revival of interest in the industry and wider community for the C++ language has also spurred a remarkable amount of standardization proposals and technical specifications being developed. Those efforts however have so far failed to build a vision on how to seamlessly integrate various types of parallelism, such as iterative parallel execution, task-based parallelism, asynchronous many-task execution flows, continuation s...

  18. Parallelism in matrix computations

    CERN Document Server

    Gallopoulos, Efstratios; Sameh, Ahmed H

    2016-01-01

    This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...

  19. Node fingerprinting: an efficient heuristic for aligning biological networks.

    Science.gov (United States)

    Radu, Alex; Charleston, Michael

    2014-10-01

    With the continuing increase in availability of biological data and improvements to biological models, biological network analysis has become a promising area of research. An emerging technique for the analysis of biological networks is through network alignment. Network alignment has been used to calculate genetic distance, similarities between regulatory structures, and the effect of external forces on gene expression, and to depict conditional activity of expression modules in cancer. Network alignment is algorithmically complex, and therefore we must rely on heuristics, ideally as efficient and accurate as possible. The majority of current techniques for network alignment rely on precomputed information, such as with protein sequence alignment, or on tunable network alignment parameters, which may introduce an increased computational overhead. Our presented algorithm, which we call Node Fingerprinting (NF), is appropriate for performing global pairwise network alignment without precomputation or tuning, can be fully parallelized, and is able to quickly compute an accurate alignment between two biological networks. It has performed as well as or better than existing algorithms on biological and simulated data, and with fewer computational resources. The algorithmic validation performed demonstrates the low computational resource requirements of NF.

  20. Alignments of galaxies within cosmic filaments from SDSS DR7

    International Nuclear Information System (INIS)

    Zhang, Youcai; Yang, Xiaohu; Wang, Huiyuan; Wang, Lei; Mo, H. J.; Van den Bosch, Frank C.

    2013-01-01

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  1. Alignments of galaxies within cosmic filaments from SDSS DR7

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Youcai; Yang, Xiaohu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Wang, Huiyuan [Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Lei [Purple Mountain Observatory, the Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008 (China); Mo, H. J. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Van den Bosch, Frank C., E-mail: yczhang@shao.ac.cn, E-mail: xyang@sjtu.edu.cn [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

    2013-12-20

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  2. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    2012-01-01

      The new alignment for the DT chambers has been successfully used in physics analysis starting with the 52X Global Tag. The remaining main areas of development over the next few months will be preparing a new track-based CSC alignment and producing realistic APEs (alignment position errors) and MC misalignment scenarios to match the latest muon alignment constants. Work on these items has been delayed from the intended timeline, mostly due to a large involvement of the muon alignment man-power in physics analyses over the first half of this year. As CMS keeps probing higher and higher energies, special attention must be paid to the reconstruction of very-high-energy muons. Recent muon POG reports from mid-June show a φ-dependence in curvature bias in Monte Carlo samples. This bias is observed already at the tracker level, where it is constant with muon pT, while it grows with pT as muon chamber information is added to the tracks. Similar studies show a much smaller effect in data, at le...

  3. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2010-01-01

    For the last three months, the Muon Alignment group has focussed on providing a new, improved set of alignment constants for the end-of-year data reprocessing. These constants were delivered on time and approved by the CMS physics validation team on November 17. The new alignment incorporates several improvements over the previous one from March for nearly all sub-systems. Motivated by the loss of information from a hardware failure in May (an entire MAB was lost), the optical barrel alignment has moved from a modular, super-plane reconstruction, to a full, single loop calculation of the entire geometry for all DTs in stations 1, 2 and 3. This makes better use of the system redundancy, mitigating the effect of the information loss. Station 4 is factorised and added afterwards to make the system smaller (and therefore faster to run), and also because the MAB calibration at the MB4 zone is less precise. This new alignment procedure was tested at 0 T against photogrammetry resulting in precisions of the order...

  4. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    M. Dallavalle

    2013-01-01

    A new Muon misalignment scenario for 2011 (7 TeV) Monte Carlo re-processing was re-leased. The scenario is based on running of standard track-based reference-target algorithm (exactly as in data) using single-muon simulated sample (with the transverse-momentum spectrum matching data). It used statistics similar to what was used for alignment with 2011 data, starting from an initially misaligned Muon geometry from uncertainties of hardware measurements and using the latest Tracker misalignment geometry. Validation of the scenario (with muons from Z decay and high-pT simulated muons) shows that it describes data well. The study of systematic uncertainties (dominant by now due to huge amount of data collected by CMS and used for muon alignment) is finalised. Realistic alignment position errors are being obtained from the estimated uncertainties and are expected to improve the muon reconstruction performance. Concerning the Hardware Alignment System, the upgrade of the Barrel Alignment is in progress. By now, d...

  5. Probabilistic biological network alignment.

    Science.gov (United States)

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-01-01

    Interactions between molecules are probabilistic events. An interaction may or may not happen with some probability, depending on a variety of factors such as the size, abundance, or proximity of the interacting molecules. In this paper, we consider the problem of aligning two biological networks. Unlike existing methods, we allow one of the two networks to contain probabilistic interactions. Allowing interaction probabilities makes the alignment more biologically relevant at the expense of explosive growth in the number of alternative topologies that may arise from different subsets of interactions that take place. We develop a novel method that efficiently and precisely characterizes this massive search space. We represent the topological similarity between pairs of aligned molecules (i.e., proteins) with the help of random variables and compute their expected values. We validate our method showing that, without sacrificing the running time performance, it can produce novel alignments. Our results also demonstrate that our method identifies biologically meaningful mappings under a comprehensive set of criteria used in the literature as well as the statistical coherence measure that we developed to analyze the statistical significance of the similarity of the functions of the aligned protein pairs.

  6. Parallel Monte Carlo Search for Hough Transform

    Science.gov (United States)

    Lopes, Raul H. C.; Franqueira, Virginia N. L.; Reid, Ivan D.; Hobson, Peter R.

    2017-10-01

    We investigate the problem of line detection in digital image processing and in special how state of the art algorithms behave in the presence of noise and whether CPU efficiency can be improved by the combination of a Monte Carlo Tree Search, hierarchical space decomposition, and parallel computing. The starting point of the investigation is the method introduced in 1962 by Paul Hough for detecting lines in binary images. Extended in the 1970s to the detection of space forms, what came to be known as Hough Transform (HT) has been proposed, for example, in the context of track fitting in the LHC ATLAS and CMS projects. The Hough Transform transfers the problem of line detection, for example, into one of optimization of the peak in a vote counting process for cells which contain the possible points of candidate lines. The detection algorithm can be computationally expensive both in the demands made upon the processor and on memory. Additionally, it can have a reduced effectiveness in detection in the presence of noise. Our first contribution consists in an evaluation of the use of a variation of the Radon Transform as a form of improving theeffectiveness of line detection in the presence of noise. Then, parallel algorithms for variations of the Hough Transform and the Radon Transform for line detection are introduced. An algorithm for Parallel Monte Carlo Search applied to line detection is also introduced. Their algorithmic complexities are discussed. Finally, implementations on multi-GPU and multicore architectures are discussed.

  7. Laser alignment of rotating equipment at PNL

    International Nuclear Information System (INIS)

    Berndt, R.H.

    1994-05-01

    Lateral vibration in direct-drive equipment is usually caused by misalignment. Over the years, because of the need to improve on techniques and ways of working more efficiently, various types of alignment methods have evolved. In the beginning, craftsmen used a straight-edge scale across the coupling with a feeler gauge measuring the misalignment error. This is still preferred today for aligning small couplings. The industry has since decided that alignment of large direct-drive equipment needed a more accurate type of instrumentation. Rim and face is another of the first alignment methods and is used on all sizes of equipment. A disadvantage of the rim and face method is that in most cases the coupling has to be disassembled. This can cause alignment problems when the coupling is reassembled. Also, the rim and face method is not fast enough to work satisfactorily on alignment of thermally hot equipment. Another concern is that the coupling has to be manufactured accurately for correct rim and face readings. Reverse dial alignment is an improvement over the rim and face method, and depending on the operator's experience, this method can be very accurate. A good training program along with field experience will bring the operator to a proper level of proficiency for a successful program. A hand-held computer with reverse dial calculations in memory is a must for job efficiency. An advantage over the rim and face method is that the coupling is not disassembled and remains locked together. Reverse dial instrumentation measures from both shaft center lines, rather than the coupling surface so the machining of the coupling during manufacture is not a major concern

  8. A parallel buffer tree

    DEFF Research Database (Denmark)

    Sitchinava, Nodar; Zeh, Norbert

    2012-01-01

    We present the parallel buffer tree, a parallel external memory (PEM) data structure for batched search problems. This data structure is a non-trivial extension of Arge's sequential buffer tree to a private-cache multiprocessor environment and reduces the number of I/O operations by the number of...... in the optimal OhOf(psortN + K/PB) parallel I/O complexity, where K is the size of the output reported in the process and psortN is the parallel I/O complexity of sorting N elements using P processors....

  9. Parallel MR imaging.

    Science.gov (United States)

    Deshmane, Anagha; Gulani, Vikas; Griswold, Mark A; Seiberlich, Nicole

    2012-07-01

    Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the undersampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed. Copyright © 2012 Wiley Periodicals, Inc.

  10. Parallel Algorithms and Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-16

    This is a powerpoint presentation on parallel algorithms and patterns. A parallel algorithm is a well-defined, step-by-step computational procedure that emphasizes concurrency to solve a problem. Examples of problems include: Sorting, searching, optimization, matrix operations. A parallel pattern is a computational step in a sequence of independent, potentially concurrent operations that occurs in diverse scenarios with some frequency. Examples are: Reductions, prefix scans, ghost cell updates. We only touch on parallel patterns in this presentation. It really deserves its own detailed discussion which Gabe Rockefeller would like to develop.

  11. Application Portable Parallel Library

    Science.gov (United States)

    Cole, Gary L.; Blech, Richard A.; Quealy, Angela; Townsend, Scott

    1995-01-01

    Application Portable Parallel Library (APPL) computer program is subroutine-based message-passing software library intended to provide consistent interface to variety of multiprocessor computers on market today. Minimizes effort needed to move application program from one computer to another. User develops application program once and then easily moves application program from parallel computer on which created to another parallel computer. ("Parallel computer" also include heterogeneous collection of networked computers). Written in C language with one FORTRAN 77 subroutine for UNIX-based computers and callable from application programs written in C language or FORTRAN 77.

  12. Introduction of hind foot coronal alignment view

    International Nuclear Information System (INIS)

    Moon, Il Bong; Jeon, Ju Seob; Yoon, Kang Cheol; Choi, Nam Kil; Kim, Seung Kook

    2006-01-01

    Accurate clinical evaluation of the alignment of the calcaneus relative to the tibia in the coronal plane is essential in the evaluation and treatment of hind foot pathologic condition. Previously described standard anteroposterior, lateral, and oblique radiographic methods of the foot or ankle do not demonstrate alignment of the tibia relation to the calcaneus in the coronal plane. The purpose of this study was to introduce hind foot coronal alignment view. Both feet were imaged simultaneously on an elevated, radiolucent foot stand equipment. Both feet stood on a radiolucent platform with equal weight on both feet. Both feet are located foot axis longitudinal perpendicular to the platform. Silhouette tracing around both feet are made, and line is then drawn to bisect the silhouette of the second toe and the outline of the heel. The x-ray beam is angled down approximately 15 .deg. to 20 .deg. This image described tibial axis and medial, lateral tuberosity of calcaneus. Calcaneus do not rotated. The view is showed by talotibial joint space. Although computed tomographic and magnetic resonance imaging techniques are capable of demonstrating coronal hind foot alignment, they lack usefulness in most clinical situations because the foot is imaged in a non-weight bearing position. But hind foot coronal alignment view is obtained for evaluating position changing of inversion, eversion of the hind foot and varus, valgus deformity of calcaneus

  13. Scintillation counter: photomultiplier tube alignment

    International Nuclear Information System (INIS)

    Olson, R.E.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into the sample receiving zone. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (auth)

  14. Alignment enhancement of a symmetric top molecule by two short laser pulses

    DEFF Research Database (Denmark)

    Bisgaard, Christer Z; Viftrup, Simon; Stapelfeldt, Henrik

    2006-01-01

    equation. It is shown that the strongest degree of one-dimensional (single axis) field-free alignment obtainable with a single pulse can be enhanced using the two-pulse sequence in a parallel polarization geometry. The conditions for alignment enhancement are: (1) The second pulse must be sent near...

  15. Aligning Responsible Business Practices

    DEFF Research Database (Denmark)

    Weller, Angeli E.

    2017-01-01

    This article offers an in-depth case study of a global high tech manufacturer that aligned its ethics and compliance, corporate social responsibility, and sustainability practices. Few large companies organize their responsible business practices this way, despite conceptual relevance and calls t...... and managers interested in understanding how responsible business practices may be collectively organized.......This article offers an in-depth case study of a global high tech manufacturer that aligned its ethics and compliance, corporate social responsibility, and sustainability practices. Few large companies organize their responsible business practices this way, despite conceptual relevance and calls...... to manage them comprehensively. A communities of practice theoretical lens suggests that intentional effort would be needed to bridge meaning between the relevant managers and practices in order to achieve alignment. The findings call attention to the important role played by employees who broker...

  16. Alignment of whole genomes.

    Science.gov (United States)

    Delcher, A L; Kasif, S; Fleischmann, R D; Peterson, J; White, O; Salzberg, S L

    1999-01-01

    A new system for aligning whole genome sequences is described. Using an efficient data structure called a suffix tree, the system is able to rapidly align sequences containing millions of nucleotides. Its use is demonstrated on two strains of Mycoplasma tuberculosis, on two less similar species of Mycoplasma bacteria and on two syntenic sequences from human chromosome 12 and mouse chromosome 6. In each case it found an alignment of the input sequences, using between 30 s and 2 min of computation time. From the system output, information on single nucleotide changes, translocations and homologous genes can easily be extracted. Use of the algorithm should facilitate analysis of syntenic chromosomal regions, strain-to-strain comparisons, evolutionary comparisons and genomic duplications. PMID:10325427

  17. Simulation of beamline alignment operations

    International Nuclear Information System (INIS)

    Annese, C; Miller, M G.

    1999-01-01

    The CORBA-based Simulator was a Laboratory Directed Research and Development (LDRD) project that applied simulation techniques to explore critical questions about distributed control systems. The simulator project used a three-prong approach that studied object-oriented distribution tools, computer network modeling, and simulation of key control system scenarios. The National Ignition Facility's (NIF) optical alignment system was modeled to study control system operations. The alignment of NIF's 192 beamlines is a large complex operation involving more than 100 computer systems and 8000 mechanized devices. The alignment process is defined by a detailed set of procedures; however, many of the steps are deterministic. The alignment steps for a poorly aligned component are similar to that of a nearly aligned component; however, additional operations/iterations are required to complete the process. Thus, the same alignment operations will require variable amounts of time to perform depending on the current alignment condition as well as other factors. Simulation of the alignment process is necessary to understand beamline alignment time requirements and how shared resources such as the Output Sensor and Target Alignment Sensor effect alignment efficiency. The simulation has provided alignment time estimates and other results based on documented alignment procedures and alignment experience gained in the laboratory. Computer communication time, mechanical hardware actuation times, image processing algorithm execution times, etc. have been experimentally determined and incorporated into the model. Previous analysis of alignment operations utilized average implementation times for all alignment operations. Resource sharing becomes rather simple to model when only average values are used. The time required to actually implement the many individual alignment operations will be quite dynamic. The simulation model estimates the time to complete an operation using

  18. Experimental image alignment system

    Science.gov (United States)

    Moyer, A. L.; Kowel, S. T.; Kornreich, P. G.

    1980-01-01

    A microcomputer-based instrument for image alignment with respect to a reference image is described which uses the DEFT sensor (Direct Electronic Fourier Transform) for image sensing and preprocessing. The instrument alignment algorithm which uses the two-dimensional Fourier transform as input is also described. It generates signals used to steer the stage carrying the test image into the correct orientation. This algorithm has computational advantages over algorithms which use image intensity data as input and is suitable for a microcomputer-based instrument since the two-dimensional Fourier transform is provided by the DEFT sensor.

  19. Monitoring of absolute mirror alignment at COMPASS RICH-1 detector

    NARCIS (Netherlands)

    Alexeev, M.; Birsa, R.; Bradamante, F.; Bressan, A.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Denisov, O.; Duic, V.; Ferrero, A.; Finger, M.; Finger, M.; Gayde, J. Ch; Giorgi, M.; Gobbo, B.; Levorato, S.; Maggiora, A.; Martin, A.; Menon, G.; Panzieri, D.; Pesaro, G.; Polak, J.; Rocco, E.; Sbrizzai, G.; Schiavon, P.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Takekawa, S.; Tessarotto, F.

    2014-01-01

    The gaseous COMPASS RICH-1 detector uses two spherical mirror surfaces, segmented into 116 individual mirrors, to focus the Cherenkov photons onto the detector plane. Any mirror misalignment directly affects the detector resolution. The on-line Continuous Line Alignment and Monitoring (CLAM)

  20. Parallel discrete event simulation

    NARCIS (Netherlands)

    Overeinder, B.J.; Hertzberger, L.O.; Sloot, P.M.A.; Withagen, W.J.

    1991-01-01

    In simulating applications for execution on specific computing systems, the simulation performance figures must be known in a short period of time. One basic approach to the problem of reducing the required simulation time is the exploitation of parallelism. However, in parallelizing the simulation

  1. Parallel reservoir simulator computations

    International Nuclear Information System (INIS)

    Hemanth-Kumar, K.; Young, L.C.

    1995-01-01

    The adaptation of a reservoir simulator for parallel computations is described. The simulator was originally designed for vector processors. It performs approximately 99% of its calculations in vector/parallel mode and relative to scalar calculations it achieves speedups of 65 and 81 for black oil and EOS simulations, respectively on the CRAY C-90

  2. A position sensitive parallel plate avalanche counter

    International Nuclear Information System (INIS)

    Lombardi, M.; Tan Jilian; Potenza, R.; D'amico, V.

    1986-01-01

    A position sensitive parallel plate avalanche counter with a distributed constant delay-line-cathode (PSAC) is described. The strips formed on the printed board were served as the cathode and the delay line for readout of signals. The detector (PSAC) was operated in isobutane gas at the pressure range from 10 to 20 torr. The position resolution is better than 1 mm and the time resolution is about 350 ps, for 252 Cf fission-spectrum source

  3. Totally parallel multilevel algorithms

    Science.gov (United States)

    Frederickson, Paul O.

    1988-01-01

    Four totally parallel algorithms for the solution of a sparse linear system have common characteristics which become quite apparent when they are implemented on a highly parallel hypercube such as the CM2. These four algorithms are Parallel Superconvergent Multigrid (PSMG) of Frederickson and McBryan, Robust Multigrid (RMG) of Hackbusch, the FFT based Spectral Algorithm, and Parallel Cyclic Reduction. In fact, all four can be formulated as particular cases of the same totally parallel multilevel algorithm, which are referred to as TPMA. In certain cases the spectral radius of TPMA is zero, and it is recognized to be a direct algorithm. In many other cases the spectral radius, although not zero, is small enough that a single iteration per timestep keeps the local error within the required tolerance.

  4. Parallel computing works

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-23

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of many computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.

  5. Massively parallel mathematical sieves

    Energy Technology Data Exchange (ETDEWEB)

    Montry, G.R.

    1989-01-01

    The Sieve of Eratosthenes is a well-known algorithm for finding all prime numbers in a given subset of integers. A parallel version of the Sieve is described that produces computational speedups over 800 on a hypercube with 1,024 processing elements for problems of fixed size. Computational speedups as high as 980 are achieved when the problem size per processor is fixed. The method of parallelization generalizes to other sieves and will be efficient on any ensemble architecture. We investigate two highly parallel sieves using scattered decomposition and compare their performance on a hypercube multiprocessor. A comparison of different parallelization techniques for the sieve illustrates the trade-offs necessary in the design and implementation of massively parallel algorithms for large ensemble computers.

  6. AlignMe—a membrane protein sequence alignment web server

    Science.gov (United States)

    Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.

    2014-01-01

    We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425

  7. Aligning Mental Representations

    DEFF Research Database (Denmark)

    Kano Glückstad, Fumiko

    2013-01-01

    This work introduces a framework that implements asymmetric communication theory proposed by Sperber and Wilson [1]. The framework applies a generalization model known as the Bayesian model of generalization (BMG) [2] for aligning knowledge possessed by two communicating parties. The work focuses...

  8. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and Y. Pakhotin

    2012-01-01

      A new track-based alignment for the DT chambers is ready for deployment: an offline tag has already been produced which will become part of the 52X Global Tag. This alignment was validated within the muon alignment group both at low and high momentum using a W/Z skim sample. It shows an improved mass resolution for pairs of stand-alone muons, improved curvature resolution at high momentum, and improved DT segment extrapolation residuals. The validation workflow for high-momentum muons used to depend solely on the “split cosmics” method, looking at the curvature difference between muon tracks reconstructed in the upper or lower half of CMS. The validation has now been extended to include energetic muons decaying from heavily boosted Zs: the di-muon invariant mass for global and stand-alone muons is reconstructed, and the invariant mass resolution is compared for different alignments. The main areas of development over the next few months will be preparing a new track-based C...

  9. Community Alignment ANADP

    OpenAIRE

    Halbert, Martin; Bicarregui, Juan; Anglada, Lluis; Duranti, Luciana

    2014-01-01

    Aligning National Approaches to Digital Preservation: An Action Assembly Biblioteca de Catalunya (National Library of Catalonia) November 18-20, 2013, Barcelona, Spain Auburn University Council on Library and Information Resources (CLIR) Digital Curation Centre (DCC) Digital Preservation Network (DPN) Joint Information Systems Committee (JISC) University of North Texas Virginia Tech Interuniversity Consortium for Political and Social Research (ICPSR) Innovative Inte...

  10. Discriminative Shape Alignment

    DEFF Research Database (Denmark)

    Loog, M.; de Bruijne, M.

    2009-01-01

    , not taking into account that eventually the shapes are to be assigned to two or more different classes. This work introduces a discriminative variation to well-known Procrustes alignment and demonstrates its benefit over this classical method in shape classification tasks. The focus is on two...

  11. Resource Alignment ANADP

    OpenAIRE

    Grindley, Neil; Cramer, Tom; Schrimpf, Sabine; Wilson, Tom

    2014-01-01

    Aligning National Approaches to Digital Preservation: An Action Assembly Biblioteca de Catalunya (National Library of Catalonia) November 18-20, 2013, Barcelona, Spain Auburn University Council on Library and Information Resources (CLIR) Digital Curation Centre (DCC) Digital Preservation Network (DPN) Joint Information Systems Committee (JISC) University of North Texas Virginia Tech Interuniversity Consortium for Political and Social Research (ICPSR) Innovative Inte...

  12. Capacity Alignment ANADP

    OpenAIRE

    Davidson, Joy; Whitehead, Martha; Molloy, Laura; Molinaro, Mary

    2014-01-01

    Aligning National Approaches to Digital Preservation: An Action Assembly Biblioteca de Catalunya (National Library of Catalonia) November 18-20, 2013, Barcelona, Spain Auburn University Council on Library and Information Resources (CLIR) Digital Curation Centre (DCC) Digital Preservation Network (DPN) Joint Information Systems Committee (JISC) University of North Texas Virginia Tech Interuniversity Consortium for Political and Social Research (ICPSR) Innovative Inte...

  13. ABS: Sequence alignment by scanning

    KAUST Repository

    Bonny, Mohamed Talal

    2011-08-01

    Sequence alignment is an essential tool in almost any computational biology research. It processes large database sequences and considered to be high consumers of computation time. Heuristic algorithms are used to get approximate but fast results. We introduce fast alignment algorithm, called Alignment By Scanning (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the well-known alignment algorithms, the FASTA (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 76% enhancement in alignment score when it is compared with the FASTA Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  14. ABS: Sequence alignment by scanning

    KAUST Repository

    Bonny, Mohamed Talal; Salama, Khaled N.

    2011-01-01

    Sequence alignment is an essential tool in almost any computational biology research. It processes large database sequences and considered to be high consumers of computation time. Heuristic algorithms are used to get approximate but fast results. We introduce fast alignment algorithm, called Alignment By Scanning (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the well-known alignment algorithms, the FASTA (which is heuristic) and the 'Needleman-Wunsch' (which is optimal). The proposed algorithm achieves up to 76% enhancement in alignment score when it is compared with the FASTA Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  15. Fast global sequence alignment technique

    KAUST Repository

    Bonny, Mohamed Talal

    2011-11-01

    Bioinformatics database is growing exponentially in size. Processing these large amount of data may take hours of time even if super computers are used. One of the most important processing tool in Bioinformatics is sequence alignment. We introduce fast alignment algorithm, called \\'Alignment By Scanning\\' (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the wellknown sequence alignment algorithms, the \\'GAP\\' (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 51% enhancement in alignment score when it is compared with the GAP Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  16. Parallel graded attention in reading: A pupillometric study

    NARCIS (Netherlands)

    Snell, Joshua; Mathot, Sebastiaan; Mirault, Jonathan; Grainger, Jonathan

    2018-01-01

    There are roughly two lines of theory to account for recent evidence that word processing is influenced by adjacent orthographic information. One line assumes that multiple words can be processed simultaneously through a parallel graded distribution of visuo-spatial attention. The other line assumes

  17. BFAST: an alignment tool for large scale genome resequencing.

    Directory of Open Access Journals (Sweden)

    Nils Homer

    2009-11-01

    Full Text Available The new generation of massively parallel DNA sequencers, combined with the challenge of whole human genome resequencing, result in the need for rapid and accurate alignment of billions of short DNA sequence reads to a large reference genome. Speed is obviously of great importance, but equally important is maintaining alignment accuracy of short reads, in the 25-100 base range, in the presence of errors and true biological variation.We introduce a new algorithm specifically optimized for this task, as well as a freely available implementation, BFAST, which can align data produced by any of current sequencing platforms, allows for user-customizable levels of speed and accuracy, supports paired end data, and provides for efficient parallel and multi-threaded computation on a computer cluster. The new method is based on creating flexible, efficient whole genome indexes to rapidly map reads to candidate alignment locations, with arbitrary multiple independent indexes allowed to achieve robustness against read errors and sequence variants. The final local alignment uses a Smith-Waterman method, with gaps to support the detection of small indels.We compare BFAST to a selection of large-scale alignment tools -- BLAT, MAQ, SHRiMP, and SOAP -- in terms of both speed and accuracy, using simulated and real-world datasets. We show BFAST can achieve substantially greater sensitivity of alignment in the context of errors and true variants, especially insertions and deletions, and minimize false mappings, while maintaining adequate speed compared to other current methods. We show BFAST can align the amount of data needed to fully resequence a human genome, one billion reads, with high sensitivity and accuracy, on a modest computer cluster in less than 24 hours. BFAST is available at (http://bfast.sourceforge.net.

  18. NIF pointing and centering systems and target alignment using a 351 nm laser source

    International Nuclear Information System (INIS)

    Boege, S.J.; Bliss, E.S.; Chocol, C.J.; Holdener, F.R.; Miller, J.L.; Toeppen, J.S.; Vann, C.S.; Zacharias, R.A.

