WorldWideScience

Sample records for linear time-invariant swarm

  1. Essential uncontrollability of discrete linear, time-invariant, dynamical systems

    Science.gov (United States)

    Cliff, E. M.

    1975-01-01

    The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.

  2. Decentralized control of discrete-time linear time invariant systems with input saturation

    NARCIS (Netherlands)

    Deliu, Ciprian; Deliu, C.; Malek, Babak; Roy, Sandip; Saberi, Ali; Stoorvogel, Antonie Arij

    2009-01-01

    We study decentralized stabilization of discrete time linear time invariant (LTI) systems subject to actuator saturation, using LTI controllers. The requirement of stabilization under both saturation constraints and decentralization impose obvious necessary conditions on the open-loop plant, namely

  3. Compressive System Identification in the Linear Time-Invariant framework

    KAUST Repository

    Toth, Roland

    2011-12-01

    Selection of an efficient model parametrization (model order, delay, etc.) has crucial importance in parametric system identification. It navigates a trade-off between representation capabilities of the model (structural bias) and effects of over-parametrization (variance increase of the estimates). There exists many approaches to this widely studied problem in terms of statistical regularization methods and information criteria. In this paper, an alternative ℓ 1 regularization scheme is proposed for estimation of sparse linear-regression models based on recent results in compressive sensing. It is shown that the proposed scheme provides consistent estimation of sparse models in terms of the so-called oracle property, it is computationally attractive for large-scale over-parameterized models and it is applicable in case of small data sets, i.e., underdetermined estimation problems. The performance of the approach w.r.t. other regularization schemes is demonstrated in an extensive Monte Carlo study. © 2011 IEEE.

  4. Linear Parameter Varying Versus Linear Time Invariant Reduced Order Controller Design of Turboprop Aircraft Dynamics

    Directory of Open Access Journals (Sweden)

    Widowati

    2012-07-01

    Full Text Available The applicability of parameter varying reduced order controllers to aircraft model is proposed. The generalization of the balanced singular perturbation method of linear time invariant (LTI system is used to reduce the order of linear parameter varying (LPV system. Based on the reduced order model the low-order LPV controller is designed by using synthesis technique. The performance of the reduced order controller is examined by applying it to lateral-directional control of aircraft model having 20th order. Furthermore, the time responses of the closed loop system with reduced order LPV controllers and reduced order LTI controller is compared. From the simulation results, the 8th order LPV controller can maintain stability and to provide the same level of closed-loop systems performance as the full-order LPV controller. It is different with the reduced-order LTI controller that cannot maintain stability and performance for all allowable parameter trajectories.

  5. Decentralized control of discrete-time linear time invariant systems with input saturation

    NARCIS (Netherlands)

    Deliu, C.; Deliu, Ciprian; Malek, Babak; Roy, Sandip; Saberi, Ali; Stoorvogel, Antonie Arij

    We study decentralized stabilization of discrete-time linear time invariant (LTI) systems subject to actuator saturation, using LTI controllers. The requirement of stabilization under both saturation constraints and decentralization impose obvious necessary conditions on the open-loop plant, namely

  6. Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems.

    Science.gov (United States)

    Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai

    2014-10-20

    We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.

  7. Using linear time-invariant system theory to estimate kinetic parameters directly from projection measurements

    International Nuclear Information System (INIS)

    Zeng, G.L.; Gullberg, G.T.

    1995-01-01

    It is common practice to estimate kinetic parameters from dynamically acquired tomographic data by first reconstructing a dynamic sequence of three-dimensional reconstructions and then fitting the parameters to time activity curves generated from the time-varying reconstructed images. However, in SPECT, the pharmaceutical distribution can change during the acquisition of a complete tomographic data set, which can bias the estimated kinetic parameters. It is hypothesized that more accurate estimates of the kinetic parameters can be obtained by fitting to the projection measurements instead of the reconstructed time sequence. Estimation from projections requires the knowledge of their relationship between the tissue regions of interest or voxels with particular kinetic parameters and the project measurements, which results in a complicated nonlinear estimation problem with a series of exponential factors with multiplicative coefficients. A technique is presented in this paper where the exponential decay parameters are estimated separately using linear time-invariant system theory. Once the exponential factors are known, the coefficients of the exponentials can be estimated using linear estimation techniques. Computer simulations demonstrate that estimation of the kinetic parameters directly from the projections is more accurate than the estimation from the reconstructed images

  8. Testing a linear time invariant model for skin conductance responses by intraneural recording and stimulation.

    Science.gov (United States)

    Gerster, Samuel; Namer, Barbara; Elam, Mikael; Bach, Dominik R

    2018-02-01

    Skin conductance responses (SCR) are increasingly analyzed with model-based approaches that assume a linear and time-invariant (LTI) mapping from sudomotor nerve (SN) activity to observed SCR. These LTI assumptions have previously been validated indirectly, by quantifying how much variance in SCR elicited by sensory stimulation is explained under an LTI model. This approach, however, collapses sources of variability in the nervous and effector organ systems. Here, we directly focus on the SN/SCR mapping by harnessing two invasive methods. In an intraneural recording experiment, we simultaneously track SN activity and SCR. This allows assessing the SN/SCR relationship but possibly suffers from interfering activity of non-SN sympathetic fibers. In an intraneural stimulation experiment under regional anesthesia, such influences are removed. In this stimulation experiment, about 95% of SCR variance is explained under LTI assumptions when stimulation frequency is below 0.6 Hz. At higher frequencies, nonlinearities occur. In the intraneural recording experiment, explained SCR variance is lower, possibly indicating interference from non-SN fibers, but higher than in our previous indirect tests. We conclude that LTI systems may not only be a useful approximation but in fact a rather accurate description of biophysical reality in the SN/SCR system, under conditions of low baseline activity and sporadic external stimuli. Intraneural stimulation under regional anesthesia is the most sensitive method to address this question. © 2017 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  9. A High-Order, Linear Time-Invariant Model for Application to Higher Harmonic Control and Flight Control System Interaction

    Science.gov (United States)

    Cheng, Rendy P.; Tischler, Mark B.; Celi, Roberto

    2006-01-01

    This research describes a new methodology for the extraction of a high-order, linear time invariant model, which allows the periodicity of the helicopter response to be accurately captured. This model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC algorithms. The key results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. However, the results show that the vibration response to maneuvers must be considered during the HHC design process, and this leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration responses during maneuvers can be reduced by optimizing the closed-loop higher harmonic control algorithm using conventional control system analyses.

  10. Robust Adaptive Stabilization of Linear Time-Invariant Dynamic Systems by Using Fractional-Order Holds and Multirate Sampling Controls

    Directory of Open Access Journals (Sweden)

    S. Alonso-Quesada

    2010-01-01

    Full Text Available This paper presents a strategy for designing a robust discrete-time adaptive controller for stabilizing linear time-invariant (LTI continuous-time dynamic systems. Such systems may be unstable and noninversely stable in the worst case. A reduced-order model is considered to design the adaptive controller. The control design is based on the discretization of the system with the use of a multirate sampling device with fast-sampled control signal. A suitable on-line adaptation of the multirate gains guarantees the stability of the inverse of the discretized estimated model, which is used to parameterize the adaptive controller. A dead zone is included in the parameters estimation algorithm for robustness purposes under the presence of unmodeled dynamics in the controlled dynamic system. The adaptive controller guarantees the boundedness of the system measured signal for all time. Some examples illustrate the efficacy of this control strategy.

  11. Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem

    Science.gov (United States)

    Rahmalia, Dinita

    2017-08-01

    Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.

  12. Application of the principal fractional meta-trigonometric functions for the solution of linear commensurate-order time-invariant fractional differential equations.

    Science.gov (United States)

    Lorenzo, C F; Hartley, T T; Malti, R

    2013-05-13

    A new and simplified method for the solution of linear constant coefficient fractional differential equations of any commensurate order is presented. The solutions are based on the R-function and on specialized Laplace transform pairs derived from the principal fractional meta-trigonometric functions. The new method simplifies the solution of such fractional differential equations and presents the solutions in the form of real functions as opposed to fractional complex exponential functions, and thus is directly applicable to real-world physics.

  13. Swarm.

    Science.gov (United States)

    Petersen, Hugh

    2002-01-01

    Describes an eighth grade art project for which students created bug swarms on scratchboard. Explains that the project also teaches students about design principles, such as balance. Discusses how the students created their drawings. (CMK)

  14. Log-linear model based behavior selection method for artificial fish swarm algorithm.

    Science.gov (United States)

    Huang, Zhehuang; Chen, Yidong

    2015-01-01

    Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.

  15. Log-Linear Model Based Behavior Selection Method for Artificial Fish Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Zhehuang Huang

    2015-01-01

    Full Text Available Artificial fish swarm algorithm (AFSA is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.

  16. Particle Swarm Based Approach of a Real-Time Discrete Neural Identifier for Linear Induction Motors

    Directory of Open Access Journals (Sweden)

    Alma Y. Alanis

    2013-01-01

    Full Text Available This paper focusses on a discrete-time neural identifier applied to a linear induction motor (LIM model, whose model is assumed to be unknown. This neural identifier is robust in presence of external and internal uncertainties. The proposed scheme is based on a discrete-time recurrent high-order neural network (RHONN trained with a novel algorithm based on extended Kalman filter (EKF and particle swarm optimization (PSO, using an online series-parallel con…figuration. Real-time results are included in order to illustrate the applicability of the proposed scheme.

  17. A COMPARATIVE STUDY ON MULTI-SWARM OPTIMISATION AND BAT ALGORITHM FOR UNCONSTRAINED NON LINEAR OPTIMISATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    Evans BAIDOO

    2016-12-01

    Full Text Available A study branch that mocks-up a population of network of swarms or agents with the ability to self-organise is Swarm intelligence. In spite of the huge amount of work that has been done in this area in both theoretically and empirically and the greater success that has been attained in several aspects, it is still ongoing and at its infant stage. An immune system, a cloud of bats, or a flock of birds are distinctive examples of a swarm system. . In this study, two types of meta-heuristics algorithms based on population and swarm intelligence - Multi Swarm Optimization (MSO and Bat algorithms (BA - are set up to find optimal solutions of continuous non-linear optimisation models. In order to analyze and compare perfect solutions at the expense of performance of both algorithms, a chain of computational experiments on six generally used test functions for assessing the accuracy and the performance of algorithms, in swarm intelligence fields are used. Computational experiments show that MSO algorithm seems much superior to BA.

  18. Parity and time invariance violation in mercury

    International Nuclear Information System (INIS)

    Ginges, J.S.M.; Dzuba, V.A.; Flambaum, V.V.; Kozlov, M.G.

    2002-01-01

    Full text: In a recent experiment, a stringent upper limit was placed on the atomic electric dipole moment (EDM) of 199 Hg corresponding to the best limit on an atomic EDM to date. This limit can be interpreted in terms of a limit on a parity-and time-invariance violating (P,T-odd) nuclear electric moment, the Schiff moment. This moment can arise in the nucleus due to an intrinsic EDM of an unpaired nucleon or a P,T-odd interaction between nucleons. In previous calculations the electrostatic potential of the Schiff moment was expressed in a singular form which must be treated carefully to avoid divergences in the electronic matrix elements. We have shown that the electric field distribution inside the nucleus arising from the Schiff moment is constant and directed along the nuclear spin. This allows us to express the Schiff moment in a form more convenient for numerical relativistic atomic calculations. We have calculated the atomic EDM induced in Hg due to the Schiff moment (for which no direct calculation has previously been performed) and have placed new limits on the fundamental P,T-odd parameters. These limits strongly constrain competing theories of CP-violation

  19. Identification of Multiple-Mode Linear Models Based on Particle Swarm Optimizer with Cyclic Network Mechanism

    Directory of Open Access Journals (Sweden)

    Tae-Hyoung Kim

    2017-01-01

    Full Text Available This paper studies the metaheuristic optimizer-based direct identification of a multiple-mode system consisting of a finite set of linear regression representations of subsystems. To this end, the concept of a multiple-mode linear regression model is first introduced, and its identification issues are established. A method for reducing the identification problem for multiple-mode models to an optimization problem is also described in detail. Then, to overcome the difficulties that arise because the formulated optimization problem is inherently ill-conditioned and nonconvex, the cyclic-network-topology-based constrained particle swarm optimizer (CNT-CPSO is introduced, and a concrete procedure for the CNT-CPSO-based identification methodology is developed. This scheme requires no prior knowledge of the mode transitions between subsystems and, unlike some conventional methods, can handle a large amount of data without difficulty during the identification process. This is one of the distinguishing features of the proposed method. The paper also considers an extension of the CNT-CPSO-based identification scheme that makes it possible to simultaneously obtain both the optimal parameters of the multiple submodels and a certain decision parameter involved in the mode transition criteria. Finally, an experimental setup using a DC motor system is established to demonstrate the practical usability of the proposed metaheuristic optimizer-based identification scheme for developing a multiple-mode linear regression model.

  20. Design of Linear Accelerator (LINAC) tanks for proton therapy via Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) approaches

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, T.; De Palma, L.; Laneve, D.; Strippoli, V.; Cuccovilllo, A.; Prudenzano, F. [Electrical and Information Engineering Department (DEI), Polytechnic Institute of Bari, 4 Orabona Street, CAP 70125, Bari, (Italy); Dimiccoli, V.; Losito, O.; Prisco, R. [ITEL Telecomunicazioni, 39 Labriola Street, CAP 70037, Ruvo di Puglia, Bari, (Italy)

    2015-07-01

    A homemade computer code for designing a Side- Coupled Linear Accelerator (SCL) is written. It integrates a simplified model of SCL tanks with the Particle Swarm Optimization (PSO) algorithm. The computer code main aim is to obtain useful guidelines for the design of Linear Accelerator (LINAC) resonant cavities. The design procedure, assisted via the aforesaid approach seems very promising, allowing future improvements towards the optimization of actual accelerating geometries. (authors)

  1. Design of Linear Accelerator (LINAC) tanks for proton therapy via Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) approaches

    International Nuclear Information System (INIS)

    Castellano, T.; De Palma, L.; Laneve, D.; Strippoli, V.; Cuccovilllo, A.; Prudenzano, F.; Dimiccoli, V.; Losito, O.; Prisco, R.

    2015-01-01

    A homemade computer code for designing a Side- Coupled Linear Accelerator (SCL) is written. It integrates a simplified model of SCL tanks with the Particle Swarm Optimization (PSO) algorithm. The computer code main aim is to obtain useful guidelines for the design of Linear Accelerator (LINAC) resonant cavities. The design procedure, assisted via the aforesaid approach seems very promising, allowing future improvements towards the optimization of actual accelerating geometries. (authors)

  2. On the Performance of Linear Decreasing Inertia Weight Particle Swarm Optimization for Global Optimization

    Science.gov (United States)

    Arasomwan, Martins Akugbe; Adewumi, Aderemi Oluyinka

    2013-01-01

    Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted. PMID:24324383

  3. automatic generation of root locus plots for linear time invariant

    African Journals Online (AJOL)

    user

    peak time, its real power is its ability to solve problems with higher order systems. ... implementation of a computer program for the automatic generation of root loci using .... the concepts of complex variables, the angle condition can be ...

  4. Compressive System Identification in the Linear Time-Invariant framework

    KAUST Repository

    Toth, Roland; Sanandaji, Borhan M.; Poolla, Kameshwar; Vincent, Tyrone L.

    2011-01-01

    Selection of an efficient model parametrization (model order, delay, etc.) has crucial importance in parametric system identification. It navigates a trade-off between representation capabilities of the model (structural bias) and effects of over-parametrization

  5. A parallel competitive Particle Swarm Optimization for non-linear first arrival traveltime tomography and uncertainty quantification

    Science.gov (United States)

    Luu, Keurfon; Noble, Mark; Gesret, Alexandrine; Belayouni, Nidhal; Roux, Pierre-François

    2018-04-01

    Seismic traveltime tomography is an optimization problem that requires large computational efforts. Therefore, linearized techniques are commonly used for their low computational cost. These local optimization methods are likely to get trapped in a local minimum as they critically depend on the initial model. On the other hand, global optimization methods based on MCMC are insensitive to the initial model but turn out to be computationally expensive. Particle Swarm Optimization (PSO) is a rather new global optimization approach with few tuning parameters that has shown excellent convergence rates and is straightforwardly parallelizable, allowing a good distribution of the workload. However, while it can traverse several local minima of the evaluated misfit function, classical implementation of PSO can get trapped in local minima at later iterations as particles inertia dim. We propose a Competitive PSO (CPSO) to help particles to escape from local minima with a simple implementation that improves swarm's diversity. The model space can be sampled by running the optimizer multiple times and by keeping all the models explored by the swarms in the different runs. A traveltime tomography algorithm based on CPSO is successfully applied on a real 3D data set in the context of induced seismicity.

  6. Swarm Intelligence systems

    International Nuclear Information System (INIS)

    Beni, G.

    1994-01-01

    We review the characteristics of Swarm Intelligence and discuss systems exhibiting it. The recently developed mathematical description of Swarm behavior is also reviewed and discussed. The self-organization of Swarms is described as the reconfiguring asynchronously and conservatively of a distribution. Swarm reconfigurations are based on producing distributions that are solutions to systems of linear equations. Conservation and asynchronicity are related, respectively, to the global and local nature of the Swarm problem. The conditions for the convergence of the Swarm algorithm are presented. The important point is that, under very general conditions, the Swarm reconfigures in a time which is independent of the size of the Swarm. This fact implies that a centralized controller can never reconfigure as fast as a Swarm provided the size of the Swarm is large enough. This result is related to the unpredictability of the Swarm, a basic property of Swarm Intelligence. Finally, the conditions under which Swarm algorithms become of practical importance are discussed and examples given. (author)

  7. Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator

    Institute of Scientific and Technical Information of China (English)

    Gopi RAM; Durbadal MANDAL; Sakti Prasad GHOSHAL; Rajib KAR

    2017-01-01

    In this paper, an optimal design of linear antenna arrays having microstrip patch antenna elements has been carried out. Cat swarm optimization (CSO) has been applied for the optimization of the control parameters of radiation pattern of an antenna array. The optimal radiation patterns of isotropic antenna elements are obtained by optimizing the current excitation weight of each element and the inter-element spacing. The antenna arrays of 12, 16, and 20 elements are taken as examples. The arrays are de-signed by using MATLAB computation and are validated through Computer Simulation Technology-Microwave Studio (CST-MWS). From the simulation results it is evident that CSO is able to yield the optimal design of linear antenna arrays of patch antenna elements.

  8. Tokunaga self-similarity arises naturally from time invariance

    Science.gov (United States)

    Kovchegov, Yevgeniy; Zaliapin, Ilya

    2018-04-01

    The Tokunaga condition is an algebraic rule that provides a detailed description of the branching structure in a self-similar tree. Despite a solid empirical validation and practical convenience, the Tokunaga condition lacks a theoretical justification. Such a justification is suggested in this work. We define a geometric branching process G (s ) that generates self-similar rooted trees. The main result establishes the equivalence between the invariance of G (s ) with respect to a time shift and a one-parametric version of the Tokunaga condition. In the parameter region where the process satisfies the Tokunaga condition (and hence is time invariant), G (s ) enjoys many of the symmetries observed in a critical binary Galton-Watson branching process and reproduces the latter for a particular parameter value.

  9. Crude Oil Price Forecasting Based on Hybridizing Wavelet Multiple Linear Regression Model, Particle Swarm Optimization Techniques, and Principal Component Analysis

    Science.gov (United States)

    Shabri, Ani; Samsudin, Ruhaidah

    2014-01-01

    Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series. PMID:24895666

  10. Crude Oil Price Forecasting Based on Hybridizing Wavelet Multiple Linear Regression Model, Particle Swarm Optimization Techniques, and Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Ani Shabri

    2014-01-01

    Full Text Available Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI, has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.

  11. Crude oil price forecasting based on hybridizing wavelet multiple linear regression model, particle swarm optimization techniques, and principal component analysis.

    Science.gov (United States)

    Shabri, Ani; Samsudin, Ruhaidah

    2014-01-01

    Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.

  12. A method for determining the non-existence of a common quadratic Lyapunov function for switched linear systems based on particle swarm optimisation

    Czech Academy of Sciences Publication Activity Database

    Duarte-Mermoud, M.A.; Ordonez-Hurtado, R.H.; Zagalak, Petr

    2012-01-01

    Roč. 43, č. 11 (2012), s. 2015-2029 ISSN 0020-7721 R&D Projects: GA ČR(CZ) GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Switched linear systems * Lyapunov function * particle swarm optimization Subject RIV: BC - Control Systems Theory Impact factor: 1.305, year: 2012 http://library.utia.cas.cz/separaty/2012/AS/zagalak-0382169.pdf

  13. Modeling dynamic swarms

    KAUST Repository

    Ghanem, Bernard

    2013-01-01

    This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements (based on low-level image segmentation) and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data. © 2012 Elsevier Inc. All rights reserved.

  14. A circuit-level analysis of third order intermodulation mechanisms in CMOS mixers using time-invariant power and Volterra series

    NARCIS (Netherlands)

    Sakian, P.; Mahmoudi, R.; Roermund, van A.H.M.

    2011-01-01

    An in-depth analysis is performed on the third-order intermodulation distortions (IMD3) in the switching pair of active CMOS mixers. The nonlinear time-varying switching pair is described by a hypothetical circuit composed of a nonlinear time-invariant circuit cascaded with a linear time-varying

  15. Assessment of health risk due to PM 10 using fuzzy linear membership kriging with particle swarm optimization

    International Nuclear Information System (INIS)

    Singh, Jeetendra B.; Reddy, Vijay S.; Jana, Soumya; De, Swades

    2013-01-01

    Air quality is an important determinant of individual as well as broader well-being. Major pollutants include gasses as well as assorted suspended particulate matter (PM). In this paper, we focus on PM10, which are a collection of particles with median aerodynamic diameter less than 10 μm that remains suspended in the air for long periods. PM10, usually consist of smoke, dirt and dust particles, as well as spores and pollen, could easily be inhaled deep into lung. As a result, high outdoor PM10 concentration poses significant health hazard, and accurate modeling and prediction of health risk due to PM10 assume importance in pollution and public health management. In this backdrop, we propose an improved health risk assessment technique, and demonstrate its efficacy using widely used California PM10 database. At the heart of the proposed method lies indicator kriging, a well-known risk estimation technique. However, improved assessment of subjective health risk is achieved by posing the problem in a fuzzy setting, and optimizing the associated membership functions. In particular, we employ particle swarm optimization (PSO) algorithm, which has been motivated by natural behavior of organisms such as fish-schooling and bird flocking, and proven effective in various optimization contexts. We apply the fuzzy PSO membership grade kriging technique to predict the PM10 spatial distribution over the entire California state. (orig.)

  16. Assessment of health risk due to PM 10 using fuzzy linear membership kriging with particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jeetendra B.; Reddy, Vijay S.; Jana, Soumya [Indian Institute of Technology, Hyderabad (India). Dept. of Electrical Engineering; De, Swades [Indian Institute of Technology, Delhi (India). Dept. of Electrical Engineering

    2013-07-01

    Air quality is an important determinant of individual as well as broader well-being. Major pollutants include gasses as well as assorted suspended particulate matter (PM). In this paper, we focus on PM10, which are a collection of particles with median aerodynamic diameter less than 10 {mu}m that remains suspended in the air for long periods. PM10, usually consist of smoke, dirt and dust particles, as well as spores and pollen, could easily be inhaled deep into lung. As a result, high outdoor PM10 concentration poses significant health hazard, and accurate modeling and prediction of health risk due to PM10 assume importance in pollution and public health management. In this backdrop, we propose an improved health risk assessment technique, and demonstrate its efficacy using widely used California PM10 database. At the heart of the proposed method lies indicator kriging, a well-known risk estimation technique. However, improved assessment of subjective health risk is achieved by posing the problem in a fuzzy setting, and optimizing the associated membership functions. In particular, we employ particle swarm optimization (PSO) algorithm, which has been motivated by natural behavior of organisms such as fish-schooling and bird flocking, and proven effective in various optimization contexts. We apply the fuzzy PSO membership grade kriging technique to predict the PM10 spatial distribution over the entire California state. (orig.)

  17. Drone Swarms

    Science.gov (United States)

    2017-05-25

    Conversely, drone swarms have significant vulnerabilities and challenges, including electronic and cyber threats (hacking), legal and ethical ...Factors Affecting Success and selection in Goshawk Attacks on Woodpigeons,” Journal of Animal Ecology , Vol. 47, No. 2 (Jun., 1978), p 449-460 6 fish...organizational limitations, and ethical and legal constraints. This chapter answers what utility drone swarms bring to the military by examining

  18. Target Tracking of a Linear Time Invariant System under Irregular Sampling

    Directory of Open Access Journals (Sweden)

    Jin Xue-Bo

    2012-11-01

    Full Text Available Due to event-triggered sampling in a system, or maybe with the aim of reducing data storage, tracking many applications will encounter irregular sampling time. By calculating the matrix exponential using an inverse Laplace transform, this paper transforms the irregular sampling tracking problem to the problem of tracking with time-varying parameters of a system. Using the common Kalman filter, the developed method is used to track a target for the simulated trajectory and video tracking. The results of simulation experiments have shown that it can obtain good estimation performance even at a very high irregular rate of measurement sampling time.

  19. Acoustic fMRI noise : Linear time-invariant system model

    NARCIS (Netherlands)

    Sierra, Carlos V. Rizzo; Versluis, Maarten J.; Hoogduin, Johannes M.; Duifhuis, Hendrikus (Diek)

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For auditory system studies, however, the acoustic noise generated by the scanner tends to interfere with the assessments of this activation. Understanding and modeling fMRI acoustic

  20. Modeling road traffic fatalities in India: Smeed's law, time invariance and regional specificity

    Directory of Open Access Journals (Sweden)

    Raj V. Ponnaluri

    2012-07-01

    Full Text Available Mathematical formulations linking road traffic fatalities to vehicle ownership, regional population, and economic growth continue to be developed against the backdrop of Smeed and Andreassen models. Though a few attempts were made, Smeed's law has not been fully tested in India. Using the 1991–2009 panel data from all states, this work (a developed the generalized Smeed and Andreassen models; (b evaluated if traffic fatalities were impacted by structural changes; and (c examined if – in relation to the generalized model – the individual (time and regional models are more relevant for application. Seven models (Smeed: original, generalized, time-variant, state-variant; and Andreassen: generalized, time-variant, state-variant were developed and tested for fit with the actual data. Results showed that the per vehicle fatality rate closely resembled Smeed's formulation. Chow-test yielded a significant F-stat, suggesting that the models for four pre-defined time-blocks are structurally different from the 19-year generalized model. The counterclockwise rotation of the log-linear form also suggested lower fatality rates. While the new government policies, reduced vehicle operating speeds, better healthcare, and improved vehicle technology could be the factors, further research is required to understand the reasons for fatality rate reductions. The intercept and gradients of the time-series models showed high stability and varied only slightly in comparison to the 19-year generalized models, thus suggesting that the latter are pragmatic for application. Regional formulations, however, indicate that they may be more relevant for studying trends and tendencies. This research illustrates the robustness of Smeed's law, and provides evidence for time-invariance but state-specificity.

