WorldWideScience

Sample records for linerless composite tanks

  1. Linerless label device and method

    KAUST Repository

    Binladen, Abdulkari

    2016-01-14

    This apparatus and method for applying a linerless label to an end user product includes a device with a printer for printing on a face surface of a linerless label, and a release coat applicator for applying a release coat to the face surface of the label; another device including an unwinder unit (103) to unwind a roll of printed linerless label; a belt (108); a glue applicator (102) for applying glue to the belt; a nip roller (106) for contacting and applying pressure to the face surface of the linerless label such that the glue on the belt transfers to the back surface of the linerless label; at least one slitting knife 105) positioned downstream the belt and a rewinder unit (104) positioned downstream the slitting knife; and a third device which die cuts and applies the linerless label to an end user object.

  2. Linerless label device and method

    KAUST Repository

    Binladen, Abdulkari

    2016-01-01

    This apparatus and method for applying a linerless label to an end user product includes a device with a printer for printing on a face surface of a linerless label, and a release coat applicator for applying a release coat to the face surface

  3. Ionic Liquid Epoxy Composite Cryotanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this work is to determine the optimal process for manufacturing lightweight linerless cryogenic storage tanks using ionic liquid epoxy composite...

  4. Lightweight, Composite Cryogenic Tank Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm has developed and qualified strong, all-composite LOX tanks for launch vehicles. Our new 42-inch diameter tank design weighs 486 lbs and burst without...

  5. Tank drive : ZCL takes its composite tank technology worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-06-15

    Edmonton-based ZCL Composites Inc. is North America's largest manufacturer and supplier of fibreglass reinforced plastic (FRP) underground storage tanks. The company has aggressively pursued new markets in the oil sands, shale gas gas, and other upstream petroleum industries. The manufacturer also targets water and sewage applications, and provides customized corrosion solutions for a variety of industries. The company developed its double-walled FRP tanks in response to Canadian Environmental Protection Act rules requiring cathodic protection for steel tanks, leak detection, and secondary containment. ZCL supplies approximately 90 per cent of the new tanks installed by gasoline retailers in Canada. Future growth is expected to be strong, as many old tanks will soon need to be replaced. The company has also developed a method of transforming underground single wall tanks into secondarily contained systems without digging them out. The company has also recently signed licence agreements with tank manufacturers in China. 3 figs.

  6. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    Science.gov (United States)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  7. Investigation of Tank 241-AW-104 Composite Floating Layer

    Energy Technology Data Exchange (ETDEWEB)

    Meznarich, H. K. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Bolling, S. D. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Lachut, J. S. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Cooke, G. A. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States)

    2018-02-27

    Seven grab samples and one field blank were taken from Tank 241-AW-104 (AW-104) on June 2, 2017, and received at 222-S Laboratory on June 5, 2017. A visible layer with brown solids was observed floating on the top of two surface tank waste samples (4AW-17-02 and 4AW 17 02DUP). The floating layer from both samples was collected, composited, and submitted for chemical analyses and solid phase characterization in order to understand the composition of the floating layer. Tributyl phosphate and tridecane were higher in the floating layer than in the aqueous phase. Density in the floating layer was slightly lower than the mean density of all grab samples. Sodium nitrate and sodium carbonate were major components with a trace of gibbsite and very small size agglomerates were present in the solids of the floating layer. The supernate consisted of organics, soluble salt, and particulates.

  8. Hybrid Composites for LH2 Fuel Tank Structure

    Science.gov (United States)

    Grimsley, Brian W.; Cano, Roberto J.; Johnston, Norman J.; Loos, Alfred C.; McMahon, William M.

    2001-01-01

    The application of lightweight carbon fiber reinforced plastics (CFRP) as structure for cryogenic fuel tanks is critical to the success of the next generation of Reusable Launch Vehicles (RLV). The recent failure of the X-33 composite fuel tank occurred in part due to microcracking of the polymer matrix, which allowed cryogen to permeate through the inner skin to the honeycomb core. As part of an approach to solve these problems, NASA Langley Research Center (LaRC) and Marshall Space Flight Center (MSFC) are working to develop and investigate polymer films that will act as a barrier to the permeation of LH2 through the composite laminate. In this study two commercially available films and eleven novel LaRC films were tested in an existing cryogenics laboratory at MSFC to determine the permeance of argon at room temperature. Several of these films were introduced as a layer in the composite to form an interleaved, or hybrid, composite to determine the effects on permeability. In addition, the effects of the interleaved layer thickness, number, and location on the mechanical properties of the composite laminate were investigated. In this initial screening process, several of the films were found to exhibit lower permeability to argon than the composite panels tested.

  9. Composite-Material Tanks with Chemically Resistant Liners

    Science.gov (United States)

    DeLay, Thomas K.

    2004-01-01

    Lightweight composite-material tanks with chemically resistant liners have been developed for storage of chemically reactive and/or unstable fluids . especially hydrogen peroxide. These tanks are similar, in some respects, to the ones described in gLightweight Composite-Material Tanks for Cryogenic Liquids h (MFS-31379), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 58; however, the present tanks are fabricated by a different procedure and they do not incorporate insulation that would be needed to prevent boil-off of cryogenic fluids. The manufacture of a tank of this type begins with the fabrication of a reusable multisegmented aluminum mandrel in the shape and size of the desired interior volume. One or more segments of the mandrel can be aluminum bosses that will be incorporated into the tank as end fittings. The mandrel is coated with a mold-release material. The mandrel is then heated to a temperature of about 400 F (approximately equal to 200 C) and coated with a thermoplastic liner material to the desired thickness [typically approxiamtely equal to 15 mils (approximately equal to 0.38 mm)] by thermal spraying. In the thermal-spraying process, the liner material in powder form is sprayed and heated to the melting temperature by a propane torch and the molten particles land on the mandrel. The sprayed liner and mandrel are allowed to cool, then the outer surface of the liner is chemically and/or mechanically etched to enhance bonding of a composite overwrap. The etched liner is wrapped with multiple layers of an epoxy resin reinforced with graphite fibers; the wrapping can be done either by manual application of epoxy-impregnated graphite cloth or by winding of epoxy-impregnated filaments. The entire assembly is heated in an autoclave to cure the epoxy. After the curing process, the multisegmented mandrel is disassembled and removed from inside, leaving the finished tank. If the tank is to be used for storing hydrogen peroxide, then the liner material

  10. NASA Prototype All Composite Tank Cryogenic Pressure Tests to Failure with Structural Health Monitoring

    Science.gov (United States)

    Werlink, Rudolph J.; Pena, Francisco

    2015-01-01

    This Paper will describe the results of pressurization to failure of 100 gallon composite tanks using liquid nitrogen. Advanced methods of health monitoring will be compared as will the experimental data to a finite element model. The testing is wholly under NASA including unique PZT (Lead Zirconate Titanate) based active vibration technology. Other technologies include fiber optics strain based systems including NASA AFRC technology, Acoustic Emission, Acellent smart sensor, this work is expected to lead to a practical in-Sutu system for composite tanks.

  11. Hanford Tank 241-S-112 Residual Waste Composition and Leach Test Data

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Lindberg, Michael J.; Arey, Bruce W.; Schaef, Herbert T.

    2008-08-29

    This report presents the results of laboratory characterization and testing of two samples (designated 20406 and 20407) of residual waste collected from tank S-112 after final waste retrieval. These studies were completed to characterize the residual waste and assess the leachability of contami¬nants from the solids. This is the first report from this PNNL project to describe the composition and leach test data for residual waste from a salt cake tank. All previous PNNL reports (Cantrell et al. 2008; Deutsch et al. 2006, 2007a, 2007b, 2007c) describing contaminant release models, and characterization and testing results for residual waste in single-shell tanks were based on samples from sludge tanks.

  12. Investigation of Composition of Particle Size in Sediments of Stormwater Sedimentation Tank

    Directory of Open Access Journals (Sweden)

    Daiva Laučytė

    2011-04-01

    Full Text Available The main object for the storm water runoff treatment is to remove suspended solids before the storm water runoff is discharged into surface waters. Therefore the sedimentation tank is the most often used treatment facility. In order to optimise the sedimentation, the tendency of particle size distribution in bottom sediments must be known. Two similar size storm water runoff sedimentation tanks in Vilnius city were selected for the analysis of the particle size distribution in sediments. The composite samples of drained storm water runoff sediments were collected at the sedimentation tanks located in the districts of Verkiai and Karoliniskes on the 2nd of June, 2008. The analyses of grain size distribution were performed according the standard ISO/TS 17892-4:2004. The results showed that the particles with the particle size of 1–2 mm were obtained up to 10 m from the inlet and the particles with the size of 0,01–0,05 mm mainly were obtained close to the outlet of sedimentation tank. It is recommended to divide the sedimentation tank in two parts in order to get proper management of sediments: the particles that size is 1–10 mm could be managed as waste from grit chambers and particles of smaller size could be managed as primary sludge.Article in Lithuanian

  13. Development of advanced materials composites for use as insulations for LH2 tanks

    Science.gov (United States)

    Lemons, C. R.; Salmassy, O. K.

    1973-01-01

    A study of thread-reinforced polyurethane foam and glass fabric liner, serving as internally bonded insulation for space shuttle LH2 tanks, is reported. Emphasis was placed on an insulation system capable of reentry and multiple reuse in the shuttle environment. The optimized manufacturing parameters associated with each element of the composite are established and the results, showing successful completion of subscale system evaluation tests using the shuttle flight environmental requirements, are given.

  14. Tensile behavior of humid aged advanced composites for helicopter external fuel tank development

    Directory of Open Access Journals (Sweden)

    Condruz Mihaela

    2018-01-01

    Full Text Available Influence of humid aging on tensile properties of two polymeric composites was studied. The purpose of the study was to evaluate the suitability of the materials for a naval helicopter external fuel tank. Due to the application, the humid environment was kerosene and saline solution to evaluate the sea water effect on the composite tensile strength. The composite samples were immersed in kerosene for 168 hours, respective 1752 hours and in saline solution for 168 hours. Tensile tests were performed after the immersion. The composite sample tensile tests showed that kerosene and saline solution had no influence on the elastic modulus of the materials, but it was observed a slight improvement of the tensile strength of the two polymeric composites.

  15. Composition, preparation, and gas generation results from simulated wastes of Tank 241-SY-101

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.

    1994-08-01

    This document reviews the preparation and composition of simulants that have been developed to mimic the wastes temporarily stored in Tank 241-SY-101 at Hanford. The kinetics and stoichiometry of gases that are generated using these simulants are also compared, considering the roles of hydroxide, chloride, and transition metal ions; the identities of organic constituents; and the effects of dilution, radiation, and temperature. Work described in this report was conducted for the Flammable Gas Safety Program at Pacific Northwest Laboratory, (a) whose purpose is to develop information that is necessary to mitigate potential safety hazards associated with waste tanks at the Hanford Site. The goal of this research and of related efforts at the Georgia Institute of Technology (GIT), Argonne National Laboratory (ANL), and Westinghouse Hanford Company (WHC) is to determine the thermal and thermal/radiolytic mechanisms by which flammable and other gases are produced in Hanford wastes, emphasizing those stored in Tank 241-SY-101. A variety of Tank 241-SY-101 simulants have been developed to date. The use of simulants in laboratory testing activities provides a number of advantages, including elimination of radiological risks to researchers, lower costs associated with experimentation, and the ability to systematically alter simulant compositions to study the chemical mechanisms of reactions responsible for gas generation. The earliest simulants contained the principal inorganic components of the actual waste and generally a single complexant such as N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA) or ethylenediaminetriacetic acid (EDTA). Both homogeneous and heterogeneous compositional forms were developed. Aggressive core sampling and analysis activities conducted during Windows C and E provided information that was used to design new simulants that more accurately reflected major and minor inorganic components

  16. DYNAMIC SIMULATION AND COMPOSITION CONTROL IN A 10 L MIXING TANK

    Directory of Open Access Journals (Sweden)

    Yulius Deddy Hermawan

    2012-11-01

    Full Text Available The open loop experiment of composition dynamic in a 10 L mixing tank has been successfully done inlaboratory. A 10 L tank was designed for mixing of water (as a stream-1 and salt solution (as astream-2 with salt concentration, c2 constant. An electric stirrer was employed to obtain uniformcomposition in tank. In order to keep the liquid volume constant, the system was designed overflow. Inthis work, 2 composition control configurations have been proposed; they are Alternative-1 andAlternative-2. For Alternative-1, the volumetric-rate of stream-1 was chosen as a manipulatedvariable, while the volumetric-rate of stream-2 was chosen as a manipulated variable for Alternative-2. The composition control parameters for both alternatives have been tuned experimentally. Thevolumetric-rate of manipulated variable was changed based on step function. The outlet stream’scomposition response (c3 to a change in the input volumetric-rate has been investigated. Thisexperiment gave Proportional Integral Derivative (PID control parameters. The gain controllers Kc[cm6/(gr.sec] for Alternative-1 and Alternative-2 are -34200 and 40459 respectively. Integral timeconstant ( tI and Derivative time constant (tD for both alternatives are the same, i.e. tI = 16 second,and tD = 4 second. Furthermore, closed loop dynamic simulation using computer programming wasalso done to evaluate the resulted tuning parameters. The developed mathematical model ofcomposition control system in a mixing tank was solved numerically. Such mathematical model wasrigorously examined in Scilab software environment. The results showed that closed loop responses inPID control were faster than those in P and PI controls.

  17. Feasibility of Carbon Fiber/PEEK Composites for Cryogenic Fuel Tank Applications

    Science.gov (United States)

    Doyle, K.; Doyle, A.; O Bradaigh, C. M.; Jaredson, D.

    2012-07-01

    This paper investigates the feasibility of CF/PEEK composites for manufacture of cryogenic fuel tanks for Next Generation Space Launchers. The material considered is CF/PEEK tape from Suprem SA and the proposed manufacturing process for the fuel tank is Automated Tape Placement. Material characterization was carried out on test laminates manufactured in an autoclave and also by Automated Tape Placement with in-situ consolidation. The results of the two processes were compared to establish if there is any knock down in properties for the automated tape placement process. A permeability test rig was setup with a helium leak detector and the effect of thermal cycling on the permeability properties of CF/PEEK was measured. A 1/10th scale demonstrator was designed and manufactured consisting of a cylinder manufactured by automated tape placement and an upper dome manufactured by autoclave processing. The assembly was achieved by Amorphous Interlayer Bonding with PEI.

  18. LH2 Tank Composite Coverplate Development and Flight Qualification for the X-33

    Science.gov (United States)

    Wright, Richard J.; Roule, Gerard M.

    2000-01-01

    In this paper, the development history for the first cryogenic pressurized fuel tank coverplates is presented along with a synopsis of the development strategy and technologies which led to success on this program. Coverplates are the large access panels used to access launch vehicle fuel tanks. These structures incorporate all of the requirements for a pressure vessel as well as the added requirement to mount all of the miscellaneous access points required for a fuel management system. The first composite coverplates to meet the requirements for flight qualification were developed on the X-33 program. The X-33 composite coverplates went from an open requirement to successful finished flight hardware with multiple unique configurations, complete with verification testing, in less than eighteen months. Besides the rapid development schedule, these components introduced several new technologies previously unseen in cryogenic composites including solutions to cryogenic shrinkage, self-supporting sealing surfaces, and highly loaded composite bosses with precision sealing interfaces. These components were proven to seal liquid hydrogen at cryogenic temperatures under maximum loading and pressure conditions.

  19. Impact source location on composite CNG storage tank using acoustic emission energy based signal mapping method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Byeong Hee; Yoon, Dong Jin; Park, Chun Soo [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Lee, Young Shin [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2016-10-15

    Acoustic emission (AE) is one of the most powerful techniques for detecting damages and identify damage location during operations. However, in case of the source location technique, there is some limitation in conventional AE technology, because it strongly depends on wave speed in the corresponding structures having heterogeneous composite materials. A compressed natural gas(CNG) pressure vessel is usually made of carbon fiber composite outside of vessel for the purpose of strengthening. In this type of composite material, locating impact damage sources exactly using conventional time arrival method is difficult. To overcome this limitation, this study applied the previously developed Contour D/B map technique to four types of CNG storage tanks to identify the source location of damages caused by external shock. The results of the identification of the source location for different types were compared.

  20. Cesium sorption from concentrated acidic tank wastes using ammonium molybdophosphate-polyacrylonitrile composite sorbents

    International Nuclear Information System (INIS)

    Todd, T.A.; Mann, N.R.; Tranter, T.J.; Sebesta, F.; John, J.; Motl, A.

    2002-01-01

    Ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) composite sorbents have been evaluated for the removal of cesium from Idaho National Engineering and Environmental Laboratory (INEEL) concentrated acidic tank waste. Batch contacts were performed to qualitatively evaluate the effects of increased nitric acid, sodium and potassium. An equilibrium isotherm was generated with simulated concentrated tank waste solutions and fit to the Langmuir equation. Additional batch contact experiments were performed to determine if mercury, plutonium and americium would sorb onto AMP-PAN. Dynamic sorption was evaluated in column tests employing 1.5 cm 3 columns operating at 5, 10 and 20 bed volumes of flow per hour. Results indicate, as expected, that dynamic cesium sorption capacity is reduced as the flowrate is increased. Calculated dynamic capacities for cesium were 22.5, 19.8 and 19.6 mg Cs/g sorbent, for 5, 10 and 20 bed volume per hour flows, respectively. The thermal stability of loaded AMP-PAN was evaluated by performing thermogravimetric analysis (TGA) on samples of AMP, PAN (polymer), and AMP-PAN. Results indicate that AMP-PAN is stable to 400 deg C, with less than a 10% loss of weight, which is at least partially due to loss of water of hydration. The evaluation of AMP-PAN indicates that it will effectively remove cesium from concentrated acidic tank waste solutions. (author)

  1. Relationship between climatic variables and the variation in bulk tank milk composition using canonical correlation analysis.

    Science.gov (United States)

    Stürmer, Morgana; Busanello, Marcos; Velho, João Pedro; Heck, Vanessa Isabel; Haygert-Velho, Ione Maria Pereira

    2018-06-04

    A number of studies have addressed the relations between climatic variables and milk composition, but these works used univariate statistical approaches. In our study, we used a multivariate approach (canonical correlation) to study the impact of climatic variables on milk composition, price, and monthly milk production at a dairy farm using bulk tank milk data. Data on milk composition, price, and monthly milk production were obtained from a dairy company that purchased the milk from the farm, while climatic variable data were obtained from the National Institute of Meteorology (INMET). The data are from January 2014 to December 2016. Univariate correlation analysis and canonical correlation analysis were performed. Few correlations between the climatic variables and milk composition were found using a univariate approach. However, using canonical correlation analysis, we found a strong and significant correlation (r c  = 0.95, p value = 0.0029). Lactose, ambient temperature measures (mean, minimum, and maximum), and temperature-humidity index (THI) were found to be the most important variables for the canonical correlation. Our study indicated that 10.2% of the variation in milk composition, pricing, and monthly milk production can be explained by climatic variables. Ambient temperature variables, together with THI, seem to have the most influence on variation in milk composition.

  2. Composite Cryotank Technologies and Development 2.4 and 5.5M out of Autoclave Tank Test Results

    Science.gov (United States)

    Jackson, Justin R.; Vickers, John; Fikes, John

    2015-01-01

    The Composite Cryotank Technologies and Demonstration (CCTD) project substantially matured composite, cryogenic propellant tank technology. The project involved the design, analysis, fabrication, and testing of large-scale (2.4-m-diameter precursor and 5.5-m-diameter) composite cryotanks. Design features included a one-piece wall design that minimized tank weight, a Y-joint that incorporated an engineered material to alleviate stress concentration under combined loading, and a fluted core cylindrical section that inherently allows for venting and purging. The tanks used out-of-autoclave (OoA) cured graphite/epoxy material and processes to enable large (up to 10-m-diameter) cryotank fabrication, and thin-ply prepreg to minimize hydrogen permeation through tank walls. Both tanks were fabricated at Boeing using automated fiber placement on breakdown tooling. A fluted core skirt that efficiently carried axial loads and enabled hydrogen purging was included on the 5.5-m-diameter tank. Ultrasonic inspection was performed, and a structural health monitoring system was installed to identify any impact damage during ground processing. The precursor and 5.5-m-diameter tanks were tested in custom test fixtures at the National Aeronautics and Space Administration Marshall Space Flight Center. The testing, which consisted of a sequence of pressure and thermal cycles using liquid hydrogen, was successfully concluded and obtained valuable structural, thermal, and permeation performance data. This technology can be applied to a variety of aircraft and spacecraft applications that would benefit from 30 to 40% weight savings and substantial cost savings compared to aluminum lithium tanks.

  3. Caustic leaching of composite AZ-101/AZ-102 Hanford tank sludge

    International Nuclear Information System (INIS)

    Rapko, B.M.; Wagner, M.J.

    1997-07-01

    To reduce the quantity (and hence the cost) of glass canisters needed for disposing of high-level radioactive wastes from the Hanford tank farms, pretreatment processes are needed to remove as much nonradioactive material as possible. This report describes the results of a laboratory-scale caustic leaching test performed on a composite derived from a combination of 241-AZ-101 and 241-AZ-102 Hanford Tank sludges. The goals of this FY 1996 test were to evaluate the effectiveness of caustic leaching on removing key components from the sludge and to evaluate the effectiveness of varying the free-hydroxide concentrations by incrementally increasing the free hydroxide concentration of the leach steps up to 3 M free hydroxide. Particle-size analysis of the treated and untreated sludge indicated that the size and range of the sludge particles remained essentially unchanged by the caustic leaching treatment. Both before and after caustic leaching, a particle range of 0.2 microm to 50 microm was observed, with mean particle diameters of 8.5 to 9 microm based on the volume distribution and mean particle diameters of 0.3 to 0.4 microm based on the number distribution

  4. Towing Tank and Flume Testing of Passively Adaptive Composite Tidal Turbine Blades: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ordonez-Sanchez, Stephanie [University of Strathclyde; Porter, Kate E. [University of Strathclyde; Johnstone, Cameron M. [University of Strathclyde; Doman, Darrel A. [Dalhousie University; Pegg, Michael J. [Dalhousie University

    2017-09-28

    Composite tidal turbine blades with bend-twist (BT) coupled layups allow the blade to self-adapt to local site conditions by passively twisting. Passive feathering has the potential to increase annual energy production and shed thrust loads and power under extreme tidal flows. Decreased hydrodynamic thrust and power during extreme conditions meann that the turbine support structure, generator, and other components can be sized more appropriately, resulting in a higher utilization factor and increased cost effectiveness. This paper presents new experimental data for a small-scale turbine with BT composite blades. The research team tested the turbine in the Kelvin Hydrodynamics Laboratory towing tank at the University of Strathclyde in Glasgow, United Kingdom, and in the recirculating current flume at the l Institut Francais de Recherche pour l Exploitation de la Mer Centre in Boulogne-sur-Mer, France. Tests were also performed on rigid aluminum blades with identical geometry, which yielded baseline test sets for comparison. The results from both facilities agreed closely, supporting the hypothesis that increased blade flexibility can induce load reductions. Under the most extreme conditions tested the turbine with BT blades had up to 11 percent lower peak thrust loads and a 15 percent reduction in peak power compared to the turbine with rigid blades. The load reductions varied as a function of turbine rotational velocity and ambient flow velocity.

  5. Tank 48H Waste Composition and Results of Investigation of Analytical Methods

    Energy Technology Data Exchange (ETDEWEB)

    Walker , D.D. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-04-02

    This report serves two purposes. First, it documents the analytical results of Tank 48H samples taken between April and August 1996. Second, it describes investigations of the precision of the sampling and analytical methods used on the Tank 48H samples.

  6. Composite reinforced alumina ceramics with titan and lantana for use in coating storage tanks and transport of crude oil

    International Nuclear Information System (INIS)

    Mendes, C.E.; Rego, S.A.B.C.; Oliveira, J.C.S.; Ferreira, R.A. Sanguinetti; Yadava, Y.P.

    2011-01-01

    The objective of this work is to use ceramics to improve the performance of the tanks that store and transport crude oil and which use metallic materials for their manufacture. These tanks in contact with crude oil undergo a process of degradation on their surfaces, since crude oil is a highly corrosive substance. And in turn ceramic materials have good stability in hostile environments. However, they are inherently fragile for display little plastic deformation. Therefore, the choice of a ceramic composite alumina-titania-lantana has high mechanical strength and high toughness which were produced by thermo-mechanical processing. These composites were sintered at 1350 ° C for 36 hours, and it was held Vickers hardness testing and microstructural characterization to assess their surfaces before and after the attack by crude to use such material as ceramic coating. These results will be presented at the congress. (author)

  7. Energy based source location by using acoustic emission for damage detection in steel and composite CNG tank

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Sik; Han, Byeong Hee; Park, Choon Su; Yoon, Dong Jin [Center for Safety Measurements, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2015-10-15

    Acoustic emission (AE) is an effective nondestructive test that uses transient elastic wave generated by the rapid release of energy within a material to detect any further growth or expansion of existing defects. Over the past decades, because of environmental issues, the use of compressed natural gas (CNG) as an alternative fuel for vehicles is increasing because of environmental issues. For this reason, the importance and necessity of detecting defects on a CNG fuel tank has also come to the fore. The conventional AE method used for source location is highly affected by the wave speed on the structure, and this creates problems in inspecting a composite CNG fuel tank. Because the speed and dispersion characteristics of the wave are different according to direction of structure and laminated layers. In this study, both the conventional AE method and the energy based contour map method were used for source location. This new method based on pre-acquired D/B was used for overcoming the limitation of damage localization in a composite CNG fuel tank specimen which consists of a steel liner cylinder overwrapped by GFRP. From the experimental results, it is observed that the damage localization is determined with a small error at all tested points by using the energy based contour map method, while there were a number of mis-locations or large errors at many tested points by using the conventional AE method. Therefore, the energy based contour map method used in this work is more suitable technology for inspecting composite structures.

  8. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-02-28

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

  9. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    International Nuclear Information System (INIS)

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J.V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-01-01

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing

  10. Investigation of Composition of Particle Size in Sediments of Stormwater Sedimentation Tank

    OpenAIRE

    Daiva Laučytė; Regimantas Dauknys

    2011-01-01

    The main object for the storm water runoff treatment is to remove suspended solids before the storm water runoff is discharged into surface waters. Therefore the sedimentation tank is the most often used treatment facility. In order to optimise the sedimentation, the tendency of particle size distribution in bottom sediments must be known. Two similar size storm water runoff sedimentation tanks in Vilnius city were selected for the analysis of the particle size distribution in sediments. The ...

  11. Hanford Tanks 241-AY-102 and 241-BX-101: Sludge Composition and Contaminant Release Data

    International Nuclear Information System (INIS)

    Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.; Cantrell, Kirk J.; Hess, Nancy J.; Schaef, Herbert T.; Arey, Bruce W.

    2004-01-01

    This report describes the results of testing sludge samples from Hanford tanks 241-AY-102 (AY-102) and 241-BX-101 (BX-101). These tests were conducted to characterize the sludge and assess the water leachability of contaminants from the solids. This work is being conducted to support the tank closure risk assessments being performed by CH2M HILL Hanford Group, Inc. for the U.S. Department of Energy. This is the first report of testing of BX-101 sludge and the second report of testing of AY-102. Lindberg and Deutsch (2003) described the first phase of testing on AY-102 material

  12. Fleet Composition of Rail Tank Cars That Transport Flammable Liquids: 2013-2016

    Science.gov (United States)

    2017-09-05

    Section 7308 of the Fixing America's Surface Transportation Act (FAST Act; P. L. 114-94; December 4, 2015) requires the U.S. Department of Transportation (DOT) to assemble and collect data on rail tank cars transporting Class 3 flammable liquids (box...

  13. Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM

    International Nuclear Information System (INIS)

    Meng, Z.N.; Zhang, P.

    2017-01-01

    Highlights: • A tube-in-tank latent thermal energy storage (LTES) unit using composite PCM is built. • Thermal performances of the LTES unit are experimentally and numerically studied. • Thermal performances of the LTES unit under different operation conditions are comparatively studied. • A 3D numerical model is established to study the heat transfer mechanisms of the LTES unit. - Abstract: Paraffin is a commonly used phase change material (PCM) which has been frequently applied for thermal energy storage. A tube-in-tank latent thermal energy storage (LTES) unit using paraffin as PCM is built in the present study, which can be used in many applications. In order to enhance the thermal performance of the LTES unit, the composite PCM is fabricated by embedding copper foam into pure paraffin. The performances of the LTES unit with the composite PCM during the heat charging and discharging processes are investigated experimentally, and a series of experiments are carried out under different inlet temperatures and inlet flow velocities of the heat transfer fluid (HTF). The temperature evolutions of the LTES unit are obtained during the experiments, and the time-durations, mean powers and energy efficiencies are estimated to evaluate the performance of the LTES unit. Meanwhile, a three-dimensional (3D) mathematical model based on enthalpy-porosity and melting/solidification models is established to investigate the heat transfer mechanisms of the LTES unit and the detailed heat transfer characteristics of the LTES unit are obtained. It can be concluded that the LTES unit with the composite PCM shows good heat transfer performance, and larger inlet flow velocity of the HTF and larger temperature difference between the HTF and PCM can enhance the heat transfer and benefit the thermal energy utilization. Furthermore, a LTES system with larger thermal energy storage capacity can be easily assembled by several such LTES units, which can meet versatile demands in

  14. Composition and quantities of retained gas measured in Hanford waste tanks 241-AW-101 A-101, AN-105, AN-104, and AN-103

    International Nuclear Information System (INIS)

    Shekarriz, A.; Rector, D.R.; Mahoney, L.A.

    1997-03-01

    This report provides the results obtained for the first five tanks sampled with the Retained Gas Sampler (RGS): Tanks 241-AW-101, A-101, AN-105, AN-104, and AN-103. The RGS is a modified version of the core sampler used at Hanford. It is designed specifically, in concert with the gas extraction equipment in the hot cell, to capture and extrude a gas-containing waste sample in a hermetically sealed system. The retained gases are then extracted and stored in small gas canisters. The composition of the gases contained in the canisters was measured by mass spectroscopy. The total gas volume was obtained from analysis of the extraction process, as discussed in detail throughout this report. The following are the findings of this research: (1) The RGS is a viable approach for measuring retained gases in double- and single-shell waste tanks at Hanford. (2) Local measurements of void fraction with the RGS agree with the results obtained with the void fraction instrument (VFI) in most cases. (3) In the tanks sampled, more than 16% of the retained gas in the nonconvective layer was nitrogen (N 2 ). The fraction of nitrogen gas was approximately 60% in Tank 241-AW-101. This finding shows that not all the retained gas mixtures are flammable. (4) In the tanks sampled, the ratios of hydrogen to oxidizers were observed to be significantly higher than 1; i.e., these tanks are fuel-rich. Based on these observations, the RGS will be used to sample for retained gases in several single-shell tanks at Hanford. The remaining sections of this summary describe the RGS-findings for the first five tanks tested. The results are described in the order in which the tanks were sampled, to reflect the increasing experience on which RGS methods were based

  15. Structure and Composition of Leachfield Bacterial Communities: Role of Soil Texture, Depth and Septic Tank Effluent Inputs

    Directory of Open Access Journals (Sweden)

    Janet A. Atoyan

    2012-09-01

    Full Text Available Although groundwater quality depends on microbial processes in the soil treatment area (STA of onsite wastewater treatment systems (OWTS, our understanding of the development of these microbial communities is limited. We examined the bacterial communities of sand, sandy loam, and clay STAs at different depths in response to septic tank effluent (STE addition using mesocosms. Terminal restriction fragment length polymorphism (TRFLP analysis was used to compare the bacterial community structure and composition of STE, native soil prior to STE addition (UNX and soil exposed to STE (EXP. Principal component analysis separated communities with depth in sand but not in sandy loam or clay. Indices of richness, diversity, and evenness followed the order: sandy loam > sand > clay. Analysis of TRF peaks indicated that STE contributed least to the composition of STA bacterial communities (5%–16%, followed by UNX soil (18%–48%, with the highest proportion of the community made up of TRFs not detected previously in either UNX or STE (50%–82% for all three soils. Soil type and depth can have a marked effect on the structure and composition of STA bacterial communities, and on the relative contribution of native soil and STE to these communities.

  16. Cesium Removal From Tanks 241-AN-103 and 241-SX-105 and 241-AZ-101 and 241-AZ-102 Composite For Testing In Bench Scale Steam Reformer

    International Nuclear Information System (INIS)

    Duncan, J.B.; Huber, H.J.

    2011-01-01

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  17. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB; HUBER HJ

    2011-04-21

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  18. Tank waste compositions and atmospheric dispersion coefficients for use in accelerated safety analysis consequence assessments. Revision 1

    International Nuclear Information System (INIS)

    Savino, A.V.

    1995-11-01

    This topical report contains technical support information used to determine accident consequences for the Tank Farms Accelerated Safety Analysis (ASA) Interim Chapter 3, Hazard and Accident Analysis: Potential for Releases and Required Mitigation and Prevention and the Tank Waste Remediation System (TWRS) environmental impact statement (EIS) accident consequence report. It does not determine accident consequences or describe specific accident scenarios, but instead provides generic information used to calculate radiological and toxic chemical consequences for postulated tank farms accident releases

  19. Use of aluminum oxides, titanium and cerium in the production of ceramic composites for protective coating of storage tanks and transportation of oil raw

    International Nuclear Information System (INIS)

    Rego, S.A.B.C.; Ferreira, R.A.S.; Yadava, Y.P.

    2012-01-01

    The deployment of the Abreu e Lima refinery in the port of SUAPE - PE will increase the need to store oil in the region, it is essential to research and develop new materials inert to chemical attack promoted by oil. In this work, we produce the ceramic composite alumina-titania, ceria of high mechanical strength which is observed that with additions of titanium oxide in the order of 15% and 20% better results are obtained as possibly indicating these composites suitable for use in coating ceramic storage tanks of crude oil. (author)

  20. Test Report for Cesium and Solids Removal from an 11.5L Composite of Archived Hanford Double Shell Tank Supernate for Off-Site Disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Doll, S. R.; Cooke, G. A.

    2017-08-31

    The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid in the classification of the waste for shipping, receiving, treatment, and disposal determinations.

  1. Test Report for Cesium and Solids Removal from an 11.5L Composite of Archived Hanford Double Shell Tank Supernate for Off-Site Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Stephanie R. [Hanford Site (HNF), Richland, WA (United States); Cooke, Gary A. [Hanford Site (HNF), Richland, WA (United States)

    2017-08-31

    The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion-exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid in the classification of the waste for shipping, receiving, treatment, and disposal determinations.

  2. Material selection for Multi-Function Waste Tank Facility tanks

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1994-01-01

    This report briefly summarizes the history of the materials selection for the US Department of Energy's high-level waste carbon steel storage tanks. It also provide an evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements; assessed each requirement; and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of normalized ASME SA 516, Grade 70, carbon steel

  3. Studies on sludge from storage tank of waxy crude oil. Part I: structure and composition of distillate fractions

    Energy Technology Data Exchange (ETDEWEB)

    Fazal, S.A.; Zarapkar, S.S.; Joshi, G.C. [D.G. Ruparel College, Bombay (India). Dept. of Chemistry

    1995-08-01

    Tank bottom sludge from storage tanks of Bombay High crude oil deposited during ten years have been studied. The yield of the sludge is approximately 0.1% wt. of the crude oil through-put. The residue boiling above 500{degree}C amounts to over 50%. The distillate fractions collected at 50{degree}C intervals have been analyzed extensively and compared to fractions from whole crude of same boiling range. The sludge distillate are distinctly more paraffinic in nature. 15 refs., 7 tabs.