    1996-10-01

    The operational requirements of the National Ignition Facility (NIF) place tight constraints upon its alignment system. In general, the alignment system must establish and maintain the correct relationships between beam position, beam angle, laser component clear apertures, and the target. At the target, this includes adjustment of beam focus to obtain the correct spot size. This must be accomplished for all beamlines in a time consistent with planned shot rates and yet, in the front end and main laser, beam control functions cannot be initiated until the amplifiers have sufficiently cooled so as to minimize dynamic thermal distortions during and after alignment and wavefront optimization. The scope of the task dictates an automated system that implements parallel processes. We describe reticle choices and other alignment references, insertion of alignment beams, principles of operation of the Chamber Center Reference System 2048 and Target Alignment Sensor, and the anticipated alignment sequence that will occur between shots

  19. MUMmer4: A fast and versatile genome alignment system.

    Directory of Open Access Journals (Sweden)

    Guillaume Marçais

    2018-01-01

    Full Text Available The MUMmer system and the genome sequence aligner nucmer included within it are among the most widely used alignment packages in genomics. Since the last major release of MUMmer version 3 in 2004, it has been applied to many types of problems including aligning whole genome sequences, aligning reads to a reference genome, and comparing different assemblies of the same genome. Despite its broad utility, MUMmer3 has limitations that can make it difficult to use for large genomes and for the very large sequence data sets that are common today. In this paper we describe MUMmer4, a substantially improved version of MUMmer that addresses genome size constraints by changing the 32-bit suffix tree data structure at the core of MUMmer to a 48-bit suffix array, and that offers improved speed through parallel processing of input query sequences. With a theoretical limit on the input size of 141Tbp, MUMmer4 can now work with input sequences of any biologically realistic length. We show that as a result of these enhancements, the nucmer program in MUMmer4 is easily able to handle alignments of large genomes; we illustrate this with an alignment of the human and chimpanzee genomes, which allows us to compute that the two species are 98% identical across 96% of their length. With the enhancements described here, MUMmer4 can also be used to efficiently align reads to reference genomes, although it is less sensitive and accurate than the dedicated read aligners. The nucmer aligner in MUMmer4 can now be called from scripting languages such as Perl, Python and Ruby. These improvements make MUMer4 one the most versatile genome alignment packages available.

  20. Formatt: Correcting protein multiple structural alignments by incorporating sequence alignment

    Directory of Open Access Journals (Sweden)

    Daniels Noah M

    2012-10-01

    Full Text Available Abstract Background The quality of multiple protein structure alignments are usually computed and assessed based on geometric functions of the coordinates of the backbone atoms from the protein chains. These purely geometric methods do not utilize directly protein sequence similarity, and in fact, determining the proper way to incorporate sequence similarity measures into the construction and assessment of protein multiple structure alignments has proved surprisingly difficult. Results We present Formatt, a multiple structure alignment based on the Matt purely geometric multiple structure alignment program, that also takes into account sequence similarity when constructing alignments. We show that Formatt outperforms Matt and other popular structure alignment programs on the popular HOMSTRAD benchmark. For the SABMark twilight zone benchmark set that captures more remote homology, Formatt and Matt outperform other programs; depending on choice of embedded sequence aligner, Formatt produces either better sequence and structural alignments with a smaller core size than Matt, or similarly sized alignments with better sequence similarity, for a small cost in average RMSD. Conclusions Considering sequence information as well as purely geometric information seems to improve quality of multiple structure alignments, though defining what constitutes the best alignment when sequence and structural measures would suggest different alignments remains a difficult open question.

  1. BarraCUDA - a fast short read sequence aligner using graphics processing units

    Directory of Open Access Journals (Sweden)

    Klus Petr

    2012-01-01

    Full Text Available Abstract Background With the maturation of next-generation DNA sequencing (NGS technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU, extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.net

  2. Effect of alignment of easy axes on dynamic magnetization of immobilized magnetic nanoparticles

    Science.gov (United States)

    Yoshida, Takashi; Matsugi, Yuki; Tsujimura, Naotaka; Sasayama, Teruyoshi; Enpuku, Keiji; Viereck, Thilo; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    In some biomedical applications of magnetic nanoparticles (MNPs), the particles are physically immobilized. In this study, we explore the effect of the alignment of the magnetic easy axes on the dynamic magnetization of immobilized MNPs under an AC excitation field. We prepared three immobilized MNP samples: (1) a sample in which easy axes are randomly oriented, (2) a parallel-aligned sample in which easy axes are parallel to the AC field, and (3) an orthogonally aligned sample in which easy axes are perpendicular to the AC field. First, we show that the parallel-aligned sample has the largest hysteresis in the magnetization curve and the largest harmonic magnetization spectra, followed by the randomly oriented and orthogonally aligned samples. For example, 1.6-fold increase was observed in the area of the hysteresis loop of the parallel-aligned sample compared to that of the randomly oriented sample. To quantitatively discuss the experimental results, we perform a numerical simulation based on a Fokker-Planck equation, in which probability distributions for the directions of the easy axes are taken into account in simulating the prepared MNP samples. We obtained quantitative agreement between experiment and simulation. These results indicate that the dynamic magnetization of immobilized MNPs is significantly affected by the alignment of the easy axes.

  3. BarraCUDA - a fast short read sequence aligner using graphics processing units

    LENUS (Irish Health Repository)

    Klus, Petr

    2012-01-13

    Abstract Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http:\\/\\/seqbarracuda.sf.net

  4. Algorithms for parallel computers

    International Nuclear Information System (INIS)

    Churchhouse, R.F.

    1985-01-01

    Until relatively recently almost all the algorithms for use on computers had been designed on the (usually unstated) assumption that they were to be run on single processor, serial machines. With the introduction of vector processors, array processors and interconnected systems of mainframes, minis and micros, however, various forms of parallelism have become available. The advantage of parallelism is that it offers increased overall processing speed but it also raises some fundamental questions, including: (i) which, if any, of the existing 'serial' algorithms can be adapted for use in the parallel mode. (ii) How close to optimal can such adapted algorithms be and, where relevant, what are the convergence criteria. (iii) How can we design new algorithms specifically for parallel systems. (iv) For multi-processor systems how can we handle the software aspects of the interprocessor communications. Aspects of these questions illustrated by examples are considered in these lectures. (orig.)

  5. Parallelism and array processing

    International Nuclear Information System (INIS)

    Zacharov, V.

    1983-01-01

    Modern computing, as well as the historical development of computing, has been dominated by sequential monoprocessing. Yet there is the alternative of parallelism, where several processes may be in concurrent execution. This alternative is discussed in a series of lectures, in which the main developments involving parallelism are considered, both from the standpoint of computing systems and that of applications that can exploit such systems. The lectures seek to discuss parallelism in a historical context, and to identify all the main aspects of concurrency in computation right up to the present time. Included will be consideration of the important question as to what use parallelism might be in the field of data processing. (orig.)

  6. Study and Development of a Laser Based Alignment System

    CERN Multimedia

    Stern, G

    2014-01-01

    CLIC (Compact Linear Collider) has tight requirements regarding pre-alignment of beam related components: 10 µm accuracy over a sliding window of 200 m along the 20 km of linac. To perform such an alignment, a new system is proposed combining laser beam as straight line reference and camera/shutter assemblies as sensors. The poster describes the alignment system and shows results regarding laser pointing stability with respect to time, shutter type, distance and environment. These results give a frame for future building and calibrating of sensors.

  7. CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping

    Directory of Open Access Journals (Sweden)

    Shi Weisong

    2011-06-01

    Full Text Available Abstract Background Research in genetics has developed rapidly recently due to the aid of next generation sequencing (NGS. However, massively-parallel NGS produces enormous amounts of data, which leads to storage, compatibility, scalability, and performance issues. The Cloud Computing and MapReduce framework, which utilizes hundreds or thousands of shared computers to map sequencing reads quickly and efficiently to reference genome sequences, appears to be a very promising solution for these issues. Consequently, it has been adopted by many organizations recently, and the initial results are very promising. However, since these are only initial steps toward this trend, the developed software does not provide adequate primary functions like bisulfite, pair-end mapping, etc., in on-site software such as RMAP or BS Seeker. In addition, existing MapReduce-based applications were not designed to process the long reads produced by the most recent second-generation and third-generation NGS instruments and, therefore, are inefficient. Last, it is difficult for a majority of biologists untrained in programming skills to use these tools because most were developed on Linux with a command line interface. Results To urge the trend of using Cloud technologies in genomics and prepare for advances in second- and third-generation DNA sequencing, we have built a Hadoop MapReduce-based application, CloudAligner, which achieves higher performance, covers most primary features, is more accurate, and has a user-friendly interface. It was also designed to be able to deal with long sequences. The performance gain of CloudAligner over Cloud-based counterparts (35 to 80% mainly comes from the omission of the reduce phase. In comparison to local-based approaches, the performance gain of CloudAligner is from the partition and parallel processing of the huge reference genome as well as the reads. The source code of CloudAligner is available at http

  8. CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping.

    Science.gov (United States)

    Nguyen, Tung; Shi, Weisong; Ruden, Douglas

    2011-06-06

    Research in genetics has developed rapidly recently due to the aid of next generation sequencing (NGS). However, massively-parallel NGS produces enormous amounts of data, which leads to storage, compatibility, scalability, and performance issues. The Cloud Computing and MapReduce framework, which utilizes hundreds or thousands of shared computers to map sequencing reads quickly and efficiently to reference genome sequences, appears to be a very promising solution for these issues. Consequently, it has been adopted by many organizations recently, and the initial results are very promising. However, since these are only initial steps toward this trend, the developed software does not provide adequate primary functions like bisulfite, pair-end mapping, etc., in on-site software such as RMAP or BS Seeker. In addition, existing MapReduce-based applications were not designed to process the long reads produced by the most recent second-generation and third-generation NGS instruments and, therefore, are inefficient. Last, it is difficult for a majority of biologists untrained in programming skills to use these tools because most were developed on Linux with a command line interface. To urge the trend of using Cloud technologies in genomics and prepare for advances in second- and third-generation DNA sequencing, we have built a Hadoop MapReduce-based application, CloudAligner, which achieves higher performance, covers most primary features, is more accurate, and has a user-friendly interface. It was also designed to be able to deal with long sequences. The performance gain of CloudAligner over Cloud-based counterparts (35 to 80%) mainly comes from the omission of the reduce phase. In comparison to local-based approaches, the performance gain of CloudAligner is from the partition and parallel processing of the huge reference genome as well as the reads. The source code of CloudAligner is available at http://cloudaligner.sourceforge.net/ and its web version is at http

  9. Theory of the deformation of aligned polyethylene.

    Science.gov (United States)

    Hammad, A; Swinburne, T D; Hasan, H; Del Rosso, S; Iannucci, L; Sutton, A P

    2015-08-08

    Solitons are proposed as the agents of plastic and viscoelastic deformation in aligned polyethylene. Interactions between straight, parallel molecules are mapped rigorously onto the Frenkel-Kontorova model. It is shown that these molecular interactions distribute an applied load between molecules, with a characteristic transfer length equal to the soliton width. Load transfer leads to the introduction of tensile and compressive solitons at the chain ends to mark the onset of plasticity at a well-defined yield stress, which is much less than the theoretical pull-out stress. Interaction energies between solitons and an equation of motion for solitons are derived. The equation of motion is based on Langevin dynamics and the fluctuation-dissipation theorem and it leads to the rigorous definition of an effective mass for solitons. It forms the basis of a soliton dynamics in direct analogy to dislocation dynamics. Close parallels are drawn between solitons in aligned polymers and dislocations in crystals, including the configurational force on a soliton. The origins of the strain rate and temperature dependencies of the viscoelastic behaviour are discussed in terms of the formation energy of solitons. A failure mechanism is proposed involving soliton condensation under a tensile load.

  10. Parallel magnetic resonance imaging

    International Nuclear Information System (INIS)

    Larkman, David J; Nunes, Rita G

    2007-01-01

    Parallel imaging has been the single biggest innovation in magnetic resonance imaging in the last decade. The use of multiple receiver coils to augment the time consuming Fourier encoding has reduced acquisition times significantly. This increase in speed comes at a time when other approaches to acquisition time reduction were reaching engineering and human limits. A brief summary of spatial encoding in MRI is followed by an introduction to the problem parallel imaging is designed to solve. There are a large number of parallel reconstruction algorithms; this article reviews a cross-section, SENSE, SMASH, g-SMASH and GRAPPA, selected to demonstrate the different approaches. Theoretical (the g-factor) and practical (coil design) limits to acquisition speed are reviewed. The practical implementation of parallel imaging is also discussed, in particular coil calibration. How to recognize potential failure modes and their associated artefacts are shown. Well-established applications including angiography, cardiac imaging and applications using echo planar imaging are reviewed and we discuss what makes a good application for parallel imaging. Finally, active research areas where parallel imaging is being used to improve data quality by repairing artefacted images are also reviewed. (invited topical review)

  11. Alignment of concerns

    DEFF Research Database (Denmark)

    Andersen, Tariq Osman; Bansler, Jørgen P.; Kensing, Finn

    E-health promises to enable and support active patient participation in chronic care. However, these fairly recent innovations are complicated matters and emphasize significant challenges, such as patients’ and clinicians’ different ways of conceptualizing disease and illness. Informed by insight...... from medical phenomenology and our own empirical work in telemonitoring and medical care of heart patients, we propose a design rationale for e-health systems conceptualized as the ‘alignment of concerns’....

  12. Alignment at the ESRF

    International Nuclear Information System (INIS)

    Martin, D.; Levet, N.; Gatta, G.

    1999-01-01

    The ESRF Survey and Alignment group is responsible for the installation, control and periodic realignment of the accelerators and experiments which produce high quality x-rays used by scientists from Europe and around the world. Alignment tolerances are typically less than one millimetre and often in the order of several micrometers. The group is composed of one engineer, five highly trained survey technicians, one electronic and one computer technician. This team is fortified during peak periods by technicians from an external survey company. First an overview and comparative study of the main large-scale survey instrumentation and methods used by the group is made. Secondly a discussion of long term deformation on the ESRF site is presented. This is followed by presentation of the methods used in the realignment of the various machines. Two important aspects of our work, beamline and front-end alignment, and the so-called machine exotic devices are briefly discussed. Finally, the ESRF calibration bench is presented. (authors)

  13. Seeking the perfect alignment

    CERN Multimedia

    2002-01-01

    The first full-scale tests of the ATLAS Muon Spectrometer are about to begin in Prévessin. The set-up includes several layers of Monitored Drift Tubes Chambers (MDTs) and will allow tests of the performance of the detectors and of their highly accurate alignment system.   Monitored Drift Chambers in Building 887 in Prévessin, where they are just about to be tested. Muon chambers are keeping the ATLAS Muon Spectrometer team quite busy this summer. Now that most people go on holiday, the beam and alignment tests for these chambers are just starting. These chambers will measure with high accuracy the momentum of high-energy muons, and this implies very demanding requirements for their alignment. The MDT chambers consist of drift tubes, which are gas-filled metal tubes, 3 cm in diameter, with wires running down their axes. With high voltage between the wire and the tube wall, the ionisation due to traversing muons is detected as electrical pulses. With careful timing of the pulses, the position of the muon t...

  14. Factors driving physician-hospital alignment in orthopaedic surgery.

    Science.gov (United States)

    Page, Alexandra E; Butler, Craig A; Bozic, Kevin J

    2013-06-01

    The relationships between physicians and hospitals are viewed as central to the proposition of delivering high-quality health care at a sustainable cost. Over the last two decades, major changes in the scope, breadth, and complexities of these relationships have emerged. Despite understanding the need for physician-hospital alignment, identification and understanding the incentives and drivers of alignment prove challenging. Our review identifies the primary drivers of physician alignment with hospitals from both the physician and hospital perspectives. Further, we assess the drivers more specific to motivating orthopaedic surgeons to align with hospitals. We performed a comprehensive literature review from 1992 to March 2012 to evaluate published studies and opinions on the issues surrounding physician-hospital alignment. Literature searches were performed in both MEDLINE(®) and Health Business™ Elite. Available literature identifies economic and regulatory shifts in health care and cultural factors as primary drivers of physician-hospital alignment. Specific to orthopaedics, factors driving alignment include the profitability of orthopaedic service lines, the expense of implants, and issues surrounding ambulatory surgery centers and other ancillary services. Evolving healthcare delivery and payment reforms promote increased collaboration between physicians and hospitals. While economic incentives and increasing regulatory demands provide the strongest drivers, cultural changes including physician leadership and changing expectations of work-life balance must be considered when pursuing successful alignment models. Physicians and hospitals view each other as critical to achieving lower-cost, higher-quality health care.

  15. The STAPL Parallel Graph Library

    KAUST Repository

    Harshvardhan,; Fidel, Adam; Amato, Nancy M.; Rauchwerger, Lawrence

    2013-01-01

    This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable

  16. Alignment of the diamond nitrogen vacancy center by strain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Karin, Todd [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Dunham, Scott [Department of Electrical Engineering, University of Washington, Seattle, Washington 98195 (United States); Fu, Kai-Mei [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Department of Electrical Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2014-08-04

    The nitrogen vacancy (NV) center in diamond is a sensitive probe of magnetic field and a promising qubit candidate for quantum information processing. The performance of many NV-based devices improves by aligning the NV(s) parallel to a single crystallographic direction. Using ab initio theoretical techniques, we show that NV orientation can be controlled by high-temperature annealing in the presence of strain under currently accessible experimental conditions. We find that (89 ± 7)% of NVs align along the [111] crystallographic direction under 2% compressive biaxial strain (perpendicular to [111]) and an annealing temperature of 970 °C.

  17. Evaluation of alignment error of micropore X-ray optics caused by hot plastic deformation

    Science.gov (United States)

    Numazawa, Masaki; Ishi, Daiki; Ezoe, Yuichiro; Takeuchi, Kazuma; Terada, Masaru; Fujitani, Maiko; Ishikawa, Kumi; Nakajima, Kazuo; Morishita, Kohei; Ohashi, Takaya; Mitsuda, Kazuhisa; Nakamura, Kasumi; Noda, Yusuke

    2018-06-01

    We report on the evaluation and characterization of micro-electromechanical system (MEMS) X-ray optics produced by silicon dry etching and hot plastic deformation. Sidewalls of micropores formed by etching through a silicon wafer are used as X-ray reflecting mirrors. The wafer is deformed into a spherical shape to focus parallel incidence X-rays. We quantitatively evaluated a mirror alignment error using an X-ray pencil beam (Al Kα line at 1.49 keV). The deviation angle caused only by the deformation was estimated from angular shifts of the X-ray focusing point before and after the deformation to be 2.7 ± 0.3 arcmin on average within the optics. This gives an angular resolution of 12.9 ± 1.4 arcmin in half-power diameter (HPD). The surface profile of the deformed optics measured using a NH-3Ns surface profiler (Mitaka Kohki) also indicated that the resolution was 11.4 ± 0.9 arcmin in HPD, suggesting that we can simply evaluate the alignment error caused by the hot plastic deformation.

  18. Understanding Interfacial Alignment in Solution Coated Conjugated Polymer Thin Films

    International Nuclear Information System (INIS)

    Qu, Ge; Zhao, Xikang; Newbloom, Gregory M.; Zhang, Fengjiao; Mohammadi, Erfan

    2017-01-01

    Domain alignment in conjugated polymer thin films can significantly enhance charge carrier mobility. However, the alignment mechanism during meniscus-guided solution coating remains unclear. Furthermore, interfacial alignment has been rarely studied despite its direct relevance and critical importance to charge transport. In this study, we uncover a significantly higher degree of alignment at the top interface of solution coated thin films, using a donor–acceptor conjugated polymer, poly(diketopyrrolopyrrole-co-thiopheneco- thieno[3,2-b]thiophene-co-thiophene) (DPP2T-TT), as the model system. At the molecular level, we observe in-plane π–π stacking anisotropy of up to 4.8 near the top interface with the polymer backbone aligned parallel to the coating direction. The bulk of the film is only weakly aligned with the backbone oriented transverse to coating. At the mesoscale, we observe a well-defined fibril-like morphology at the top interface with the fibril long axis pointing toward the coating direction. Significantly smaller fibrils with poor orientational order are found on the bottom interface, weakly aligned orthogonal to the fibrils on the top interface. The high degree of alignment at the top interface leads to a charge transport anisotropy of up to 5.4 compared to an anisotropy close to 1 on the bottom interface. We attribute the formation of distinct interfacial morphology to the skin-layer formation associated with high Peclet number, which promotes crystallization on the top interface while suppressing it in the bulk. As a result, we further infer that the interfacial fibril alignment is driven by the extensional flow on the top interface arisen from increasing solvent evaporation rate closer to the meniscus front.

  19. Parallel implementation of the PHOENIX generalized stellar atmosphere program. II. Wavelength parallelization

    International Nuclear Information System (INIS)

    Baron, E.; Hauschildt, Peter H.

    1998-01-01

    We describe an important addition to the parallel implementation of our generalized nonlocal thermodynamic equilibrium (NLTE) stellar atmosphere and radiative transfer computer program PHOENIX. In a previous paper in this series we described data and task parallel algorithms we have developed for radiative transfer, spectral line opacity, and NLTE opacity and rate calculations. These algorithms divided the work spatially or by spectral lines, that is, distributing the radial zones, individual spectral lines, or characteristic rays among different processors and employ, in addition, task parallelism for logically independent functions (such as atomic and molecular line opacities). For finite, monotonic velocity fields, the radiative transfer equation is an initial value problem in wavelength, and hence each wavelength point depends upon the previous one. However, for sophisticated NLTE models of both static and moving atmospheres needed to accurately describe, e.g., novae and supernovae, the number of wavelength points is very large (200,000 - 300,000) and hence parallelization over wavelength can lead both to considerable speedup in calculation time and the ability to make use of the aggregate memory available on massively parallel supercomputers. Here, we describe an implementation of a pipelined design for the wavelength parallelization of PHOENIX, where the necessary data from the processor working on a previous wavelength point is sent to the processor working on the succeeding wavelength point as soon as it is known. Our implementation uses a MIMD design based on a relatively small number of standard message passing interface (MPI) library calls and is fully portable between serial and parallel computers. copyright 1998 The American Astronomical Society

  20. The CMS Muon System Alignment

    CERN Document Server

    Martinez Ruiz-Del-Arbol, P

    2009-01-01

    The alignment of the muon system of CMS is performed using different techniques: photogrammetry measurements, optical alignment and alignment with tracks. For track-based alignment, several methods are employed, ranging from a hit and impact point (HIP) algorithm and a procedure exploiting chamber overlaps to a global fit method based on the Millepede approach. For start-up alignment as long as available integrated luminosity is still significantly limiting the size of the muon sample from collisions, cosmic muon and beam halo signatures play a very strong role. During the last commissioning runs in 2008 the first aligned geometries have been produced and validated with data. The CMS offline computing infrastructure has been used in order to perform improved reconstructions. We present the computational aspects related to the calculation of alignment constants at the CERN Analysis Facility (CAF), the production and population of databases and the validation and performance in the official reconstruction. Also...

  1. Clear aligners in orthodontic treatment.

    Science.gov (United States)

    Weir, T

    2017-03-01

    Since the introduction of the Tooth Positioner (TP Orthodontics) in 1944, removable appliances analogous to clear aligners have been employed for mild to moderate orthodontic tooth movements. Clear aligner therapy has been a part of orthodontic practice for decades, but has, particularly since the introduction of Invisalign appliances (Align Technology) in 1998, become an increasingly common addition to the orthodontic armamentarium. An internet search reveals at least 27 different clear aligner products currently on offer for orthodontic treatment. The present paper will highlight the increasing popularity of clear aligner appliances, as well as the clinical scope and the limitations of aligner therapy in general. Further, the paper will outline the differences between the various types of clear aligner products currently available. © 2017 Australian Dental Association.

  2. Analisa Pengaruh Parallel-Misalignment dan Tingkat Getaran yang Terjadi pada Pulley Depericarper Fan

    OpenAIRE

    Situmorang, Lastri

    2016-01-01

    Depericarper fan consists of two pulleys, one as a driver and the other as a driven. The construction of the two pulleys that is not aligned can cause two pulleys run into parallel-misalignment.The parallel-misalignment pulley causing of vibration that can influence machine performance and decrease of power transmission. The purpose of the research are to known of influence parallel-misalignment against vibrations and rotation that occurs on depericarper fan. The research is done by using las...

  3. Eccentric vision : adverse interactions between line segments

    NARCIS (Netherlands)

    Andriessen, J.J.; Bouma, H.

    1976-01-01

    The paper deals with adverse interactions between line stimuli ineccentric vision. Bothcontrast thresholdandjust noticeable difference of slanthave been measured for a test line as a function of the distance from a number of surrounding lines. Test lines were either parallel or perpendicular to the

  4. Generic accelerated sequence alignment in SeqAn using vectorization and multi-threading.

    Science.gov (United States)

    Rahn, René; Budach, Stefan; Costanza, Pascal; Ehrhardt, Marcel; Hancox, Jonny; Reinert, Knut

    2018-05-03

    Pairwise sequence alignment is undoubtedly a central tool in many bioinformatics analyses. In this paper, we present a generically accelerated module for pairwise sequence alignments applicable for a broad range of applications. In our module, we unified the standard dynamic programming kernel used for pairwise sequence alignments and extended it with a generalized inter-sequence vectorization layout, such that many alignments can be computed simultaneously by exploiting SIMD (Single Instruction Multiple Data) instructions of modern processors. We then extended the module by adding two layers of thread-level parallelization, where we a) distribute many independent alignments on multiple threads and b) inherently parallelize a single alignment computation using a work stealing approach producing a dynamic wavefront progressing along the minor diagonal. We evaluated our alignment vectorization and parallelization on different processors, including the newest Intel® Xeon® (Skylake) and Intel® Xeon Phi™ (KNL) processors, and use cases. The instruction set AVX512-BW (Byte and Word), available on Skylake processors, can genuinely improve the performance of vectorized alignments. We could run single alignments 1600 times faster on the Xeon Phi™ and 1400 times faster on the Xeon® than executing them with our previous sequential alignment module. The module is programmed in C++ using the SeqAn (Reinert et al., 2017) library and distributed with version 2.4. under the BSD license. We support SSE4, AVX2, AVX512 instructions and included UME::SIMD, a SIMD-instruction wrapper library, to extend our module for further instruction sets. We thoroughly test all alignment components with all major C++ compilers on various platforms. rene.rahn@fu-berlin.de.

  5. Massively parallel multicanonical simulations

    Science.gov (United States)

    Gross, Jonathan; Zierenberg, Johannes; Weigel, Martin; Janke, Wolfhard

    2018-03-01

    Generalized-ensemble Monte Carlo simulations such as the multicanonical method and similar techniques are among the most efficient approaches for simulations of systems undergoing discontinuous phase transitions or with rugged free-energy landscapes. As Markov chain methods, they are inherently serial computationally. It was demonstrated recently, however, that a combination of independent simulations that communicate weight updates at variable intervals allows for the efficient utilization of parallel computational resources for multicanonical simulations. Implementing this approach for the many-thread architecture provided by current generations of graphics processing units (GPUs), we show how it can be efficiently employed with of the order of 104 parallel walkers and beyond, thus constituting a versatile tool for Monte Carlo simulations in the era of massively parallel computing. We provide the fully documented source code for the approach applied to the paradigmatic example of the two-dimensional Ising model as starting point and reference for practitioners in the field.

  6. SPINning parallel systems software

    International Nuclear Information System (INIS)

    Matlin, O.S.; Lusk, E.; McCune, W.

    2002-01-01

    We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin

  7. Parallel programming with Python

    CERN Document Server

    Palach, Jan

    2014-01-01

    A fast, easy-to-follow and clear tutorial to help you develop Parallel computing systems using Python. Along with explaining the fundamentals, the book will also introduce you to slightly advanced concepts and will help you in implementing these techniques in the real world. If you are an experienced Python programmer and are willing to utilize the available computing resources by parallelizing applications in a simple way, then this book is for you. You are required to have a basic knowledge of Python development to get the most of this book.

  8. Simulation Exploration through Immersive Parallel Planes: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Brunhart-Lupo, Nicholas; Bush, Brian W.; Gruchalla, Kenny; Smith, Steve

    2016-03-01

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, each individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.

  9. Simulation Exploration through Immersive Parallel Planes

    Energy Technology Data Exchange (ETDEWEB)

    Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bush, Brian W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Steve [Los Alamos Visualization Associates

    2017-05-25

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, each individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.