  1. Multiplex protein pattern unmixing using a non-linear variable-weighted support vector machine as optimized by a particle swarm optimization algorithm.

    Science.gov (United States)

    Yang, Qin; Zou, Hong-Yan; Zhang, Yan; Tang, Li-Juan; Shen, Guo-Li; Jiang, Jian-Hui; Yu, Ru-Qin

    2016-01-15

    Most of the proteins locate more than one organelle in a cell. Unmixing the localization patterns of proteins is critical for understanding the protein functions and other vital cellular processes. Herein, non-linear machine learning technique is proposed for the first time upon protein pattern unmixing. Variable-weighted support vector machine (VW-SVM) is a demonstrated robust modeling technique with flexible and rational variable selection. As optimized by a global stochastic optimization technique, particle swarm optimization (PSO) algorithm, it makes VW-SVM to be an adaptive parameter-free method for automated unmixing of protein subcellular patterns. Results obtained by pattern unmixing of a set of fluorescence microscope images of cells indicate VW-SVM as optimized by PSO is able to extract useful pattern features by optimally rescaling each variable for non-linear SVM modeling, consequently leading to improved performances in multiplex protein pattern unmixing compared with conventional SVM and other exiting pattern unmixing methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Testing the time-invariance of fundamental constants using microwave spectroscopy on cold diatomic radicals

    NARCIS (Netherlands)

    Bethlem, H.L.; Ubachs, W.M.G.

    2009-01-01

    The recently demonstrated methods to cool and manipulate neutral molecules offer new possibilities for precision tests of fundamental physics theories. We here discuss the possibility of testing the time-invariance of fundamental constants using near degeneracies between rotational levels in the

  3. Fluorinated cellular polypropylene films with time-invariant excellent surface electret properties by post-treatments

    International Nuclear Information System (INIS)

    An Zhenlian; Mao Mingjun; Yao Junlan; Zhang Yewen; Xia Zhongfu

    2010-01-01

    In this work, to improve the electret properties of cellular polypropylene films, they were fluorinated and post-treated with nitrous oxide and by isothermal crystallization. Surface electret properties of the samples were investigated by thermally stimulated discharge current measurements, and their compositions and structures were analysed by attenuated total reflection infrared spectroscopy and wide angle x-ray diffraction, respectively. Time-dependent deterioration of surface electret properties was observed for the fluorinated samples without the nitrous oxide post-treatment. However, deterioration did not occur for the fluorinated samples post-treated with nitrous oxide, and time-invariant excellent surface electret properties or deep surface charge traps were obtained by the combined post-treatments of the fluorinated samples with nitrous oxide and by isothermal crystallization. Based on the analyses of composition and structure of the treated samples, the deterioration was clarified to be due to a trace of oxygen in the reactive mixture, which led to the formation of peroxy RO 2 . radicals in the fluorinated surface layer. The time invariability of surface electret properties was owing to the rapid termination of the peroxy RO 2 . radicals by nitrous oxide. And the deep surface charge traps resulted from the isothermal crystallization treatment which led to an increase in the efficient charging interface between the crystallite and amorphous region and its property change.

  4. Swarm Verification

    Science.gov (United States)

    Holzmann, Gerard J.; Joshi, Rajeev; Groce, Alex

    2008-01-01

    Reportedly, supercomputer designer Seymour Cray once said that he would sooner use two strong oxen to plow a field than a thousand chickens. Although this is undoubtedly wise when it comes to plowing a field, it is not so clear for other types of tasks. Model checking problems are of the proverbial "search the needle in a haystack" type. Such problems can often be parallelized easily. Alas, none of the usual divide and conquer methods can be used to parallelize the working of a model checker. Given that it has become easier than ever to gain access to large numbers of computers to perform even routine tasks it is becoming more and more attractive to find alternate ways to use these resources to speed up model checking tasks. This paper describes one such method, called swarm verification.

  5. Time-invariant PT product and phase locking in PT -symmetric lattice models

    Science.gov (United States)

    Joglekar, Yogesh N.; Onanga, Franck Assogba; Harter, Andrew K.

    2018-01-01

    Over the past decade, non-Hermitian, PT -symmetric Hamiltonians have been investigated as candidates for both a fundamental, unitary, quantum theory and open systems with a nonunitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the PT (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of PT -symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave-function phases at adjacent sites occurs in the PT -symmetry-broken region. Our results pave the way towards understanding the physically observable implications of time invariants in the nonunitary dynamics produced by PT -symmetric Hamiltonians.

  6. Modeling dynamic swarms

    KAUST Repository

    Ghanem, Bernard; Ahuja, Narendra

    2013-01-01

    This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal

  7. Linear quadratic optimization for positive LTI system

    Science.gov (United States)

    Muhafzan, Yenti, Syafrida Wirma; Zulakmal

    2017-05-01

    Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

  8. MAGNAS - Magnetic Nanoprobe SWARM

    DEFF Research Database (Denmark)

    Lubberstedt, H.; Koebel, D.; Hansen, Flemming

    2005-01-01

    This paper presents the Magnetic Nano-Probe Swarm mission utilising a constellation of several swarms of nano-satellites in order to acquire simultaneous measurements of the geomagnetic field resolving the local field gradients. The space segment comprises of up to 4 S/C swarms each consisting...

  9. Time-invariant component-based normalization for a simultaneous PET-MR scanner.

    Science.gov (United States)

    Belzunce, M A; Reader, A J

    2016-05-07

    Component-based normalization is a method used to compensate for the sensitivity of each of the lines of response acquired in positron emission tomography. This method consists of modelling the sensitivity of each line of response as a product of multiple factors, which can be classified as time-invariant, time-variant and acquisition-dependent components. Typical time-variant factors are the intrinsic crystal efficiencies, which are needed to be updated by a regular normalization scan. Failure to do so would in principle generate artifacts in the reconstructed images due to the use of out of date time-variant factors. For this reason, an assessment of the variability and the impact of the crystal efficiencies in the reconstructed images is important to determine the frequency needed for the normalization scans, as well as to estimate the error obtained when an inappropriate normalization is used. Furthermore, if the fluctuations of these components are low enough, they could be neglected and nearly artifact-free reconstructions become achievable without performing a regular normalization scan. In this work, we analyse the impact of the time-variant factors in the component-based normalization used in the Biograph mMR scanner, but the work is applicable to other PET scanners. These factors are the intrinsic crystal efficiencies and the axial factors. For the latter, we propose a new method to obtain fixed axial factors that was validated with simulated data. Regarding the crystal efficiencies, we assessed their fluctuations during a period of 230 d and we found that they had good stability and low dispersion. We studied the impact of not including the intrinsic crystal efficiencies in the normalization when reconstructing simulated and real data. Based on this assessment and using the fixed axial factors, we propose the use of a time-invariant normalization that is able to achieve comparable results to the standard, daily updated, normalization factors used in this

  10. Evidence for a time-invariant phase variable in human ankle control.

    Directory of Open Access Journals (Sweden)

    Robert D Gregg

    Full Text Available Human locomotion is a rhythmic task in which patterns of muscle activity are modulated by state-dependent feedback to accommodate perturbations. Two popular theories have been proposed for the underlying embodiment of phase in the human pattern generator: a time-dependent internal representation or a time-invariant feedback representation (i.e., reflex mechanisms. In either case the neuromuscular system must update or represent the phase of locomotor patterns based on the system state, which can include measurements of hundreds of variables. However, a much simpler representation of phase has emerged in recent designs for legged robots, which control joint patterns as functions of a single monotonic mechanical variable, termed a phase variable. We propose that human joint patterns may similarly depend on a physical phase variable, specifically the heel-to-toe movement of the Center of Pressure under the foot. We found that when the ankle is unexpectedly rotated to a position it would have encountered later in the step, the Center of Pressure also shifts forward to the corresponding later position, and the remaining portion of the gait pattern ensues. This phase shift suggests that the progression of the stance ankle is controlled by a biomechanical phase variable, motivating future investigations of phase variables in human locomotor control.

  11. Soil water content evaluation considering time-invariant spatial pattern and space-variant temporal change

    Science.gov (United States)

    Hu, W.; Si, B. C.

    2013-10-01

    Soil water content (SWC) varies in space and time. The objective of this study was to evaluate soil water content distribution using a statistical model. The model divides spatial SWC series into time-invariant spatial patterns, space-invariant temporal changes, and space- and time-dependent redistribution terms. The redistribution term is responsible for the temporal changes in spatial patterns of SWC. An empirical orthogonal function was used to separate the total variations of redistribution terms into the sum of the product of spatial structures (EOFs) and temporally-varying coefficients (ECs). Model performance was evaluated using SWC data of near-surface (0-0.2 m) and root-zone (0-1.0 m) from a Canadian Prairie landscape. Three significant EOFs were identified for redistribution term for both soil layers. EOF1 dominated the variations of redistribution terms and it resulted in more changes (recharge or discharge) in SWC at wetter locations. Depth to CaCO3 layer and organic carbon were the two most important controlling factors of EOF1, and together, they explained over 80% of the variations in EOF1. Weak correlation existed between either EOF2 or EOF3 and the observed factors. A reasonable prediction of SWC distribution was obtained with this model using cross validation. The model performed better in the root zone than in the near surface, and it outperformed conventional EOF method in case soil moisture deviated from the average conditions.

  12. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2014-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  13. Particle swarm optimisation classical and quantum perspectives

    CERN Document Server

    Sun, Jun; Wu, Xiao-Jun

    2016-01-01

    IntroductionOptimisation Problems and Optimisation MethodsRandom Search TechniquesMetaheuristic MethodsSwarm IntelligenceParticle Swarm OptimisationOverviewMotivationsPSO Algorithm: Basic Concepts and the ProcedureParadigm: How to Use PSO to Solve Optimisation ProblemsSome Harder Examples Some Variants of Particle Swarm Optimisation Why Does the PSO Algorithm Need to Be Improved? Inertia and Constriction-Acceleration Techniques for PSOLocal Best ModelProbabilistic AlgorithmsOther Variants of PSO Quantum-Behaved Particle Swarm Optimisation OverviewMotivation: From Classical Dynamics to Quantum MechanicsQuantum Model: Fundamentals of QPSOQPSO AlgorithmSome Essential ApplicationsSome Variants of QPSOSummary Advanced Topics Behaviour Analysis of Individual ParticlesConvergence Analysis of the AlgorithmTime Complexity and Rate of ConvergenceParameter Selection and PerformanceSummaryIndustrial Applications Inverse Problems for Partial Differential EquationsInverse Problems for Non-Linear Dynamical SystemsOptimal De...

  14. Timing-Invariant CT Angiography Derived from CT Perfusion Imaging in Acute Stroke : A Diagnostic Performance Study

    NARCIS (Netherlands)

    Smith, E. J.; Vonken, E. -J.; Meijer, F. J. A.; Dankbaar, J. W.; Horsch, A. D.; van Ginneken, B.; Velthuis, B.; van der Schaaf, I.; Prokop, M.

    2015-01-01

    BACKGROUND AND PURPOSE: Timing-invariant (or delay-insensitive) CT angiography derived from CT perfusion data may obviate a separate cranial CTA in acute stroke, thus enhancing patient safety by reducing total examination time, radiation dose, and volume of contrast material. We assessed the

  15. Analysis and identification of time-invariant systems, time-varying systems, and multi-delay systems using orthogonal hybrid functions theory and algorithms with Matlab

    CERN Document Server

    Deb, Anish; Sarkar, Gautam

    2016-01-01

    This book introduces a new set of orthogonal hybrid functions (HF) which approximates time functions in a piecewise linear manner which is very suitable for practical applications. The book presents an analysis of different systems namely, time-invariant system, time-varying system, multi-delay systems---both homogeneous and non-homogeneous type- and the solutions are obtained in the form of discrete samples. The book also investigates system identification problems for many of the above systems. The book is spread over 15 chapters and contains 180 black and white figures, 18 colour figures, 85 tables and 56 illustrative examples. MATLAB codes for many such examples are included at the end of the book.

  16. High-fidelity linear time-invariant model of a smart rotor with adaptive trailing edge flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Hansen, Morten Hartvig

    2017-01-01

    aero-servo-elastic model support the design, systematic tuning and model synthesis of smart rotor control systems. As an example application, the gains of an individual flap controller are tuned using the Ziegler-Nichols method for the full-order poles. The flap controller is based on feedback...

  17. Particle Swarm Optimization

    Science.gov (United States)

    Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw

    2002-01-01

    The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.

  18. Prediction of the GC-MS Retention Indices for a Diverse Set of Terpenes as Constituent Components of Camu-camu (Myrciaria dubia (HBK Mc Vaugh Volatile Oil, Using Particle Swarm Optimization-Multiple Linear Regression (PSO-MLR

    Directory of Open Access Journals (Sweden)

    Majid Mohammadhosseini

    2014-05-01

    Full Text Available A reliable quantitative structure retention relationship (QSRR study has been evaluated to predict the retention indices (RIs of a broad spectrum of compounds, namely 118 non-linear, cyclic and heterocyclic terpenoids (both saturated and unsaturated, on an HP-5MS fused silica column. A principal component analysis showed that seven compounds lay outside of the main cluster. After elimination of the outliers, the data set was divided into training and test sets involving 80 and 28 compounds. The method was tested by application of the particle swarm optimization (PSO method to find the most effective molecular descriptors, followed by multiple linear regressions (MLR. The PSO-MLR model was further confirmed through “leave one out cross validation” (LOO-CV and “leave group out cross validation” (LGO-CV, as well as external validations. The promising statistical figures of merit associated with the proposed model (R2train=0.936, Q2LOO=0.928, Q2LGO=0.921, F=376.4 confirm its high ability to predict RIs with negligible relative errors of predictions (REP train=4.8%, REP test=6.0%.

  19. Time-varying and time-invariant dimensions of depression in children and adolescents: Implications for cross-informant agreement.

    Science.gov (United States)

    Cole, David A; Martin, Joan M; Jacquez, Farrah M; Tram, Jane M; Zelkowitz, Rachel; Nick, Elizabeth A; Rights, Jason D

    2017-07-01

    The longitudinal structure of depression in children and adolescents was examined by applying a Trait-State-Occasion structural equation model to 4 waves of self, teacher, peer, and parent reports in 2 age groups (9 to 13 and 13 to 16 years old). Analyses revealed that the depression latent variable consisted of 2 longitudinal factors: a time-invariant dimension that was completely stable over time and a time-varying dimension that was not perfectly stable over time. Different sources of information were differentially sensitive to these 2 dimensions. Among adolescents, self- and parent reports better reflected the time-invariant aspects. For children and adolescents, peer and teacher reports better reflected the time-varying aspects. Relatively high cross-informant agreement emerged for the time-invariant dimension in both children and adolescents. Cross-informant agreement for the time-varying dimension was high for adolescents but very low for children. Implications emerge for theoretical models of depression and for its measurement, especially when attempting to predict changes in depression in the context of longitudinal studies. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. A Two Teraflop Swarm

    Directory of Open Access Journals (Sweden)

    Simon Jones

    2018-02-01

    Full Text Available We introduce the Xpuck swarm, a research platform with an aggregate raw processing power in excess of two teraflops. The swarm uses 16 e-puck robots augmented with custom hardware that uses the substantial CPU and GPU processing power available from modern mobile system-on-chip devices. The augmented robots, called Xpucks, have at least an order of magnitude greater performance than previous swarm robotics platforms. The platform enables new experiments that require high individual robot computation and multiple robots. Uses include online evolution or learning of swarm controllers, simulation for answering what-if questions about possible actions, distributed super-computing for mobile platforms, and real-world applications of swarm robotics that requires image processing, or SLAM. The teraflop swarm could also be used to explore swarming in nature by providing platforms with similar computational power as simple insects. We demonstrate the computational capability of the swarm by implementing a fast physics-based robot simulator and using this within a distributed island model evolutionary system, all hosted on the Xpucks.

  1. The Swarm Magnetometry Package

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Jørgensen, John Leif; Friis-Christensen, Eigil

    2008-01-01

    The Swarm mission under the ESA's Living Planet Programme is planned for launch in 2010 and consists of a constellation of three satellites at LEO. The prime objective of Swarm is to measure the geomagnetic field with unprecedented accuracy in space and time. The magnetometry package consists...

  2. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    Science.gov (United States)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  3. The Basics of Anisotropy-Based Analysis of Discrete Time-Invariant Systems

    Directory of Open Access Journals (Sweden)

    I. R. Belov

    2017-01-01

    Full Text Available When investigating a behavior of dynamical systems, we should take into account the external noises, which have an effect on the system. The article introduces a concept of the anisotropy-based norm of the system as one of the ways to describe the measure of the effect of external disturbances on the system. The definition of the anisotropic norm includes some concepts from information theory, such as relative entropy and anisotropy. The theoretical section at the beginning of the article describes these definitions. The considered norm of the system can be evaluated in several ways. The article examines two methods - in the frequency domain and in the state space. To find the norm in the state space it is necessary to find the solution of the Riccati equation. This problem is rather laborious. So the algorithms to avoid the solution of Riccati equation are used in application of anisotropy-based norm’s evaluation methods. The principle of these algorithms is replacement of Riccati equation by the system of linear matrix inequalities. The software implementation of methods under consideration is designed using the MATLAB packages. The calculation results of the anisotropy-based norm for a given linear discrete system are obtained using this program. The article presents these results as graphs.This article enters into the Master's qualifying work "Basic quality criteria in the theory of linear systems". In this paper we consider various quality criteria, the solution of the optimal control problem for each of them, and compare the results obtained for different criteria. The anisotropy-based norm considered in the article is one of the quality criteria.

  4. Constructing a Time-Invariant Measure of the Socio-economic Status of U.S. Census Tracts.

    Science.gov (United States)

    Miles, Jeremy N; Weden, Margaret M; Lavery, Diana; Escarce, José J; Cagney, Kathleen A; Shih, Regina A

    2016-02-01

    Contextual research on time and place requires a consistent measurement instrument for neighborhood conditions in order to make unbiased inferences about neighborhood change. We develop such a time-invariant measure of neighborhood socio-economic status (NSES) using exploratory and confirmatory factor analyses fit to census data at the tract level from the 1990 and 2000 U.S. Censuses and the 2008-2012 American Community Survey. A single factor model fit the data well at all three time periods, and factor loadings--but not indicator intercepts--could be constrained to equality over time without decrement to fit. After addressing remaining longitudinal measurement bias, we found that NSES increased from 1990 to 2000, and then--consistent with the timing of the "Great Recession"--declined in 2008-2012 to a level approaching that of 1990. Our approach for evaluating and adjusting for time-invariance is not only instructive for studies of NSES but also more generally for longitudinal studies in which the variable of interest is a latent construct.

  5. Bulk metal concentrations versus total suspended solids in rivers: Time-invariant & catchment-specific relationships.

    Science.gov (United States)

    Nasrabadi, Touraj; Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter

    2018-01-01

    Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).

  6. Swarm-based medicine.

    Science.gov (United States)

    Putora, Paul Martin; Oldenburg, Jan

    2013-09-19

    Occasionally, medical decisions have to be taken in the absence of evidence-based guidelines. Other sources can be drawn upon to fill in the gaps, including experience and intuition. Authorities or experts, with their knowledge and experience, may provide further input--known as "eminence-based medicine". Due to the Internet and digital media, interactions among physicians now take place at a higher rate than ever before. With the rising number of interconnected individuals and their communication capabilities, the medical community is obtaining the properties of a swarm. The way individual physicians act depends on other physicians; medical societies act based on their members. Swarm behavior might facilitate the generation and distribution of knowledge as an unconscious process. As such, "swarm-based medicine" may add a further source of information to the classical approaches of evidence- and eminence-based medicine. How to integrate swarm-based medicine into practice is left to the individual physician, but even this decision will be influenced by the swarm.

  7. The Dynamics of Interacting Swarms

    Science.gov (United States)

    2018-04-04

    have been used as a means of realistically modeling swarming behaviors [26, 38, 44]. Systematic numerical studies of discrete flocking based on...The model for the swarm we use is based on the the employed in [9], which describe a mathe - matically swarm model using the Morse potential. Recently

  8. Multispacecraft current estimates at swarm

    DEFF Research Database (Denmark)

    Dunlop, M. W.; Yang, Y.-Y.; Yang, J.-Y.

    2015-01-01

    During the first several months of the three-spacecraft Swarm mission all three spacecraft camerepeatedly into close alignment, providing an ideal opportunity for validating the proposed dual-spacecraftmethod for estimating current density from the Swarm magnetic field data. Two of the Swarm...

  9. Particle Swarm Optimization Toolbox

    Science.gov (United States)

    Grant, Michael J.

    2010-01-01

    The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry

  10. Reliability, Convergent Validity and Time Invariance of Default Mode Network Deviations in Early Adult Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Katie L. Bessette

    2018-06-01

    Full Text Available There is substantial variability across studies of default mode network (DMN connectivity in major depressive disorder, and reliability and time-invariance are not reported. This study evaluates whether DMN dysconnectivity in remitted depression (rMDD is reliable over time and symptom-independent, and explores convergent relationships with cognitive features of depression. A longitudinal study was conducted with 82 young adults free of psychotropic medications (47 rMDD, 35 healthy controls who completed clinical structured interviews, neuropsychological assessments, and 2 resting-state fMRI scans across 2 study sites. Functional connectivity analyses from bilateral posterior cingulate and anterior hippocampal formation seeds in DMN were conducted at both time points within a repeated-measures analysis of variance to compare groups and evaluate reliability of group-level connectivity findings. Eleven hyper- (from posterior cingulate and 6 hypo- (from hippocampal formation connectivity clusters in rMDD were obtained with moderate to adequate reliability in all but one cluster (ICC's range = 0.50 to 0.76 for 16 of 17. The significant clusters were reduced with a principle component analysis (5 components obtained to explore these connectivity components, and were then correlated with cognitive features (rumination, cognitive control, learning and memory, and explicit emotion identification. At the exploratory level, for convergent validity, components consisting of posterior cingulate with cognitive control network hyperconnectivity in rMDD were related to cognitive control (inverse and rumination (positive. Components consisting of anterior hippocampal formation with social emotional network and DMN hypoconnectivity were related to memory (inverse and happy emotion identification (positive. Thus, time-invariant DMN connectivity differences exist early in the lifespan course of depression and are reliable. The nuanced results suggest a ventral

  11. Swarm robotics and minimalism

    Science.gov (United States)

    Sharkey, Amanda J. C.

    2007-09-01

    Swarm Robotics (SR) is closely related to Swarm Intelligence, and both were initially inspired by studies of social insects. Their guiding principles are based on their biological inspiration and take the form of an emphasis on decentralized local control and communication. Earlier studies went a step further in emphasizing the use of simple reactive robots that only communicate indirectly through the environment. More recently SR studies have moved beyond these constraints to explore the use of non-reactive robots that communicate directly, and that can learn and represent their environment. There is no clear agreement in the literature about how far such extensions of the original principles could go. Should there be any limitations on the individual abilities of the robots used in SR studies? Should knowledge of the capabilities of social insects lead to constraints on the capabilities of individual robots in SR studies? There is a lack of explicit discussion of such questions, and researchers have adopted a variety of constraints for a variety of reasons. A simple taxonomy of swarm robotics is presented here with the aim of addressing and clarifying these questions. The taxonomy distinguishes subareas of SR based on the emphases and justifications for minimalism and individual simplicity.

  12. A Parallel Particle Swarm Optimizer

    National Research Council Canada - National Science Library

    Schutte, J. F; Fregly, B .J; Haftka, R. T; George, A. D

    2003-01-01

    .... Motivated by a computationally demanding biomechanical system identification problem, we introduce a parallel implementation of a stochastic population based global optimizer, the Particle Swarm...

  13. Sensory coding of nest-site value in honeybee swarms.

    Science.gov (United States)

    Seeley, Thomas D; Visscher, P Kirk

    2008-12-01

    This study investigates the first stage of the decision-making process of a honeybee swarm as it chooses a nest site: how a scout bee codes the value of a potential nest site in the waggle dances she produces to represent this site. We presented honeybee swarms with a two-alternative choice between a high-value site and a medium-value site and recorded the behavior of individually identifiable scout bees as they reported on these two alternatives. We found that bees performed equally lengthy inspections at the two sites, but that, on the swarm cluster, they performed more dance circuits per bee for the high-value site. We also found that there was much individual-level noise in the coding of site value, but that there were clear population-level differences in total dance circuits produced for the two sites. The first bee to find a site had a high probability of reporting the site with a waggle dance, regardless of its value. This discoverer-should-dance phenomenon may help ensure that a swarm gives attention to all discovered sites. There was rapid decay in the dance response; the number of dance circuits produced by a bee after visiting a site decreased linearly over sequential visits, and eventually each bee ceased visiting her site. This decay, or ;leakage', in the accumulation of bees at a site improves a swarm's decision-making ability by helping a swarm avoid making fast-decision errors.

  14. Do time-invariant confounders explain away the association between job stress and workers' mental health? Evidence from Japanese occupational panel data.

    Science.gov (United States)

    Oshio, Takashi; Tsutsumi, Akizumi; Inoue, Akiomi

    2015-02-01

    It is well known that job stress is negatively related to workers' mental health, but most recent studies have not controlled for unobserved time-invariant confounders. In the current study, we attempted to validate previous observations on the association between job stress and workers' mental health, by removing the effects of unobserved time-invariant confounders. We used data from three to four waves of an occupational Japanese cohort survey, focusing on 31,382 observations of 9741 individuals who participated in at least two consecutive waves. We estimated mean-centered fixed effects models to explain psychological distress in terms of the Kessler 6 (K6) scores (range: 0-24) by eight job stress indicators related to the job demands-control, effort-reward imbalance, and organizational injustice models. Mean-centered fixed effects models reduced the magnitude of the association between jobs stress and K6 scores to 44.8-54.2% of those observed from pooled ordinary least squares. However, the association remained highly significant even after controlling for unobserved time-invariant confounders for all job stress indicators. In addition, alternatively specified models showed the robustness of the results. In all, we concluded that the validity of major job stress models, which link job stress and workers' mental health, was robust, although unobserved time-invariant confounders led to an overestimation of the association. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization.