  4. Tank design

    International Nuclear Information System (INIS)

    Earle, F.A.

    1992-01-01

    This paper reports that aboveground tanks can be designed with innovative changes to complement the environment. Tanks can be constructed to eliminate the vapor and odor emanating from their contents. Aboveground tanks are sometimes considered eyesores, and in some areas the landscaping has to be improved before they are tolerated. A more universal concern, however, is the vapor or odor that emanates from the tanks as a result of the materials being sorted. The assertive posture some segments of the public now take may eventually force legislatures to classify certain vapors as hazardous pollutants or simply health risks. In any case, responsibility will be leveled at the corporation and subsequent remedy could increase cost beyond preventive measures. The new approach to design and construction of aboveground tanks will forestall any panic which might be induced or perceived by environmentalists. Recently, actions by local authorities and complaining residents were sufficient to cause a corporation to curtail odorous emissions through a change in tank design. The tank design change eliminated the odor from fuel oil vapor thus removing the threat to the environment that the residents perceived. The design includes reinforcement to the tank structure and the addition of an adsorption section. This section allows the tanks to function without any limitation and their contents do not foul the environment. The vapor and odor control was completed successfully on 6,000,000 gallon capacity tanks

  5. Polymer composites for optical imaging and X-rays in hydraulic simulation tanks; Compositos polimericos para imageamento optico e por raios-x em tanques de simulacao hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Maria H.S.; Goncalves, Raiane V.; Basso, Nara R.S.; Moura, Cassio S., E-mail: maria.helena@acad.pucrs.br, E-mail: raiane.goncalves@acad.pucrs.br, E-mail: nrbass@pucrs.br, E-mail: cassio.moura@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil)

    2015-07-01

    This research is related to new approaches for non-invasive imaging techniques that allows registering the internal architecture of sedimentary deposits generated in hydraulic simulation tanks to better understand the behavior of density currents. Polymeric composite with properties and characteristics similar to coal 205 was prepared with inorganic filler for non-destructive tests. It was used an orthophthalic polyester resin with different dye loads and barium sulfate as inorganic filler. Tests on x-ray Microtomography showed that the barium sulphate provides the necessary opacity for detection with such technique. Scanning electron microscopy allowed evaluating and classifying the shape of the matrix and measuring the nanometric dimensions of the filler. Specific mass and drop rate were also evaluated and it was found that the incorporation of dye and filler did not affected significantly the desired characteristics. For this reasons, the composite prepared show potential use in simulations and non-invasive imaging. (author)

  6. Development of advanced material composites for use as internal insulation for LH2 tanks (gas layer concept)

    Science.gov (United States)

    Gille, J. P.

    1972-01-01

    A program is described that was conducted to develop an internal insulation system for potential application to the liquid hydrogen tanks of a reusable booster, where the tanks would be subjected to repeated high temperatures. The design of the internal insulation is based on a unique gas layer concept, in which capillary or surface tension effects are used to maintain a stable gas layer, within a cellular core structure, between the tank wall and the contained liquid hydrogen. Specific objectives were to select materials for insulation systems that would be compatible with wall temperatures of 350 F and 650 F during reentry into the earth's atmosphere, and to fabricate and test insulation systems under conditions simulating the operating environment. A materials test program was conducted to evaluate the properties of candidate materials at elevated temperatures and at the temperature of liquid hydrogen, and to determine the compatibility of the materials with a hydrogen atmosphere at the appropriate elevated temperature. The materials that were finally selected included Kapton polyimide films, silicone adhesives, fiber glass batting, and in the case of the 350 F system, Teflon film.

  7. Decay tank

    International Nuclear Information System (INIS)

    Matsumura, Seiichi; Tagishi, Akinori; Sakata, Yuji; Kontani, Koji; Sudo, Yukio; Kaminaga, Masanori; Kameyama, Iwao; Ando, Koei; Ishiki, Masahiko.

    1990-01-01

    The present invention concerns an decay tank for decaying a radioactivity concentration of a fluid containing radioactive material. The inside of an decay tank body is partitioned by partitioning plates to form a flow channel. A porous plate is attached at the portion above the end of the partitioning plate, that is, a portion where the flow is just turned. A part of the porous plate has a slit-like opening on the side close to the partitioning plate, that is, the inner side of the flow at the turning portion thereof. Accordingly, the primary coolants passed through the pool type nuclear reactor and flown into the decay tank are flow caused to uniformly over the entire part of the tank without causing swirling. Since a distribution in a staying time is thus decreased, the effect of decaying 16 N as radioactive nuclides in the primary coolants is increased even in a limited volume of the tank. (I.N.)

  8. Development and characterization of ceramic composites alumina-titania based reinforced with lanthanum oxide for fabrication of inert coatings for metallic tanks of the oil industry

    International Nuclear Information System (INIS)

    Bandeira, J.M.; Yadava, Y.P.; Silva, N.D.G.; Ferreira, R.A.S.

    2016-01-01

    Crude petroleum is highly corrosive causing superficial degradation in metallic tanks used for storage and transportation of this material, which causes a serious problem in the oil industry. An alternative to solve this problem is to use some kind of coating that is inert to this kind of corrosion. Alumina and titania are interesting materials for several engineering applications because, when compared with other ceramic materials, they present superior mechanical properties, e.g. high mechanical strength, good chemical stability and high fracture toughness combined with good wear resistance and a coefficient of thermal expansion close to the iron's, which makes them fit to use in ceramic hardening process and coating. In this paper, alumina-titania ceramic composites with 5%, 10%, 15% and 20% of titania (TiO2) and reinforced with 2% of lanthanum oxide of were produced by thermo-mechanical processing and sintering techniques at 1350 deg C. In these composites, microstructure and mechanical properties were analyzed using X-ray spectroscopy, optical microscopy, scanning electron microscopy and Vickers hardness in order to evaluate their applicability. X-ray spectroscopy showed the formation of composite without the presence of other phases. Optical microscopy and scanning electron microscopy showed a homogeneous microstructure in terms of particle size and distribution. Vickers hardness test showed a gradual decrease in hardness with the addition of titania. The composite with 5% of titania and 2% of lanthanum oxide is the best choice for structural applications. The composites were submerged in crude petroleum for 30 days to study their stability in such environment. Through the analysis of X-ray spectroscopy, optical microscopy and Vickers hardness before and after the submersion in crude petroleum, it was not observed structural or microstructural degradation nether alterations in mechanical properties. This way, it was concluded that these composites have good

  9. Nitrogen tank

    CERN Multimedia

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  10. Effect of short-term versus long-term grassland management and seasonal variation in organic and conventional dairy farming on the composition of bulk tank milk

    DEFF Research Database (Denmark)

    Adler, S A; Jensen, Søren Krogh; Govasmark, E

    2013-01-01

    Bulk tank milk from 28 dairy farms was sampled every second month for 2 yr to assess the effects of grassland management, production system and season on milk fatty acid (FA) composition, concentrations of fat-soluble vitamins, Se, and milk sensory quality. Grassland management varied in terms of...... feeding periods had potential health benefits due to FA composition. In contrast, the higher milk-fat proportions of saturated FA in milk from ORG farms may be perceived as negative for human health.......:0 and C18:1 cis-9 associated with higher forage proportion and differences in concentrations of FA in concentrates. Compared with the outdoor-feeding periods, the indoor feeding periods yielded milk fat with higher proportions of most short-chain and medium-chain FA and lower proportions of most C18-FA....... In conclusion, grassland management had minor effects on milk composition, and differences between ORG farms and CON farms may be explained by differences in concentrate intake and concentrate FA concentrations. Milk produced on ORG farms versus CON farms and milk produced during the outdoor versus indoor...

  11. Composition design of Ti–Cr–Mn–Fe alloys for hybrid high-pressure metal hydride tanks

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhijie [School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Ouyang, Liuzhang, E-mail: meouyang@scut.edu.cn [School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Key Laboratory for Fuel Cell Technology in Guangdong Province, Guangzhou 510641 (China); Wang, Hui; Liu, Jiangwen [School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Sun, Lixian [Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004 (China); Zhu, Min, E-mail: memzhu@scut.edu.cn [School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China)

    2015-08-05

    Highlights: • New non-stoichiometric Ti–Cr–Mn–Fe alloys are prepared for the hybrid tank. • (Ti{sub 0.85}Zr{sub 0.15}){sub 1.1}Cr{sub 0.925}MnFe{sub 0.075} has the best overall properties. • The desorption pressure at 0 °C is 10.6 atm. • The reversible gravimetric density remains as a high value of 1.49 wt%. - Abstract: (Ti{sub 0.85}Zr{sub 0.15}){sub 1.1}Cr{sub 1−x}MnFe{sub x} (x = 0, 0.05, 0.075, 0.1, 0.15) alloys with a C14-type Laves structure have been investigated for potential application in hybrid high-pressure metal hydride tanks used for fuel cell vehicles. The effects of the partial substitution of Cr with Fe on the hydrogen storage properties of (Ti{sub 0.85}Zr{sub 0.15}){sub 1.1}CrMn have been systematically investigated. Results show that the desorption plateau pressure increases with increasing the Fe content in (Ti{sub 0.85}Zr{sub 0.15}){sub 1.1}Cr{sub 1−x}MnFe{sub x} alloys, whereas the hydrogen capacity decreases. Among these alloys, (Ti{sub 0.85}Zr{sub 0.15}){sub 1.1}Cr{sub 0.925}MnFe{sub 0.075} has the best overall properties, with a hydrogen desorption pressure of 10.6 atm and a reversible capacity of 1.54 wt% at 0 °C under the pressure range between 0.1 atm and 120 atm.

  12. Composition design of Ti–Cr–Mn–Fe alloys for hybrid high-pressure metal hydride tanks

    International Nuclear Information System (INIS)

    Cao, Zhijie; Ouyang, Liuzhang; Wang, Hui; Liu, Jiangwen; Sun, Lixian; Zhu, Min

    2015-01-01

    Highlights: • New non-stoichiometric Ti–Cr–Mn–Fe alloys are prepared for the hybrid tank. • (Ti 0.85 Zr 0.15 ) 1.1 Cr 0.925 MnFe 0.075 has the best overall properties. • The desorption pressure at 0 °C is 10.6 atm. • The reversible gravimetric density remains as a high value of 1.49 wt%. - Abstract: (Ti 0.85 Zr 0.15 ) 1.1 Cr 1−x MnFe x (x = 0, 0.05, 0.075, 0.1, 0.15) alloys with a C14-type Laves structure have been investigated for potential application in hybrid high-pressure metal hydride tanks used for fuel cell vehicles. The effects of the partial substitution of Cr with Fe on the hydrogen storage properties of (Ti 0.85 Zr 0.15 ) 1.1 CrMn have been systematically investigated. Results show that the desorption plateau pressure increases with increasing the Fe content in (Ti 0.85 Zr 0.15 ) 1.1 Cr 1−x MnFe x alloys, whereas the hydrogen capacity decreases. Among these alloys, (Ti 0.85 Zr 0.15 ) 1.1 Cr 0.925 MnFe 0.075 has the best overall properties, with a hydrogen desorption pressure of 10.6 atm and a reversible capacity of 1.54 wt% at 0 °C under the pressure range between 0.1 atm and 120 atm

  13. Tank characterization report for Single-Shell Tank B-111

    International Nuclear Information System (INIS)

    Remund, K.M.; Tingey, J.M.; Heasler, P.G.; Toth, J.J.; Ryan, F.M.; Hartley, S.A.; Simpson, D.B.; Simpson, B.C.

    1994-09-01

    Tank 241-B-111 (hereafter referred to as B-111) is a 2,006,300 liter (530,000 gallon) single-shell waste tank located in the 200 East B tank farm at Hanford. Two cores were taken from this tank in 1991 and analysis of the cores was conducted by Battelle's 325-A Laboratory in 1993. Characterization of the waste in this tank is being done to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05. Tank B-111 was constructed in 1943 and put into service in 1945; it is the second tank in a cascade system with Tanks B-110 and B-112. During its process history, B-111 received mostly second-decontamination-cycle waste and fission products waste via the cascade from Tank B-110. This tank was retired from service in 1976, and in 1978 the tank was assumed to have leaked 30,300 liters (8,000 gallons). The tank was interim stabilized and interim isolated in 1985. The tank presently contains approximately 893,400 liters (236,000 gallons) of sludge-like waste and approximately 3,800 liters (1,000 gallons) of supernate. Historically, there are no unreviewed safety issues associated with this tank and none were revealed after reviewing the data from the latest core sampling event in 1991. An extensive set of analytical measurements was performed on the core composites. The major constituents (> 0.5 wt%) measured in the waste are water, sodium, nitrate, phosphate, nitrite, bismuth, iron, sulfate and silicon, ordered from largest concentration to the smallest. The concentrations and inventories of these and other constituents are given. Since Tanks B-110 and B-111 have similar process histories, their sampling results were compared. The results of the chemical analyses have been compared to the dangerous waste codes in the Washington Dangerous Waste Regulations (WAC 173-303). This assessment was conducted by comparing tank analyses against dangerous waste characteristics 'D' waste codes; and against state waste codes

  14. Tank characterization report for single-shell tank 241-U-110

    International Nuclear Information System (INIS)

    Brown, T.M.; Jensen, L.

    1993-04-01

    This report investigates the nature of the waste in tank U-110 using historical and current information. When characterizing tank waste, several important properties are considered. First, the physical characteristics of the waste are presented, including waste appearance, density, and size of waste particles. The existence of any exotherms in the tank that may present a safety concern is investigated. Finally, the radiological and chemical composition of the tank are presented

  15. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  16. Dual Tank Fuel System

    Science.gov (United States)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  17. Composition and quantities of retained gas measured in Hanford waste tanks 241-U-103, S-106, BY-101, and BY-109

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, L.A.; Antoniak, Z.I.; Bates, J.M.

    1997-12-01

    This report provides the results obtained for the single-shell tanks (SSTs) sampled with the Retained Gas Sampler (RGS) during 1997: Tanks 241-U-103, 241-S-106, 241-BY-101, and 241-BY-109. The RGS is a modified version of the core sampler used at Hanford. It is designed specifically to be used in concert with the gas extraction equipment in the hot cell to capture and extrude a gas-containing waste sample in a hermetically sealed system. The four tanks represent several different types of flammable gas SSTs. Tank U-103 is on the Flammable Gas Watch List (FGWL) and is one of the highest-priority group of SSTs that show evidence of significant gas retention. Tank S-106, though not a FGWL tank, has a uniquely high barometric pressure response and continuing rapid surface level rise, indicating a large and increasing volume of retained gas. Tanks BY-101 and BY-109 are not on the FGWL but were chosen to test the effect of recent salt-well pumping on gas retention. Section 2 of this report provides an overview of the process by which retained gases in the Hanford tanks are sampled and analyzed. A detailed description of the procedure used to reduce and analyze the data is provided in Section 3. Tank-by-tank results are covered in Section 4 (with the data presented in the order in which the tanks were sampled), and an RGS system performance overview is given in Section 5. Section 6 presents conclusions from these analyses and recommendations for further research. The cited references are listed in Section 7. Appendix A describes the procedures used to extract gas and ammonia from the samples, Appendix B contains detailed laboratory data from each of the tanks, and Appendix C gives field sampling data.

  18. Composition and quantities of retained gas measured in Hanford waste tanks 241-U-103, S-106, BY-101, and BY-109

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Antoniak, Z.I.; Bates, J.M.

    1997-12-01

    This report provides the results obtained for the single-shell tanks (SSTs) sampled with the Retained Gas Sampler (RGS) during 1997: Tanks 241-U-103, 241-S-106, 241-BY-101, and 241-BY-109. The RGS is a modified version of the core sampler used at Hanford. It is designed specifically to be used in concert with the gas extraction equipment in the hot cell to capture and extrude a gas-containing waste sample in a hermetically sealed system. The four tanks represent several different types of flammable gas SSTs. Tank U-103 is on the Flammable Gas Watch List (FGWL) and is one of the highest-priority group of SSTs that show evidence of significant gas retention. Tank S-106, though not a FGWL tank, has a uniquely high barometric pressure response and continuing rapid surface level rise, indicating a large and increasing volume of retained gas. Tanks BY-101 and BY-109 are not on the FGWL but were chosen to test the effect of recent salt-well pumping on gas retention. Section 2 of this report provides an overview of the process by which retained gases in the Hanford tanks are sampled and analyzed. A detailed description of the procedure used to reduce and analyze the data is provided in Section 3. Tank-by-tank results are covered in Section 4 (with the data presented in the order in which the tanks were sampled), and an RGS system performance overview is given in Section 5. Section 6 presents conclusions from these analyses and recommendations for further research. The cited references are listed in Section 7. Appendix A describes the procedures used to extract gas and ammonia from the samples, Appendix B contains detailed laboratory data from each of the tanks, and Appendix C gives field sampling data

  19. Tank 4 Characterization, Settling, And Washing Studies

    International Nuclear Information System (INIS)

    Bannochie, C.; Pareizs, J.; Click, D.; Zamecnik, J.

    2009-01-01

    A sample of PUREX sludge from Tank 4 was characterized, and subsequently combined with a Tank 51 sample (Tank 51-E1) received following Al dissolution, but prior to a supernate decant by the Tank Farm, to perform a settling and washing study to support Sludge Batch 6 preparation. The sludge source for the majority of the Tank 51-E1 sample is Tank 12 HM sludge. The Tank 51-E1 sample was decanted by SRNL prior to use in the settling and washing study. The Tank 4 sample was analyzed for chemical composition including noble metals. The characterization of the Tank 51-E1 sample, used here in combination with the Tank 4 sample, was reported previously. SRNL analyses on Tank 4 were requested by Liquid Waste Engineering (LWE) via Technical Task Request (TTR) HLE-TTR-2009-103. The sample preparation work is governed by Task Technical and Quality Assurance Plan (TTQAP), and analyses were controlled by an Analytical Study Plan and modifications received via customer communications. Additional scope included a request for a settling study of decanted Tank 51-E1 and a blend of decanted Tank 51-E1 and Tank 4, as well as a washing study to look into the fate of undissolved sulfur observed during the Tank 4 characterization. The chemistry of the Tank 4 sample was modeled with OLI Systems, Inc. StreamAnalyzer to determine the likelihood that sulfate could exist in this sample as insoluble Burkeite (2Na 2 SO 4 · Na 2 CO 3 ). The OLI model was also used to predict the composition of the blended tank materials for the washing study. The following conclusions were drawn from the Tank 4 analytical results reported here: (1) Any projected blend of Tank 4 and the current Tank 51 contents will produce a SB6 composition that is lower in Ca and U than the current SB5 composition being processed by DWPF. (2) Unwashed Tank 4 has a relatively large initial S concentration of 3.68 wt% on a total solids basis, and approximately 10% of the total S is present as an insoluble or undissolved form

  20. Effect of addition of Navicula sp. on plankton composition and postlarvae growth of Litopenaeus vannamei reared in culture tanks with zero water exchange

    Directory of Open Access Journals (Sweden)

    Yllana Ferreira-Marinho

    2014-07-01

    Full Text Available The aim of this study was to evaluate the effect of the addition of Navicula sp. on plankton composition and postlarvae growth of Litopenaeus vannamei reared in culture tanks with zero water exchange systems. Four treatments were considered: zero water exchange (ZWE; ZWE with the addition of feed (ZWE-F; ZWE with the addition of Navicula sp. (ZWE-N and ZWE with the addition of feed and Navicula sp. (ZWE-FN, all in triplicate. Shrimp of 17.7 ± 0.02 mg were stocked at a density of 2500 shrimp m-3 and microalgae added on the 1st, 5th and 15th day at a density of 5x10(4 cell mL-1. The shrimp were fed a commercial feed composed by 42% crude protein four times a day except in the ZWE treatment. For data analysis we used Cochran, Shapiro-Wilk, ANOVA, Tukey and Student-t tests (P < 0.05. The most frequent genera were: Anabaena, Arcella, Asplanchma, Bosmina, Brachionus, Cylindrotheca, Daphnia, Fragilaria, Hemiaulus, Keratella, Orthoseira, Oscillatoria, Phymatodocis, Rhabdonema, Skeletonema, Sckizothrix and Ulothrix. Significant differences between treatments were observed for TAN, NO2-N, alkalinity, final weight, weight gain, final biomass, biomass gain, feed conversion ratio, specific growth rate and survival. The ZWE-FN treatment showed better production parameters, indicating the benefits of the addition of Navicula sp. as a natural food source for L. vannamei postlarvae in zero water exchange systems.

  1. LH2 fuel tank design for SSTO

    Science.gov (United States)

    Wright, Geoff

    1994-01-01

    This report will discuss the design of a liquid hydrogen fuel tank constructed from composite materials. The focus of this report is to recommend a design for a fuel tank which will be able to withstand all static and dynamic forces during manned flight. Areas of study for the design include material selection, material structural analysis, heat transfer, thermal expansion, and liquid hydrogen diffusion. A structural analysis FORTRAN program was developed for analyzing the buckling and yield characteristics of the tank. A thermal analysis Excel spreadsheet was created to determine a specific material thickness which will minimize heat transfer through the wall of the tank. The total mass of the tank was determined by the combination of both structural and thermal analyses. The report concludes with the recommendation of a layered material tank construction. The designed system will include exterior insulation, combination of metal and organize composite matrices and honeycomb.

  2. Tank Insulation

    Science.gov (United States)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  3. Feed tank transfer requirements

    International Nuclear Information System (INIS)

    Freeman-Pollard, J.R.

    1998-01-01

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented

  4. Feed tank transfer requirements

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  5. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  6. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  7. Tank 50H Tetraphenylborate Destruction Results

    International Nuclear Information System (INIS)

    Peters, T.B.

    2003-01-01

    We conducted several scoping tests with both Tank 50H surrogate materials (KTPB and phenol) as well as with actual Tank 50H solids. These tests examined whether we could destroy the tetraphenylborate in the surrogates or actual Tank 50H material either by use of Fenton's Reagent or by hydrolysis (in Tank 50H conditions at a maximum temperature of 50 degrees C) under a range of conditions. The results of these tests showed that destruction of the solids occurred only under a minority of conditions. (1)Using Fenton's Reagent and KTPB as the Tank 50H surrogate, no reaction occurred at pH ranges greater than 9. (2)Using Fenton's Reagent and phenol as the Tank 50H surrogate, no reaction occurred at a pH of 14. (3)Using Fenton's Reagent and actual Tank 50H slurry, a reaction occurred at a pH of 9.5 in the presence of ECC additives. (4)Using Fenton's Reagent and actual Tank 50H slurry, after a thirty three day period, all attempts at hydrolysis (at pH 14) were too slow to be viable. This happened even in the case of higher temperature (50 degrees C) and added (100 ppm) copper. Tank 50H is scheduled to return to HLW Tank Farm service with capabilities of transferring and receiving salt supernate solutions to and from the Tank Farms and staging feed for the Saltstone Facility. Before returning Tank 50H to Tank Farm service as a non-organic tank, less than 5 kg of TPB must remain in Tank 50H. Recently, camera inspections in Tank 50H revealed two large mounds of solid material, one in the vicinity of the B5 Riser Transfer Pump and the other on the opposite side of the tank. Personnel sampled and analyzed this material to determine its composition. The sample analysis indicated presence of a significant quantity of organics in the solid material. This quantity of organic material exceeds the 5 kg limit for declaring only trace amounts of organic material remain in Tank 50H. Additionally, these large volumes of solids, calculated as approximately 61K gallons, present other

  8. Tank 241-U-203: Tank Characterization Plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1995-01-01

    The revised Federal Facility Agreement and Consent Order states that a tank characterization plan will be developed for each double-shell tank and single-shell tank using the data quality objective process. The plans are intended to allow users and regulators to ensure their needs will be met and resources are devoted to gaining only necessary information. This document satisfies that requirement for Tank 241-U-203 sampling activities

  9. Tank 241-BY-108 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQOs identity information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for tank BY-108 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given. Single-shell tank BY-108 is classified as a Ferrocyanide Watch List tank. The tank was declared an assumed leaker and removed from service in 1972; interim stabilized was completed in February 1985. Although not officially an Organic Watch List tank, restrictions have been placed on intrusive operations by Standing Order number-sign 94-16 (dated 09/08/94) since the tank is suspected to contain or to have contained a floating organic layer

  10. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  11. Tank 241-BY-111 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQO's identify information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for Tank BY-111 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given

  12. AX Tank Farm tank removal study

    International Nuclear Information System (INIS)

    SKELLY, W.A.

    1998-01-01

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft 3 of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms

  13. Tank characterization report for single-shell tank 241-BX-107

    International Nuclear Information System (INIS)

    Raphael, G.F.

    1996-01-01

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents

  14. Applicability assessment of ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ to the eradication of Legionella in rainwater storage tanks for household use.

    Science.gov (United States)

    Oana, Kozue; Kobayashi, Michiko; Yamaki, Dai; Sakurada, Tsukasa; Nagano, Noriyuki; Kawakami, Yoshiyuki

    2015-01-01

    Water environments appear to be the habitats of Legionella species. Legionellosis is considered as a preventable illness because bacterial reservoirs can be controlled and removed. Roof-harvested rainwater has attracted significant attention not only as a groundwater recharge but also as a potential alternative source of nonpotable water. We successfully developed ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ using the thermal spraying method. The ceramic microbeads were demonstrated to have bactericidal activities against not only Legionella but also coliform and heterotrophic bacteria. Immersing the ceramic microbeads in household rainwater storage tanks was demonstrated to yield the favorable eradication of Legionella organisms. Not only rapid-acting but also long-lasting bactericidal activities of the ceramic microbead were exhibited against Legionella pneumophila. However, time-dependent attenuation of the bactericidal activities against Legionella were also noted in the sustainability appraisal experiment. Therefore, the problems to be overcome surely remain in constantly managing the Legionella-pollution by means of immersing the ceramic microbeads. The results of our investigation apparently indicate that the earthplus™-coated ceramic microbeads would become the favorable tool for Legionella measures in household rainwater storage tanks, which may become the natural reservoir for Legionella species. Our investigation would justify further research and data collection to obtain more reliable procedures to microbiologically regulate the Legionella in rainwater storage tanks.

  15. Applicability assessment of ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ to the eradication of Legionella in rainwater storage tanks for household use

    Science.gov (United States)

    Oana, Kozue; Kobayashi, Michiko; Yamaki, Dai; Sakurada, Tsukasa; Nagano, Noriyuki; Kawakami, Yoshiyuki

    2015-01-01

    Water environments appear to be the habitats of Legionella species. Legionellosis is considered as a preventable illness because bacterial reservoirs can be controlled and removed. Roof-harvested rainwater has attracted significant attention not only as a groundwater recharge but also as a potential alternative source of nonpotable water. We successfully developed ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ using the thermal spraying method. The ceramic microbeads were demonstrated to have bactericidal activities against not only Legionella but also coliform and heterotrophic bacteria. Immersing the ceramic microbeads in household rainwater storage tanks was demonstrated to yield the favorable eradication of Legionella organisms. Not only rapid-acting but also long-lasting bactericidal activities of the ceramic microbead were exhibited against Legionella pneumophila. However, time-dependent attenuation of the bactericidal activities against Legionella were also noted in the sustainability appraisal experiment. Therefore, the problems to be overcome surely remain in constantly managing the Legionella-pollution by means of immersing the ceramic microbeads. The results of our investigation apparently indicate that the earthplus™-coated ceramic microbeads would become the favorable tool for Legionella measures in household rainwater storage tanks, which may become the natural reservoir for Legionella species. Our investigation would justify further research and data collection to obtain more reliable procedures to microbiologically regulate the Legionella in rainwater storage tanks. PMID:26346201

  16. Hanford Tank Cleanup Update

    International Nuclear Information System (INIS)

    Berriochoa, M.V.

    2011-01-01

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  17. Tank 241-C-103 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling analytical needs for the resolution of safety issues. A Tank Characterization Plant (TCP) will be developed for each double shell tank (DST) and single-shell tank (SST) using the DQO process. There are four Watch list tank classifications (ferrocyanide, organic salts, hydrogen/flammable gas, and high heat load). These classifications cover the six safety issues related to public and worker health that have been associated with the Hanford Site underground storage tanks. These safety issues are as follows: ferrocyanide, flammable gas, organic, criticality, high heat, and vapor safety issues. Tank C-103 is one of the twenty tanks currently on the Organic Salts Watch List. This TCP will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in accordance with the appropriate DQO documents. In addition, the current contents and status of the tank are projected from historical information. The relevant safety issues that are of concern for tanks on the Organic Salts Watch List are: the potential for an exothermic reaction occurring from the flammable mixture of organic materials and nitrate/nitrite salts that could result in a release of radioactive material and the possibility that other safety issues may exist for the tank

  18. Tank 241-AW-101 tank characterization plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1994-01-01

    The first section gives a summary of the available information for Tank AW-101. Included in the discussion are the process history and recent sampling events for the tank, as well as general information about the tank such as its age and the risers to be used for sampling. Tank 241-AW-101 is one of the 25 tanks on the Flammable Gas Watch List. To resolve the Flammable Gas safety issue, characterization of the tanks, including intrusive tank sampling, must be performed. Prior to sampling, however, the potential for the following scenarios must be evaluated: the potential for ignition of flammable gases such as hydrogen-air and/or hydrogen-nitrous oxide; and the potential for secondary ignition of organic-nitrate/nitrate mixtures in crust layer initiated by the burning of flammable gases or by a mechanical in-tank energy source. The characterization effort applicable to this Tank Characterization Plan is focused on the resolution of the crust burn flammable gas safety issue of Tank AW-101. To evaluate the potential for a crust burn of the waste material, calorimetry tests will be performed on the waste. Differential Scanning Calorimetry (DSC) will be used to determine whether an exothermic reaction exists

  19. Performances in Tank Cleaning

    Directory of Open Access Journals (Sweden)

    Fanel-Viorel Panaitescu

    2018-03-01

    Full Text Available There are several operations which must do to maximize the performance of tank cleaning. The new advanced technologies in tank cleaning have raised the standards in marine areas. There are many ways to realise optimal cleaning efficiency for different tanks. The evaluation of tank cleaning options means to start with audit of operations: how many tanks require cleaning, are there obstructions in tanks (e.g. agitators, mixers, what residue needs to be removed, are cleaning agents required or is water sufficient, what methods can used for tank cleaning. After these steps, must be verify the results and ensure that the best cleaning values can be achieved in terms of accuracy and reliability. Technology advancements have made it easier to remove stubborn residues, shorten cleaning cycle times and achieve higher levels of automation. In this paper are presented the performances in tank cleaning in accordance with legislation in force. If tank cleaning technologies are effective, then operating costs are minimal.

  20. Tank 244A tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The Double-Shell Tank (DST) System currently receives waste from the Single-Shell Tank (SST) System in support of SST stabilization efforts or from other on-site facilities which generate or store waste. Waste is also transferred between individual DSTs. The mixing or commingling of potentially incompatible waste types at the Hanford Site must be addressed prior to any waste transfers into the DSTs. The primary goal of the Waste Compatibility Program is to prevent the formation of an Unreviewed Safety Question (USQ) as a result of improper waste management. Tank 244A is a Double Contained Receiver Tank (DCRT) which serves as any overflow tank for the East Area Farms. Waste material is able to flow freely between the underground storage tanks and tank 244A. Therefore, it is necessary to test the waste in tank 244A for compatibility purposes. Two issues related to the overall problem of waste compatibility must be evaluated: Assurance of continued operability during waste transfer and waste concentration and Assurance that safety problems are not created as a result of commingling wastes under interim storage. The results of the grab sampling activity prescribed by this Tank Characterization Plan shall help determine the potential for four kinds of safety problems: criticality, flammable gas accumulation, energetics, and corrosion and leakage

  1. Theoretical comparison between solar combisystems based on bikini tanks and tank-in-tank solar combisystems

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon; Bales, Chris

    2008-01-01

    Theoretical investigations have shown that solar combisystems based on bikini tanks for low energy houses perform better than solar domestic hot water systems based on mantle tanks. Tank-in-tank solar combisystems are also attractive from a thermal performance point of view. In this paper......, theoretical comparisons between solar combisystems based on bikini tanks and tank-in-tank solar combisystems are presented....

  2. Survey on germination and species composition of dinoflagellates from ballast tanks and recent sediments in ports on the South Coast of Finland, North-Eastern Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Pertola, Sari [Finnish Institute of Marine Research, Department of Biological Research, P.O. Box 2, FI-00561 Helsinki (Finland)]. E-mail sari.pertola@fimr.fi; Faust, Maria A. [Department of Botany, US National Herbarium, Smithsonian Institution, 4210 Silver Hill Road, Suitland, Maryland 20746 (United States); Kuosa, Harri [Tvaerminne Zoological Station, University of Helsinki, FI-10900 Hanko (Finland)

    2006-08-15

    Cyst beds in ships and ports in Finland have previously been unstudied. Therefore, sediments from ships' ballast water tanks and four Finnish ports were sampled for dinoflagellate cysts and other phytoplankton. Untreated sediments were incubated at 10 {sup o}C and 20 {sup o}C in the local 6 psu salinity for 1, 4 and 7 days, and vegetative cells were examined with light and scanning electron microscope. Sediments were inhabited by various dinoflagellates, diatoms, chlorophytes, cyanophytes and small flagellates. Germinated dinoflagellates were found in 90% of ballast tanks and in all ports. Gymnodiniales spp. and Heterocapsa rotundata formed a major proportion of the proliferating dinoflagellate cells. One species, Peridinium quinquecorne, not previously reported from the Baltic Sea, was identified with SEM. The study emphasises that ships are potential transport vehicles for dinoflagellate cysts even in the low salinity Finnish waters, and small-sized dinoflagellates should be focused upon in ballast water studies.

  3. Survey on germination and species composition of dinoflagellates from ballast tanks and recent sediments in ports on the South Coast of Finland, North-Eastern Baltic Sea

    International Nuclear Information System (INIS)

    Pertola, Sari . E-mail sari.pertola@fimr.fi; Faust, Maria A.; Kuosa, Harri

    2006-01-01

    Cyst beds in ships and ports in Finland have previously been unstudied. Therefore, sediments from ships' ballast water tanks and four Finnish ports were sampled for dinoflagellate cysts and other phytoplankton. Untreated sediments were incubated at 10 o C and 20 o C in the local 6 psu salinity for 1, 4 and 7 days, and vegetative cells were examined with light and scanning electron microscope. Sediments were inhabited by various dinoflagellates, diatoms, chlorophytes, cyanophytes and small flagellates. Germinated dinoflagellates were found in 90% of ballast tanks and in all ports. Gymnodiniales spp. and Heterocapsa rotundata formed a major proportion of the proliferating dinoflagellate cells. One species, Peridinium quinquecorne, not previously reported from the Baltic Sea, was identified with SEM. The study emphasises that ships are potential transport vehicles for dinoflagellate cysts even in the low salinity Finnish waters, and small-sized dinoflagellates should be focused upon in ballast water studies

  4. Tank characterization report for single-shell Tank 241-B-110

    International Nuclear Information System (INIS)

    Amato, L.C.; De Lorenzo, D.S.; DiCenso, A.T.; Rutherford, J.H.; Stephens, R.H.; Heasler, P.G.; Brown, T.M.; Simpson, B.C.