  10. Pareto optimal pairwise sequence alignment.

    Science.gov (United States)

    DeRonne, Kevin W; Karypis, George

    2013-01-01

    Sequence alignment using evolutionary profiles is a commonly employed tool when investigating a protein. Many profile-profile scoring functions have been developed for use in such alignments, but there has not yet been a comprehensive study of Pareto optimal pairwise alignments for combining multiple such functions. We show that the problem of generating Pareto optimal pairwise alignments has an optimal substructure property, and develop an efficient algorithm for generating Pareto optimal frontiers of pairwise alignments. All possible sets of two, three, and four profile scoring functions are used from a pool of 11 functions and applied to 588 pairs of proteins in the ce_ref data set. The performance of the best objective combinations on ce_ref is also evaluated on an independent set of 913 protein pairs extracted from the BAliBASE RV11 data set. Our dynamic-programming-based heuristic approach produces approximated Pareto optimal frontiers of pairwise alignments that contain comparable alignments to those on the exact frontier, but on average in less than 1/58th the time in the case of four objectives. Our results show that the Pareto frontiers contain alignments whose quality is better than the alignments obtained by single objectives. However, the task of identifying a single high-quality alignment among those in the Pareto frontier remains challenging.

  11. SDT: a virus classification tool based on pairwise sequence alignment and identity calculation.

    Directory of Open Access Journals (Sweden)

    Brejnev Muhizi Muhire

    Full Text Available The perpetually increasing rate at which viral full-genome sequences are being determined is creating a pressing demand for computational tools that will aid the objective classification of these genome sequences. Taxonomic classification approaches that are based on pairwise genetic identity measures are potentially highly automatable and are progressively gaining favour with the International Committee on Taxonomy of Viruses (ICTV. There are, however, various issues with the calculation of such measures that could potentially undermine the accuracy and consistency with which they can be applied to virus classification. Firstly, pairwise sequence identities computed based on multiple sequence alignments rather than on multiple independent pairwise alignments can lead to the deflation of identity scores with increasing dataset sizes. Also, when gap-characters need to be introduced during sequence alignments to account for insertions and deletions, methodological variations in the way that these characters are introduced and handled during pairwise genetic identity calculations can cause high degrees of inconsistency in the way that different methods classify the same sets of sequences. Here we present Sequence Demarcation Tool (SDT, a free user-friendly computer program that aims to provide a robust and highly reproducible means of objectively using pairwise genetic identity calculations to classify any set of nucleotide or amino acid sequences. SDT can produce publication quality pairwise identity plots and colour-coded distance matrices to further aid the classification of sequences according to ICTV approved taxonomic demarcation criteria. Besides a graphical interface version of the program for Windows computers, command-line versions of the program are available for a variety of different operating systems (including a parallel version for cluster computing platforms.

  12. Expressing Parallelism with ROOT

    Energy Technology Data Exchange (ETDEWEB)

    Piparo, D. [CERN; Tejedor, E. [CERN; Guiraud, E. [CERN; Ganis, G. [CERN; Mato, P. [CERN; Moneta, L. [CERN; Valls Pla, X. [CERN; Canal, P. [Fermilab

    2017-11-22

    The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.

  13. Expressing Parallelism with ROOT

    Science.gov (United States)

    Piparo, D.; Tejedor, E.; Guiraud, E.; Ganis, G.; Mato, P.; Moneta, L.; Valls Pla, X.; Canal, P.

    2017-10-01

    The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.

  14. Parallel Fast Legendre Transform

    NARCIS (Netherlands)

    Alves de Inda, M.; Bisseling, R.H.; Maslen, D.K.

    1998-01-01

    We discuss a parallel implementation of a fast algorithm for the discrete polynomial Legendre transform We give an introduction to the DriscollHealy algorithm using polynomial arithmetic and present experimental results on the eciency and accuracy of our implementation The algorithms were

  15. Practical parallel programming

    CERN Document Server

    Bauer, Barr E

    2014-01-01

    This is the book that will teach programmers to write faster, more efficient code for parallel processors. The reader is introduced to a vast array of procedures and paradigms on which actual coding may be based. Examples and real-life simulations using these devices are presented in C and FORTRAN.

  16. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Michael [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  17. Parallel universes beguile science

    CERN Multimedia

    2007-01-01

    A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too. We may not be able -- as least not yet -- to prove they exist, many serious scientists say, but there are plenty of reasons to think that parallel dimensions are more than figments of eggheaded imagination.

  18. Parallel k-means++

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-04

    A parallelization of the k-means++ seed selection algorithm on three distinct hardware platforms: GPU, multicore CPU, and multithreaded architecture. K-means++ was developed by David Arthur and Sergei Vassilvitskii in 2007 as an extension of the k-means data clustering technique. These algorithms allow people to cluster multidimensional data, by attempting to minimize the mean distance of data points within a cluster. K-means++ improved upon traditional k-means by using a more intelligent approach to selecting the initial seeds for the clustering process. While k-means++ has become a popular alternative to traditional k-means clustering, little work has been done to parallelize this technique. We have developed original C++ code for parallelizing the algorithm on three unique hardware architectures: GPU using NVidia's CUDA/Thrust framework, multicore CPU using OpenMP, and the Cray XMT multithreaded architecture. By parallelizing the process for these platforms, we are able to perform k-means++ clustering much more quickly than it could be done before.

  19. Parallel plate detectors

    International Nuclear Information System (INIS)

    Gardes, D.; Volkov, P.

    1981-01-01

    A 5x3cm 2 (timing only) and a 15x5cm 2 (timing and position) parallel plate avalanche counters (PPAC) are considered. The theory of operation and timing resolution is given. The measurement set-up and the curves of experimental results illustrate the possibilities of the two counters [fr

  20. Parallel hierarchical global illumination

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Quinn O. [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.

  1. Nova laser alignment control system

    International Nuclear Information System (INIS)

    Van Arsdall, P.J.; Holloway, F.W.; McGuigan, D.L.; Shelton, R.T.

    1984-01-01

    Alignment of the Nova laser requires control of hundreds of optical components in the ten beam paths. Extensive application of computer technology makes daily alignment practical. The control system is designed in a manner which provides both centralized and local manual operator controls integrated with automatic closed loop alignment. Menudriven operator consoles using high resolution color graphics displays overlaid with transport touch panels allow laser personnel to interact efficiently with the computer system. Automatic alignment is accomplished by using image analysis techniques to determine beam references points from video images acquired along the laser chain. A major goal of the design is to contribute substantially to rapid experimental turnaround and consistent alignment results. This paper describes the computer-based control structure and the software methods developed for aligning this large laser system

  2. GraphAlignment: Bayesian pairwise alignment of biological networks

    Directory of Open Access Journals (Sweden)

    Kolář Michal

    2012-11-01

    Full Text Available Abstract Background With increased experimental availability and accuracy of bio-molecular networks, tools for their comparative and evolutionary analysis are needed. A key component for such studies is the alignment of networks. Results We introduce the Bioconductor package GraphAlignment for pairwise alignment of bio-molecular networks. The alignment incorporates information both from network vertices and network edges and is based on an explicit evolutionary model, allowing inference of all scoring parameters directly from empirical data. We compare the performance of our algorithm to an alternative algorithm, Græmlin 2.0. On simulated data, GraphAlignment outperforms Græmlin 2.0 in several benchmarks except for computational complexity. When there is little or no noise in the data, GraphAlignment is slower than Græmlin 2.0. It is faster than Græmlin 2.0 when processing noisy data containing spurious vertex associations. Its typical case complexity grows approximately as O(N2.6. On empirical bacterial protein-protein interaction networks (PIN and gene co-expression networks, GraphAlignment outperforms Græmlin 2.0 with respect to coverage and specificity, albeit by a small margin. On large eukaryotic PIN, Græmlin 2.0 outperforms GraphAlignment. Conclusions The GraphAlignment algorithm is robust to spurious vertex associations, correctly resolves paralogs, and shows very good performance in identification of homologous vertices defined by high vertex and/or interaction similarity. The simplicity and generality of GraphAlignment edge scoring makes the algorithm an appropriate choice for global alignment of networks.

  3. Collimated-hole structures as efficient differential pumping barrier, one-way valve and tool for aligning Penning traps

    International Nuclear Information System (INIS)

    Kluge, H.-Jürgen; Block, Michael; Herfurth, Frank

    2011-01-01

    A collimated-hole structure consists of a very large number of parallel channels which have each a very small diameter and are closely packed together. Such devices, installed in vacuum systems allow one to separate regions of very different gas pressures. A collimated-hole structure has high transmission for a directed ion beam with low emittance but a very low conductance for rest gas atoms or molecules exhibiting random walk. Therefore it is proposed to use such a structure as one-way valve and/or efficient differential pumping barrier in set-ups using Penning traps. Furthermore, these devices might be very useful to align the axis of a Penning trap with the direction of the magnetic field lines which is essential to avoid systematic uncertainties in high-accuracy mass spectroscopy.

  4. Intradomain Textures in Block Copolymers: Multizone Alignment and Biaxiality

    Science.gov (United States)

    Prasad, Ishan; Seo, Youngmi; Hall, Lisa M.; Grason, Gregory M.

    2017-06-01

    Block copolymer (BCP) melt assembly has been studied for decades, focusing largely on self-organized spatial patterns of periodically ordered segment density. Here, we demonstrate that underlying the well-known composition profiles (i.e., ordered lamella, cylinders, spheres, and networks) are generic and heterogeneous patterns of segment orientation that couple strongly to morphology, even in the absence of specific factors that promote intra or interchain segment alignment. We employ both self-consistent field theory and coarse-grained simulation methods to measure polar and nematic order parameters of segments in a freely jointed chain model of diblock melts. We show that BCP morphologies have a multizone texture, with segments predominantly aligned normal and parallel to interdomain interfaces in the respective brush and interfacial regions of the microdomain. Further, morphologies with anisotropically curved interfaces (i.e., cylinders and networks) exhibit biaxial order that is aligned to the principal curvature axes of the interface.

  5. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa

    2010-04-29

    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  6. Aligned carbon nanotubes. Physics, concepts, fabrication and devices

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Lan, Yucheng [Boston College, Chestnut Hill, MA (United States). Dept. of Physics; Wang, Yang [South China Normal Univ. Guangzhou (China). Inst. for Advanced Materials

    2013-07-01

    This book gives a survey of the physics and fabrication of carbon nanotubes and their applications in optics, electronics, chemistry and biotechnology. It focuses on the structural characterization of various carbon nanotubes, fabrication of vertically or parallel aligned carbon nanotubes on substrates or in composites, physical properties for their alignment, and applications of aligned carbon nanotubes in field emission, optical antennas, light transmission, solar cells, chemical devices, bio-devices, and many others. Major fabrication methods are illustrated in detail, particularly the most widely used PECVD growth technique on which various device integration schemes are based, followed by applications such as electrical interconnects, nanodiodes, optical antennas, and nanocoax solar cells, whereas current limitations and challenges are also be discussed to lay the foundation for future developments.

  7. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa; Lee, Seokwoo; Lee, Seung S

    2010-01-01

    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  8. (Nearly) portable PIC code for parallel computers

    International Nuclear Information System (INIS)

    Decyk, V.K.

    1993-01-01

    As part of the Numerical Tokamak Project, the author has developed a (nearly) portable, one dimensional version of the GCPIC algorithm for particle-in-cell codes on parallel computers. This algorithm uses a spatial domain decomposition for the fields, and passes particles from one domain to another as the particles move spatially. With only minor changes, the code has been run in parallel on the Intel Delta, the Cray C-90, the IBM ES/9000 and a cluster of workstations. After a line by line translation into cmfortran, the code was also run on the CM-200. Impressive speeds have been achieved, both on the Intel Delta and the Cray C-90, around 30 nanoseconds per particle per time step. In addition, the author was able to isolate the data management modules, so that the physics modules were not changed much from their sequential version, and the data management modules can be used as open-quotes black boxes.close quotes

  9. Shape, size, velocity and field-aligned currents of dayside plasma injections: a multi-altitude study

    Directory of Open Access Journals (Sweden)

    A. Marchaudon

    2009-03-01

    Full Text Available On 20 February 2005, Cluster in the outer magnetosphere and Double Star-2 (TC-2 at mid-altitude are situated in the vicinity of the northern cusp/mantle, with Cluster moving sunward and TC-2 anti-sunward. Their magnetic footprints come very close together at about 15:28 UT, over the common field-of-view of SuperDARN radars. Thanks to this conjunction, we determine the velocity, the transverse sizes, perpendicular and parallel to this velocity, and the shape of three magnetic flux tubes of magnetosheath plasma injection. The velocity of the structures determined from the Cluster four-spacecraft timing analysis is almost purely antisunward, in contrast with the antisunward and duskward convection velocity inside the flux tubes. The transverse sizes are defined from the Cluster-TC-2 separation perpendicular to the magnetic field, and from the time spent by a Cluster spacecraft in one structure; they are comprised between 0.6 and 2 RE in agreement with previous studies. Finally, using a comparison between the eigenvectors deduced from a variance analysis of the magnetic perturbation at the four Cluster and at TC-2, we show that the upstream side of the injection flux tubes is magnetically well defined, with even a concave front for the third one giving a bean-like shape, whereas the downstream side is far more turbulent. We also realise the first quantitative comparison between field-aligned currents at Cluster calculated with the curlometer technique and with the single-spacecraft method, assuming infinite parallel current sheets and taking into account the velocity of the injection flux tubes. The results agree nicely, confirming the validity of both methods. Finally, we compare the field-aligned current distribution of the three injection flux tubes at the altitudes of Cluster and TC-2. Both profiles are fairly similar, with mainly a pair of opposite field-aligned currents, upward at low-latitude and downward at high-latitude. In terms of

  10. Mask alignment system for semiconductor processing

    Science.gov (United States)

    Webb, Aaron P.; Carlson, Charles T.; Weaver, William T.; Grant, Christopher N.

    2017-02-14

    A mask alignment system for providing precise and repeatable alignment between ion implantation masks and workpieces. The system includes a mask frame having a plurality of ion implantation masks loosely connected thereto. The mask frame is provided with a plurality of frame alignment cavities, and each mask is provided with a plurality of mask alignment cavities. The system further includes a platen for holding workpieces. The platen may be provided with a plurality of mask alignment pins and frame alignment pins configured to engage the mask alignment cavities and frame alignment cavities, respectively. The mask frame can be lowered onto the platen, with the frame alignment cavities moving into registration with the frame alignment pins to provide rough alignment between the masks and workpieces. The mask alignment cavities are then moved into registration with the mask alignment pins, thereby shifting each individual mask into precise alignment with a respective workpiece.

  11. Mapping robust parallel multigrid algorithms to scalable memory architectures

    Science.gov (United States)

    Overman, Andrea; Vanrosendale, John

    1993-01-01

    The convergence rate of standard multigrid algorithms degenerates on problems with stretched grids or anisotropic operators. The usual cure for this is the use of line or plane relaxation. However, multigrid algorithms based on line and plane relaxation have limited and awkward parallelism and are quite difficult to map effectively to highly parallel architectures. Newer multigrid algorithms that overcome anisotropy through the use of multiple coarse grids rather than relaxation are better suited to massively parallel architectures because they require only simple point-relaxation smoothers. In this paper, we look at the parallel implementation of a V-cycle multiple semicoarsened grid (MSG) algorithm on distributed-memory architectures such as the Intel iPSC/860 and Paragon computers. The MSG algorithms provide two levels of parallelism: parallelism within the relaxation or interpolation on each grid and across the grids on each multigrid level. Both levels of parallelism must be exploited to map these algorithms effectively to parallel architectures. This paper describes a mapping of an MSG algorithm to distributed-memory architectures that demonstrates how both levels of parallelism can be exploited. The result is a robust and effective multigrid algorithm for distributed-memory machines.

  12. Evidence for Field-parallel Electron Acceleration in Solar Flares

    Energy Technology Data Exchange (ETDEWEB)

    Haerendel, G. [Max Planck Institute for Extraterrestrial Physics, Garching (Germany)

    2017-10-01

    It is proposed that the coincidence of higher brightness and upward electric current observed by Janvier et al. during a flare indicates electron acceleration by field-parallel potential drops sustained by extremely strong field-aligned currents of the order of 10{sup 4} A m{sup −2}. A consequence of this is the concentration of the currents in sheets with widths of the order of 1 m. The high current density suggests that the field-parallel potential drops are maintained by current-driven anomalous resistivity. The origin of these currents remains a strong challenge for theorists.

  13. MaxAlign: maximizing usable data in an alignment

    DEFF Research Database (Denmark)

    Oliveira, Rodrigo Gouveia; Sackett, Peter Wad; Pedersen, Anders Gorm

    2007-01-01

    Align. In this paper we also introduce a new simple measure of tree similarity, Normalized Symmetric Similarity (NSS) that we consider useful for comparing tree topologies. CONCLUSION: We demonstrate how MaxAlign is helpful in detecting misaligned or defective sequences without requiring manual inspection. We also...

  14. Digital parallel-to-series pulse-train converter

    Science.gov (United States)

    Hussey, J.

    1971-01-01

    Circuit converts number represented as two level signal on n-bit lines to series of pulses on one of two lines, depending on sign of number. Converter accepts parallel binary input data and produces number of output pulses equal to number represented by input data.

  15. Parallel grid population

    Science.gov (United States)

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  16. Ultrascalable petaflop parallel supercomputer

    Science.gov (United States)

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Chiu, George [Cross River, NY; Cipolla, Thomas M [Katonah, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Hall, Shawn [Pleasantville, NY; Haring, Rudolf A [Cortlandt Manor, NY; Heidelberger, Philip [Cortlandt Manor, NY; Kopcsay, Gerard V [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Takken, Todd [Brewster, NY

    2010-07-20

    A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.

  17. More parallel please

    DEFF Research Database (Denmark)

    Gregersen, Frans; Josephson, Olle; Kristoffersen, Gjert

    of departure that English may be used in parallel with the various local, in this case Nordic, languages. As such, the book integrates the challenge of internationalization faced by any university with the wish to improve quality in research, education and administration based on the local language......Abstract [en] More parallel, please is the result of the work of an Inter-Nordic group of experts on language policy financed by the Nordic Council of Ministers 2014-17. The book presents all that is needed to plan, practice and revise a university language policy which takes as its point......(s). There are three layers in the text: First, you may read the extremely brief version of the in total 11 recommendations for best practice. Second, you may acquaint yourself with the extended version of the recommendations and finally, you may study the reasoning behind each of them. At the end of the text, we give...

  18. PARALLEL MOVING MECHANICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberius Petrescu

    2014-09-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Moving mechanical systems parallel structures are solid, fast, and accurate. Between parallel systems it is to be noticed Stewart platforms, as the oldest systems, fast, solid and precise. The work outlines a few main elements of Stewart platforms. Begin with the geometry platform, kinematic elements of it, and presented then and a few items of dynamics. Dynamic primary element on it means the determination mechanism kinetic energy of the entire Stewart platforms. It is then in a record tail cinematic mobile by a method dot matrix of rotation. If a structural mottoelement consists of two moving elements which translates relative, drive train and especially dynamic it is more convenient to represent the mottoelement as a single moving components. We have thus seven moving parts (the six motoelements or feet to which is added mobile platform 7 and one fixed.

  19. Xyce parallel electronic simulator.

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.; Rankin, Eric Lamont; Schiek, Richard Louis; Thornquist, Heidi K.; Fixel, Deborah A.; Coffey, Todd S; Pawlowski, Roger P; Santarelli, Keith R.

    2010-05-01

    This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide.

  20. Stability of parallel flows

    CERN Document Server

    Betchov, R

    2012-01-01

    Stability of Parallel Flows provides information pertinent to hydrodynamical stability. This book explores the stability problems that occur in various fields, including electronics, mechanics, oceanography, administration, economics, as well as naval and aeronautical engineering. Organized into two parts encompassing 10 chapters, this book starts with an overview of the general equations of a two-dimensional incompressible flow. This text then explores the stability of a laminar boundary layer and presents the equation of the inviscid approximation. Other chapters present the general equation

  1. Algorithmically specialized parallel computers

    CERN Document Server

    Snyder, Lawrence; Gannon, Dennis B

    1985-01-01

    Algorithmically Specialized Parallel Computers focuses on the concept and characteristics of an algorithmically specialized computer.This book discusses the algorithmically specialized computers, algorithmic specialization using VLSI, and innovative architectures. The architectures and algorithms for digital signal, speech, and image processing and specialized architectures for numerical computations are also elaborated. Other topics include the model for analyzing generalized inter-processor, pipelined architecture for search tree maintenance, and specialized computer organization for raster

  2. Photodissociation of spatially aligned acetaldehyde cations.

    Science.gov (United States)

    Lee, Suk Kyoung; Silva, Ruchira; Kim, Myung Hwa; Shen, Lei; Suits, Arthur G

    2007-07-26

    Photofragment translational energy and angular distributions are reported for the photodissociation of acetaldehyde cations in the wavelength range 354-363 nm obtained using the DC slice ion imaging technique. Vibrationally selected parent ions were produced by 2+1 resonance-enhanced multiphoton ionization (REMPI) via the 3sCH3CO+, and CH4+. The angular distributions reveal that all product channels have a predominantly parallel recoil anisotropy although the lower beta2 parameter of CH3CO+ indicates the concomitant presence of a perpendicular component. Furthermore, the distinct angular distribution of the CH3CO+ fragments shows a large value of the higher order Legendre polynomial term, providing evidence that acetaldehyde cations are spatially aligned during the ionization process.

  3. RAPID TRANSFER ALIGNMENT USING FEDERATED KALMAN FILTER

    Institute of Scientific and Technical Information of China (English)

    GUDong-qing; QINYong-yuan; PENGRong; LIXin

    2005-01-01

    The dimension number of the centralized Kalman filter (CKF) for the rapid transfer alignment (TA) is as high as 21 if the aircraft wing flexure motion is considered in the rapid TA. The 21-dimensional CKF brings the calculation burden on the computer and the difficulty to meet a high filtering updating rate desired by rapid TA. The federated Kalman filter (FKF) for the rapid TA is proposed to solve the dilemma. The structure and the algorithm of the FKF, which can perform parallel computation and has less calculation burden, are designed.The wing flexure motion is modeled, and then the 12-order velocity matching local filter and the 15-order attitud ematching local filter are devised. Simulation results show that the proposed EKE for the rapid TA almost has the same performance as the CKF. Thus the calculation burden of the proposed FKF for the rapid TA is markedly decreased.

  4. The field-aligned currents observed by JIKIKEN

    International Nuclear Information System (INIS)

    Aoyama, I.; Toyama, F.; Takahashi, T.; Sakurai, T.; Tonegawa, Y.

    1979-01-01

    New substorm effects on field-aligned current which belongs to a magnetic shell at L asymptotically equals 6 are found in the records from the fluxgate magnetometer on board the scientific satellite, JIKIKEN. The deviation from base line in the magnetometer data seems to be enhanced associating with the substorm onset. (author)

  5. Current and future state of FDA-CMS parallel reviews.

    Science.gov (United States)

    Messner, D A; Tunis, S R

    2012-03-01

    The US Food and Drug Administration (FDA) and the Centers for Medicare and Medicaid Services (CMS) recently proposed a partial alignment of their respective review processes for new medical products. The proposed "parallel review" not only offers an opportunity for some products to reach the market with Medicare coverage more quickly but may also create new incentives for product developers to conduct studies designed to address simultaneously the information needs of regulators, payers, patients, and clinicians.

  6. Preparation and Characterization of Highly Aligned Carbon Nanotubes/Polyacrylonitrile Composite Nanofibers

    Directory of Open Access Journals (Sweden)

    Yanhua Song

    2017-01-01

    Full Text Available In the electrospinning process, a modified parallel electrode method (MPEM, conducted by placing a positively charged ring between the needle and the parallel electrode collector, was used to fabricate highly aligned carbon nanotubes/polyacrylonitrile (CNTs/PAN composite nanofibers. Characterizations of the samples—such as morphology, the degree of alignment, and mechanical and conductive properties—were investigated by a combination of scanning electron microscopy (SEM, transmission electron microscopy (TEM, universal testing machine, high-resistance meter, and other methods. The results showed the MPEM could improve the alignment and uniformity of electrospun CNTs/PAN composite nanofibers, and enhance their mechanical and conductive properties. This meant the successful preparation of highly aligned CNT-reinforced PAN nanofibers with enhanced physical properties, suggesting their potential application in appliances and communication areas.

  7. A generalized global alignment algorithm.

    Science.gov (United States)

    Huang, Xiaoqiu; Chao, Kun-Mao

    2003-01-22

    Homologous sequences are sometimes similar over some regions but different over other regions. Homologous sequences have a much lower global similarity if the different regions are much longer than the similar regions. We present a generalized global alignment algorithm for comparing sequences with intermittent similarities, an ordered list of similar regions separated by different regions. A generalized global alignment model is defined to handle sequences with intermittent similarities. A dynamic programming algorithm is designed to compute an optimal general alignment in time proportional to the product of sequence lengths and in space proportional to the sum of sequence lengths. The algorithm is implemented as a computer program named GAP3 (Global Alignment Program Version 3). The generalized global alignment model is validated by experimental results produced with GAP3 on both DNA and protein sequences. The GAP3 program extends the ability of standard global alignment programs to recognize homologous sequences of lower similarity. The GAP3 program is freely available for academic use at http://bioinformatics.iastate.edu/aat/align/align.html.

  8. Vacuum Alignment with more Flavors

    DEFF Research Database (Denmark)

    Ryttov, Thomas

    2014-01-01

    We study the alignment of the vacuum in gauge theories with $N_f$ Dirac fermions transforming according to a complex representation of the gauge group. The alignment of the vacuum is produced by adding a small mass perturbation to the theory. We study in detail the $N_f=2,3$ and $4$ case. For $N_...

  9. The CMS Silicon Tracker Alignment

    CERN Document Server

    Castello, R

    2008-01-01

    The alignment of the Strip and Pixel Tracker of the Compact Muon Solenoid experiment, with its large number of independent silicon sensors and its excellent spatial resolution, is a complex and challenging task. Besides high precision mounting, survey measurements and the Laser Alignment System, track-based alignment is needed to reach the envisaged precision.\\\\ Three different algorithms for track-based alignment were successfully tested on a sample of cosmic-ray data collected at the Tracker Integration Facility, where 15\\% of the Tracker was tested. These results, together with those coming from the CMS global run, will provide the basis for the full-scale alignment of the Tracker, which will be carried out with the first \\emph{p-p} collisions.

  10. Dislocation mediated alignment during metal nanoparticle coalescence

    International Nuclear Information System (INIS)

    Lange, A.P.; Samanta, A.; Majidi, H.; Mahajan, S.; Ging, J.; Olson, T.Y.; Benthem, K. van; Elhadj, S.

    2016-01-01

    Dislocation mediated alignment processes during gold nanoparticle coalescence were studied at low and high temperatures using molecular dynamics simulations and transmission electron microscopy. Particles underwent rigid body rotations immediately following attachment in both low temperature (500 K) simulated coalescence events and low temperature (∼315 K) transmission electron microscopy beam heating experiments. In many low temperature simulations, some degree of misorientation between particles remained after rigid body rotations, which was accommodated by grain boundary dislocation nodes. These dislocations were either sessile and remained at the interface for the duration of the simulation or dissociated and cross-slipped through the adjacent particles, leading to improved co-alignment. Minimal rigid body rotations were observed during or immediately following attachment in high temperature (1100 K) simulations, which is attributed to enhanced diffusion at the particles' interface. However, rotation was eventually induced by {111} slip on planes parallel to the neck groove. These deformation modes led to the formation of single and multi-fold twins whose structures depended on the initial orientation of the particles. The driving force for {111} slip is attributed to high surface stresses near the intersection of low energy {111} facets in the neck region. The details of this twinning process were examined in detail using simulated trajectories, and the results reveal possible mechanisms for the nucleation and propagation of Shockley partials on consecutive planes. Deformation twinning was also observed in-situ using transmission electron microscopy, which resulted in the co-alignment of a set of the particles' {111} planes across their grain boundary and an increase in their dihedral angle. This constitutes the first detailed experimental observation of deformation twinning during nanoparticle coalescence, validating simulation results presented here and

  11. Alignment-Annotator web server: rendering and annotating sequence alignments.

    Science.gov (United States)

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-07-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Egocentric and allocentric alignment tasks are affected by otolith input.