    Science.gov (United States)

    Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah

    2015-01-01

    The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.

  16. Estimation of Valve Stiction Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    S. Sivagamasundari

    2011-06-01

    Full Text Available This paper presents a procedure for quantifying valve stiction in control loops based on particle swarm optimization. Measurements of the Process Variable (PV and Controller Output (OP are used to estimate the parameters of a Hammerstein system, consisting of connection of a non linear control valve stiction model and a linear process model. The parameters of the Hammerstein model are estimated using particle swarm optimization, from the input-output data by minimizing the error between the true model output and the identified model output. Using particle swarm optimization, Hammerstein models with known nonlinear structure and unknown parameters can be identified. A cost-effective optimization technique is adopted to find the best valve stiction models representing a more realistic valve behavior in the oscillating loop. Simulation and practical laboratory control system results are included, which demonstrates the effectiveness and robustness of the identification scheme.

  17. TISK 1.0: An easy-to-use Python implementation of the time-invariant string kernel model of spoken word recognition.

    Science.gov (United States)

    You, Heejo; Magnuson, James S

    2018-04-30

    This article describes a new Python distribution of TISK, the time-invariant string kernel model of spoken word recognition (Hannagan et al. in Frontiers in Psychology, 4, 563, 2013). TISK is an interactive-activation model similar to the TRACE model (McClelland & Elman in Cognitive Psychology, 18, 1-86, 1986), but TISK replaces most of TRACE's reduplicated, time-specific nodes with theoretically motivated time-invariant, open-diphone nodes. We discuss the utility of computational models as theory development tools, the relative merits of TISK as compared to other models, and the ways in which researchers might use this implementation to guide their own research and theory development. We describe a TISK model that includes features that facilitate in-line graphing of simulation results, integration with standard Python data formats, and graph and data export. The distribution can be downloaded from https://github.com/maglab-uconn/TISK1.0 .

  18. SWARM-BOT: From Concept to Implementation

    OpenAIRE

    Mondada, F.; Guignard, A.; Bonani, M.; Bär, D.; Lauria, M.; Floreano, D.

    2003-01-01

    This paper presents a new robotic concept, called SWARM-BOT, based on a swarm of autonomous mobile robots with self-assembling capabilities. SWARM-BOT takes advantage from collective and distributed approaches to ensure robustness to failures and to hard environment conditions in tasks such as navigation, search and transportation in rough terrain. One SWARM-BOT is composed of a number of simpler robots, called s-bots, physically interconnected. The SWARM-BOT is provided with self-assembling...

  19. Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm

    OpenAIRE

    Yumin, Dong; Li, Zhao

    2014-01-01

    Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the a...

  20. behaved particle swarm optimization (QPSO)

    African Journals Online (AJOL)

    Administrator

    2011-06-13

    Jun 13, 2011 ... experiment results of L-glutamic acid fermentation process showed that our ... Key words: Soft-sensing model, quantum-behaved particle swarm optimization ... information about such biochemical variables is, in most practical ...

  1. Swarm Science objectives and challenges

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Lühr, Hermann; Hulot, Gauthier

    Swarm is the fifth Earth Explorer mission in ESA’s Living Planet Programme to be launched in 2009. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution. The innovative constellation concept and a unique set of dedicated instrume......Swarm is the fifth Earth Explorer mission in ESA’s Living Planet Programme to be launched in 2009. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution. The innovative constellation concept and a unique set of dedicated...... instruments will provide the necessary observations that are required to separate and model the various sources of the geomagnetic field. This will provide new insights into the Earth system by improving our understanding of the Earth’s interior and Sun-Earth connection processes....

  2. When to call a linear system nonnegative

    NARCIS (Netherlands)

    Nieuwenhuis, J.W.

    1998-01-01

    In this paper we will consider discrete time invariant linear systems that allow for an input-state-output representation with a finite dimensional state space, and that have a finite number of inputs and outputs. The basic issue in this paper is when to call these systems nonnegative. An important

  3. Swarm: ESA's Magnetic Field Mission

    Science.gov (United States)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2013-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

  4. Modal Identification of a Time-Invariant 6-Storey Model Test RC-Frame from Free Decay Tests using Multi-Variate Models

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R. K.; Kirkegaard, Poul Henning

    1997-01-01

    in the comparison. The data investigated are sampled from a laboratory model of a plane 6-storey, 2-bay RC-frame. The laboratory model is excited at the top storey where two different types of excitation where considered. In the first case the structure was excited in the first mode and in the second case......The scope of the paper is to apply multi-variate time-domain models for identification of eginfrequencies and mode shapes of a time- invariant model test Reinforced Concrete (RC) frame from measured decays. The frequencies and mode shapes of interest are the two lowest ones since they are normally...

  5. Modal Identification of a Time-Invariant 6-Storey Model Test RC-Frame from Free Decay Tests using Multi-Variate Models

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R. K.; Kirkegaard, Poul Henning

    in the comparison. The data investigated are sampled from a laboratory model of a plane 6-storey, 2-bay RC-frame. The laboratory model is excited at the top storey where two different types of excitation where considered. In the first case the structure was excited in the first mode and in the second case......The scope of the paper is to apply multi-variate time-domain models for identification of eginfrequencies and mode shapes of a time- invariant model test Reinforced Concrete (RC) frame from measured decays. The frequencies and mode shapes of interest are the two lowest ones since they are normally...

  6. Dynamic scaling in natural swarms

    Science.gov (United States)

    Cavagna, Andrea; Conti, Daniele; Creato, Chiara; Del Castello, Lorenzo; Giardina, Irene; Grigera, Tomas S.; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano

    2017-09-01

    Collective behaviour in biological systems presents theoretical challenges beyond the borders of classical statistical physics. The lack of concepts such as scaling and renormalization is particularly problematic, as it forces us to negotiate details whose relevance is often hard to assess. In an attempt to improve this situation, we present here experimental evidence of the emergence of dynamic scaling laws in natural swarms of midges. We find that spatio-temporal correlation functions in different swarms can be rescaled by using a single characteristic time, which grows with the correlation length with a dynamical critical exponent z ~ 1, a value not found in any other standard statistical model. To check whether out-of-equilibrium effects may be responsible for this anomalous exponent, we run simulations of the simplest model of self-propelled particles and find z ~ 2, suggesting that natural swarms belong to a novel dynamic universality class. This conclusion is strengthened by experimental evidence of the presence of non-dissipative modes in the relaxation, indicating that previously overlooked inertial effects are needed to describe swarm dynamics. The absence of a purely dissipative regime suggests that natural swarms undergo a near-critical censorship of hydrodynamics.

  7. Optimal control linear quadratic methods

    CERN Document Server

    Anderson, Brian D O

    2007-01-01

    This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the

  8. Swarm Satellites : Design, Characteristics and Applications

    NARCIS (Netherlands)

    Engelen, S.

    2016-01-01

    Satellite swarms are a novelty, yet promise to deliver unprecedented robustness and data-collection efficiency. They are so new in fact that even the definition of what a satellite swarm is is disputable, and consequently, the term "swarm" is used for practically any type of distributed space

  9. Particle Swarm Optimization with Double Learning Patterns.

    Science.gov (United States)

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants.

  10. Particle Swarm Optimization with Double Learning Patterns

    Science.gov (United States)

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants. PMID:26858747

  11. Amplifier with time-invariant trapezoidal shaping and shape-sensitive pileup rejector for high-rate spectroscopy

    International Nuclear Information System (INIS)

    Drndarevic, V.; Ryge, P.; Gozani, T.

    1989-01-01

    An amplifier with trapezoidal pulse shaping was developed for high-rate high-energy gamma spectroscopy using NaI(T1) scintillation detectors. It employs a double delay-line technique for producing a nearly triangular pulse shape combined with a linear circuit for producing a flattopped pulse. Good energy resolution and short resolving time make this amplifier especially suitable for high count rate gamma ray spectroscopy. To provide a versatile high-performance system, it includes a pileup rejector based on inspection of a pileup signal obtained by combining the slow output signal and fast-shaped input signal. The trapezoidal shape provides a short resolving time for minimal occurrence of pileup with a width suitable for presentation to a standard multichannel analyzer. The performance of the system was tested, and the results are presented

  12. Energy group structure determination using particle swarm optimization

    International Nuclear Information System (INIS)

    Yi, Ce; Sjoden, Glenn

    2013-01-01

    Highlights: ► Particle swarm optimization is applied to determine broad group structure. ► A graph representation of the broad group structure problem is introduced. ► The approach is tested on a fuel-pin model. - Abstract: Multi-group theory is widely applied for the energy domain discretization when solving the Linear Boltzmann Equation. To reduce the computational cost, fine group cross libraries are often down-sampled into broad group cross section libraries. Cross section data collapsing generally involves two steps: Firstly, the broad group structure has to be determined; secondly, a weighting scheme is used to evaluate the broad cross section library based on the fine group cross section data and the broad group structure. A common scheme is to average the fine group cross section weighted by the fine group flux. Cross section collapsing techniques have been intensively researched. However, most studies use a pre-determined group structure, open based on experience, to divide the neutron energy spectrum into thermal, epi-thermal, fast, etc. energy range. In this paper, a swarm intelligence algorithm, particle swarm optimization (PSO), is applied to optimize the broad group structure. A graph representation of the broad group structure determination problem is introduced. And the swarm intelligence algorithm is used to solve the graph model. The effectiveness of the approach is demonstrated using a fuel-pin model

  13. Velocity correlations in laboratory insect swarms

    Science.gov (United States)

    Ni, R.; Ouellette, N. T.

    2015-12-01

    In contrast to animal groups such as bird flocks or migratory herds that display net, directed motion, insect swarms do not possess global order. Without such order, it is difficult to define and characterize the transition to collective behavior in swarms; nevertheless, visual observation of swarms strongly suggests that swarming insects do behave collectively. It has recently been suggested that correlation rather than order is the hallmark of emergent collective behavior. Here, we report measurements of spatial velocity correlation functions in laboratory mating swarms of the non-biting midge Chironomus riparius. Although we find some correlation at short distances, our swarms are in general only weakly correlated, in contrast to what has been observed in field studies. Our results hint at the potentially important role of environmental conditions on collective behavior, and suggest that general indicators of the collective nature of swarming are still needed.

  14. Gold rush - A swarm dynamics in games

    Science.gov (United States)

    Zelinka, Ivan; Bukacek, Michal

    2017-07-01

    This paper is focused on swarm intelligence techniques and its practical use in computer games. The aim is to show how a swarm dynamics can be generated by multiplayer game, then recorded, analyzed and eventually controlled. In this paper we also discuss possibility to use swarm intelligence instead of game players. Based on our previous experiments two games, using swarm algorithms are mentioned briefly here. The first one is strategy game StarCraft: Brood War, and TicTacToe in which SOMA algorithm has also take a role of player against human player. Open research reported here has shown potential benefit of swarm computation in the field of strategy games and players strategy based on swarm behavior record and analysis. We propose new game called Gold Rush as an experimental environment for human or artificial swarm behavior and consequent analysis.

  15. Epidemic Synchronization in Robotic Swarms

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Ngo, Trung Dung

    2009-01-01

    Clock synchronization in swarms of networked mobile robots is studied in a probabilistic, epidemic framework. In this setting communication and synchonization is considered to be a randomized process, taking place at unplanned instants of geographical rendezvous between robots. In combination...... as an infinite-dimensional optimal controlproblem. Illustrative numerical examples are given and commented....

  16. Hybrid chaotic ant swarm optimization

    International Nuclear Information System (INIS)

    Li Yuying; Wen Qiaoyan; Li Lixiang; Peng Haipeng

    2009-01-01

    Chaotic ant swarm optimization (CASO) is a powerful chaos search algorithm that is used to find the global optimum solution in search space. However, the CASO algorithm has some disadvantages, such as lower solution precision and longer computational time, when solving complex optimization problems. To resolve these problems, an improved CASO, called hybrid chaotic swarm optimization (HCASO), is proposed in this paper. The new algorithm introduces preselection operator and discrete recombination operator into the CASO; meanwhile it replaces the best position found by own and its neighbors' ants with the best position found by preselection operator and discrete recombination operator in evolution equation. Through testing five benchmark functions with large dimensionality, the experimental results show the new method enhances the solution accuracy and stability greatly, as well as reduces the computational time and computer memory significantly when compared to the CASO. In addition, we observe the results can become better with swarm size increasing from the sensitivity study to swarm size. And we gain some relations between problem dimensions and swam size according to scalability study.

  17. Epidemic Synchronization in Robotic Swarms

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Ngo, Trung Dung

    2009-01-01

    Clock synchronization in swarms of networked mobile robots is studied in a probabilistic, epidemic framework. In this setting communication and synchonization is considered to be a randomized process, taking place at unplanned instants of geographical rendezvous between robots. In combination wit...

  18. On the dynamic analysis of piecewise-linear networks

    OpenAIRE

    Heemels, W.P.M.H.; Camlibel, M.K.; Schumacher, J.M.

    2002-01-01

    Piecewise-linear (PL) modeling is often used to approximate the behavior of nonlinear circuits. One of the possible PL modeling methodologies is based on the linear complementarity problem, and this approach has already been used extensively in the circuits and systems community for static networks. In this paper, the object of study will be dynamic electrical circuits that can be recast as linear complementarity systems, i.e., as interconnections of linear time-invariant differential equatio...

  19. Swarm v2: highly-scalable and high-resolution amplicon clustering.

    Science.gov (United States)

    Mahé, Frédéric; Rognes, Torbjørn; Quince, Christopher; de Vargas, Colomban; Dunthorn, Micah

    2015-01-01

    Previously we presented Swarm v1, a novel and open source amplicon clustering program that produced fine-scale molecular operational taxonomic units (OTUs), free of arbitrary global clustering thresholds and input-order dependency. Swarm v1 worked with an initial phase that used iterative single-linkage with a local clustering threshold (d), followed by a phase that used the internal abundance structures of clusters to break chained OTUs. Here we present Swarm v2, which has two important novel features: (1) a new algorithm for d = 1 that allows the computation time of the program to scale linearly with increasing amounts of data; and (2) the new fastidious option that reduces under-grouping by grafting low abundant OTUs (e.g., singletons and doubletons) onto larger ones. Swarm v2 also directly integrates the clustering and breaking phases, dereplicates sequencing reads with d = 0, outputs OTU representatives in fasta format, and plots individual OTUs as two-dimensional networks.

  20. PREDIKSI KEMUNGKINAN BPREDIKSI BANJIR SUNGAI CITARUM DENGAN LOGIKA FUZZY HASIL ALGORITMA PARTICLE SWARM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Phitsa Mauliana

    2016-09-01

    Full Text Available Abstract The purpose of this paper is the prediction of the possibility of flooding using fuzzy logic results of data processing algorithms using particle swarm optimization (PSO. Flooding is the water level exceeds the normal stream. Usually on the face of water and erratic rainfall cause people cannot predict the occurrence of floods. It required an effort to predict the flood in order to minimize losses resulting from flooding. Particle swarm optimization algorithm can solve a system of nonlinear equations for predicting flooding is a non-linear data processing. Particle swarm optimization algorithm and sample used was rainfall and water level, the result is a flood prediction accuracy of 73% based on the resulting confusion matrix calculations. Implementation of fuzzy logic can help predict the likelihood of flooding around the Citarum River. Keywords: Prediction, Flood, Particle Swarm Optimization, Fuzzy Logic.

  1. Towards a Logical Distinction Between Swarms and Aftershock Sequences

    Science.gov (United States)

    Gardine, M.; Burris, L.; McNutt, S.

    2007-12-01

    The distinction between swarms and aftershock sequences has, up to this point, been fairly arbitrary and non- uniform. Typically 0.5 to 1 order of magnitude difference between the mainshock and largest aftershock has been a traditional choice, but there are many exceptions. Seismologists have generally assumed that the mainshock carries most of the energy, but this is only true if it is sufficiently large compared to the size and numbers of aftershocks. Here we present a systematic division based on energy of the aftershock sequence compared to the energy of the largest event of the sequence. It is possible to calculate the amount of aftershock energy assumed to be in the sequence using the b-value of the frequency-magnitude relation with a fixed choice of magnitude separation (M-mainshock minus M-largest aftershock). Assuming that the energy of an aftershock sequence is less than the energy of the mainshock, the b-value at which the aftershock energy exceeds that of the mainshock energy determines the boundary between aftershock sequences and swarms. The amount of energy for various choices of b-value is also calculated using different values of magnitude separation. When the minimum b-value at which the sequence energy exceeds that of the largest event/mainshock is plotted against the magnitude separation, a linear trend emerges. Values plotting above this line represent swarms and values plotting below it represent aftershock sequences. This scheme has the advantage that it represents a physical quantity - energy - rather than only statistical features of earthquake distributions. As such it may be useful to help distinguish swarms from mainshock/aftershock sequences and to better determine the underlying causes of earthquake swarms.

  2. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    KAUST Repository

    Kouramas, K.I.; Faí sca, N.P.; Panos, C.; Pistikopoulos, E.N.

    2011-01-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques

  3. An immune-inspired swarm aggregation algorithm for self-healing swarm robotic systems.

    Science.gov (United States)

    Timmis, J; Ismail, A R; Bjerknes, J D; Winfield, A F T

    2016-08-01

    Swarm robotics is concerned with the decentralised coordination of multiple robots having only limited communication and interaction abilities. Although fault tolerance and robustness to individual robot failures have often been used to justify the use of swarm robotic systems, recent studies have shown that swarm robotic systems are susceptible to certain types of failure. In this paper we propose an approach to self-healing swarm robotic systems and take inspiration from the process of granuloma formation, a process of containment and repair found in the immune system. We use a case study of a swarm performing team work where previous works have demonstrated that partially failed robots have the most detrimental effect on overall swarm behaviour. We have developed an immune inspired approach that permits the recovery from certain failure modes during operation of the swarm, overcoming issues that effect swarm behaviour associated with partially failed robots. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Swarm analysis by using transport equations

    International Nuclear Information System (INIS)

    Dote, Toshihiko.

    1985-01-01

    As the basis of weak ionization plasma phenomena, the motion, i.e. swarm, of charged particles in the gas is analyzed by use of the transport equations, from which basic nature of the swarm is discussed. The present report is an overview of the studies made in the past several years. Described are principally the most basic aspects concerning behaviors of the electrons and positive ions, that is, the basic equations and their significance, characteristics of the behaviors of the electron and positive ion swarms as revealed by solving the equations, and various characteristics of the swarm parameters. Contents are: Maxwell-Boltzmann's transport equations, behavior of the electron swarm, energy loss of the electrons, and behavior of the positive ion swarm. (Mori, K.)

  5. Time-delayed autosynchronous swarm control.

    Science.gov (United States)

    Biggs, James D; Bennet, Derek J; Dadzie, S Kokou

    2012-01-01

    In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations.

  6. Particle swarm as optimization tool in complex nuclear engineering problems

    International Nuclear Information System (INIS)

    Medeiros, Jose Antonio Carlos Canedo

    2005-06-01

    Due to its low computational cost, gradient-based search techniques associated to linear programming techniques are being used as optimization tools. These techniques, however, when applied to multimodal search spaces, can lead to local optima. When finding solutions for complex multimodal domains, random search techniques are being used with great efficacy. In this work we exploit the swarm optimization algorithm search power capacity as an optimization tool for the solution of complex high dimension and multimodal search spaces of nuclear problems. Due to its easy and natural representation of high dimension domains, the particle swarm optimization was applied with success for the solution of complex nuclear problems showing its efficacy in the search of solutions in high dimension and complex multimodal spaces. In one of these applications it enabled a natural and trivial solution in a way not obtained with other methods confirming the validity of its application. (author)

  7. Oscillators that sync and swarm.

    Science.gov (United States)

    O'Keeffe, Kevin P; Hong, Hyunsuk; Strogatz, Steven H

    2017-11-15

    Synchronization occurs in many natural and technological systems, from cardiac pacemaker cells to coupled lasers. In the synchronized state, the individual cells or lasers coordinate the timing of their oscillations, but they do not move through space. A complementary form of self-organization occurs among swarming insects, flocking birds, or schooling fish; now the individuals move through space, but without conspicuously altering their internal states. Here we explore systems in which both synchronization and swarming occur together. Specifically, we consider oscillators whose phase dynamics and spatial dynamics are coupled. We call them swarmalators, to highlight their dual character. A case study of a generalized Kuramoto model predicts five collective states as possible long-term modes of organization. These states may be observable in groups of sperm, Japanese tree frogs, colloidal suspensions of magnetic particles, and other biological and physical systems in which self-assembly and synchronization interact.

  8. Phase Coexistence in Insect Swarms

    Science.gov (United States)

    Sinhuber, Michael; Ouellette, Nicholas T.

    2017-10-01

    Animal aggregations are visually striking, and as such are popular examples of collective behavior in the natural world. Quantitatively demonstrating the collective nature of such groups, however, remains surprisingly difficult. Inspired by thermodynamics, we applied topological data analysis to laboratory insect swarms and found evidence for emergent, material-like states. We show that the swarms consist of a core "condensed" phase surrounded by a dilute "vapor" phase. These two phases coexist in equilibrium, and maintain their distinct macroscopic properties even though individual insects pass freely between them. We further define a pressure and chemical potential to describe these phases, extending theories of active matter to aggregations of macroscopic animals and laying the groundwork for a thermodynamic description of collective animal groups.

  9. Towards CHAOS-5 - How can Swarm contribute?

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Tøffner-Clausen, Lars

    2014-01-01

    The launch of ESA's satellite trio Swarm in November 2013 opens an exciting new chapter in the observation and monitoring of Earth's magnetic field from space. We report preliminary results from an extension of the CHAOS series of geomagnetic field models to include both scalar and vector field...... observations from the three Swarm satellites, along with the most recent quasi-definitive ground observatory data. The fit of this new update CHAOS field model to the Swarm observations will be presented in detail providing useful insight the initial Swarm data. Enhancements of the CHAOS modelling scheme...

  10. Dynamics and Controls of Swarms of Femtosatellites

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed research activity is focused on the development of fuel and computationally efficient guidance and control algorithms for spacecraft swarms. The...

  11. Interacting Brownian Swarms: Some Analytical Results

    Directory of Open Access Journals (Sweden)

    Guillaume Sartoretti

    2016-01-01

    Full Text Available We consider the dynamics of swarms of scalar Brownian agents subject to local imitation mechanisms implemented using mutual rank-based interactions. For appropriate values of the underlying control parameters, the swarm propagates tightly and the distances separating successive agents are iid exponential random variables. Implicitly, the implementation of rank-based mutual interactions, requires that agents have infinite interaction ranges. Using the probabilistic size of the swarm’s support, we analytically estimate the critical interaction range below that flocked swarms cannot survive. In the second part of the paper, we consider the interactions between two flocked swarms of Brownian agents with finite interaction ranges. Both swarms travel with different barycentric velocities, and agents from both swarms indifferently interact with each other. For appropriate initial configurations, both swarms eventually collide (i.e., all agents interact. Depending on the values of the control parameters, one of the following patterns emerges after collision: (i Both swarms remain essentially flocked, or (ii the swarms become ultimately quasi-free and recover their nominal barycentric speeds. We derive a set of analytical flocking conditions based on the generalized rank-based Brownian motion. An extensive set of numerical simulations corroborates our analytical findings.

  12. Incremental Closed-loop Identification of Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2011-01-01

    , closed-loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can be extended...

  13. Global volcanic earthquake swarm database and preliminary analysis of volcanic earthquake swarm duration

    Directory of Open Access Journals (Sweden)

    S. R. McNutt

    1996-06-01

    Full Text Available Global data from 1979 to 1989 pertaining to volcanic earthquake swarms have been compiled into a custom-designed relational database. The database is composed of three sections: 1 a section containing general information on volcanoes, 2 a section containing earthquake swarm data (such as dates of swarm occurrence and durations, and 3 a section containing eruption information. The most abundant and reliable parameter, duration of volcanic earthquake swarms, was chosen for preliminary analysis. The distribution of all swarm durations was found to have a geometric mean of 5.5 days. Precursory swarms were then separated from those not associated with eruptions. The geometric mean precursory swarm duration was 8 days whereas the geometric mean duration of swarms not associated with eruptive activity was 3.5 days. Two groups of precursory swarms are apparent when duration is compared with the eruption repose time. Swarms with durations shorter than 4 months showed no clear relationship with the eruption repose time. However, the second group, lasting longer than 4 months, showed a significant positive correlation with the log10 of the eruption repose period. The two groups suggest that different suites of physical processes are involved in the generation of volcanic earthquake swarms.

  14. A joint time-invariant wavelet transform and kurtosis approach to the improvement of in-line oil debris sensor capability

    International Nuclear Information System (INIS)

    Fan, X; Liang, M; Yeap, T

    2009-01-01

    In-line oil debris sensors are important devices for the detection of machinery failures. However, two key issues remain to be addressed to more effectively make use of the existing oil debris sensors: the responsiveness to early machine failures and false alarms. The responsiveness level depends on the size of the debris that can be detected by an oil debris sensor. The detectable particle size in turn is mainly limited by the background noise. The false alarms are often caused by spurious impulses such as vibration-like signals. The challenge of improving the responsiveness and reducing false alarms lies in the very weak particle signals and their similarity to spurious signals. In this paper, a joint time-invariant wavelet transform and kurtosis analysis method is proposed to address the two issues simultaneously. The proposed method has been tested by extracting signatures of ultra-small metal particles from background noise and a wide range of simulated vibration-like and real vibration signals. Our test results have demonstrated that the proposed method can effectively detect very weak particle signals buried in strong background noise and eliminate vibration-like spurious signals. The implementation of the proposed method will substantially enhance many existing oil debris sensors

  15. Swarm Data Processing and First Scientific Results

    DEFF Research Database (Denmark)

    Olsen, Nils

    2014-01-01

    , accelerometer, plasma and electric field measurements. These observations will be distributed by ESA as Level-1b data, which are the calibrated and formatted time series of e.g. the magnetic field measurements taken by each of the three Swarm satellites. The talks presents a first scientific validation of Swarm...... Level-1b data products....