    1994-08-01

    Single-shell Tank 241-B-110 is an underground storage tank containing radioactive waste. The tank was sampled at various times between August and November of 1989 and later in April of 1990. The analytical data gathered from these sampling efforts were used to generate this Tank Characterization Report. Tank 241-B-110, located in the 200 East Area B Tank Farm, was constructed in 1943 and 1944, and went into service in 1945 by receiving second cycle decontamination waste from the B and T Plants. During the service life of the tank, other wastes were added including B Plant flush waste, B Plant fission product waste, B Plant ion exchange waste, PUREX Plant coating waste, and waste from Tank 241-B-105. The tank currently contains 246,000 gallons of non-complexed waste, existing primarily as sludge. Approximately 22,000 gallons of drainable interstitial liquid and 1,000 gallons of supernate remain. The solid phase of the waste is heterogeneous, for the top layer and subsequent layers have significantly different chemical compositions and are visually distinct. A complete analysis of the top layer has not been done, and auger sampling of the top layer is recommended to fully characterize the waste in Tank 241-B-110. The tank is not classified as a Watch List tank; however, it is a Confirmed Leaker, having lost nearly 10,000 gallons of waste. The waste in Tank 241-B-110 is primarily precipitated salts, some of which are composed of radioactive isotopes. The most prevalent analytes include water, bismuth, iron, nitrate, nitrite, phosphate, silicon, sodium, and sulfate. The major radionuclide constituents are 137 Cs and 90 Sr

  5. Fuel tank for liquefied natural gas

    Science.gov (United States)

    DeLay, Thomas K. (Inventor)

    2012-01-01

    A storage tank is provided for storing liquefied natural gas on, for example, a motor vehicle such as a bus or truck. The storage tank includes a metal liner vessel encapsulated by a resin-fiber composite layer. A foam insulating layer, including an outer protective layer of epoxy or of a truck liner material, covers the composite layer. A non-conducting protective coating may be painted on the vessel between the composite layer and the vessel so as to inhibit galvanic corrosion.

  6. Tank 241-U-111 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-U-111

  7. Tank 241-T-111 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-T-111

  8. Tank 241-U-103 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-U-103

  9. Tank 241-TX-118 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-118

  10. Tank 241-BX-104 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-BX-104

  11. Tank 241-TY-101 Tank Characterization Plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TY-101

  12. Tank 241-T-107 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-T-107

  13. Tank 241-TX-105 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105

  14. Tank car leaks gasoline

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    On January 27, 1994, a Canadian National (CN) tank car loaded with gasoline began to leak from a crack in the tank shell on the end of the car near the stub sill. The tank car had been damaged from impact switching. A part of the tank car was sent for laboratory analysis which concluded that: (1) the fracture originated in two locations in welds, (2) the cracks propagated in a symmetrical manner and progressed into the tank plate, (3) the fracture surface revealed inadequate weld fusion. A stress analysis of the tank car was conducted to determine the coupling force necessary to cause the crack. It was noted that over the last decade several problems have occurred pertaining to stub sill areas of tank cars that have resulted in hazardous material spills. An advisory was sent to Transport Canada outlining many examples where tank cars containing serious defects had passed CN inspections that were specifically designed to identify such defects. 4 figs

  15. Tank 241-AZ-101 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters

  16. Tank 241-AZ-102 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters

  17. Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    in their national contexts. Questions regarding patterns and differences in think tank organisations and functions across countries have largely been left unanswered. This paper advances a definition and research design that uses different expert roles to categorise think tanks. A sample of 34 think tanks from...

  18. Feed tank transfer requirements

    International Nuclear Information System (INIS)

    Freeman-Pollard, J.R.

    1998-01-01

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B

  19. Underground storage tanks

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Environmental contamination from leaking underground storage tanks poses a significant threat to human health and the environment. An estimated five to six million underground storage tanks containing hazardous substances or petroleum products are in use in the US. Originally placed underground as a fire prevention measure, these tanks have substantially reduced the damages from stored flammable liquids. However, an estimated 400,000 underground tanks are thought to be leaking now, and many more will begin to leak in the near future. Products released from these leaking tanks can threaten groundwater supplies, damage sewer lines and buried cables, poison crops, and lead to fires and explosions. As required by the Hazardous and Solid Waste Amendments (HSWA), the EPA has been developing a comprehensive regulatory program for underground storage tanks. The EPA proposed three sets of regulations pertaining to underground tanks. The first addressed technical requirements for petroleum and hazardous substance tanks, including new tank performance standards, release detection, release reporting and investigation, corrective action, and tank closure. The second proposed regulation addresses financial responsibility requirements for underground petroleum tanks. The third addressed standards for approval of state tank programs

  20. Tank 241-B-103 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.'' This document satisfies that requirement for Tank 241-B-103 (B-103) sampling activities. Tank B-103 was placed on the Organic Watch List in January 1991 due to review of TRAC data that predicts a TOC content of 3.3 dry weight percent. The tank was classified as an assumed leaker of approximately 30,280 liters (8,000 gallons) in 1978 and declared inactive. Tank B-103 is passively ventilated with interim stabilization and intrusion prevention measures completed in 1985

  1. Fuel storage tank

    International Nuclear Information System (INIS)

    Peehs, M.; Stehle, H.; Weidinger, H.

    1979-01-01

    The stationary fuel storage tank is immersed below the water level in the spent fuel storage pool. In it there is placed a fuel assembly within a cage. Moreover, the storage tank has got a water filling and a gas buffer. The water in the storage tank is connected with the pool water by means of a filter, a surge tank and a water purification facility, temperature and pressure monitoring being performed. In the buffer compartment there are arranged catalysts a glow plugs for recombination of radiolysis products into water. The supply of water into the storage tank is performed through the gas buffer compartment. (DG) [de

  2. Tank 241-A-104 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of auger samples from tank 241-A-104. This Tank Characterization Plan will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in addition to reporting the current contents and status of the tank as projected from historical information

  3. WWTP Process Tank Modelling

    DEFF Research Database (Denmark)

    Laursen, Jesper

    The present thesis considers numerical modeling of activated sludge tanks on municipal wastewater treatment plants. Focus is aimed at integrated modeling where the detailed microbiological model the Activated Sludge Model 3 (ASM3) is combined with a detailed hydrodynamic model based on a numerical...... solution of the Navier-Stokes equations in a multiphase scheme. After a general introduction to the activated sludge tank as a system, the activated sludge tank model is gradually setup in separate stages. The individual sub-processes that are often occurring in activated sludge tanks are initially...... hydrofoil shaped propellers. These two sub-processes deliver the main part of the supplied energy to the activated sludge tank, and for this reason they are important for the mixing conditions in the tank. For other important processes occurring in the activated sludge tank, existing models and measurements...

  4. Tank 241-AP-104 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-11-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Double-Shell Tank (DST) 241-AP-104

  5. Steel corrosion in radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, E.; Weier, Dennis R.

    2004-01-01

    A collaborative study is being conducted by CNEA and USDOE (Department of Energy of the United States of America) to investigate the effects of tank waste chemistry on radioactive waste storage tank corrosion. Radioactive waste is stored in underground storage tanks that contain a combination of salts, consisting primarily of sodium nitrate, sodium nitrite and sodium hydroxide. The USDOE, Office of River Protection at the Hanford Site, has identified a need to conduct a laboratory study to better understand the effects of radioactive waste chemistry on the corrosion of waste storage tanks at the Hanford Site. The USDOE science need (RL-WT079-S Double-Shell Tanks Corrosion Chemistry) called for a multi year effort to identify waste chemistries and temperatures within the double-shell tank (DST) operating limits for corrosion control and operating temperature range that may not provide the expected corrosion protection and to evaluate future operations for the conditions outside the existing corrosion database. Assessment of corrosion damage using simulated (non-radioactive) waste is being made of the double-shell tank wall carbon steel alloy. Evaluation of the influence of exposure time, and electrolyte composition and/or concentration is being also conducted. (author) [es

  6. Tank 241-C-107 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.'' This document satisfies that requirement for the Tank 241-C-107 (C-107) sampling activities. Currently tank C-107 is categorized as a sound, low-heat load tank with partial isolation completed in December 1982. The tank is awaiting stabilization. Tank C-107 is expected to contain three primary layers of waste. The bottom layer should contain a mixture of the following wastes: ion exchange, concentrated phosphate waste from N-Reactor, Hanford Lab Operations, strontium semi-works, Battelle Northwest, 1C, TBP waste, cladding waste, and the hot semi-works. The middle layer should contain strontium recovery supernate. The upper layer should consist of non-complexed waste

  7. X-33 LH2 Tank Failure Investigation Findings

    Science.gov (United States)

    Niedermeyer, Melinda

    2003-01-01

    This viewgraph presentation provides information on the composite sandwich-honeycomb structure of the liquid hydrogen tank of the X-33 reusable launch vehicle, and describes why the the first pressure test to determine the tank's structural integrity failed. The presentation includes images of the tank before and after the failed test, including photomicrographs. It then reaches conclusions on the nature of the microcracks which caused the liquid hydrogen leakage.

  8. Analyses and characterization of double shell tank

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-04

    Evaporator candidate feed from tank 241-AP-108 (108-AP) was sampled under prescribed protocol. Physical, inorganic, and radiochemical analyses were performed on tank 108-AP. Characterization of evaporator feed tank waste is needed primarily for an evaluation of its suitability to be safely processed through the evaporator. Such analyses should provide sufficient information regarding the waste composition to confidently determine whether constituent concentrations are within not only safe operating limits, but should also be relevant to functional limits for operation of the evaporator. Characterization of tank constituent concentrations should provide data which enable a prediction of where the types and amounts of environmentally hazardous waste are likely to occur in the evaporator product streams.

  9. Tank 10H Saltcake Core Sample Analysis

    International Nuclear Information System (INIS)

    MARTINO, CHRISTOPHERJ

    2004-01-01

    In support of Low-Curie Salt (LCS) process validation at the Savannah River Site (SRS), Liquid Waste Disposition (LWD) has undertaken a program of tank characterization, including salt sampling. As part of this initiative, they sampled the surface and subsurface of Tank 10H saltcake using a series of three 12-inch long sample tubes. These tubes each contain 1-foot long segments of the saltcake from one location, representing the top three feet of saltcake. The primary objective of the characterization that will be useful to the selection and processing of the next waste tanks. Most important is the determination of the Cs-137 concentration and liquid retention properties of Tank 10H saltcake to confirm acceptability of processing. Additional chemical analyses are performed to provide information on salt elemental, ionic, and radiological composition to aid in assessment of the suitability of processing drained and dissolved material and in refining the information in the waste characterization system (WCS)

  10. Analyses and characterization of double shell tank

    International Nuclear Information System (INIS)

    1994-01-01

    Evaporator candidate feed from tank 241-AP-108 (108-AP) was sampled under prescribed protocol. Physical, inorganic, and radiochemical analyses were performed on tank 108-AP. Characterization of evaporator feed tank waste is needed primarily for an evaluation of its suitability to be safely processed through the evaporator. Such analyses should provide sufficient information regarding the waste composition to confidently determine whether constituent concentrations are within not only safe operating limits, but should also be relevant to functional limits for operation of the evaporator. Characterization of tank constituent concentrations should provide data which enable a prediction of where the types and amounts of environmentally hazardous waste are likely to occur in the evaporator product streams

  11. Toxic chemical considerations for tank farm releases

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs were not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.

  12. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and... liquid tank car tanks. ...

  13. Supporting document for the historical tank content estimate for SY-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.

    1997-08-12

    The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy`s Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank`s inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act [RCRA]) and state law (Washington Administrative Code [WAC] 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes.

  14. Extended tank use analysis

    International Nuclear Information System (INIS)

    DeFigh-Price, C.; Green, D.J.

    1991-01-01

    The single-shell tanks at the Hanford Site were originally designed for open-quotes temporaryclose quotes use. The newer double-shell tanks were designed for 50 years of use. A number of single-shell tanks failed their original design criteria to contain liquid waste soon after they were constructed. These single-shell and double-shell tanks now will be required to contain semi-solid high-activity waste well beyond their design lives. It must be determined that the waste contained in these tanks will remain stable for up to an additional 30 years of storage. This paper describes the challenge of demonstrating that the tanks that have exceeded or will exceed their design lifetime can safely store high-level waste until planned disposal actions are taken. Considerations will include structural and chemical analyses

  15. Think tanks in Denmark

    DEFF Research Database (Denmark)

    Blach-Ørsten, Mark; Kristensen, Nete Nørgaard

    2016-01-01

    outside the media. The study shows that the two largest and oldest think tanks in Denmark, the liberal think tank CEPOS and the social democratic think tank ECLM, are very active and observable in the media; that the media’s distribution of attention to these think tanks, to some extent, confirms a re......-politicization of Danish newspapers; but also that the news media as an arena of influence is only one part of the equation, since some of the corporatist political networks are still intact and working outside the media...... half of the 2010s, because in this national setting think tanks are still a relatively new phenomenon. Based on theories of mediatization and de-corporatization, we present 1) an analysis of the visibility of selected Danish think tanks in the media and 2) an analysis of their political networks...

  16. Hanford tanks initiative plan

    International Nuclear Information System (INIS)

    McKinney, K.E.

    1997-01-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy's Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System's tank waste retrieval Program

  17. Upper Stage Flight Experiment (USFE) Integral Structure Development Effort

    National Research Council Canada - National Science Library

    Guerrero, Jim; Hamilton, Brent; Burton, Randy; Crockett, Dave; Taylor, Zach

    2004-01-01

    .... AFRL/VS is developing a wide range of tank concepts that include linerless cryogenic tankage, self-healing cryogenic tankage, hydrogen peroxide compatible tankage, volumetrically efficient toroidal (donut shaped...

  18. Fuel tank integrity research : fuel tank analyses and test plans

    Science.gov (United States)

    2013-04-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. Fuel tank research is being performed to : determine strategies for increasing the fuel tank impact : resistance to ...

  19. Preliminary assessment of blending Hanford tank wastes

    International Nuclear Information System (INIS)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications

  20. Preliminary assessment of blending Hanford tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications.

  1. Heated Aluminum Tanks Resist Corrosion

    Science.gov (United States)

    Johnson, L. E.

    1983-01-01

    Simple expedient of heating foam-insulated aluminum alloy tanks prevents corrosion by salt-laden moisture. Relatively-small temperature difference between such tank and surrounding air will ensure life of tank is extended by many years.

  2. Tank characterization reference guide

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J.; Simpson, B.C.

    1994-09-01

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research

  3. Composites

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1983-01-01

    This chapter discusses the roles of composite laminates and aggregates in cryogenic technology. Filamentary-reinforced composites are emphasized because they are the most widely used composite materials. Topics considered include composite systems and terminology, design and fabrication, composite failure, high-pressure reinforced plastic laminates, low-pressure reinforced plastics, reinforced metals, selectively reinforced structures, the effect of cryogenic temperatures, woven-fabric and random-mat composites, uniaxial fiber-reinforced composites, composite joints in cryogenic structures, joining techniques at room temperature, radiation effects, testing laminates at cryogenic temperatures, static and cyclic tensile testing, static and cyclic compression testing, interlaminar shear testing, secondary property tests, and concrete aggregates. It is suggested that cryogenic composite technology would benefit from the development of a fracture mechanics model for predicting the fitness-for-purpose of polymer-matrix composite structures

  4. Evaluating Feed Delivery Performance in Scaled Double-Shell Tanks

    International Nuclear Information System (INIS)

    Lee, Kearn P.; Thien, Michael G.

    2013-01-01

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HLW) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOCs' ability to adequately mix and sample high-level waste feed to meet the WTP WAC Data Quality Objectives must be demonstrated. The tank mixing and feed delivery must support both TOC and WTP operations. The tank mixing method must be able to remove settled solids from the tank and provide consistent feed to the WTP to facilitate waste treatment operations. Two geometrically scaled tanks were used with a broad spectrum of tank waste simulants to demonstrate that mixing using two rotating mixer jet pumps yields consistent slurry compositions as the tank is emptied in a series of sequential batch transfers. Testing showed that the concentration of slow settling solids in each transfer batch was consistent over a wide range of tank operating conditions. Although testing demonstrated that the concentration of fast settling solids decreased by up to 25% as the tank was emptied, batch-to-batch consistency improved as mixer jet nozzle velocity in the scaled tanks increased

  5. Test plan for Tank 241-AW-101 solubility screening tests

    International Nuclear Information System (INIS)

    Person, J.C.

    1998-01-01

    Tank 241-AW-101 (101-AW) has been identified as one of the early tanks to be for retrieved for low level waste pretreatment and immobilization and retrieval of the tank waste may require dilution. This test is to determine the effects of dilution on the mass of solids and their composition. This test plan gives test instructions, example data sheets, a waste compatibility review, and a waste stream fact sheet. This test Plan is similar to tests on tanks 241-AN-102 (Person 1998a) and 241-AN-107 (Person 1998 b). The 101-AW tests will be done with composites of liquid and solids from grab samples that were taken in 1998 (Benar 1998). Future revisions of the Tank Sampling and Analysis Plan (Benar 1998) may change the details of the work performed under this test plan

  6. Tank 241-C-105 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-C-105

  7. Tank 241-BY-106 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, PNL 325 Analytical Chemistry Laboratory, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-106

  8. Tank 241-AX-104 tank characterization plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of auger samples from tank 241-AX-104

  9. Tank 241-AX-102 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of auger samples from tank 241-AX-102

  10. Tank 241-C-101 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-C-101

  11. Tank 241-AP-107 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-AP-107

  12. Characterization and decant of Tank 42H sludge sample ESP-200

    International Nuclear Information System (INIS)

    Hay, M.S.

    2000-01-01

    DWPF Engineering requested that the Savannah River Technology Center (SRTC) provide a demonstration of the DWPF flowsheet on sludge from Tank 42H in the Shielded Cell facility. A 5 liter sample of the Tank 42H sludge (ESP-200), obtained with the tank contents fully mixed, arrived at SRTC on January 20, 1998. This report details receipt of the 5 liter sample at SRTC, the decant of the sample, and the characterization of the pre- and post-decant Tank 42H sludge. Evaluation of the measured composition of the supernate indicates Sample ESP-200 became diluted approximately 20 percent by volume prior to receipt. This dilution complicates the relationship of the characterization of Post-Decant ESP-200 to the current contents of Tank 42H. For the purposes of modeling the current tank contents of Tank 42H, this report provides an estimated composition based on analytical data of recent samples from Tank 42H

  13. Characterization and decant of Tank 42H sludge sample ESP-200

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.S.

    2000-04-25

    DWPF Engineering requested that the Savannah River Technology Center (SRTC) provide a demonstration of the DWPF flowsheet on sludge from Tank 42H in the Shielded Cell facility. A 5 liter sample of the Tank 42H sludge (ESP-200), obtained with the tank contents fully mixed, arrived at SRTC on January 20, 1998. This report details receipt of the 5 liter sample at SRTC, the decant of the sample, and the characterization of the pre- and post-decant Tank 42H sludge. Evaluation of the measured composition of the supernate indicates Sample ESP-200 became diluted approximately 20 percent by volume prior to receipt. This dilution complicates the relationship of the characterization of Post-Decant ESP-200 to the current contents of Tank 42H. For the purposes of modeling the current tank contents of Tank 42H, this report provides an estimated composition based on analytical data of recent samples from Tank 42H.

  14. Supporting document for the historical tank content estimate for SY-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1997-01-01

    The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy's Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank's inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act CRA and state law (Washington Administrative Code AC 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes

  15. Tank Space Options Report

    International Nuclear Information System (INIS)

    BOYLES, V.C.

    2001-01-01

    A risk-based priority for the retrieval of Hanford Site waste from the 149 single-shell tanks (SSTs) has been adopted as a result of changes to the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1997) negotiated in 2000. Retrieval of the first three tanks in the retrieval sequence fills available capacity in the double-shell tanks (DSTs) by 2007. As a result, the HFFACO change established a milestone (M-45-12-TO1) requiring the determination of options that could increase waste storage capacity for single-shell tank waste retrieval. The information will be considered in future negotiations. This document fulfills the milestone requirement. This study presents options that were reviewed for the purpose of increasing waste storage capacity. Eight options are identified that have the potential for increasing capacity from 5 to 10 million gallons, thus allowing uninterrupted single-shell tank retrieval until the planned Waste Treatment Plant begins processing substantial volumes of waste from the double-shell tanks in 2009. The cost of implementing these options is estimated to range from less than $1 per gallon to more than $14 per gallon. Construction of new double-shell tanks is estimated to cost about $63 per gallon. Providing 5 to 10 million gallons of available double-shell tank space could enable early retrieval of 5 to 9 high-risk single-shell tanks beyond those identified for retrieval by 2007. These tanks are A-101, AX-101, AX-103, BY-102, C-107, S-105, S-106, S-108, and S-109 (Garfield et al. 2000). This represents a potential to retrieve approximately 14 million total curies, including 3,200 curies of long-lived mobile radionuclides. The results of the study reflect qualitative analyses conducted to identify promising options. The estimated costs are rough-order-of magnitude and, therefore, subject to change. Implementing some of the options would represent a departure from the current baseline and may adversely impact the

  16. Composite high-pressure vessels for hydrogen storage in mobile application. Pt. 1 / Light weight composite cylinders for compressed hydrogen. Pt. 2 - custom made hydrogen storage tanks and vessels

    Energy Technology Data Exchange (ETDEWEB)

    Rasche, C. [MCS Cylinder Systems GmbH, Dinslaken (Germany)

    2000-07-01

    Recent developments on fuel cell technology demonstrated the feasibility of propelling vehicles by converting fuel directly into electricity. Fuel cells conveniently use either compressed (CGH{sub 2}) or liquid hydrogen (LH{sub 2}) or methanol as the fuel source from a tank. Mobile storage of these fuelling will become an urgent need as this technology will come into series production expected for 2010. Due to the requirements on mobile hydrogen storage and the energy losses in the hydrogen-to-application-chain, a light-weight and energetic qualities and minimise ist bulky nature. Mobile storage of hydrogen can be realised either at high pressure values (> 20 MPa) or at deep temperatures (<-253 C). CGH{sub 2}: In the last few years, the introduction of natural gas driven vehicles has seen the development of compact mobile pressurised gas tanks in principle, this storage technique is also applicable for the compressed storage of hydrogen at filling pressures of > 20 MPa. LH{sub 2} : Storing hydrogen or natural gases in general in the liquid phase is accomplished either by applying a overpressure or keeping it below the phase transition temperature at ambient pressure in super insulated devices. (orig.)

  17. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes... car tanks. ...

  18. Analysis Of The Tank 6F Final Characterization Samples-2012

    International Nuclear Information System (INIS)

    Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

    2012-01-01

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite

  19. Analysis of the Tank 6F Final Characterization Samples-2012

    International Nuclear Information System (INIS)

    Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

    2013-01-01

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm- 243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite

  20. ANALYSIS OF THE TANK 6F FINAL CHARACTERIZATION SAMPLES-2012

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.; Shine, G.

    2012-06-28

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite

  1. Analysis of the Tank 6F Final Characterization Samples-2012

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

    2013-01-31

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm- 243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite

  2. Analysis Of The Tank 6F Final Characterization Samples-2012

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

    2012-09-27

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite

  3. Potential for criticality in Hanford tanks resulting from retrieval of tank waste

    International Nuclear Information System (INIS)

    Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V.

    1996-09-01

    This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur

  4. Data Observations on Double Shell Tank (DST) Flammable Gas Watch List Tank Behavior

    Energy Technology Data Exchange (ETDEWEB)

    HEDENGREN, D.C.

    2000-09-28

    This report provides the data from the retained gas sampler, void fraction instrument, ball rheometer, standard hydrogen monitoring system, and other tank data pertinent to gas retention and release behavior in the waste stored in double-shelled Flammable Gas Watch List tanks at Hanford. These include tanks 241-AN-103,241-AN-104, 241-AN-105, 241-AW-101, 241-SY-101, and 241-SY-103. The tanks and the waste they contain are described in terms of fill history and chemistry. The results of mixer pump operation and recent waste transfers and back-dilution in SY-101 are also described. In-situ measurement and monitoring systems are described and the data are summarized under the categories of thermal behavior, waste configuration and properties, gas generation and composition, gas retention and historical gas release behavior.

  5. Tank 241-TX-113 rotary mode core sampling and analysis plan

    International Nuclear Information System (INIS)

    McCain, D.J.

    1998-01-01

    This sampling and analysis plan (SAP) identities characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for push mode core samples from tank 241-TX-113 (TX-113). The Tank Characterization Technical Sampling Basis document identities Retrieval, Pretreatment and Immobilization as an issue that applies to tank TX-113. As a result, a 150 gram composite of solids shall be made and archived for that program. This tank is not on a Watch List

  6. TANK FARM ENVIRONMENTAL REQUIREMENTS

    International Nuclear Information System (INIS)

    TIFFT, S.R.

    2003-01-01

    Through regulations, permitting or binding negotiations, Regulators establish requirements, limits, permit conditions and Notice of Construction (NOC) conditions with which the Office of River Protection (ORP) and the Tank Farm Contractor (TFC) must comply. Operating Specifications are technical limits which are set on a process to prevent injury to personnel, or damage to the facility or environment, The main purpose of this document is to provide specification limits and recovery actions for the TFC Environmental Surveillance Program at the Hanford Site. Specification limits are given for monitoring frequencies and permissible variation of readings from an established baseline or previous reading. The requirements in this document are driven by environmental considerations and data analysis issues, rather than facility design or personnel safety issues. This document is applicable to all single-shell tank (SST) and double-shell tank (DST) waste tanks, and the associated catch tanks and receiver tanks, and transfer systems. This Tank Farm Environmental Specifications Document (ESD) implements environmental-regulatory limits on the configuration and operation of the Hanford Tank Farms facility that have been established by Regulators. This ESD contains specific field operational limits and recovery actions for compliance with airborne effluent regulations and agreements, liquid effluents regulations and agreements, and environmental tank system requirements. The scope of this ESD is limited to conditions that have direct impact on Operations/Projects or that Operations Projects have direct impact upon. This document does not supercede or replace any Department of Energy (DOE) Orders, regulatory permits, notices of construction, or Regulatory agency agreements binding on the ORP or the TFC. Refer to the appropriate regulation, permit, or Notice of Construction for an inclusive listing of requirements

  7. Reactor pressure tank

    International Nuclear Information System (INIS)

    Dorner, H.; Scholz, M.; Jungmann, A.

    1975-01-01

    In a reactor pressure tank for a nuclear reactor, self-locking hooks engage a steel ring disposed over the removable cover of the steel vessel. The hooks exert force upon the cover to maintain the cover in a closed position during operation of the reactor pressure tank. The force upon the removal cover is partly the result of the increasing temperature and thermal expansion of the steel vessel during operation. The steel vessel is surrounded by a reinforced-concrete tank. (U.S.)

  8. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  9. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  10. Tank farm potential ignition sources

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1996-01-01

    This document identifies equipment, instrumentation, and sensors that are located in-tank as well as ex-tank in areas that may have communication paths with the tank vapor space. For each item, and attempt is made to identify the potential for ignition of flammable vapors using a graded approach. The scope includes all 177 underground storage tanks

  11. Improving the Tank Scout

    National Research Council Canada - National Science Library

    Burton, R. L

    2006-01-01

    .... While the tank battalions recognize the importance and value of the scout platoon, they are restricted from employing scouts to their full potential due to the platoon's inflexible structure and limited capabilities...

  12. Tank waste treatment science

    International Nuclear Information System (INIS)

    LaFemina, J.P.; Blanchard, D.L.; Bunker, B.C.; Colton, N.G.; Felmy, A.R.; Franz, J.A.; Liu, J.; Virden, J.W.

    1994-01-01

    Remediation efforts at the U.S. Department of Energy's Hanford Site require that many technical and scientific principles be combined for effectively managing and disposing the variety of wastes currently stored in underground tanks. Based on these principles, pretreatment technologies are being studied and developed to separate waste components and enable the most suitable treatment methods to be selected for final disposal of these wastes. The Tank Waste Treatment Science Task at Pacific Northwest Laboratory is addressing pretreatment technology development by investigating several aspects related to understanding and processing the tank contents. The experimental work includes evaluating the chemical and physical properties of the alkaline wastes, modeling sludge dissolution, and evaluating and designing ion exchange materials. This paper gives some examples of results of this work and shows how these results fit into the overall Hanford waste remediation activities. This work is part of series of projects being conducted for the Tank Waste Remediation System

  13. Ocean Technology Development Tank

    Data.gov (United States)

    Federal Laboratory Consortium — The new SWFSC laboratory in La Jolla incorporates a large sea- and fresh-water Ocean Technology Development Tank. This world-class facility expands NOAA's ability to...

  14. Sonar Tank Area

    Data.gov (United States)

    Federal Laboratory Consortium — The Sonar Tank Facility permits low cost initial 'wet' testing and check out prior to full scale deployment at sea. It can manage controlled conditions calibration...

  15. Improving the Tank Scout

    National Research Council Canada - National Science Library

    Burton, R. L

    2006-01-01

    Within the Marine Corps' tank battalions is a unique asset that is often improperly employed and not well known within the other components of the Marine Air Ground Task Force (MAGTF): the scout platoon...

  16. Modeling Propellant Tank Dynamics

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of my work will be to develop accurate models of self-pressurizing propellant tanks for use in designing hybrid rockets. The first key goal is to...

  17. The effect of dilution on the gas-retention behavior of Tank 241-SY-101 waste

    International Nuclear Information System (INIS)

    Bredt, P.R.; Tingey, S.M.; Shade, E.H.

    1995-09-01

    The effect of dilution on gas retention in waste from Tank 241-SY-101 was investigated. A composite sample was prepared from material collected during the Window ''C'' and Window ''E'' sampling events. The composite contained material from both the convective and nonconvective layer in the proportions existing in the tank. Operation of the mixer pump in Tank 241-SY-101 has homogenized the tank material, and dilution of the current waste would require additional mixing; therefore, no attempt was made to use unhomogenized tank waste to prepare the composite. The composite was diluted with 2 M NaOH at ratios of 0.5:1, 0.75: 1, 1:1, and 3:1 per volume (2 M NaOH:tank waste)

  18. Composite reinforced alumina ceramics with titan and lantana for use in coating storage tanks and transport of crude oil; Composito de ceramica alumina reforcada com titania e lantana para a utilizacao em revestimento de tanques de armazenamento e transporte de petroleo cru

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, C.E.; Rego, S.A.B.C.; Oliveira, J.C.S.; Ferreira, R.A. Sanguinetti; Yadava, Y.P., E-mail: cata_esposito@hotmail.com [Universidade Federal de Pernambuco (UFPE), PE (Brazil). Centro de Tecnologia e Geociencia. Departamento de Engenharia Mecanica

    2011-07-01

    The objective of this work is to use ceramics to improve the performance of the tanks that store and transport crude oil and which use metallic materials for their manufacture. These tanks in contact with crude oil undergo a process of degradation on their surfaces, since crude oil is a highly corrosive substance. And in turn ceramic materials have good stability in hostile environments. However, they are inherently fragile for display little plastic deformation. Therefore, the choice of a ceramic composite alumina-titania-lantana has high mechanical strength and high toughness which were produced by thermo-mechanical processing. These composites were sintered at 1350 ° C for 36 hours, and it was held Vickers hardness testing and microstructural characterization to assess their surfaces before and after the attack by crude to use such material as ceramic coating. These results will be presented at the congress. (author)

  19. Reusable LH2 tank technology demonstration through ground test

    Science.gov (United States)

    Bianca, C.; Greenberg, H. S.; Johnson, S. E.

    1995-01-01

    The paper presents the project plan to demonstrate, by March 1997, the reusability of an integrated composite LH2 tank structure, cryogenic insulation, and thermal protection system (TPS). The plan includes establishment of design requirements and a comprehensive trade study to select the most suitable Reusable Hydrogen Composite Tank system (RHCTS) within the most suitable of 4 candidate structural configurations. The 4 vehicles are winged body with the capability to deliver 25,000 lbs of payload to a circular 220 nm, 51.6 degree inclined orbit (also 40,000 lbs to a 28.5 inclined 150 nm orbit). A prototype design of the selected RHCTS is established to identify the construction, fabrication, and stress simulation and test requirements necessary in an 8 foot diameter tank structure/insulation/TPS test article. A comprehensive development test program supports the 8 foot test article development and involves the composite tank itself, cryogenic insulation, and integrated tank/insulation/TPS designs. The 8 foot diameter tank will contain the integrated cryogenic insulation and TPS designs resulting from this development and that of the concurrent lightweight durable TPS program. Tank ground testing will include 330 cycles of LH2 filling, pressurization, body loading, depressurization, draining, and entry heating.

  20. Low-level tank waste simulant data base

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1996-04-01

    The majority of defense wastes generated from reprocessing spent N- Reactor fuel at Hanford are stored in underground Double-shell Tanks (DST) and in older Single-Shell Tanks (SST) in the form of liquids, slurries, sludges, and salt cakes. The tank waste remediation System (TWRS) Program has the responsibility of safely managing and immobilizing these tank wastes for disposal. This report discusses three principle topics: the need for and basis for selecting target or reference LLW simulants, tanks waste analyses and simulants that have been defined, developed, and used for the GDP and activities in support of preparing and characterizing simulants for the current LLW vitrification project. The procedures and the data that were generated to characterized the LLW vitrification simulants were reported and are presented in this report. The final section of this report addresses the applicability of the data to the current program and presents recommendations for additional data needs including characterization and simulant compositional variability studies

  1. ANALYSIS OF THE TANK 5F FINAL CHARACTERIZATION SAMPLES-2011

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

    2012-08-03

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the

  2. Analysis Of The Tank 5F Final Characterization Samples-2011

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N.; Diprete, D.; Coleman, C. J.; Hay, M. S.

    2012-09-27

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the

  3. Fuel tank tourism; Tanktourismus

    Energy Technology Data Exchange (ETDEWEB)

    Keller, M.; Banfi, S.; Haan, P. de

    2000-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made of the extent of so-called 'tank tourism' in Switzerland. The report attempts to how much motor fuel is purchased in border-near filling stations by persons from the other side of the border as a result of price differences in the different countries. The two methods used to estimate the extent of tank tourism, an ex-post analysis and the analysis of filling station turnover, are explained. Only road-traffic is considered; tank tourism in the aviation area is not looked at in this study. The extent of tank tourism is estimated for petrol and diesel fuels. The individual figures produced by the two methods are compared and the difference between them discussed. The report also investigates the effect of changing prices on tank tourism and discusses the problem of estimating the figures for 'off-road' consumers such as tractors and construction machines.

  4. Ferrocyanide tank waste stability

    International Nuclear Information System (INIS)

    Fowler, K.D.