    Science.gov (United States)

    Tarnutzer, Alexander A; Bockisch, Christopher J; Olasagasti, Itsaso; Straumann, Dominik

    2012-06-01

    Gravicentric visual alignments become less precise when the head is roll-tilted relative to gravity, which is most likely due to decreasing otolith sensitivity. To align a luminous line with the perceived gravity vector (gravicentric task) or the perceived body-longitudinal axis (egocentric task), the roll orientation of the line on the retina and the torsional position of the eyes relative to the head must be integrated to obtain the line orientation relative to the head. Whether otolith input contributes to egocentric tasks and whether the modulation of variability is restricted to vision-dependent paradigms is unknown. In nine subjects we compared precision and accuracy of gravicentric and egocentric alignments in various roll positions (upright, 45°, and 75° right-ear down) using a luminous line (visual paradigm) in darkness. Trial-to-trial variability doubled for both egocentric and gravicentric alignments when roll-tilted. Two mechanisms might explain the roll-angle-dependent modulation in egocentric tasks: 1) Modulating variability in estimated ocular torsion, which reflects the roll-dependent precision of otolith signals, affects the precision of estimating the line orientation relative to the head; this hypothesis predicts that variability modulation is restricted to vision-dependent alignments. 2) Estimated body-longitudinal reflects the roll-dependent variability of perceived earth-vertical. Gravicentric cues are thereby integrated regardless of the task's reference frame. To test the two hypotheses the visual paradigm was repeated using a rod instead (haptic paradigm). As with the visual paradigm, precision significantly decreased with increasing head roll for both tasks. These findings propose that the CNS integrates input coded in a gravicentric frame to solve egocentric tasks. In analogy to gravicentric tasks, where trial-to-trial variability is mainly influenced by the properties of the otolith afferents, egocentric tasks may also integrate

  13. pyPaSWAS: Python-based multi-core CPU and GPU sequence alignment.

    Science.gov (United States)

    Warris, Sven; Timal, N Roshan N; Kempenaar, Marcel; Poortinga, Arne M; van de Geest, Henri; Varbanescu, Ana L; Nap, Jan-Peter

    2018-01-01

    Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW) sequence alignment of any type of sequence on NVIDIA-based GPUs is platform-specific and therefore adopted less than could be. The OpenCL language is supported more widely and allows use on a variety of hardware platforms. Moreover, there is a need to promote the adoption of parallel computing in bioinformatics by making its use and extension more simple through more and better application of high-level languages commonly used in bioinformatics, such as Python. The novel application pyPaSWAS presents the parallel SW sequence alignment code fully packed in Python. It is a generic SW implementation running on several hardware platforms with multi-core systems and/or GPUs that provides accurate sequence alignments that also can be inspected for alignment details. Additionally, pyPaSWAS support the affine gap penalty. Python libraries are used for automated system configuration, I/O and logging. This way, the Python environment will stimulate further extension and use of pyPaSWAS. pyPaSWAS presents an easy Python-based environment for accurate and retrievable parallel SW sequence alignments on GPUs and multi-core systems. The strategy of integrating Python with high-performance parallel compute languages to create a developer- and user-friendly environment should be considered for other computationally intensive bioinformatics algorithms.

  14. Resistor Combinations for Parallel Circuits.

    Science.gov (United States)

    McTernan, James P.

    1978-01-01

    To help simplify both teaching and learning of parallel circuits, a high school electricity/electronics teacher presents and illustrates the use of tables of values for parallel resistive circuits in which total resistances are whole numbers. (MF)

  15. SOFTWARE FOR DESIGNING PARALLEL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    M. K. Bouza

    2017-01-01

    Full Text Available The object of research is the tools to support the development of parallel programs in C/C ++. The methods and software which automates the process of designing parallel applications are proposed.

  16. Three dimensional extrusion printing induces polymer molecule alignment and cell organization within engineered cartilage.

    Science.gov (United States)

    Guo, Ting; Ringel, Julia P; Lim, Casey G; Bracaglia, Laura G; Noshin, Maeesha; Baker, Hannah B; Powell, Douglas A; Fisher, John P

    2018-04-16

    Proper cell-material interactions are critical to remain cell function and thus successful tissue regeneration. Many fabrication processes have been developed to create microenvironments to control cell attachment and organization on a three-dimensional (3D) scaffold. However, these approaches often involve heavy engineering and only the surface layer can be patterned. We found that 3D extrusion based printing at high temperature and pressure will result an aligned effect on the polymer molecules, and this molecular arrangement will further induce the cell alignment and different differentiation capacities. In particular, articular cartilage tissue is known to have zonal collagen fiber and cell orientation to support different functions, where collagen fibers and chondrocytes align parallel, randomly, and perpendicular, respectively, to the surface of the joint. Therefore, cell alignment was evaluated in a cartilage model in this study. We used small angle X-ray scattering analysis to substantiate the polymer molecule alignment phenomenon. The cellular response was evaluated both in vitro and in vivo. Seeded mesenchymal stem cells (MSCs) showed different morphology and orientation on scaffolds, as a combined result of polymer molecule alignment and printed scaffold patterns. Gene expression results showed improved superficial zonal chondrogenic marker expression in parallel-aligned group. The cell alignment was successfully maintained in the animal model after 7 days with distinct MSC morphology between the casted and parallel printed scaffolds. This 3D printing induced polymer and cell alignment will have a significant impact on developing scaffold with controlled cell-material interactions for complex tissue engineering while avoiding complicated surface treatment, and therefore provides new concept for effective tissue repairing in future clinical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  17. Illustrative Line Styles for Flow Visualization

    NARCIS (Netherlands)

    Everts, Maarten H.; Bekker, Hendrik; Roerdink, Jos B. T. M.; Isenberg, Tobias

    2011-01-01

    We present a flexible illustrative line style model for the visualization of streamline data. Our model partitions view-oriented line strips into parallel bands whose basic visual properties can be controlled independently. We thus extend previous line stylization techniques specifically for

  18. Flow Visualization using Illustrative Line Styles

    NARCIS (Netherlands)

    Everts, Maarten H.; Bekker, Hendrik; Roerdink, Jos B. T. M.; Isenberg, Tobias; Bekker, Paulus

    2011-01-01

    We present a flexible illustrative line style model for the visualization of streamline data. Our model partitions view- oriented line strips into parallel bands whose basic visual properties can be controlled independently. We thus extend previous line stylization techniques specifically for

  19. Parallel External Memory Graph Algorithms

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Goodrich, Michael T.; Sitchinava, Nodari

    2010-01-01

    In this paper, we study parallel I/O efficient graph algorithms in the Parallel External Memory (PEM) model, one o f the private-cache chip multiprocessor (CMP) models. We study the fundamental problem of list ranking which leads to efficient solutions to problems on trees, such as computing lowest...... an optimal speedup of ¿(P) in parallel I/O complexity and parallel computation time, compared to the single-processor external memory counterparts....

  20. Galaxy Alignments: Theory, Modelling & Simulations

    Science.gov (United States)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  1. Parallel inter channel interaction mechanisms

    International Nuclear Information System (INIS)

    Jovic, V.; Afgan, N.; Jovic, L.

    1995-01-01

    Parallel channels interactions are examined. For experimental researches of nonstationary regimes flow in three parallel vertical channels results of phenomenon analysis and mechanisms of parallel channel interaction for adiabatic condition of one-phase fluid and two-phase mixture flow are shown. (author)

  2. Aligning for Innovation - Alignment Strategy to Drive Innovation

    Science.gov (United States)

    Johnson, Hurel; Teltschik, David; Bussey, Horace, Jr.; Moy, James

    2010-01-01

    With the sudden need for innovation that will help the country achieve its long-term space exploration objectives, the question of whether NASA is aligned effectively to drive the innovation that it so desperately needs to take space exploration to the next level should be entertained. Authors such as Robert Kaplan and David North have noted that companies that use a formal system for implementing strategy consistently outperform their peers. They have outlined a six-stage management systems model for implementing strategy, which includes the aligning of the organization towards its objectives. This involves the alignment of the organization from the top down. This presentation will explore the impacts of existing U.S. industrial policy on technological innovation; assess the current NASA organizational alignment and its impacts on driving technological innovation; and finally suggest an alternative approach that may drive the innovation needed to take the world to the next level of space exploration, with NASA truly leading the way.

  3. Shear Alignment of Diblock Copolymers for Patterning Nanowire Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Kyle T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-08

    Metallic nanowire meshes are useful as cheap, flexible alternatives to indium tin oxide – an expensive, brittle material used in transparent conductive electrodes. We have fabricated nanowire meshes over areas up to 2.5 cm2 by: 1) mechanically aligning parallel rows of diblock copolymer (diBCP) microdomains; 2) selectively infiltrating those domains with metallic ions; 3) etching away the diBCP template; 4) sintering to reduce ions to metal nanowires; and, 5) repeating steps 1 – 4 on the same sample at a 90° offset. We aligned parallel rows of polystyrene-b-poly(2-vinylpyridine) [PS(48.5 kDa)-b-P2VP(14.5 kDa)] microdomains by heating above its glass transition temperature (Tg ≈ 100°C), applying mechanical shear pressure (33 kPa) and normal force (13.7 N), and cooling below Tg. DiBCP samples were submerged in aqueous solutions of metallic ions (15 – 40 mM ions; 0.1 – 0.5 M HCl) for 30 – 90 minutes, which coordinate to nitrogen in P2VP. Subsequent ozone-etching and sintering steps yielded parallel nanowires. We aimed to optimize alignment parameters (e.g. shear and normal pressures, alignment duration, and PDMS thickness) to improve the quality, reproducibility, and scalability of meshes. We also investigated metals other than Pt and Au that may be patterned using this technique (Cu, Ag).

  4. Study on orientation mechanisms of poly(vinylidenefluoride-trifluoroethylene) molecules aligned by atomic force microscopy

    International Nuclear Information System (INIS)

    Kimura, Kuniko; Kobayashi, Kei; Yamada, Hirofumi; Horiuchi, Toshihisa; Ishida, Kenji; Matsushige, Kazumi

    2006-01-01

    We have developed a molecular orientation control technique for polymers utilizing contact-mode atomic force microscopy (AFM). In this paper, we studied the molecular alignment mechanism of this technique by applying it to poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)). The resultant alignment and formed crystal size were strongly dependent on the temperature during the modification. They also depended on the scan line spacing of the modification. These results made the alignment mechanism clear. The obtained molecular alignment was stable against the heat treatment even at the temperatures just below T m

  5. Massively Parallel QCD

    International Nuclear Information System (INIS)

    Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G

    2007-01-01

    The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results

  6. A Parallel Butterfly Algorithm

    KAUST Repository

    Poulson, Jack; Demanet, Laurent; Maxwell, Nicholas; Ying, Lexing

    2014-01-01

    The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.

  7. A Parallel Butterfly Algorithm

    KAUST Repository

    Poulson, Jack

    2014-02-04

    The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.

  8. Alignment control of GEO 600

    International Nuclear Information System (INIS)

    Grote, H; Heinzel, G; Freise, A; Gossler, S; Willke, B; Lueck, H; Ward, H; Casey, M M; Strain, K A; Robertson, D I; Hough, J; Danzmannx, K

    2004-01-01

    We give an overview of the automatic mirror alignment system of the gravitational wave detector GEO 600. In order to achieve the required sensitivity of the Michelson interferometer, the axes of interfering beams have to be superimposed with a residual angle of the order 10 -8 rad. The beam spots have to be centred on the mirrors to minimize coupling of alignment noise into longitudinal signals. We present the actual control topology and results from the system in operation, which controls all alignment degrees of the power-recycled Michelson. With this system continuous lock stretches of more than 121 h duration were achieved

  9. Control rod housing alignment apparatus

    International Nuclear Information System (INIS)

    Dixon, R.C.; Deaver, G.A.; Punches, J.R.; Singleton, G.E.; Erbes, J.G.; Offer, H.P.

    1991-01-01

    This paper discusses an alignment device for precisely locating the position of the top of a control rod drive housing from an overlying and corresponding hole and alignment pin in a core plate within a boiling water nuclear reactor. It includes a shaft, the shaft having a length sufficient to extend from the vicinity of the top of the control rod drive housing up to and through the hole in the core plate; means for registering the top of the shaft to the hole in the core plate, the registering means including means for registering with an alignment pin in the core plate adjacent the hole

  10. Prediction of molecular alignment of nucleic acids in aligned media

    International Nuclear Information System (INIS)

    Wu Bin; Petersen, Michael; Girard, Frederic; Tessari, Marco; Wijmenga, Sybren S.

    2006-01-01

    We demonstrate - using the data base of all deposited DNA and RNA structures aligned in Pf1-medium and RDC refined - that for nucleic acids in a Pf1-medium the electrostatic alignment tensor can be predicted reliably and accurately via a simple and fast calculation based on the gyration tensor spanned out by the phosphodiester atoms. The rhombicity is well predicted over its full range from 0 to 0.66, while the alignment tensor orientation is predicted correctly for rhombicities up to ca. 0.4, for larger rhombicities it appears to deviate somewhat more than expected based on structural noise and measurement error. This simple analytical approach is based on the Debye-Huckel approximation for the electrostatic interaction potential, valid at distances sufficiently far away from a poly-ionic charged surface, a condition naturally enforced when the charge of alignment medium and solute are of equal sign, as for nucleic acids in a Pf1-phage medium. For the usual salt strengths and nucleic acid sizes, the Debye-Huckel screening length is smaller than the nucleic acid size, but large enough for the collective of Debye-Huckel spheres to encompass the whole molecule. The molecular alignment is then purely electrostatic, but it's functional form is under these conditions similar to that for steric alignment. The proposed analytical expression allows for very fast calculation of the alignment tensor and hence RDCs from the conformation of the nucleic acid molecule. This information provides opportunities for improved structure determination of nucleic acids, including better assessment of dynamics in (multi-domain) nucleic acids and the possibility to incorporate alignment tensor prediction from shape directly into the structure calculation process. The procedures are incorporated into MATLAB scripts, which are available on request

  11. A parallel line sieve for the GNFS Algorithm

    OpenAIRE

    Sameh Daoud; Ibrahim Gad

    2014-01-01

    RSA is one of the most important public key cryptosystems for information security. The security of RSA depends on Integer factorization problem, it relies on the difficulty of factoring large integers. Much research has gone into problem of factoring a large number. Due to advances in factoring algorithms and advances in computing hardware the size of the number that can be factorized increases exponentially year by year. The General Number Field Sieve algorithm (GNFS) is currently the best ...

  12. TMRG studies on spin alignment in molecule-based ferrimagnetics [rapid communication

    Science.gov (United States)

    Liu, Q. M.; Yao, K. L.; Liu, Z. L.

    2005-05-01

    A physical picture of spin alignment in organic molecule-based ferrimagnets is presented from studying the thermal effective magnetic moment of the sublattice by use of the transfer matrix renormalization group. We conclude that the classical antiparallel spin alignment is not the most stable state. The three-spin system tends to parallel alignment when the exchange interaction between the biradical and the monoradical molecules is much weaker than that within the biradical, which can result in the decrease of the effective magnetic moment upon lowering the temperature. More importantly, we give the theoretical evidence that even the antiparallel spin alignment in the biradical monoradical alternating chain does not necessarily lead to ferrimagnetic spin ordering due to the formation of the spin singlet pairs, which suppresses the ferrimagnetic spin alignment.

  13. Treatment management between orthodontists and general practitioners performing clear aligner therapy.

    Science.gov (United States)

    Best, Alexandra D; Shroff, Bhavna; Carrico, Caroline K; Lindauer, Steven J

    2017-05-01

    To investigate differences in case selection, treatment management, and aligner treatment expertise between orthodontists and general practitioners. A parallel pair of original surveys with three sections (case selection, treatment management, and demographics) was sent to orthodontists (N = 1000) and general dentists (N = 1000) who were providers of aligner treatment. Orthodontists had treated significantly more patients with aligners, had treated more patients with aligners in the previous 12 months, and had received more aligner training than general dentists (P aligner case confidence between orthodontists and general dentists for several malocclusions. General dentists were more confident than orthodontists in treating deep bite, severe crowding, and Class II malocclusions with aligners (P ≤ .0001). Significant differences were also found for all treatment management techniques except interproximal reduction. There was a significant difference in case selection, treatment management, and aligner expertise between orthodontists and general dentists, although the differences in case selection were small. Overall, it was shown that orthodontists and general dentists elected to treat a variety of moderate to severe malocclusions with aligners but with different utilization of recommended auxiliaries, perhaps demonstrating a difference in treatment goals.

  14. SESOTHO trial (“Switch Either near Suppression Or THOusand”) – switch to second-line versus WHO-guided standard of care for unsuppressed patients on first-line ART with viremia below 1000 copies/mL: protocol of a multicenter, parallel-group, open-label, randomized clinical trial in Lesotho, Southern Africa

    OpenAIRE

    Amstutz, Alain; Nsakala, Bienvenu Lengo; Vanobberghen, Fiona; Muhairwe, Josephine; Glass, Tracy Renée; Achieng, Beatrice; Sepeka, Mamorena; Tlali, Katleho; Sao, Lebohang; Thin, Kyaw; Klimkait, Thomas; Battegay, Manuel; Labhardt, Niklaus Daniel

    2018-01-01

    Background The World Health Organization (WHO) recommends viral load (VL) measurement as the preferred monitoring strategy for HIV-infected individuals on antiretroviral therapy (ART) in resource-limited settings. The new WHO guidelines 2016 continue to define virologic failure as two consecutive VL ≥1000 copies/mL (at least 3 months apart) despite good adherence, triggering switch to second-line therapy. However, the threshold of 1000 copies/mL for defining virologic failure is based on low-...

  15. Xyce parallel electronic simulator : reference guide.

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.; Santarelli, Keith R.; Fixel, Deborah A.; Coffey, Todd Stirling; Russo, Thomas V.; Schiek, Richard Louis; Warrender, Christina E.; Keiter, Eric Richard; Pawlowski, Roger Patrick

    2011-05-01

    This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide. The Xyce Parallel Electronic Simulator has been written to support, in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. It is targeted specifically to run on large-scale parallel computing platforms but also runs well on a variety of architectures including single processor workstations. It also aims to support a variety of devices and models specific to Sandia needs. This document is intended to complement the Xyce Users Guide. It contains comprehensive, detailed information about a number of topics pertinent to the usage of Xyce. Included in this document is a netlist reference for the input-file commands and elements supported within Xyce; a command line reference, which describes the available command line arguments for Xyce; and quick-references for users of other circuit codes, such as Orcad's PSpice and Sandia's ChileSPICE.

  16. Beam plug replacement and alignment under high radiation conditions for cold neutron facilities at Hanaro

    International Nuclear Information System (INIS)

    Yeong-Garp, Cho; Jin-Won, Shin; Jung-Hee, Lee; Jeong-Soo, Ryu

    2010-01-01

    Full text : The HANARO, an open-tank-in-pool type research reactor of a 30 MWth power in Korea, has been operating for 15 years since its initial criticality in February 1995. The beam port assigned for the cold neutron at HANARO had been used for an 8-m SANS without neutron guides until it was replaced by a cold neutron guide system in 2008. It was developed a cold neutron guide system for the delivery of cold neutrons from the cold neutron source in the reactor to the neutron scattering instruments in the guide hall. Since the HANARO has been operated from 1995, it was a big challenge to replace the existing plug and shutter with the new facilities under high radiation conditions. When the old plug was removed from the beam port in 2008, the radiation level was 230 mSv/hr at the end of beam port. In addition to that, there were more difficult situations such as the poor as-built dimensions of the beam port, limited work space and time constraint due to other constructions in parallel in the reactor hall. Before the removal of the old plug the level of the radiation was measured coming out through a small hole of the plug to estimate the radiation level during the removal of the old plug and installation of a new plug. Based on the measurement and analysis results, special tools and various shielding facilities were developed for the removal of old in-pile plug and the installation of the new in-pile plug assembly safely. In 2008, the old plug and shutter were successfully replaced by the new plug and shutter as shown in this article with a minimum exposure to the workers. A laser tracker system was also one of the main factors in our successful installation and alignment under high radiation conditions and limited work space. The laser tracker was used to measure and align all the mechanical facilities and the neutron guides with a minimum radiation exposure to workers. The alignment of all the guides and accessories were possible during reactor operation because

  17. Importance of the alignment of polar π conjugated molecules inside carbon nanotubes in determining second-order non-linear optical properties.

    Science.gov (United States)

    Yumura, Takashi; Yamamoto, Wataru

    2017-09-20

    We employed density functional theory (DFT) calculations with dispersion corrections to investigate energetically preferred alignments of certain p,p'-dimethylaminonitrostilbene (DANS) molecules inside an armchair (m,m) carbon nanotube (n × DANS@(m,m)), where the number of inner molecules (n) is no greater than 3. Here, three types of alignments of DANS are considered: a linear alignment in a parallel fashion and stacking alignments in parallel and antiparallel fashions. According to DFT calculations, a threshold tube diameter for containing DANS molecules in linear or stacking alignments was found to be approximately 1.0 nm. Nanotubes with diameters smaller than 1.0 nm result in the selective formation of linearly aligned DANS molecules due to strong confinement effects within the nanotubes. By contrast, larger diameter nanotubes allow DANS molecules to align in a stacking and linear fashion. The type of alignment adopted by the DANS molecules inside a nanotube is responsible for their second-order non-linear optical properties represented by their static hyperpolarizability (β 0 values). In fact, we computed β 0 values of DANS assemblies taken from optimized n × DANS@(m,m) structures, and their values were compared with those of a single DANS molecule. DFT calculations showed that β 0 values of DANS molecules depend on their alignment, which decrease in the following order: linear alignment > parallel stacking alignment > antiparallel stacking alignment. In particular, a linear alignment has a β 0 value more significant than that of the same number of isolated molecules. Therefore, the linear alignment of DANS molecules, which is only allowed inside smaller diameter nanotubes, can strongly enhance their second-order non-linear optical properties. Since the nanotube confinement determines the alignment of DANS molecules, a restricted nanospace can be utilized to control their second-order non-linear optical properties. These DFT findings can assist in the

  18. Parallel Computing in SCALE

    International Nuclear Information System (INIS)

    DeHart, Mark D.; Williams, Mark L.; Bowman, Stephen M.

    2010-01-01

    The SCALE computational architecture has remained basically the same since its inception 30 years ago, although constituent modules and capabilities have changed significantly. This SCALE concept was intended to provide a framework whereby independent codes can be linked to provide a more comprehensive capability than possible with the individual programs - allowing flexibility to address a wide variety of applications. However, the current system was designed originally for mainframe computers with a single CPU and with significantly less memory than today's personal computers. It has been recognized that the present SCALE computation system could be restructured to take advantage of modern hardware and software capabilities, while retaining many of the modular features of the present system. Preliminary work is being done to define specifications and capabilities for a more advanced computational architecture. This paper describes the state of current SCALE development activities and plans for future development. With the release of SCALE 6.1 in 2010, a new phase of evolutionary development will be available to SCALE users within the TRITON and NEWT modules. The SCALE (Standardized Computer Analyses for Licensing Evaluation) code system developed by Oak Ridge National Laboratory (ORNL) provides a comprehensive and integrated package of codes and nuclear data for a wide range of applications in criticality safety, reactor physics, shielding, isotopic depletion and decay, and sensitivity/uncertainty (S/U) analysis. Over the last three years, since the release of version 5.1 in 2006, several important new codes have been introduced within SCALE, and significant advances applied to existing codes. Many of these new features became available with the release of SCALE 6.0 in early 2009. However, beginning with SCALE 6.1, a first generation of parallel computing is being introduced. In addition to near-term improvements, a plan for longer term SCALE enhancement

  19. Aligning with New Digital Strategy

    DEFF Research Database (Denmark)

    Yeow, Adrian; Soh, Christina; Hansen, Rina

    2018-01-01

    Prior IS research has not fully addressed the aligning process in the highly dynamic context of digital strategy. To address this gap, we conduct a longitudinal analysis of a B2B company's journey to enact its B2C digital strategy, using the dynamic capabilities approach. We found...... that as an organization shifts towards a digital strategy, misalignments between the emergent strategy and resources give rise to tension. Our study resulted in the development of an aligning process model that is comprised of three phases (exploratory, building, and extending) and generalizable organizational aligning...... actions that form the organization's sensing, seizing, and transforming capacities. These aligning actions iteratively reconfigured organizational resources and refined strategy in order to respond to both changes in the environment and internal tensions. We also recognized that there are challenges...

  20. RNA Structural Alignments, Part I

    DEFF Research Database (Denmark)

    Havgaard, Jakob Hull; Gorodkin, Jan

    2014-01-01

    Simultaneous alignment and secondary structure prediction of RNA sequences is often referred to as "RNA structural alignment." A class of the methods for structural alignment is based on the principles proposed by Sankoff more than 25 years ago. The Sankoff algorithm simultaneously folds and aligns...... is so high that it took more than a decade before the first implementation of a Sankoff style algorithm was published. However, with the faster computers available today and the improved heuristics used in the implementations the Sankoff-based methods have become practical. This chapter describes...... the methods based on the Sankoff algorithm. All the practical implementations of the algorithm use heuristics to make them run in reasonable time and memory. These heuristics are also described in this chapter....

  1. Semiautomated improvement of RNA alignments

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Lind-Thomsen, Allan; Knudsen, Bjarne

    2007-01-01

    connects to external tools to provide a flexible semiautomatic editing environment. A new method, Pcluster, is introduced for dividing the sequences of an RNA alignment into subgroups with secondary structure differences. Pcluster was used to evaluate 574 seed alignments obtained from the Rfam database...... and we identified 71 alignments with significant prediction of inconsistent base pairs and 102 alignments with significant prediction of novel base pairs. Four RNA families were used to illustrate how SARSE can be used to manually or automatically correct the inconsistent base pairs detected by Pcluster......: the mir-399 RNA, vertebrate telomase RNA (vert-TR), bacterial transfer-messenger RNA (tmRNA), and the signal recognition particle (SRP) RNA. The general use of the method is illustrated by the ability to accommodate pseudoknots and handle even large and divergent RNA families. The open architecture...

  2. XRD alignment, calibration and performance

    International Nuclear Information System (INIS)

    Davy, L.

    2002-01-01

    Full text: The quality of any diffractometer system is very much dependent on the alignment, calibration and performance. The three subjects are very much related. Firstly, you must know how to carry out the full diffractometer alignment. XRD alignment is easy once you know how. The presentation will show you step by step to carry out the full alignment. Secondly, you need to know how to calibrate the diffractometer system. The presentation will show you how to calibrate the goniometer, detector etc. Thirdly, to prove the system is working within the manufacturer specification. The presentation will show you how to carry out the resolution, reproducibility and linearity test. Copyright (2002) Australian X-ray Analytical Association Inc

  3. Sensing Characteristics of A Precision Aligner Using Moire Gratings for Precision Alignment System

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lizhong; Hideo Furuhashi; Yoshiyuki Uchida

    2001-01-01

    Sensing characteristics of a precision aligner using moire gratings for precision alignment sysem has been investigated. A differential moire alignment system and a modified alignment system were used. The influence of the setting accuracy of the gap length and inclination of gratings on the alignment accuracy has been studied experimentally and theoretically. Setting accuracy of the gap length less than 2.5μm is required in modified moire alignment. There is no influence of the gap length on the alignment accuracy in the differential alignment system. The inclination affects alignment accuracies in both differential and modified moire alignment systems.