  16. Osmotic pressure in a bacterial swarm.

    Science.gov (United States)

    Ping, Liyan; Wu, Yilin; Hosu, Basarab G; Tang, Jay X; Berg, Howard C

    2014-08-19

    Using Escherichia coli as a model organism, we studied how water is recruited by a bacterial swarm. A previous analysis of trajectories of small air bubbles revealed a stream of fluid flowing in a clockwise direction ahead of the swarm. A companion study suggested that water moves out of the agar into the swarm in a narrow region centered ∼ 30 μm from the leading edge of the swarm and then back into the agar (at a smaller rate) in a region centered ∼ 120 μm back from the leading edge. Presumably, these flows are driven by changes in osmolarity. Here, we utilized green/red fluorescent liposomes as reporters of osmolarity to verify this hypothesis. The stream of fluid that flows in front of the swarm contains osmolytes. Two distinct regions are observed inside the swarm near its leading edge: an outer high-osmolarity band (∼ 30 mOsm higher than the agar baseline) and an inner low-osmolarity band (isotonic or slightly hypotonic to the agar baseline). This profile supports the fluid-flow model derived from the drift of air bubbles and provides new (to our knowledge) insights into water maintenance in bacterial swarms. High osmotic pressure at the leading edge of the swarm extracts water from the underlying agar and promotes motility. The osmolyte is of high molecular weight and probably is lipopolysaccharide. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Swarm Products and Space Weather Applications

    DEFF Research Database (Denmark)

    Stolle, Claudia; Olsen, Nils; Martini, Daniel

    The Swarm satellite constellation mission provides high precision magnetic field data and models and other observations that enable us to explore near Earth space for example in terms of in situ electron density and electric fields. On board GPS observables can be used for sounding ionospheric...... in aeronomy and space weather. We will emphasize results from the Swarm mission....

  18. 3rd international swarm seminar. Proceedings

    International Nuclear Information System (INIS)

    Lindinger, W.; Villinger, H.; Federer, W.

    1983-01-01

    47 papers on various problems of ion physics have been presented. The session headings are 1) recombination and electron attachment 2) transport of electrons in gases and liquids 3) swarm studies on collisions of metastable and on collisions of Rydberg atoms 4) ion neutral-interactions 5) ion transport in gases 6) applied aspects of swarm studies. (G.Q.)

  19. Design and control of swarm dynamics

    CERN Document Server

    Bouffanais, Roland

    2016-01-01

    The book is about the key elements required for designing, building and controlling effective artificial swarms comprised of multiple moving physical agents. Therefore this book presents the fundamentals of each of those key elements in the particular frame of dynamic swarming, specifically exposing the profound connections between these elements and establish some general design principles for swarming behaviors. This scientific endeavor requires an inter-disciplinary approach: biomimetic inspiration from ethology and ecology, study of social information flow, analysis of temporal and adaptive signaling network of interaction, considerations of control of networked real-time systems, and lastly, elements of complex adaptive dynamical systems. This book offers a completely new perspective on the scientific understanding of dynamic collective behaviors thanks to its multi-disciplinary approach and its focus on artificial swarm of physical agents. Two of the key problems in understanding the emergence of swarm ...

  20. Particle swarm genetic algorithm and its application

    International Nuclear Information System (INIS)

    Liu Chengxiang; Yan Changxiang; Wang Jianjun; Liu Zhenhai

    2012-01-01

    To solve the problems of slow convergence speed and tendency to fall into the local optimum of the standard particle swarm optimization while dealing with nonlinear constraint optimization problem, a particle swarm genetic algorithm is designed. The proposed algorithm adopts feasibility principle handles constraint conditions and avoids the difficulty of penalty function method in selecting punishment factor, generates initial feasible group randomly, which accelerates particle swarm convergence speed, and introduces genetic algorithm crossover and mutation strategy to avoid particle swarm falls into the local optimum Through the optimization calculation of the typical test functions, the results show that particle swarm genetic algorithm has better optimized performance. The algorithm is applied in nuclear power plant optimization, and the optimization results are significantly. (authors)

  1. Observatory data and the Swarm mission

    DEFF Research Database (Denmark)

    Macmillan, S.; Olsen, Nils

    2013-01-01

    products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those......The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth’s core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface...... of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data...

  2. Insular species swarm goes underground

    DEFF Research Database (Denmark)

    P. S. Reboleira, Ana Sofia; Enghoff, Henrik

    2014-01-01

    Two new species of the genus Cylindroiulus Verhoeff, 1894, C. julesvernei and C. oromii, are described from the subterranean ecosystem of Madeira Island, Portugal. Species are illustrated with photographs and diagrammatic drawings. The new species belong to the Cylindroiulus madeirae......-group, an insular species swarm distributed in the archipelagos of Madeira and the Canary Islands. We discuss the differences between the new species and their relatives and present information on the subterranean environment of Madeira. An updated overview of the subterranean biodiversity of millipedes...

  3. Application of linearized model to the stability analysis of the pressurized water reactor

    International Nuclear Information System (INIS)

    Li Haipeng; Huang Xiaojin; Zhang Liangju

    2008-01-01

    A Linear Time-Invariant model of the Pressurized Water Reactor is formulated through the linearization of the nonlinear model. The model simulation results show that the linearized model agrees well with the nonlinear model under small perturbation. Based upon the Lyapunov's First Method, the linearized model is applied to the stability analysis of the Pressurized Water Reactor. The calculation results show that the methodology of linearization to stability analysis is conveniently feasible. (authors)

  4. Swarms, swarming and entanglements of fungal hyphae and of plant roots

    Science.gov (United States)

    Barlow, Peter W.; Fisahn, Joachim

    2013-01-01

    There has been recent interest in the possibility that plant roots can show oriented collective motion, or swarming behavior. We examine the evidence supportive of root swarming and we also present new observations on this topic. Seven criteria are proposed for the definition of a swarm, whose application can help identify putative swarming behavior in plants. Examples where these criteria are fulfilled, at many levels of organization, are presented in relation to plant roots and root systems, as well as to the root-like mycelial cords (rhizomorphs) of fungi. The ideas of both an “active” swarming, directed by a signal which imposes a common vector on swarm element aggregation, and a “passive” swarming, where aggregation results from external constraint, are introduced. Active swarming is a pattern of cooperative behavior peculiar to the sporophyte generation of vascular plants and is the antithesis of the competitive behavior shown by the gametophyte generation of such plants, where passive swarming may be found. Fungal mycelial cords could serve as a model example of swarming in a multi-cellular, non-animal system. PMID:24255743

  5. The influence of swarm deformation on the velocity behavior of falling swarms of particles

    Science.gov (United States)

    Mitchell, C. A.; Pyrak-Nolte, L. J.; Nitsche, L.

    2017-12-01

    Cohesive particle swarms have been shown to exhibit enhanced sedimentation in fractures for an optimal range of fracture apertures. Within this range, swarms travel farther and faster than a disperse (particulate) solution. This study aims to uncover the physics underlying the enhanced sedimentation. Swarm behavior at low Reynolds number in a quiescent unbounded fluid and between smooth rigid planar boundaries is investigated numerically using direct-summation, particle-mesh (PM) and particle-particle particle-mesh (P3M) methods - based upon mutually interacting viscous point forces (Stokeslet fields). Wall effects are treated with a least-squares boundary singularity method. Sub-structural effects beyond pseudo-liquid behavior (i.e., particle-scale interactions) are approximated by the P3M method much more efficiently than with direct summation. The model parameters are selected from particle swarm experiments to enable comparison. From the simulations, if the initial swarm geometry at release is unaffected by the fracture aperture, no enhanced transport occurs. The swarm velocity as a function of apertures increases monotonically until it asymptotes to the swarm velocity in an open tank. However, if the fracture aperture affects the initial swarm geometry, the swarm velocity no longer exhibits a monotonic behavior. When swarms are released between two parallel smooth walls with very small apertures, the swarm is forced to reorganize and quickly deform, which results in dramatically reduced swarm velocities. At large apertures, the swarm evolution is similar to that of a swarm in open tank and quickly flattens into a slow speed torus. In the optimal aperture range, the swarm maintains a cohesive unit behaving similarly to a falling sphere. Swarms falling in apertures less than or greater than the optimal aperture range, experience a level of anisotropy that considerably decreases velocities. Unraveling the physics that drives swarm behavior in fractured porous

  6. Transport of Particle Swarms Through Fractures

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    The transport of engineered micro- and nano-scale particles through fractured rock is often assumed to occur as dispersions or emulsions. Another potential transport mechanism is the release of particle swarms from natural or industrial processes where small liquid drops, containing thousands to millions of colloidal-size particles, are released over time from seepage or leaks. Swarms have higher velocities than any individual colloid because the interactions among the particles maintain the cohesiveness of the swarm as it falls under gravity. Thus particle swarms give rise to the possibility that engineered particles may be transported farther and faster in fractures than predicted by traditional dispersion models. In this study, the effect of fractures on colloidal swarm cohesiveness and evolution was studied as a swarm falls under gravity and interacts with fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with either (1) a uniform aperture or (2) a converging aperture followed by a uniform aperture (funnel-shaped). The samples consisted of two blocks that measured 100 x 100 x 50 mm. The separation between these blocks determined the aperture (0.5 mm to 50 mm). During experiments, a fracture was fully submerged in water and swarms were released into it. The swarms consisted of dilute suspensions of either 25 micron soda-lime glass beads (2% by mass) or 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. In the uniform aperture fracture, the speed of the swarm prior to bifurcation increased with aperture up to a maximum at a fracture width of approximately 10 mm. For apertures greater than ~15 mm, the velocity was essentially constant with fracture width (but less than at 10 mm). This peak suggests that two competing mechanisms affect swarm velocity in fractures. The wall provides both drag, which

  7. Particle Swarm Social Adaptive Model for Multi-Agent Based Insurgency Warfare Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Potok, Thomas E [ORNL

    2009-12-01

    To better understand insurgent activities and asymmetric warfare, a social adaptive model for modeling multiple insurgent groups attacking multiple military and civilian targets is proposed and investigated. This report presents a pilot study using the particle swarm modeling, a widely used non-linear optimal tool to model the emergence of insurgency campaign. The objective of this research is to apply the particle swarm metaphor as a model of insurgent social adaptation for the dynamically changing environment and to provide insight and understanding of insurgency warfare. Our results show that unified leadership, strategic planning, and effective communication between insurgent groups are not the necessary requirements for insurgents to efficiently attain their objective.

  8. Scouts behave as streakers in honeybee swarms

    Science.gov (United States)

    Greggers, Uwe; Schöning, Caspar; Degen, Jacqueline; Menzel, Randolf

    2013-08-01

    Harmonic radar tracking was used to record the flights of scout bees during takeoff and initial flight path of two honeybee swarms. One swarm remained intact and performed a full flight to a destination beyond the range of the harmonic radar, while a second swarm disintegrated within the range of the radar and most of the bees returned to the queen. The initial stretch of the full flight is characterized by accelerating speed, whereas the disintegrating swarm flew steadily at low speed. The two scouts in the swarm displaying full flight performed characteristic flight maneuvers. They flew at high speed when traveling in the direction of their destination and slowed down or returned over short stretches at low speed. Scouts in the disintegrating swarm did not exhibit the same kind of characteristic flight performance. Our data support the streaker bee hypothesis proposing that scout bees guide the swarm by traveling at high speed in the direction of the new nest site for short stretches of flight and slowing down when reversing flight direction.

  9. Robustness of Linear Systems towards Multi-Dissipative Pertubations

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Poulsen, Niels Kjølstad

    1997-01-01

    We consider the question of robust stability of a linear time invariant plant subject to dynamic perturbations, which are dissipative in the sense of Willems with respect to several quadratic supply rates. For instance, parasitic dynamics are often both small gain and passive. We reduce several...... robustness analysis questions to linear matrix inequalities: robust stability, robust H2 performance and robust performance in presence of disturbances with finite signal-to-noise ratios...

  10. Window observers for linear systems

    Directory of Open Access Journals (Sweden)

    Utkin Vadim

    2000-01-01

    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  11. PARTICLE SWARM OPTIMIZATION BASED OF THE MAXIMUM ...

    African Journals Online (AJOL)

    2010-06-30

    Jun 30, 2010 ... Keywords: Particle Swarm Optimization (PSO), photovoltaic system, MPOP, ... systems from one hand and because of the instantaneous change of ..... Because of the P-V characteristics this heuristic method is used to seek ...

  12. A REVIEW OF SWARMING UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    CORNEA Mihai

    2016-11-01

    Full Text Available This paper in if fact an overview of state of the art in mobile multi-robot systems as an initial part of our research in implementing a system based on swarm robotics concepts to be used in natural disaster search and rescue missions. The system is to be composed of a group of drones that can detect survivor mobile cell signals and exhibit some other features as well. This paper surveys the swarm robotics research landscape to provide a theoretical background to the implementation and help determine the techniques available to create the system. The Particle swarm optimization (PSO and Glowworm swarm optimization (GSO algorithms are briefly described and there is also insight into Bird flocking behavior and the model behind it

  13. Swarm controlled emergence for ant clustering

    DEFF Research Database (Denmark)

    Scheidler, Alexander; Merkle, Daniel; Middendorf, Martin

    2013-01-01

    .g. moving robots, and clustering algorithms. Design/methodology/approach: Different types of control agents for that ant clustering model are designed by introducing slight changes to the behavioural rules of the normal agents. The clustering behaviour of the resulting swarms is investigated by extensive...... for future research to investigate the application of the method in other swarm systems. Swarm controlled emergence might be applied to control emergent effects in computing systems that consist of many autonomous components which make decentralized decisions based on local information. Practical...... simulation studies. Findings: It is shown that complex behavior can emerge in systems with two types of agents (normal agents and control agents). For a particular behavior of the control agents, an interesting swarm size dependent effect was found. The behaviour prevents clustering when the number...

  14. Time Optimal Reachability Analysis Using Swarm Verification

    DEFF Research Database (Denmark)

    Zhang, Zhengkui; Nielsen, Brian; Larsen, Kim Guldstrand

    2016-01-01

    Time optimal reachability analysis employs model-checking to compute goal states that can be reached from an initial state with a minimal accumulated time duration. The model-checker may produce a corresponding diagnostic trace which can be interpreted as a feasible schedule for many scheduling...... and planning problems, response time optimization etc. We propose swarm verification to accelerate time optimal reachability using the real-time model-checker Uppaal. In swarm verification, a large number of model checker instances execute in parallel on a computer cluster using different, typically randomized...... search strategies. We develop four swarm algorithms and evaluate them with four models in terms scalability, and time- and memory consumption. Three of these cooperate by exchanging costs of intermediate solutions to prune the search using a branch-and-bound approach. Our results show that swarm...

  15. Study of particle swarm optimization particle trajectories

    CSIR Research Space (South Africa)

    Van den Bergh, F

    2006-01-01

    Full Text Available . These theoretical studies concentrate mainly on simplified PSO systems. This paper overviews current theoretical studies, and extend these studies to investigate particle trajectories for general swarms to include the influence of the inertia term. The paper also...

  16. Gene expression in Pseudomonas aeruginosa swarming motility

    Directory of Open Access Journals (Sweden)

    Déziel Eric

    2010-10-01

    Full Text Available Abstract Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14. Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center. Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to

  17. Particle ''swarm'' dynamics in triboelectric systems

    International Nuclear Information System (INIS)

    Vinay, Stephen J.; Jhon, Myung S.

    2001-01-01

    Using state-of-the-art flow/particle visualization and animation techniques, the time-dependent statistical distributions of charged-particle ''swarms'' exposed to external fields (both electrostatic and flow) are examined. We found that interparticle interaction and drag forces mainly influenced swarm dispersion in a Lagrangian reference frame, whereas the average particle trajectory was affected primarily by the external electric and flow fields

  18. Two Invariants of Human-Swarm Interaction

    Science.gov (United States)

    2018-01-16

    Goodrich, 2013; Kolling, Sycara, Nunnally, & Lewis, 2013). Nunnally et al. explore bandwidth constraints on swarm-to- human communications , but assume that...the human can communicate with all of the agents in the swarm (Nunnally et al., 2012). Walker et al. investigate communication la- tency between a...Claiming that the collective state is the fundamental percept requires that the human is able to perceive, understand , and influence the abstracted

  19. The Swarm Computing Approach to Business Intelligence

    Directory of Open Access Journals (Sweden)

    Schumann Andrew

    2015-07-01

    Full Text Available We have proposed to use some features of swarm behaviours in modelling business processes. Due to these features we deal with a propagation of business processes in all accessible directions. This propagation is involved into our formalization instead of communicating sequential processes. As a result, we have constructed a business process diagram language based on the swarm behavior and an extension of that language in the form of reflexive management language.

  20. Multivariable optimization of liquid rocket engines using particle swarm algorithms

    Science.gov (United States)

    Jones, Daniel Ray

    Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.

  1. Guidance and control of swarms of spacecraft

    Science.gov (United States)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms

  2. ESA Swarm Mission - Level 1b Products

    Science.gov (United States)

    Tøffner-Clausen, Lars; Floberghagen, Rune; Mecozzi, Riccardo; Menard, Yvon

    2014-05-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, has been launched in November 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, which will bring new insights into the Earth system by improving our understanding of the Earth's interior and environment. The Level 1b Products of the Swarm mission contain time-series of the quality screened, calibrated, corrected, and fully geo-localized measurements of the magnetic field intensity, the magnetic field vector (provided in both instrument and Earth-fixed frames), the plasma density, temperature, and velocity. Additionally, quality screened and pre-calibrated measurements of the nongravitational accelerations are provided. Geo-localization is performed by 24- channel GPS receivers and by means of unique, three head Advanced Stellar Compasses for high-precision satellite attitude information. The Swarm Level 1b data will be provided in daily products separately for each of the three Swarm spacecrafts. This poster will present detailed lists of the contents of the Swarm Level 1b Products and brief descriptions of the processing algorithms used in the generation of these data.

  3. Heterogeneous architecture to process swarm optimization algorithms

    Directory of Open Access Journals (Sweden)

    Maria A. Dávila-Guzmán

    2014-01-01

    Full Text Available Since few years ago, the parallel processing has been embedded in personal computers by including co-processing units as the graphics processing units resulting in a heterogeneous platform. This paper presents the implementation of swarm algorithms on this platform to solve several functions from optimization problems, where they highlight their inherent parallel processing and distributed control features. In the swarm algorithms, each individual and dimension problem are parallelized by the granularity of the processing system which also offer low communication latency between individuals through the embedded processing. To evaluate the potential of swarm algorithms on graphics processing units we have implemented two of them: the particle swarm optimization algorithm and the bacterial foraging optimization algorithm. The algorithms’ performance is measured using the acceleration where they are contrasted between a typical sequential processing platform and the NVIDIA GeForce GTX480 heterogeneous platform; the results show that the particle swarm algorithm obtained up to 36.82x and the bacterial foraging swarm algorithm obtained up to 9.26x. Finally, the effect to increase the size of the population is evaluated where we show both the dispersion and the quality of the solutions are decreased despite of high acceleration performance since the initial distribution of the individuals can converge to local optimal solution.

  4. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products

    DEFF Research Database (Denmark)

    Olsen, Nils; Friis-Christensen, Eigil; Floberghagen, R.

    2013-01-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, is expected to be launched in late 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution...

  5. Merging the fields of swarm robotics and new media: Perceiving swarm robotics as new media

    Directory of Open Access Journals (Sweden)

    Monika O. Ivanova

    2014-06-01

    Full Text Available The aim of this paper is to provide evidence that swarm robotic systems can be perceived as new media objects. A thorough description of the five principles of new media proposed by Lev Manovich in “The Language of New Media” is presented. This is complemented by a state of the art on swarm robotics with an in-depth comparison of the characteristics of both fields. Also presented are examples of swarm robotics used in new media installations in order to illustrate the cutting-edge applications of robotics and artificial intelligence achieved through the unity of bothfields. The hypothesis of this research is that a novel point of view would be introduced by examining the field of swarm robotics through the scope of new media, which would benefit thework of both new media and swarm robotic researchers.

  6. The Fate of Colloidal Swarms in Fractures

    Science.gov (United States)

    Pyrak-Nolte, L. J.; Olander, M. K.

    2009-12-01

    In the next 10-20 years, nano- and micro-sensor engineering will advance to the stage where sensor swarms could be deployed in the subsurface to probe rock formations and the fluids contained in them. Sensor swarms are groups of nano- or micro- sensors that are maintained as a coherent group to enable either sensor-to-sensor communication and/or coherent transmission of information as a group. The ability to maintain a swarm of sensors depends on the complexity of the flow paths in the rock, on the size and shape of the sensors and on the chemical interaction among the sensors, fluids, and rock surfaces. In this study, we investigate the effect of fracture aperture and fluid currents on the formation, evolution and break-up of colloidal swarms under gravity. Transparent cubic samples (100 mm x 100 mm x 100 mm) containing synthetic fractures with uniform and non-uniform aperture distributions were used to quantify the effect of aperture on swarm formation, swarm velocity, and swarm geometry using optical imaging. A fracture with a uniform aperture distribution was fabricated from two polished rectangular prisms of acrylic. A fracture with a non-uniform aperture distribution was created with a polished rectangular acrylic prism and an acrylic replica of an induced fracture surface from a carbonate rock. A series of experiments were performed to determine how swarm movement and geometry are affected as the walls of the fracture are brought closer together from 50 mm to 1 mm. During the experiments, the fracture was fully saturated with water. We created the swarms using two different particle sizes in dilute suspension (~ 1.0% by mass) . The particles were 3 micron diameter fluorescent polymer beads and 25 micron diameter soda-lime glass beads. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera illuminated by a 100 mW diode-pumped doubled YAG laser. A swam was created when approximately 0.01 g drop of the suspension was

  7. Collective motion of predictive swarms.

    Directory of Open Access Journals (Sweden)

    Nathaniel Rupprecht

    Full Text Available Theoretical models of populations and swarms typically start with the assumption that the motion of agents is governed by the local stimuli. However, an intelligent agent, with some understanding of the laws that govern its habitat, can anticipate the future, and make predictions to gather resources more efficiently. Here we study a specific model of this kind, where agents aim to maximize their consumption of a diffusing resource, by attempting to predict the future of a resource field and the actions of other agents. Once the agents make a prediction, they are attracted to move towards regions that have, and will have, denser resources. We find that the further the agents attempt to see into the future, the more their attempts at prediction fail, and the less resources they consume. We also study the case where predictive agents compete against non-predictive agents and find the predictors perform better than the non-predictors only when their relative numbers are very small. We conclude that predictivity pays off either when the predictors do not see too far into the future or the number of predictors is small.

  8. Genetic Learning Particle Swarm Optimization.

    Science.gov (United States)

    Gong, Yue-Jiao; Li, Jing-Jing; Zhou, Yicong; Li, Yun; Chung, Henry Shu-Hung; Shi, Yu-Hui; Zhang, Jun

    2016-10-01

    Social learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for "learning." This leads to a generalized "learning PSO" paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO.

  9. Scaling and spatial complementarity of tectonic earthquake swarms

    KAUST Repository

    Passarelli, Luigi; Rivalta, Eleonora; Jonsson, Sigurjon; Hensch, Martin; Metzger, Sabrina; Jakobsdó ttir, Steinunn S.; Maccaferri, Francesco; Corbi, Fabio; Dahm, Torsten

    2017-01-01

    are still largely uncertain. Here we evaluate several TES that occurred during the past 20 years on a transform plate boundary in North Iceland. We show that the swarms complement each other spatially with later swarms discouraged from fault segments

  10. Closed-loop Identification for Control of Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2014-01-01

    , closed- loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can...

  11. Predator confusion is sufficient to evolve swarming behaviour

    OpenAIRE

    Olson, Randal S.; Hintze, Arend; Dyer, Fred C.; Knoester, David B.; Adami, Christoph

    2013-01-01

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator–prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary mo...

  12. Predator confusion is sufficient to evolve swarming behavior

    OpenAIRE

    Olson, Randal S.; Hintze, Arend; Dyer, Fred C.; Knoester, David B.; Adami, Christoph

    2012-01-01

    Swarming behaviors in animals have been extensively studied due to their implications for the evolution of cooperation, social cognition, and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favor the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model...

  13. Capture of Planetesimals into a Circumterrestrial Swarm

    Science.gov (United States)

    Weidenschilling, S. J.

    1985-01-01

    The lunar origin model considered in this report involves processing of protolunar material through a circumterrestrial swarm of particles. Once such a swarm has formed, it can gain mass by capturing infalling planetesimals and ejecta from giant impacts on the Earth, although the angular momentum supply from these sources remains a problem. The first stage of formation of a geocentric swarm by capture of planetesimals from initially heliocentric orbits is examined. The only plausible capture mechanism that is not dependent on very low approach velocities is the mutual collision of planetesimals passing within Earth's sphere of influence. The dissipation of energy in inelastic collisions or accretion events changes the value of the Jacobi parameter, allowing capture into bound geocentric orbits. This capture scenario was tested directly by many body numerical integration of planetesimal orbits in near Earth space.

  14. Swarm analysis by using transport equations, 1

    International Nuclear Information System (INIS)

    Dote, Toshihiko; Shimada, Masatoshi

    1980-01-01

    By evolving Maxwell-Boltzmann transport equations, various quantities on swarm of charged particles have been analyzed. Although this treatment is properly general, and common transport equations for charged particles ought to be given, in particular, equations only for electrons were presented here. The relation between the random energy and the drift energy was first derived and the general expression of the electron velocity was deduced too. For a simple example, one dimensional steady-state electron swarm in a uniform medium was treated. Electron swarm characteristics numerically calculated in He, Ne or Ar exhibited some interesting properties, which were physically clearly elucidated. These results were also compared with several data already published. Agreements between them were qualitatively rather well in detailed structures. (author)

  15. Merging the fields of swarm robotics and new media: Perceiving swarm robotics as new media

    OpenAIRE

    Monika O. Ivanova; Micael S. Couceiro; Fernando M. L. Martins

    2014-01-01

    The aim of this paper is to provide evidence that swarm robotic systems can be perceived as new media objects. A thorough description of the five principles of new media proposed by Lev Manovich in “The Language of New Media” is presented. This is complemented by a state of the art on swarm robotics with an in-depth comparison of the characteristics of both fields. Also presented are examples of swarm robotics used in new media installations in order to illustrate the cuttin...