    1993-01-01

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove 137 CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes

  5. Use of aluminum oxides, titanium and cerium in the production of ceramic composites for protective coating of storage tanks and transportation of oil raw; Uso de oxidos de aluminio, titanio e cerio na producao de compositos ceramicos para revestimento protetor de tanques de armazenamento e transporte de petroleo cru

    Energy Technology Data Exchange (ETDEWEB)

    Rego, S.A.B.C.; Ferreira, R.A.S.; Yadava, Y.P., E-mail: sheila.abc.rego@hotmail.com [Universidade Federal de Pernambuco (UFPE), PE (Brazil). Centro de Tecnologia e Geociencias

    2012-07-01

    The deployment of the Abreu e Lima refinery in the port of SUAPE - PE will increase the need to store oil in the region, it is essential to research and develop new materials inert to chemical attack promoted by oil. In this work, we produce the ceramic composite alumina-titania, ceria of high mechanical strength which is observed that with additions of titanium oxide in the order of 15% and 20% better results are obtained as possibly indicating these composites suitable for use in coating ceramic storage tanks of crude oil. (author)

  6. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...

  7. Inerting ballast tanks

    Energy Technology Data Exchange (ETDEWEB)

    Baes, Gabriel L.; Bronneberg, Jos [SBM Offshore, AA Schiedam (Netherlands); Barros, Maria A.S.D. de [Universidade Estadual de Maringa (UEM), PR (Brazil)

    2012-07-01

    This report expands upon the work conducted by SBM Offshore to develop a tank preservation treatment, which is intended to achieve a service life of 30 years. This work focuses on the corrosion problems, in the ballast tanks, based on new built hulls, both for the Gas Exploration Market, the FLNG - Floating Liquefied Natural Gas, and for the Oil Exploration market - FPSO's - Floating Production Storage and offloading Units. Herein, the corrosion rate input comes from the various references related to the process of nitrogen injection, which is expected to extend the vessel's time life. The essential elements of this solution comprise the deoxygenation process, corrosion models, coating effects, tests from laboratory, shipboard tests, corrosion institutes and regulations applicable to the operation. The best corrosion protection system for ballast tanks area combines a coating system and an inert gas system. The condition of the tanks will be dependent upon the level of protection applied to the steel structure, including, but not limited to coating, cathodic protection, etc. There is a need for products which extend the life time. It is not sufficient, only have good theoretical base for the corrosion and an excellent treatment system. In addition, the design of the ships structure must also eliminate the presence of local stress concentrations which can result in fatigue cracking and rupture of the protective coating barrier starting the corrosion. As a direct result of this, more problems in corrosion can be mitigated, vessels can have a better corrosion performance with less maintenance and repairs to coating systems in ballast tanks. Furthermore ships will be positively impacted operationally due to less frequent dry docking. There is a huge potential in the application of inert gas to combat the corrosion rate inside the ballast tanks, one of the most corrosive environments on earth. This application can have a direct impact on vessel structure

  8. Failure analysis of buried tanks

    International Nuclear Information System (INIS)

    Watkins, R.K.

    1994-01-01

    Failure of a buried tank can be hazardous. Failure may be a leak through which product is lost from the tank; but also through which contamination can occur. Failures are epidemic -- because buried tanks are out of sight, but also because designers of buried tanks have adopted analyses developed for pressure tanks. So why do pressure tanks fail when they are buried? Most failures of buried tanks are really soil failures. Soil compresses, or slips, or liquefies. Soil is not only a load, it is a support without which the tank deforms. A high water table adds to the load on the tank. It also reduces the strength of the soil. Based on tests, structural analyses are proposed for empty tanks buried in soils of various quality, with the water table at various levels, and with internal vacuum. Failure may be collapse tank. Such collapse is a sudden, audible inversion of the cylinder when the sidefill soil slips. Failure may be flotation. Failure may be a leak. Most leaks are fractures in the welds in overlap seams at flat spots. Flat spots are caused by a hard bedding or a heavy surface wheel load. Because the tank wall is double thick at the overlap, shearing stress in the weld is increased. Other weld failures occur when an end plate shears down past a cylinder; or when the tank is supported only at its ends like a beam. These, and other, failures can be analyzed with justifiable accuracy using basic principles of mechanics of materials. 10 figs

  9. TANK SPACE OPTIONS REPORT

    International Nuclear Information System (INIS)

    Willis, W.L.; Ahrendt, M.R.

    2009-01-01

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  10. Pitting corrosion in austenitic stainless steel water tanks of hotel trains

    International Nuclear Information System (INIS)

    Moreno, D. A.; Garcia, A. M.; Ranninger, C.; Molina, B.

    2011-01-01

    The water storage tanks of hotel trains suffered pitting corrosion. To identify the cause, the tanks were subjected to a detailed metallographic study and the chemical composition of the austenitic stainless steels used in their construction was determined. Both the tank water and the corrosion products were further examined by physicochemical and microbiological testing. Corrosion was shown to be related to an incompatibility between the chloride content of the water and the base and filler metals of the tanks. These findings formed the basis of recommendations aimed at the prevention and control of corrosion in such tanks. (Author) 18 refs.

  11. Hybrid Cryogenic Tank Construction and Method of Manufacture Therefor

    Science.gov (United States)

    DeLay, Thomas K. (Inventor)

    2011-01-01

    A lightweight, high-pressure cryogenic tank construction includes an inner layer comprising a matrix of fiber and resin suitable for cryogenic use. An outer layer in intimate contact with the inner layer provides support of the inner layer, and is made of resin composite. The tank is made by placing a fiber preform on a mandrel and infusing the preform with the resin. The infused preform is then encapsulated within the outer layer.

  12. Fuel tank crashworthiness : loading scenarios

    Science.gov (United States)

    2011-03-16

    The Federal Railroad Administrations Office of Research and Development is conducting research into fuel tank crashworthiness. The breaching of fuel tanks during passenger : rail collisions and derailments increases the potential of serious injury...

  13. Aboveground storage tanks

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. it should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this paper are: Safety, Product Losses, Cost Comparison of USTs vs AGSTs, Space Availability/Accessibility, Precipitation Handling, Aesthetics and Security, Pending and Existing Regulations

  14. Underground storage tank program

    International Nuclear Information System (INIS)

    Lewis, M.W.

    1994-01-01

    Underground storage tanks, UST'S, have become a major component of the Louisville District's Environmental Support Program. The District's Geotechnical and Environmental Engineering Branch has spear-headed an innovative effort to streamline the time, effort and expense for removal, replacement, upgrade and associated cleanup of USTs at military and civil work installations. This program, called Yank-A-Tank, creates generic state-wide contracts for removal, remediation, installation and upgrade of storage tanks for which individual delivery orders are written under the basic contract. The idea is to create a ''JOC type'' contract containing all the components of work necessary to remove, reinstall or upgrade an underground or above ground tank. The contract documents contain a set of generic specifications and unit price books in addition to the standard ''boiler plate'' information. Each contract requires conformance to the specific regulations for the state in which it is issued. The contractor's bid consists of a bid factor which in the multiplier used with the prices in the unit price book. The solicitation is issued as a Request for Proposal (RPP) which allows the government to select a contractor based on technical qualification an well as bid factor. Once the basic contract is awarded individual delivery orders addressing specific areas of work are scoped, negotiated and awarded an modifications to the original contract. The delivery orders utilize the prepriced components and the contractor's factor to determine the value of the work

  15. Toxic chemical considerations for tank farm releases. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.

    1995-11-01

    This document provides a method of determining the toxicological consequences of accidental releases from Hanford Tank Farms. A determination was made of the most restrictive toxic chemicals that are expected to be present in the tanks. Concentrations were estimated based on the maximum sample data for each analyte in all the tanks in the composite. Composite evaluated were liquids and solids from single shell tanks, double shell tanks, flammable gas watch list tanks, as well as all solids, all liquids, head space gases, and 241-C-106 solids. A sum of fractions of the health effects was computed for each composite for unit releases based emergency response planning guidelines (ERPGs). Where ERPGs were not available for chemical compounds of interest, surrogate guidelines were established. The calculation method in this report can be applied to actual release scenarios by multiplying the sum of fractions by the release rate for continuous releases, or the release amount for puff releases. Risk guidelines are met if the product is less than for equal to one.

  16. Toxic chemical considerations for tank farm releases. Revision 1

    International Nuclear Information System (INIS)

    Van Keuren, J.C.

    1995-11-01

    This document provides a method of determining the toxicological consequences of accidental releases from Hanford Tank Farms. A determination was made of the most restrictive toxic chemicals that are expected to be present in the tanks. Concentrations were estimated based on the maximum sample data for each analyte in all the tanks in the composite. Composite evaluated were liquids and solids from single shell tanks, double shell tanks, flammable gas watch list tanks, as well as all solids, all liquids, head space gases, and 241-C-106 solids. A sum of fractions of the health effects was computed for each composite for unit releases based emergency response planning guidelines (ERPGs). Where ERPGs were not available for chemical compounds of interest, surrogate guidelines were established. The calculation method in this report can be applied to actual release scenarios by multiplying the sum of fractions by the release rate for continuous releases, or the release amount for puff releases. Risk guidelines are met if the product is less than for equal to one

  17. Task 7c: Worm tank

    International Nuclear Information System (INIS)

    1999-01-01

    Worm tank has a unique shape. In the seismic design of a worm tank, it is desirable to clear the behavior of the worm tank under the seismic loading. We assumed that there are two phenomena in the seismic behavior of the worm tank same as the behavior of the cylindrical and rectangular tanks. One is a sloshing behavior of the water and another is the dynamic response of the worm tank. In this study, we investigate the dynamic characteristics of the worm tank during the strong earthquakes. We conducted the vibration tests to clarify the seismic behaviors of the worm tanks and obtained the valuable data to verify the analytical method. It was found that the natural frequency can be calculated using the eigenvalue formula of the cylindrical and rectangular tanks. Lower modes of the worm tank are identical with that of the rectangular tank. We can estimate the surface behavior and the impact mode using the data of the rectangular tank. (author)

  18. SRS Tank Structural Integrity Program

    International Nuclear Information System (INIS)

    Maryak, Matthew

    2010-01-01

    The mission of the Structural Integrity Program is to ensure continued safe management and operation of the waste tanks for whatever period of time these tanks are required. Matthew Maryak provides an overview of the Structural Integrity Program to open Session 5 (Waste Storage and Tank Inspection) of the 2010 EM Waste Processing Technical Exchange.

  19. Radiological and toxicological analyses of tank 241-AY-102 and tank 241-C-106 ventilation systems

    International Nuclear Information System (INIS)

    Himes, D.A.

    1998-01-01

    The high heat content solids contained in Tank 241-C-106 are to be removed and transferred to Tank 241-AY-102 by sluicing operations, to be authorized under project W320. While sluicing operations are underway, the state of these tanks will be transformed from unagitated to agitated. This means that the partition fraction which describes the aerosol content of the head space will increase from IE-10 to IE-8 (see WHC-SD-WM-CN062, Rev. 2 for discussion of partition fractions). The head spare will become much more loaded with suspended material. Furthermore, the nature of this suspended material can change significantly: sluicing could bring up radioactive solids which normally would lay under many meters of liquid supernate. It is assumed that the headspace and filter aerosols in Tank 241-AY-102 are a 90/10 liquid/solid split. It is further assumed that the sluicing line, the headspace in Tank 241-C-106, and the filters on Tank 241-C-106 contain aerosols which are a 67/33 liquid/solid split. The bases of these assumptions are discussed in Section 3.0. These waste compositions (referred to as mitigated compositions) were used in Attachments 1 through 4 to calculate survey meter exposure rates per liter of inventory in the various system components. Three accident scenarios are evaluated: a high temperature event which melts or burns the HEPA filters and causes releases from other system components; an overpressure event which crushes and blows out the HEPA filters and causes releases from other system components; and an unfiltered release of tank headspace air. The initiating event for the high temperature release is a fire caused by a heater malfunction inside the exhaust dust or a fire outside the duct. The initiating event for the overpressure event could be a steam bump which over pressurizes the tank and leads to a blowout of the HEPA filters in the ventilation system. The catastrophic destruction of the HEPA filters would release a fraction of the accumulated

  20. Radiological and toxicological analyses of tank 241-AY-102 and tank 241-C-106 ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Himes, D.A.

    1998-08-11

    The high heat content solids contained in Tank 241-C-106 are to be removed and transferred to Tank 241-AY-102 by sluicing operations, to be authorized under project W320. While sluicing operations are underway, the state of these tanks will be transformed from unagitated to agitated. This means that the partition fraction which describes the aerosol content of the head space will increase from IE-10 to IE-8 (see WHC-SD-WM-CN062, Rev. 2 for discussion of partition fractions). The head spare will become much more loaded with suspended material. Furthermore, the nature of this suspended material can change significantly: sluicing could bring up radioactive solids which normally would lay under many meters of liquid supernate. It is assumed that the headspace and filter aerosols in Tank 241-AY-102 are a 90/10 liquid/solid split. It is further assumed that the sluicing line, the headspace in Tank 241-C-106, and the filters on Tank 241-C-106 contain aerosols which are a 67/33 liquid/solid split. The bases of these assumptions are discussed in Section 3.0. These waste compositions (referred to as mitigated compositions) were used in Attachments 1 through 4 to calculate survey meter exposure rates per liter of inventory in the various system components. Three accident scenarios are evaluated: a high temperature event which melts or burns the HEPA filters and causes releases from other system components; an overpressure event which crushes and blows out the HEPA filters and causes releases from other system components; and an unfiltered release of tank headspace air. The initiating event for the high temperature release is a fire caused by a heater malfunction inside the exhaust dust or a fire outside the duct. The initiating event for the overpressure event could be a steam bump which over pressurizes the tank and leads to a blowout of the HEPA filters in the ventilation system. The catastrophic destruction of the HEPA filters would release a fraction of the accumulated

  1. Storage Tanks - Selection Of Type, Design Code And Tank Sizing

    International Nuclear Information System (INIS)

    Shatla, M.N; El Hady, M.

    2004-01-01

    The present work gives an insight into the proper selection of type, design code and sizing of storage tanks used in the Petroleum and Process industries. In this work, storage tanks are classified based on their design conditions. Suitable design codes and their limitations are discussed for each tank type. The option of storage under high pressure and ambient temperature, in spherical and cigar tanks, is compared to the option of storage under low temperature and slight pressure (close to ambient) in low temperature and cryogenic tanks. The discussion is extended to the types of low temperature and cryogenic tanks and recommendations are given to select their types. A study of pressurized tanks designed according to ASME code, conducted in the present work, reveals that tanks designed according to ASME Section VIII DIV 2 provides cost savings over tanks designed according to ASME Section VIII DlV 1. The present work is extended to discuss the parameters that affect sizing of flat bottom cylindrical tanks. The analysis shows the effect of height-to-diameter ratio on tank instability and foundation loads

  2. Sludge Batch 7B Qualification Activities With SRS Tank Farm Sludge

    International Nuclear Information System (INIS)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-01-01

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  3. Tank farm nuclear criticality review

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1996-01-01

    The technical basis for the nuclear criticality safety of stored wastes at the Hanford Site Tank Farm Complex was reviewed by a team of senior technical personnel whose expertise covered all appropriate aspects of fissile materials chemistry and physics. The team concluded that the detailed and documented nucleonics-related studies underlying the waste tanks criticality safety basis were sound. The team concluded that, under current plutonium inventories and operating conditions, a nuclear criticality accident is incredible in any of the Hanford single-shell tanks (SST), double-shell tanks (DST), or double-contained receiver tanks (DCRTS) on the Hanford Site

  4. Tank waste processing analysis: Database development, tank-by-tank processing requirements, and examples of pretreatment sequences and schedules as applied to Hanford Double-Shell Tank Supernatant Waste - FY 1993

    International Nuclear Information System (INIS)

    Colton, N.G.; Orth, R.J.; Aitken, E.A.

    1994-09-01

    This report gives the results of work conducted in FY 1993 by the Tank Waste Processing Analysis Task for the Underground Storage Tank Integrated Demonstration. The main purpose of this task, led by Pacific Northwest Laboratory, is to demonstrate a methodology to identify processing sequences, i.e., the order in which a tank should be processed. In turn, these sequences may be used to assist in the development of time-phased deployment schedules. Time-phased deployment is implementation of pretreatment technologies over a period of time as technologies are required and/or developed. The work discussed here illustrates how tank-by-tank databases and processing requirements have been used to generate processing sequences and time-phased deployment schedules. The processing sequences take into account requirements such as the amount and types of data available for the tanks, tank waste form and composition, required decontamination factors, and types of compact processing units (CPUS) required and technology availability. These sequences were developed from processing requirements for the tanks, which were determined from spreadsheet analyses. The spreadsheet analysis program was generated by this task in FY 1993. Efforts conducted for this task have focused on the processing requirements for Hanford double-shell tank (DST) supernatant wastes (pumpable liquid) because this waste type is easier to retrieve than the other types (saltcake and sludge), and more tank space would become available for future processing needs. The processing requirements were based on Class A criteria set by the U.S. Nuclear Regulatory Commission and Clean Option goals provided by Pacific Northwest Laboratory

  5. CHARACTERIZATION AND SETTLING TESTS WITH TANK 51H SLURRY SAMPLES HTF-076-081

    International Nuclear Information System (INIS)

    HAY, MICHAEL

    2006-01-01

    Sludge Batch 4 (SB4) is the next sludge batch being prepared for feed to the Defense Waste Processing Facility (DWPF). SB4 includes sludge from Tanks 5F, 6F, and 11H and heels from Tanks 7F and 51H. In preparation of SB4, sludge was transferred from Tank 11H to Tank 51H. The sludge currently in Tank 51H has been found to settle at slower rates than previous sludge batches. The slow sludge settling in Tank 51H impacts the ability to wash SB4 to the desired final weight percent insoluble solids and sodium endpoint. This could impact the ability to have SB4 ready on time to support DWPF and result in increased recycle back to the Tank Farm, reduced waste loading at DWPF, and lengthened cycle time in the DWPF Chemical Processing Cell (CPC) Sludge Receipt and Adjustment Tank (SRAT). The Savannah River National Laboratory (SRNL) was requested to characterize and investigate the slower settling rate with six slurry dip samples of Tank 51H sludge. The filtered supernate and the total dried solids of the sludge were analyzed and summaries of the results published in the references listed below. The sludge composition was found to be consistent with H-Area high aluminum sludge. Difficulties were encountered with dissolving all of the material in the dried sludge solids. An analysis of the undissolved material from the digestions found the main constituent was Boehmite (AlO(OH)). This report provides all of the compositional data and an analysis of the data with recommended values to use for the composition of the Tank 51H composite sample. Tables 3-2 through 3-4 provide the composition of the Tank 51H composite sample. Settling tests conducted with the Tank 51H sludge showed a much slower settling rate than with the sludge in Sludge Batch 3 (SB3). A mixture of Tank 51H and sludge from SB3 was prepared to mimic the projected final composition of Sludge Batch 4 (SB4). The mixture showed minimal improvement in the settling rate versus Tank 51H sludge alone. An attempt to

  6. Do Fish Enhance Tank Mixing?

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Laursen, Jesper; Craig, Steven R.

    2005-01-01

    The design of fish rearing tanks represents a critical stage in the development of optimal aquaculture systems, especially in the context of recirculating systems. Poor hydrodynamics can compromise water quality, waste management and the physiology and behaviour of fish, and thence, production...... potential and operational profitability. The hydrodynamic performance of tanks, therefore, represents an important parameter during the tank design process. Because there are significant complexities in combining the rigid principles of hydrodynamics with the stochastic behaviour of fish, however, most data...... upon tank hydrokinetics has been derived using tanks void of fish. Clearly, the presence of randomly moving objects, such as fish, in a water column will influence not only tank volumes by displacing water, but due to their activity, water dynamics and associated in-tank processes. In order...

  7. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT... tank car tanks. Editorial Note: At 66 FR 45186, Aug. 28, 2001, an amendment published amending a table...

  8. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In...

  9. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  10. Test plan for Fauske and Associates to perform tube propagation experiments with simulated Hanford tank wastes

    International Nuclear Information System (INIS)

    Carlson, C.D.; Babad, H.

    1996-05-01

    This test plan, prepared at Pacific Northwest National Laboratory for Westinghouse Hanford Company, provides guidance for performing tube propagation experiments on simulated Hanford tank wastes and on actual tank waste samples. Simulant compositions are defined and an experimental logic tree is provided for Fauske and Associates (FAI) to perform the experiments. From this guidance, methods and equipment for small-scale tube propagation experiments to be performed at the Hanford Site on actual tank samples will be developed. Propagation behavior of wastes will directly support the safety analysis (SARR) for the organic tanks. Tube propagation may be the definitive tool for determining the relative reactivity of the wastes contained in the Hanford tanks. FAI have performed tube propagation studies previously on simple two- and three-component surrogate mixtures. The simulant defined in this test plan more closely represents actual tank composition. Data will be used to support preparation of criteria for determining the relative safety of the organic bearing wastes

  11. A science think tank

    Energy Technology Data Exchange (ETDEWEB)

    Devine, F [The Australian, (Australia)

    1999-07-01

    A journalist views on public perceptions on nuclear issues in Australia and Japan is presented. It is also emphasised that by not offering an undergraduate course in nuclear engineering, Australia have closed the door to the nuclear energy development in Australia and costed the country some depth of specialized knowledges. A scientific think tank with active participation of the nuclear scientists is thought to benefit Australia and be in the position to influence private industrial and governmental planning.

  12. A science think tank

    International Nuclear Information System (INIS)

    Devine, F.

    1999-01-01

    A journalist views on public perceptions on nuclear issues in Australia and Japan is presented. It is also emphasised that by not offering an undergraduate course in nuclear engineering, Australia have closed the door to the nuclear energy development in Australia and costed the country some depth of specialized knowledges. A scientific think tank with active participation of the nuclear scientists is thought to benefit Australia and be in the position to influence private industrial and governmental planning

  13. Tank type reactor

    International Nuclear Information System (INIS)

    Otsuka, Fumio.

    1989-01-01

    The present invention concerns a tank type reactor capable of securing reactor core integrity by preventing incorporation of gases to an intermediate heat exchanger, thgereby improving the reliability. In a conventional tank type reactor, since vortex flows are easily caused near the inlet of an intermediate heat exchanger, there is a fear that cover gases are involved into the coolant main streams to induce fetal accidents. In the present invention, a reactor core is suspended by way of a suspending body to the inside of a reactor vessel and an intermediate heat exchanger and a pump are disposed between the suspending body and the reactor vessel, in which a vortex current preventive plate is attached at the outside near the coolant inlet on the primary circuit of the intermediate heat exchanger. In this way vortex or turbulence near the inlet of the intermediate heata exchanger or near the surface of coolants can be prevented. Accordingly, the cover gases are no more involved, to insure the reactor core integrity and obtain a tank type nuclear reactor of high reliability. (I.S.)

  14. Theoretical study of solar combisystems based on bikini tanks and tank-in-tank stores

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2012-01-01

    . Originality/value - Many different Solar Combisystem designs have been commercialized over the years. In the IEA-SHC Task 26, twenty one solar combisystems have been described and analyzed. Maybe the mantle tank approach also for solar combisystems can be used with advantage? This might be possible...... if the solar heating system is based on a so called bikini tank. Therefore the new developed solar combisystems based on bikini tanks is compared to the tank-in-tank solar combisystems to elucidate which one is suitable for three different houses with low energy heating demand, medium and high heating demand.......Purpose - Low flow bikini solar combisystems and high flow tank-in-tank solar combisystems have been studied theoretically. The aim of the paper is to study which of these two solar combisystem designs is suitable for different houses. The thermal performance of solar combisystems based on the two...

  15. Grout and glass performance in support of stabilization/solidification of ORNL tank sludges

    International Nuclear Information System (INIS)

    Spence, R.D.; Mattus, C.H.; Mattus, A.J.

    1998-09-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) and Bethel Valley Evaporator Storage Tanks (BVEST) pending treatment for disposal. In addition, some sludges and supernatants also requiring treatment remain in two inactive tank systems: the gunite and associated tanks (GAAT) and the old hydrofracture (OHF) tank. The waste consists of two phases: sludge and supernatant. The sludges contain a high amount of radioactivity, and some are classified as TRU sludges. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough to be defined as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste. Grouting and vitrification are currently two likely stabilization/solidification alternatives for mixed wastes. Grouting has been used to stabilize/solidify hazardous and low-level radioactive waste for decades. Vitrification has been developed as a high-level radioactive alternative for decades and has been under development recently as an alternative disposal technology for mixed waste. The objective of this project is to define an envelope, or operating window, for grout and glass formulations for ORNL tank sludges. Formulations will be defined for the average composition of each of the major tank farms (BVEST/MVST, GAAT, and OHF) and for an overall average composition of all tank farms. This objective is to be accomplished using surrogates of the tank sludges with hot testing of actual tank sludges to check the efficacy of the surrogates

  16. Tank characterization data report: Tank 241-C-112

    International Nuclear Information System (INIS)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable

  17. Tank characterization data report: Tank 241-C-112

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable.

  18. Tank characterization report for Single-Shell Tank 241-BX-107

    International Nuclear Information System (INIS)

    Raphael, G.F.

    1994-09-01

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents. The results of this is study revealed that tank BX-107, a 2,006,050 L (530,000 gal) cylindrical single-shell, dished-bottom carbon-steel tank in the 200 East Area of the Hanford Site, was classified as sound. It has been interim stabilized and thus contains less than 189,250 L (50,000 gal) of interstitial liquid, and less than 18,925 L (5,000 gal) of supernatant. It has also been partially interim isolated, whereby all inlets to the tank are sealed to prevent inadvertent addition of liquid. At a residual waste level of ∼3.07 m (120.7 ± 2 in. from sidewall bottom or ∼132.9 in. from center bottom), it is estimated that the tank BX-107 contents are equivalent to 1,305,825 L (345,000 gal). The vapor space pressure is at atmospheric. The latest temperature readings, which were taken in July 1994, show a moderate temperature value of 19 degrees C (66 degrees F). Two supernatant samples were collected in 1974 and 1990, prior to interim stabilization. Sludge core samples were obtained in 1979 and 1992

  19. Underground tank remediation by use of in situ vitrification

    International Nuclear Information System (INIS)

    Thompson, L.E.

    1991-02-01

    Pacific Northwest Laboratory (PNL) is developing a remedial action technology for underground storage tanks through the adaptation of the in situ vitrification (ISV) process. The ISV process is a thermal treatment processes that was originally developed for the stabilization of contaminated soil contaminated with transuranic waste at the Hanford Site in southeastern Washington for the Department of Energy (DOE). The application of ISV to underground storage tanks represents an entirely new application of the ISV technology and is being performed in support of the DOE primarily for the Hanford site and the Oak Ridge National Laboratory (ORNL). A field scale test was conducted in September 1990 at Hanford on a small cement and stainless steel tank (1-m dia.) that contained a simulated refractory sludge representing a worst-case sludge composition. The tank design and sludge composition was based on conditions present at the ORNL. The sludge contained high concentrations of heavy metals including lead, mercury, and cadmium, and also contained high levels of stable cesium and strontium to represent the predominant radionuclide species present in the tank wastes. The test was highly successful in that the entire tank and surrounding soil was transformed into a highly leach resistant glass and crystalline block with a mass of approximately 30 tons. During the process, the metal shell of the tank forms a metal pool at the base of the molten soil. Upon cooling, the glass and metal phases were subjected to TCLP (toxic characteristic leach procedure) testing and passed the TCLP criteria. Additional sampling and analyses are ongoing to determine the bulk composition of the waste forms, the fraction of volatile or semi-volatile species released to the off-gas treatment system, and to determine whether any soil surrounding the monolith was contaminated as a result of the ISV process. 4 refs., 5 figs., 3 tabs

  20. 27 CFR 24.229 - Tank car and tank truck requirements.

    Science.gov (United States)

    2010-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  1. Tank Characterization Report for Double-Shell Tank (DST) 241-AN-107

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    This report interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank

  2. Tank Characterization Report for Single-Shell Tank 241-C-104

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    Interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank

  3. Development of smart solar tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    The aim of the project is to develop smart solar tanks. A smart solar tank is a tank in which the domestic water can bee heated both by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply system heats up the hot-water tank from the top and the water volume heated...... by the auxiliary energy supply system is fitted to the hot water consumption and consumption pattern. In periods with a large hot-water demand the volume is large, in periods with a small hot-water demand the volume is small. Based on measurements and calculations the advantage of smart SDHW systems is visualised....

  4. 46 CFR 154.420 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.420 Section 154.420 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.420 Tank design. (a) The structure of an integral tank must meet the deep tank scantling standards...

  5. 46 CFR 154.439 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the...

  6. 49 CFR 238.423 - Fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  7. 49 CFR 229.217 - Fuel tank.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum... to the fuel tank safety requirements of § 238.223 or § 238.423 of this chapter. The Director of the...

  8. Tal en tanke

    DEFF Research Database (Denmark)

    Stjernfelt, Frederik; Hendricks, Vincent

    Den svenske biskop og poet Esais Tegnèr har engang sagt: "Menneskers ord og tanker fødes sammen, at tale uklart er at tænke uklart." Denne lærebog er et lynkursus i at tænke og tale klart - og i at være på vagt over for uklar tænkning og tale, hvor den end optræder.Tal en tanke er hurtigt læst og...

  9. Tank closure reducing grout

    International Nuclear Information System (INIS)

    Caldwell, T.B.

    1997-01-01

    A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr 90 , the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel

  10. Regulated underground storage tanks

    International Nuclear Information System (INIS)

    1992-06-01

    This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ''roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation

  11. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    International Nuclear Information System (INIS)

    Haller, C.S.; Dove, T.H.

    1994-01-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement

  12. AN ASSESSMENT OF THE SERVICE HISTORY AND CORROSION SUSCEPTIBILITY OF TYPE IV WASTE TANKS

    International Nuclear Information System (INIS)

    Wiersma, B

    2008-01-01

    Type IV waste tanks were designed and built to store waste that does not require auxiliary cooling. Each Type IV tank is a single-shell tank constructed of a steel-lined pre-stressed concrete tank in the form of a vertical cylinder with a concrete domed roof. There are four such tanks in F-area, Tanks 17-20F, and four in H-Area, Tanks 21-24H. Leak sites were discovered in the liners for Tanks 19 and 20F in the 1980's. Although these leaks were visually observed, the investigation to determine the mechanism by which the leaks had occurred was not completed at that time. Therefore, a concern was raised that the same mechanism which caused the leak sites in the Tanks in F-area may also be operable in the H-Area tanks. Data from the construction of the tanks (i.e., certified mill test reports for the steel, no stress-relief), the service history (i.e., waste sample data, temperature data), laboratory tests on actual wastes and simulants (i.e., electrochemical testing), and the results of the visual inspections were reviewed. The following observations and conclusions were made: (1) Comparison of the compositional and microstructural features indicate that the A212 material utilized for construction of the H-Area tanks are far more resistant to SCC than the A285 materials used for construction of the F-Area tanks. (2) A review of the materials of construction, temperature history, service histories concluded that F-Area tanks likely failed by caustic stress corrosion cracking. (3) The environment in the F-Area tanks was more aggressive than that experienced by the H-Area tanks. (4) Based on a review of the service history, the H-Area tanks have not been exposed to an environment that would render the tanks susceptible to either nitrate stress corrosion cracking (i.e., the cause of failures in the Type I and II tanks) or caustic stress corrosion cracking. (5) Due to the very dilute and uninhibited solutions that have been stored in Tank 23H, vapor space corrosion has

  13. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  14. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to...

  15. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Special requirements for class 114A * * * tank car... SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  16. Hanford waste tank cone penetrometer

    International Nuclear Information System (INIS)

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ''waste'' data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment

  17. Hanford Tank Waste Particle Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Herting, D. L. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Cooke, G. A. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Page, J S [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Valerio, J. L. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States)

    2015-08-01

    Several methods have been utilized to perform solid phase characterization. Polarized light microscopy (PLM) is used to identify individual particles based on size, shape, color, and optical properties (e.g., refractive index1, birefringence, extinction positions, and interference figures). Scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS) is used to detect which elements are present in individual particles and to infer chemical phase identification based on the metals present in combination with the size and shape of the particles. Powder X-ray diffraction (XRD) is used to identify crystalline phases present in bulk samples by matching the X-ray patterns with a library of known patterns for pure phases. Transmission electron microscopy (TEM) is used to identify individual particles by their X-ray diffraction patterns. RAMAN analysis is used to identify bulk sample compositions by matching RAMAN spectra with a library of known patterns. Other specialized techniques have not been employed routinely for Hanford tank waste samples.

  18. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

  19. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    International Nuclear Information System (INIS)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board's view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program

  20. WRPS Meeting The Challenge Of Tank Waste

    International Nuclear Information System (INIS)

    Britton, J.C.

    2012-01-01

    Washington River Protection Solutions (WRPS) is the Hanford tank operations contractor, charged with managing one of the most challenging environmental cleanup projects in the nation. The U.S. Department of Energy hired WRPS to manage 56 million gallons of high-level radioactive waste stored in 177 underground tanks. The waste is the legacy of 45 years of plutonium production for the U. S. nuclear arsenal. WRPS mission is three-fold: safely manage the waste until it can be processed and immobilized; develop the tools and techniques to retrieve the waste from the tanks, and build the infrastructure needed to deliver the waste to the Waste Treatment Plant (WTP) when it begins operating. WTP will 'vitrify' the waste by mixing it with silica and other materials and heating it in an electric melter. Vitrification turns the waste into a sturdy glass that will isolate the radioactivity from the environment. It will take more than 20 years to process all the tank waste. The tank waste is a complex highly radioactive mixture of liquid, sludge and solids. The radioactivity, chemical composition of the waste and the limited access to the underground storage tanks makes retrieval a challenge. Waste is being retrieved from aging single-shell tanks and transferred to newer, safer double-shell tanks. WRPS is using a new technology known as enhanced-reach sluicing to remove waste. A high-pressure stream of liquid is sprayed at 100 gallons per minute through a telescoping arm onto a hard waste layer several inches thick covering the waste. The waste is broken up, moved to a central pump suction and removed from the tank. The innovative Mobile Arm Retrieval System (MARS) is also being used to retrieve waste. MARS is a remotely operated, telescoping arm installed on a mast in the center of the tank. It uses multiple technologies to scrape, scour and rake the waste toward a pump for removal. The American Reinvestment and Recovery Act (ARRA) provided nearly $326 million over two

  1. Cleaning Validation of Fermentation Tanks

    DEFF Research Database (Denmark)

    Salo, Satu; Friis, Alan; Wirtanen, Gun

    2008-01-01

    Reliable test methods for checking cleanliness are needed to evaluate and validate the cleaning process of fermentation tanks. Pilot scale tanks were used to test the applicability of various methods for this purpose. The methods found to be suitable for validation of the clenlinees were visula...

  2. Modelling of baffled stirred tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstedt, H.; Lahtinen, M. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1996-12-31

    The three-dimensional flow field of a baffled stirred tank has been calculated using four different turbulence models. The tank is driven by a Rushton-type impeller. The boundary condition for the impeller region has been given as a source term or by calculating the impeller using the sliding mesh technique. Calculated values have been compared with measured data. (author)

  3. Surplus yeast tank failing catastrophically

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2016-01-01

    GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air...

  4. Solitons in a wave tank

    International Nuclear Information System (INIS)

    Olsen, M.; Smith, H.; Scott, A.C.