  4. The Rigors of Aligning Performance

    Science.gov (United States)

    2015-06-01

    importance of the organization’s goals. To better align the commands goals with departmental goals, setting and continuously communicating goals and goal...which is vital to highlight the importance of the organization’s goals. To better align the commands goals with departmental goals, setting and...result of the 2004 organizational restructure, and as defined in the CONOPS, NAVFAC now operates as a matrix organization with integrated “vertical

  5. Comparing the Zeiss Callisto Eye and the Alcon Verion Image Guided System Toric Lens Alignment Technologies.

    Science.gov (United States)

    Hura, Arjan S; Osher, Robert H

    2017-07-01

    To compare the alignment meridian generated by the Zeiss Callisto Eye (Carl Zeiss AG, Dublin, CA) and the Alcon Verion Image Guided System (Alcon Laboratories, Inc., Fort Worth, TX). In this retrospective comparative evaluation of technology, intraoperative images were captured at different steps in the same surgery, allowing the comparison of the guidance lines generated by the Verion system to the parallel guidance lines generated by the Callisto Eye system. Measurements of each hemi-meridian were quantified using Adobe Photoshop 2015 CC software (Adobe Systems, San Jose, CA). The numbers of degrees separating these alignment meridians were calculated, entered into a database, and analyzed. The authors found that of 98 captured images of 16 eyes, the two technologies were identical in 0 eyes (θ 1 = θ 2 = 0), similar by 3° in 52 (53%) captured images (θ 1 ≠ θ 2 ≠ 0), and different by at least 3° in 46 (47%) captured images (θ 1 ≠ θ 2 ≠ 0). The target meridians were superimposed, the target lines were minimally separated, and the target lines were dissimilar. It was noted that some intraoperative variation occurred from measurement to measurement. Within the small group of 16 cases of routine toric lens implantation in this study, the absolute average number of degrees of misalignment between the Verion and Callisto Eye systems was 3.355 for θ 1 and 3.838 for θ 2 . On average, the intraoperative variation termed "drift" was noted to be 3.963° for θ 1 , and 4.557° for θ 2 . The authors found that small deviations were frequent when comparing two sophisticated technologies. Although deviations greater than 3° occurred in less than 47% of captured images from 16 eyes, smaller but significant variations of less than 3° occurred in 53% of captured images from 16 eyes. It was rare to identify a large deviation. However, the authors identified "drift" in the same eye when measurements were taken at different times. The results indicate that the two

  6. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  7. Mechanism of parallel electric fields inferred from observations

    International Nuclear Information System (INIS)

    Yeh, H.; Hill, T.W.

    1981-01-01

    An analysis of satellite data from regions of upward Birkeland (magnetic-field-aligned) current shows that the typical magnetic-field-aligned potential drop in the auroral zone is larger than required to provide direct acceleration of magnetospheric electrons by the field-aligned electric field against the upward magnetic force to produce the observed upward Birkeland current. A model of simple electrostatic acceleration without anomalous resistivity predicts observable relations between parallel current and parallel potential drop and between energy deposition and parallel potential drop. The temperature, density, and species of the unaccelerated charge carriers are the relevant parameters of the model. Simultaneously measurements of electron precipitation and ion drift velocities on the satellites Atmosphere Explorere C and D were used to test these relations. In a steady state the divergence of ionospheric currents must be compensated by Birkeland currents. The model current-voltage relation was applied to predict the densities of the primary charge carriers (i.e., plasma sheet electrons above the acceleration region for upward currents). In cases involving thin arc structures, where the reliable estimation of the divergence of ionospheric current is difficult and the steady-state assumption may not apply, the precipitating energy flux versus voltage relation was used to predict the densities of the unaccelerated plasma sheet electrons. Within the experimental uncertainties, reasonable agreement is found between these predicted densities and those inferred directly from the simultaneous data of the Low-Energy Electron Experiment. These results are interpreted as indicating that anomalous resistivity is not important in determining the magnitude of the field-aligned potential drop in the auroral zone

  8. Parallel imaging microfluidic cytometer.

    Science.gov (United States)

    Ehrlich, Daniel J; McKenna, Brian K; Evans, James G; Belkina, Anna C; Denis, Gerald V; Sherr, David H; Cheung, Man Ching

    2011-01-01

    By adding an additional degree of freedom from multichannel flow, the parallel microfluidic cytometer (PMC) combines some of the best features of fluorescence-activated flow cytometry (FCM) and microscope-based high-content screening (HCS). The PMC (i) lends itself to fast processing of large numbers of samples, (ii) adds a 1D imaging capability for intracellular localization assays (HCS), (iii) has a high rare-cell sensitivity, and (iv) has an unusual capability for time-synchronized sampling. An inability to practically handle large sample numbers has restricted applications of conventional flow cytometers and microscopes in combinatorial cell assays, network biology, and drug discovery. The PMC promises to relieve a bottleneck in these previously constrained applications. The PMC may also be a powerful tool for finding rare primary cells in the clinic. The multichannel architecture of current PMC prototypes allows 384 unique samples for a cell-based screen to be read out in ∼6-10 min, about 30 times the speed of most current FCM systems. In 1D intracellular imaging, the PMC can obtain protein localization using HCS marker strategies at many times for the sample throughput of charge-coupled device (CCD)-based microscopes or CCD-based single-channel flow cytometers. The PMC also permits the signal integration time to be varied over a larger range than is practical in conventional flow cytometers. The signal-to-noise advantages are useful, for example, in counting rare positive cells in the most difficult early stages of genome-wide screening. We review the status of parallel microfluidic cytometry and discuss some of the directions the new technology may take. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Laser beam alignment and profilometry using diagnostic fluorescent safety mirrors

    Science.gov (United States)

    Lizotte, Todd E.

    2011-03-01

    There are a wide range of laser beam delivery systems in use for various purposes; including industrial and medical applications. Virtually all such beam delivery systems for practical purposes employ optical systems comprised of mirrors and lenses to shape, focus and guide the laser beam down to the material being processed. The goal of the laser beam delivery is to set the optimum parameters and to "fold" the beam path to reduce the mechanical length of the optical system, thereby allowing a physically compact system. In many cases, even a compact system can incorporate upwards of six mirrors and a comparable number of lenses all needing alignment so they are collinear. One of the major requirements for use of such systems in industry is a method of safe alignment. The alignment process requires that the aligner determine where the beam strikes each element. The aligner should also preferably be able to determine the shape or pattern of the laser beam at that point and its relative power. These alignments are further compounded in that the laser beams generated are not visible to the unaided human eye. Such beams are also often of relatively high power levels, and are thereby a significant hazard to the eyes of the aligner. Obvious an invisible beam makes it nearly impossible to align laser system without some form of optical assistance. The predominant method of visually aligning the laser beam delivery is the use of thermal paper, paper cards or fluorescing card material. The use of paper products which have limited power handling capability or coated plastics can produce significant debris and contaminants within the beam line that ultimately damage the optics. The use of the cards can also create significant laser light scatter jeopardizing the safety of the person aligning the system. This paper covers a new safety mirror design for use with at various UV and Near IR wavelengths (193 nm to 1064 nm) within laser beam delivery systems and how its use can

  10. BinAligner: a heuristic method to align biological networks.

    Science.gov (United States)

    Yang, Jialiang; Li, Jun; Grünewald, Stefan; Wan, Xiu-Feng

    2013-01-01

    The advances in high throughput omics technologies have made it possible to characterize molecular interactions within and across various species. Alignments and comparison of molecular networks across species will help detect orthologs and conserved functional modules and provide insights on the evolutionary relationships of the compared species. However, such analyses are not trivial due to the complexity of network and high computational cost. Here we develop a mixture of global and local algorithm, BinAligner, for network alignments. Based on the hypotheses that the similarity between two vertices across networks would be context dependent and that the information from the edges and the structures of subnetworks can be more informative than vertices alone, two scoring schema, 1-neighborhood subnetwork and graphlet, were introduced to derive the scoring matrices between networks, besides the commonly used scoring scheme from vertices. Then the alignment problem is formulated as an assignment problem, which is solved by the combinatorial optimization algorithm, such as the Hungarian method. The proposed algorithm was applied and validated in aligning the protein-protein interaction network of Kaposi's sarcoma associated herpesvirus (KSHV) and that of varicella zoster virus (VZV). Interestingly, we identified several putative functional orthologous proteins with similar functions but very low sequence similarity between the two viruses. For example, KSHV open reading frame 56 (ORF56) and VZV ORF55 are helicase-primase subunits with sequence identity 14.6%, and KSHV ORF75 and VZV ORF44 are tegument proteins with sequence identity 15.3%. These functional pairs can not be identified if one restricts the alignment into orthologous protein pairs. In addition, BinAligner identified a conserved pathway between two viruses, which consists of 7 orthologous protein pairs and these proteins are connected by conserved links. This pathway might be crucial for virus packing and

  11. Regionally Aligned Divisions: Enabling Cultural and Linguistic Competency in Regionally Aligned Forces

    Science.gov (United States)

    2016-05-26

    HQDA) Regionally Aligned Forces (RAF) EXORD, 56. 8 George Siemens, “Connectivism: A Learning Theory for the Digital Age,” International Journal of...J. Clauzel, “Évolution de la vie économique et des structures sociales du pays nomade du Malil: De la conquête française à l’autonomie interne 1893...121 Donald E. Vandergriff, Digital War: A View from the Front Line, ed. Robert L. Bateman (Novato: Presidio Press, 1999). 122 Douglas M. Chalmers

  12. Improved magnetic field line design for TMX

    International Nuclear Information System (INIS)

    Logan, B.G.; Baldwin, D.E.; Foote, J.H.; Chargin, A.K.; Hinkle, R.E.; Hussung, R.O.; Damm, C.C.

    1977-01-01

    Optimization of the currents in the TMX magnet set leads to a field line configuration which has a central solenoidal region uniform in parallel B parallel to within 10 percent over a 2m length. The field design has sufficient flexibility to meet all three physics objectives of the TMX experiment

  13. About Parallel Programming: Paradigms, Parallel Execution and Collaborative Systems

    Directory of Open Access Journals (Sweden)

    Loredana MOCEAN

    2009-01-01

    Full Text Available In the last years, there were made efforts for delineation of a stabile and unitary frame, where the problems of logical parallel processing must find solutions at least at the level of imperative languages. The results obtained by now are not at the level of the made efforts. This paper wants to be a little contribution at these efforts. We propose an overview in parallel programming, parallel execution and collaborative systems.

  14. PEP-II Alignment

    CERN Document Server

    Gaydosh, M

    2003-01-01

    The PEP-II Asymmetric B-factory consists of two independent storage rings, one located atop the other in the 2200m-circumference PEP tunnel. The high-energy ring, which stores a 9-GeV electron beam, is an upgrade of the existing PEP collider. It re-utilizes all of the PEP magnets and incorporates a state-of-the-art copper vacuum chamber and a new RF system capable of supporting a one-amp stored beam. The low-energy ring, which stores 3.1-GeV positrons, is new construction. Injection is achieved by extracting electrons and positrons at collision energies from the SLC and transporting them each in a dedicated bypass line. The low-emittance SLC beams will be used for the injection process.

  15. Optical alignment using a CGH and an autostigmatic microscope

    Science.gov (United States)

    Parks, Robert E.

    2017-08-01

    We show how custom computer generated holograms (CGH) are used along with an autostigmatic microscope (ASM) to align both optical and mechanical components relative to the CGH. The patterns in the CGHs define points and lines in space when interrogated with the focus of the ASM. Once the ASM is aligned to the CGH, an optical or mechanical component such as a lens, a well-polished ball or a cylinder can be aligned to the ASM in 3 or 4 degrees of freedom and thus to the CGH. In this case we show how a CGH is used to make a fixture for cementing a doublet lens without the need for a rotary table or a precision vertical stage.

  16. Simulator for beam-based LHC collimator alignment

    Science.gov (United States)

    Valentino, Gianluca; Aßmann, Ralph; Redaelli, Stefano; Sammut, Nicholas

    2014-02-01

    In the CERN Large Hadron Collider, collimators need to be set up to form a multistage hierarchy to ensure efficient multiturn cleaning of halo particles. Automatic algorithms were introduced during the first run to reduce the beam time required for beam-based setup, improve the alignment accuracy, and reduce the risk of human errors. Simulating the alignment procedure would allow for off-line tests of alignment policies and algorithms. A simulator was developed based on a diffusion beam model to generate the characteristic beam loss signal spike and decay produced when a collimator jaw touches the beam, which is observed in a beam loss monitor (BLM). Empirical models derived from the available measurement data are used to simulate the steady-state beam loss and crosstalk between multiple BLMs. The simulator design is presented, together with simulation results and comparison to measurement data.

  17. Track based alignment of the Mu3e detector

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, Ulrich [Institut fuer Kernphysik, Universitaet Mainz (Germany)

    2016-07-01

    The Mu3e experiment searches for the lepton flavor violating decay μ{sup +} → e{sup +}e{sup -}e{sup +} with a sensitivity goal for the branching fraction of better than 10{sup -16}. This process is heavily supressed in the standard model of particle physics (BR < 10{sup -50}) which makes an observation of this decay a clear indication of new physics. For track reconstruction, four barrel shaped layers consisting of about 3000 high-voltage monolithic active pixel sensors (HV-MAPS) are used. The position, orientation and possible deformations of these sensors must be known to greater precision than the assembly tolerances. A track based alignment via the General Broken Lines fit and the Millepede-II algorithm will be used to achieve this precision in the final detector. The talk discusses a study of the required alignment precision and preparations for aligning the detector using a detailed simulation.

  18. Geodetic alignment of laser power installations

    International Nuclear Information System (INIS)

    Shtorm, V.V.; Gostev, A.M.; Drobikov, A.V.

    1989-01-01

    Main problems occuring in applied geodesy under initial alignment of laser power installation optical channel are considered. Attention is paid to alignment of lens beamguide telescopic pairs and alignment quality control. Methods and means of geodetic measurements under alignment are indicated. Conclusions are made about the degree of working through certain aspects of the problem

  19. Enhancement of the guide field during the current sheet formation in the three-dimensional magnetic configuration with an X line

    International Nuclear Information System (INIS)

    Frank, Anna; Bugrov, Sergey; Markov, Vladimir

    2009-01-01

    Results are presented from studies of the formation of current sheets during exciting a current aligned with the X line of the 3D magnetic configuration, in the CS-3D device. Enhancement of the guide field (parallel to the X line) was directly observed for the first time, on the basis of magnetic measurements. After the current sheet formation, the guide field inside the sheet exceeds its initial value, as well as the field outside. It is convincingly demonstrated that an enhancement of the guide field is due to its transportation by plasma flows on the early stage of the sheet formation. The in-plane plasma currents, which produce the excess guide field, are comparable to the total current along the X line that initiates the sheet itself.

  20. Parallel Framework for Cooperative Processes

    Directory of Open Access Journals (Sweden)

    Mitică Craus

    2005-01-01

    Full Text Available This paper describes the work of an object oriented framework designed to be used in the parallelization of a set of related algorithms. The idea behind the system we are describing is to have a re-usable framework for running several sequential algorithms in a parallel environment. The algorithms that the framework can be used with have several things in common: they have to run in cycles and the work should be possible to be split between several "processing units". The parallel framework uses the message-passing communication paradigm and is organized as a master-slave system. Two applications are presented: an Ant Colony Optimization (ACO parallel algorithm for the Travelling Salesman Problem (TSP and an Image Processing (IP parallel algorithm for the Symmetrical Neighborhood Filter (SNF. The implementations of these applications by means of the parallel framework prove to have good performances: approximatively linear speedup and low communication cost.

  1. Alignment method for parabolic trough solar concentrators

    Science.gov (United States)

    Diver, Richard B [Albuquerque, NM

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  2. Parallel Monte Carlo reactor neutronics

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Brown, F.B.

    1994-01-01

    The issues affecting implementation of parallel algorithms for large-scale engineering Monte Carlo neutron transport simulations are discussed. For nuclear reactor calculations, these include load balancing, recoding effort, reproducibility, domain decomposition techniques, I/O minimization, and strategies for different parallel architectures. Two codes were parallelized and tested for performance. The architectures employed include SIMD, MIMD-distributed memory, and workstation network with uneven interactive load. Speedups linear with the number of nodes were achieved

  3. The role of magnetic-field-aligned electric fields in auroral acceleration

    International Nuclear Information System (INIS)

    Block, L.P.; Faelthammar, C.G.

    1990-01-01

    Electric field measurements on the Swedish satellite Viking have confirmed and extended earlier observations on S3-3 and provided further evidence of the role of dc electric fields in auroral acceleration processes. On auroral magnetic field lines the electric field is strongly fluctuating both transverse and parallel to the magnetic field. The significance of these fluctuations for the auroral acceleration process is discussed. A definition of dc electric fields is given in terms of their effects on charged particles. Fluctuations below several hertz are experienced as dc by typical auroral electrons if the acceleration length is a few thousand kilometers. For ions the same is true below about 0.1 Hz. The magnetic-field-aligned (as well as the transverse) component of the electric field fluctuations has a maximum below 1 Hz, in a frequency range that appears as dc to the electrons but not to the ions. This allows it to cause a selective acceleration, which may be important in explaining some of the observed characteristics of auroral particle distributions. The electric field observations on Viking support the conclusion that magnetic-field-aligned potential drops play an important role in auroral acceleration, in good agreement with particle observations boht on Viking and on the DE satellites. They also show that a large part, or even all, of the accelerating potential drop may be accounted for by numerous weak (about a volt) electric double layers, in agreement with earlier observations on the S3-3 satellite and with an early theoretical suggestion by L. Block

  4. From Word Alignment to Word Senses, via Multilingual Wordnets

    Directory of Open Access Journals (Sweden)

    Dan Tufis

    2006-05-01

    Full Text Available Most of the successful commercial applications in language processing (text and/or speech dispense with any explicit concern on semantics, with the usual motivations stemming from the computational high costs required for dealing with semantics, in case of large volumes of data. With recent advances in corpus linguistics and statistical-based methods in NLP, revealing useful semantic features of linguistic data is becoming cheaper and cheaper and the accuracy of this process is steadily improving. Lately, there seems to be a growing acceptance of the idea that multilingual lexical ontologisms might be the key towards aligning different views on the semantic atomic units to be used in characterizing the general meaning of various and multilingual documents. Depending on the granularity at which semantic distinctions are necessary, the accuracy of the basic semantic processing (such as word sense disambiguation can be very high with relatively low complexity computing. The paper substantiates this statement by presenting a statistical/based system for word alignment and word sense disambiguation in parallel corpora. We describe a word alignment platform which ensures text pre-processing (tokenization, POS-tagging, lemmatization, chunking, sentence and word alignment as required by an accurate word sense disambiguation.

  5. Strategic Alignment and New Product Development

    DEFF Research Database (Denmark)

    Acur, Nuran; Kandemir, Destan; Boer, Harry

    2012-01-01

    Strategic alignment is widely accepted as a prerequisite for a firm’s success, but insight into the role of alignment in, and its impact on, the new product evelopment (NPD) process and its performance is less well developed. Most publications on this topic either focus on one form of alignment...... of NPD performance indicators. Strategic planning and innovativeness appear to affect technological, market, and NPD-marketing alignment positively. Environmental munificence is negatively associated with NPD-marketing alignment, but has no effect on the two other forms of alignment. Technological change...... has a positive effect on technological alignment, a negative effect on NPD-marketing alignment, but no effect on market alignment. These findings suggest that internal capabilities are more likely to be associated with the development of strategic alignment than environmental factors are. Furthermore...

  6. Anti-parallel triplexes

    DEFF Research Database (Denmark)

    Kosbar, Tamer R.; Sofan, Mamdouh A.; Waly, Mohamed A.

    2015-01-01

    about 6.1 °C when the TFO strand was modified with Z and the Watson-Crick strand with adenine-LNA (AL). The molecular modeling results showed that, in case of nucleobases Y and Z a hydrogen bond (1.69 and 1.72 Å, respectively) was formed between the protonated 3-aminopropyn-1-yl chain and one...... of the phosphate groups in Watson-Crick strand. Also, it was shown that the nucleobase Y made a good stacking and binding with the other nucleobases in the TFO and Watson-Crick duplex, respectively. In contrast, the nucleobase Z with LNA moiety was forced to twist out of plane of Watson-Crick base pair which......The phosphoramidites of DNA monomers of 7-(3-aminopropyn-1-yl)-8-aza-7-deazaadenine (Y) and 7-(3-aminopropyn-1-yl)-8-aza-7-deazaadenine LNA (Z) are synthesized, and the thermal stability at pH 7.2 and 8.2 of anti-parallel triplexes modified with these two monomers is determined. When, the anti...

  7. Parallel consensual neural networks.

    Science.gov (United States)

    Benediktsson, J A; Sveinsson, J R; Ersoy, O K; Swain, P H

    1997-01-01

    A new type of a neural-network architecture, the parallel consensual neural network (PCNN), is introduced and applied in classification/data fusion of multisource remote sensing and geographic data. The PCNN architecture is based on statistical consensus theory and involves using stage neural networks with transformed input data. The input data are transformed several times and the different transformed data are used as if they were independent inputs. The independent inputs are first classified using the stage neural networks. The output responses from the stage networks are then weighted and combined to make a consensual decision. In this paper, optimization methods are used in order to weight the outputs from the stage networks. Two approaches are proposed to compute the data transforms for the PCNN, one for binary data and another for analog data. The analog approach uses wavelet packets. The experimental results obtained with the proposed approach show that the PCNN outperforms both a conjugate-gradient backpropagation neural network and conventional statistical methods in terms of overall classification accuracy of test data.

  8. Coordinate measurement machines as an alignment tool

    International Nuclear Information System (INIS)

    Wand, B.T.

    1991-03-01

    In February of 1990 the Stanford Linear Accelerator Center (SLAC) purchased a LEITZ PM 12-10-6 CMM (Coordinate measurement machine). The machine is shared by the Quality Control Team and the Alignment Team. One of the alignment tasks in positioning beamline components in a particle accelerator is to define the component's magnetic centerline relative to external fiducials. This procedure, called fiducialization, is critical to the overall positioning tolerance of a magnet. It involves the definition of the magnetic center line with respect to the mechanical centerline and the transfer of the mechanical centerline to the external fiducials. To perform the latter a magnet coordinate system has to be established. This means defining an origin and the three rotation angles of the magnet. The datum definition can be done by either optical tooling techniques or with a CMM. As optical tooling measurements are very time consuming, not automated and are prone to errors, it is desirable to use the CMM fiducialization method instead. The establishment of a magnet coordinate system based on the mechanical center and the transfer to external fiducials will be discussed and presented with 2 examples from the Stanford Linear Collider (SLC). 7 figs

  9. Directional cell migration establishes the axes of planar polarity in the posterior lateral-line organ of the zebrafish.

    Science.gov (United States)

    López-Schier, Hernán; Starr, Catherine J; Kappler, James A; Kollmar, Richard; Hudspeth, A J

    2004-09-01

    The proper orientation of mechanosensory hair cells along the lateral-line organ of a fish or amphibian is essential for the animal's ability to sense directional water movements. Within the sensory epithelium, hair cells are polarized in a stereotyped manner, but the mechanisms that control their alignment relative to the body axes are unknown. We have found, however, that neuromasts can be oriented either parallel or perpendicular to the anteroposterior body axis. By characterizing the strauss mutant zebrafish line and by tracking labeled cells, we have demonstrated that neuromasts of these two orientations originate from, respectively, the first and second primordia. Furthermore, altering the migratory pathway of a primordium reorients a neuromast's axis of planar polarity. We propose that the global orientation of hair cells relative to the body axes is established through an interaction between directional movement by primordial cells and the timing of neuromast maturation.

  10. A Parallel Particle Swarm Optimizer

    National Research Council Canada - National Science Library

    Schutte, J. F; Fregly, B .J; Haftka, R. T; George, A. D

    2003-01-01

    .... Motivated by a computationally demanding biomechanical system identification problem, we introduce a parallel implementation of a stochastic population based global optimizer, the Particle Swarm...

  11. Patterns for Parallel Software Design

    CERN Document Server

    Ortega-Arjona, Jorge Luis

    2010-01-01

    Essential reading to understand patterns for parallel programming Software patterns have revolutionized the way we think about how software is designed, built, and documented, and the design of parallel software requires you to consider other particular design aspects and special skills. From clusters to supercomputers, success heavily depends on the design skills of software developers. Patterns for Parallel Software Design presents a pattern-oriented software architecture approach to parallel software design. This approach is not a design method in the classic sense, but a new way of managin

  12. Seeing or moving in parallel

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Ehrsson, H Henrik; Nielsen, Jens Bo

    2013-01-01

    a different network, involving bilateral dorsal premotor cortex (PMd), primary motor cortex, and SMA, was more active when subjects viewed parallel movements while performing either symmetrical or parallel movements. Correlations between behavioral instability and brain activity were present in right lateral...... adduction-abduction movements symmetrically or in parallel with real-time congruent or incongruent visual feedback of the movements. One network, consisting of bilateral superior and middle frontal gyrus and supplementary motor area (SMA), was more active when subjects performed parallel movements, whereas...

  13. Energy flow of electric dipole radiation in between parallel mirrors

    Science.gov (United States)

    Xu, Zhangjin; Arnoldus, Henk F.

    2017-11-01

    We have studied the energy flow patterns of the radiation emitted by an electric dipole located in between parallel mirrors. It appears that the field lines of the Poynting vector (the flow lines of energy) can have very intricate structures, including many singularities and vortices. The flow line patterns depend on the distance between the mirrors, the distance of the dipole to one of the mirrors and the angle of oscillation of the dipole moment with respect to the normal of the mirror surfaces. Already for the simplest case of a dipole moment oscillating perpendicular to the mirrors, singularities appear at regular intervals along the direction of propagation (parallel to the mirrors). For a parallel dipole, vortices appear in the neighbourhood of the dipole. For a dipole oscillating under a finite angle with the surface normal, the radiating tends to swirl around the dipole before travelling off parallel to the mirrors. For relatively large mirror separations, vortices appear in the pattern. When the dipole is off-centred with respect to the midway point between the mirrors, the flow line structure becomes even more complicated, with numerous vortices in the pattern, and tiny loops near the dipole. We have also investigated the locations of the vortices and singularities, and these can be found without any specific knowledge about the flow lines. This provides an independent means of studying the propagation of dipole radiation between mirrors.

  14. Changes in collection efficiency in nylon net filter media through magnetic alignment of elongated aerosol particles.

    Science.gov (United States)

    Lam, Christopher O; Finlay, W H

    2009-10-01

    Fiber aerosols tend to align parallel to surrounding fluid streamlines in shear flows, making their filtration more difficult. However, previous research indicates that composite particles made from cromoglycic acid fibers coated with small nanoscaled magnetite particles can align with an applied magnetic field. The present research explored the effect of magnetically aligning these fibers to increase their filtration. Nylon net filters were challenged with the aerosol fibers, and efficiency tests were performed with and without a magnetic field applied perpendicular to the flow direction. We investigated the effects of varying face velocities, the amount of magnetite material on the aerosol particles, and magnetic field strengths. Findings from the experiments, matched by supporting single-fiber theories, showed significant efficiency increases at the low face velocity of 1.5 cm s(-1) at all magnetite compositions, with efficiencies more than doubling due to magnetic field alignment in certain cases. At a higher face velocity of 5.12 cm s(-1), filtration efficiencies were less affected by the magnetic field alignment being, at most, 43% higher for magnetite weight compositions up to 30%, while at a face velocity of 10.23 cm s(-1) alignment effects were insignificant. In most cases, efficiencies became independent of magnetic field strength above 50 mT, suggesting full alignment of the fibers. The present data suggest that fiber alignment in a magnetic field may warrant applications in the filtration and detection of fibers, such as asbestos.

  15. Sales Territory Alignment: A Review and Model

    OpenAIRE

    Andris A. Zoltners; Prabhakant Sinha

    1983-01-01

    The sales territory alignment problem may be viewed as the problem of grouping small geographic sales coverage units into larger geographic clusters called sales territories in a way that the sales territories are acceptable according to managerially relevant alignment criteria. This paper first reviews sales territory alignment models which have appeared in the marketing literature. A framework for sales territory alignment and several properties of a good sales territory alignment are devel...

  16. A comparison of mandibular incisor proclination when using clear aligners and fixed labial orthodontic brackets

    OpenAIRE

    Hennessy, Joe

    2015-01-01

    The objective of this ‘2-arm parallel' clinical trial was to compare the mandibular incisor proclination produced by fixed labial appliances and 3rd generation clear aligners. TARA (Trinity’s Access to Research Archive) has a robust takedown policy. Please contact us if you have any concerns:

  17. Mammalian cortical astrocytes align themselves in a physiological voltage gradient.

    Science.gov (United States)

    Borgens, R B; Shi, R; Mohr, T J; Jaeger, C B

    1994-07-01

    Astrocytes obtained from primary cultures of newborn rat cerebral cortex show a marked structural rearrangement to weak (50-500 mV/mm) applied voltage gradients. Astrocytes reorient their processes so that the cells are aligned perpendicular to the voltage gradient. At field strengths of 100 mV/mm or greater, this realignment occurs in over 90% of the cell population. Furthermore, these magnitudes of electric fields completely eliminate any parallel alignments originally observed prior to application of the voltage. Realignment usually occurs by a withdrawal, followed by an extension, of cell processes. These responses occur at voltage gradients within the physiological range that naturally exist across the neural tube during early development. We suggest the possibility that architectural arrangements of developing glia and, subsequently, neurons may be regulated by endogenous transepithelial potentials that exist across embryonic neuroepithelium.