  16. Bacterial Swarming: social behaviour or hydrodynamics?

    Science.gov (United States)

    Vermant, Jan

    2010-03-01

    Bacterial swarming of colonies is typically described as a social phenomenon between bacteria, whereby groups of bacteria collectively move atop solid surfaces. This multicellular behavior, during which the organized bacterial populations are embedded in an extracellular slime layer, is connected to important features such as biofilm formation and virulence. Despite the possible intricate quorum sensing mechanisms that regulate swarming, several physico-chemical phenomena may play a role in the dynamics of swarming and biofilm formation. Especially the striking fingering patterns formed by some swarmer colonies on relatively soft sub phases have attracted the attention as they could be the signatures of an instability. Recently, a parallel has been drawn between the swarming patterns and the spreading of viscous drops under the influence of a surfactant, which lead to similar patterns [1]. Starting from the observation that several of the molecules, essential in swarming systems, are strong biosurfactants, the possibility of flows driven by gradients in surface tension, has been proposed. This Marangoni flows are known to lead to these characteristic patterns. For Rhizobium etli not only the pattern formation, but also the experimentally observed spreading speed has been shown to be consistent with the one expected for Marangoni flows for the surface pressures, thickness, and viscosities that have been observed [2]. We will present an experimental study of swarming colonies of the bacteria Pseudomonas aeruginosa, the pattern formation, the surfactant gradients and height profiles in comparison with predictions of a thin film hydrodynamic model.[4pt] [1] Matar O.K. and Troian S., Phys. Fluids 11 : 3232 (1999)[0pt] [2] Daniels, R et al., PNAS, 103 (40): 14965-14970 (2006)

  17. Software Engineering and Swarm-Based Systems

    Science.gov (United States)

    Hinchey, Michael G.; Sterritt, Roy; Pena, Joaquin; Rouff, Christopher A.

    2006-01-01

    We discuss two software engineering aspects in the development of complex swarm-based systems. NASA researchers have been investigating various possible concept missions that would greatly advance future space exploration capabilities. The concept mission that we have focused on exploits the principles of autonomic computing as well as being based on the use of intelligent swarms, whereby a (potentially large) number of similar spacecraft collaborate to achieve mission goals. The intent is that such systems not only can be sent to explore remote and harsh environments but also are endowed with greater degrees of protection and longevity to achieve mission goals.

  18. Novelty-driven Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Galvao, Diana; Lehman, Joel Anthony; Urbano, Paulo

    2015-01-01

    Particle Swarm Optimization (PSO) is a well-known population-based optimization algorithm. Most often it is applied to optimize objective-based fitness functions that reward progress towards a desired objective or behavior. As a result, search increasingly focuses on higher-fitness areas. However......, in problems with many local optima, such focus often leads to premature convergence that precludes reaching the intended objective. To remedy this problem in certain types of domains, this paper introduces Novelty-driven Particle Swarm Optimization (NdPSO), which is motivated by the novelty search algorithm...

  19. Swarm v2: highly-scalable and high-resolution amplicon clustering

    Directory of Open Access Journals (Sweden)

    Frédéric Mahé

    2015-12-01

    Full Text Available Previously we presented Swarm v1, a novel and open source amplicon clustering program that produced fine-scale molecular operational taxonomic units (OTUs, free of arbitrary global clustering thresholds and input-order dependency. Swarm v1 worked with an initial phase that used iterative single-linkage with a local clustering threshold (d, followed by a phase that used the internal abundance structures of clusters to break chained OTUs. Here we present Swarm v2, which has two important novel features: (1 a new algorithm for d = 1 that allows the computation time of the program to scale linearly with increasing amounts of data; and (2 the new fastidious option that reduces under-grouping by grafting low abundant OTUs (e.g., singletons and doubletons onto larger ones. Swarm v2 also directly integrates the clustering and breaking phases, dereplicates sequencing reads with d = 0, outputs OTU representatives in fasta format, and plots individual OTUs as two-dimensional networks.

  20. Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains

    International Nuclear Information System (INIS)

    Dutta, Rajdeep; Ganguli, Ranjan; Mani, V

    2011-01-01

    Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures

  1. Improving Vector Evaluated Particle Swarm Optimisation by incorporating nondominated solutions.

    Science.gov (United States)

    Lim, Kian Sheng; Ibrahim, Zuwairie; Buyamin, Salinda; Ahmad, Anita; Naim, Faradila; Ghazali, Kamarul Hawari; Mokhtar, Norrima

    2013-01-01

    The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm.

  2. Swarm formation control utilizing elliptical surfaces and limiting functions.

    Science.gov (United States)

    Barnes, Laura E; Fields, Mary Anne; Valavanis, Kimon P

    2009-12-01

    In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).

  3. Improving Vector Evaluated Particle Swarm Optimisation by Incorporating Nondominated Solutions

    Directory of Open Access Journals (Sweden)

    Kian Sheng Lim

    2013-01-01

    Full Text Available The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm.

  4. SWARM-BOT: Pattern Formation in a Swarm of Self-Assembling Mobile Robots

    OpenAIRE

    El Kamel, A.; Mellouli, K.; Borne, P.; Sahin, E.; Labella, T.H.; Trianni, V.; Deneubourg, J.-L.; Rasse, P.; Floreano, D.; Gambardella, L.M.; Mondada, F.; Nolfi, S.; Dorigo, M.

    2002-01-01

    In this paper we introduce a new robotic system, called swarm-bot. The system consists of a swarm of mobile robots with the ability to connect to/disconnect from each other to self-assemble into different kinds of structures. First, we describe our vision and the goals of the project. Then we present preliminary results on the formation of patterns obtained from a grid-world simulation of the system.

  5. Complex emergent dynamics of anisotropic swarms: Convergence vs oscillation

    International Nuclear Information System (INIS)

    Chu Tianguang; Wang Long; Chen Tongwen; Mu Shumei

    2006-01-01

    This paper considers an anisotropic swarm model with a simple attraction and repulsion function. It is shown that the members of a reciprocal swarm will aggregate and eventually form a cohesive cluster of finite size around the swarm center. Moreover, the swarm system is also completely stable, i.e., every solution converges to the set of equilibrium points of the system. These results are also valid for a class of non-reciprocal swarms under the detailed balance condition on coupling weights. For general non-reciprocal swarms, numerical simulations are worked out to demonstrate more complex oscillatory motions in the systems. The study provides further insight into the effect of the interaction pattern on the collective behavior of a swarm system

  6. DNA-assisted swarm control in a biomolecular motor system.

    Science.gov (United States)

    Keya, Jakia Jannat; Suzuki, Ryuhei; Kabir, Arif Md Rashedul; Inoue, Daisuke; Asanuma, Hiroyuki; Sada, Kazuki; Hess, Henry; Kuzuya, Akinori; Kakugo, Akira

    2018-01-31

    In nature, swarming behavior has evolved repeatedly among motile organisms because it confers a variety of beneficial emergent properties. These include improved information gathering, protection from predators, and resource utilization. Some organisms, e.g., locusts, switch between solitary and swarm behavior in response to external stimuli. Aspects of swarming behavior have been demonstrated for motile supramolecular systems composed of biomolecular motors and cytoskeletal filaments, where cross-linkers induce large scale organization. The capabilities of such supramolecular systems may be further extended if the swarming behavior can be programmed and controlled. Here, we demonstrate that the swarming of DNA-functionalized microtubules (MTs) propelled by surface-adhered kinesin motors can be programmed and reversibly regulated by DNA signals. Emergent swarm behavior, such as translational and circular motion, can be selected by tuning the MT stiffness. Photoresponsive DNA containing azobenzene groups enables switching between solitary and swarm behavior in response to stimulation with visible or ultraviolet light.

  7. Symbiosis-Based Alternative Learning Multi-Swarm Particle Swarm Optimization.

    Science.gov (United States)

    Niu, Ben; Huang, Huali; Tan, Lijing; Duan, Qiqi

    2017-01-01

    Inspired by the ideas from the mutual cooperation of symbiosis in natural ecosystem, this paper proposes a new variant of PSO, named Symbiosis-based Alternative Learning Multi-swarm Particle Swarm Optimization (SALMPSO). A learning probability to select one exemplar out of the center positions, the local best position, and the historical best position including the experience of internal and external multiple swarms, is used to keep the diversity of the population. Two different levels of social interaction within and between multiple swarms are proposed. In the search process, particles not only exchange social experience with others that are from their own sub-swarms, but also are influenced by the experience of particles from other fellow sub-swarms. According to the different exemplars and learning strategy, this model is instantiated as four variants of SALMPSO and a set of 15 test functions are conducted to compare with some variants of PSO including 10, 30 and 50 dimensions, respectively. Experimental results demonstrate that the alternative learning strategy in each SALMPSO version can exhibit better performance in terms of the convergence speed and optimal values on most multimodal functions in our simulation.

  8. Updating the CHAOS series of field models using Swarm data and resulting candidate models for IGRF-12

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Tøffner-Clausen, Lars

    th order spline representation with knot points spaced at 0.5 year intervals. The resulting field model is able to consistently fit data from six independent low Earth orbit satellites: Oersted, CHAMP, SAC-C and the three Swarm satellites. As an example, we present comparisons of the excellent model...... therefore conclude that Swarm data is suitable for building high-resolution models of the large-scale internal field, and proceed to extract IGRF-12 candidate models for the main field in epochs 2010 and 2015, as well as the predicted linear secular variarion for 2015-2020. The properties of these IGRF...... candidate models are briefly presented....

  9. Swarm Level 2 Comprehensive Inversion, 2016 Production

    DEFF Research Database (Denmark)

    Tøffner-Clausen, Lars; Sabaka, Terence; Olsen, Nils

    In the framework of the ESA Earth Observation Magnetic Mapping Mission Swarm, the Expert Support Laboratories (ESL) provides high quality Level 2 Products describing a.o. the magnetic fields of the Earth. This poster provides details of the Level 2 Products from the Comprehensive Inversion chain...

  10. On the reliability of spacecraft swarms

    NARCIS (Netherlands)

    Engelen, S.; Gill, E.K.A.; Verhoeven, C.J.M.

    2012-01-01

    Satellite swarms, consisting of a large number of identical, miniaturized and simple satellites, are claimed to provide an implementation for specific space missions which require high reliability. However, a consistent model of how reliability and availability on mission level is linked to cost-

  11. Structural preconditions of West Bohemia earthquake swarms

    Czech Academy of Sciences Publication Activity Database

    Novotný, Miroslav; Špičák, Aleš; Weinlich, F. H.

    2013-01-01

    Roč. 34, č. 4 (2013), s. 491-519 ISSN 0169-3298 R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : West Bohemia earthquake swarm s * depth-recursive refraction tomography * CEL09 refraction profile Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 5.112, year: 2013

  12. Data distribution in the OLFAR satellite swarm

    NARCIS (Netherlands)

    Budianu, A.; Willink-Castro, T.J.; Engelen, S.; Rajan, R.T.; Rajan, Raj; Smith, D.M.P.; Meijerink, Arjan; Bentum, Marinus Jan

    2013-01-01

    The Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR) project aims to develop a radio telescope for very low frequencies (below 30 MHz) by using a swarm of 50 or more nano-satellites. Spread in a 100-km diameter cloud, the satellites will form a very large aperture capable of sensing the

  13. Bubble Swarm Rise Velocity in Fluidized Beds.

    Czech Academy of Sciences Publication Activity Database

    Punčochář, Miroslav; Růžička, Marek; Šimčík, Miroslav

    2016-01-01

    Roč. 152, OCT 2 (2016), s. 84-94 ISSN 0009-2509 R&D Projects: GA ČR(CZ) GA15-05534S Institutional support: RVO:67985858 Keywords : bubbling fluidized bed * gas-solid * bubble swarm velocity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.895, year: 2016

  14. Locating multiple optima using particle swarm optimization

    CSIR Research Space (South Africa)

    Brits, R

    2007-01-01

    Full Text Available in [37]). Faure-sequences are distributed with high uniformity within a n-dimensional unit cube. Other pseudo-random uniform number generators, such as Sobol-sequences [33], may also be used. Main swarm training: In the nbest algorithm, overlapping...

  15. Ion swarm data for electrical discharge modeling in air and flue gas mixtures

    International Nuclear Information System (INIS)

    Nelson, D.; Benhenni, M.; Eichwald, O.; Yousfi, M.

    2003-01-01

    The first step of this work is the determination of the elastic and inelastic ion-molecule collision cross sections for the main ions (N 2 + , O 2 + , CO 2 + , H 2 O + and O - ) usually present either in the air or flue gas discharges. The obtained cross section sets, given for ion kinetic energies not exceeding 100 eV, correspond to the interactions of each ion with its parent molecule (symmetric case) or nonparent molecule (asymmetric case). Then by using these different cross section sets, it is possible to obtain the ion swarm data for the different gas mixtures involving N 2 , CO 2 , H 2 O and O 2 molecules whatever their relative proportions. These ion swarm data are obtained from an optimized Monte Carlo method well adapted for the ion transport in gas mixtures. This also allows us to clearly show that the classical linear approximations usually applied for the ion swarm data in mixtures such as Blanc's law are far to be valid. Then, the ion swarm data are given in three cases of gas mixtures: a dry air (80% N 2 , 20% O 2 ), a ternary gas mixture (82% N 2 , 12% CO 2 , 6% O 2 ) and a typical flue gas (76% N 2 , 12% CO 2 , 6% O 2 , 6% H 2 O). From these reliable ion swarm data, electrical discharge modeling for a wire to plane electrode configuration has been carried out in these three mixtures at the atmospheric pressure for different applied voltages. Under the same discharge conditions, large discrepancies in the streamer formation and propagation have been observed in these three mixture cases. They are due to the deviations existing not only between the different effective electron-molecule ionization rates but also between the ion transport properties mainly because of the presence of a highly polar molecule such as H 2 O. This emphasizes the necessity to properly consider the ion transport in the discharge modeling

  16. Bifurcating Particle Swarms in Smooth-Walled Fractures

    Science.gov (United States)

    Pyrak-Nolte, L. J.; Sun, H.

    2010-12-01

    Particle swarms can occur naturally or from industrial processes where small liquid drops containing thousands to millions of micron-size to colloidal-size particles are released over time from seepage or leaks into fractured rock. The behavior of these particle swarms as they fall under gravity are affected by particle interactions as well as interactions with the walls of the fractures. In this paper, we present experimental results on the effect of fractures on the cohesiveness of the swarm and the formation of bifurcation structures as they fall under gravity and interact with the fracture walls. A transparent cubic sample (100 mm x 100 mm x 100 mm) containing a synthetic fracture with uniform aperture distributions was optically imaged to quantify the effect of confinement within fractures on particle swarm formation, swarm velocity, and swarm geometry. A fracture with a uniform aperture distribution was fabricated from two polished rectangular prisms of acrylic. A series of experiments were performed to determine how swarm movement and geometry are affected as the walls of the fracture are brought closer together from 50 mm to 1 mm. During the experiments, the fracture was fully saturated with water. We created the swarms using two different particle sizes in dilute suspension (~ 1.0% by mass). The particles were 3 micron diameter fluorescent polymer beads and 25 micron diameter soda-lime glass beads. Experiments were performed using swarms that ranged in size from 5 µl to 60 µl. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera illuminated by a 100 mW diode-pumped doubled YAG laser. As a swarm falls in an open-tank of water, it forms a torroidal shape that is stable as long as no ambient or background currents exist in the water tank. When a swarm is released into a fracture with an aperture less than 5 mm, the swarm forms the torroidal shape but it is distorted because of the presence of the walls. The

  17. Scaling and spatial complementarity of tectonic earthquake swarms

    KAUST Repository

    Passarelli, Luigi

    2017-11-10

    Tectonic earthquake swarms (TES) often coincide with aseismic slip and sometimes precede damaging earthquakes. In spite of recent progress in understanding the significance and properties of TES at plate boundaries, their mechanics and scaling are still largely uncertain. Here we evaluate several TES that occurred during the past 20 years on a transform plate boundary in North Iceland. We show that the swarms complement each other spatially with later swarms discouraged from fault segments activated by earlier swarms, which suggests efficient strain release and aseismic slip. The fault area illuminated by earthquakes during swarms may be more representative of the total moment release than the cumulative moment of the swarm earthquakes. We use these findings and other published results from a variety of tectonic settings to discuss general scaling properties for TES. The results indicate that the importance of TES in releasing tectonic strain at plate boundaries may have been underestimated.

  18. Improved particle swarm optimization combined with chaos

    International Nuclear Information System (INIS)

    Liu Bo; Wang Ling; Jin Yihui; Tang Fang; Huang Dexian

    2005-01-01

    As a novel optimization technique, chaos has gained much attention and some applications during the past decade. For a given energy or cost function, by following chaotic ergodic orbits, a chaotic dynamic system may eventually reach the global optimum or its good approximation with high probability. To enhance the performance of particle swarm optimization (PSO), which is an evolutionary computation technique through individual improvement plus population cooperation and competition, hybrid particle swarm optimization algorithm is proposed by incorporating chaos. Firstly, adaptive inertia weight factor (AIWF) is introduced in PSO to efficiently balance the exploration and exploitation abilities. Secondly, PSO with AIWF and chaos are hybridized to form a chaotic PSO (CPSO), which reasonably combines the population-based evolutionary searching ability of PSO and chaotic searching behavior. Simulation results and comparisons with the standard PSO and several meta-heuristics show that the CPSO can effectively enhance the searching efficiency and greatly improve the searching quality

  19. Diffusion tensor in electron swarm transport

    International Nuclear Information System (INIS)

    Makabe, T.; Mori, T.

    1983-01-01

    Expression for the diffusion tensor of the electron (or light ion) swarm is presented from the higher-order expansion of the velocity distribution in the Boltzmann equation in hydrodynamic stage. Derived diffusion coefficients for the transverse and longitudinal directions include the additional terms representative of the curvature effect under the action of an electric field with the usual-two-term expressions. Numerical analysis is given for the electron swarm in model gases having the momentum transfer cross section Qsub(m)(epsilon)=Q 0 epsilon sup(beta) (β=0, 1/2, 1) using the present theory. As the result, appreciable degree of discrepancy appears between the transverse diffusion coefficient defined here and the conventional expression with increasing of β in Qsub(m). (Author)

  20. Glowworm swarm optimization theory, algorithms, and applications

    CERN Document Server

    Kaipa, Krishnanand N

    2017-01-01

    This book provides a comprehensive account of the glowworm swarm optimization (GSO) algorithm, including details of the underlying ideas, theoretical foundations, algorithm development, various applications, and MATLAB programs for the basic GSO algorithm. It also discusses several research problems at different levels of sophistication that can be attempted by interested researchers. The generality of the GSO algorithm is evident in its application to diverse problems ranging from optimization to robotics. Examples include computation of multiple optima, annual crop planning, cooperative exploration, distributed search, multiple source localization, contaminant boundary mapping, wireless sensor networks, clustering, knapsack, numerical integration, solving fixed point equations, solving systems of nonlinear equations, and engineering design optimization. The book is a valuable resource for researchers as well as graduate and undergraduate students in the area of swarm intelligence and computational intellige...

  1. Simultaneous Perturbation Particle Swarm Optimization and Its FPGA Implementation

    OpenAIRE

    Maeda, Yutaka; Matsushita, Naoto

    2009-01-01

    In this paper, we presented hardware implementation of the particle swarm optimization algorithm which is combination of the ordinary particle swarm optimization and the simultaneous perturbation method. FPGA is used to realize the system. This algorithm utilizes local information of objective function effectively without lack of advantage of the original particle swarm optimization. Moreover, the FPGA implementation gives higher operation speed effectively using parallelism of the particle s...

  2. INHIBITION OF SWARMING BY UREA AND ITS DIAGNOSTIC ...

    African Journals Online (AJOL)

    The anti-swarming property of urea and effects on antibiotic susceptibility among 52 uropathogenic Proteus strains from Lagos, Nigeria were investigated. Urea caused a reduction in swarming and number of swarmed cells at 0.5% (n = 42, DOCZ = 15.5mm), 0.75% (n= 24, DOCZ = 10.7mm), 1% (n = 17, DOCZ = 3.4mm) and ...

  3. A Profound Survey on Swarm Intelligence

    OpenAIRE

    Manish Mahant; Bharat Choudhary; Abhishek Kesharwani; Kalyani Singh Rathore

    2012-01-01

    Swarm Intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. The inspiration often comes from nature, especially biological systems. The expression was introduced by Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems. SI systems are typically made up of a population of simple agents or boids interacting locally with one another and their environment. T...

  4. Efficient Networks Communication Routing Using Swarm Intelligence

    OpenAIRE

    Koushal Kumar

    2012-01-01

    As demonstrated by natural biological swarm’s collective intelligence has an abundance of desirable properties for problem-solving like in network routing. The focus of this paper is in the applications of swarm based intelligence in information routing for communication networks. As we know networks are growing and adopting new platforms as new technologies comes. Also according to new demands and requirements networks topologies and its complexity is increasing with time. Thus it is becomin...

  5. A Review of Particle Swarm Optimization

    Science.gov (United States)

    Jain, N. K.; Nangia, Uma; Jain, Jyoti

    2018-03-01

    This paper presents an overview of the research progress in Particle Swarm Optimization (PSO) during 1995-2017. Fifty two papers have been reviewed. They have been categorized into nine categories based on various aspects. This technique has attracted many researchers because of its simplicity which led to many improvements and modifications of the basic PSO. Some researchers carried out the hybridization of PSO with other evolutionary techniques. This paper discusses the progress of PSO, its improvements, modifications and applications.

  6. A Game Theoretic Approach to Swarm Robotics

    Directory of Open Access Journals (Sweden)

    S. N. Givigi

    2006-01-01

    Full Text Available In this article, we discuss some techniques for achieving swarm intelligent robots through the use of traits of personality. Traits of personality are characteristics of each robot that, altogether, define the robot's behaviours. We discuss the use of evolutionary psychology to select a set of traits of personality that will evolve due to a learning process based on reinforcement learning. The use of Game Theory is introduced, and some simulations showing its potential are reported.

  7. Foraging behavior analysis of swarm robotics system

    Directory of Open Access Journals (Sweden)

    Sakthivelmurugan E.

    2018-01-01

    Full Text Available Swarm robotics is a number of small robots that are synchronically works together to accomplish a given task. Swarm robotics faces many problems in performing a given task. The problems are pattern formation, aggregation, Chain formation, self-assembly, coordinated movement, hole avoidance, foraging and self-deployment. Foraging is most essential part in swarm robotics. Foraging is the task to discover the item and get back into the shell. The researchers conducted foraging experiments with random-movement of robots and they have end up with unique solutions. Most of the researchers have conducted experiments using the circular arena. The shell is placed at the centre of the arena and environment boundary is well known. In this study, an attempt is made to different strategic movements like straight line approach, parallel line approach, divider approach, expanding square approach, and parallel sweep approach. All these approaches are to be simulated by using player/stage open-source simulation software based on C and C++ programming language in Linux operating system. Finally statistical comparison will be done with task completion time of all these strategies using ANOVA to identify the significant searching strategy.

  8. A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.

    Science.gov (United States)

    Sun, Tao; Xu, Ming-Hai

    2017-01-01

    Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.

  9. Details of microearthquake swarms in the Columbia basin, Washington

    International Nuclear Information System (INIS)

    Malone, S.D.; Rothe, G.H.; Smith, S.W.

    1975-01-01

    Three microearthquake swarms in the Columbia River basin of eastern Washington were studied by means of a small portable seismic network. Earthquakes in this area typically occur in swarms, concentrated both temporally and spatially. One unusual characteristic of the three swarms studied was the shallow focal depths of all events. Most events located had depths less than 1 km; none were deeper than 2 km. Composite focal mechanism solutions indicate that more than one fault surface is active in any one swarm. All events had some thrust component with the axis of maximum compression oriented roughly in a north-south direction. (auth)

  10. Simultaneous field-aligned currents at Swarm and Cluster satellites

    DEFF Research Database (Denmark)

    Dunlop, M. W.; Yang, J. Y.; Yang, Y. Y.

    2015-01-01

    altitude) orbits using a particular Swarm and Cluster conjunction. The Cluster signatures are interpreted and ordered through joint mapping of the ground/magnetospheric footprints and estimation of the auroral zone boundaries (taken as indication of the boundaries of Region 1 and Region 2 currents). We...... find clear evidence of both small-scale and large-scale FACs and clear matching of the behavior and structure of the large-scale currents at both Cluster and Swarm. The methodology is made possible through the joint operations of Cluster and Swarm, which contain, in the first several months of Swarm...

  11. Collective motion of a class of social foraging swarms

    International Nuclear Information System (INIS)

    Liu Bo; Chu Tianguang; Wang Long; Wang Zhanfeng

    2008-01-01

    This paper considers a class of social foraging swarms with a nutrient profile (or an attractant/repellent) and an attraction-repulsion coupling function, which is chosen to guarantee collision avoidance between individuals. The paper also studies non-identical interaction ability or efficiency among different swarm individuals for different profiles. The swarm behavior is a result of a balance between inter-individual interplays as well as the interplays of the swarm individuals (agents) with their environment. It is proved that the individuals of a quasi-reciprocal swarm will aggregate and eventually form a cohesive cluster of finite size for different profiles. It is also shown that the swarm system is completely stable, that is, every solution converges to the set of equilibrium points of the system. Moreover, all the swarm individuals will converge to more favorable areas of the profile under certain conditions. For general non-reciprocal swarms, numerical simulations show that more complex self-organized rotation may occur in the swarms

  12. Collective motion with anticipation: flocking, spinning, and swarming.

    Science.gov (United States)

    Morin, Alexandre; Caussin, Jean-Baptiste; Eloy, Christophe; Bartolo, Denis

    2015-01-01

    We investigate the collective dynamics of self-propelled particles able to probe and anticipate the orientation of their neighbors. We show that a simple anticipation strategy hinders the emergence of homogeneous flocking patterns. Yet anticipation promotes two other forms of self-organization: collective spinning and swarming. In the spinning phase, all particles follow synchronous circular orbits, while in the swarming phase, the population condensates into a single compact swarm that cruises coherently without requiring any cohesive interactions. We quantitatively characterize and rationalize these phases of polar active matter and discuss potential applications to the design of swarming robots.