    1984-01-01

    A wave tank experiment (first described by the nineteenth-century engineer and naval architect John Scott Russell) relates a linear eigenvalue problem from elementary quantum mechanics to a striking feature of modern nonlinear wave theory: multiple generation of solitons. The tank experiment is intended for lecture demonstrations. 19 references, 6 figures

  5. Modelling of baffled stirred tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstedt, H; Lahtinen, M [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-12-31

    The three-dimensional flow field of a baffled stirred tank has been calculated using four different turbulence models. The tank is driven by a Rushton-type impeller. The boundary condition for the impeller region has been given as a source term or by calculating the impeller using the sliding mesh technique. Calculated values have been compared with measured data. (author)

  6. 1990 waste tank inspection program

    International Nuclear Information System (INIS)

    McNatt, F.G.

    1990-01-01

    Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Tank conditions are evaluated by inspection using periscopes, still photography, and video systems for visual imagery. Inspections made in 1990 are the subject of this report

  7. Enhanced Waste Tank Level Model

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    1999-06-24

    'With the increased sensitivity of waste-level measurements in the H-Area Tanks and with periods of isolation, when no mass transfer occurred for certain tanks, waste-level changes have been recorded with are unexplained.'

  8. Cathodic Protection Design Algorithms for Refineries Aboveground Storage Tanks

    Directory of Open Access Journals (Sweden)

    Kosay Abdul sattar Majbor

    2017-12-01

    Full Text Available Storage tanks condition and integrity is maintained by joint application of coating and cathodic protection. Iraq southern region rich in oil and petroleum product refineries need and use plenty of aboveground storage tanks. Iraq went through conflicts over the past thirty five years resulting in holding the oil industry infrastructure behind regarding maintenance and modernization. The primary concern in this work is the design and implementation of cathodic protection systems for the aboveground storage tanks farm in the oil industry. Storage tank external base area and tank internal surface area are to be protected against corrosion using impressed current and sacrificial anode cathodic protection systems. Interactive versatile computer programs are developed to provide the necessary system parameters data including the anode requirements, composition, rating, configuration, etc. Microsoft-Excel datasheet and Visual Basic.Net developed software were used throughout the study in the design of both cathodic protection systems. The case study considered in this work is the eleven aboveground storage tanks farm situated in al-Shauiba refinery in southern IRAQ. The designed cathodic protection systems are to be installed and monitored realistically in the near future. Both systems were designed for a life span of (15-30 years, and all their parameters were within the internationally accepted standards.

  9. High-Precision Plutonium Isotopic Compositions Measured on Los Alamos National Laboratory’s General’s Tanks Samples: Bearing on Model Ages, Reactor Modelling, and Sources of Material. Further Discussion of Chronometry

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Khalil J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rim, Jung Ho [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porterfield, Donivan R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roback, Robert Clifford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanley, Floyd E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-29

    In this study, we re-analyzed late-1940’s, Manhattan Project era Plutonium-rich sludge samples recovered from the ''General’s Tanks'' located within the nation’s oldest Plutonium processing facility, Technical Area 21. These samples were initially characterized by lower accuracy, and lower precision mass spectrometric techniques. We report here information that was previously not discernable: the two tanks contain isotopically distinct Pu not only for the major (i.e., 240Pu, 239Pu) but trace (238Pu ,241Pu, 242Pu) isotopes. Revised isotopics slightly changed the calculated 241Am-241Pu model ages and interpretations.

  10. CHARACTERIZATION OF TANK 18F WALL AND SCALE SAMPLES

    International Nuclear Information System (INIS)

    Hay, Michael; Click, Damon; Diprete, C.; Diprete, David

    2010-01-01

    Samples from the wall of Tank 18F were obtained to determine the associated source term using a special wall sampling device. Two wall samples and a scale sample were obtained and characterized at the Savannah River National Laboratory (SRNL). All the analyses of the Tank 18F wall and scale samples met the targeted detection limits. The upper wall samples show ∼2X to 6X higher concentrations for U, Pu, and Np on an activity per surface area basis than the lower wall samples. On an activity per mass basis, the upper and lower wall samples show similar compositions for U and Pu. The Np activity is still ∼2.5X higher in the upper wall sample on a per mass basis. The scale sample contains 2-3X higher concentrations of U, Pu, and Sr-90 than the wall samples on an activity per mass basis. The plutonium isotopics differ for all three wall samples (upper, lower, and scale samples). The Pu-238 appears to increase as a proportion of total plutonium as you move up the tank wall from the lowest sample (scale sample) to the upper wall sample. The elemental composition of the scale sample appears similar to other F-Area PUREX sludge compositions. The composition of the scale sample is markedly different than the material on the floor of Tank 18F. However, the scale sample shows elevated Mg and Ca concentrations relative to typical PUREX sludge as do the floor samples.

  11. Organic Tanks Safety Program: Waste aging studies

    International Nuclear Information System (INIS)

    Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

    1994-11-01

    The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year's findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to γ radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H 2 . Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs

  12. In-tank photo analysis

    International Nuclear Information System (INIS)

    Vorvick, C.A.; Baird, D.B.; Heasler, P.G.

    1995-09-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) of photographs showing the interior of a single shell tank (SST) at the Hanford site. This report shows that in-tank photos can be used to create a plan-view map of the waste surface inside a tank, and that measuring the elevation of the waste surface from the photos is possible, but not accurate enough to be useful at this time. In-tank photos were acquired for Tanks BX111 and T111. The BX111 photos were used to create the waste surface map and to measure the waste surface elevation. T111 photos were used to measure the waste surface elevation. Uncertainty analyses of the mapping and surface elevation are included to show the accuracy of the calculations for both methods

  13. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  14. Tanks 3F and 2F Saltcake Core and Supernate Sample Analysis

    International Nuclear Information System (INIS)

    MARTINO, CHRISTOPHERJ

    2004-01-01

    In support of Low-Curie Salt (LCS) process validation at the Savannah River Site (SRS), Liquid Waste Disposition (LWD) has undertaken a program of tank waste characterization, including salt sampling. As part of this initiative, they sampled the surface of the saltcake in Tank 3F and Tank 2F using approximately 12-inch long sample tubes. A series of three saltcake samples were taken of the upper crust in Tank 3F and a single saltcake sample was taken from the bottom of a liquid-filled well in Tank 2F. In addition to analysis of the solid saltcake samples, the liquid contained in the Tank 3F samples and a separate supernate sample from Tank 2F were studied. The primary objective of the characterization is to gather information that will be useful to the selection and processing of the next waste tanks. Most important is the determination of the 137Cs concentration and liquid retention properties of Tank 3F and Tank 2F saltcake to enable projection of drained, dissolved salt composition. Additional information will aid in refining the waste characterization system (WCS) and could assist the eventual salt treatment or processing

  15. Suspending Zeolite Particles In Tanks

    International Nuclear Information System (INIS)

    Poirier, M.R.

    1999-01-01

    The Savannah River Site (SRS) is in the process of removing waste (sludge and salt cake) from million gallon waste tanks. The current practice for removing waste from the tanks is adding water, agitating the tanks with long shaft vertical centrifugal pumps, and pumping the sludge/salt solution from the tank to downstream treatment processes. This practice has left sludge heels (tilde 30,000 gallons) in the bottom of the tanks. SRS is evaluating shrouded axial impeller mixers for removing the sludge heels in the waste tanks. The authors conducted a test program to determine mixer requirements for suspending sludge heels using the shrouded axial impeller mixers. The tests were performed with zeolite in scaled tanks which have diameters of 1.5, 6.0, and 18.75 feet. The mixer speeds required to suspend zeolite particles were measured at each scale. The data were analyzed with various scaling methods to compare their ability to describe the suspension of insoluble solids with the mixers and to apply the data to a full-scale waste tank. The impact of changes in particle properties and operating parameters was also evaluated. The conclusions of the work are: Scaling of the suspension of fast settling zeolite particles was best described by the constant power per unit volume method. Increasing the zeolite particle concentration increased the required mixer power needed to suspend the particles. Decreasing the zeolite particle size from 0.7 mm 0.3 mm decreased the required mixer power needed to suspend the particles. Increasing the number of mixers in the tank decreased the required mixer power needed to suspend the particles. A velocity of 1.6 ft/sec two inches above the tank bottom is needed to suspend zeolite particles

  16. Tank-automotive robotics

    Science.gov (United States)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  17. Flammable gas tank waste level reconciliation tank 241-SX-105

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddie, L.A.

    1997-01-01

    Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980

  18. Tank farms hazards assessment

    International Nuclear Information System (INIS)

    Broz, R.E.

    1994-01-01

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ''Interim Safety Basis Document, WHC-SD-WM-ISB-001'' as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process

  19. Supporting document for the Southeast Quadrant historical tank content estimate report for SY-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Consort, S.D.

    1995-01-01

    Historical Tank Content Estimate of the Southeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground double-shell tanks of the Hanford 200 East and West Areas. This report summarizes historical information such as waste history, temperature profiles, psychrometric data, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance are included. Components of the data management effort, such as Waste Status and Transaction Record Summary, Tank Layer Model, Supernatant Mixing Model, Defined Waste Types, and Inventory Estimates which generate these tank content estimates, are also given in this report

  20. Sloshing impact in roofed tanks

    International Nuclear Information System (INIS)

    Uras, R.A.

    1995-01-01

    A large number of high-level waste (HLW) storage tanks exists in various tank farms. Seismic activities at those locations may cause significant sloshing in HLW tanks. These tanks are covered to avoid any spilling during large amplitude earthquakes. However, large amplitude sloshing may result in impact on the cover or the roof of the tank. Hence, a better understanding of the impact phenomenon is necessary to assess the safety of the tanks currently in existence, and to establish design guidelines for future designs. A pressure based formulation is derived to model sloshing impact in roared tanks. It is incorporated into Argonne's in-house finite element code FLUSTR-ANL. A numerical test case with a harmonic input excitation is studied. The simulation results indicate that linear behavior is preserved beyond the first impact, and some mesh distortion is observed following a stronger second impact. During the impact, the displacement of the contacting surface nodes remains constant, and the velocities are reduced to zero. An identification of impacting nodes is possible from the dynamic pressures induced in surface elements

  1. Sloshing impact in roofed tanks

    International Nuclear Information System (INIS)

    Uras, R.A.

    1995-01-01

    A large number of high-level waste (HLW) storage tanks exists in various tank farms. Seismic activities at those locations may cause significant sloshing in HLW tanks. These tanks are covered to avoid any spilling during large amplitude earthquakes. However, large amplitude sloshing may result in impact on the cover or the roof of the tank. Hence, a better understanding of the impact phenomenon is necessary to assess the safety of the tanks currently in existence, and to establish design guidelines for future designs. A pressure based formulation is derived to model sloshing impact in roofed tanks. It is incorporated into Argonne's in-house finite element code FLUSTR-ANL. A numerical test case with a harmonic input excitation is studied. The simulation results indicate that linear behavior is preserved beyond the first impact, and some mesh distortion is observed following a stronger second impact. During the impact, the displacement of the contacting surface nodes remains constant, and the velocities are reduced to zero. An identification of impacting nodes is possible from the dynamic pressures induced in surface elements

  2. Waste tank characterization sampling limits

    International Nuclear Information System (INIS)

    Tusler, L.A.

    1994-01-01

    This document is a result of the Plant Implementation Team Investigation into delayed reporting of the exotherm in Tank 241-T-111 waste samples. The corrective actions identified are to have immediate notification of appropriate Tank Farm Operations Shift Management if analyses with potential safety impact exceed established levels. A procedure, WHC-IP-0842 Section 12.18, ''TWRS Approved Sampling and Data Analysis by Designated Laboratories'' (WHC 1994), has been established to require all tank waste sampling (including core, auger and supernate) and tank vapor samples be performed using this document. This document establishes levels for specified analysis that require notification of the appropriate shift manager. The following categories provide numerical values for analysis that may indicate that a tank is either outside the operating specification or should be evaluated for inclusion on a Watch List. The information given is intended to translate an operating limit such as heat load, expressed in Btu/hour, to an analysis related limit, in this case cesium-137 and strontium-90 concentrations. By using the values provided as safety flags, the analytical laboratory personnel can notify a shift manager that a tank is in potential violation of an operating limit or that a tank should be considered for inclusion on a Watch List. The shift manager can then take appropriate interim measures until a final determination is made by engineering personnel

  3. Corrosion and failure processes in high-level waste tanks

    International Nuclear Information System (INIS)

    Mahidhara, R.K.; Elleman, T.S.; Murty, K.L.

    1992-11-01

    A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted

  4. Tank 241-BY-110 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-BY-110

  5. Tank characterization report for single shell tank 241-SX-108

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, R.F., Westinghouse Hanford

    1996-07-11

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-SX-108. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  6. Tank 241-S-107 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-S-107

  7. Tank vapor mitigation requirements for Hanford Tank Farms

    International Nuclear Information System (INIS)

    Rakestraw, L.D.

    1994-01-01

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks

  8. Tank vapor mitigation requirements for Hanford Tank Farms

    Energy Technology Data Exchange (ETDEWEB)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  9. Tank 241-AN-102 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-AN-102

  10. Tank 241-U-111 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-U-111

  11. Tank 241-B-106 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-B-106

  12. Tank 241-SY-103 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-SY-103

  13. Tank characterization report for single-shell Tank B-201

    International Nuclear Information System (INIS)

    Heasler, P.G.; Remund, K.M.; Tingey, J.M.; Baird, D.B.; Ryan, F.M.

    1994-09-01

    The purpose of this report is to characterize the waste in single shell Tank B-201. Characterization includes the determination of the physical, chemical (e.g., concentrations of elements and organic species), and radiological properties of the waste. These determinations are made using analytical results from B-201 core samples as well as historical information about the tank. The main objective is to determine average waste properties: but in some cases, concentrations of analytes as a function of depth were also determined. This report also consolidates the available historical information regarding Tank B-201, arranges the analytical information from the recent core sampling in a useful format, and provides an interpretation of the data within the context of what is known about the tank

  14. Ecodesign of Liquid Fuel Tanks

    Science.gov (United States)

    Gicevska, Jana; Bazbauers, Gatis; Repele, Mara

    2011-01-01

    The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.

  15. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    International Nuclear Information System (INIS)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option

  16. 46 CFR 154.446 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent tank type B must meet the calculations under § 154...

  17. Double-shell tank emergency pumping guide

    International Nuclear Information System (INIS)

    BROWN, M.H.

    1999-01-01

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanfords 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified

  18. Double-shell tank emergency pumping guide

    International Nuclear Information System (INIS)

    BROWN, M.H.

    1999-01-01

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTS. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified

  19. continuous stirred tank reactor (CSTR)

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... stirred tank reactor (CSTR) and the small and large intestines as plug flow reactor (PFR) ... from the two equations are used for the reactor sizing of the modeled reactors.

  20. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  1. Storage Tank Legionella and Community

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage Tank Legionella and Community. This dataset is associated with the following publication: Qin, K., I. Struewing, J. Santodomingo, D. Lytle, and J. Lu....

  2. Research Award: Think Tank Iniave

    International Development Research Centre (IDRC) Digital Library (Canada)

    Corey Piccioni

    2013-08-07

    Aug 7, 2013 ... be learned from these examples to help strengthen think tanks more widely? ... What is the nature of the applied research market in (some) ... A Master's in economics, development studies, public policy, or polical sciences;.

  3. CHARACTERIZATION AND ACTUAL WASTE TEST WITH TANK 5F SAMPLES

    International Nuclear Information System (INIS)

    Fletcher, D.

    2007-01-01

    The initial phase of bulk waste removal operations was recently completed in Tank 5F. Video inspection of the tank indicates several mounds of sludge still remain in the tank. Additionally, a mound of white solids was observed under Riser 5. In support of chemical cleaning and heel removal programs, samples of the sludge and the mound of white solids were obtained from the tank for characterization and testing. A core sample of the sludge and Super Snapper sample of the white solids were characterized. A supernate dip sample from Tank 7F was also characterized. A portion of the sludge was used in two tank cleaning tests using oxalic acid at 50 C and 75 C. The filtered oxalic acid from the tank cleaning tests was subsequently neutralized by addition to a simulated Tank 7F supernate. Solids and liquid samples from the tank cleaning test and neutralization test were characterized. A separate report documents the results of the gas generation from the tank cleaning test using oxalic acid and Tank 5F sludge. The characterization results for the Tank 5F sludge sample (FTF-05-06-55) appear quite good with respect to the tight precision of the sample replicates, good results for the glass standards, and minimal contamination found in the blanks and glass standards. The aqua regia and sodium peroxide fusion data also show good agreement between the two dissolution methods. Iron dominates the sludge composition with other major contributors being uranium, manganese, nickel, sodium, aluminum, and silicon. The low sodium value for the sludge reflects the absence of supernate present in the sample due to the core sampler employed for obtaining the sample. The XRD and CSEM results for the Super Snapper salt sample (i.e., white solids) from Tank 5F (FTF-05-07-1) indicate the material contains hydrated sodium carbonate and bicarbonate salts along with some aluminum hydroxide. These compounds likely precipitated from the supernate in the tank. A solubility test showed the material

  4. Hanford tank residual waste - Contaminant source terms and release models

    International Nuclear Information System (INIS)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael L.; Jeffery Serne, R.

    2011-01-01

    Highlights: → Residual waste from five Hanford spent fuel process storage tanks was evaluated. → Gibbsite is a common mineral in tanks with high Al concentrations. → Non-crystalline U-Na-C-O-P ± H phases are common in the U-rich residual. → Iron oxides/hydroxides have been identified in all residual waste samples. → Uranium release is highly dependent on waste and leachant compositions. - Abstract: Residual waste is expected to be left in 177 underground storage tanks after closure at the US Department of Energy's Hanford Site in Washington State, USA. In the long term, the residual wastes may represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt.%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt.%, respectively. Aluminum concentrations are high (8.2-29.1 wt.%) in some tanks (C-103, C-106, and S-112) and relatively low ( 2 -saturated solution, or a CaCO 3 -saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO 3 -saturated solution than with the Ca(OH) 2 -saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH) 2 -saturated solution than by the CaCO 3 -saturated solution. In general, Tc is much less leachable (<10 wt.% of the

  5. 27 CFR 24.230 - Examination of tank car or tank truck.

    Science.gov (United States)

    2010-04-01

    ... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall... calibration chart is available at the bonded wine premises, the spirits may be gauged by volume in the tank...

  6. Dual-Remote Raman Technology for In-Situ Identification of Tank Waste - 13549

    International Nuclear Information System (INIS)

    Bryan, Sam; Levitskaia, Tatiana; Lines, Amanda; Smith, Frannie; Josephson, Gary; Bello, Job

    2013-01-01

    A new Raman spectroscopic system for in-situ identification of the composition of solid nuclear tank waste is being developed by collaborative effort between Pacific Northwest National Laboratory (PNNL) and EIC Laboratories, Inc. The recent advancements in Raman technology allow probing the chemical composition of the tank waste without sample collection. In the newly tested configuration, the Raman probe is installed on the top of the tank riser and sends the incident laser beam to the bottom of the tank, 10 - 70 feet away. The returning light containing chemical information is collected by the Raman probe and is transmitted via fiber optic cable to the spectrometer located outside the tank farm area. This dual remote technology significantly expands currently limited options for the safe rapid in-situ identification of the solid tank waste needed for the retrieval decisions. The developed Raman system was extensively tested for acceptability prior to tank farm deployment. This testing included calibration of the system with respect of the distance between the Raman probe and the sample, incident laser beam angle, and presence of the optical interferences. The Raman system was successfully deployed on Tank C-111 at the US DOE Hanford site. As the result of this deployment, the composition of the hardpan at the bottom of C-111 tank was identified. Further development of the dual-remote Raman technology will provide a significant safety enhancement eliminating the potential of personnel radiation exposure associated with the grab sample collection and expands options of the rapid and cost-effective in-situ chemical analysis of the tank waste. (authors)

  7. Development and characterization of ceramic composites alumina-titania based reinforced with lanthanum oxide for fabrication of inert coatings for metallic tanks of the oil industry; Desenvolvimento e caracterizacao de compositos ceramicos baseados em alumina-titania reforcados com oxido de lantanio para fabricacao de revestimentos inertes em tanques metalicos da industria petrolifera

    Energy Technology Data Exchange (ETDEWEB)

    Bandeira, J.M.; Yadava, Y.P.; Silva, N.D.G.; Ferreira, R.A.S., E-mail: julianamb91@gmail.com, E-mail: yadava@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Engenharia Mecanica

    2016-07-01

    Crude petroleum is highly corrosive causing superficial degradation in metallic tanks used for storage and transportation of this material, which causes a serious problem in the oil industry. An alternative to solve this problem is to use some kind of coating that is inert to this kind of corrosion. Alumina and titania are interesting materials for several engineering applications because, when compared with other ceramic materials, they present superior mechanical properties, e.g. high mechanical strength, good chemical stability and high fracture toughness combined with good wear resistance and a coefficient of thermal expansion close to the iron's, which makes them fit to use in ceramic hardening process and coating. In this paper, alumina-titania ceramic composites with 5%, 10%, 15% and 20% of titania (TiO2) and reinforced with 2% of lanthanum oxide of were produced by thermo-mechanical processing and sintering techniques at 1350 deg C. In these composites, microstructure and mechanical properties were analyzed using X-ray spectroscopy, optical microscopy, scanning electron microscopy and Vickers hardness in order to evaluate their applicability. X-ray spectroscopy showed the formation of composite without the presence of other phases. Optical microscopy and scanning electron microscopy showed a homogeneous microstructure in terms of particle size and distribution. Vickers hardness test showed a gradual decrease in hardness with the addition of titania. The composite with 5% of titania and 2% of lanthanum oxide is the best choice for structural applications. The composites were submerged in crude petroleum for 30 days to study their stability in such environment. Through the analysis of X-ray spectroscopy, optical microscopy and Vickers hardness before and after the submersion in crude petroleum, it was not observed structural or microstructural degradation nether alterations in mechanical properties. This way, it was concluded that these composites have

  8. Tank Vapor Characterization Project: Annual status report for FY 1996

    International Nuclear Information System (INIS)

    Silvers, K.L.; Fruchter, J.S.; Huckaby, J.L.; Almeida, T.L.; Evans, J.C. Jr.; Pool, K.H.; Simonen, C.A.; Thornton, B.M.

    1997-01-01

    In Fiscal Year 1996, staff at the Vapor Analytical Laboratory at Pacific Northwest National Laboratory performed work in support of characterizing the vapor composition of the headspaces of radioactive waste tanks at the Hanford Site. Work performed included support for technical issues and sampling methodologies, upgrades for analytical equipment, analytical method development, preparation of unexposed samples, analyses of tank headspaces samples, preparation of data reports, and operation of the tank vapor database. Progress made in FY 1996 included completion and issuance of 50 analytical data reports. A sampling system comparison study was initiated and completed during the fiscal year. The comparison study involved the vapor sampling system (VSS), a truck-based system, and the in situ vapor sampling system (ISVS), a cart-based system. Samples collected during the study were characterized for inorganic, permanent gases, total non-methane organic compounds and organic speciation by SUMMA trademark and TST methods. The study showed comparable sampling results between the systems resulting in the program switching from the VSS to the less expensive ISVS methodology in late May 1996. A temporal study was initiated in January 1996 in order to understand the influences seasonal temperatures changes have on the vapors in the headspace of Hanford waste tanks. A holding time study was initiated in the fourth quarter of FY 1996. Samples were collected from tank S-102 and rushed to the laboratory for time zero analysis. Additional samples will be analyzed at 1, 2, 4, 8, 16, and 32 weeks

  9. Dryout modeling in support of the organic tank safety project

    International Nuclear Information System (INIS)

    Simmons, C.S.

    1998-08-01

    This work was performed for the Organic Tank Safety Project to evaluate the moisture condition of the waste surface organic-nitrate bearing tanks that are classified as being conditionally safe because sufficient water is present. This report describes the predictive modeling procedure used to predict the moisture content of waste in the future, after it has been subjected to dryout caused by water vapor loss through passive ventilation. This report describes a simplified procedure for modeling the drying out of tank waste. Dryout occurs as moisture evaporates from the waste into the headspace and then exits the tank through ventilation. The water vapor concentration within the waste of the headspace is determined by the vapor-liquid equilibrium, which depends on the waste's moisture content and temperature. This equilibrium has been measured experimentally for a variety of waste samples and is described by a curve called the water vapor partial pressure isotherm. This curve describes the lowering of the partial pressure of water vapor in equilibrium with the waste relative to pure water due to the waste's chemical composition and hygroscopic nature. Saltcake and sludge are described by two distinct calculations that emphasize the particular physical behavior or each. A simple, steady-state model is devised for each type to obtain the approximate drying behavior. The report shows the application of the model to Tanks AX-102, C-104, and U-105

  10. ROBOTIC TANK INSPECTION END EFFECTOR

    International Nuclear Information System (INIS)

    Rachel Landry

    1999-01-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related sub-tasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these sub-tasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these sub-tasks were derived from the original intent

  11. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm

    International Nuclear Information System (INIS)

    Becker, D.L.

    1997-01-01

    This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding

  12. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spent zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte

  13. Evaluation of tank waste transfers at 241-AW tank farm

    International Nuclear Information System (INIS)

    Willis, W.L.

    1998-01-01

    A number of waste transfers are needed to process and feed waste to the private contractors in support of Phase 1 Privatization. Other waste transfers are needed to support the 242-A Evaporator, saltwell pumping, and other ongoing Tank Waste Remediation System (TWRS) operations. The purpose of this evaluation is to determine if existing or planned equipment and systems are capable of supporting the Privatization Mission of the Tank Farms and continuing operations through the end of Phase 1B Privatization Mission. Projects W-211 and W-314 have been established and will support the privatization effort. Equipment and system upgrades provided by these projects (W-211 and W-314) will also support other ongoing operations in the tank farms. It is recognized that these projects do not support the entire transfer schedule represented in the Tank Waste Remediation system Operation and Utilization Plan. Additionally, transfers surrounding the 241-AW farm must be considered. This evaluation is provided as information, which will help to define transfer paths required to complete the Waste Feed Delivery (WFD) mission. This document is not focused on changing a particular project, but it is realized that new project work in the 241-AW Tank Farm is required

  14. Cost-effectiveness, feed utilization and body composition of african ...

    African Journals Online (AJOL)

    Cost-effectiveness, feed utilization and body composition of african sharptooth catfish ( Clarias gariepinus , Burchell 1822) fingerlings fed locally formulated and commercial pelleted diets in tarpaulin tanks.

  15. Auxiliary resonant DC tank converter

    Science.gov (United States)

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  16. Identification of single-shell tank in-tank hardware obstructions to retrieval at Hanford Site Tank Farms

    International Nuclear Information System (INIS)

    Ballou, R.A.

    1994-10-01

    Two retrieval technologies, one of which uses robot-deployed end effectors, will be demonstrated on the first single-shell tank (SST) waste to be retrieved at the Hanford Site. A significant impediment to the success of this technology in completing the Hanford retrieval mission is the presence of unique tank contents called in-tank hardware (ITH). In-tank hardware includes installed and discarded equipment and various other materials introduced into the tank. This paper identifies those items of ITH that will most influence retrieval operations in the arm-based demonstration project and in follow-on tank operations within the SST farms

  17. Design of second generation Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    Edgemon, G.L.

    1998-01-01

    The Hanford Site has 177 underground waste tanks that store approximately 253 million liters of radioactive waste from 50 years of plutonium production. Twenty-eight tanks have a double shell and are constructed of welded ASTM A537-Class 1 (UNS K02400), ASTM A515-Grade 60 (UNS K02401), or ASTM A516-Grade 60 (UNS K02100) material. The inner tanks of the double-shell tanks (DSTS) were stress relieved following fabrication. One hundred and forty-nine tanks have a single shell, also constructed of welded mild steel, but not stress relieved following fabrication. Tank waste is in liquid, solid, and sludge forms. Tanks also contain a vapor space above the solid and liquid waste regions. The composition of the waste varies from tank to tank but generally has a high pH (>12) and contains sodium nitrate, sodium hydroxide, sodium nitrite, and other minor radioactive constituents resulting from plutonium separation processes. Leaks began to appear in the single-shell tanks shortly after the introduction of nitrate-based wastes in the 1950s. Leaks are now confirmed or suspected to be present in a significant number of single-shell tanks. The probable modes of corrosion failures are reported as nitrate stress corrosion cracking (SCC) and pitting. Previous efforts to monitor internal corrosion of waste tank systems have included linear polarization resistance (LPR) and electrical resistance techniques. These techniques are most effective for monitoring uniform corrosion, but are not well suited for detection of localized corrosion (pitting and SCC). The Savannah River Site (SRS) investigated the characterization of electrochemical noise (EN) for monitoring waste tank corrosion in 1993, but the tests were not conclusive. The SRS effort has recently been revived and additional testing is underway. For many years, EN has been observed during corrosion and other electrochemical reactions, and the phenomenon is well established. Typically, EN consists of low frequency (< 1 Hz) and

  18. Septic tank additive impacts on microbial populations.

    Science.gov (United States)

    Pradhan, S; Hoover, M T; Clark, G H; Gumpertz, M; Wollum, A G; Cobb, C; Strock, J

    2008-01-01

    Environmental health specialists, other onsite wastewater professionals, scientists, and homeowners have questioned the effectiveness of septic tank additives. This paper describes an independent, third-party, field scale, research study of the effects of three liquid bacterial septic tank additives and a control (no additive) on septic tank microbial populations. Microbial populations were measured quarterly in a field study for 12 months in 48 full-size, functioning septic tanks. Bacterial populations in the 48 septic tanks were statistically analyzed with a mixed linear model. Additive effects were assessed for three septic tank maintenance levels (low, intermediate, and high). Dunnett's t-test for tank bacteria (alpha = .05) indicated that none of the treatments were significantly different, overall, from the control at the statistical level tested. In addition, the additives had no significant effects on septic tank bacterial populations at any of the septic tank maintenance levels. Additional controlled, field-based research iswarranted, however, to address additional additives and experimental conditions.

  19. Gas retention and release behavior in Hanford double-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, P.A.; Brewster, M.E.; Bryan, S.A. [and others

    1997-05-01

    This report describes the current understanding of flammable gas retention and release in Hanford double-shell waste tanks AN-103, AN-104, AN-105, AW-101, SY-101, and SY-103. This knowledge is based on analyses, experimental results, and observations of tank behavior. The applicable data available from the void fraction instrument, retained gas sampler, ball rheometer, tank characterization, and field monitoring are summarized. Retained gas volumes and void fractions are updated with these new data. Using the retained gas compositions from the retained gas sampler, peak dome pressures during a gas burn are calculated as a function of the fraction of retained gas hypothetically released instantaneously into the tank head space. Models and criteria are given for gas generation, initiation of buoyant displacement, and resulting gas release; and predictions are compared with observed tank behavior.

  20. Gas retention and release behavior in Hanford double-shell waste tanks

    International Nuclear Information System (INIS)

    Meyer, P.A.; Brewster, M.E.; Bryan, S.A.

    1997-05-01

    This report describes the current understanding of flammable gas retention and release in Hanford double-shell waste tanks AN-103, AN-104, AN-105, AW-101, SY-101, and SY-103. This knowledge is based on analyses, experimental results, and observations of tank behavior. The applicable data available from the void fraction instrument, retained gas sampler, ball rheometer, tank characterization, and field monitoring are summarized. Retained gas volumes and void fractions are updated with these new data. Using the retained gas compositions from the retained gas sampler, peak dome pressures during a gas burn are calculated as a function of the fraction of retained gas hypothetically released instantaneously into the tank head space. Models and criteria are given for gas generation, initiation of buoyant displacement, and resulting gas release; and predictions are compared with observed tank behavior

  1. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  2. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  3. Flammable gas tank waste level reconcilliation tank 241-SX-102

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddie, L.A.

    1997-01-01

    Fluoro Dynel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 24 1-S-1 1 1 (S-I 1 1, typical). The trapped gas evaluation document (ref 1) states that Tank SX-102 exceeds the 25% of the lower flammable limit (FL) criterion (ref 2), based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the ''Wallet Report'' is the basis for this letter report (ref 3). The Wallet Report is also a part of the trapped gas evaluation document criteria. The Wallet Report contains various tank information, including: physical information, status, levels, and dry wells, see Appendix A. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unacquainted for surface level rise. From 1973 through 1980, the Wallet Report tracked Tank S- 102 transfers and reported a net cumulative change of 19.95 in. This surface level increase is from an unknown source or is unacquainted for. Duke Engineering and Services Hanford (DASH) and Leached Martin Hanford Corporation (LMHC) are interested in determining the validity of the unexplained surface level changes reported in the 0611e Wallet Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unacquainted for surface level changes as shown in the Wallet Report from 1973 through 1980

  4. Results of the Characterization and Dissolution Tests of Samples from Tank 16H

    International Nuclear Information System (INIS)

    Hay, M.S.

    1999-01-01

    Samples from Tank 16H annulus and one sample from the tank interior were characterized to provide a source term for use in fate and transport modeling. Four of the annulus samples appeared to be similar based on visual examination and were combined to form a composite. One of the annulus samples appeared to be different from the other four based on visual examination and was analyzed separately. The analytical results of the tank interior sample indicate the sample is composed predominantly of iron containing compounds. Both of the annulus samples are composed mainly of sodium salts, however, the composite sample contained significantly more sludge/sand material of low solubilitity. The characterization of the tank 16H annulus and tank interior samples was hampered by the high dose rate and the nature of the samples. The difficulties resulted in large uncertainties in the analytical data. The large uncertainties coupled with the number of important species below detection limits indicate the need for reanalysis of the Tank 16H samples as funding becomes available. Recommendations on potential remedies for these difficulties are provided. In general, none of the reagents appeared to be effective in dissolving the composite sample even after two contacts at elevated temperature. In contrast to the composite sample, all of the reagents dissolved a large percentage of the HTF-087 solids after two contacts at ambient temperature

  5. Optical inspections of research reactor tanks and tank components

    International Nuclear Information System (INIS)

    Boeck, H.; Hammer, J.

    1988-01-01

    By the end of 1987 worldwide there were 326 research reactors in operation, 276 of them operating more than 10 years, and 195 of them operating more than 20 years. The majority of these reactors are swimming-pool type or tank type reactors using aluminium as structural material. Although aluminium has prooven its excellent properties for reactor application in primary system, it is however subjected to various types of corrosion if it gets into contact with other materials such as mild steel in the presence of destilled water. This paper describes various methods of research reactor tank inspections, maintenance and repair possibilities. 9 figs. (Author)

  6. Lightweight Tanks for Storing Liquefied Natural Gas

    Science.gov (United States)

    DeLay, Tom

    2008-01-01

    Single-walled, jacketed aluminum tanks have been conceived for storing liquefied natural gas (LNG) in LNG-fueled motor vehicles. Heretofore, doublewall steel tanks with vacuum between the inner and outer walls have been used for storing LNG. In comparison with the vacuum- insulated steel tanks, the jacketed aluminum tanks weigh less and can be manufactured at lower cost. Costs of using the jacketed aluminum tanks are further reduced in that there is no need for the vacuum pumps heretofore needed to maintain vacuum in the vacuum-insulated tanks.