  18. Uniaxially aligned ceramic nanofibers obtained by chemical mechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Tararam, R. [Univ Estadual Paulista – UNESP – Instituto de Química, Rua Prof. Francisco Degni n° 55, CEP 14800-900 Araraquara, SP (Brazil); Foschini, C.R. [Univ Estadual Paulista – UNESP – Faculdade de Engenharia de Bauru, Dept. de Eng. Mecanica, Av. Eng. Luiz Edmundo C. Coube 14-01, CEP 17033-360 Bauru, SP (Brazil); Destro, F.B. [Univ Estadual Paulista – UNESP – Faculdade de Engenharia de Guaratinguetá, Guaratinguetá 12516-410, SP (Brazil); Simões, A.Z., E-mail: alezipo@yahoo.com [Univ Estadual Paulista – UNESP – Faculdade de Engenharia de Guaratinguetá, Guaratinguetá 12516-410, SP (Brazil); Longo, E.; Varela, J.A. [Univ Estadual Paulista – UNESP – Instituto de Química, Rua Prof. Francisco Degni n° 55, CEP 14800-900 Araraquara, SP (Brazil)

    2014-08-01

    For this study, we investigated a simple method to generate well aligned nanofibers over large areas using an organic polymer stretched over the substrate surface With this method, ZnO and CuO 3D parallel nanowire arrays were successfully prepared by calcinations of the polymer fibers. X-ray diffraction (XRD) analysis revealed that the copper oxide has a monoclinic structure while the zinc oxide has a hexagonal structure. Scanning electron microscopy (SEM) analysis showed ceramic nanofibers with an average diameter of 120 nm which were composed of small nanoparticles which are 10 nm in diameter. The ability to obtain uniaxially aligned nanofibers reveals a range of interesting properties with potential applications for sensors, catalysts and energy technologies.

  19. Anisotropic hypersonic phonon propagation in films of aligned ellipsoids.

    Science.gov (United States)

    Beltramo, Peter J; Schneider, Dirk; Fytas, George; Furst, Eric M

    2014-11-14

    A material with anisotropic elastic mechanical properties and a direction-dependent hypersonic band gap is fabricated using ac electric field-directed convective self-assembly of colloidal ellipsoids. The frequency of the gap, which is detected in the direction perpendicular to particle alignment and entirely absent parallel to alignment, and the effective sound velocities can be tuned by the particle aspect ratio. We hypothesize that the band gap originates from the primary eigenmode peak, the m-splitted (s,1,2) mode, of the particle resonating with the effective medium. These results reveal the potential for powerful control of the hypersonic phononic band diagram by combining anisotropic particles and self-assembly.

  20. Electric alignment of plate shaped clay aggregates in oils

    Science.gov (United States)

    Castberg, Rene; Rozynek, Zbigniew; Måløy, Knut Jørgen; Flekkøy, Eirik

    2016-01-01

    We experimentally investigate the rotation of plate shaped aggregates of clay mineral particles immersed in silicone oil. The rotation is induced by an external electric field. The rotation time is measured as a function of the following parameters: electric field strength, the plate geometry (length and width) and the dielectric properties of the plates. We find that the plates always align with their longest axis parallel to the direction of the electric field (E), independently of the arrangement of individual clay -2 mineral particles within the plate. The rotation time is found to scale as E and is proportional to the viscosity (μ), which coincides well with a model that describes orientation of dipoles in electric fields. As the length of the plate is increased we quantify a difference between the longitudinal and transverse polarisability. Finally, we show that moist plates align faster. We attribute this to the change of the dielectric properties of the plate due to the presence of water.

  1. High-resolution accelerator alignment using x-ray optics

    Directory of Open Access Journals (Sweden)

    Bingxin Yang

    2006-03-01

    Full Text Available We propose a novel alignment technique utilizing the x-ray beam of an undulator in conjunction with pinholes and position-sensitive detectors for positioning components of the accelerator, undulator, and beam line in an x-ray free-electron laser. Two retractable pinholes at each end of the undulator define a stable and reproducible x-ray beam axis (XBA. Targets are precisely positioned on the XBA using a pinhole camera technique. Position-sensitive detectors responding to both x-ray and electron beams enable direct transfer of the position setting from the XBA to the electron beam. This system has the potential to deliver superior alignment accuracy (1–3   μm for target pinholes in the transverse directions over a long distance (200 m or longer. It can be used to define the beam axis of the electron-beam–based alignment, enabling high reproducibility of the latter. This x-ray–based concept should complement the electron-beam–based alignment and the existing survey methods to raise the alignment accuracy of long accelerators to an unprecedented level. Further improvement of the transverse accuracy using x-ray zone plates will be discussed. We also propose a concurrent measurement scheme during accelerator operation to allow real-time feedback for transverse position correction.

  2. The influence of atomic alignment on absorption and emission spectroscopy

    Science.gov (United States)

    Zhang, Heshou; Yan, Huirong; Richter, Philipp

    2018-06-01

    Spectroscopic observations play essential roles in astrophysics. They are crucial for determining physical parameters in the universe, providing information about the chemistry of various astronomical environments. The proper execution of the spectroscopic analysis requires accounting for all the physical effects that are compatible to the signal-to-noise ratio. We find in this paper the influence on spectroscopy from the atomic/ground state alignment owing to anisotropic radiation and modulated by interstellar magnetic field, has significant impact on the study of interstellar gas. In different observational scenarios, we comprehensively demonstrate how atomic alignment influences the spectral analysis and provide the expressions for correcting the effect. The variations are even more pronounced for multiplets and line ratios. We show the variation of the deduced physical parameters caused by the atomic alignment effect, including alpha-to-iron ratio ([X/Fe]) and ionisation fraction. Synthetic observations are performed to illustrate the visibility of such effect with current facilities. A study of PDRs in ρ Ophiuchi cloud is presented to demonstrate how to account for atomic alignment in practice. Our work has shown that due to its potential impact, atomic alignment has to be included in an accurate spectroscopic analysis of the interstellar gas with current observational capability.

  3. 3C 254: the alignment effect and unification schemes

    Science.gov (United States)

    Bremer, M. N.

    1997-01-01

    3C 254 is a radio-loud quasar at z=0.734. Optical line and continuum emission from the underlying galaxy is clearly extended and aligned with the radio axis; the object shows the so-called `alignment effect' which is often seen in powerful radio galaxies. This is the clearest case yet of the continuum alignment effect in a radio-loud quasar. The object is one of the most lobe-dominated 3C quasars; the significance of the aligned emission in this source is discussed in terms of orientation-based unification schemes for radio-loud quasars and radio galaxies. 3C 254 is a very asymmetric radio source and it is shown that the radio structure on the side with the shortest nucleus-hotspot distance is interacting with the emission-line gas surrounding the quasar. It is also shown that the quasar is surrounded by an overdensity of faint objects, consistent with a cluster or group of galaxies around the object.

  4. Grain alignment in starless cores

    International Nuclear Information System (INIS)

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A V ∼48. We find that P K /τ K continues to decline with increasing A V with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A V ≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A V ∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  5. Laser shaft alignment measurement model

    Science.gov (United States)

    Mo, Chang-tao; Chen, Changzheng; Hou, Xiang-lin; Zhang, Guoyu

    2007-12-01

    Laser beam's track which is on photosensitive surface of the a receiver will be closed curve, when driving shaft and the driven shaft rotate with same angular velocity and rotation direction. The coordinate of arbitrary point which is on the curve is decided by the relative position of two shafts. Basing on the viewpoint, a mathematic model of laser alignment is set up. By using a data acquisition system and a data processing model of laser alignment meter with single laser beam and a detector, and basing on the installation parameter of computer, the state parameter between two shafts can be obtained by more complicated calculation and correction. The correcting data of the four under chassis of the adjusted apparatus moving on the level and the vertical plane can be calculated. This will instruct us to move the apparatus to align the shafts.

  6. Adaptive Processing for Sequence Alignment

    KAUST Repository

    Zidan, Mohammed A.; Bonny, Talal; Salama, Khaled N.

    2012-01-01

    Disclosed are various embodiments for adaptive processing for sequence alignment. In one embodiment, among others, a method includes obtaining a query sequence and a plurality of database sequences. A first portion of the plurality of database sequences is distributed to a central processing unit (CPU) and a second portion of the plurality of database sequences is distributed to a graphical processing unit (GPU) based upon a predetermined splitting ratio associated with the plurality of database sequences, where the database sequences of the first portion are shorter than the database sequences of the second portion. A first alignment score for the query sequence is determined with the CPU based upon the first portion of the plurality of database sequences and a second alignment score for the query sequence is determined with the GPU based upon the second portion of the plurality of database sequences.

  7. Adaptive Processing for Sequence Alignment

    KAUST Repository

    Zidan, Mohammed A.

    2012-01-26

    Disclosed are various embodiments for adaptive processing for sequence alignment. In one embodiment, among others, a method includes obtaining a query sequence and a plurality of database sequences. A first portion of the plurality of database sequences is distributed to a central processing unit (CPU) and a second portion of the plurality of database sequences is distributed to a graphical processing unit (GPU) based upon a predetermined splitting ratio associated with the plurality of database sequences, where the database sequences of the first portion are shorter than the database sequences of the second portion. A first alignment score for the query sequence is determined with the CPU based upon the first portion of the plurality of database sequences and a second alignment score for the query sequence is determined with the GPU based upon the second portion of the plurality of database sequences.

  8. Measurement of the attosecond emission from aligned molecules

    International Nuclear Information System (INIS)

    Boutu, W.; Merdji, H.; Fitour, R.; Monchicourt, P.; Breger, P.; Carre, B.; Salieres, P.

    2006-01-01

    Complete test of publication follows. Recently, a number of papers have demonstrated the interest of high-order harmonic generation (HHG) from molecules aligned with respect to the laser polarization. Itatani et al. (Nature 432, 867 (2004)) have shown that a precise characterization of the harmonic emission allows performing a tomographic reconstruction of the molecular orbitals that radiate. Kanai et al. (Nature 435, 470 (2005)) have evidenced quantum interferences in the recombination process of HHG that are directly related to the molecular structure. In all of these papers, only the HHG intensity was measured. The relative harmonic phase, though more difficult to measure, contains important information on the interference process, and is needed for an ab initio tomographic reconstruction. Finally, while the attosecond emission from atoms has been thoroughly studied, in particular by our group (Mairesse et al., Science (302, 1540 (2003)), it has not been investigated in molecules. In a first experiment (Wabnitz et al., EPJD (2006)), we measured the amplitude and relative phase of harmonics radiated by un-aligned nitrogen molecules. Small but reproducible deviations from the phase of harmonics generated in argon (same ionization potential as nitrogen) were measured for low orders. In a recent experiment, we have measured, up to high order, the harmonic amplitude and relative phase for aligned molecules (N 2 and CO 2 ). In order to align the molecules, we used the so-called nonadiabatic technique: a rotational wavepacket is created by a strong enough and short aligning pulse, so that a field-free alignment is obtained at the revival (a few ps after the aligning pulse). The measurement of phase locking between neighboring harmonics was performed through the photoionization of a target gas by the harmonic beam in presence of a sufficiently intense 'dressing' laser beam (RABITT technique). The harmonic phase measured when the CO 2 molecules are aligned parallel to

  9. CS-Studio Scan System Parallelization

    Energy Technology Data Exchange (ETDEWEB)

    Kasemir, Kay [ORNL; Pearson, Matthew R [ORNL

    2015-01-01

    For several years, the Control System Studio (CS-Studio) Scan System has successfully automated the operation of beam lines at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). As it is applied to additional beam lines, we need to support simultaneous adjustments of temperatures or motor positions. While this can be implemented via virtual motors or similar logic inside the Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs), doing so requires a priori knowledge of experimenters requirements. By adding support for the parallel control of multiple process variables (PVs) to the Scan System, we can better support ad hoc automation of experiments that benefit from such simultaneous PV adjustments.

  10. SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees.

    Science.gov (United States)

    Liu, Kevin; Warnow, Tandy J; Holder, Mark T; Nelesen, Serita M; Yu, Jiaye; Stamatakis, Alexandros P; Linder, C Randal

    2012-01-01

    Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of

  11. Monitoring of absolute mirror alignment at COMPASS RICH-1 detector

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, M. [INFN, Sezione di Torino and University of East Piemonte, Alessandria (Italy); INFN, Sezione di Trieste and University of Bari, Bari (Italy); Birsa, R. [INFN, Sezione di Trieste, Trieste (Italy); Bradamante, F.; Bressan, A. [INFN, Sezione di Trieste and University of Trieste, Trieste (Italy); Chiosso, M. [INFN, Sezione di Torino and University of Torino, Torino (Italy); Ciliberti, P. [INFN, Sezione di Trieste and University of Trieste, Trieste (Italy); Dalla Torre, S. [INFN, Sezione di Trieste, Trieste (Italy); Denisov, O. [INFN, Sezione di Torino, Torino (Italy); Duic, V. [INFN, Sezione di Trieste and University of Trieste, Trieste (Italy); Ferrero, A. [INFN, Sezione di Torino and University of Torino, Torino (Italy); Finger, M.; Finger, M. [Charles University, Prague (Czech Republic); JINR, Dubna (Russian Federation); Gayde, J.Ch. [CERN, European Organization for Nuclear Research, Geneva (Switzerland); Giorgi, M. [INFN, Sezione di Trieste and University of Trieste, Trieste (Italy); Gobbo, B.; Levorato, S. [INFN, Sezione di Trieste, Trieste (Italy); Maggiora, A. [INFN, Sezione di Torino, Torino (Italy); Martin, A. [INFN, Sezione di Trieste and University of Trieste, Trieste (Italy); Menon, G. [INFN, Sezione di Trieste, Trieste (Italy); Panzieri, D. [INFN, Sezione di Torino and University of East Piemonte, Alessandria (Italy); and others

    2014-12-01

    The gaseous COMPASS RICH-1 detector uses two spherical mirror surfaces, segmented into 116 individual mirrors, to focus the Cherenkov photons onto the detector plane. Any mirror misalignment directly affects the detector resolution. The on-line Continuous Line Alignment and Monitoring (CLAM) photogrammetry-based method has been implemented to measure the alignment of individual mirrors which can be characterized by the center of curvature. The mirror wall reflects a regular grid of retroreflective strips placed inside the detector vessel. Then, the position of each mirror is determined from the image of the grid reflection. The images are collected by four cameras. Any small mirror misalignment results in changes of the grid lines’ positions in the image. The accuracy limits of the CLAM method were checked by laser interferometry and are below 0.1 mrad.

  12. Boosted protease inhibitor monotherapy versus boosted protease inhibitor plus lamivudine dual therapy as second-line maintenance treatment for HIV-1-infected patients in sub-Saharan Africa (ANRS12 286/MOBIDIP): a multicentre, randomised, parallel, open-label, superiority trial.

    Science.gov (United States)

    Ciaffi, Laura; Koulla-Shiro, Sinata; Sawadogo, Adrien Bruno; Ndour, Cheik Tidiane; Eymard-Duvernay, Sabrina; Mbouyap, Pretty Rosereine; Ayangma, Liliane; Zoungrana, Jacques; Gueye, Ndeye Fatou Ngom; Diallo, Mohamadou; Izard, Suzanne; Bado, Guillaume; Kane, Coumba Toure; Aghokeng, Avelin Fobang; Peeters, Martine; Girard, Pierre Marie; Le Moing, Vincent; Reynes, Jacques; Delaporte, Eric

    2017-09-01

    Despite satisfactory efficacy of WHO-recommended second-line antiretroviral treatment for patients with HIV in low-income countries, the need for simplified, low-cost, and less-toxic maintenance strategies remains high. We compared boosted protease inhibitor monotherapy with dual therapy with boosted protease inhibitor plus lamivudine in patients on second-line antiretrovial therapy (ART). We did a multicentre, randomised, parallel, open-label, superiority, trial in the HIV services of five hospitals in sub-Saharan Africa (Yaoundé, Cameroon; Dakar, Senegal; and Bobo Dioulasso, Burkina Faso). We recruited patients from the long-term, post-trial cohort of the ANRS 12169/2LADY study that compared the efficacy of three second-line combinations based on boosted protease inhibitors. Participants for our study were HIV-1 infected with multiple mutations including M184V, at first-line failure, aged 18 years and older, on boosted protease inhibitor plus two nucleoside reverse transcriptase inhibitors (NRTI) for at least 48 weeks with at least 48 weeks follow-up in the 2LADY trial, with two viral load measurements of less than 200 copies per mL in the previous 6 months, CD4 counts of more than 100 cells per μL, adherence of at least 90%, and no change to ART in the past 3 months. We randomly assigned participants (1:1) to receive either monotherapy with their boosted protease inhibitor (once-daily darunavir 800 mg [two 400 mg tablets] boosted with ritonavir 100 mg [one tablet] or coformulation of lopinavir 200 mg with ritonavir 50 mg [two tablets taken twice per day]) or to boosted protease inhibitor plus once-daily lamivudine 300 mg (one 300 mg tablet or two 150 mg tablets). Computer-generated randomisation was stratified by study site and viral load at screening (treatment allocation was not masked from clinicians or patients]. Patients had follow-up visits at weeks 4 and 12, and every 3 months until 96 weeks; if viral load exceeded 500 copies per mL at any visit, NRTI

  13. Replacing fuel alignment in Germany

    International Nuclear Information System (INIS)

    Poetz, F.; Kalthoff, W.

    1991-01-01

    Up to the end of 1989 varying numbers of broken fuel alignment pins were detected in several German PWRs (80 broken pins in all). The distribution of these broken pins over the core cross-section was more or less random. The problem was due to the stress corrosion cracking of the pin material and was restricted to individual pins. It was concluded that all fuel alignment pins made of Inconel X-750 should be replaced. The development of a new pin, more resistant to intergranular stress corrosion, and the replacement technique are outlined. (author)

  14. Measurements of magnetic field alignment

    International Nuclear Information System (INIS)

    Kuchnir, M.; Schmidt, E.E.

    1987-01-01

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs

  15. XUV ionization of aligned molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kelkensberg, F.; Siu, W.; Gademann, G. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Rouzee, A.; Vrakking, M. J. J. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Max-Born-Institut, Max-Born Strasse 2A, D-12489 Berlin (Germany); Johnsson, P. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Department of Physics, Lund University, Post Office Box 118, SE-221 00 Lund (Sweden); Lucchini, M. [Department of Physics, Politecnico di Milano, Istituto di Fotonica e Nanotecnologie CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Lucchese, R. R. [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States)

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  16. Automatic alignment of radionuclide images

    International Nuclear Information System (INIS)

    Barber, D.C.

    1982-01-01

    The variability of the position, dimensions and orientation of a radionuclide image within the field of view of a gamma camera hampers attempts to analyse the image numerically. This paper describes a method of using a set of training images of a particular type, in this case right lateral brain images, to define the likely variations in the position, dimensions and orientation for that type of image and to provide alignment data for a program that automatically aligns new images of the specified type to a standard position, size and orientation. Examples are given of the use of this method on three types of radionuclide image. (author)

  17. XUV ionization of aligned molecules

    International Nuclear Information System (INIS)

    Kelkensberg, F.; Siu, W.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.

    2011-01-01

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO 2 molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  18. Helium transfer line installation details.

    CERN Multimedia

    G. Perinic

    2007-01-01

    A particularity of the 32 m long four in one helium transfer line in between the cold box in USC55 and the cavern UX5 is the fact that the transfer line passes through a hole in the crane rail support beam. In order to ensure the alignment of the suspension rail in the interconnecting tunnel with the hole in the rail support as well as the connection points at both ends required precise measurements of the given geometries as well as the installation of a temporary target for the verification of the theoretical predictions.

  19. PARALLEL IMPORT: REALITY FOR RUSSIA

    Directory of Open Access Journals (Sweden)

    Т. А. Сухопарова

    2014-01-01

    Full Text Available Problem of parallel import is urgent question at now. Parallel import legalization in Russia is expedient. Such statement based on opposite experts opinion analysis. At the same time it’s necessary to negative consequences consider of this decision and to apply remedies to its minimization.Purchase on Elibrary.ru > Buy now

  20. Theoretical and practical feasibility demonstration of a micrometric remotely controlled pre-alignment system for the CLIC linear collider

    CERN Document Server

    Mainaud Durand, H; Chritin, N; Griffet, S; Kemppinen, J; Sosin, M; Touze, T

    2011-01-01

    The active pre-alignment of the Compact Linear Collider (CLIC) is one of the key points of the project: the components must be pre-aligned w.r.t. a straight line within a few microns over a sliding window of 200 m, along the two linacs of 20 km each. The proposed solution consists of stretched wires of more than 200 m, overlapping over half of their length, which will be the reference of alignment. Wire Positioning Sensors (WPS), coupled to the supports to be pre-aligned, will perform precise and accurate measurements within a few microns w.r.t. these wires. A micrometric fiducialisation of the components and a micrometric alignment of the components on common supports will make the strategy of pre-alignment complete. In this paper, the global strategy of active pre-alignment is detailed and illustrated by the latest results demonstrating the feasibility of the proposed solution.

  1. Design and Test of Object Aligning Grippers for Industrial Applications

    DEFF Research Database (Denmark)

    Ellekilde, Lars-Peter; Petersen, Henrik Gordon

    2006-01-01

    In this paper we will present a new concept for gripping objects in industrial applications. We assume that a priori, the object pose is only known with a relative low accuracy. Despite this, our method can lead to high accuracy gripping suitable for e.g. industrial assembly. Our concept...... is to augment a simple parallel gripper by mounting a set of object speci?c jaws. Given the right shapes these jaws enable the gripper to automatically align the object, and thereby compensate for errors in the original object pose estimation. We will introduce a couple of automatic and semi-automatic design...

  2. The Galley Parallel File System

    Science.gov (United States)

    Nieuwejaar, Nils; Kotz, David

    1996-01-01

    Most current multiprocessor file systems are designed to use multiple disks in parallel, using the high aggregate bandwidth to meet the growing I/0 requirements of parallel scientific applications. Many multiprocessor file systems provide applications with a conventional Unix-like interface, allowing the application to access multiple disks transparently. This interface conceals the parallelism within the file system, increasing the ease of programmability, but making it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. In addition to providing an insufficient interface, most current multiprocessor file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic scientific multiprocessor workloads. We discuss Galley's file structure and application interface, as well as the performance advantages offered by that interface.

  3. Parallelization of the FLAPW method

    International Nuclear Information System (INIS)

    Canning, A.; Mannstadt, W.; Freeman, A.J.

    1999-01-01

    The FLAPW (full-potential linearized-augmented plane-wave) method is one of the most accurate first-principles methods for determining electronic and magnetic properties of crystals and surfaces. Until the present work, the FLAPW method has been limited to systems of less than about one hundred atoms due to a lack of an efficient parallel implementation to exploit the power and memory of parallel computers. In this work we present an efficient parallelization of the method by division among the processors of the plane-wave components for each state. The code is also optimized for RISC (reduced instruction set computer) architectures, such as those found on most parallel computers, making full use of BLAS (basic linear algebra subprograms) wherever possible. Scaling results are presented for systems of up to 686 silicon atoms and 343 palladium atoms per unit cell, running on up to 512 processors on a CRAY T3E parallel computer

  4. Parallelization of the FLAPW method

    Science.gov (United States)

    Canning, A.; Mannstadt, W.; Freeman, A. J.

    2000-08-01

    The FLAPW (full-potential linearized-augmented plane-wave) method is one of the most accurate first-principles methods for determining structural, electronic and magnetic properties of crystals and surfaces. Until the present work, the FLAPW method has been limited to systems of less than about a hundred atoms due to the lack of an efficient parallel implementation to exploit the power and memory of parallel computers. In this work, we present an efficient parallelization of the method by division among the processors of the plane-wave components for each state. The code is also optimized for RISC (reduced instruction set computer) architectures, such as those found on most parallel computers, making full use of BLAS (basic linear algebra subprograms) wherever possible. Scaling results are presented for systems of up to 686 silicon atoms and 343 palladium atoms per unit cell, running on up to 512 processors on a CRAY T3E parallel supercomputer.

  5. Precision crystal alignment for high-resolution electron microscope imaging

    International Nuclear Information System (INIS)

    Wood, G.J.; Beeching, M.J.

    1990-01-01

    One of the more difficult tasks involved in obtaining quality high-resolution electron micrographs is the precise alignment of a specimen into the required zone. The current accepted procedure, which involves changing to diffraction mode and searching for symmetric point diffraction pattern, is insensitive to small amounts of misalignment and at best qualitative. On-line analysis of the fourier space representation of the image, both for determining and correcting crystal tilt, is investigated. 8 refs., 42 figs

  6. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications.

    Science.gov (United States)

    Zhang, Yan; Xie, Mengying; Roscow, James; Bao, Yinxiang; Zhou, Kechao; Zhang, Dou; Bowen, Chris R

    2017-04-14

    This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and pyroelectric materials for improved energy harvesting performance. Porous lead zirconate (PZT) ceramics with aligned pore channels and varying fractions of porosity were manufactured in a water-based suspension using freeze-casting. The aligned porous PZT ceramics were characterized in detail for both piezoelectric and pyroelectric properties and their energy harvesting performance figures of merit were assessed parallel and perpendicular to the freezing direction. As a result of the introduction of porosity into the ceramic microstructure, high piezoelectric and pyroelectric harvesting figures of merits were achieved for porous freeze-cast PZT compared to dense PZT due to the reduced permittivity and volume specific heat capacity. Experimental results were compared to parallel and series analytical models with good agreement and the PZT with porosity aligned parallel to the freezing direction exhibited the highest piezoelectric and pyroelectric harvesting response; this was a result of the enhanced interconnectivity of the ferroelectric material along the poling direction and reduced fraction of unpoled material that leads to a higher polarization. A complete thermal energy harvesting system, composed of a parallel-aligned PZT harvester element and an AC/DC converter, was successfully demonstrated by charging a storage capacitor. The maximum energy density generated by the 60 vol% porous parallel-connected PZT when subjected to thermal oscillations was 1653 μJ cm -3 , which was 374% higher than that of the dense PZT with an energy density of 446 μJ cm -3 . The results are beneficial for the design and manufacture of high performance porous pyroelectric and piezoelectric materials in devices for energy harvesting and sensor applications.

  7. Progressive multiple sequence alignments from triplets

    Directory of Open Access Journals (Sweden)

    Stadler Peter F

    2007-07-01

    Full Text Available Abstract Background The quality of progressive sequence alignments strongly depends on the accuracy of the individual pairwise alignment steps since gaps that are introduced at one step cannot be removed at later aggregation steps. Adjacent insertions and deletions necessarily appear in arbitrary order in pairwise alignments and hence form an unavoidable source of errors. Research Here we present a modified variant of progressive sequence alignments that addresses both issues. Instead of pairwise alignments we use exact dynamic programming to align sequence or profile triples. This avoids a large fractions of the ambiguities arising in pairwise alignments. In the subsequent aggregation steps we follow the logic of the Neighbor-Net algorithm, which constructs a phylogenetic network by step-wisely replacing triples by pairs instead of combining pairs to singletons. To this end the three-way alignments are subdivided into two partial alignments, at which stage all-gap columns are naturally removed. This alleviates the "once a gap, always a gap" problem of progressive alignment procedures. Conclusion The three-way Neighbor-Net based alignment program aln3nn is shown to compare favorably on both protein sequences and nucleic acids sequences to other progressive alignment tools. In the latter case one easily can include scoring terms that consider secondary structure features. Overall, the quality of resulting alignments in general exceeds that of clustalw or other multiple alignments tools even though our software does not included heuristics for context dependent (mismatch scores.