  13. The upper surface of an Escherichia coli swarm is stationary.

    Science.gov (United States)

    Zhang, Rongjing; Turner, Linda; Berg, Howard C

    2010-01-05

    When grown in a rich medium on agar, many bacteria elongate, produce more flagella, and swim in a thin film of fluid over the agar surface in swirling packs. Cells that spread in this way are said to swarm. The agar is a solid gel, with pores smaller than the bacteria, so the swarm/agar interface is fixed. Here we show, in experiments with Escherichia coli, that the swarm/air interface also is fixed. We deposited MgO smoke particles on the top surface of an E. coli swarm near its advancing edge, where cells move in a single layer, and then followed the motion of the particles by dark-field microscopy and the motion of the underlying cells by phase-contrast microscopy. Remarkably, the smoke particles remained fixed (diffusing only a few micrometers) while the swarming cells streamed past underneath. The diffusion coefficients of the smoke particles were smaller over the virgin agar ahead of the swarm than over the swarm itself. Changes between these two modes of behavior were evident within 10-20 microm of the swarm edge, indicating an increase in depth of the fluid in advance of the swarm. The only plausible way that the swarm/air interface can be fixed is that it is covered by a surfactant monolayer pinned at its edges. When a swarm is exposed to air, such a monolayer can markedly reduce water loss. When cells invade tissue, the ability to move rapidly between closely opposed fixed surfaces is a useful trait.

  14. From organized internal traffic to collective navigation of bacterial swarms

    International Nuclear Information System (INIS)

    Ariel, Gil; Shklarsh, Adi; Kalisman, Oren; Ben-Jacob, Eshel; Ingham, Colin

    2013-01-01

    Bacterial swarming resulting in collective navigation over surfaces provides a valuable example of cooperative colonization of new territories. The social bacterium Paenibacillus vortex exhibits successful and diverse swarming strategies. When grown on hard agar surfaces with peptone, P. vortex develops complex colonies of vortices (rotating bacterial aggregates). In contrast, during growth on Mueller–Hinton broth gelled into a soft agar surface, a new strategy of multi-level organization is revealed: the colonies are organized into a special network of swarms (or ‘snakes’ of a fraction of millimeter in width) with intricate internal traffic. More specifically, cell movement is organized in two or three lanes of bacteria traveling between the back and the front of the swarm. This special form of cellular logistics suggests new methods in which bacteria can share resources and risk while searching for food or migrating into new territories. While the vortices-based organization on hard agar surfaces has been modeled before, here, we introduce a new multi-agent bacterial swarming model devised to capture the swarms-based organization on soft surfaces. We test two putative generic mechanisms that may underlie the observed swarming logistics: (i) chemo-activated taxis in response to chemical cues and (ii) special align-and-push interactions between the bacteria and the boundary of the layer of lubricant collectively generated by the swarming bacteria. Using realistic parameters, the model captures the observed phenomena with semi-quantitative agreement in terms of the velocity as well as the dynamics of the swarm and its envelope. This agreement implies that the bacteria interactions with the swarm boundary play a crucial role in mediating the interplay between the collective movement of the swarm and the internal traffic dynamics. (paper)

  15. Agent-Based Simulation and Analysis of a Defensive UAV Swarm Against an Enemy UAV Swarm

    Science.gov (United States)

    2011-06-01

    energy options” [10]. The research of swarm robotics derives much of its inspiration from natural systems. Social insects are known to coordinate their...Monterey, California 9. CPT. Francisco J. Hederra Direccion de Investigacion, Programas y Desarrollo de la Armada Armada de Chile CHILE 10. CAPT Jeffrey Kline, USN(ret.) Naval Postgraduate School Monterey, California 91

  16. Level-2 product generation for the Swarm satellite constellation mission

    DEFF Research Database (Denmark)

    Olsen, Poul Erik Holmdahl; Tøffner-Clausen, Lars; Olsen, Nils

    In order to take advantage of the unique constellation aspect of ESA's Swarm constellation mission, considerably advanced data analysis tools have been developed. The Swarm ESL/SCARF (Satellite Constellation Application and Research Facility), a consortium of several research institutions, derives...

  17. Swarming modulatory effects of some amino acids on Proteus ...

    African Journals Online (AJOL)

    Swarming motility, a multicellular behaviour characterized by periodic concentric growth on solid media has severally been reported as a constraint in the clinical investigation of mixed-culture infections involving Proteus and as a requirement for virulence. While media are being formulated to restrain swarming in this ...

  18. A persistent homology approach to collective behavior in insect swarms

    Science.gov (United States)

    Sinhuber, Michael; Ouellette, Nicholas T.

    Various animals from birds and fish to insects tend to form aggregates, displaying self-organized collective swarming behavior. Due to their frequent occurrence in nature and their implications for engineered, collective systems, these systems have been investigated and modeled thoroughly for decades. Common approaches range from modeling them with coupled differential equations on the individual level up to continuum approaches. We present an alternative, topology-based approach for describing swarming behavior at the macroscale rather than the microscale. We study laboratory swarms of Chironomus riparius, a flying, non-biting midge. To obtain the time-resolved three-dimensional trajectories of individual insects, we use a multi-camera stereoimaging and particle-tracking setup. To investigate the swarming behavior in a topological sense, we employ a persistent homology approach to identify persisting structures and features in the insect swarm that elude a direct, ensemble-averaging approach. We are able to identify features of sub-clusters in the swarm that show behavior distinct from that of the remaining swarm members. The coexistence of sub-swarms with different features resembles some non-biological systems such as active colloids or even thermodynamic systems.

  19. The Dienes phenomenon: competition and territoriality in Swarming Proteus mirabilis

    NARCIS (Netherlands)

    Budding, A. E.; Ingham, C. J.; Bitter, W.; Vandenbroucke-Grauls, C. M.; Schneeberger, P. M.

    2009-01-01

    When two different strains of swarming Proteus mirabilis encounter one another on an agar plate, swarming ceases and a visible line of demarcation forms. This boundary region is known as the Dienes line and is associated with the formation of rounded cells. While the Dienes line appears to be the

  20. Particle swarm optimization with random keys applied to the nuclear reactor reload problem

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson Alvarenga de Moura [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear; Fundacao Educacional de Macae (FUNEMAC), RJ (Brazil). Faculdade Professor Miguel Angelo da Silva Santos; Machado, Marcelo Dornellas; Medeiros, Jose Antonio Carlos Canedo; Schirru, Roberto [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: ameneses@con.ufrj.br; marcelo@lmp.ufrj.br; canedo@lmp.ufrj.br; schirru@lmp.ufrj.br

    2007-07-01

    In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)

  1. Particle swarm optimization with random keys applied to the nuclear reactor reload problem

    International Nuclear Information System (INIS)

    Meneses, Anderson Alvarenga de Moura; Fundacao Educacional de Macae; Machado, Marcelo Dornellas; Medeiros, Jose Antonio Carlos Canedo; Schirru, Roberto

    2007-01-01

    In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)

  2. Formations of Robotic Swarm: An Artificial Force Based Approach

    Directory of Open Access Journals (Sweden)

    Samitha W. Ekanayake

    2009-03-01

    Full Text Available Cooperative control of multiple mobile robots is an attractive and challenging problem which has drawn considerable attention in the recent past. This paper introduces a scalable decentralized control algorithm to navigate a group of mobile robots (swarm into a predefined shape in 2D space. The proposed architecture uses artificial forces to control mobile agents into the shape and spread them inside the shape while avoiding inter-member collisions. The theoretical analysis of the swarm behavior describes the motion of the complete swarm and individual members in relevant situations. We use computer simulated case studies to verify the theoretical assertions and to demonstrate the robustness of the swarm under external disturbances such as death of agents, change of shape etc. Also the performance of the proposed distributed swarm control architecture was investigated in the presence of realistic implementation issues such as localization errors, communication range limitations, boundedness of forces etc.

  3. Formations of Robotic Swarm: An Artificial Force Based Approach

    Directory of Open Access Journals (Sweden)

    Samitha W. Ekanayake

    2010-09-01

    Full Text Available Cooperative control of multiple mobile robots is an attractive and challenging problem which has drawn considerable attention in the recent past. This paper introduces a scalable decentralized control algorithm to navigate a group of mobile robots (swarm into a predefined shape in 2D space. The proposed architecture uses artificial forces to control mobile agents into the shape and spread them inside the shape while avoiding inter-member collisions. The theoretical analysis of the swarm behavior describes the motion of the complete swarm and individual members in relevant situations. We use computer simulated case studies to verify the theoretical assertions and to demonstrate the robustness of the swarm under external disturbances such as death of agents, change of shape etc. Also the performance of the proposed distributed swarm control architecture was investigated in the presence of realistic implementation issues such as localization errors, communication range limitations, boundedness of forces etc.

  4. Formations of Robotic Swarm: An Artificial Force Based Approach

    Directory of Open Access Journals (Sweden)

    Samitha W. Ekanayake

    2009-03-01

    Full Text Available Cooperative control of multiple mobile robots is an attractive and challenging problem which has drawn considerable attention in the recent past. This paper introduces a scalable decentralized control algorithm to navigate a group of mobile robots (swarm into a predefined shape in 2D space. The proposed architecture uses artificial forces to control mobile agents into the shape and spread them inside the shape while avoiding inter- member collisions. The theoretical analysis of the swarm behavior describes the motion of the complete swarm and individual members in relevant situations. We use computer simulated case studies to verify the theoretical assertions and to demonstrate the robustness of the swarm under external disturbances such as death of agents, change of shape etc. Also the performance of the proposed distributed swarm control architecture was investigated in the presence of realistic implementation issues such as localization errors, communication range limitations, boundedness of forces etc.

  5. Formations of Robotic Swarm: An Artificial Force Based Approach

    Directory of Open Access Journals (Sweden)

    Samitha W. Ekanayake

    2010-09-01

    Full Text Available Cooperative control of multiple mobile robots is an attractive and challenging problem which has drawn considerable attention in the recent past. This paper introduces a scalable decentralized control algorithm to navigate a group of mobile robots (swarm into a predefined shape in 2D space. The proposed architecture uses artificial forces to control mobile agents into the shape and spread them inside the shape while avoiding inter- member collisions. The theoretical analysis of the swarm behavior describes the motion of the complete swarm and individual members in relevant situations. We use computer simulated case studies to verify the theoretical assertions and to demonstrate the robustness of the swarm under external disturbances such as death of agents, change of shape etc. Also the performance of the proposed distributed swarm control architecture was investigated in the presence of realistic implementation issues such as localization errors, communication range limitations, boundedness of forces etc.

  6. Benefits of collective intelligence: Swarm intelligent foraging, an ethnographic research

    Directory of Open Access Journals (Sweden)

    Sivave Mashingaidze

    2014-12-01

    Full Text Available Wisdom of crowds; bees, colonies of ants, schools of fish, flocks of birds, and fireflies flashing synchronously are all examples of highly coordinated behaviors that emerge from collective, decentralized intelligence. This article is an ethnographic study of swarm intelligence foraging of swarms and the benefits derived from collective decision making. The author used using secondary data analysis to look at the benefits of swarm intelligence in decision making to achieve intended goals. Concepts like combined decision making and consensus were discussed and four principles of swarm intelligence were also discussed viz; coordination, cooperation, deliberation and collaboration. The research found out that collective decision making in swarms is the touchstone of achieving their goals. The research further recommended corporate to adopt collective intelligence for business sustainability.

  7. Thermospheric neutral densities derived from Swarm accelerometer and GPS data

    DEFF Research Database (Denmark)

    Doornbos, Eelco; Encarnacao, Joao; van den IJss, Jose

    Over the past years, a lot of effort has been put into characterising and correcting the various disturbance signals that were found in the accelerometer data provided by the Swarm satellites. This effort was first and foremost aimed at the Swarm C along-track axis data, which seems to be the least...... affected and most promising data for scientific use. The goal to make the Swarm C accelerometer along-track axis data ready for further processing into level 2 thermosphere density data has now been accomplished, with the help of information on the satellite motion from the GPS tracking as well...... approach, affects the possibility of determining densities from the accelerometer measurements of the Swarm A and B satellites. We also investigate the possibility of determining crosswind speeds from Swarm data.In the meantime, we have investigated the possibility of deriving thermosphere neutral density...

  8. Transport of Particle Swarms Through Variable Aperture Fractures

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2012-12-01

    Particle transport through fractured rock is a key concern with the increased use of micro- and nano-size particles in consumer products as well as from other activities in the sub- and near surface (e.g. mining, industrial waste, hydraulic fracturing, etc.). While particle transport is often studied as the transport of emulsions or dispersions, particles may also enter the subsurface from leaks or seepage that lead to particle swarms. Swarms are drop-like collections of millions of colloidal-sized particles that exhibit a number of unique characteristics when compared to dispersions and emulsions. Any contaminant or engineered particle that forms a swarm can be transported farther, faster, and more cohesively in fractures than would be expected from a traditional dispersion model. In this study, the effects of several variable aperture fractures on colloidal swarm cohesiveness and evolution were studied as a swarm fell under gravity and interacted with the fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with (1) a uniform aperture, (2) a converging region followed by a uniform region (funnel shaped), (3) a uniform region followed by a diverging region (inverted funnel), and (4) a cast of a an induced fracture from a carbonate rock. All of the samples consisted of two blocks that measured 100 x 100 x 50 mm. The minimum separation between these blocks determined the nominal aperture (0.5 mm to 20 mm). During experiments a fracture was fully submerged in water and swarms were released into it. The swarms consisted of a dilute suspension of 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. The variation in fracture aperture controlled swarm behavior. Diverging apertures caused a sudden loss of confinement that resulted in a rapid change in the swarm's shape as well as a sharp increase in its velocity

  9. The Manchester earthquake swarm of October 2002

    Science.gov (United States)

    Baptie, B.; Ottemoeller, L.

    2003-04-01

    An earthquake sequence started in the Greater Manchester area of the United Kingdom on October 19, 2002. This has continued to the time of writing and has consisted of more than 100 discrete earthquakes. Three temporary seismograph stations were installed to supplement existing permanent stations and to better understand the relationship between the seismicity and local geology. Due to the urban location, these were experienced by a large number of people. The largest event on October 21 had a magnitude ML 3.9. The activity appears to be an earthquake swarm, since there is no clear distinction between a main shock and aftershocks. However, most of the energy during the sequence was actually released in two earthquakes separated by a few seconds in time, on October 21 at 11:42. Other examples of swarm activity in the UK include Comrie (1788-1801, 1839-46), Glenalmond (1970-72), Doune (1997) and Blackford (1997-98, 2000-01) in central Scotland, Constantine (1981, 1986, 1992-4) in Cornwall, and Johnstonbridge (mid1980s) and Dumfries (1991,1999). The clustering of these events in time and space does suggest that there is a causal relationship between the events of the sequence. Joint hypocenter determination was used to simultaneously locate the swarm earthquakes, determine station corrections and improve the relative locations. It seems likely that all events in the sequence originate from a relatively small source volume. This is supported by the similarities in source mechanism and waveform signals between the various events. Focal depths were found to be very shallow and of the order of about 2-3 km. Source mechanisms determined for the largest of the events show strike-slip solutions along either northeast-southwest or northwest-southeast striking fault planes. The surface expression of faults in the epicentral area is generally northwest-southeast, suggesting that this is the more likely fault plane.

  10. Do small swarms have an advantage when house hunting? The effect of swarm size on nest-site selection by Apis mellifera.

    Science.gov (United States)

    Schaerf, T M; Makinson, J C; Myerscough, M R; Beekman, M

    2013-10-06

    Reproductive swarms of honeybees are faced with the problem of finding a good site to establish a new colony. We examined the potential effects of swarm size on the quality of nest-site choice through a combination of modelling and field experiments. We used an individual-based model to examine the effects of swarm size on decision accuracy under the assumption that the number of bees actively involved in the decision-making process (scouts) is an increasing function of swarm size. We found that the ability of a swarm to choose the best of two nest sites decreases as swarm size increases when there is some time-lag between discovering the sites, consistent with Janson & Beekman (Janson & Beekman 2007 Proceedings of European Conference on Complex Systems, pp. 204-211.). However, when simulated swarms were faced with a realistic problem of choosing between many nest sites discoverable at all times, larger swarms were more accurate in their decisions than smaller swarms owing to their ability to discover nest sites more rapidly. Our experimental fieldwork showed that large swarms invest a larger number of scouts into the decision-making process than smaller swarms. Preliminary analysis of waggle dances from experimental swarms also suggested that large swarms could indeed discover and advertise nest sites at a faster rate than small swarms.

  11. Portfolio Optimization Using Particle Swarms with Stripes

    Directory of Open Access Journals (Sweden)

    Mario Villalobos Arias

    2011-04-01

    Full Text Available In this paper it is consider the Portfolio Optimization Problem developed by Markowitz [11]. The basic assumption is that the investor tries to maximize his/her profit and at the same time, wants to minimize the risk. This problem is usually solved using a scalarization approach (with one objective. Here it is solved it as a bi-objective  optimization problem. It uses a new version of the algorithm of Particle Swarm Optimization for Multi-Objective Problems to which it implemented a method of the stripes to improve dispersion.

  12. Swarming Robot Design, Construction and Software Implementation

    Science.gov (United States)

    Stolleis, Karl A.

    2014-01-01

    In this paper is presented an overview of the hardware design, construction overview, software design and software implementation for a small, low-cost robot to be used for swarming robot development. In addition to the work done on the robot, a full simulation of the robotic system was developed using Robot Operating System (ROS) and its associated simulation. The eventual use of the robots will be exploration of evolving behaviors via genetic algorithms and builds on the work done at the University of New Mexico Biological Computation Lab.

  13. Swarm Intelligence for Urban Dynamics Modelling

    International Nuclear Information System (INIS)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.

    2009-01-01

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  14. Anesthesiology Nurse Scheduling using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Leopoldo Altamirano

    2012-02-01

    Full Text Available In this article we present an approach designed to solve a real world problem: the Anesthesiology Nurse Scheduling Problem (ANSP at a public French hospital. The anesthesiology nurses are one of the most shared resources in the hospital and we attempt to find a fair/balanced schedule for them, taking into account a set of constraints and the nursesarsquo; stated preferences, concerning the different shifts. We propose a particle swarm optimization algorithm to solve the ANSP. Finally, we compare our technique with previous results obtained using integer programming.

  15. Swarm Intelligence for Urban Dynamics Modelling

    Science.gov (United States)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.

    2009-04-01

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  16. Hydrodynamics in a swarm of rising bubbles

    International Nuclear Information System (INIS)

    Riboux, G.

    2007-04-01

    In many applications, bubbles are used to agitate a liquid in order to enhance mixing and transfer. This work is devoted to the study of the hydrodynamics in a stable bubble column. Experimentally, we have determined the properties of the velocity fluctuations inside and behind a homogeneous swarm of rising bubbles for different bubble sizes and gas volume fractions α: self-similarity in α 0,4 , spectrum in k -3 and integral length scale controlled by buoyancy. Numerically, we have reproduced these properties by means of large-scale simulations, the bubbles being modeled by volume-forces. This confirms that the dynamics is controlled by wake interactions. (author)

  17. Collective motion in Proteus mirabilis swarms

    Science.gov (United States)

    Haoran, Xu

    Proteus mirabilisis a Gram-negative, rod-shaped bacterium. It is widely distributed in soil and water, and it is well known for exhibiting swarming motility on nutrient agar surfaces. In our study, we focused on the collective motility of P. mirabilis and uncovered a range of interesting phenomena. Here we will present our efforts to understand these phenomena through experiments and simulation. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail:xhrphx@gmail.com.

  18. Antarctic krill swarm characteristics in the Southeast Atlantic sector of the Southern Ocean

    KAUST Repository

    Krafft, BA

    2012-09-28

    Knowledge about swarm dynamics and underlying causes is essential to understand the ecology and distribution of Antarctic krill Euphausia superba. We collected acoustic data and key environmental data continuously across extensive gradients in the little-studied Southeast Atlantic sector of the Southern Ocean. A total of 4791 krill swarms with swarm descriptors including swarm height and length, packing density, swimming depth and inter-swarm distance were extracted. Through multivariate statistics, swarms were categorized into 4 groups. Group 2 swarms were largest (median length 108 m and thickness 18 m), whereas swarms in both Groups 1 and 4 were on average small, but differed markedly in depth distribution (median: 52 m for Group 1 vs. 133 m for Group 4). There was a strong spatial autocorrelation in the occurrence of swarms, and an autologistic regression model found no prediction of swarm occurrence from environmental variables for any of the Groups 1, 2 or 4. Probability of occurrence of Group 3 swarms, however, increased with increasing depth and temperature. Group 3 was the most distinctive swarm group with an order of magnitude higher packing density (median: 226 ind. m−3) than swarms from any of the other groups and about twice the distance to nearest neighbor swarm (median: 493 m). The majority of the krill were present in Group 3 swarms, and the absence of association with hydrographic or topographic concentrating mechanisms strongly suggests that these swarms aggregate through their own locomotion, possibly associated with migration.

  19. Antarctic krill swarm characteristics in the Southeast Atlantic sector of the Southern Ocean

    KAUST Repository

    Krafft, BA; Skaret, G; Knutsen, T; Melle, W; Klevjer, Thor; Sø iland, H

    2012-01-01

    Knowledge about swarm dynamics and underlying causes is essential to understand the ecology and distribution of Antarctic krill Euphausia superba. We collected acoustic data and key environmental data continuously across extensive gradients in the little-studied Southeast Atlantic sector of the Southern Ocean. A total of 4791 krill swarms with swarm descriptors including swarm height and length, packing density, swimming depth and inter-swarm distance were extracted. Through multivariate statistics, swarms were categorized into 4 groups. Group 2 swarms were largest (median length 108 m and thickness 18 m), whereas swarms in both Groups 1 and 4 were on average small, but differed markedly in depth distribution (median: 52 m for Group 1 vs. 133 m for Group 4). There was a strong spatial autocorrelation in the occurrence of swarms, and an autologistic regression model found no prediction of swarm occurrence from environmental variables for any of the Groups 1, 2 or 4. Probability of occurrence of Group 3 swarms, however, increased with increasing depth and temperature. Group 3 was the most distinctive swarm group with an order of magnitude higher packing density (median: 226 ind. m−3) than swarms from any of the other groups and about twice the distance to nearest neighbor swarm (median: 493 m). The majority of the krill were present in Group 3 swarms, and the absence of association with hydrographic or topographic concentrating mechanisms strongly suggests that these swarms aggregate through their own locomotion, possibly associated with migration.

  20. Particle Swarms in Fractures: Open Versus Partially Closed Systems

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2014-12-01

    In the field, fractures may be isolated or connected to fluid reservoirs anywhere along the perimeter of a fracture. These boundaries affect fluid circulation, flow paths and communication with external reservoirs. The transport of drop like collections of colloidal-sized particles (particle swarms) in open and partially closed systems was studied. A uniform aperture synthetic fracture was constructed using two blocks (100 x 100 x 50 mm) of transparent acrylic placed parallel to each other. The fracture was fully submerged a tank filled with 100cSt silicone oil. Fracture apertures were varied from 5-80 mm. Partially closed systems were created by sealing the sides of the fracture with plastic film. The four boundary conditions study were: (Case 1) open, (Case 2) closed on the sides, (Case 3) closed on the bottom, and (Case 4) closed on both the sides and bottom of the fracture. A 15 μL dilute suspension of soda-lime glass particles in oil (2% by mass) were released into the fracture. Particle swarms were illuminated using a green (525 nm) LED array and imaged with a CCD camera. The presence of the additional boundaries modified the speed of the particle swarms (see figure). In Case 1, enhanced swarm transport was observed for a range of apertures, traveling faster than either very small or very large apertures. In Case 2, swarm velocities were enhanced over a larger range of fracture apertures than in any of the other cases. Case 3 shifted the enhanced transport regime to lower apertures and also reduced swarm speed when compared to Case 2. Finally, Case 4 eliminated the enhanced transport regime entirely. Communication between the fluid in the fracture and an external fluid reservoir resulted in enhanced swarm transport in Cases 1-3. The non-rigid nature of a swarm enables drag from the fracture walls to modify the swarm geometry. The particles composing a swarm reorganize in response to the fracture, elongating the swarm and maintaining its density. Unlike a

  1. Adaptive Gradient Multiobjective Particle Swarm Optimization.

    Science.gov (United States)

    Han, Honggui; Lu, Wei; Zhang, Lu; Qiao, Junfei

    2017-10-09

    An adaptive gradient multiobjective particle swarm optimization (AGMOPSO) algorithm, based on a multiobjective gradient (stocktickerMOG) method and a self-adaptive flight parameters mechanism, is developed to improve the computation performance in this paper. In this AGMOPSO algorithm, the stocktickerMOG method is devised to update the archive to improve the convergence speed and the local exploitation in the evolutionary process. Meanwhile, the self-adaptive flight parameters mechanism, according to the diversity information of the particles, is then established to balance the convergence and diversity of AGMOPSO. Attributed to the stocktickerMOG method and the self-adaptive flight parameters mechanism, this AGMOPSO algorithm not only has faster convergence speed and higher accuracy, but also its solutions have better diversity. Additionally, the convergence is discussed to confirm the prerequisite of any successful application of AGMOPSO. Finally, with regard to the computation performance, the proposed AGMOPSO algorithm is compared with some other multiobjective particle swarm optimization algorithms and two state-of-the-art multiobjective algorithms. The results demonstrate that the proposed AGMOPSO algorithm can find better spread of solutions and have faster convergence to the true Pareto-optimal front.

  2. SwarmDock and the Use of Normal Modes in Protein-Protein Docking

    Directory of Open Access Journals (Sweden)

    Paul A. Bates

    2010-09-01

    Full Text Available Here is presented an investigation of the use of normal modes in protein-protein docking, both in theory and in practice. Upper limits of the ability of normal modes to capture the unbound to bound conformational change are calculated on a large test set, with particular focus on the binding interface, the subset of residues from which the binding energy is calculated. Further, the SwarmDock algorithm is presented, to demonstrate that the modelling of conformational change as a linear combination of normal modes is an effective method of modelling flexibility in protein-protein docking.