  7. first tank of Linac 1

    CERN Multimedia

    This was the first tank of the linear accelerator Linac1, the injection system for the Proton Synchrotron, It ran for 34 years (1958 - 1992). Protons entered at the far end and were accelerated between the copper drift tubes by an oscillating electromagnetic field. The field flipped 200 million times a second (200 MHz) so the protons spent 5 nanoseconds crossing a drift tube and a gap. Moving down the tank, the tubes and gaps had to get longer as the protons gained speed. The tank accelerated protons from 500 KeV to 10 MeV. Linac1 was also used to accelerate deutrons and alpha particles for the Intersecting Storage Rings and oxygen and sulpher ions for the Super Proton Synchrotron heavy ion programme.

  8. Tank Space Alternatives Analysis Report

    International Nuclear Information System (INIS)

    Turner, D.A.; Kirch, N.W.; Washenfelder, D.J.; Schaus, P.S.; Wodrich, D.D.; Wiegman, S.A.

    2010-01-01

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  9. Tank waste concentration mechanism study

    International Nuclear Information System (INIS)

    Pan, L.C.; Johnson, L.J.

    1994-09-01

    This study determines whether the existing 242-A Evaporator should continue to be used to concentrate the Hanford Site radioactive liquid tank wastes or be replaced by an alternative waste concentration process. Using the same philosophy, the study also determines what the waste concentration mechanism should be for the future TWRS program. Excess water from liquid DST waste should be removed to reduce the volume of waste feed for pretreatment, immobilization, and to free up storage capacity in existing tanks to support interim stabilization of SSTS, terminal cleanout of excess facilities, and other site remediation activities

  10. Tank calibration; Arqueacao de tanques

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Ana [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This work relates the analysis of the norms ISO (International Organization for Standardization) for calibration of vertical cylindrical tanks used in fiscal measurement, established on Joint Regulation no 1 of June 19, 2000 between the ANP (National Agency of Petroleum) and the INMETRO (National Institute of Metrology, Normalization and Industrial Quality). In this work a comparison between norms ISO and norms published by the API (American Petroleum Institute) and the IP (Institute of Petroleum) up to 2001 was made. It was concluded that norms ISO are wider than norms API, IP, and INMETRO methods in the calibration of vertical cylindrical tanks. (author)

  11. Tank 49H salt batch supernate qualification for ARP/MCU

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fink, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Foster, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2008-08-25

    This report covers the laboratory testing and analyses of Tank 49H Qualification Sample Sets A and C, performed in support of initial radioactive operations of Actinide Removal Process (ARP) and Modular Caustic-Side Solvent Extraction Unit (MCU). Major goals of this work include checking that Tank 49H was well mixed after the last receipt of Tank 23H, characterizing Tank 49H supernate after solids are settled so that its composition can be compared to waste acceptance and hazard criteria, verifying actinide and strontium adsorption with a small scale test using monosodium titanate (MST) and filtration, checking MCU solvent performance when applied to the liquid produced from MST contact, and verifying that in-tank settling after a minimum of 30 days was at least as good or better at reducing solids content after a Tank 49H to Tank 50H transfer occurred than what was observed in less time in the lab. The first four items were covered by Sample Set A. The fifth item was covered by Sample Set C, which had several analyses after compositing as required in the nuclear criticality safety evaluation (NCSE).

  12. Tank bromeliad water: similar or distinct environments for research of bacterial bioactives?

    Science.gov (United States)

    Carmo, F L; Santos, H F; Peixoto, R S; Rosado, A S; Araujo, F V

    2014-01-01

    The Atlantic Rainforest does not have a uniform physiognomy, its relief determines different environmental conditions that define the composition of its flora and fauna. Within this ecosystem, bromeliads that form tanks with their leaves hold water reservoirs throughout the year, maintaining complex food chains, based mainly on autotrophic and heterotrophic bacteria. Some works concluded that the water held by tank bromeliads concentrate the microbial diversity of their ecosystem. To investigate the bacterial diversity and the potential biotechnology of these ecosystems, tank bromeliads of the Neoregelia cruenta species from the Atlantic Rainforest in Brazil were used as models for this research. Bacteria isolated from these models were tested for production of bioactive compounds. DGGE of the water held by tank bromeliads was performed in different seasons, locations and sun exposure to verify whether these environmental factors affect bacterial communities. The DGGE bands profile showed no grouping of bacterial community by the environmental factors tested. Most of the isolates demonstrated promising activities in the tests performed. Collectively, these results suggest that tank bromeliads of the N. cruenta species provide important habitats for a diverse microbial community, suggesting that each tank forms a distinct micro-habitat. These tanks can be considered excellent sources for the search for new enzymes and/or new bioactive composites of microbial origin.

  13. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket

    Science.gov (United States)

    Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko

    2005-07-01

    A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.

  14. Tank 241-BY-103 Tank Characterization Plan. Revision 1

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-103

  15. Tank 241-C-103 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-C-103

  16. Out-of-tank evaporator demonstration: Tanks focus area

    International Nuclear Information System (INIS)

    1998-11-01

    Approximately 100 million gal of liquid waste is stored in underground storage tanks (UST)s at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River Site (SRS), and Oak Ridge Reservation (ORR). This waste is radioactive with a high salt content. The US Department of Energy (DOE) wants to minimize the volume of radioactive liquid waste in USTs by removing the excess water. This procedure conserves tank space; lowers the cost of storage; and reduces the volume of wastes subsequently requiring separation, immobilization, and disposal. The Out-of-Tank Evaporator Demonstration (OTED) was initiated to test a modular, skid-mounted evaporator. A mobile evaporator system manufactured by Delta Thermal Inc. was selected. The evaporator design was routinely used in commercial applications such as concentrating metal-plating wastes for recycle and concentrating ethylene glycol solutions. In FY 1995, the skid-mounted evaporator system was procured and installed in an existing ORNL facility (Building 7877) with temporary shielding and remote controls. The evaporator system was operational in January 1996. The system operated 24 h/day and processed 22,000 gal of Melton Valley Storage Tank (MVST) supernatant. The distillate contained essentially no salts or radionuclides. Upon completion of the demonstration, the evaporator underwent decontamination testing to illustrate the feasibility of hands-on maintenance and potential transport to another DOE facility. This report describes the process and the evaporator, its performance at ORNL, future plans, applications of this technology, cost estimates, regulatory and policy considerations, and lessons learned

  17. Tank waste remediation system tank waste retrieval risk management plan

    International Nuclear Information System (INIS)

    Klimper, S.C.

    1997-01-01

    This Risk Management Plan defines the approach to be taken to manage programmatic risks in the TWRS Tank Waste Retrieval program. It provides specific instructions applicable to TWR, and is used to supplement the guidance given by the TWRS Risk Management procedure

  18. Kinetics of propionate conversion in anaerobic continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Mladenovska, Zuzana; Ahring, Birgitte Kiær

    2008-01-01

    The kinetic parameters of anaerobic propionate degradation by biomass from 7 continuously stirred tank reactors differing in temperature, hydraulic retention time and substrate composition were investigated. In substrate-depletion experiments (batch) the maximum propionate degradation rate, A......-m, was estimated. The results demonstrate that the rate of endogenous substrate (propionate) production should be taken into account when estimating kinetic parameters in biomass from manure-based anaerobic reactors....

  19. Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103

    International Nuclear Information System (INIS)

    Pool, K.H.; Bean, R.M.

    1994-03-01

    A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices)

  20. Analysis of the vaporization of the liquefied gas of the petroleum (LPG) in tanks

    International Nuclear Information System (INIS)

    Alzate Espinosa, Guillermo A; Jaraba V, Xavier F

    2005-01-01

    Putting together thermodynamics (phase behavior), heat transfer and mass transfer fundamentals; it was possible to structure a mathematical and numerical model to simulate the vaporization process of LPG in tanks. The simulation model allows studying any feeding process with gaseous LPG to an appliance, and therefore, to follow changes inside the LPG tank related with LPG composition and its properties, temperature and pressure. A continuous or by cycles supplying process of gaseous LPG from a tank to any appliance promotes a reduction of liquid LPG temperature, an increase on specific gravity of LPG in both phases, and also an increasing in the value calorific of gaseous LPG

  1. Influence of chemical sprinkle on the processes in activated tank of wastewater treatment

    Directory of Open Access Journals (Sweden)

    Milan Búgel

    2012-12-01

    Full Text Available The research deals with processes occurring in the activation tank during the snow-melt inflow of chemical component of roadsalt. Chemical composition of the suspension in the activation tank is changing following the metabolism of organisms and chemicalcomposition of the influent wastewater. Sludge and wastewater in nitrification tail of the activation tank has higher conductivity, highercontents of chloride, higher sludge index and other characteristics are changing during snow – melt. The amount of the inflow road saltis a determining factor of lyses of microorganism cells.

  2. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Huckaby, J.L.; Bryan, S.A.; Johnson, G.D.

    2000-01-01

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, the flammability and detonability limits of the gas constituents, and the availability of ignition sources. The intrinsic flammability (or nonflammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, volume of the release, and the tank ventilation rate, which are not covered in this report

  3. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    International Nuclear Information System (INIS)

    Mahoney, Lenna A.; Huckaby, James L.; Bryan, Samuel A.; Johnson, Gerald D.

    2000-01-01

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, flammability and detonability limits of the gas constituents, and availability of ignition sources. The intrinsic flammability (or non-flammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, and volume of the release and the tank ventilation rate, which are not covered in this report

  4. 49 CFR 172.326 - Portable tanks.

    Science.gov (United States)

    2010-10-01

    ... petroleum gas (LPG) that is unodorized as authorized in § 173.315(b)(1) unless it is legibly marked NON... the portable tank are not visible. (d) NON-ODORIZED marking on portable tanks containing LPG. After...

  5. 33 CFR 183.510 - Fuel tanks.

    Science.gov (United States)

    2010-07-01

    ... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.510 Fuel tanks. (a) Each fuel tank in a boat must have been tested by its manufacturer under § 183.580 and not leak when...

  6. AX Tank Farm ancillary equipment study

    International Nuclear Information System (INIS)

    SKELLY, W.A.

    1999-01-01

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms

  7. The Politics of Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    consequences in the United Kingdom, Germany, Denmark and at the EU-level. A Continental think tank tradition in which the state plays a pivotal role and an Anglo-American tradition which facilitates interaction in public policy on market-like terms have shaped the development of think tanks. On the basis......In the 21st century, think tanks have become more than a buzzword in European public discourse. They now play important roles in the policy-making process by providing applied research, building networks and advocating policies. The book studies the development of think tanks and contemporary...... of a typology of think tanks, quantitative data and interviews with think tank practitioners, the interplay between state and market dynamics and the development of different types of think tanks is analysed. Although think tanks develop along different institutional trajectories, it is concluded that the Anglo...

  8. Design of an Experimental PCM Solar Tank

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Istvan Peter

    2010-09-15

    The one of the most important part of a solar collector system is the solar tank. The relevant type and capacity of the solar tank is a requirement of the good operation of the system. According the current architectural tendencies the boiler rooms are smaller, so the putting of the currently available solar tanks is very difficult. It is necessary to store the energy in a little space. The solution of the problem is the solar tank particularly filled with phase change material.

  9. Tank 241-U-106 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-U-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  10. Farming in a fish tank.

    Science.gov (United States)

    Youth, H

    1992-01-01

    Water, fish, and vegetables are all things that most developing countries do not have enough of. There is a method of food production called aquaculture that integrates fish and vegetable growing and conserves and purifies water at the same time. A working system that grows vegetables and fish for regional supermarkets in Massachusetts is a gravity fed system. At the top of the system is a 3,000 gallon fish rearing tank that measures 12 feet in diameter. Water trickles out of the tank and fish wastes are captured which can be composted and used in farm fields. The water goes into a bio filter that contains bacteria which convert harmful ammonia generated from fish waste into beneficial nitrate. Then the water flows into 100 foot long hydroponic tanks where lettuce grows. A 1/6 horsepower pump return the purified water to the fish tank and completes the cycle. The key to success is maintaining a balance between the fish nutrients and waste and the plants nutrients and waste. The system is estimated to produce 35,000 heads of lettuce and 2 tons of fish annually which translates into $23,500. The system could be adapted to developing countries with several modifications to reduce the start up cost.

  11. Competitive Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    in opportunity structures that are mediated by historically constituted institutions in knowledge regimes. The paper distinguishes between four different strategies, the authoritative, the collaborative, the agenda-setting and the competitive strategy that are distinguished by the relations think tanks have...

  12. Simple characterisation of solar DHW tanks

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    1998-01-01

    The aim of the project is to compare different methods used for testing small solar domestic hot water tanks. A small hot water tank is tested at three different European laboratories by means of the test methods normally used at the laboratories. The tank is marketed in Denmark.The test carried ...

  13. DEVELOPMENT OF A SMART SOLAR TANK

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    Theoretical and experimental investigations of small SDHW systems based on so-called smart solar tanks are presented. A smart solar tank is a hot water tank in which the domestic water can both be heated by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply sys...

  14. SRS tank closure. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-08-01

    High-level waste (HLW) tank closure technology is designed to stabilize any remaining radionuclides and hazardous constituents left in a tank after bulk waste removal. Two Savannah River Site (SRS) HLW tanks were closed after cleansing and then filling each tank with three layers of grout. The first layer consists of a chemically reducing grout. The fill material has chemical properties that retard the movement of some radionuclides and chemical constituents. A layer of controlled low-strength material (CLSM), a self-leveling fill material, is placed on top of the reducing grout. CLSM provides sufficient strength to support the overbearing weight. The final layer is a free-flowing, strong grout similar to normal concrete. After the main tank cavity is filled, risers are filled with grout, and all waste transfer piping connected to the tank is isolated. The tank ventilation system is dismantled, and the remaining systems are isolated. Equipment that remains with the tank is filled with grout. The tank and ancillary systems are left in a state requiring only limited surveillance. Administrative procedures are in place to control land use and access. DOE eventually plans to remove all of its HLW storage tanks from service. These tanks are located at SRS, Hanford, and Idaho National Engineering and Environmental Laboratory. Low-activity waste storage tanks at Oak Ridge Reservation are also scheduled for closure

  15. Tank 12H residuals sample analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shine, E. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Diprete, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  16. 49 CFR 179.10 - Tank mounting.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank mounting. 179.10 Section 179.10 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Design Requirements § 179.10 Tank mounting. (a) The manner in which tanks are attached to the car...

  17. DOUBLE SHELL TANK EMERGENCY PUMPING GUIDE

    International Nuclear Information System (INIS)

    REBERGER, D.W.

    2006-01-01

    This document provides preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified

  18. Heater for Combustible-Gas Tanks

    Science.gov (United States)

    Ingle, Walter B.

    1987-01-01

    Proposed heater for pressurizing hydrogen, oxygen, or another combustible liquid or gas sealed in immersion cup in pressurized tank. Firmly supported in finned cup, coiled rod transfers heat through liquid metal to gas tank. Heater assembly welded or bolted to tank flange.

  19. Remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1992-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy. The ICPP's mission is to process government-owned spent nuclear fuel. The process involves dissolving the fuel, extracting off uranium, and calcining the waste to a solid form for storage, Prior to calcining, WINCO temporarily stores the liquid waste from this process in eleven 1,135,600-l(300,000-gal), 15,2-m (50-ft)-diam, high-level liquid waste tanks. Each of these stainless steel tanks is contained within an underground concrete vault. The only access to the interior of the tanks is through risers that extend from ground level to the dome of the tanks. WINCO is replacing these tanks because of their age and the fact that they do not meet all of the current design requirements. The tanks will be replaced in two phases. WINCO is now in the Title I design stage for four new tank and vault systems to replace five of the existing systems. The integrity of the six remaining tanks must be verified to continue their use until they can be replaced in the second phase. To perform any integrity analysis, the inner surface of the tanks must be inspected. The remote tank inspection (RTI) robotic system, designed by RedZone Robotics of Pittsburgh, Pennsylvania, was developed to access the interior of the tanks and position various end effectors required to perform tank wall inspections

  20. Stabilization of In-Tank Residual Wastes and External-Tank Soil Contamination for the Hanford Tank Closure Program: Applications to the AX Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.L.; Dwyer, B.P.; Ho, C.; Krumhansl, J.L.; McKeen, G.; Molecke, M.A.; Westrich, H.R.; Zhang, P.

    1998-11-01

    Technical support for the Hanford Tank Closure Program focused on evaluation of concepts for immobilization of residual contaminants in the Hanford AX tanks and underlying soils, and identification of cost-effective approaches to improve long-term performance of AX tank farm cIosure systems. Project objectives are to develop materials or engineered systems that would significantly reduce the radionuclide transport to the groundwater from AX tanks containing residual waste. We pursued several studies that, if implemented, would help achieve these goals. They include: (1) tank fill design to reduce water inilltration and potential interaction with residual waste; (2) development of in-tank getter materials that would specifically sorb or sequester radionuclides; (3) evaluation of grout emplacement under and around the tanks to prevent waste leakage during waste retrieval or to minimize water infiltration beneath the tanks; (4) development of getters that will chemically fix specific radionuclides in soils under tanks; and (5) geochemical and hydrologic modeling of waste-water-soil-grout interactions. These studies differ in scope from the reducing grout tank fill employed at the Savannah River Site in that our strategy improves upon tank fill design by providing redundancy in the barriers to radionuclide migration and by modification the hydrogeochemistry external to the tanks.

  1. 7 CFR 58.427 - Paraffin tanks.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Paraffin tanks. 58.427 Section 58.427 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....427 Paraffin tanks. The metal tank should be adequate in size, have wood rather than metal racks to...

  2. Tank 241-TX-105 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-TX-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-TX-105 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  3. Tank 241-C-108 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-C-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-C-108 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  4. Tank 241-BY-107 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issuesclose quotes. Tank 241-BY-107 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolutionclose quotes

  5. Tank 241-BY-107 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-107 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  6. Tank 241-BY-111 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-111 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-111 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  7. Tank 241-C-108 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-C-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in Program Plan for the Resolution of Tank Vapor Issues (Osborne and Huckaby 1994). Tank 241-C-108 was vapor sampled in accordance with Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution (Osborne et al., 1994)

  8. Tank 241-TX-118 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-TX-118 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-TX-118 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  9. Tank 241-BY-108 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in ''Program Plan for the Resolution of Tank Vapor Issues'' (Osborne and Huckaby 1994). Tank 241-BY-108 was vapor sampled in accordance with ''Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution (Osborne et al., 1994)

  10. Tank 241-BY-112 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-112 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  11. Tank 241-C-104 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-C-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-C-104 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  12. Tank 241-BY-103 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-103 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-103 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  13. Tank 241-BY-106 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-106 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  14. Tank 241-U-107 vapor sampling and analysis tank characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L.

    1995-05-31

    Tank 241-U-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-U-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  15. Corrosion of steel tanks in liquid nuclear wastes

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, Eduardo

    2005-01-01

    The objective of this work is to understand how solution chemistry would impact on the corrosion of waste storage steel tanks at the Hanford Site. Future tank waste operations are expected to process wastes that are more dilute with respect to some current corrosion inhibiting waste constituents. Assessment of corrosion damage and of the influence of exposure time and electrolyte composition, using simulated (non-radioactive) wastes, of the double-shell tank wall carbon steel alloys is being conducted in a statistically designed long-term immersion experiment. Corrosion rates at different times of immersion were determined using both weight-loss determinations and electrochemical impedance spectroscopy measurements. Localized corrosion susceptibility was assessed using short-term cyclic potentiodynamic polarization curves. The results presented in this paper correspond to electrochemical and weight-loss measurements of the immersed coupons during the first year of immersion from a two year immersion plan. A good correlation was obtained between electrochemical measurements, weight-loss determinations and visual observations. Very low general corrosion rates ( -1 ) were estimated using EIS measurements, indicating that general corrosion rate of the steel in contact with liquid wastes would no be a cause of tank failure even for these out-of-chemistry limit wastes. (author) [es

  16. Tank characterization report for double-shell tank 241-AP-102

    International Nuclear Information System (INIS)

    LAMBERT, S.L.

    1999-01-01

    In April 1993, Double-Shell Tank 241-AP-102 was sampled to determine waste feed characteristics for the Hanford Grout Disposal Program. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics, expected bulk inventory, and concentration data for the waste contents based on this latest sampling data and information on the history of the tank. Finally, this report makes recommendations and conclusions regarding tank operational safety issues

  17. Tanks focus area. Annual report 1997

    International Nuclear Information System (INIS)

    Frey, J.

    1997-01-01

    The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM's technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE's four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program

  18. Tank 241-C-103 headspace flammability

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1994-01-01

    Information regarding flammable vapors, gases, and aerosols is presented for the purpose of resolving the tank 241-C-103 headspace flammability issue. Analyses of recent vapor and liquid samples, as well as visual inspections of the tank headspace, are discussed in the context of tank dynamics. This document is restricted to issues regarding the flammability of gases, vapors, and an aerosol that may exist in the headspace of tank 241-C-103. While discussing certain information about the organic liquid present in tank 241-C-103, this document addresses neither the potential for, nor consequences of, a pool fire involving this organic liquid; they will be discussed in a separate report

  19. Fish stocking density impacts tank hydrodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Lunger, Angela; Laursen, Jesper

    2006-01-01

    The effect of stocking density upon the hydrodynamics of a circular tank, configured in a recirculation system, was investigated. Red drums Sciaenops ocellatus of approximately 140 g wet weight, were stocked at five rates varying from 0 to 12 kg m-3. The impact of the presence of fish upon tank...... hydrodynamics was established using in-tank-based Rhodamine WT fluorometry at a flow rate of 0.23 l s-1 (tank exchange rate of 1.9 h-1). With increasing numbers of animals, curvilinear relationships were observed for dispersion coefficients and tank mixing times. Stocking densities of 3, 6, 9 and 12 kg m-3...

  20. Tank 241-C-103 headspace flammability

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L.

    1994-01-01

    Information regarding flammable vapors, gases, and aerosols is presented for the purpose of resolving the tank 241-C-103 headspace flammability issue. Analyses of recent vapor and liquid samples, as well as visual inspections of the tank headspace, are discussed in the context of tank dynamics. This document is restricted to issues regarding the flammability of gases, vapors, and an aerosol that may exist in the headspace of tank 241-C-103. While discussing certain information about the organic liquid present in tank 241-C-103, this document addresses neither the potential for, nor consequences of, a pool fire involving this organic liquid; they will be discussed in a separate report.

  1. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  2. ICPP Tank Farm planning through 2012

    International Nuclear Information System (INIS)

    Palmer, W.B.; Millet, C.B.; Staiger, M.D.; Ward, F.S.

    1998-01-01

    Historically, liquid high-level waste (HLW) generated at the Idaho Chemical Processing Plant has been stored in the Tank Farm after which it is calcined with the calcine being stored in stainless steel bins. Following the curtailment of spent nuclear fuel reprocessing in 1992, the HLW treatment methods were re-evaluated to establish a path forward for producing a final waste form from the liquid sodium bearing wastes (SBW) and the HLW calcine. Projections for significant improvements in waste generation, waste blending and evaporation, and calcination were incorporated into the Tank Farm modeling. This optimized modeling shows that all of the SBW can be calcined by the end of 2012 as required by the Idaho Settlement Agreement. This Tank Farm plan discusses the use of each of the eleven HLW tanks and shows that two tanks can be emptied, allowing them to be Resource Conservation and Recovery Act closed by 2006. In addition, it describes the construction of each tank and vault, gives the chemical concentrations of the contents of each tank, based on historical input and some sampling, and discusses the regulatory drivers important to Tank Farm operation. It also discusses new waste generation, the computer model used for the Tank Farm planning, the operating schedule for each tank, and the schedule for when each tank will be empty and closed

  3. Sampling plan to support HLW tank 16

    International Nuclear Information System (INIS)

    Rodwell, P.O.; Martin, B.

    1997-01-01

    Plans are to remove the residual waste from the annulus of High-Level Waste Tank 16, located in the H-Area Tank Farm, in 1998. The interior of the tank is virtually clean. In the late 1970's, the waste was removed from the interior of the tank by several campaigns of waste removal with slurry pumps, spray washing, and oxalic acid cleaning. The annulus of the tank at one time had several thousand gallons of waste salt, which had leaked from the tank interior. Some of this salt was removed by adding water to the annulus and circulating, but much of the salt remains in the annulus. In order to confirm the source term used for fate and transport modeling, samples of the tank interior and annulus will be obtained and analyzed. If the results of the analyses indicate that the data used for the initial modeling is bounding then no changes will be made to the model. However, if the results indicate that the source term is higher than that assumed in the initial modeling, thus not bounding, additional modeling will be performed. The purpose of this Plan is to outline the approach to sampling the annulus and interior of Tank 16 as a prerequisite to salt removal in the annulus and closure of the entire tank system. The sampling and analysis of this tank system must be robust to reasonably ensure the actual tank residual is within the bounds of analysis error

  4. History of Tank 23, 1962 through 1974

    International Nuclear Information System (INIS)

    McNatt, F.G.

    1979-04-01

    Tank 23 was placed in service in April 1964 receiving contaminated water from Buildings 244-H, the Receiving Basin for Off-Site Fuel (RBOF), and 245-H, the Resin Regeneration Facility (RRF). Tank 23 also provided emergency storage space for 500,000 gallons in the event of a severe contamination incident in Building 244-H. The tank has remained in this service since that time. The Tank 23 waste was processed initially by the 242-H evaporator, but since mid-1966 the waste has been processed through a zeolite bed to remove 137 C and other radioisotopes by ion exchange, and discarded to seepage basins. Inspections of the tank interior were made by using a 40-ft optical periscope and the thickness of the steel bottom of the tank was measured ultrasonically. Samples of the waste in the tank and liquid collected in the side wall and bottom sumps were analyzed. Several equipment modifications and repairs were made

  5. Pad B Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  6. Hanford Site Waste Storage Tank Information Notebook

    International Nuclear Information System (INIS)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*

  7. Jet mixing long horizontal storage tanks

    International Nuclear Information System (INIS)

    Perona, J.J.; Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1994-12-01

    Large storage tanks may require mixing to achieve homogeneity of contents for several reasons: prior to sampling for mass balance purposes, for blending in reagents, for suspending settled solids for removal, or for use as a feed tank to a process. At ORNL, mixed waste evaporator concentrates are stored in 50,000-gal tanks, about 12 ft in diameter and 60 ft long. This tank configuration has the advantage of permitting transport by truck and therefore fabrication in the shop rather than in the field. Jet mixing experiments were carried out on two model tanks: a 230-gal (1/6-linear-scale) Plexiglas tank and a 25,000-gal tank (about 2/3 linear scale). Mixing times were measured using sodium chloride tracer and several conductivity probes distributed through the tanks. Several jet sizes and configurations were tested. One-directional and two-directional jets were tested in both tanks. Mixing times for each tank were correlated with the jet Reynolds number. Mixing times were correlated for the two tank sizes using the recirculation time for the developed jet. When the recirculation times were calculated using the distance from the nozzle to the end of the tank as the length of the developed jet, the correlation was only marginally successful. Data for the two tank sizes were correlated empirically using a modified effective jet length expressed as a function of the Reynolds number raised to the 1/3 power. Mixing experiments were simulated using the TEMTEST computer program. The simulations predicted trends correctly and were within the scatter of the experimental data with the lower jet Reynolds numbers. Agreement was not as good at high Reynolds numbers except for single nozzles in the 25,000-gal tank, where agreement was excellent over the entire range

  8. Tank Focus Area pretreatment activities

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Welch, T.D.; Manke, K.L.

    1997-01-01

    Plans call for the high-level wastes to be retrieved from the tanks and immobilized in a stable waste form suitable for long-term isolation. Chemistry and chemical engineering operations are required to retrieve the wastes, to condition the wastes for subsequent steps, and to reduce the costs of the waste management enterprise. Pretreatment includes those processes between retrieval and immobilization, and includes preparation of suitable feed material for immobilization and separations to partition the waste into streams that yield lower life-cycle costs. Some of the technologies being developed by the Tank Focus Area (TFA) to process these wastes are described. These technologies fall roughly into three areas: (1) solid/liquid separation (SLS), (2) sludge pretreatment, and (3) supernate pretreatment

  9. Ferrocyanide tank safety program: Cesium uptake capacity of simulated ferrocyanide tank waste. Final report

    International Nuclear Information System (INIS)

    Burgeson, I.E.; Bryan, S.A.

    1995-07-01

    The objective of this project is to determine the capacity for 137 Cs uptake by mixed metal ferrocyanides present in Hanford Site waste tanks, and to assess the potential for aggregation of these 137 Cs-exchanged materials to form ''hot-spots'' in the tanks. This research, performed at Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company, stems from concerns regarding possible localized radiolytic heating within the tanks. After ferrocyanide was added to 18 high-level waste tanks in the 1950s, some of the ferrocyanide tanks received considerable quantities of saltcake waste that was rich in 137 Cs. If radioactive cesium was exchanged and concentrated by the nickel ferrocyanide present in the tanks, the associated heating could cause tank temperatures to rise above the safety limits specified for the ferrocyanide-containing tanks, especially if the supernate in the tanks is pumped out and the waste becomes drier

  10. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2009-01-01

    Results of experimental and numerical investigations of thermal stratification and natural convection in a vertical cylindrical hot water tank during standby periods are presented. The transient fluid flow and heat transfer in the tank during cooling caused by heat loss are investigated...... on the natural buoyancy resulting in downward flow along the tank side walls due to heat loss of the tank and the influence on thermal stratification of the tank by the downward flow and the corresponding upward flow in the central parts of the tank. Water temperatures at different levels of the tank...... by computational fluid dynamics (CFD) calculations and by thermal measurements. A tank with uniform temperatures and thermal stratification is studied. The distribution of the heat loss coefficient for the different parts of the tank is measured by tests and used as input to the CFD model. The investigations focus...

  11. Understanding Think Tank University Relationships

    International Development Research Centre (IDRC) Digital Library (Canada)

    pmartin@idrc.ca

    10 Abr 2013 ... Comprensión de las relaciones entre think tanks y universidades en .... Políticas Globales de Salud Pública. Políticas Sociales y Económicas. Ciencia e Innovación. El IDRC lleva décadas de trabajo en cuestiones de género, ..... Estrategia adecuada para mitigar los riesgos de seguridad y éticos de los ...

  12. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    Science.gov (United States)

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  13. Hanford Site organic waste tanks: History, waste properties, and scientific issues

    International Nuclear Information System (INIS)

    Strachan, D.M.; Schulz, W.W.; Reynolds, D.A.

    1993-01-01

    Eight Hanford single-shell waste tanks are included on a safety watch list because they are thought to contain significant concentrations of various organic chemical. Potential dangers associated with the waste in these tanks include exothermic reaction, combustion, and release of hazardous vapors. In all eight tanks the measured waste temperatures are in the range 16 to 46 degree C, far below the 250 to 380 degree C temperatures necessary for onset of rapid exothermic reactions and initiation of deflagration. Investigation of the possibility of vapor release from Tank C-103 has been elevated to a top safety priority. There is a need to obtain an adequate number of truly representative vapor samples and for highly sensitive and capable methods and instruments to analyze these samples. Remaining scientific issues include: an understanding of the behavior and reaction of organic compounds in existing underground tank environments knowledge of the types and amounts of organic compounds in the tanks knowledge of selected physical and chemical properties of organic compounds source, composition, quality, and properties of the presently unidentified volatile organic compound(s) apparently evolving from Tank C-103

  14. Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste

    International Nuclear Information System (INIS)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2006-01-01

    The CH2M HILL Hanford Group, Inc. (CH2M HILL) is producing risk/performance assessments to support the closure of single-shell tanks at the U.S. Department of Energy's Hanford Site. As part of this effort, staff at Pacific Northwest National Laboratory were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. Initial work to produce release models was conducted on residual tank sludge using pure water as the leaching agent. The results were reported in an earlier report. The decision has now been made to close the tanks after waste retrieval with a cementitious grout to minimize infiltration and maintain the physical integrity of the tanks. This report describes testing of the residual waste with a leaching solution that simulates the composition of water passing through the grout and contacting the residual waste at the bottom of the tank.

  15. Wine evolution and spatial distribution of oxygen during storage in high-density polyethylene tanks.

    Science.gov (United States)

    del Alamo-Sanza, María; Laurie, V Felipe; Nevares, Ignacio

    2015-04-01

    Porous plastic tanks are permeable to oxygen due to the nature of the polymers with which they are manufactured. In the wine industry, these types of tanks are used mainly for storing wine surpluses. Lately, their use in combination with oak pieces has also been proposed as an alternative to mimic traditional barrel ageing. In this study, the spatial distribution of dissolved oxygen in a wine-like model solution, and the oxygen transfer rate (OTR) of high-density polyethylene tanks (HDPE), was analysed by means of a non-invasive opto-luminescence detector. Also, the chemical and sensory evolution of red wine, treated with oak pieces, and stored in HDPE tanks was examined and compared against traditional oak barrel ageing. The average OTR calculated for these tanks was within the commonly accepted amounts reported for new barrels. With regards to wine evolution, a number of compositional and sensory differences were observed between the wines aged in oak barrels and those stored in HDPE tanks with oak barrel alternatives. The use of HDPE tanks in combination with oak wood alternatives is a viable alternative too for ageing wine. © 2014 Society of Chemical Industry.

  16. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  17. Organic carbon in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-04-01

    Safety of Hanford single-shell tanks (SSTs) containing organic carbon is a concern because the carbon in the presence of oxidizers (NO 3 or NO 2 ) is combustible when sufficiently concentrated and exposed to elevated temperatures. A propagating chemical reaction could potentially occur at high temperature (above 200 C). The rapid increase in temperature and pressure within a tank might result in the release of radioactive waste constituents to the environment. The purpose of this study is to gather available laboratory information about the organic carbon waste inventories stored in the Hanford SSTs. Specifically, the major objectives of this investigation are: Review laboratory analytical data and measurements for SST composite core and supernatant samples for available organic data; Assess the correlation of organic carbon estimated utilizing the TRAC computer code compared to laboratory measurements; and From the laboratory analytical data, estimate the TOC content with confidence levels for each of the 149 SSTs

  18. Composite Cryotank Technologies and Demonstration (CCTD)

    Data.gov (United States)

    National Aeronautics and Space Administration — Advance the technologies for composite cryogenic propellant tanks at diameters suitable for future heavy lift vehicles and other in-space applications with a goal of...

  19. 241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-25

    This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

  20. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  1. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  2. Contaminant Release from Residual Waste in Single Shell Tanks at the Hanford Site, Washington, USA - 9276

    International Nuclear Information System (INIS)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.