  8. 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication

    KAUST Repository

    Sun, Xiaobin; Cai, Wenqi; Alkhazragi, Omar; Ooi, Ee-Ning; He, Hongsen; Chaaban, Anas; Shen, Chao; Oubei, Hassan M.; Khan, Mohammed Zahed Mustafa; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2018-01-01

    For circumventing the alignment requirement of line-of-sight (LOS) underwater wireless optical communication (UWOC), we demonstrated a non-line-of-sight (NLOS) UWOC link adequately enhanced using ultraviolet (UV) 375-nm laser. Path loss was chosen

  9. The aligned K-center problem

    KAUST Repository

    Braß, Peter

    2011-04-01

    In this paper we study several instances of the aligned k-center problem where the goal is, given a set of points S in the plane and a parameter k ≥ 1, to find k disks with centers on a line ℓ such that their union covers S and the maximum radius of the disks is minimized. This problem is a constrained version of the well-known k-center problem in which the centers are constrained to lie in a particular region such as a segment, a line, or a polygon. We first consider the simplest version of the problem where the line ℓ is given in advance; we can solve this problem in time O(n log2 n). In the case where only the direction of ℓ is fixed, we give an O(n2 log 2 n)-time algorithm. When ℓ is an arbitrary line, we give a randomized algorithm with expected running time O(n4 log2 n). Then we present (1+ε)-approximation algorithms for these three problems. When we denote T(k, ε) = (k/ε2+(k/ε) log k) log(1/ε), these algorithms run in O(n log k + T(k, ε)) time, O(n log k + T(k, ε)/ε) time, and O(n log k + T(k, ε)/ε2) time, respectively. For k = O(n1/3/log n), we also give randomized algorithms with expected running times O(n + (k/ε2) log(1/ε)), O(n+(k/ε3) log(1/ε)), and O(n + (k/ε4) log(1/ε)), respectively. © 2011 World Scientific Publishing Company.

  10. Alignment of diabetic feet images

    NARCIS (Netherlands)

    Klein, Almar; van der Heijden, Ferdinand; Slump, Cornelis H.; Uyl, M.J.; Philips, W.

    2007-01-01

    This paper addresses the problem of aligning the images of feet taken at different instances in time. We propose to use SIFT keypoints to find the geometric deformation between two photo’s. We then have a set of landmarks for each image. By finding the corresponding landmarks (i.e. matching the

  11. Aligning Assessments for COSMA Accreditation

    Science.gov (United States)

    Laird, Curt; Johnson, Dennis A.; Alderman, Heather

    2015-01-01

    Many higher education sport management programs are currently in the process of seeking accreditation from the Commission on Sport Management Accreditation (COSMA). This article provides a best-practice method for aligning student learning outcomes with a sport management program's mission and goals. Formative and summative assessment procedures…

  12. Enhancing Teaching through Constructive Alignment.

    Science.gov (United States)

    Biggs, John

    1996-01-01

    An approach to college-level instructional design that incorporates the principles of constructivism, termed "constructive alignment," is described. The process is then illustrated with reference to a professional development unit in educational psychology for teachers, but the model is viewed as generalizable to most units or programs in higher…

  13. Global alignment algorithms implementations | Fatumo ...

    African Journals Online (AJOL)

    In this paper, we implemented the two routes for sequence comparison, that is; the dotplot and Needleman-wunsch algorithm for global sequence alignment. Our algorithms were implemented in python programming language and were tested on Linux platform 1.60GHz, 512 MB of RAM SUSE 9.2 and 10.1 versions.

  14. Aligned Layers of Silver Nano-Fibers

    Directory of Open Access Journals (Sweden)

    Andrii B. Golovin

    2012-02-01

    Full Text Available We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

  15. Analysis of cervical and global spine alignment under Roussouly sagittal classification in Chinese cervical spondylotic patients and asymptomatic subjects.

    Science.gov (United States)

    Yu, Miao; Zhao, Wen-Kui; Li, Mai; Wang, Shao-Bo; Sun, Yu; Jiang, Liang; Wei, Feng; Liu, Xiao-Guang; Zeng, Lin; Liu, Zhong-Jun

    2015-06-01

    To explore the relationship between cervical spine and the global spine alignment and to postulate the hypotheses that a lordotic alignment of cervical spine is not the only standard to identify asymptomatic subjects, and the degenerative modification of cervical curves depends primarily on their spinal-pelvic alignment. A cohort of 120 cases of Chinese asymptomatic subjects and a cohort of 121 cases of Chinese cervical spondylotic patients were recruited prospectively from 2011 to 2012. Roussouly Classification was utilized to categorize all subjects and patients according to their thoracic spine, lumbar spine and pelvic alignment. The cervical alignments were evaluated as lordosis, straight, sigmoid or kyphosis. Through the lateral X-ray images of neutral cervical and global spine, a number of parameters were measured and analyzed, including pelvic incidence, pelvic tilt, sacral slope, thoracic kyphosis (TK), lumbar lordosis, global cervical angles (angles between two lines parallel with posterior walls of C2 and C7), practical cervical angles (the addition of different cervical end plate angles from C3 to C7, and inter-vertebral angles from C23 to C67), T1 slope, spinal sacral angles (SSA), Hip to C7/Hip to Sacrum and C0-C2 angle. The percentages of cervical lordosis were 28.3% and 36.4% in asymptomatic and spondylotic group, respectively. The cervical spine alignments correlated with Roussouly types of global spine alignment in both asymptomatic and cervical spondylotic group (P inter-vertebral angle in Roussouly Type 2 at C4-5 and C5-6 levels (P = 0.04 and 0.04, respectively), and in Roussouly Type 3 at C6-7 level (P = 0.01). The SSA showed significant difference between Roussouly Type 2 and 4 in asymptomatic subjects (P = 0.00), and between Type 1 and 3, 1 and 4, 2 and 3, 2 and 4 in cervical spondylotic patients (P = 0.01, 0.02, 0.00 and 0.01, respectively). The T1 slope was significantly different among Roussouly types (P = 0.04) with its largest value in

  16. The development of alignment turning system for precision len cells

    Science.gov (United States)

    Huang, Chien-Yao; Ho, Cheng-Fang; Wang, Jung-Hsing; Chung, Chien-Kai; Chen, Jun-Cheng; Chang, Keng-Shou; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi

    2017-08-01

    In general, the drop-in and cell-mounted assembly are used for standard and high performance optical system respectively. The optical performance is limited by the residual centration error and position accuracy of the conventional assembly. Recently, the poker chip assembly with high precision lens barrels that can overcome the limitation of conventional assembly is widely applied to ultra-high performance optical system. ITRC also develops the poker chip assembly solution for high numerical aperture objective lenses and lithography projection lenses. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module including a non-contact displacement sensor and an autocollimator can measure centration errors of the top and the bottom surface of a lens respectively. The alignment module comprising tilt and translation stages can align the optical axis of the lens to the rotating axis of the vertical lathe. The key specifications of the ATS are maximum lens diameter, 400mm, and radial and axial runout of the rotary table < 2 μm. The cutting performances of the ATS are surface roughness Ra < 1 μm, flatness < 2 μm, and parallelism < 5 μm. After measurement, alignment and turning processes on our ATS, the centration error of a lens cell with 200mm in diameter can be controlled in 10 arcsec. This paper also presents the thermal expansion of the hydrostatic rotating table. A poker chip assembly lens cell with three sub-cells is accomplished with average transmission centration error in 12.45 arcsec by fresh technicians. The results show that ATS can achieve high assembly efficiency for precision optical systems.

  17. Is Monte Carlo embarrassingly parallel?

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Delft Nuclear Consultancy, IJsselzoom 2, 2902 LB Capelle aan den IJssel (Netherlands)

    2012-07-01

    Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)

  18. Is Monte Carlo embarrassingly parallel?

    International Nuclear Information System (INIS)

    Hoogenboom, J. E.

    2012-01-01

    Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)

  19. Parallel integer sorting with medium and fine-scale parallelism

    Science.gov (United States)

    Dagum, Leonardo

    1993-01-01

    Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.

  20. Template based parallel checkpointing in a massively parallel computer system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Inglett, Todd Alan [Rochester, MN

    2009-01-13

    A method and apparatus for a template based parallel checkpoint save for a massively parallel super computer system using a parallel variation of the rsync protocol, and network broadcast. In preferred embodiments, the checkpoint data for each node is compared to a template checkpoint file that resides in the storage and that was previously produced. Embodiments herein greatly decrease the amount of data that must be transmitted and stored for faster checkpointing and increased efficiency of the computer system. Embodiments are directed to a parallel computer system with nodes arranged in a cluster with a high speed interconnect that can perform broadcast communication. The checkpoint contains a set of actual small data blocks with their corresponding checksums from all nodes in the system. The data blocks may be compressed using conventional non-lossy data compression algorithms to further reduce the overall checkpoint size.

  1. Work-Efficient Parallel Skyline Computation for the GPU

    DEFF Research Database (Denmark)

    Bøgh, Kenneth Sejdenfaden; Chester, Sean; Assent, Ira

    2015-01-01

    offers the potential for parallelizing skyline computation across thousands of cores. However, attempts to port skyline algorithms to the GPU have prioritized throughput and failed to outperform sequential algorithms. In this paper, we introduce a new skyline algorithm, designed for the GPU, that uses...... a global, static partitioning scheme. With the partitioning, we can permit controlled branching to exploit transitive relationships and avoid most point-to-point comparisons. The result is a non-traditional GPU algorithm, SkyAlign, that prioritizes work-effciency and respectable throughput, rather than...

  2. Parallel education: what is it?

    OpenAIRE

    Amos, Michelle Peta

    2017-01-01

    In the history of education it has long been discussed that single-sex and coeducation are the two models of education present in schools. With the introduction of parallel schools over the last 15 years, there has been very little research into this 'new model'. Many people do not understand what it means for a school to be parallel or they confuse a parallel model with co-education, due to the presence of both boys and girls within the one institution. Therefore, the main obj...

  3. Balanced, parallel operation of flashlamps

    International Nuclear Information System (INIS)

    Carder, B.M.; Merritt, B.T.

    1979-01-01

    A new energy store, the Compensated Pulsed Alternator (CPA), promises to be a cost effective substitute for capacitors to drive flashlamps that pump large Nd:glass lasers. Because the CPA is large and discrete, it will be necessary that it drive many parallel flashlamp circuits, presenting a problem in equal current distribution. Current division to +- 20% between parallel flashlamps has been achieved, but this is marginal for laser pumping. A method is presented here that provides equal current sharing to about 1%, and it includes fused protection against short circuit faults. The method was tested with eight parallel circuits, including both open-circuit and short-circuit fault tests

  4. Do quasar ley lines really exist

    International Nuclear Information System (INIS)

    Webster, A.

    1982-01-01

    The hypothesis that the distribution of the quasars on the celestial sphere contains an unexpectedly large number of well-aligned triples is tested by applying, to the Cerro Tololo objective-prism sample, a shape-statistic which was originally developed to investigate whether neolithic standing stones were deliberately sited on ley lines. It is found that alignment in triples is not a conspicuous feature of the quasars in this sample. The sample does contain one well aligned triple whose properties resemble those of two triples found earlier in a different field by earlier authors, but the probability of this being a chance alignment is not low. The same authors have noted a total of four well-collimated triples which they consider remarkable, but an approximate probability calculation based on the shape-statistic indicates that they need not have a low probability of occurring by chance. (author)

  5. Angle alignment evokes perceived depth and illusory surfaces.

    Science.gov (United States)

    Shapley, Robert; Maertens, Marianne

    2008-01-01

    There is a distinct visual process that triggers the perception of illusory surfaces and contours along the intersections of aligned, zigzag line patterns. Such illusory contours and surfaces are qualitatively different from illusory contours of the Kanizsa type. The illusory contours and surfaces in this case are not the product of occlusion and do not imply occlusion of one surface by another. Rather, the aligned angles in the patterns are combined by the visual system into the perception of a fold or a 3-D corner, as of stairs on a staircase or a wall ending on a floor. The depth impression is ambiguous and reversible like the Necker cube. Such patterns were used by American Indian artists of the Akimel O'odham (Pima) tribe in basketry, and also by modern European and American artists like Josef Albers, Bridget Riley, Victor Vasarely, and Frank Stella. Our research aims to find out what manipulations of the visual image affect perceived depth in such patterns in order to learn about the perceptual mechanisms. Using paired comparisons, we find that human observers perceive depth in such patterns if, and only if, lines in adjacent regions of the patterns join to form angles, and also if, and only if, the angles are aligned precisely to be consistent with a fold or 3-D corner. The amount of perceived depth is graded, depending on the steepness and the density of angles in the aligned-angle pattern. The required precision of the alignment implies that early retinotopic visual cortical areas may be involved in this perceptual behavior, but the linkage of form with perceived depth suggests involvement of higher cortical areas as well.

  6. Ancestral sequence alignment under optimal conditions

    Directory of Open Access Journals (Sweden)

    Brown Daniel G

    2005-11-01

    Full Text Available Abstract Background Multiple genome alignment is an important problem in bioinformatics. An important subproblem used by many multiple alignment approaches is that of aligning two multiple alignments. Many popular alignment algorithms for DNA use the sum-of-pairs heuristic, where the score of a multiple alignment is the sum of its induced pairwise alignment scores. However, the biological meaning of the sum-of-pairs of pairs heuristic is not obvious. Additionally, many algorithms based on the sum-of-pairs heuristic are complicated and slow, compared to pairwise alignment algorithms. An alternative approach to aligning alignments is to first infer ancestral sequences for each alignment, and then align the two ancestral sequences. In addition to being fast, this method has a clear biological basis that takes into account the evolution implied by an underlying phylogenetic tree. In this study we explore the accuracy of aligning alignments by ancestral sequence alignment. We examine the use of both maximum likelihood and parsimony to infer ancestral sequences. Additionally, we investigate the effect on accuracy of allowing ambiguity in our ancestral sequences. Results We use synthetic sequence data that we generate by simulating evolution on a phylogenetic tree. We use two different types of phylogenetic trees: trees with a period of rapid growth followed by a period of slow growth, and trees with a period of slow growth followed by a period of rapid growth. We examine the alignment accuracy of four ancestral sequence reconstruction and alignment methods: parsimony, maximum likelihood, ambiguous parsimony, and ambiguous maximum likelihood. Additionally, we compare against the alignment accuracy of two sum-of-pairs algorithms: ClustalW and the heuristic of Ma, Zhang, and Wang. Conclusion We find that allowing ambiguity in ancestral sequences does not lead to better multiple alignments. Regardless of whether we use parsimony or maximum likelihood, the

  7. Field-aligned currents during northward IMF: Morphology and causes

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Rastätter, L.

    2005-01-01

    We present the results of a global MHD simulation of solar wind magnetosphere interaction during northward IMF. In particular, we emphasize the effect of the IMF B y component on the reconnection geometry and the mapping along field lines to the polar ionosphere, through field-aligned currents. We...... find that the existence and geometry of the polar cap is closely connected to the IMF B y component. During strictly northward IMF the simulated magnetosphere can remain essentially closed because the solar wind field lines reconnect in both hemispheres, thereby creating newly reconnected closed...... exist both on open and closed field lines and are created by the shear of the newly reconnected field lines against the mantle field as they are convected tailward by the solar wind. When the IMF rotates from northward toward east, the magnetospheric mapping regions of the NBZ currents likewise rotates...

  8. Revisiting the phylogeny of Zoanthidea (Cnidaria: Anthozoa): Staggered alignment of hypervariable sequences improves species tree inference.

    Science.gov (United States)

    Swain, Timothy D

    2018-01-01

    The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. GraphAlignment: Bayesian pairwise alignment of biological networks

    Czech Academy of Sciences Publication Activity Database

    Kolář, Michal; Meier, J.; Mustonen, V.; Lässig, M.; Berg, J.

    2012-01-01

    Roč. 6, November 21 (2012) ISSN 1752-0509 Grant - others:Deutsche Forschungsgemeinschaft(DE) SFB 680; Deutsche Forschungsgemeinschaft(DE) SFB-TR12; Deutsche Forschungsgemeinschaft(DE) BE 2478/2-1 Institutional research plan: CEZ:AV0Z50520514 Keywords : Graph alignment * Biological networks * Parameter estimation * Bioconductor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.982, year: 2012

  10. High Line

    DEFF Research Database (Denmark)

    Kiib, Hans

    2015-01-01

    At just over 10 meters above street level, the High Line extends three kilometers through three districts of Southwestern Manhattan in New York. It consists of simple steel construction, and previously served as an elevated rail line connection between Penn Station on 34th Street and the many....... The High Line project has been carried out as part of an open conversion strategy. The result is a remarkable urban architectural project, which works as a catalyst for the urban development of Western Manhattan. The greater project includes the restoration and reuse of many old industrial buildings...

  11. Nanoscratch technique for aligning multiwalled carbon nanotubes ...

    Indian Academy of Sciences (India)

    Carbon nanotube; arc discharge; characterization; alignment; nanoscratch. 1. Introduction ... During arc discharge, when the gap between the electrodes is ∼ 1 mm, ..... increase in the D band intensity in the aligned region may not be possibly ...

  12. Workspace Analysis for Parallel Robot

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2013-05-01

    Full Text Available As a completely new-type of robot, the parallel robot possesses a lot of advantages that the serial robot does not, such as high rigidity, great load-carrying capacity, small error, high precision, small self-weight/load ratio, good dynamic behavior and easy control, hence its range is extended in using domain. In order to find workspace of parallel mechanism, the numerical boundary-searching algorithm based on the reverse solution of kinematics and limitation of link length has been introduced. This paper analyses position workspace, orientation workspace of parallel robot of the six degrees of freedom. The result shows: It is a main means to increase and decrease its workspace to change the length of branch of parallel mechanism; The radius of the movement platform has no effect on the size of workspace, but will change position of workspace.

  13. "Feeling" Series and Parallel Resistances.

    Science.gov (United States)

    Morse, Robert A.

    1993-01-01

    Equipped with drinking straws and stirring straws, a teacher can help students understand how resistances in electric circuits combine in series and in parallel. Follow-up suggestions are provided. (ZWH)

  14. Parallel encoders for pixel detectors

    International Nuclear Information System (INIS)

    Nikityuk, N.M.

    1991-01-01

    A new method of fast encoding and determining the multiplicity and coordinates of fired pixels is described. A specific example construction of parallel encodes and MCC for n=49 and t=2 is given. 16 refs.; 6 figs.; 2 tabs

  15. Massively Parallel Finite Element Programming

    KAUST Repository

    Heister, Timo

    2010-01-01

    Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

  16. Event monitoring of parallel computations

    Directory of Open Access Journals (Sweden)

    Gruzlikov Alexander M.

    2015-06-01

    Full Text Available The paper considers the monitoring of parallel computations for detection of abnormal events. It is assumed that computations are organized according to an event model, and monitoring is based on specific test sequences

  17. Massively Parallel Finite Element Programming

    KAUST Repository

    Heister, Timo; Kronbichler, Martin; Bangerth, Wolfgang

    2010-01-01

    Today's large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

  18. The STAPL Parallel Graph Library

    KAUST Repository

    Harshvardhan,

    2013-01-01

    This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable distributed graph container and a collection of commonly used parallel graph algorithms. The library introduces pGraph pViews that separate algorithm design from the container implementation. It supports three graph processing algorithmic paradigms, level-synchronous, asynchronous and coarse-grained, and provides common graph algorithms based on them. Experimental results demonstrate improved scalability in performance and data size over existing graph libraries on more than 16,000 cores and on internet-scale graphs containing over 16 billion vertices and 250 billion edges. © Springer-Verlag Berlin Heidelberg 2013.

  19. Canyval-x: Cubesat Astronomy by NASA and Yonsei Using Virtual Telescope Alignment Experiment

    Science.gov (United States)

    Shah, Neerav

    2016-01-01

    CANYVAL-X is a technology demonstration CubeSat mission with a primary objective of validating technologies that allow two spacecraft to fly in formation along an inertial line-of-sight (i.e., align two spacecraft to an inertial source). Demonstration of precision dual-spacecraft alignment achieving fine angular precision enables a variety of cutting-edge heliophysics and astrophysics science.

  20. Alignment between galaxies and large-scale structure

    International Nuclear Information System (INIS)

    Faltenbacher, A.; Li Cheng; White, Simon D. M.; Jing, Yi-Peng; Mao Shude; Wang Jie

    2009-01-01

    Based on the Sloan Digital Sky Survey DR6 (SDSS) and the Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(2θ)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L ∼ * ) galaxies out to projected separations of 60 h- 1 Mpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of ∼ 25 deg. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for central galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference

  1. Parallel hole collimator acceptance tests for SPECT and planar studies

    International Nuclear Information System (INIS)

    Babicheva, R.R.; Bennie, D.N.; Collins, L.T.; Gruenwald, S.M.

    1998-01-01

    Full text: Different kinds of collimator damage can occur either during shipping or from regular use. Imperfections of construction along the strips or their connections give rise to nonperpendicular hole alignments to the crystal face and can produce potential problems such as ring artifacts and image degradation. Gamma camera collimator hole alignments and integrity were compared in four parallel hole high resolution collimators-two new cast and two used foil collimators, one with damage to the protective surface. [1] The point source flood image of the defective collimator was non-circular as were the images of cast collimators. The image of new foil collimator was circular. [2] High count sheet flood did not show any imperfections. [3] Bone mineral densitometer was used to perform collimated X-ray beam. The collimator was placed on the scanning bed with an X-ray cassette placed directly above it. The damaged area was well demonstrated. [4] The COR offset test was taken at two extreme radii. The offset value with the defective collimator is increased by 0.53 pixel or 129% with increase of COR from radius 14 cm to 28cm. [5] The collimator hole alignment test involves performing multiple measurements of COR along the length of the collimator, and checking for variations in COR with both position of source and angle of rotation. The maximum variation in COR of the defective collimator hole alignment was 1.13 mm. Collimators require testing when new and at regular intervals, or following damage. The point source test can be used for foil collimators. The most sensitive tests were collimated X-ray source, COR offset test and collimator hole alignment

  2. Writing parallel programs that work

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Serial algorithms typically run inefficiently on parallel machines. This may sound like an obvious statement, but it is the root cause of why parallel programming is considered to be difficult. The current state of the computer industry is still that almost all programs in existence are serial. This talk will describe the techniques used in the Intel Parallel Studio to provide a developer with the tools necessary to understand the behaviors and limitations of the existing serial programs. Once the limitations are known the developer can refactor the algorithms and reanalyze the resulting programs with the tools in the Intel Parallel Studio to create parallel programs that work. About the speaker Paul Petersen is a Sr. Principal Engineer in the Software and Solutions Group (SSG) at Intel. He received a Ph.D. degree in Computer Science from the University of Illinois in 1993. After UIUC, he was employed at Kuck and Associates, Inc. (KAI) working on auto-parallelizing compiler (KAP), and was involved in th...

  3. Exploiting Symmetry on Parallel Architectures.

    Science.gov (United States)

    Stiller, Lewis Benjamin

    1995-01-01

    This thesis describes techniques for the design of parallel programs that solve well-structured problems with inherent symmetry. Part I demonstrates the reduction of such problems to generalized matrix multiplication by a group-equivariant matrix. Fast techniques for this multiplication are described, including factorization, orbit decomposition, and Fourier transforms over finite groups. Our algorithms entail interaction between two symmetry groups: one arising at the software level from the problem's symmetry and the other arising at the hardware level from the processors' communication network. Part II illustrates the applicability of our symmetry -exploitation techniques by presenting a series of case studies of the design and implementation of parallel programs. First, a parallel program that solves chess endgames by factorization of an associated dihedral group-equivariant matrix is described. This code runs faster than previous serial programs, and discovered it a number of results. Second, parallel algorithms for Fourier transforms for finite groups are developed, and preliminary parallel implementations for group transforms of dihedral and of symmetric groups are described. Applications in learning, vision, pattern recognition, and statistics are proposed. Third, parallel implementations solving several computational science problems are described, including the direct n-body problem, convolutions arising from molecular biology, and some communication primitives such as broadcast and reduce. Some of our implementations ran orders of magnitude faster than previous techniques, and were used in the investigation of various physical phenomena.

  4. Parallel algorithms for continuum dynamics

    International Nuclear Information System (INIS)

    Hicks, D.L.; Liebrock, L.M.

    1987-01-01

    Simply porting existing parallel programs to a new parallel processor may not achieve the full speedup possible; to achieve the maximum efficiency may require redesigning the parallel algorithms for the specific architecture. The authors discuss here parallel algorithms that were developed first for the HEP processor and then ported to the CRAY X-MP/4, the ELXSI/10, and the Intel iPSC/32. Focus is mainly on the most recent parallel processing results produced, i.e., those on the Intel Hypercube. The applications are simulations of continuum dynamics in which the momentum and stress gradients are important. Examples of these are inertial confinement fusion experiments, severe breaks in the coolant system of a reactor, weapons physics, shock-wave physics. Speedup efficiencies on the Intel iPSC Hypercube are very sensitive to the ratio of communication to computation. Great care must be taken in designing algorithms for this machine to avoid global communication. This is much more critical on the iPSC than it was on the three previous parallel processors

  5. World lines.

    OpenAIRE

    Waser Jürgen; Fuchs Raphael; Ribicic Hrvoje; Schindler Benjamin; Blöschl Günther; Gröller Eduard

    2010-01-01

    In this paper we present World Lines as a novel interactive visualization that provides complete control over multiple heterogeneous simulation runs. In many application areas decisions can only be made by exploring alternative scenarios. The goal of the suggested approach is to support users in this decision making process. In this setting the data domain is extended to a set of alternative worlds where only one outcome will actually happen. World Lines integrate simulation visualization and...

  6. Micro-vision servo control of a multi-axis alignment system for optical fiber assembly

    International Nuclear Information System (INIS)

    Chen, Weihai; Yu, Fei; Qu, Jianliang; Chen, Wenjie; Zhang, Jianbin

    2017-01-01

    This paper describes a novel optical fiber assembly system featuring a multi-axis alignment function based on micro-vision feedback control. It consists of an active parallel alignment mechanism, a passive compensation mechanism, a micro-gripper and a micro-vision servo control system. The active parallel alignment part is a parallelogram-based design with remote-center-of-motion (RCM) function to achieve precise rotation without fatal lateral motion. The passive mechanism, with five degrees of freedom (5-DOF), is used to implement passive compensation for multi-axis errors. A specially designed 1-DOF micro-gripper mounted onto the active parallel alignment platform is adopted to grasp and rotate the optical fiber. A micro-vision system equipped with two charge-coupled device (CCD) cameras is introduced to observe the small field of view and obtain multi-axis errors for servo feedback control. The two CCD cameras are installed in an orthogonal arrangement—thus the errors can be easily measured via the captured images. Meanwhile, a series of tracking and measurement algorithms based on specific features of the target objects are developed. Details of the force and displacement sensor information acquisition in the assembly experiment are also provided. An experiment demonstrates the validity of the proposed visual algorithm by achieving the task of eliminating errors and inserting an optical fiber to the U-groove accurately. (paper)

  7. Microwave conductance properties of aligned multiwall carbon nanotube textile sheets

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Brian L. [Univ. of Texas, Dallas, TX (United States); Martinez, Patricia [Univ. of Texas, Dallas, TX (United States); Zakhidov, Anvar A. [Univ. of Texas, Dallas, TX (United States); Shaner, Eric A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Mark [Univ. of Texas, Dallas, TX (United States)

    2015-07-06

    Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, the microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. Finally, this is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.

  8. Assessing strategic alignment to improve IT effectiveness

    NARCIS (Netherlands)

    Smits, M.T.; Fairchild, A.M.; Ribbers, P.M.A.; Milis, K.; van Geel, E.; Markus, M.L.; Hampe, J.F.; Gricar, J.; Pucihar, A.; Lenart, G.

    2009-01-01

    A long running challenge in both large and small organizations has been aligning information systems services with business needs. Good alignment is assumed to lead to good business results, but there is a need for good instruments to assess strategic alignment and business success in practice.