  3. Particle Swarm Transport through Immiscible Fluid Layers in a Fracture

    Science.gov (United States)

    Teasdale, N. D.; Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    Immiscible fluids occur either naturally (e.g. oil & water) or from anthropogenic processes (e.g. liquid CO2 & water) in the subsurface and complicate the transport of natural or engineered micro- or nano-scale particles. In this study, we examined the effect of immiscible fluids on the formation and evolution of particle swarms in a fracture. A particle swarm is a collection of colloidal-size particles in a dilute suspension that exhibits cohesive behavior. Swarms fall under gravity with a velocity that is greater than the settling velocity of a single particle. Thus a particle swarm of colloidal contaminants can potentially travel farther and faster in a fracture than expected for a dispersion or emulsion of colloidal particles. We investigated the formation, evolution, and break-up of colloidal swarms under gravity in a uniform aperture fracture as hydrophobic/hydrophyllic particle swarms move across an oil-water interface. A uniform aperture fracture was fabricated from two transparent acrylic rectangular prisms (100 mm x 50 mm x 100 mm) that are separated by 1, 2.5, 5, 10 or 50 mm. The fracture was placed, vertically, inside a glass tank containing a layer of pure silicone oil (polydimethylsiloxane) on distilled water. Along the length of the fracture, 30 mm was filled with oil and 70 mm with water. Experiments were conducted using silicone oils with viscosities of 5, 10, 100, or 1000 cSt. Particle swarms (5 μl) were comprised of a 1% concentration (by mass) of 25 micron glass beads (hydrophilic) suspended in a water drop, or a 1% concentration (by mass) of 3 micron polystyrene fluorescent beads (hydrophobic) suspended in a water drop. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera and by green (525 nm) LED arrays for illumination. Swarms were spherical and remained coherent as they fell through the oil because of the immiscibility of oil and water. However, as a swarm approached the oil-water interface, it

  4. A minimal model of predator-swarm interactions.

    Science.gov (United States)

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-05-06

    We propose a minimal model of predator-swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a 'weak' predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by 'confusing' the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator-prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd.

  5. Particle Swarm Optimization With Interswarm Interactive Learning Strategy.

    Science.gov (United States)

    Qin, Quande; Cheng, Shi; Zhang, Qingyu; Li, Li; Shi, Yuhui

    2016-10-01

    The learning strategy in the canonical particle swarm optimization (PSO) algorithm is often blamed for being the primary reason for loss of diversity. Population diversity maintenance is crucial for preventing particles from being stuck into local optima. In this paper, we present an improved PSO algorithm with an interswarm interactive learning strategy (IILPSO) by overcoming the drawbacks of the canonical PSO algorithm's learning strategy. IILPSO is inspired by the phenomenon in human society that the interactive learning behavior takes place among different groups. Particles in IILPSO are divided into two swarms. The interswarm interactive learning (IIL) behavior is triggered when the best particle's fitness value of both the swarms does not improve for a certain number of iterations. According to the best particle's fitness value of each swarm, the softmax method and roulette method are used to determine the roles of the two swarms as the learning swarm and the learned swarm. In addition, the velocity mutation operator and global best vibration strategy are used to improve the algorithm's global search capability. The IIL strategy is applied to PSO with global star and local ring structures, which are termed as IILPSO-G and IILPSO-L algorithm, respectively. Numerical experiments are conducted to compare the proposed algorithms with eight popular PSO variants. From the experimental results, IILPSO demonstrates the good performance in terms of solution accuracy, convergence speed, and reliability. Finally, the variations of the population diversity in the entire search process provide an explanation why IILPSO performs effectively.

  6. Chaotic particle swarm optimization with mutation for classification.

    Science.gov (United States)

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms.

  7. Predator confusion is sufficient to evolve swarming behaviour.

    Science.gov (United States)

    Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph

    2013-08-06

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.

  8. Colias: An Autonomous Micro Robot for Swarm Robotic Applications

    Directory of Open Access Journals (Sweden)

    Farshad Arvin

    2014-07-01

    Full Text Available Robotic swarms that take inspiration from nature are becoming a fascinating topic for multi-robot researchers. The aim is to control a large number of simple robots in order to solve common complex tasks. Due to the hardware complexities and cost of robot platforms, current research in swarm robotics is mostly performed by simulation software. The simulation of large numbers of these robots in robotic swarm applications is extremely complex and often inaccurate due to the poor modelling of external conditions. In this paper, we present the design of a low-cost, open-platform, autonomous micro-robot (Colias for robotic swarm applications. Colias employs a circular platform with a diameter of 4 cm. It has a maximum speed of 35 cm/s which enables it to be used in swarm scenarios very quickly over large arenas. Long-range infrared modules with an adjustable output power allow the robot to communicate with its direct neighbours at a range of 0.5 cm to 2 m. Colias has been designed as a complete platform with supporting software development tools for robotics education and research. It has been tested in both individual and swarm scenarios, and the observed results demonstrate its feasibility for use as a micro-sized mobile robot and as a low-cost platform for robot swarm applications.

  9. Chaotic Particle Swarm Optimization with Mutation for Classification

    Science.gov (United States)

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms. PMID:25709937

  10. Fractional order Darwinian particle swarm optimization applications and evaluation of an evolutionary algorithm

    CERN Document Server

    Couceiro, Micael

    2015-01-01

    This book examines the bottom-up applicability of swarm intelligence to solving multiple problems, such as curve fitting, image segmentation, and swarm robotics. It compares the capabilities of some of the better-known bio-inspired optimization approaches, especially Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO) and the recently proposed Fractional Order Darwinian Particle Swarm Optimization (FODPSO), and comprehensively discusses their advantages and disadvantages. Further, it demonstrates the superiority and key advantages of using the FODPSO algorithm, suc

  11. Constrained Fuzzy Predictive Control Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Oussama Ait Sahed

    2015-01-01

    Full Text Available A fuzzy predictive controller using particle swarm optimization (PSO approach is proposed. The aim is to develop an efficient algorithm that is able to handle the relatively complex optimization problem with minimal computational time. This can be achieved using reduced population size and small number of iterations. In this algorithm, instead of using the uniform distribution as in the conventional PSO algorithm, the initial particles positions are distributed according to the normal distribution law, within the area around the best position. The radius limiting this area is adaptively changed according to the tracking error values. Moreover, the choice of the initial best position is based on prior knowledge about the search space landscape and the fact that in most practical applications the dynamic optimization problem changes are gradual. The efficiency of the proposed control algorithm is evaluated by considering the control of the model of a 4 × 4 Multi-Input Multi-Output industrial boiler. This model is characterized by being nonlinear with high interactions between its inputs and outputs, having a nonminimum phase behaviour, and containing instabilities and time delays. The obtained results are compared to those of the control algorithms based on the conventional PSO and the linear approach.

  12. A scalable coevolutionary multi-objective particle swarm optimizer

    Directory of Open Access Journals (Sweden)

    Xiangwei Zheng

    2010-11-01

    Full Text Available Multi-Objective Particle Swarm Optimizers (MOPSOs are easily trapped in local optima, cost more function evaluations and suffer from the curse of dimensionality. A scalable cooperative coevolution and ?-dominance based MOPSO (CEPSO is proposed to address these issues. In CEPSO, Multi-objective Optimization Problems (MOPs are decomposed in terms of their decision variables and are optimized by cooperative coevolutionary subswarms, and a uniform distribution mutation operator is adopted to avoid premature convergence. All subswarms share an external archive based on ?-dominance, which is also used as a leader set. Collaborators are selected from the archive and used to construct context vectors in order to evaluate particles in a subswarm. CEPSO is tested on several classical MOP benchmark functions and experimental results show that CEPSO can readily escape from local optima and optimize both low and high dimensional problems, but the number of function evaluations only increases linearly with respect to the number of decision variables. Therefore, CEPSO is competitive in solving various MOPs.

  13. POLICE OFFICE MODEL IMPROVEMENT FOR SECURITY OF SWARM ROBOTIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2014-09-01

    Full Text Available This paper focuses on aspects of information security for group of mobile robotic systems with swarm intellect. The ways for hidden attacks realization by the opposing party on swarm algorithm are discussed. We have fulfilled numerical modeling of potentially destructive information influence on the ant shortest path algorithm. We have demonstrated the consequences of attacks on the ant algorithm with different concentration in a swarm of subversive robots. Approaches are suggested for information security mechanisms in swarm robotic systems, based on the principles of centralized security management for mobile agents. We have developed the method of forming a self-organizing information security management system for robotic agents in swarm groups implementing POM (Police Office Model – a security model based on police offices, to provide information security in multi-agent systems. The method is based on the usage of police station network in the graph nodes, which have functions of identification and authentication of agents, identifying subversive robots by both their formal characteristics and their behavior in the swarm. We have suggested a list of software and hardware components for police stations, consisting of: communication channels between the robots in police office, nodes register, a database of robotic agents, a database of encryption and decryption module. We have suggested the variants of logic for the mechanism of information security in swarm systems with different temporary diagrams of data communication between police stations. We present comparative analysis of implementation of protected swarm systems depending on the functioning logic of police offices, integrated in swarm system. It is shown that the security model saves the ability to operate in noisy environments, when the duration of the interference is comparable to the time necessary for the agent to overcome the path between police stations.

  14. Cold, muon-catalyzed fusion - just another swarm experiment?

    International Nuclear Information System (INIS)

    Robson, R.E.

    1992-01-01

    The paper briefly reviewed the muon-catalyzed fusion cycle and indicated how it may be likened to a swarm experiment. In particular, it has been pointed out that an external electric field can influence the properties of a muon swarm (and reactive derivatives), just as it can for ion and electron swarms. Since n 0 is typically around liquid hydrogen densities, very large fields, E≥10 9 V/m, would be required to achieve the desired outcome. This is presently achievable in small regions of intense laser focus, but it remains to be seen whether muon-catalyzed fusion experiments can actually be influenced in this way. 20 refs., 4 figs

  15. Cell motility and antibiotic tolerance of bacterial swarms

    Science.gov (United States)

    Zuo, Wenlong

    Many bacteria species can move across moist surfaces in a coordinated manner known as swarming. It is reported that swarm cells show higher tolerance to a wide variety of antibiotics than planktonic cells. We used the model bacterium E. coli to study how motility affects the antibiotic tolerance of swarm cells. Our results provide new insights for the control of pathogenic invasion via regulating cell motility. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: zwlong@live.com.

  16. Pebble bed reactor fuel cycle optimization using particle swarm algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tavron, Barak, E-mail: btavron@bgu.ac.il [Planning, Development and Technology Division, Israel Electric Corporation Ltd., P.O. Box 10, Haifa 31000 (Israel); Shwageraus, Eugene, E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2016-10-15

    Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of

  17. Pebble bed reactor fuel cycle optimization using particle swarm algorithm

    International Nuclear Information System (INIS)

    Tavron, Barak; Shwageraus, Eugene

    2016-01-01

    Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of

  18. Particle Swarm Imaging (PSIM). A swarming algorithm for the reporting of robust, optimal measurement uncertainties

    International Nuclear Information System (INIS)

    Parvin, Dan; Clarke, Sean

    2015-01-01

    Particle Swarm Imaging (PSIM) overcomes some of the challenges associated with the accurate declaration of measurement uncertainties of radionuclide inventories within waste items when the distribution of activity is unknown. Implementation requires minimal equipment, making use of gamma‑ray measurements taken from different locations around the waste item, using only a single electrically cooled HRGS gamma‑ray detector for objects up to a UK ISO freight container in size. The PSIM technique is a computational method that iteratively ‘homes‑in’ on the true location of activity concentrations in waste items. PSIM differs from conventional assay techniques by allowing only viable solutions - that is those that could actually give rise to the measured data - to be considered. Thus PSIM avoids the drawback of conventional analyses, namely, the adoption of unrealistic assumptions about the activity distribution that inevitably leads to the declaration of pessimistic (and in some cases optimistic) activity estimates and uncertainties. PSIM applies an optimisation technique based upon ‘particle swarming’ methods to determine a set of candidate solutions within a ‘search space’ defined by the interior volume of a waste item. The positions and activities of the swarm are used in conjunction with a mathematical model to simulate the measurement response for the current swarm location. The swarm is iteratively updated (with modified positions and activities) until a match with sufficient quality is obtained between the simulated and actual measurement data. This process is repeated to build up a distribution of candidate solutions, which is subsequently analysed to calculate a measurement result and uncertainty along with a visual image of the activity distribution. The application of ‘swarming’ computational methods to non‑destructive assay (NDA) measurements is considered novel and this paper is intended to introduce the PSIM concept and provide

  19. A new hybrid optimization method inspired from swarm intelligence: Fuzzy adaptive swallow swarm optimization algorithm (FASSO

    Directory of Open Access Journals (Sweden)

    Mehdi Neshat

    2015-11-01

    Full Text Available In this article, the objective was to present effective and optimal strategies aimed at improving the Swallow Swarm Optimization (SSO method. The SSO is one of the best optimization methods based on swarm intelligence which is inspired by the intelligent behaviors of swallows. It has been able to offer a relatively strong method for solving optimization problems. However, despite its many advantages, the SSO suffers from two shortcomings. Firstly, particles movement speed is not controlled satisfactorily during the search due to the lack of an inertia weight. Secondly, the variables of the acceleration coefficient are not able to strike a balance between the local and the global searches because they are not sufficiently flexible in complex environments. Therefore, the SSO algorithm does not provide adequate results when it searches in functions such as the Step or Quadric function. Hence, the fuzzy adaptive Swallow Swarm Optimization (FASSO method was introduced to deal with these problems. Meanwhile, results enjoy high accuracy which are obtained by using an adaptive inertia weight and through combining two fuzzy logic systems to accurately calculate the acceleration coefficients. High speed of convergence, avoidance from falling into local extremum, and high level of error tolerance are the advantages of proposed method. The FASSO was compared with eleven of the best PSO methods and SSO in 18 benchmark functions. Finally, significant results were obtained.

  20. Design techniques for large scale linear measurement systems

    International Nuclear Information System (INIS)

    Candy, J.V.

    1979-03-01

    Techniques to design measurement schemes for systems modeled by large scale linear time invariant systems, i.e., physical systems modeled by a large number (> 5) of ordinary differential equations, are described. The techniques are based on transforming the physical system model to a coordinate system facilitating the design and then transforming back to the original coordinates. An example of a three-stage, four-species, extraction column used in the reprocessing of spent nuclear fuel elements is presented. The basic ideas are briefly discussed in the case of noisy measurements. An example using a plutonium nitrate storage vessel (reprocessing) with measurement uncertainty is also presented

  1. Self-Tuning Control of Linear Systems Followed by Deadzones

    Directory of Open Access Journals (Sweden)

    K. Kazlauskas

    2014-02-01

    Full Text Available The aim of the present paper is to increase the efficiency of self-tuning generalized minimum variance (GMV control of linear time-invariant (LTI systems followed by deadzone nonlinearities. An approach, based on reordering of observations to be processed for the reconstruction of an unknown internal signal that acts between LTI system and a static nonlinear block of the closed-loop Wiener system, has been developed. The results of GMV self-tuning control of the second order LTI system with an ordinary deadzone are given.

  2. SWARM - An earth Observation Mission investigating Geospace

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Lühr, H.; Knudsen, D.

    2008-01-01

    The Swarm mission was selected as the 5th mission in ESA's Earth Explorer Programme in 2004. This mission aims at measuring the Earth's magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient...... of the magnetic field, and one satellite will fly at higher altitude. The measured magnetic field is the sum of many contributions including both magnetic fields and currents in the Earth's interior and electrical currents in Geospace. In order to separate all these sources electric field and plasma measurements...... will also be made to complement the primary magnetic field measurements. Together these will allow the deduction of information on a series of solid earth processes responsible for the creation of the fields measured. The completeness of the measurements on each satellite and the constellation aspect...

  3. Cosmological parameter estimation using Particle Swarm Optimization

    Science.gov (United States)

    Prasad, J.; Souradeep, T.

    2014-03-01

    Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.

  4. Cosmological parameter estimation using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Prasad, J; Souradeep, T

    2014-01-01

    Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite

  5. Particle Swarm Optimization for Outdoor Lighting Design

    Directory of Open Access Journals (Sweden)

    Ana Castillo-Martinez

    2017-01-01

    Full Text Available Outdoor lighting is an essential service for modern life. However, the high influence of this type of facility on energy consumption makes it necessary to take extra care in the design phase. Therefore, this manuscript describes an algorithm to help light designers to get, in an easy way, the best configuration parameters and to improve energy efficiency, while ensuring a minimum level of overall uniformity. To make this possible, we used a particle swarm optimization (PSO algorithm. These algorithms are well established, and are simple and effective to solve optimization problems. To take into account the most influential parameters on lighting and energy efficiency, 500 simulations were performed using DIALux software (4.10.0.2, DIAL, Ludenscheid, Germany. Next, the relation between these parameters was studied using to data mining software. Subsequently, we conducted two experiments for setting parameters that enabled the best configuration algorithm in order to improve efficiency in the proposed process optimization.

  6. Linear algebra

    CERN Document Server

    Shilov, Georgi E

    1977-01-01

    Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.

  7. Algorithmic requirements for swarm intelligence in differently coupled collective systems

    International Nuclear Information System (INIS)

    Stradner, Jürgen; Thenius, Ronald; Zahadat, Payam; Hamann, Heiko; Crailsheim, Karl; Schmickl, Thomas

    2013-01-01

    Swarm systems are based on intermediate connectivity between individuals and dynamic neighborhoods. In natural swarms self-organizing principles bring their agents to that favorable level of connectivity. They serve as interesting sources of inspiration for control algorithms in swarm robotics on the one hand, and in modular robotics on the other hand. In this paper we demonstrate and compare a set of bio-inspired algorithms that are used to control the collective behavior of swarms and modular systems: BEECLUST, AHHS (hormone controllers), FGRN (fractal genetic regulatory networks), and VE (virtual embryogenesis). We demonstrate how such bio-inspired control paradigms bring their host systems to a level of intermediate connectivity, what delivers sufficient robustness to these systems for collective decentralized control. In parallel, these algorithms allow sufficient volatility of shared information within these systems to help preventing local optima and deadlock situations, this way keeping those systems flexible and adaptive in dynamic non-deterministic environments

  8. Self-Assembling Wireless Autonomous Reconfigurable Modules (SWARM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Systems Inc. and the MIT Space Systems Laboratory propose Self-assembling, Wireless, Autonomous, Reconfigurable Modules (SWARM) as an innovative approach to...

  9. Swarm-based Sequencing Recommendations in E-learning

    NARCIS (Netherlands)

    Van den Berg, Bert; Tattersall, Colin; Janssen, José; Brouns, Francis; Kurvers, Hub; Koper, Rob

    2005-01-01

    Van den Berg, B., Tattersall, C., Janssen, J., Brouns, F., Kurvers, H., & Koper, R. (2006). Swarm-based Sequencing Recommendations in E-learning. International Journal of Computer Science & Applications, III(III), 1-11.

  10. Investigating Ground Swarm Robotics Using Agent Based Simulation

    National Research Council Canada - National Science Library

    Ho, Sze-Tek T

    2006-01-01

    The concept of employing ground swarm robotics to accomplish tasks has been proposed for future use in humanitarian de-mining, plume monitoring, searching for survivors in a disaster site, and other hazardous activities...

  11. Foundations of Swarm Intelligence: From Principles to Practice

    National Research Council Canada - National Science Library

    Fleischer, Mark

    2003-01-01

    Swarm Intelligence (SI) is a relatively new paradigm being applied in a host of research settings to improve the management and control of large numbers of interacting entities such as communication, computer and sensor...

  12. Formation Control of Robotic Swarm Using Bounded Artificial Forces

    Science.gov (United States)

    Zha, Yabing; Peng, Yong

    2013-01-01

    Formation control of multirobot systems has drawn significant attention in the recent years. This paper presents a potential field control algorithm, navigating a swarm of robots into a predefined 2D shape while avoiding intermember collisions. The algorithm applies in both stationary and moving targets formation. We define the bounded artificial forces in the form of exponential functions, so that the behavior of the swarm drove by the forces can be adjusted via selecting proper control parameters. The theoretical analysis of the swarm behavior proves the stability and convergence properties of the algorithm. We further make certain modifications upon the forces to improve the robustness of the swarm behavior in the presence of realistic implementation considerations. The considerations include obstacle avoidance, local minima, and deformation of the shape. Finally, detailed simulation results validate the efficiency of the proposed algorithm, and the direction of possible futrue work is discussed in the conclusions. PMID:24453809

  13. Amphibious Quadcopter Swarm for the Exploration of Titan

    Science.gov (United States)

    Rajguru, A.; Faler, A. C.; Franz, B.

    2014-06-01

    This is a proposal for a low mass and cost effective mission architecture consisting of an amphibious quadcopter swarm flight vehicle system for the exploration of Titan's liquid methane lake, Ligeia Mare. The paper focuses on the EDL and operations.

  14. A Markov Chain Approach to Probabilistic Swarm Guidance

    Science.gov (United States)

    Acikmese, Behcet; Bayard, David S.

    2012-01-01

    This paper introduces a probabilistic guidance approach for the coordination of swarms of autonomous agents. The main idea is to drive the swarm to a prescribed density distribution in a prescribed region of the configuration space. In its simplest form, the probabilistic approach is completely decentralized and does not require communication or collabo- ration between agents. Agents make statistically independent probabilistic decisions based solely on their own state, that ultimately guides the swarm to the desired density distribution in the configuration space. In addition to being completely decentralized, the probabilistic guidance approach has a novel autonomous self-repair property: Once the desired swarm density distribution is attained, the agents automatically repair any damage to the distribution without collaborating and without any knowledge about the damage.

  15. Particle swarm optimization of a neural network model in a ...

    Indian Academy of Sciences (India)

    . Since tool life is critically affected by the tool wear, accurate prediction of this wear ... In their work, they established an improvement in the quality ... objective optimization of hard turning using neural network modelling and swarm intelligence ...

  16. LinkMind: link optimization in swarming mobile sensor networks.

    Science.gov (United States)

    Ngo, Trung Dung

    2011-01-01

    A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  17. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Trung Dung Ngo

    2011-08-01

    Full Text Available A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  18. Swarm algorithms with chaotic jumps for optimization of multimodal functions

    Science.gov (United States)

    Krohling, Renato A.; Mendel, Eduardo; Campos, Mauro

    2011-11-01

    In this article, the use of some well-known versions of particle swarm optimization (PSO) namely the canonical PSO, the bare bones PSO (BBPSO) and the fully informed particle swarm (FIPS) is investigated on multimodal optimization problems. A hybrid approach which consists of swarm algorithms combined with a jump strategy in order to escape from local optima is developed and tested. The jump strategy is based on the chaotic logistic map. The hybrid algorithm was tested for all three versions of PSO and simulation results show that the addition of the jump strategy improves the performance of swarm algorithms for most of the investigated optimization problems. Comparison with the off-the-shelf PSO with local topology (l best model) has also been performed and indicates the superior performance of the standard PSO with chaotic jump over the standard both using local topology (l best model).

  19. Formation Control of Robotic Swarm Using Bounded Artificial Forces

    Directory of Open Access Journals (Sweden)

    Long Qin

    2013-01-01

    Full Text Available Formation control of multirobot systems has drawn significant attention in the recent years. This paper presents a potential field control algorithm, navigating a swarm of robots into a predefined 2D shape while avoiding intermember collisions. The algorithm applies in both stationary and moving targets formation. We define the bounded artificial forces in the form of exponential functions, so that the behavior of the swarm drove by the forces can be adjusted via selecting proper control parameters. The theoretical analysis of the swarm behavior proves the stability and convergence properties of the algorithm. We further make certain modifications upon the forces to improve the robustness of the swarm behavior in the presence of realistic implementation considerations. The considerations include obstacle avoidance, local minima, and deformation of the shape. Finally, detailed simulation results validate the efficiency of the proposed algorithm, and the direction of possible futrue work is discussed in the conclusions.

  20. Formation control of robotic swarm using bounded artificial forces.

    Science.gov (United States)

    Qin, Long; Zha, Yabing; Yin, Quanjun; Peng, Yong

    2013-01-01

    Formation control of multirobot systems has drawn significant attention in the recent years. This paper presents a potential field control algorithm, navigating a swarm of robots into a predefined 2D shape while avoiding intermember collisions. The algorithm applies in both stationary and moving targets formation. We define the bounded artificial forces in the form of exponential functions, so that the behavior of the swarm drove by the forces can be adjusted via selecting proper control parameters. The theoretical analysis of the swarm behavior proves the stability and convergence properties of the algorithm. We further make certain modifications upon the forces to improve the robustness of the swarm behavior in the presence of realistic implementation considerations. The considerations include obstacle avoidance, local minima, and deformation of the shape. Finally, detailed simulation results validate the efficiency of the proposed algorithm, and the direction of possible futrue work is discussed in the conclusions.

  1. Parallel Global Optimization with the Particle Swarm Algorithm (Preprint)

    National Research Council Canada - National Science Library

    Schutte, J. F; Reinbolt, J. A; Fregly, B. J; Haftka, R. T; George, A. D

    2004-01-01

    .... To obtain enhanced computational throughput and global search capability, we detail the coarse-grained parallelization of an increasingly popular global search method, the Particle Swarm Optimization (PSO) algorithm...

  2. The Swarm Initial Field Model for the 2014 Geomagnetic Field

    Science.gov (United States)

    Olsen, Nils; Hulot, Gauthier; Lesur, Vincent; Finlay, Christopher C.; Beggan, Ciaran; Chulliat, Arnaud; Sabaka, Terence J.; Floberghagen, Rune; Friis-Christensen, Eigil; Haagmans, Roger

    2015-01-01

    Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT.

  3. Optical Intersatellite Communications for CubeSat Swarms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The growing interest in CubeSat swarm and constellation systems by NASA, the Department of Defense and commercial ventures has created a need for self-managed...

  4. Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following

    Science.gov (United States)

    Wiech, Jakub; Eremeyev, Victor A.; Giorgio, Ivan

    2018-04-01

    In this paper, we demonstrate a method for self-organization and leader following of nonholonomic robotic swarm based on spring damper mesh. By self-organization of swarm robots we mean the emergence of order in a swarm as the result of interactions among the single robots. In other words the self-organization of swarm robots mimics some natural behavior of social animals like ants among others. The dynamics of two-wheel robot is derived, and a relation between virtual forces and robot control inputs is defined in order to establish stable swarm formation. Two cases of swarm control are analyzed. In the first case the swarm cohesion is achieved by virtual spring damper mesh connecting nearest neighboring robots without designated leader. In the second case we introduce a swarm leader interacting with nearest and second neighbors allowing the swarm to follow the leader. The paper ends with numeric simulation for performance evaluation of the proposed control method.