    2009-01-01

    Determinations of elemental and solid-phase compositions, and contaminant release studies have been applied in an ongoing study of residual tank wastes (i.e., waste remaining after final retrieval operations) from five of 149 underground single-shell storage tanks (241-C-103, 241-C-106, 241-C-202, 241-C-203, and 241-S-112) at the U.S. Department of Energy's Hanford Site in Washington State. This work is being conducted to support performance assessments that will be required to evaluate long-term health and safety risks associated with tank site closure. The results of studies completed to date show significant variability in the compositions, solid phase properties, and contaminant release characteristics from these residual tank wastes. This variability is the result of differences in waste chemistry/composition of wastes produced from several different spent fuel reprocessing schemes, subsequent waste reprocessing to remove certain target constituents, tank farm operations that concentrated wastes and mixed wastes between tanks, and differences in retrieval processes used to remove the wastes from the tanks. Release models were developed based upon results of chemical characterization of the bulk residual waste, solid-phase characterization (see companion paper 9277 by Krupka et al.), leaching and extraction experiments, and geochemical modeling. In most cases empirical release models were required to describe contaminant release from these wastes. Release of contaminants from residual waste was frequently found to be controlled by the solubility of phases that could not be identified and/or for which thermodynamic data and/or dissolution rates have not been measured. For example, significant fractions of Tc-99, I-129, and Cr appear to be coprecipitated at trace concentrations in metal oxide phases that could not be identified unambiguously. In the case of U release from tank 241-C-103 residual waste, geochemical calculations indicated that leachate

  3. Waste Tank Vapor Project: Tank vapor database development

    International Nuclear Information System (INIS)

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  4. Double shell tanks emergency pumping plan

    International Nuclear Information System (INIS)

    Tangen, M.J.

    1994-01-01

    At the request of the Department of Energy (DOE), a formal plan for the emergency transfer of waste from a leaking double shell tank to a designated receiver tank has been developed. This plan is in response to the priority 2 safety issue ''Response to a leaking double-shell tank'' in the DOE Report to Congress, 1991. The plan includes the tanks in four of the east tank farms and one of the west farms. The background information and supporting calculations used for the creation of the emergency plan are discussed in this document. The scope of this document is all of the double shell tanks in the AN, AP, AW, AY, and SY farms. The transfer lines, flush pits, and valve pits involved in the transfer of waste between these farms are also included in the scope. Due to the storage of high heat waste, AZ farm is excluded at this time

  5. Radiotracer investigation in gold leaching tanks

    Energy Technology Data Exchange (ETDEWEB)

    Dagadu, C.P.K., E-mail: dagadukofi@yahoo.co.uk [Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Akaho, E.H.K.; Danso, K.A. [Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Stegowski, Z.; Furman, L. [Faculty of Physics and Applied Computer Science, AGH-UST, 30-059 Krakow (Poland)

    2012-01-15

    Measurement and analysis of residence time distribution (RTD) is a classical method to investigate performance of chemical reactors. In the present investigation, the radioactive tracer technique was used to measure the RTD of aqueous phase in a series of gold leaching tanks at the Damang gold processing plant in Ghana. The objective of the investigation was to measure the effective volume of each tank and validate the design data after recent process intensification or revamping of the plant. I-131 was used as a radioactive tracer and was instantaneously injected into the feed stream of the first tank and monitored at the outlet of different tanks. Both sampling and online measurement methods were used to monitor the tracer concentration. The results of measurements indicated that both the methods provided identical RTD curves. The mean residence time (MRT) and effective volume of each tank was estimated. The tanks-in-series model with exchange between active and stagnant volume was used and found suitable to describe the flow structure of aqueous phase in the tanks. The estimated effective volume of the tanks and high degree of mixing in tanks could validate the design data and confirmed the expectation of the plant engineer after intensification of the process. - Highlights: Black-Right-Pointing-Pointer I-131 radioactive tracer is suitable for tracing the aqueous phase in gold ore slurry. Black-Right-Pointing-Pointer Online data collection is more convenient method for tracer monitoring in industrial process systems. Black-Right-Pointing-Pointer The tanks-in-series model with exchange between active and stagnant zones is suitable to describe the flow behavior of leaching tanks. Black-Right-Pointing-Pointer The radiotracer RTD technique could be used to validate design data after process intensification in gold leaching tanks.

  6. Radiotracer investigation in gold leaching tanks

    International Nuclear Information System (INIS)

    Dagadu, C.P.K.; Akaho, E.H.K.; Danso, K.A.; Stegowski, Z.; Furman, L.

    2012-01-01

    Measurement and analysis of residence time distribution (RTD) is a classical method to investigate performance of chemical reactors. In the present investigation, the radioactive tracer technique was used to measure the RTD of aqueous phase in a series of gold leaching tanks at the Damang gold processing plant in Ghana. The objective of the investigation was to measure the effective volume of each tank and validate the design data after recent process intensification or revamping of the plant. I-131 was used as a radioactive tracer and was instantaneously injected into the feed stream of the first tank and monitored at the outlet of different tanks. Both sampling and online measurement methods were used to monitor the tracer concentration. The results of measurements indicated that both the methods provided identical RTD curves. The mean residence time (MRT) and effective volume of each tank was estimated. The tanks-in-series model with exchange between active and stagnant volume was used and found suitable to describe the flow structure of aqueous phase in the tanks. The estimated effective volume of the tanks and high degree of mixing in tanks could validate the design data and confirmed the expectation of the plant engineer after intensification of the process. - Highlights: ► I-131 radioactive tracer is suitable for tracing the aqueous phase in gold ore slurry. ► Online data collection is more convenient method for tracer monitoring in industrial process systems. ► The tanks-in-series model with exchange between active and stagnant zones is suitable to describe the flow behavior of leaching tanks. ► The radiotracer RTD technique could be used to validate design data after process intensification in gold leaching tanks.

  7. Criteria: waste tank isolation and stabilization

    International Nuclear Information System (INIS)

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly

  8. ICPP tank farm closure study. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M. [and others

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  9. Criteria: waste tank isolation and stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly. (DLC)

  10. ICPP tank farm closure study. Volume 1

    International Nuclear Information System (INIS)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study

  11. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    This paper presents numerical investigations of thermal stratification in a vertical cylindrical hot water tank established by standby heat loss from the tank. The transient fluid flow and heat transfer in the tank during cooling caused by standby heat loss are calculated by means of validated...... computational fluid dynamics (CFD) models. The measured heat loss coefficient for the different parts of the tank is used as input to the CFD model. Parametric studies are carried out using the validated models to investigate the influence on thermal stratification of the tank by the downward flow...... the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions. The results show that 20–55% of the side heat loss drops to layers below in the part of the tank without the presence of thermal stratification. A heat loss removal factor is introduced...

  12. Review of Tank Lay-Up Status at US Department of Energy Radioactive Waste Tank Sites

    International Nuclear Information System (INIS)

    Elmore, Monte R.; Henderson, Colin

    2002-01-01

    During fiscal year (FY) 2001 as part of a Tanks Focus Area strategic initiative, tank lay-up options were developed and evaluated for the two high-level waste (HLW) storage tanks at the West Valley Demonstration Project. As follow-on task, a list of key waste tank contacts throughout the US Department of Energy complex was developed. Visits were then made to the primary DOE sites with radioactive waste storage tanks to discuss the concept and applicability of tank lay-up. This report documents the results of individual discussions with tank closure staff at the four DOE Sites concerning tank closure status and plans as well as lay-up options and activities

  13. TANK 40 FINAL SB4 CHEMICAL CHARACTERIZATION RESULTS

    International Nuclear Information System (INIS)

    Best, J.

    2008-01-01

    A sample of Sludge Batch 4 (SB4) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). This sample was also analyzed for elemental and chemical composition including noble metals. These analyses along with the WAPS analyses will help define the composition of the sludge currently in Tank 40 which is currently being fed to DWPF and will become part of Sludge Batch 5 (SB5). At SRNL the 3-L Tank 40 SB4 sample was transferred from the shipping container into a 4-L vessel and solids allowed to settle overnight. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 280 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO 3 /HCl in sealed Teflon(reg s ign) vessels and four in Na 2 O 2 using Zr crucibles. Due to the use of Zr crucibles and Na in the peroxide fusions, Na and Zr cannot be determined from this preparation. Three glass standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted and submitted to Analytical Development (AD) for inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma-mass spectrometry (ICP-MS) analysis, and cold vapor atomic absorption (CV-AA) analysis. Equivalent dilutions of the peroxide fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB4 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES and ICP-MS. Weighted dilutions of slurry were submitted for ion chromatography (IC), total inorganic carbon/total organic carbon (TIC/TOC), and total base analyses. A sample of Tank 40 SB4 decant was collected by carefully removing the supernate phase

  14. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust

  15. Characterization of Hanford tank wastes containing ferrocyanides

    International Nuclear Information System (INIS)

    Tingey, J.M.; Matheson, J.D.; McKinley, S.G.; Jones, T.E.; Pool, K.H.

    1993-02-01

    Currently, 17 storage tanks on the Hanford site that are believed to contain > 1,000 gram moles (465 lbs) of ferrocyanide compounds have been identified. Seven other tanks are classified as ferrocyanide containing waste tanks, but contain less than 1,000 gram moles of ferrocyanide compounds. These seven tanks are still included as Hanford Watch List Tanks. These tanks have been declared an unreviewed safety question (USQ) because of potential thermal reactivity hazards associated with the ferrocyanide compounds and nitrate and nitrite. Hanford tanks with waste containing > 1,000 gram moles of ferrocyanide have been sampled. Extensive chemical, radiothermical, and physical characterization have been performed on these waste samples. The reactivity of these wastes were also studied using Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis. Actual tank waste samples were retrieved from tank 241-C-112 using a specially designed and equipped core-sampling truck. Only a small portion of the data obtained from this characterization effort will be reported in this paper. This report will deal primarily with the cyanide and carbon analyses, thermal analyses, and limited physical property measurements

  16. Radiotracer investigation in gold leaching tanks.

    Science.gov (United States)

    Dagadu, C P K; Akaho, E H K; Danso, K A; Stegowski, Z; Furman, L

    2012-01-01

    Measurement and analysis of residence time distribution (RTD) is a classical method to investigate performance of chemical reactors. In the present investigation, the radioactive tracer technique was used to measure the RTD of aqueous phase in a series of gold leaching tanks at the Damang gold processing plant in Ghana. The objective of the investigation was to measure the effective volume of each tank and validate the design data after recent process intensification or revamping of the plant. I-131 was used as a radioactive tracer and was instantaneously injected into the feed stream of the first tank and monitored at the outlet of different tanks. Both sampling and online measurement methods were used to monitor the tracer concentration. The results of measurements indicated that both the methods provided identical RTD curves. The mean residence time (MRT) and effective volume of each tank was estimated. The tanks-in-series model with exchange between active and stagnant volume was used and found suitable to describe the flow structure of aqueous phase in the tanks. The estimated effective volume of the tanks and high degree of mixing in tanks could validate the design data and confirmed the expectation of the plant engineer after intensification of the process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Tank characterization report for single-shell tank 241-U-110. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was ;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report.

  18. Tank characterization report for double-shell tank 241-AN-102

    International Nuclear Information System (INIS)

    Jo, J.

    1996-01-01

    This characterization report summarizes the available information on the historical uses, current status, and sampling and analysis results of waste stored in double-shell underground storage tank 241- AN-102. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09 (Ecology et al. 1996). Tank 241-AN-102 is one of seven double-shell tanks located in the AN Tank Farm in the Hanford Site 200 East Area. The tank was hydrotested in 1981, and when the water was removed, a 6-inch heel was left. Tank 241-AN-102 began receiving waste from tank 241-SY-102 beginning in 1982. The tank was nearly emptied in the third quarter of 1983, leaving only 125 kL (33 kgal) of waste. Between the fourth quarter of 1983 and the first quarter of 1984, tank 241-AN-102 received waste from tanks 241-AY-102, 241-SY-102, 241-AW-105, and 241- AN-101. The tank was nearly emptied in the second quarter of 1984, leaving a heel of 129 kL (34 kgal). During the second and third quarters of 1984, the tank was filled with concentrated complexant waste from tank 241-AW-101. Since that time, only minor amounts of Plutonium-Uranium Extraction (PUREX) Plant miscellaneous waste and water have been received; there have been no waste transfer to or from the tank since 1992. Therefore, the waste currently in the tank is considered to be concentrated complexant waste. Tank 241-AN-102 is sound and is not included on any of the Watch Lists

  19. Protocol for disposition of tank farm equipment lists and tank farm drawings for year 2000 compliance

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    1999-01-01

    A program has been initiated to assess, renovate, document and certify tank farm field equipment for year 2000 compliance. The program is necessary to assure no adverse effects occur in tank farm operations as a result of equipment malfunction due to what is widely known as the ''millennium bug''. This document elaborates the protocols for reviewing field equipment lists and tank farm drawings for the purpose of identifying and resolving year 2000 compliance problems in tank farm equipment

  20. Tank 241-C-111 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-111. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  1. Tank 241-BY-110 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-BY-110. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to the tank farm workers due to fugitive emissions from the tank

  2. Tank 241-C-107 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  3. Tank 241-C-102 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-102. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  4. Tank 241-TY-101 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-TY-101. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  5. Tank 241-BX-104 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-BX-104. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  6. Tank 241-SX-106 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-SX-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  7. Tank 241-T-107 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-T-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  8. Tank 241-B-103 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-B-103. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  9. Tank characterization report for single-shell tank 241-U-110

    International Nuclear Information System (INIS)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report

  10. Rendimento corporal e composição química de jundiás alimentados com diferentes níveis de proteína e energia na dieta, criados em tanques-rede Catfish (jundia body yield and chemical composition fed different protein and energy level in the diet, reared in net-tanks

    Directory of Open Access Journals (Sweden)

    Adilson Reidel

    2010-02-01

    Full Text Available Objetivou-se analisar o rendimento corporal e a composição química de jundiás, Rhamdia quelen, alimentados com rações contendo diferentes níveis de proteína e energia e criados em sistema de tanques-rede. Utilizou-se a densidade inicial de 70 peixes/m³, em 18 tanques-rede (5,0 m³, durante 324 dias. O delineamento experimental foi inteiramente casualizado com dois fatores - níveis de proteína bruta (PB, 25, 30 ou 35%; e níveis de energia digestível (ED: 3.250 e 3.500 kcal - e três repetições. A dieta foi fornecida à vontade, mas mensurada diariamente. No início, um lote de peixes foi sacrificado para determinação dos parâmetros corporais e químicos. A cada 28 dias, dois peixes de cada unidade experimental foram abatidos para determinação dos comprimentos total e padrão, do peso total e dos pesos de fígado, gônadas, cabeça, tronco limpo e gordura visceral, respectivamente. Posteriormente, foram realizados cálculos dos índices hepatossomático e gonadossomático, da porcentagem de cabeça e do rendimento de carcaça e do rendimento de tronco limpo. A partir do mês de junho de 2006, também foram registrados o rendimento de filé e o sexo dos indivíduos. Para determinação da composição da carne do jundiá, foram realizadas as análises químicas de umidade, proteína bruta, lipídios e matéria mineral. O fornecimento da ração com 30% de PB resultou em maior rendimento de tronco limpo. A composição do músculo não foi influenciada pelas dietas testadas. Os melhores resultados foram obtidos com a utilização de dietas contendo 30% de PB e 3.250 kcal de energia digestível/kg.The objective of this study was to analyze the body yield and the chemical composition of catfish (jundia, Rhamdia quelen, reared in net-tanks and fed with diets containing different levels of protein and energy. An initial density of 70 fish/m³, in 18 net-tanks (5.0 m³ was used, for 324 days. A randomized complete design was used

  11. Thermodynamic optimization of heat exchanger tanks by exergy ...

    African Journals Online (AJOL)

    The paper introduces heat exchanger tanks, detailing their dominant thermodynamic relations to obtain the exergy analysis relations of heat exchanger tanks. Heat exchanger tank is examined under various laboratory conditions, including the power of heat element inside the tank, mass flow rate of cooling water of tank ...

  12. 49 CFR 238.223 - Locomotive fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the requirements...

  13. 33 CFR 183.512 - Fuel tanks: Prohibited materials.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Prohibited materials... tanks: Prohibited materials. (a) A fuel tank must not be constructed from terneplate. (b) Unless it has an inorganic sacrificial galvanic coating on the inside and outside of the tank, a fuel tank must not...

  14. 14 CFR 121.229 - Location of fuel tanks.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Location of fuel tanks. 121.229 Section 121... of fuel tanks. (a) Fuel tanks must be located in accordance with § 121.255. (b) No part of the engine... the wall of an integral tank. (c) Fuel tanks must be isolated from personnel compartments by means of...

  15. 49 CFR 180.507 - Qualification of tank cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Qualification of tank cars. 180.507 Section 180... QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars § 180.507 Qualification of tank cars. (a) Each tank car marked as meeting a “DOT” specification or any other tank car used...

  16. Tank farms essential drawing plan

    International Nuclear Information System (INIS)

    Domnoske-Rauch, L.A.

    1998-01-01

    The purpose of this document is to define criteria for selecting Essential Drawings, Support Drawings, and Controlled Print File (CPF) drawings and documents for facilities that are part of East and West Tank Farms. Also, the drawings and documents that meet the criteria are compiled separate listings. The Essential Drawing list and the Support Drawing list establish a priority for updating technical baseline drawings. The CPF drawings, denoted by an asterisk (*), defined the drawings and documents that Operations is required to maintain per the TWRS Administration Manual. The Routing Boards in Buildings 272-WA and 272-AW are not part of the CPF

  17. Tank Waste Remediation System Guide

    International Nuclear Information System (INIS)

    Robershotte, M.A.; Dirks, L.L.; Seaver, D.A.; Bothers, A.J.; Madden, M.S.

    1995-06-01

    The scope, number and complexity of Tank Waste Remediation System (TWRS) decisions require an integrated, consistent, and logical approach to decision making. TWRS has adopted a seven-step decision process applicable to all decisions. Not all decisions, however, require the same degree of rigor/detail. The decision impact will dictate the appropriate required detail. In the entire process, values, both from the public as well as from the decision makers, play a key role. This document concludes with a general discussion of the implementation process that includes the roles of concerned parties

  18. Supporting document for the historical tank content estimate for AN-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  19. Supporting document for the historical tank content estimate for AY-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  20. Supporting document for the historical tank content estimate for AW-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H., Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  1. Supporting document for the historical tank content estimate for the S-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on S-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  2. Supporting document for the historical tank content estimate for AP-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  3. Supporting document for the historical tank content estimate for the SX-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on SX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  4. Supporting document for the historical tank content estimate for S tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs

  5. Tank 241-C-101 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank C-101 headspace gas and vapor samples were collected and analyzed to help determine the potential risks of fugitive emissions to tank farm workers. Gas and vapor samples from the Tank C-101 headspace were collected on July 7, 1994 using the in situ sampling (ISS) method, and again on September 1, 1994 using the more robust vapor sampling system (VSS). Gas and vapor concentrations in Tank C-101 are influenced by its connections to other tanks and its ventilation pathways. At issue is whether the organic vapors in Tank C-101 are from the waste in that tank, or from Tanks C-102 or C-103. Tank C-103 is on the Organic Watch List; the other two are not. Air from the Tank C-101 headspace was withdrawn via a 7.9-m long heated sampling probe mounted in riser 8, and transferred via heated tubing to the VSS sampling manifold. The tank headspace temperature was determined to be 34.0 C, and all heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks provided by the laboratories

  6. Supporting document for the historical tank content estimate for BY-Tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  7. ATR/OTR-SY Tank Camera Purge System and in Tank Color Video Imaging System

    International Nuclear Information System (INIS)

    Werry, S.M.

    1995-01-01

    This procedure will document the satisfactory operation of the 101-SY tank Camera Purge System (CPS) and 101-SY in tank Color Camera Video Imaging System (CCVIS). Included in the CPRS is the nitrogen purging system safety interlock which shuts down all the color video imaging system electronics within the 101-SY tank vapor space during loss of nitrogen purge pressure

  8. Supporting document for the historical tank content estimate for A Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs

  9. Tank characterization report for single-shell tank 241-BY-112

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-BY-112. This report supports the requirements of the Tri-Party Agreement Milestone M-44-10. (This tank has been designated a Ferrocyanide Watch List tank.)

  10. Supporting document for the historical tank content estimate for S tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  11. Supporting document for the historical tank content estimate for A Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  12. Supporting document for the historical tank content estimate for B Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the B Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs

  13. Supporting document for the SW Quadrant Historical Tank Content Estimate for U-Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This Supporting Document provides historical characterization information gathered on U-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate of the SW Quadrant at the Hanford 200 West Area

  14. Supporting Document for the SW Quadrant Historical Tank Content Estimate for SX-Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This Supporting Document provides historical characterization information gathered on SX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate of the SW Quadrant at the Hanford 200 West Area

  15. Supporting document for the historical tank content estimate for BY-Tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Newell, R.L.; Funk, J.W.

    1996-01-01

    This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area

  16. Supporting document for the historical tank content estimate for AP-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W.

    1997-01-01

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas

  17. Supporting document for the historical tank content estimate for BX-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1996-01-01

    This Supporting Document provides historical in-depth characterization information on BX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area

  18. Supporting document for the historical tank content estimate for A-Tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Newell, R.L.; Funk, J.W.

    1996-01-01

    This Supporting Document provides historical in-depth characterization information on A-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area

  19. Supporting document for the historical tank content estimate for AW-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W.

    1997-01-01

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas

  20. 9 CFR 316.14 - Marking tank cars and tank trucks used in transportation of edible products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Marking tank cars and tank trucks used in transportation of edible products. 316.14 Section 316.14 Animals and Animal Products FOOD SAFETY... CONTAINERS § 316.14 Marking tank cars and tank trucks used in transportation of edible products. Each tank...

  1. Seismic response of flexible cylindrical tanks

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, T A; Boley, B A [comps.

    1977-01-01

    An experimental study of the seismic behavior of thin shell circular cylindrical liquid storage tanks is described. The investigation was planned to evaluate the adequacy of present methods of tank design, and was conducted using the Earthquake Simulator Facility of the University of California, Berkeley. The model tank considered in this paper was 6 ft high by 12 ft in diameter, and was welded from thin sheet aluminum to simulate a steel tank 36 feet in diameter. During testing the tank had an open top, held 60 inches of water, and was subjected to a time scaled El Centro (1940) earthquake, amplified to a peak acceleration of 0.5 g. Both base free and base fixed conditions were studied. Results of the experiments demonstrate that fluid pressures included both impulsive and convective components, and that the wave sloshing followed basic theory quite closely. But it also was apparent that the tank flexibility influenced the hydrodynamic pressures, as indicated by pressure amplification in the clamped tank, and by a total change of pressure history in the unclamped case. Significant out of round distortions of the tank were developed, of a three lobe form or the free base case and with four lobes in the fixed base case. Uplift of the tank base was closely related to the out-of-round deformation of the unanchored tank, whereas initial eccentricities apparently caused the section distortions in the anchored system. Stresses in the tank wall do not follow the expected pattern of response to overturning moment; instead they seem to be mainly associated with the section distortions. At present there is no analytical procedure for predicting these distortions .

  2. Screening the Hanford tanks for trapped gas

    International Nuclear Information System (INIS)

    Whitney, P.

    1995-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford's nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology is not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list

  3. Characterization of Tank 51 Sludge Slurry Samples (HTF-51-17-67, -68, -69, -74, -75, and -76) in Support of Sludge Batch 10 Processing

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-09

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) Engineering (SRR-E) to provide sample characterization and analyses of Tank 51 sludge samples in support of Sludge Batch (SB) 10. The six Tank 51 sludge samples were sampled and delivered to SRNL in August of 2017. These six Tank 51 sludge samples, after undergoing physical characterizations which included rheology, weight percent total solid, dissolved solids and density measurements, were combined into one composite Tank 51 sample and analyzed for corrosion controls analytes, select radionuclides, chemical elements, density and weight percent total solids.

  4. Characterization of the corrosion behavior of the carbon steel liner in Hanford Site single-shell tanks

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Schwenk, E.B.; Danielson, M.J.

    1994-06-01

    Six safety initiatives have been identified for accelerating the resolution of waste tank safety issues and closure of unreviewed safety questions. Safety Initiative 5 is to reduce safety and environmental risk from tank leaks. Item d of Safety Initiative 5 is to complete corrosion studies of single-shell tanks to determine failure mechanisms and corrosion control options to minimize further degradation by June 1994. This report has been prepared to fulfill Safety Initiative 5, Item d. The corrosion mechanisms that apply to Hanford Site single-shell tanks are stress corrosion cracking, pitting/crevice corrosion, uniform corrosion, hydrogen embrittlement, and microbiologically influenced corrosion. The corrosion data relevant to the single-shell tanks dates back three decades, when results were obtained from in-situ corrosion coupons in a few single-shell tanks. Since that time there have been intertank transfers, evaporation, and chemical alterations of the waste. These activities have changed the character and the present composition of the waste is not well characterized. All conclusions and recommendations are made in the absence of relevant laboratory experimental data and tank inspection data. The report attempts to identify the failure mechanisms by a literature survey of carbon steel data in environments similar to the single-shell tank wastes, and by a review of the work performed at the Savannah River Site where similar wastes are stored in similar carbon steel tanks. Based on these surveys, and in the absence of data specific to Hanford single-shell tanks, it may be concluded that the single-shell tanks identified as leakers failed primarily by stress corrosion cracking due to the presence of high nitrate/low hydroxide wastes and residual stresses. In addition, some failures may be attributed to pitting under crevices in low hydroxide locations

  5. Prevention of stress corrosion cracking in nuclear waste storage tanks

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.

    1983-01-01

    At the Savannah River Plant, stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste is prevented by stress relief and specification of limits on waste composition and temperature. Actual cases of cracking have occurred in the primary steel shell of tanks designed and built before 1960 and were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also, as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh wastes, concentrations of the inhibitor ions are maintained within specific ranges to protect against nitrate cracking. The concentration and temperature range limits to prevent cracking were determined by a series of statistically designed experiments

  6. Tank 101-SY Window E core sample: Interpretation of results

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1993-02-01

    A full depth core sample was taken for tank 241-SY-101 in December 1991 during a time period called ''Window E.'' This was the second full depth core sample from this tank during the year. The core had two major portions that are known as the convective zone and the nonconvective zone. A crust was on the top of tank but as poorly sampled. The analysis of the Window E core sample stressed segment composite chemical analysis instead of segment by segment as in Window C. Adiabatic calorimetry on samples from both cores showed a slow self heating reaction above 150 degrees C on dried samples. The exothermic events were milder than similar synthetic samples. The chemical and physical properties complemented the information from Window C. The Window E material from the convective zone was more viscous than the Window C convective zone material. The nonconvective zone viscosities were similar for both cores. Heating and dilution tests were made to test mitigation concepts

  7. Tank 101-SY Window E core sample: Interpretation of results

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, D.A.

    1993-02-01

    A full depth core sample was taken for tank 241-SY-101 in December 1991 during a time period called ``Window E.`` This was the second full depth core sample from this tank during the year. The core had two major portions that are known as the convective zone and the nonconvective zone. A crust was on the top of tank but as poorly sampled. The analysis of the Window E core sample stressed segment composite chemical analysis instead of segment by segment as in Window C. Adiabatic calorimetry on samples from both cores showed a slow self heating reaction above 150{degrees}C on dried samples. The exothermic events were milder than similar synthetic samples. The chemical and physical properties complemented the information from Window C. The Window E material from the convective zone was more viscous than the Window C convective zone material. The nonconvective zone viscosities were similar for both cores. Heating and dilution tests were made to test mitigation concepts.

  8. Tank 241-AY-102 Secondary Liner Corrosion Evaluation - 14191

    International Nuclear Information System (INIS)

    Boomer, Kayle D.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2014-01-01

    In October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of 241-AY-102 (AY-102) was leaking. A number of evaluations were performed after discovery of the leak which identified corrosion from storage of waste at the high waste temperatures as one of the major contributing factors in the failure of the tank. The propensity for corrosion of the waste on the annulus floor will be investigated to determine if it is corrosive and must be promptly removed or if it is benign and may remain in the annulus. The chemical composition of waste, the temperature and the character of the steel are important factors in assessing the propensity for corrosion. Unfortunately, the temperatures of the wastes in contact with the secondary steel liner are not known; they are estimated to range from 45 deg C to 60 deg C. It is also notable that most corrosion tests have been carried out with un-welded, stress-relieved steels, but the secondary liner in tank AY-102 was not stress-relieved. In addition, the cold weather fabrication and welding led to many problems, which required repeated softening of the metal to flatten secondary bottom during its construction. This flame treatment may have altered the microstructure of the steel

  9. At-tank Low-Activity Feed Homogeneity Analysis Verification

    International Nuclear Information System (INIS)

    DOUGLAS, J.G.

    2000-01-01

    This report evaluates the merit of selecting sodium, aluminum, and cesium-137 as analytes to indicate homogeneity of soluble species in low-activity waste (LAW) feed and recommends possible analytes and physical properties that could serve as rapid screening indicators for LAW feed homogeneity. The three analytes are adequate as screening indicators of soluble species homogeneity for tank waste when a mixing pump is used to thoroughly mix the waste in the waste feed staging tank and when all dissolved species are present at concentrations well below their solubility limits. If either of these conditions is violated, then the three indicators may not be sufficiently chemically representative of other waste constituents to reliably indicate homogeneity in the feed supernatant. Additional homogeneity indicators that should be considered are anions such as fluoride, sulfate, and phosphate, total organic carbon/total inorganic carbon, and total alpha to estimate the transuranic species. Physical property measurements such as gamma profiling, conductivity, specific gravity, and total suspended solids are recommended as possible at-tank methods for indicating homogeneity. Indicators of LAW feed homogeneity are needed to reduce the U.S. Department of Energy, Office of River Protection (ORP) Program's contractual risk by assuring that the waste feed is within the contractual composition and can be supplied to the waste treatment plant within the schedule requirements

  10. Washing and caustic leaching of Hanford tank sludges

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Rapko, B.M.; Colton, N.G.

    1994-01-01

    Methods are being developed to treat and dispose of large volumes of radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford Site. The wastes will be partitioned into high-level waste (HLW) and low-level waste (LLW) fractions. The HLW will be vitrified into borosilicate glass and disposed of in a geologic repository, while the LLW will be immobilized in a glass matrix and will likely be disposed of by shallow burial at the Hanford Site. The wastes must be pretreated to reduce the volume of the HLW fraction, so that vitrification and disposal costs can be minimized. The current baseline process for pretreating Hanford tank sludges is to leach the sludge under caustic conditions, then remove the solubilized components of the sludge by water washing. Tests of this method have been performed with samples taken from several different tanks at Hanford. The results of these tests are presented in terms of the composition of the sludge before and after leaching. X-ray diffraction and scanning electron microscopy coupled with electron dispersive x-ray techniques have been used to identify the phases in the untreated and treated sludges

  11. Analysis of SRP waste streams for waste tank certification

    International Nuclear Information System (INIS)

    Coleman, C.J.

    1989-01-01

    The Savannah River Plant (SRP) will apply for certification from the State of South Carolina to operate the SRP High-Level Waste Tanks. The permit application will be submitted as a RCRA Part B, Volume 16, entitled ''RCRA Part B Application For the F and H-Area Radioactive Waste Farm.'' RCRA regulations require that influent and effluent streams of hazardous waste sites be characterized to obtain an operating permit. The Waste Management Technology Department requested ADD to determine 21 components (including pH and weight percent solids) in the current influent streams to SRP High-Level Waste Tanks. The analyses will be used to supplement existing data on the composition of High-Level Waste. Effluent streams, which will feed Saltstone and the DWPF, will be analyzed when they are produced. This report contains the data obtained from analyzing key influent streams to SRP High-Level Waste Tanks. The precision of the data and the analytical methods that were used are also discussed

  12. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION MST, ESS AND PODD SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Fink, S.

    2012-04-24

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 5 processing. This qualification material was a composite created from recent samples from Tank 21H and archived samples from Tank 49H to match the projected blend from these two tanks. Additionally, samples of the composite were used in the Actinide Removal Process (ARP) and extraction-scrub-strip (ESS) tests. ARP and ESS test results met expectations. A sample from Tank 21H was also analyzed for the Performance Objectives Demonstration Document (PODD) requirements. SRNL was able to meet all of the requirements, including the desired detection limits for all the PODD analytes. This report details the results of the Actinide Removal Process (ARP), Extraction-Scrub-Strip (ESS) and Performance Objectives Demonstration Document (PODD) samples of Macrobatch (Salt Batch) 5 of the Integrated Salt Disposition Program (ISDP).

  13. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    International Nuclear Information System (INIS)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Engeman, Jason K.

    2013-01-01

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances of the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor

  14. History of waste tank 13, 1956 through 1974

    International Nuclear Information System (INIS)

    Davis, T.L.; Tharin, D.W.; Lohr, D.R.

    1978-06-01

    Tank 13 was placed in service as a receiver of LW from the Building 221-H Purex process in December 1956. Five years later, the supernate was decanted to evaporator feed tank 21. It has since served as a transfer tank for HW supernate being sent to tank 21 and has received sludge removed from other tanks four times. The tank annulus has been inspected with an optical periscope and a lead-shielded camera. No indication of tank leakage had been seen through December 1974. However, subsequent to this report (on April 14, 1977), an arrested leak was discovered, making tank 13 the last of the four type II tanks to leak. Analytical samples of supernate and sludge have been taken. Tank 13 has had no cooling coil failures. Primary tank wall thicknesses, sludge level determinations, and temperature profiles have been obtained. Tank 13 has been included in various tests. Equipment modifications and various equipment repairs were made. 11 figures, 2 tables

  15. Heat removal characteristics of waste storage tanks. Revision 1

    International Nuclear Information System (INIS)

    Kummerer, M.

    1995-10-01

    A topical report that examines the relationship between tank heat load and maximum waste temperatures. The passive cooling response of the tanks is examined, and loss of active cooling in ventilated tanks is investigated

  16. Blunt impact tests of retired passenger locomotive fuel tanks

    Science.gov (United States)

    2017-08-01

    The Transportation Technology Center, Inc. conducted impact tests on three locomotive fuel tanks as part of the Federal Railroad Administrations locomotive fuel tank crashworthiness improvement program. Three fuel tanks, two from EMD F40PH locomot...

  17. 30 CFR 56.4401 - Storage tank foundations.

    Science.gov (United States)

    2010-07-01

    ... tanks settling. ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage tank foundations. 56.4401 Section 56... Control Flammable and Combustible Liquids and Gases § 56.4401 Storage tank foundations. Fixed, unburied...

  18. Steady-State Flammable Gas Release Rate Calculation And Lower Flammability Level Evaluation For Hanford Tank Waste

    International Nuclear Information System (INIS)

    Meacham, J.E.

    2008-01-01

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for al1 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 13 days for DSTs (i.e., tank 241-AZ-102) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 12 days for DSTs (i.e., tank 241-AZ-102) and 34 days for SSTs (i.e., tank 241-B-203).

  19. Steady-State Flammable Gas Release Rate Calculation And Lower Flammability Level Evaluation For Hanford Tank Waste

    International Nuclear Information System (INIS)

    Meacham, J.E.

    2009-01-01

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for all 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 11 days for DSTs (i.e., tank 241-AZ-10l) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 10 days for DSTs (i.e., tank 241-AZ-101) and 34 days for SSTs (i.e., tank 241-B-203).

  20. Cold water inlet in solar tanks - valuation

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1999-01-01

    The aim of the project is to make a proposal for how to value a storage tank with a poor design of the cold water inlet. Based on measurements and calculations a number of curves, which are valid for this valuation, are worked out. Based on a simple test with a uniform heated storage tank the rat...

  1. Robotic cleaning of radwaste tank nozzles

    International Nuclear Information System (INIS)

    Boughman, G.; Jones, S.L.