  9. Physician-Hospital Alignment in Orthopedic Surgery.

    Science.gov (United States)

    Bushnell, Brandon D

    2015-09-01

    The concept of "alignment" between physicians and hospitals is a popular buzzword in the age of health care reform. Despite their often tumultuous histories, physicians and hospitals find themselves under increasing pressures to work together toward common goals. However, effective alignment is more than just simple cooperation between parties. The process of achieving alignment does not have simple, universal steps. Alignment will differ based on individual situational factors and the type of specialty involved. Ultimately, however, there are principles that underlie the concept of alignment and should be a part of any physician-hospital alignment efforts. In orthopedic surgery, alignment involves the clinical, administrative, financial, and even personal aspects of a surgeon's practice. It must be based on the principles of financial interest, clinical authority, administrative participation, transparency, focus on the patient, and mutual necessity. Alignment can take on various forms as well, with popular models consisting of shared governance and comanagement, gainsharing, bundled payments, accountable care organizations, and other methods. As regulatory and financial pressures continue to motivate physicians and hospitals to develop alignment relationships, new and innovative methods of alignment will also appear. Existing models will mature and evolve, with individual variability based on local factors. However, certain trends seem to be appearing as time progresses and alignment relationships deepen, including regional and national collaboration, population management, and changes in the legal system. This article explores the history, principles, and specific methods of physician-hospital alignment and its critical importance for the future of health care delivery. Copyright 2015, SLACK Incorporated.

  10. Curricular Alignment: A Re-examination.

    Science.gov (United States)

    Anderson, Lorin W.

    2002-01-01

    Examines key differences among content coverage, opportunity to learn, and curriculum alignment, suggesting that the revised Taxonomy provides a framework for analyzing curriculum alignment and illustrating how the Taxonomy Table can be used to estimate curriculum alignment. The paper notes that the revised Taxonomy enables educators to probe…

  11. Alignment of the VISA Undulator

    International Nuclear Information System (INIS)

    Ruland, Robert E.

    2000-01-01

    As part of the R and D program towards a fourth generation light source, a Self-Amplified Spontaneous Emission (SASE) demonstration is being prepared. The Visible-Infrared SASE Amplifier (VISA) undulator is being installed at Brookhaven National Laboratory. The VISA undulator is an in-vacuum, 4-meter long, 1.8 cm period, pure-permanent magnet device, with a novel, strong focusing, permanent magnet FODO array included within the fixed, 6 mm undulator gap. The undulator is constructed of 99 cm long segments. To attain maximum SASE gain requires establishing overlap of electron and photon beams to within 50 pm rms. This imposes challenging tolerances on mechanical fabrication and magnetic field quality, and necessitates use of laser straightness interferometry for calibration and alignment of the magnetic axes of the undulator segments. This paper describes the magnetic centerline determination, and the fiducialization and alignment processes, which were performed to meet the tolerance goal

  12. Position list word aligned hybrid

    DEFF Research Database (Denmark)

    Deliege, Francois; Pedersen, Torben Bach

    2010-01-01

    Compressed bitmap indexes are increasingly used for efficiently querying very large and complex databases. The Word Aligned Hybrid (WAH) bitmap compression scheme is commonly recognized as the most efficient compression scheme in terms of CPU efficiency. However, WAH compressed bitmaps use a lot...... of storage space. This paper presents the Position List Word Aligned Hybrid (PLWAH) compression scheme that improves significantly over WAH compression by better utilizing the available bits and new CPU instructions. For typical bit distributions, PLWAH compressed bitmaps are often half the size of WAH...... bitmaps and, at the same time, offer an even better CPU efficiency. The results are verified by theoretical estimates and extensive experiments on large amounts of both synthetic and real-world data....

  13. Design of a planar 3-DOF parallel micromanipulator

    International Nuclear Information System (INIS)

    Lee, Jeong Jae; Dong, Yanlu; Jeon, Yong Ho; Lee, Moon Gu

    2013-01-01

    A planar three degree-of-freedom (DOF) parallel manipulator is proposed to be applied for alignment during assembly of microcomponents. It adopts a PRR (prismatic-revolute-revolute) mechanism to meet the requirements of high precision for assembly and robustness against disturbance. The mechanism was designed to have a large workspace and good dexterity because parallel mechanisms usually have a narrow range and singularity of motion compared to serial mechanisms. Inverse kinematics and a simple closed-loop algorithm of the parallel manipulator are presented to control it. Experimental tests have been carried out with high-resolution capacitance sensors to verify the performance of the mechanism. The results of experiments show that the manipulator has a large workspace of ±1.0 mm, ±1.0 mm, and ±10 mrad in the X-, Y-, and θ-directions, respectively. This is a large workspace when considering it adopts a parallel mechanism and has a small size, 100 ´ 100 ´ 100 mm3 . It also has a good precision of 2 μm, 3 μm, and 0.2 mrad, in the X-, Y-, and θ- axes, respectively. These are high resolutions considering the manipulator adopts conventional joints. The manipulator is expected to have good dexterity.

  14. Interest alignment and competitive advantage

    OpenAIRE

    Gottschalg, Oliver; Zollo, Mauricio

    2006-01-01

    This paper articulates a theory of the conditions under which the alignment between individual and collective interests generates sustainable competitive advantage. The theory is based on the influence of tacitness, context-specificity and casual ambiguity in the determinants of different types of motivation (extrinsic, normative intrinsic and hedonic intrinsic), under varying conditions of environmental dynamism. The analysis indicates the need to consider mitivational processes as a complem...

  15. International Business And Aligning CSR

    Directory of Open Access Journals (Sweden)

    Daniel Miret

    2017-11-01

    Full Text Available The labor relationship between the employer and the workers is evaluated and directed by the labor rights which is a group of legal rights that are derived from human rights. Labor rights are more precisely relative to CSR as CSR are based on perspective and point of view of a given corporation. In this perspective implementing the workers and labor rights becomes more difficult compared to the implementation of the CSR. If an international corporation can be able to align CSR with the labor laws the friction between the employees and the corporation and the employee is likely to reduce. There is need to explore whether multinational corporations can be able to align CSR with the labor rights and employee initiatives global market. In this case the analysis focuses on China Brazil and India as the reference countries with cross-sectional secondary data obtained from a survey of the existing sources on the internet. The pertinent question is whether multinational corporations be successful while aligning CSR Corporate Social Responsibility with labor rights and employee initiatives in a competitive global market based on that cross-sectional data. The findings reveal that the uphold of labor rights largely determines morale of the employees and the will to participate in the growth and development of a given business both locally and international. Notably the continued change of CSR has resulted in the replacement of management and government dominated trade unions with more democratic unions of workers that pay attention to the initiatives of the workers. The combination of the internal code of conduct with the workers association labor associations and movements is one of the credible routes that show CSR can be aligned with labor rights.

  16. Three-dimensional parallel vortex rings in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Crasovan, Lucian-Cornel; Perez-Garcia, Victor M.; Danaila, Ionut; Mihalache, Dumitru; Torner, Lluis

    2004-01-01

    We construct three-dimensional structures of topological defects hosted in trapped wave fields, in the form of vortex stars, vortex cages, parallel vortex lines, perpendicular vortex rings, and parallel vortex rings, and we show that the latter exist as robust stationary, collective states of nonrotating Bose-Einstein condensates. We discuss the stability properties of excited states containing several parallel vortex rings hosted by the condensate, including their dynamical and structural stability

  17. The linear collider alignment and survey (LiCAS) project

    International Nuclear Information System (INIS)

    Bingham, Richard; Botcherby, Edward; Coe, Paul; Grzelak, Grzegorz; Mitra, Ankush; Reichold, Armin; Prenting, Johannes

    2003-01-01

    For the next generation of Linear Colliders (LC) the precision alignment of accelerator components will be critical. The DESY applied geodesy group has developed the concept of an automated 'survey train'. The train runs along the accelerator wall measuring the 3D position of a set of equispaced reference markers. This reference structure is then used to align the accelerator components. The LiCAS group is developing a measurement system for the survey train. It will use a combination of Laser Straightness Monitors (SM) and Frequency Scanning Interferometry (FSI). FSI is an interferometric length measurement technique originally developed for the online alignment of the ATLAS Inner Detector. This novel combination of optical techniques is expected to overcome the limitations of traditional open air survey. The authors describe the LiCAS project, the measurement systems and their integration into the survey train. The technical parameters and constraints will be mentioned. There will also be brief discussion of the second phase of the project to allow on-line monitoring of the LC alignment. (author)

  18. Development of an alignment system for the CBM rich

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, Claudia; Mahmoud, Tariq; Bendarouach, Jordan [Justus Liebig University, Giessen (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 4-35 AGeV. One of the key detector components required for the CBM physics program is the RICH detector, which is developed for efficient and clean electron identification and pion suppression. Main detector components are a CO{sub 2} gaseous radiator, MAPMT or MCP photo-detectors and spherical glass mirror tiles, used as focusing elements, with spectral reflectivity down to the UV range. An important aspect to guarantee a stable operation of the RICH detector is the alignment and continuous monitor of the mirrors. CLAM (Continuous Line Alignment Monitoring), an alignment procedure developed by the COMPASS experiment, is planned to be used also for the RICH mirror system. A smaller-scale version has been implemented in the CBM RICH prototype detector and tested at the Cern PS/T9 beamline in November 2014. Using a grid and target dots made of retro-reflective material, it is possible to align the mirrors and monitor their displacements over time by analyzing and applying mathematical calculations on photographic images of the grid and targets reflected on the mirrors. The concept, first data and results of image processing are presented and discussed.

  19. AC dielectrophoresis alignment of single-walled carbon nano tubes (SWNTS) and palladium nano wires for hydrogen gas sensor

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Nur Ubaidah Saidin; Ying, K.K.; KKhuan, N.I.; Mohammad Hafizuddin Jumali

    2013-01-01

    Full-text: Using AC electric field, nano wires or nano tubes can be aligned, chained or accelerated in a direction parallel to the applied field, oriented or concentrated onto designated locations as well as dispersed in controlled manner under high efficiencies. In this work, systematic study on the alignment of nano wires/ nano tubes across the 3 μm-gaps between pairs of micro fabricated gold electrodes was carried out using AC dielectrophoresis technique. Densities and alignment of the nano wires/ nano tubes across the gaps of the electrodes were controlled by the applied AC field strengths and frequencies on the electrodes. Good alignments of SWNTs and Pd nano wires were achieved at an applied frequency of 5 MHz and a field strength as high as 25 V pp for Pd nano wires compared to only 2 V pp for SWNTs. The aligned nano wires/ nano tubes will be functioned as sensor elements for hydrogen gas sensing. (author)

  20. Flexible, fast and accurate sequence alignment profiling on GPGPU with PaSWAS.

    Directory of Open Access Journals (Sweden)

    Sven Warris

    Full Text Available To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate due to statistical issues. Current SW implementations that run on graphics hardware do not report the alignment details necessary for further analysis.With the Parallel SW Alignment Software (PaSWAS it is possible (a to have easy access to the computational power of NVIDIA-based general purpose graphics processing units (GPGPUs to perform high-speed sequence alignments, and (b retrieve relevant information such as score, number of gaps and mismatches. The software reports multiple hits per alignment. The added value of the new SW implementation is demonstrated with two test cases: (1 tag recovery in next generation sequence data and (2 isotype assignment within an immunoglobulin 454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-Waterman implementation.

  1. Flexible, fast and accurate sequence alignment profiling on GPGPU with PaSWAS.

    Science.gov (United States)

    Warris, Sven; Yalcin, Feyruz; Jackson, Katherine J L; Nap, Jan Peter

    2015-01-01

    To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW) algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate due to statistical issues. Current SW implementations that run on graphics hardware do not report the alignment details necessary for further analysis. With the Parallel SW Alignment Software (PaSWAS) it is possible (a) to have easy access to the computational power of NVIDIA-based general purpose graphics processing units (GPGPUs) to perform high-speed sequence alignments, and (b) retrieve relevant information such as score, number of gaps and mismatches. The software reports multiple hits per alignment. The added value of the new SW implementation is demonstrated with two test cases: (1) tag recovery in next generation sequence data and (2) isotype assignment within an immunoglobulin 454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-Waterman implementation.

  2. Efficient alignment of pyrosequencing reads for re-sequencing applications

    Directory of Open Access Journals (Sweden)

    Russo Luis MS

    2011-05-01

    Full Text Available Abstract Background Over the past few years, new massively parallel DNA sequencing technologies have emerged. These platforms generate massive amounts of data per run, greatly reducing the cost of DNA sequencing. However, these techniques also raise important computational difficulties mostly due to the huge volume of data produced, but also because of some of their specific characteristics such as read length and sequencing errors. Among the most critical problems is that of efficiently and accurately mapping reads to a reference genome in the context of re-sequencing projects. Results We present an efficient method for the local alignment of pyrosequencing reads produced by the GS FLX (454 system against a reference sequence. Our approach explores the characteristics of the data in these re-sequencing applications and uses state of the art indexing techniques combined with a flexible seed-based approach, leading to a fast and accurate algorithm which needs very little user parameterization. An evaluation performed using real and simulated data shows that our proposed method outperforms a number of mainstream tools on the quantity and quality of successful alignments, as well as on the execution time. Conclusions The proposed methodology was implemented in a software tool called TAPyR--Tool for the Alignment of Pyrosequencing Reads--which is publicly available from http://www.tapyr.net.

  3. Axially alignable nuclear fuel pellets

    International Nuclear Information System (INIS)

    Johansson, E.B.; Klahn, D.H.; Marlowe, M.O.

    1978-01-01

    An axially alignable nuclear fuel pellet of the type stacked in end-to-end relationship within a tubular cladding is described. Fuel cladding failures can occur at pellet interface locations due to mechanical interaction between misaligned fuel pellets and the cladding. Mechanical interaction between the cladding and the fuel pellets loads the cladding and causes increased cladding stresses. Nuclear fuel pellets are provided with an end structure that increases plastic deformation of the pellets at the interface between pellets so that lower alignment forces are required to straighten axially misaligned pellets. Plastic deformation of the pellet ends results in less interactions beween the cladding and the fuel pellets and significantly lowers cladding stresses. The geometry of pellets constructed according to the invention also reduces alignment forces required to straighten fuel pellets that are tilted within the cladding. Plastic deformation of the pellets at the pellet interfaces is increased by providing pellets with at least one end face having a centrally-disposed raised area of convex shape so that the mean temperature and shear stress of the contact area is higher than that of prior art pellets

  4. Alignment for new Subaru ring

    International Nuclear Information System (INIS)

    Zhang, Ch.; Matsui, S.; Hashimoto, S.

    1999-01-01

    The New SUBARU is a synchrotron light source being constructed at the SPring-8 site. The main facility is a 1.5 GeV electron storage ring that provides light beam in the region from VUV to soft X-ray using SPring-8's 1 GeV linac as an injector. The ring, with a circumference of about 119 meters, is composed of six bending cells. Each bending cell has two normal dipoles of 34 degree and one inverse dipole of -8 degree. The ring has six straight sections: two very long straight sections for a 11-m long undulator and an optical klystron, four short straight sections for a 2.3-m undulator, a super-conducting wiggler, rf cavity and injection, etc. The magnets of the storage ring are composed of 12 dipoles (BMs), 6 invert dipoles (BIs), 56 quadrupoles and 44 sextupoles, etc. For the magnet alignment, positions of the dipoles (the BMs and BIs) are determined by network survey method. The multipoles, which are mounted on girders between the dipoles, are aligned with a laser-CCD camera system. This article presents the methodology used to position the different components and particularly to assure the precise alignment of the multipoles. (authors)

  5. Grain alignment in starless cores

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. J.; Bagley, M. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Krejny, M. [Cree Inc., 4600 Silicon Dr., Durham, NC (United States); Andersson, B.-G. [SOFIA Science Center, USRA, Moffett Field, CA (United States); Bastien, P., E-mail: tjj@astro.umn.edu [Centre de recherche en astrophysique du Québec and Départment de Physique, Université de Montréal, Montréal (Canada)

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A{sub V}∼48. We find that P{sub K}/τ{sub K} continues to decline with increasing A{sub V} with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A{sub V}≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A{sub V}∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  6. Parallel heat transport in integrable and chaotic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Negrete, D. del; Chacon, L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)

    2012-05-15

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), {chi}{sub ||} , and the perpendicular, {chi}{sub Up-Tack }, conductivities ({chi}{sub ||} /{chi}{sub Up-Tack} may exceed 10{sup 10} in fusion plasmas); (ii) Nonlocal parallel transport in the limit of small collisionality; and (iii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geometry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island), weakly chaotic (Devil's staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local parallel closures, is non-diffusive, thus casting doubts on the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

  7. Endpoint-based parallel data processing in a parallel active messaging interface of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2014-08-12

    Endpoint-based parallel data processing in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI, including establishing a data communications geometry, the geometry specifying, for tasks representing processes of execution of the parallel application, a set of endpoints that are used in collective operations of the PAMI including a plurality of endpoints for one of the tasks; receiving in endpoints of the geometry an instruction for a collective operation; and executing the instruction for a collective operation through the endpoints in dependence upon the geometry, including dividing data communications operations among the plurality of endpoints for one of the tasks.

  8. Parallel Implicit Algorithms for CFD

    Science.gov (United States)

    Keyes, David E.

    1998-01-01

    The main goal of this project was efficient distributed parallel and workstation cluster implementations of Newton-Krylov-Schwarz (NKS) solvers for implicit Computational Fluid Dynamics (CFD.) "Newton" refers to a quadratically convergent nonlinear iteration using gradient information based on the true residual, "Krylov" to an inner linear iteration that accesses the Jacobian matrix only through highly parallelizable sparse matrix-vector products, and "Schwarz" to a domain decomposition form of preconditioning the inner Krylov iterations with primarily neighbor-only exchange of data between the processors. Prior experience has established that Newton-Krylov methods are competitive solvers in the CFD context and that Krylov-Schwarz methods port well to distributed memory computers. The combination of the techniques into Newton-Krylov-Schwarz was implemented on 2D and 3D unstructured Euler codes on the parallel testbeds that used to be at LaRC and on several other parallel computers operated by other agencies or made available by the vendors. Early implementations were made directly in Massively Parallel Integration (MPI) with parallel solvers we adapted from legacy NASA codes and enhanced for full NKS functionality. Later implementations were made in the framework of the PETSC library from Argonne National Laboratory, which now includes pseudo-transient continuation Newton-Krylov-Schwarz solver capability (as a result of demands we made upon PETSC during our early porting experiences). A secondary project pursued with funding from this contract was parallel implicit solvers in acoustics, specifically in the Helmholtz formulation. A 2D acoustic inverse problem has been solved in parallel within the PETSC framework.

  9. Second derivative parallel block backward differentiation type ...

    African Journals Online (AJOL)

    Second derivative parallel block backward differentiation type formulas for Stiff ODEs. ... Log in or Register to get access to full text downloads. ... and the methods are inherently parallel and can be distributed over parallel processors. They are ...

  10. A Parallel Approach to Fractal Image Compression

    OpenAIRE

    Lubomir Dedera

    2004-01-01

    The paper deals with a parallel approach to coding and decoding algorithms in fractal image compressionand presents experimental results comparing sequential and parallel algorithms from the point of view of achieved bothcoding and decoding time and effectiveness of parallelization.

  11. Aligning molecules with intense nonresonant laser fields

    DEFF Research Database (Denmark)

    Larsen, J.J.; Safvan, C.P.; Sakai, H.

    1999-01-01

    Molecules in a seeded supersonic beam are aligned by the interaction between an intense nonresonant linearly polarized laser field and the molecular polarizability. We demonstrate the general applicability of the scheme by aligning I2, ICl, CS2, CH3I, and C6H5I molecules. The alignment is probed...... by mass selective two dimensional imaging of the photofragment ions produced by femtosecond laser pulses. Calculations on the degree of alignment of I2 are in good agreement with the experiments. We discuss some future applications of laser aligned molecules....

  12. Aptaligner: automated software for aligning pseudorandom DNA X-aptamers from next-generation sequencing data.

    Science.gov (United States)

    Lu, Emily; Elizondo-Riojas, Miguel-Angel; Chang, Jeffrey T; Volk, David E

    2014-06-10

    Next-generation sequencing results from bead-based aptamer libraries have demonstrated that traditional DNA/RNA alignment software is insufficient. This is particularly true for X-aptamers containing specialty bases (W, X, Y, Z, ...) that are identified by special encoding. Thus, we sought an automated program that uses the inherent design scheme of bead-based X-aptamers to create a hypothetical reference library and Markov modeling techniques to provide improved alignments. Aptaligner provides this feature as well as length error and noise level cutoff features, is parallelized to run on multiple central processing units (cores), and sorts sequences from a single chip into projects and subprojects.

  13. Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8

    OpenAIRE

    Yang, Ren; Soper, Steven A.; Wang, Wanjun

    2006-01-01

    This paper describes the design, microfabrication and testing of a pre-aligned array of fiber couplers using direct UV-lithography of SU-8. The fiber coupler array includes an out-of-plane refractive microlens array and two fiberport collimator arrays. With the optical axis of the pixels parallel to the substrate, each pixel of the microlens array can be pre-aligned with the corresponding pixels of the fiberport collimator array as defined by the lithography mask design. This out-of-plane pol...

  14. MPI_XSTAR: MPI-based Parallelization of the XSTAR Photoionization Program

    Science.gov (United States)

    Danehkar, Ashkbiz; Nowak, Michael A.; Lee, Julia C.; Smith, Randall K.

    2018-02-01

    We describe a program for the parallel implementation of multiple runs of XSTAR, a photoionization code that is used to predict the physical properties of an ionized gas from its emission and/or absorption lines. The parallelization program, called MPI_XSTAR, has been developed and implemented in the C++ language by using the Message Passing Interface (MPI) protocol, a conventional standard of parallel computing. We have benchmarked parallel multiprocessing executions of XSTAR, using MPI_XSTAR, against a serial execution of XSTAR, in terms of the parallelization speedup and the computing resource efficiency. Our experience indicates that the parallel execution runs significantly faster than the serial execution, however, the efficiency in terms of the computing resource usage decreases with increasing the number of processors used in the parallel computing.

  15. Parallel transport in ideal magnetohydrodynamics and applications to resistive wall modes

    International Nuclear Information System (INIS)

    Finn, J.M.; Gerwin, R.A.

    1996-01-01

    It is shown that in magnetohydrodynamics (MHD) with an ideal Ohm close-quote s law, in the presence of parallel heat flux, density gradient, temperature gradient, and parallel compression, but in the absence of perpendicular compressibility, there is an exact cancellation of the parallel transport terms. This cancellation is due to the fact that magnetic flux is advected in the presence of an ideal Ohm close-quote s law, and therefore parallel transport of temperature and density gives the same result as perpendicular advection of the same quantities. Discussions are also presented regarding parallel viscosity and parallel velocity shear, and the generalization to toroidal geometry. These results suggest that a correct generalization of the Hammett endash Perkins fluid operator [G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64, 3019 (1990)] to simulate Landau damping for electromagnetic modes must give an operator that acts on the dynamics parallel to the perturbed magnetic field lines. copyright 1996 American Institute of Physics

  16. Parallel fabrication of macroporous scaffolds.

    Science.gov (United States)

    Dobos, Andrew; Grandhi, Taraka Sai Pavan; Godeshala, Sudhakar; Meldrum, Deirdre R; Rege, Kaushal

    2018-07-01

    Scaffolds generated from naturally occurring and synthetic polymers have been investigated in several applications because of their biocompatibility and tunable chemo-mechanical properties. Existing methods for generation of 3D polymeric scaffolds typically cannot be parallelized, suffer from low throughputs, and do not allow for quick and easy removal of the fragile structures that are formed. Current molds used in hydrogel and scaffold fabrication using solvent casting and porogen leaching are often single-use and do not facilitate 3D scaffold formation in parallel. Here, we describe a simple device and related approaches for the parallel fabrication of macroporous scaffolds. This approach was employed for the generation of macroporous and non-macroporous materials in parallel, in higher throughput and allowed for easy retrieval of these 3D scaffolds once formed. In addition, macroporous scaffolds with interconnected as well as non-interconnected pores were generated, and the versatility of this approach was employed for the generation of 3D scaffolds from diverse materials including an aminoglycoside-derived cationic hydrogel ("Amikagel"), poly(lactic-co-glycolic acid) or PLGA, and collagen. Macroporous scaffolds generated using the device were investigated for plasmid DNA binding and cell loading, indicating the use of this approach for developing materials for different applications in biotechnology. Our results demonstrate that the device-based approach is a simple technology for generating scaffolds in parallel, which can enhance the toolbox of current fabrication techniques. © 2018 Wiley Periodicals, Inc.

  17. Parallel plasma fluid turbulence calculations

    International Nuclear Information System (INIS)

    Leboeuf, J.N.; Carreras, B.A.; Charlton, L.A.; Drake, J.B.; Lynch, V.E.; Newman, D.E.; Sidikman, K.L.; Spong, D.A.

    1994-01-01

    The study of plasma turbulence and transport is a complex problem of critical importance for fusion-relevant plasmas. To this day, the fluid treatment of plasma dynamics is the best approach to realistic physics at the high resolution required for certain experimentally relevant calculations. Core and edge turbulence in a magnetic fusion device have been modeled using state-of-the-art, nonlinear, three-dimensional, initial-value fluid and gyrofluid codes. Parallel implementation of these models on diverse platforms--vector parallel (National Energy Research Supercomputer Center's CRAY Y-MP C90), massively parallel (Intel Paragon XP/S 35), and serial parallel (clusters of high-performance workstations using the Parallel Virtual Machine protocol)--offers a variety of paths to high resolution and significant improvements in real-time efficiency, each with its own advantages. The largest and most efficient calculations have been performed at the 200 Mword memory limit on the C90 in dedicated mode, where an overlap of 12 to 13 out of a maximum of 16 processors has been achieved with a gyrofluid model of core fluctuations. The richness of the physics captured by these calculations is commensurate with the increased resolution and efficiency and is limited only by the ingenuity brought to the analysis of the massive amounts of data generated

  18. Evaluating parallel optimization on transputers

    Directory of Open Access Journals (Sweden)

    A.G. Chalmers

    2003-12-01

    Full Text Available The faster processing power of modern computers and the development of efficient algorithms have made it possible for operations researchers to tackle a much wider range of problems than ever before. Further improvements in processing speed can be achieved utilising relatively inexpensive transputers to process components of an algorithm in parallel. The Davidon-Fletcher-Powell method is one of the most successful and widely used optimisation algorithms for unconstrained problems. This paper examines the algorithm and identifies the components that can be processed in parallel. The results of some experiments with these components are presented which indicates under what conditions parallel processing with an inexpensive configuration is likely to be faster than the traditional sequential implementations. The performance of the whole algorithm with its parallel components is then compared with the original sequential algorithm. The implementation serves to illustrate the practicalities of speeding up typical OR algorithms in terms of difficulty, effort and cost. The results give an indication of the savings in time a given parallel implementation can be expected to yield.

  19. Antares beam-alignment-system performance

    International Nuclear Information System (INIS)

    Appert, Q.D.; Bender, S.C.

    1983-01-01

    The beam alignment system for the 24-beam-sector Antares CO 2 fusion laser automatically aligns more than 200 optical elements. A visible-wavelength alignment technique is employed which uses a telescope/TV system to view point-light sources appropriately located down the beamline. The centroids of the light spots are determined by a video tracker, which generates error signals used by the computer control system to move appropriate mirrors in a closed-loop system. Final touch-up alignment is accomplished by projecting a CO 2 alignment laser beam through the system and sensing its position at the target location. The techniques and control algorithms employed have resulted in alignment accuracies exceeding design requirements. By employing video processing to determine the centroids of diffraction images and by averaging over multiple TV frames, we achieve alignment accuracies better than 0.1 times system diffraction limits in the presence of air turbulence

  20. Chromatic bifocus alignment system for SR stepper

    International Nuclear Information System (INIS)

    Miyatake, Tsutomu

    1991-01-01

    A new alignment system developed for synchrotron radiation (SR) X-ray stepper is described. The alignment system has three key elements as follows. The first is a chromatic bifocus optics which observe high contrast bright images of alignment marks printed on a mask and a wafer. The second is broad band light illumination to observe the wafer alignment mark images which is unaffected by resist film coated on a wafer. The third is a new correlation function which is used in measuring of displacement between a mask and a wafer. The alignment system has achieved alignment accuracy on the order of 0.01 μm. The experimental results of this alignment system are discussed in this paper. (author)