    1992-01-01

    The Susquehanna radwaste processing system includes two reactor water cleanup phase separator tanks and one waste sludge phase separator tank. A system of educator nozzles and associated piping is used to provide mixing in the tanks. The mixture pumped through the nozzles is a dense resin-and-water slurry, and the nozzles tend to plug up during processing. The previous method for clearing the nozzles had been for a worker to enter the tanks and manually insert a hydrolaser into each nozzle, one at a time. The significant radiation exposure and concern for worker safety in the tank led the utility to investigate alternate means for completing this task. The typical tank configuration is shown in a figure. The initial approach investigated was to insert a manipulator arm in the tank. This arm would be installed by workers and then teleoperated from a remote control station. This approach was abandoned because of several considerations including educator location and orientation, excessive installation time, and cost. The next approach was to use a mobile platform that would operate on the tank floor. This approach was selected as being the most feasible solution. After a competitive selection process, REMOTEC was selected to provide the mobile platform. Their proposal was based on the commercial ANDROS Mark 5 platform

  2. Annual radioactive waste tank inspection program: 1995

    International Nuclear Information System (INIS)

    McNatt, F.G. Sr.

    1996-01-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1995 to evaluate these vessels and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

  3. HANFORD WASTE TANK BUMP ACCIDENT & CONSEQUENCE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    MEACHAM, J.E.

    2005-02-22

    Postulated physical scenarios leading to tank bumps were examined. A combination of a substantial supernatant layer depth, supernatant temperatures close to saturation, and high sludge temperatures are required for a tank bump to occur. Scenarios postulated at various times for sludge layers lacking substantial supernatant, such as superheat within the layer and fumarole formation leading to a bump were ruled out.

  4. Global Think Tank Initiative Policy Engagement and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Think tanks in developing countries aim to produce quality, evidence-based research to address the policy challenges faced by the countries or regions within which they operate. The potential for think tanks to inform policy and contribute to development debates depends on their ability to engage in the policy process.

  5. Annual radioactive waste tank inspection program - 1999

    International Nuclear Information System (INIS)

    Moore, C.J.

    2000-01-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

  6. Savannah River Plant waste tank inspection manual

    International Nuclear Information System (INIS)

    McNatt, F.G.

    1979-01-01

    This manual is to aid in making visual and photographic inspections and steel thickness measurements of Building 241-F and -H underground waste storage tanks. It describes the inspection program, the storage tanks, the equipment and techniques used and the results of their application, and the inspection recordkeeping methods

  7. Tanks Focus Area annual report FY2000

    International Nuclear Information System (INIS)

    2000-01-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area

  8. Tank wall thinning -- Process and programs

    International Nuclear Information System (INIS)

    Greer, S.D.; McBrine, W.J.

    1994-01-01

    In-service thinning of tank walls has occurred in the power industry and can pose a significant risk to plant safety and dependability. Appropriate respect for the energy stored in a high-pressure drain tank warrants a careful consideration of this possibility and appropriate action in order to assure the adequate safety margins against leakage or rupture. Although it has not proven to be a widespread problem, several cases of wall thinning and at least one recent tank rupture has highlighted this issue in recent years, particularly in nuclear power plants. However, the problem is not new or unique to the nuclear power industry. Severe wall thinning in deaerator tanks has been frequently identified at fossil-fueled power plants. There are many mechanisms which can contribute to tank wall thinning. Considerations for a specific tank are dictated by the system operating conditions, tank geometry, and construction material. Thinning mechanisms which have been identified include: Erosion/Corrosion Impingement Erosion Cavitation Erosion General Corrosion Galvanic Corrosion Microbial-induced Corrosion of course there are many other possible types of material degradation, many of which are characterized by pitting and cracking. This paper specifically addresses wall thinning induced by Erosion/Corrosion (also called Flow-Accelerated Corrosion) and Impingement Erosion of tanks in a power plant steam cycle. Many of the considerations presented are applicable to other types of vessels, such as moisture separators and heat exchangers

  9. 14 CFR 121.316 - Fuel tanks.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks. Each...

  10. Geology of the 241-C Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  11. Geology of the 241-TY Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the ERDA Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  12. Geology of the 241-SX Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  13. Geology of the 241-S Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  14. Think Tank Initiative - Hewlett Foundation | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC and the William and Flora Hewlett Foundation are collaborating on the Think Tank Initiative, a new program to strengthen independent think tanks and policy research centres in the developing world. These organizations provide critical input for the creation of effective public policy to promote growth and reduce ...

  15. Flow in sodium loop surge tank

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1977-01-01

    The alternate liquid flow, the condition of vortex formation, gas entrainment in the discharge and the liquid level characteristics are studied using the models of the vertical and horizontal surge tanks of a sodium circuit with pump and heat exchangers. The conditions for vortex formation are more favourable in the vertical cylindrical tank than in the horizontal tank. The size of the vortex produced in the tank is affected by the initial speed circulation, due as a rule to an unsuitable inlet design. The proposed design considers an inlet below the sodium level using capped perforated pipes. Vortex formation, gas transport to the discharge pipe and turbulences of the liquid in the tank may be prevented by dividing the tank to the discharge and the inlet areas using perforated partitions, and by inserting the discharge cylinder above the discharge pipe outflow. The liquid level in the tank may be calmed by screens or by perforated plates. The adaptation of the surge tank of the sodium circuit will probably eliminate vortex formation and the entrainment of cover gas into the discharge piping and the sodium circuit under nominal conditions. (J.B.)

  16. Annual radioactive waste tank inspection program - 1992

    International Nuclear Information System (INIS)

    McNatt, F.G.

    1992-01-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1992 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report

  17. Tanks for liquids: calibration and errors assessment

    International Nuclear Information System (INIS)

    Espejo, J.M.; Gutierrez Fernandez, J.; Ortiz, J.

    1980-01-01

    After a brief reference to some of the problems raised by tanks calibration, two methods, theoretical and experimental are presented, so as to achieve it taking into account measurement errors. The method is applied to the transfer of liquid from one tank to another. Further, a practical example is developed. (author)

  18. Geology of the 241-T Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  19. Geology of the 241-TX Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  20. Geology of the 241-U Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps has been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  1. Tanks Focus Area annual report FY2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

  2. Annual radioactive waste tank inspection program - 1991

    International Nuclear Information System (INIS)

    McNatt, F.G.

    1992-01-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1991 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report

  3. Analysis of the Tank 5F Feed and Bleed Residual Solids

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Diprete, D.: Coleman, C.; Washington, A.

    2011-07-07

    Savannah River Remediation (SRR) is preparing Tank 5F for closure. As part of Tank 5F Closure Mechanical Cleaning, SRR conducted a 'Feed and Bleed' process in Tank 5F. Following this 'Feed and Bleed' Mechanical Cleaning in Tank 5F, SRR collected two tank heel samples (referred to as sample 1 and sample 2) under Riser 5 to determine the composition of the material remaining in the tanks. This document describes sample analysis results. The conclusions from this analysis follow. (1) The anions measured all had a concentration less than 250 mg/kg, except for oxalate, which had a concentration of 2100-2400 mg/kg. (2) The measured cations with the highest concentration were iron (432,000-519,000 mg/kg), nickel (54,600-69,300 mg/kg), and manganese (35,200-42,100 mg/kg). All other cations measured less than 13,000 mg/kg. (3) The radionuclides present in the highest concentration are {sup 90}Sr (3.0 x 10{sup 10} dpm/g), {sup 137}Cs (6.8 x 10{sup 8} dpm/g), and {sup 241}Am (1.4 x 10{sup 8} - 1.8 x 10{sup 8} dpm/g). (4) The particle size analysis shows a large fraction of particles greater than 100 {micro}.

  4. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers

  5. Waste Tank Safety Screening Module: An aspect of Hanford Site tank waste characterization

    International Nuclear Information System (INIS)

    Hill, J.G.; Wood, T.W.; Babad, H.; Redus, K.S.

    1994-01-01

    Forty-five (45) of the 149 Hanford single-shell tanks have been designated as Watch-List tanks for one or more high-priority safety issues, which include significant concentrations of organic materials, ferrocyanide salts, potential generation of flammable gases, high heat generation, criticality, and noxious vapor generation. While limited waste characterization data have been acquired on these wastes under the original Tri-Party Agreement, to date all of the tank-by-tank assessments involved in these safety issue designations have been based on historical data rather than waste on data. In response to guidance from the Defense Nuclear Facilities Safety Board (DNFSB finding 93-05) and related direction from the US Department of Energy (DOE), Westinghouse Hanford Company, assisted by Pacific Northwest Laboratory, designed a measurements-based screening program to screen all single-shell tanks for all of these issues. This program, designated the Tank Safety Screening Module (TSSM), consists of a regime of core, supernatant, and auger samples and associated analytical measurements intended to make first-order discriminations of the safety status on a tank-by-tank basis. The TSSM combines limited tank sampling and analysis with monitoring and tank history to provide an enhanced measurement-based categorization of the tanks relative to the safety issues. This program will be implemented beginning in fiscal year (FY) 1994 and supplemented by more detailed characterization studies designed to support safety issue resolution

  6. High priority tank sampling and analysis report

    International Nuclear Information System (INIS)

    Brown, T.M.

    1998-01-01

    In July 1993, the Defense Nuclear Facilities Board issued Recommendation 93-5 (Conway 1993) which noted that there was insufficient tank waste technical information and the pace to obtain it was too slow to ensure that Hanford Site wastes could be safely stored, that associated operations could be conducted safely, and that future disposal data requirements could be met. In response, the US Department of Energy, in May 1996, issued Revision 1 of the Recommendation 93-5 Implementation Plan (DOE-RL 1996). The Implementation Plan presented a modified approach to achieve the original plan's objectives, concentrating on actions necessary to ensure that wastes can be safely stored, that operations can be safely conducted, and that timely characterization information for the tank waste Disposal Program could be obtained. The Implementation Plan proposed 28 High Priority tanks for near term core sampling and analysis, which along with sampling and analysis of other non-High Priority tanks, could provide the scientific and technical data to confirm assumptions, calibrate models, and.measure safety related phenomenology of the waste. When the analysis results of the High Priority and other-tank sampling were reviewed, it was expected that a series of 12 questions, 9 related to safety issues and 3 related to planning for the disposal process, should be answered allowing key decisions to be made. This report discusses the execution of the Implementation Plan and the results achieved in addressing the questions. Through sampling and analysis, all nine safety related questions have been answered and extensive data for the three disposal planning related questions have been collected, allowing for key decision making. Many more tanks than the original 28 High Priority tanks identified in the Implementation Plan were sampled and analyzed. Twenty-one High Priority tanks and 85 other tanks were core sampled and used to address the questions. Thirty-eight additional tanks were auger

  7. Bench-scale cross flow filtration of Tank S-107 sludge slurries and Tank C-107 supernatant

    International Nuclear Information System (INIS)

    Geeting, J.G.H.; Reynolds, B.A.

    1996-10-01

    Hanford tank waste filtration experiments were conducted using a bench-scale cross flow filter on 8 wt%, 1.5 wt%, and 0.05 wt% Tank S- 107 sludge slurries and on Tank C-107 supernatant. For comparison, two simulants each with solids loadings of 8 wt% and 0.05 wt% were also tested. The purpose of the tests was to determine the efficacy of cross flow filtration on slurries of various solids loadings. -In addition, filtrate flux dependency on axial velocity and transmembrane pressure was sought so that conditions for future experiments might be better selected. The data gathered are compared to the simulants and three cross flow filtration models. A two- parameter central composite design which tested. transmembrane pressure from 5 to 40 psig and axial Velocity from 3 to 9 ft/s was used for all feeds. The cross flow filter effectively removed solids from the liquid, as 19 of 20 filtrate samples had particle concentrations below the resolution limit of the photon correlation spectrometer used in the Hanford Radiocolloid Laboratory. Radiochemical analysis indicate that all filtrate samples were below Class A waste classification standards for 9OSr and transuranics

  8. Technology Evaluation Workshop Report for Tank Waste Chemical Characterization

    International Nuclear Information System (INIS)

    Eberlein, S.J.

    1994-04-01

    A Tank Waste Chemical Characterization Technology Evaluation Workshop was held August 24--26, 1993. The workshop was intended to identify and evaluate technologies appropriate for the in situ and hot cell characterization of the chemical composition of Hanford waste tank materials. The participants were asked to identify technologies that show applicability to the needs and good prospects for deployment in the hot cell or tanks. They were also asked to identify the tasks required to pursue the development of specific technologies to deployment readiness. This report describes the findings of the workshop. Three focus areas were identified for detailed discussion: (1) elemental analysis, (2) molecular analysis, and (3) gas analysis. The technologies were restricted to those which do not require sample preparation. Attachment 1 contains the final workshop agenda and a complete list of attendees. An information package (Attachment 2) was provided to all participants in advance to provide information about the Hanford tank environment, needs, current characterization practices, potential deployment approaches, and the evaluation procedure. The participants also received a summary of potential technologies (Attachment 3). The workshop opened with a plenary session, describing the background and issues in more detail. Copies of these presentations are contained in Attachments 4, 5 and 6. This session was followed by breakout sessions in each of the three focus areas. The workshop closed with a plenary session where each focus group presented its findings. This report summarizes the findings of each of the focus groups. The evaluation criteria and information about specific technologies are tabulated at the end of each section in the report. The detailed notes from each focus group are contained in Attachments 7, 8 and 9

  9. Preliminary tank characterization report for single-shell tank 241-TX-101: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TX-101. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  10. Preliminary tank characterization report for single-shell tank 241-TY-102: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TY-102. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  11. Preliminary tank characterization report for single-shell tank 241-TX-113: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TX-113. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  12. Radioactive tank waste remediation focus area

    International Nuclear Information System (INIS)

    1996-08-01

    EM's Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form

  13. Radioactive tank waste remediation focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  14. Annual radioactive waste tank inspection program -- 1993

    International Nuclear Information System (INIS)

    McNatt, F.G. Sr.

    1994-05-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1993 to evaluate these vessels, and evaluations based on data accrued by inspections made since the tanks were constructed, are the subject of this report. The 1993 inspection program revealed that the condition of the Savannah River Site waste tanks had not changed significantly from that reported in the previous annual report. No new leaksites were observed. No evidence of corrosion or materials degradation was observed in the waste tanks. However, degradation was observed on covers of the concrete encasements for the out-of-service transfer lines to Tanks 1 through 8

  15. Tank 241-S-106, cores 183, 184 and 187 analytical results for the final report

    International Nuclear Information System (INIS)

    Esch, R.A.

    1997-01-01

    This document is the final laboratory report for tank 241-S-106 push mode core segments collected between February 12, 1997 and March 21, 1997. The segments were subsampled and analyzed in accordance with the Tank Push Mode Core Sampling and Analysis Plan (TSAP), the Tank Safety Screening Data Quality Objective (Safety DQO), the Historical Model Evaluation Data Requirements (Historical DQO) and the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue (Organic DQO). The analytical results are included in Table 1. Six of the twenty-four subsamples submitted for the differential scanning calorimetry (DSC) analysis exceeded the notification limit of 480 Joules/g stated in the DQO. Appropriate notifications were made. Total Organic Carbon (TOC) analyses were performed on all samples that produced exotherms during the DSC analysis. All results were less than the notification limit of three weight percent TOC. No cyanide analysis was performed, per agreement with the Tank Safety Program. None of the samples submitted for Total Alpha Activity exceeded notification limits as stated in the TSAP. Statistical evaluation of results by calculating the 95% upper confidence limit is not performed by the 222-S Laboratory and is not considered in this report. No core composites were created because there was insufficient solid material from any of the three core sampling events to generate a composite that would be representative of the tank contents

  16. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks.

    Science.gov (United States)

    McNamara, Christopher J; Perry, Thomas D; Leard, Ryan; Bearce, Ktisten; Dante, James; Mitchell, Ralph

    2005-01-01

    Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks.

  17. Combustion modeling in waste tanks

    International Nuclear Information System (INIS)

    Mueller, C.; Unal, C.; Travis, J.R.; Forschungszentrum Karlsruhe

    1997-01-01

    This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data

  18. Tank characterization report for double-shell Tank 241-AP-107

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    The purpose of this tank characterization report is to describe and characterize the waste in Double-Shell Tank 241-AP-107 based on information gathered from various sources. This report summarizes the available information regarding the waste in Tank 241-AP-107, and arranges it in a useful format for making management and technical decisions concerning this particular waste tank. In addition, conclusion and recommendations based on safety and further characterization needs are given. Specific objectives reached by the sampling and characterization of the waste in Tank 241-AP-107 are: Contribute toward the fulfillment of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05 concerning the characterization of Hanford Site high-level radioactive waste tanks; Complete safety screening of the contents of Tank 241-AP-107 to meet the characterization requirements of the Defense Nuclear Facilities Safety board (DNFSB) Recommendation 93-5; and Provide tank waste characterization to the Tank Waste Remediation System (TWRS) Program Elements in accordance with the TWRS Tank Waste Analysis Plan

  19. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  20. In-Tank Peroxide Oxidation Process for the Decomposition of Tetraphenylborate in Tank 48H

    International Nuclear Information System (INIS)

    DANIEL, LAMBERT

    2005-01-01

    Tank 48H return to service is critical to the processing of high level waste (HLW) at the Savannah River Site (SRS). Tank 48H currently holds legacy material containing organic tetraphenylborate (TPB) compounds from the operation of the In-Tank Precipitation process. The TPB was added during an in-tank precipitation process to removed soluble cesium, but excessive benzene generation curtailed this treatment method. This material is not compatible with the waste treatment facilities at SRS and must be removed or undergo treatment to destroy the organic compounds before the tank can be returned to routine Tank Farm service. Tank 48H currently contains approximately 240,000 gallons of alkaline slurry with approximately 19,000 kg (42,000 lb) of potassium and cesium tetraphenylborate (KTPB and CsTPB). Out of Tank processing of the Tank 48H has some distinct advantages as aggressive processing conditions (e.g., high temperature, low pH) are required for fast destruction of the tetraphenylborate. Also, a new facility can be designed with the optimum materials of construction and other design features to allow the safe processing of the Tank 48H waste. However, it is very expensive to build a new facility. As a result, an in-tank process primarily using existing equipment and facilities is desirable. Development of an in-tank process would be economically attractive. Based on success with Fentons Chemistry (i.e., hydrogen peroxide with an iron or copper catalyst to produce hydroxyl radicals, strong oxidation agents), testing was initiated to develop a higher pH oxidation process that could be completed in-tank

  1. Rheology of Savannah River site tank 42 and tank 51 HLW radioactive sludges

    International Nuclear Information System (INIS)

    Ha, B.C.; Bibler, N.E.

    1996-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. The high activity radioactive wastes stored as caustic slurries at SRS result from the neutralization of acid waste generated from production of nuclear defense materials. During storage, the wastes separate into a supernate layer and a sludge layer. In the Defense Waste Processing Facility (DWPF) at SRS, the radionuclides from the sludge and supernate will be immobilized into borosilicate glass for long term storage and eventual disposal. Before transferring the waste from a storage tank to the DWPF, a portion of the aluminum in the waste sludge will be dissolved and the sludge will be extensively washed to remove sodium. Tank 51 and Tank 42 radioactive sludges represent the first batch of HLW sludge to be processed in the DWPF. This paper presents results of rheology measurements of Tank 51 and Tank 42 at various solids concentrations. The rheologies of Tank 51 and Tank 42 radioactive slurries were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco RV-12 with an M150 measuring drive unit and TI sensor system. Rheological properties of the Tank 51 and Tank 42 radioactive sludges were measured as a function of weight percent solids. The weight percent solids of Tank 42 sludge was 27, as received. Tank 51 sludge had already been washed. The weight percent solids were adjusted by dilution with water or by concentration through drying. At 12, 15, and 18 weight percent solids, the yield stresses of Tank 51 sludge were 5, 11, and 14 dynes/cm2, respectively. The apparent viscosities were 6, 10, and 12 centipoises at 300 sec-1 shear rate, respectively

  2. Tank characterization report for double-shell tank 241-AP-105

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    Double-Shell Tank 241-AP-105 is a radioactive waste tank most recently sampled in March of 1993. Sampling and characterization of the waste in Tank 241-AP-105 contributes toward the fulfillment of Milestone M-44-05 of the Hanford Federal Facility Agreement and Consent Order (Ecology, EPA, and DOE, 1993). Characterization is also needed tot evaluate the waste's fitness for safe processing through an evaporator as part of an overall waste volume reduction program. Tank 241-AP-105, located in the 200 East Area AP Tank Farm, was constructed and went into service in 1986 as a dilute waste receiver tank; Tank 241AP-1 05 was considered as a candidate tank for the Grout Treatment Facility. With the cancellation of the Grout Program, the final disposal of the waste in will be as high- and low-level glass fractions. The tank has an operational capacity of 1,140,000 gallons, and currently contains 821,000 gallons of double-shell slurry feed. The waste is heterogeneous, although distinct layers do not exist. Waste has been removed periodically for processing and concentration through the 242-A Evaporator. The tank is not classified as a Watch List tank and is considered to be sound. There are no Unreviewed Safety Questions associated with Tank 241-AP-105 at this time. The waste in Tank 241-AP-105 exists as an aqueous solution of metallic salts and radionuclides, with limited amounts of organic complexants. The most prevalent soluble analytes include aluminum, potassium, sodium, hydroxide, carbonate, nitrate, and nitrite. The calculated pH is greater than the Resource Conservation and Recovery Act established limit of 12.5 for corrosivity. In addition, cadmium, chromium, and lead concentrations were found at levels greater than their regulatory thresholds. The major radionuclide constituent is 137 Cs, while the few organic complexants present include glycolate and oxalate. Approximately 60% of the waste by weight is water

  3. Tank 24-C-103 headspace flammability

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1994-05-01

    Information regarding flammable vapors, gases, and aerosols is presented and interpreted to help resolve the tank 241-C-103 headspace flammability issue. Analyses of recent vapor and liquid samples, as well as visual inspections of the tank headspace, are discussed in the context of tank dynamics. Concern that the headspace of tank 241-C-103 may contain a flammable mixture of organic vapors and an aerosol of combustible organic liquid droplets arises from the presence of a layer of organic liquid in the tank. This organic liquid is believed to have originated in the plutonium-uranium extraction (PUREX) process, having been stored initially in tank 241-C-102 and apparently transferred to tank 241-C-103 in 1975 (Carothers 1988). Analyses of samples of the organic liquid collected in 1991 and 1993 indicate that the primary constituents are tributyl phosphate (TBP) and several semivolatile hydrocarbons (Prentice 1991, Pool and Bean 1994). This is consistent with the premise that the organic waste came from the PUREX process, because the PUREX process used a solution of TBP in a diluent composed of the n-C 11 H 24 to n-C 15 H 32 normal paraffinic hydrocarbons (NPH)

  4. Acoustic imaging of underground storage tank wastes

    International Nuclear Information System (INIS)

    Mech, S.J.

    1995-09-01

    Acoustics is a potential tool to determine the properties of high level wastes stored in Underground Storage Tanks. Some acoustic properties were successfully measured by a limited demonstration conducted in 114-TX. This accomplishment provides the basis for expanded efforts to qualify techniques which depend on the acoustic properties of tank wastes. This work is being sponsored by the Department of Energy under the Office of Science and Technology. In FY-1994, limited Tank Waste Remediation Systems EM-30 support was available at Hanford and Los Alamos National Laboratory. The Massachusetts Institute of Technology (MIT) and Earth Resources Laboratory (ERL) were engaged for analysis support, and Elohi Geophysics, Inc. for seismic testing services. Westinghouse-Hanford Company provided the testing and training, supplied the special engineering and safety analysis equipment and procedures, and provided the trained operators for the actual tank operations. On 11/9/94, limited in-tank tests were successfully conducted in tank 114-TX. This stabilized Single Shell Tank was reported as containing 16.8 feet of waste, the lower 6.28 feet of which contained interstitial liquid. Testing was conducted over the lower 12 feet, between two Liquid Observation Wells thirty feet apart. The ''quick-look'' data was reviewed on-site by MIT and Elohi

  5. Rocking response of tanks containing two liquids

    International Nuclear Information System (INIS)

    Tang Yu

    1994-01-01

    A study of the dynamic response of upright circular cylindrical liquid storage tanks containing two different liquids under a rocking base motion with an arbitrary temporal variation is presented. Only rigid tanks were studied. The response quantities examined include the hydrodynamic pressure, the sloshing wave height and associated frequencies, and the base shear and moments. Each of these response quantities is expressed as the sum of the so-called impulsive component and convective component. Unlike the case of tanks containing one liquid, in which the response is controlled by one parameter, the height-to-radius ratio, the response of tanks containing two different liquids is controlled by three parameters: the height-to-radius ratio and the mass density ratio and height ratio of the two liquids. The interrelationship of the responses of the tank-liquid system to rocking and lateral base excitations is established by examining numerical results extensively. It is found that some of the response quantities for a tank-liquid system under a rocking base motion can be determined from the corresponding response quantities for an identical tank under a horizontal base motion. ((orig.))

  6. Stabilization of in-tank residual wastes and external tank soil contamination for the Hanford tank closure program: application to the AX tank farm

    Energy Technology Data Exchange (ETDEWEB)

    SONNICHSEN, J.C.

    1998-10-12

    Mixed high-level waste is currently stored in underground tanks at the US Department of Energy's (DOE's) Hanford Site. The plan is to retrieve the waste, process the water, and dispose of the waste in a manner that will provide less long-term health risk. The AX Tank Farm has been identified for purposes of demonstration. Not all the waste can be retrieved from the tanks and some waste has leaked from these tanks into the underlying soil. Retrieval of this waste could result in additional leakage. During FY1998, the Sandia National Laboratory was under contract to evaluate concepts for immobilizing the residual waste remaining in tanks and mitigating the migration of contaminants that exist in the soil column. Specifically, the scope of this evaluation included: development of a layered tank fill design for reducing water infiltration; development of in-tank getter technology; mitigation of soil contamination through grouting; sequestering of specific radionuclides in soil; and geochemical and hydrologic modeling of waste-water-soil interactions. A copy of the final report prepared by Sandia National Laboratory is attached.

  7. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    International Nuclear Information System (INIS)

    Butterworth, St.W.; Shaw, M.R.

    2009-01-01

    Significant progress continued at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) with the completion of the closure process to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks had historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Four of the large storage tanks remain in use for waste storage while the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. During 2008 over seven miles of underground process piping along with associated tank valve boxes and secondary containment systems was stabilized with grout. Lessons learned were compiled and implemented during the closure process and will be utilized on the remaining four 1,135.6-kL (300,000-gal) underground stainless steel storage tanks. Significant progress has been made to clean and close emptied tanks at the INTEC TFF. Between 2002 and 2005, seven of the eleven 1,135.6-kL (300,000-gal) tanks and all four 113.5-kL (30,000-gal) tanks were cleaned and prepared

  8. Tank 241-AP-104 Grab Sampling and Analysis Plan

    International Nuclear Information System (INIS)

    TEMPLETON, A.M.

    2000-01-01

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AP-104. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AP-104 required to provide sample material to the Waste Treatment Contractor. Grab samples will be obtained from riser 001 to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives and ICD-23. The 222-S Laboratory will receive samples; composite the samples; perform chemical analyses on composite samples; and provide samples to the Waste Treatment Contractor and the Process Chemistry Laboratory. The Process Chemistry Laboratory at the 222-S Laboratory Complex will perform process tests to evaluate the behavior of the 241-AP-104 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. The Waste Treatment Contractor will perform process verification and waste form qualification tests. Requirements for analyses of samples originating in the L and H DQO process tests will be documented in the corresponding test plan (Person 2000) and are not within the scope of this SAP. This report provides the general methodology and procedures to be used in the preparation, retrieval, transport, analysis, and reporting of results from grab samples retrieved from tank 241-AP-104

  9. Optimum Prestress of Tanks with Pinned Base

    DEFF Research Database (Denmark)

    Brøndum-Nielsen, Troels

    1998-01-01

    Amin Ghali and Eleanor Elliott presented in their paper an interesting suggestion for prestressing of circular tanks without sliding joints. For many prestressed tanks the following construction procedure is adopted:In order to ensure compressive hoop forces in the wall near the base, the wall...... is allowed to slide freely in the radial direction during tensioning (free base).After tensioning such displacements are prevented (pinned base). The present paper addresses the problem of prestress of such tanks.Keywords: circular prestressing; creep properties; prestressed concrete; redistribution...

  10. Thermal Stratification in Vertical Mantle Tanks

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2001-01-01

    It is well known that it is important to have a high degree of thermal stratification in the hot water storage tank to achieve a high thermal performance of SDHW systems. This study is concentrated on thermal stratification in vertical mantle tanks. Experiments based on typical operation conditions...... are carried out to investigate how the thermal stratification is affected by different placements of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the inner tank is analysed by CFD-simulations. Furthermore, the flow pattern in the vertical mantle...

  11. Tank 19F Folding Crawler Final Evaluation

    International Nuclear Information System (INIS)

    Nance, T.

    2000-01-01

    The Department of Energy (DOE) is committed to removing millions of gallons of high-level radioactive waste FR-om 51 underground waste storage tanks at the Savannah River Site (SRS). The primary radioactive waste constituents are strontium, plutonium,and cesium. It is recognized that the continued storage of this waste is a risk to the public, workers, and the environment. SRS was the first site in the DOE complex to have emptied and operationally closed a high-level radioactive waste tank. The task of emptying and closing the rest of the tanks will be completed by FY28

  12. HANFORD TANK CLEANUP UPDATE MAY 2009

    International Nuclear Information System (INIS)

    Holloway, J.N.

    2009-01-01

    Retrieval of waste from single-shell tank C-110 resumed in January making it the first waste retrieval operation for WRPS since taking over Hanford's Tank Operations Contract last October. Now, with approximately 90 percent of the waste removed, WRPS believes that modified sluicing has reached the limits of the technology to remove any further waste and is preparing documentation for use in decision making about any future retrieval actions. Tank C-110 is located in C Fann near the center of the Hanford Site. It is a 530,000 gallon tank, built in 1946, and held approximately 126,000 gallons of sludge and other radioactive and chemical waste materials when retrieval resumed. Modified sluicing technology uses liquid waste from a nearby double-shell tank to break up, dissolve and mobilize the solid material so it can be pumped. Because of the variety of waste fon11S, sluicing is often not able to remove all of the waste. The remaining waste will next be sampled for analysis, and results will be used to guide decisions regarding future actions. Work is moving rapidly in preparation to retrieve waste from a second single-shell tank this summer and transfer it to safer double-shell tank storage. Construction activities necessary to retrieve waste from Tank C-104, a 530,000 gallon tank built in 1943, are approximately 60 percent complete as WRPS maintains its focus on reducing the risk posed by Hanford's aging single-shell waste tanks. C-104 is one of Hanford's oldest radioactive and chemical waste storage tanks, containing approximately 263,000 gallons of wet sludge with a top layer that is dry and powdery. This will be the largest sludge volume retrieval ever attempted using modified sluicing technology. Modified sluicing uses high pressure water or liquid radioactive waste sprayed from nozzles above the waste. The liquid dissolves and/or mobilizes the waste so it can be pumped. In addition to other challenges, tank C-104 contains a significant amount of plutonium and

  13. Cathode protection for underground steel tanks

    International Nuclear Information System (INIS)

    Angelovski, Zoran

    1998-01-01

    Cathodic protection of underground petroleum storage tanks and piping systems is acceptable for both economic and ecological reasons. With out the cathodic protection of underground steel reservoirs, short time after the exploitation, there was a bore as a result of underground corrosion. The bore causes ecological consequences and at the same time its repair needs big investments. Furthermore, there are great number of tanks placed near cities, so in the future this problem needs a special attention in order to preserve ecological surrounding. The topic of this paper is underground corrosion as well as cathodic protection of steel tanks for oil derivatives storage. (author)

  14. Sizing of an Ammonia Discharge Tank

    Directory of Open Access Journals (Sweden)

    Tuliagenda Beckfords

    2011-01-01

    Full Text Available Phosphate companies use well-stirred tanks to regulate the concentration of ammonia they discharge via their wastewater, preventing ammonia spikes from exceeding the cap set by the Environmental Protection Agency. This report discusses the methods used to determine the minimum possible volume of the tank required to regulate wastewater discharge. With this information, it was determined that the use of a stirring tank is an efficient and cost effective way to regulate ammonia discharge. Based on these results many other companies may use this method to decrease the negative effects of ammonia on the environment.

  15. Glass optimization for vitrification of Hanford Site low-level tank waste

    International Nuclear Information System (INIS)

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design

  16. Tank characterization report for double-shell Tank 241-AW-105

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Amato, L.C.; Franklin, J.D.; Lambie, R.W.; Stephens, R.H.; Simpson, B.C.

    1994-01-01

    In May 1990, double-shell Tank 241-AW-105 was sampled to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also addresses expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background tank information. This report summarizes the available information regarding the waste in Tank 241-AW-105, and using the historical information to place the analytical data in context, arranges this information in a useful format for making management and technical decisions concerning this waste tank. In addition, conclusions and recommendations are given based on safety issues and further characterization needs

  17. Stabilization of in-tank residuals and external-tank soil contamination: FY 1997 interim report

    International Nuclear Information System (INIS)

    Becker, D.L.

    1997-01-01

    This interim report evaluates various ways to stabilize decommissioned waste tanks and contaminated soils at the AX Tank Farm as part of a preliminary evaluation of end-state options for the Hanford tanks. Five technical areas were considered: (1) emplacement of smart grouts and/or other materials, (2) injection of chemical-getters into contaminated soils surrounding tanks (soil mixing), (3) emplacement of grout barriers under and around the tanks, (4) the use of engineered barriers over the tanks, and (5) the explicit recognition that natural attenuation processes do occur. Research topics are identified in support of key areas of technical uncertainty, in each of the five technical areas. Detailed cost/benefit analyses of the recommended technologies are not provided in this evaluation, performed by Sandia National Laboratories, Albuquerque, New Mexico

  18. Criticality safety calculations of 'poison tube tank' compared with annular tanks for storing fissile solutions

    International Nuclear Information System (INIS)

    Gopalakrishnan, C.R.; Joseph, G.

    1995-01-01

    A comparative study of the shielded area space required for storing fissile solution by the conventional annular tank and by poison tube tank is made. Poison tube tank is similar to commercial heat exchanger. The neutron poisons studied are gadolinium oxide and borax. Variation of multiplication factor for an array of annular tanks containing uranium nitrate or plutonium nitrate solutions are presented for annular widths of 10, 7.5 and 5 cm. It is concluded that for the given concentration, 5 cm annular width tanks are safe at a pitch distance of 120 and 90 cm for uranium and plutonium solutions respectively. Using these, as reference values, it is found that the shielded area saving for the poison tube tank is a factor of 12 and 8 for the given concentration of uranium and plutonium solutions respectively. (author)

  19. Cryogenic Composite Tank Fabrication for Reusable Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — XCOR has conducted extensive research and development, and material characterization analysis of a nonflammable, high-strength, lightweight thermoplastic...

  20. Trade study plan for Reusable Hydrogen Composite Tank System (RHCTS)

    Science.gov (United States)

    Greenberg, H. S.

    1994-07-01

    This TA 1 document describes the trade study plan (with support from TA 2) that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 degree inclination. The analysis uses information derived in the TA 2 study as identified within the study plan. In view of this, for convenience, the TA 2 study plan is included as an appendix to this document.