  5. Simulation Study of Swarm Intelligence Based on Life Evolution Behavior

    OpenAIRE

    Yanmin Liu; Ying Bi; Changling Sui; Yuanfeng Luo; Zhuanzhou Zhang; Rui Liu

    2015-01-01

    Swarm intelligence (SI) is a new evolutionary computation technology, and its performance efficacy is usually affected by each individual behavior in the swarm. According to the genetic and sociological theory, the life evolution behavior process is influenced by the external and internal factors, so the mechanisms of external and internal environment change must be analyzed and explored. Therefore, in this paper, we used the thought of the famous American genetic biologist Morgan, “life = DN...

  6. From random process to chaotic behavior in swarms of UAVs

    OpenAIRE

    Rosalie , Martin; Danoy , Grégoire; Chaumette , Serge; Bouvry , Pascal

    2016-01-01

    International audience; Unmanned Aerial Vehicles (UAVs) applications have seen an important increase in the last decade for both military and civilian applications ranging from fire and high seas rescue to military surveillance and target detection. While this technology is now mature for a single UAV, new methods are needed to operate UAVs in swarms, also referred to as fleets. This work focuses on the mobility management of one single autonomous swarm of UAVs which mission is to cover a giv...

  7. Origin of meteor swarms of the Arietid and Geminid types

    International Nuclear Information System (INIS)

    Lebedinets, V.N.

    1985-01-01

    The author proposes a physical mechanism for the formation of meteor swarms on orbits of small size and very small perihelion distance, similar to the orbits of Arietid and Geminid meteor swarms, which are rarely encountered among the larger bodies of the solar system, and he justifies the mechanism mathematically. He shows that comets can transfer to such orbits from orbits of large size during evaporation of their ice nuclei under the action of reactive drag

  8. Extending Particle Swarm Optimisers with Self-Organized Criticality

    DEFF Research Database (Denmark)

    Løvbjerg, Morten; Krink, Thiemo

    2002-01-01

    Particle swarm optimisers (PSOs) show potential in function optimisation, but still have room for improvement. Self-organized criticality (SOC) can help control the PSO and add diversity. Extending the PSO with SOC seems promising reaching faster convergence and better solutions.......Particle swarm optimisers (PSOs) show potential in function optimisation, but still have room for improvement. Self-organized criticality (SOC) can help control the PSO and add diversity. Extending the PSO with SOC seems promising reaching faster convergence and better solutions....

  9. Investigating the polar electrojet using Swarm satellite magnetic data

    DEFF Research Database (Denmark)

    Aakjær, Cecilie Drost; Olsen, Nils; Finlay, Chris

    The aim of this study is to investigate the magnetic perturbations caused by the polar electrojets, which are described by means of a model consisting of a series of infinite line currents placed at the height of the ionosphere along QD latitudes. The method is applied to Swarm magnetic scalar...... of the polar electrojets as well as their temporal evolution. In addition, applying the method to data taken by the Swarm satellites Alpha and Beta allows investigating longitudinal differences of the electrojets....

  10. A new inertia weight control strategy for particle swarm optimization

    Science.gov (United States)

    Zhu, Xianming; Wang, Hongbo

    2018-04-01

    Particle Swarm Optimization is a member of swarm intelligence algorithms, which is inspired by the behavior of bird flocks. The inertia weight, one of the most important parameters of PSO, is crucial for PSO, for it balances the performance of exploration and exploitation of the algorithm. This paper proposes a new inertia weight control strategy and PSO with this new strategy is tested by four benchmark functions. The results shows that the new strategy provides the PSO with better performance.

  11. Chaotically encoded particle swarm optimization algorithm and its applications

    International Nuclear Information System (INIS)

    Alatas, Bilal; Akin, Erhan

    2009-01-01

    This paper proposes a novel particle swarm optimization (PSO) algorithm, chaotically encoded particle swarm optimization algorithm (CENPSOA), based on the notion of chaos numbers that have been recently proposed for a novel meaning to numbers. In this paper, various chaos arithmetic and evaluation measures that can be used in CENPSOA have been described. Furthermore, CENPSOA has been designed to be effectively utilized in data mining applications.

  12. Tuning of damping controller for UPFC using quantum particle swarm optimizer

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)

    2010-11-15

    On the basis of the linearized Phillips-Herffron model of a single machine power system, we design optimally the unified power flow controller (UPFC) based damping controller in order to enhance power system low frequency oscillations. The problem of robustly UPFC based damping controller is formulated as an optimization problem according to the time domain-based objective function which is solved using quantum-behaved particle swarm optimization (QPSO) technique that has fewer parameters and stronger search capability than the particle swarm optimization (PSO), as well as is easy to implement. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller is demonstrated through non-linear time-domain simulation and some performance indices studies under various disturbance conditions of over a wide range of loading conditions. The results analysis reveals that the designed QPSO based UPFC controller has an excellent capability in damping power system low frequency oscillations in comparison with the designed classical PSO (CPSO) based UPFC controller and enhance greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions show that the {delta}{sub E} based damping controller is superior to the m{sub B} based damping controller.

  13. Assessing Human Judgment of Computationally Generated Swarming Behavior

    Directory of Open Access Journals (Sweden)

    John Harvey

    2018-02-01

    Full Text Available Computer-based swarm systems, aiming to replicate the flocking behavior of birds, were first introduced by Reynolds in 1987. In his initial work, Reynolds noted that while it was difficult to quantify the dynamics of the behavior from the model, observers of his model immediately recognized them as a representation of a natural flock. Considerable analysis has been conducted since then on quantifying the dynamics of flocking/swarming behavior. However, no systematic analysis has been conducted on human identification of swarming. In this paper, we assess subjects’ assessment of the behavior of a simplified version of Reynolds’ model. Factors that affect the identification of swarming are discussed and future applications of the resulting models are proposed. Differences in decision times for swarming-related questions asked during the study indicate that different brain mechanisms may be involved in different elements of the behavior assessment task. The relatively simple but finely tunable model used in this study provides a useful methodology for assessing individual human judgment of swarming behavior.

  14. Light-Controlled Swarming and Assembly of Colloidal Particles

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2018-02-01

    Full Text Available Swarms and assemblies are ubiquitous in nature and they can perform complex collective behaviors and cooperative functions that they cannot accomplish individually. In response to light, some colloidal particles (CPs, including light active and passive CPs, can mimic their counterparts in nature and organize into complex structures that exhibit collective functions with remote controllability and high temporospatial precision. In this review, we firstly analyze the structural characteristics of swarms and assemblies of CPs and point out that light-controlled swarming and assembly of CPs are generally achieved by constructing light-responsive interactions between CPs. Then, we summarize in detail the recent advances in light-controlled swarming and assembly of CPs based on the interactions arisen from optical forces, photochemical reactions, photothermal effects, and photoisomerizations, as well as their potential applications. In the end, we also envision some challenges and future prospects of light-controlled swarming and assembly of CPs. With the increasing innovations in mechanisms and control strategies with easy operation, low cost, and arbitrary applicability, light-controlled swarming and assembly of CPs may be employed to manufacture programmable materials and reconfigurable robots for cooperative grasping, collective cargo transportation, and micro- and nanoengineering.

  15. UAV Swarming? So What are Those Swarms, What are the Implications, and How Do We Handle Them?

    National Research Council Canada - National Science Library

    Clough, Bruce

    2002-01-01

    ... not. The aerospace research community is working hard at developing UAV control technology that requires as little human supervision as possible, and concepts using swarms are receiving serious attention...

  16. Particle Swarm-Based Translation Control for Immersed Tunnel Element in the Hong Kong-Zhuhai-Macao Bridge Project

    Science.gov (United States)

    Li, Jun-jun; Yang, Xiao-jun; Xiao, Ying-jie; Xu, Bo-wei; Wu, Hua-feng

    2018-03-01

    Immersed tunnel is an important part of the Hong Kong-Zhuhai-Macao Bridge (HZMB) project. In immersed tunnel floating, translation which includes straight and transverse movements is the main working mode. To decide the magnitude and direction of the towing force for each tug, a particle swarm-based translation control method is presented for non-power immersed tunnel element. A sort of linear weighted logarithmic function is exploited to avoid weak subgoals. In simulation, the particle swarm-based control method is evaluated and compared with traditional empirical method in the case of the HZMB project. Simulation results show that the presented method delivers performance improvement in terms of the enhanced surplus towing force.

  17. A model of Earth’s magnetic field derived from 2 years of Swarm satellite constellation data

    DEFF Research Database (Denmark)

    Olsen, Nils; Finlay, Chris; Kotsiaros, Stavros

    2016-01-01

    More than 2 years of magnetic field data taken by the three-satellite constellation mission Swarm are used to derive a model of Earth’s magnetic field and its time variation. This model is called SIFMplus. In addition to the magnetic field observations provided by each of the three Swarm satellites...... the North–South gradient. The SIFMplus model provides a description of the static lithospheric field that is very similar to models determined from CHAMP data, up to at least spherical harmonic degree n=75. Also the core field part of SIFMplus, with a quadratic time dependence for n≤6 and a linear time...... with the model of the core, lithospheric and large-scale magnetospheric fields, a magnetic potential that depends on quasi-dipole latitude and magnetic local time....

  18. Acceleration of the Particle Swarm Optimization for Peierls–Nabarro modeling of dislocations in conventional and high-entropy alloys

    International Nuclear Information System (INIS)

    Pei, Zongrui; Eisenbach, Markus

    2017-01-01

    Dislocations are among the most important defects in determining the mechanical properties of both conventional alloys and high-entropy alloys. The Peierls-Nabarro model supplies an efficient pathway to their geometries and mobility. The difficulty in solving the integro-differential Peierls-Nabarro equation is how to effectively avoid the local minima in the energy landscape of a dislocation core. Among the other methods to optimize the dislocation core structures, we choose the algorithm of Particle Swarm Optimization, an algorithm that simulates the social behaviors of organisms. By employing more particles (bigger swarm) and more iterative steps (allowing them to explore for longer time), the local minima can be effectively avoided. But this would require more computational cost. The advantage of this algorithm is that it is readily parallelized in modern high computing architecture. We demonstrate the performance of our parallelized algorithm scales linearly with the number of employed cores.

  19. The electron drift velocity and longitudinal diffusion coefficient of an electron swarm in hydrogen at elevated swarm energies

    International Nuclear Information System (INIS)

    Blevin, H.A.; Fletcher, J.; Hunter, S.R.

    1976-01-01

    A study of the photons produced at electron-molecule excitation collisions has been used to obtain information on the behaviour of an electron swarm moving through a neutral gas under the influence of a uniform electric field. Specifically, values have been obtained for the electron drift velocity and the longitudinal diffusion coefficients under equilibrium swarm conditions, i.e. remote from any electrode. (author)

  20. SWARMS Early Trials Management for The SWARMs ECSEL-H2020 Project

    Science.gov (United States)

    Alcaraz, Daniel; Morales, Tania; Castro, Ayoze; Barrera, Carlos; Hernández, Joaquín; Llinás, Octavio

    2017-04-01

    The work presented on this paper is aimed to explain how the Early Trials of the Project SWARMS were managed in order to complete the first field demonstrations on real environment. SWARMs aims to reduce the operational cost in the use of maritime robots and vehicles, in order to increase the safety of tasks and reduce profesional divers risks. This will be achieved enabling the AUVs/ROVs to work in a cooperative mesh. The challenge is to design and develop an integrated platform (a set of Software/Hardware components), incorporated into the current generation of underwater vehicles in order to improve autonomy, cooperation, robustness, cost-effectiveness, and reliability of the offshore operations. The first demonstration of the project has been performed at PLOCAN (The Oceanic Platform of the Canary Islands) where these technologies were validated on its first stage. The Early Trials have represented the first in situ deployment and test of the novel technologies developed during the initial 14 months of the Project. Going into the sea supposed a huge challenge also in terms of management. The 32 partners of SWARMS had very different requirements (logistics, technical needs, software/computation needs, etc.), and a limited time frame to test and prove their individual developments. In order to fullfill the project objectives, all these tests were divided in 7 missions that were aimed to cover this early demonstration requiements. From PLOCAN, a management protocol was designed in order to cover all the partners needs and make an efficient resource asignment from the begining. These results will be extended to other two demonstrations of the project that forseen to be held in Romania (2017) and Norway (2018).

  1. Chaotic System Identification Based on a Fuzzy Wiener Model with Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Yong, Li; Ying-Gan, Tang

    2010-01-01

    A fuzzy Wiener model is proposed to identify chaotic systems. The proposed fuzzy Wiener model consists of two parts, one is a linear dynamic subsystem and the other is a static nonlinear part, which is represented by the Takagi–Sugeno fuzzy model. Identification of chaotic systems is converted to find optimal parameters of the fuzzy Wiener model by minimizing the state error between the original chaotic system and the fuzzy Wiener model. Particle swarm optimization algorithm, a global optimizer, is used to search the optimal parameter of the fuzzy Wiener model. The proposed method can identify the parameters of the linear part and nonlinear part simultaneously. Numerical simulations for Henón and Lozi chaotic system identification show the effectiveness of the proposed method

  2. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  3. Increased Tolerance to Heavy Metals Exhibited by Swarming Bacteria

    Science.gov (United States)

    Anyan, M.; Shrout, J. D.

    2014-12-01

    Pseudomonas aeruginosa is a ubiquitous, Gram-negative bacterium that utilizes several different modes of motility to colonize surfaces, including swarming, which is the coordinated movement of cells over surfaces in groups. Swarming facilitates surface colonization and biofilm development for P. aeruginosa, and it is known that swarming behavior is influenced by changes in nutrient composition and surface moisture. To understand the fate and cycling of heavy metals in the environment, it is important to understand the interaction and toxicity of these metals upon bacteria. While previous studies have shown surface-attached bacterial biofilms to be highly resistant to heavy metal toxicity, little is known about the influence of heavy metals upon surface motile bacteria and developing biofilms. Using a combination of laboratory assays we examined differences in bacterial behavior in response to two metals, Cd and Ni. We find that surface swarming bacteria are able to grow on 4x and 2.5x more Cd and Ni, respectively, than planktonic cells (i.e., test tube cultures). P. aeruginosa was able to swarm in the presence ≤0.051mM Ni and ≤0.045mM Cd. To investigate the bioavailability of metals to bacteria growing under our examined conditions, we separated cell and supernatant fractions of P. aeruginosa cultures, and used ICP-MS techniques to measure Cd and Ni sorption. A greater percentage of Cd than Ni was sorbed by both cells and supernatant (which contains rhamnolipid, a surfactant known to sorb some metals and improve swarming). While we show that cell products such as rhamnolipid bind heavy metals (as expected) and should limit metal bioavailability, our results suggest at least one additional mechanism (as yet undetermined) that promotes cell survival during swarming in the presence of these heavy metals.

  4. Magma Reservoirs Feeding Giant Radiating Dike Swarms: Insights from Venus

    Science.gov (United States)

    Grosfils, E. B.; Ernst, R. E.

    2003-01-01

    Evidence of lateral dike propagation from shallow magma reservoirs is quite common on the terrestrial planets, and examination of the giant radiating dike swarm population on Venus continues to provide new insight into the way these complex magmatic systems form and evolve. For example, it is becoming clear that many swarms are an amalgamation of multiple discrete phases of dike intrusion. This is not surprising in and of itself, as on Earth there is clear evidence that formation of both magma reservoirs and individual giant radiating dikes often involves periodic magma injection. Similarly, giant radiating swarms on Earth can contain temporally discrete subswarms defined on the basis of geometry, crosscutting relationships, and geochemical or paleomagnetic signatures. The Venus data are important, however, because erosion, sedimentation, plate tectonic disruption, etc. on Earth have destroyed most giant radiating dike swarm's source regions, and thus we remain uncertain about the geometry and temporal evolution of the magma sources from which the dikes are fed. Are the reservoirs which feed the dikes large or small, and what are the implications for how the dikes themselves form? Does each subswarm originate from a single, periodically reactivated reservoir, or do subswarms emerge from multiple discrete geographic foci? If the latter, are these discrete foci located at the margins of a single large magma body, or do multiple smaller reservoirs define the character of the magmatic center as a whole? Similarly, does the locus of magmatic activity change with time, or are all the foci active simultaneously? Careful study of giant radiating dike swarms on Venus is yielding the data necessary to address these questions and constrain future modeling efforts. Here, using giant radiating dike swarms from the Nemesis Tessera (V14) and Carson (V43) quadrangles as examples, we illustrate some of the dike swarm focal region diversity observed on Venus and briefly explore some

  5. Robust data reconciliation and outlier detection with swarm intelligence in a thermal reactor power calculation

    Energy Technology Data Exchange (ETDEWEB)

    Valdetaro, Eduardo Damianik, E-mail: valdtar@eletronuclear.gov.br [ELETRONUCLEAR - ELETROBRAS, Angra dos Reis, RJ (Brazil). Angra 2 Operating Dept.; Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Schirru, Roberto, E-mail: schirru@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2011-07-01

    In Nuclear power plants, Data Reconciliation (DR) and Gross Errors Detection (GED) are techniques of increasing interest and are primarily used to keep mass and energy balance into account, which brings outcomes as a direct and indirect financial benefits. Data reconciliation is formulated by a constrained minimization problem, where the constraints correspond to energy and mass balance model. Statistical methods are used combined with the minimization of quadratic error form. Solving nonlinear optimization problem using conventional methods can be troublesome, because a multimodal function with differentiated solutions introduces some difficulties to search an optimal solution. Many techniques were developed to solve Data Reconciliation and Outlier Detection, some of them use, for example, Quadratic Programming, Lagrange Multipliers, Mixed-Integer Non Linear Programming and others use evolutionary algorithms like Genetic Algorithms (GA) and recently the use of the Particle Swarm Optimization (PSO) showed to be a potential tool as a global optimization algorithm when applied to data reconciliation. Robust Statistics is also increasing in interest and it is being used when measured data are contaminated by random errors and one can not assume the error is normally distributed, situation which reflects real problems situation. The aim of this work is to present a brief comparison between the classical data reconciliation technique and the robust data reconciliation and gross error detection with swarm intelligence procedure in calculating the thermal reactor power for a simplified heat circuit diagram of a steam turbine plant using real data obtained from Angra 2 Nuclear power plant. The main objective is to test the potential of the robust DR and GED method in a integrated framework using swarm intelligence and the three part redescending estimator of Hampel when applied to a real process condition. The results evaluate the potential use of the robust technique in

  6. Robust data reconciliation and outlier detection with swarm intelligence in a thermal reactor power calculation

    International Nuclear Information System (INIS)

    Valdetaro, Eduardo Damianik; Coordenacao dos Programas de Pos-Graduacao de Engenharia; Schirru, Roberto

    2011-01-01

    In Nuclear power plants, Data Reconciliation (DR) and Gross Errors Detection (GED) are techniques of increasing interest and are primarily used to keep mass and energy balance into account, which brings outcomes as a direct and indirect financial benefits. Data reconciliation is formulated by a constrained minimization problem, where the constraints correspond to energy and mass balance model. Statistical methods are used combined with the minimization of quadratic error form. Solving nonlinear optimization problem using conventional methods can be troublesome, because a multimodal function with differentiated solutions introduces some difficulties to search an optimal solution. Many techniques were developed to solve Data Reconciliation and Outlier Detection, some of them use, for example, Quadratic Programming, Lagrange Multipliers, Mixed-Integer Non Linear Programming and others use evolutionary algorithms like Genetic Algorithms (GA) and recently the use of the Particle Swarm Optimization (PSO) showed to be a potential tool as a global optimization algorithm when applied to data reconciliation. Robust Statistics is also increasing in interest and it is being used when measured data are contaminated by random errors and one can not assume the error is normally distributed, situation which reflects real problems situation. The aim of this work is to present a brief comparison between the classical data reconciliation technique and the robust data reconciliation and gross error detection with swarm intelligence procedure in calculating the thermal reactor power for a simplified heat circuit diagram of a steam turbine plant using real data obtained from Angra 2 Nuclear power plant. The main objective is to test the potential of the robust DR and GED method in a integrated framework using swarm intelligence and the three part redescending estimator of Hampel when applied to a real process condition. The results evaluate the potential use of the robust technique in

  7. GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS

    International Nuclear Information System (INIS)

    Rogers, Adam; Fiege, Jason D.

    2011-01-01

    Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image χ 2 and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest χ 2 is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.

  8. Effects of Random Values for Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Hou-Ping Dai

    2018-02-01

    Full Text Available Particle swarm optimization (PSO algorithm is generally improved by adaptively adjusting the inertia weight or combining with other evolution algorithms. However, in most modified PSO algorithms, the random values are always generated by uniform distribution in the range of [0, 1]. In this study, the random values, which are generated by uniform distribution in the ranges of [0, 1] and [−1, 1], and Gauss distribution with mean 0 and variance 1 ( U [ 0 , 1 ] , U [ − 1 , 1 ] and G ( 0 , 1 , are respectively used in the standard PSO and linear decreasing inertia weight (LDIW PSO algorithms. For comparison, the deterministic PSO algorithm, in which the random values are set as 0.5, is also investigated in this study. Some benchmark functions and the pressure vessel design problem are selected to test these algorithms with different types of random values in three space dimensions (10, 30, and 100. The experimental results show that the standard PSO and LDIW-PSO algorithms with random values generated by U [ − 1 , 1 ] or G ( 0 , 1 are more likely to avoid falling into local optima and quickly obtain the global optima. This is because the large-scale random values can expand the range of particle velocity to make the particle more likely to escape from local optima and obtain the global optima. Although the random values generated by U [ − 1 , 1 ] or G ( 0 , 1 are beneficial to improve the global searching ability, the local searching ability for a low dimensional practical optimization problem may be decreased due to the finite particles.

  9. ORACLS: A system for linear-quadratic-Gaussian control law design

    Science.gov (United States)

    Armstrong, E. S.

    1978-01-01

    A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.

  10. Linear Matrix Inequality Based Fuzzy Synchronization for Fractional Order Chaos

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-01-01

    Full Text Available This paper investigates fuzzy synchronization for fractional order chaos via linear matrix inequality. Based on generalized Takagi-Sugeno fuzzy model, one efficient stability condition for fractional order chaos synchronization or antisynchronization is given. The fractional order stability condition is transformed into a set of linear matrix inequalities and the rigorous proof details are presented. Furthermore, through fractional order linear time-invariant (LTI interval theory, the approach is developed for fractional order chaos synchronization regardless of the system with uncertain parameters. Three typical examples, including synchronization between an integer order three-dimensional (3D chaos and a fractional order 3D chaos, anti-synchronization of two fractional order hyperchaos, and the synchronization between an integer order 3D chaos and a fractional order 4D chaos, are employed to verify the theoretical results.

  11. Particle Swarm Optimization for Structural Design Problems

    Directory of Open Access Journals (Sweden)

    Hamit SARUHAN

    2010-02-01

    Full Text Available The aim of this paper is to employ the Particle Swarm Optimization (PSO technique to a mechanical engineering design problem which is minimizing the volume of a cantilevered beam subject to bending strength constraints. Mechanical engineering design problems are complex activities which are computing capability are more and more required. The most of these problems are solved by conventional mathematical programming techniques that require gradient information. These techniques have several drawbacks from which the main one is becoming trapped in local optima. As an alternative to gradient-based techniques, the PSO does not require the evaluation of gradients of the objective function. The PSO algorithm employs the generation of guided random positions when they search for the global optimum point. The PSO which is a nature inspired heuristics search technique imitates the social behavior of bird flocking. The results obtained by the PSO are compared with Mathematical Programming (MP. It is demonstrated that the PSO performed and obtained better convergence reliability on the global optimum point than the MP. Using the MP, the volume of 2961000 mm3 was obtained while the beam volume of 2945345 mm3 was obtained by the PSO.

  12. Exploitation of Self Organization in UAV Swarms for Optimization in Combat Environments

    National Research Council Canada - National Science Library

    Nowak, Dustin J

    2008-01-01

    ...) swarms using autonomous self-organized cooperative control. This development required the design of a new abstract UAV swarm control model which flows from an abstract Markov structure, a Partially Observable Markov Decision Process...

  13. Monitoring a robot swarm using a data-driven fault detection approach

    KAUST Repository

    Khaldi, Belkacem; Harrou, Fouzi; Cherif, Foudil; Sun, Ying

    2017-01-01

    Using swarm robotics system, with one or more faulty robots, to accomplish specific tasks may lead to degradation in performances complying with the target requirements. In such circumstances, robot swarms require continuous monitoring to detect

  14. Reserve-Constrained Multiarea Environmental/Economic Dispatch Using Enhanced Particle Swarm Optimization

    OpenAIRE

    Wang, Lingfeng; Singh, Chanan

    2007-01-01

    Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria

  15. Simulation Study of Swarm Intelligence Based on Life Evolution Behavior

    Directory of Open Access Journals (Sweden)

    Yanmin Liu

    2015-01-01

    Full Text Available Swarm intelligence (SI is a new evolutionary computation technology, and its performance efficacy is usually affected by each individual behavior in the swarm. According to the genetic and sociological theory, the life evolution behavior process is influenced by the external and internal factors, so the mechanisms of external and internal environment change must be analyzed and explored. Therefore, in this paper, we used the thought of the famous American genetic biologist Morgan, “life = DNA + environment + interaction of environment + gene,” to propose the mutation and crossover operation of DNA fragments by the environmental change to improve the performance efficiency of intelligence algorithms. Additionally, PSO is a random swarm intelligence algorithm with the genetic and sociological property, so we embed the improved mutation and crossover operation to particle swarm optimization (PSO and designed DNA-PSO algorithm to optimize single and multiobjective optimization problems. Simulation experiments in single and multiobjective optimization problems show that the proposed strategies can effectively improve the performance of swarm intelligence.

  16. Rapid movement and instability of an invasive hybrid swarm.

    Science.gov (United States)

    Glotzbecker, Gregory J; Walters, David M; Blum, Michael J

    2016-07-01

    Unstable hybrid swarms that arise following the introduction of non-native species can overwhelm native congeners, yet the stability of invasive hybrid swarms has not been well documented over time. Here, we examine genetic variation and clinal stability across a recently formed hybrid swarm involving native blacktail shiner (Cyprinella venusta) and non-native red shiner (C. lutrensis) in the Upper Coosa River basin, which is widely considered to be a global hot spot of aquatic biodiversity. Examination of phenotypic, multilocus genotypic, and mitochondrial haplotype variability between 2005 and 2011 revealed that the proportion of hybrids has increased over time, with more than a third of all sampled individuals exhibiting admixture in the final year of sampling. Comparisons of clines over time indicated that the hybrid swarm has been rapidly progressing upstream, but at a declining and slower pace than rates estimated from historical collection records. Clinal comparisons also showed that the hybrid swarm has been expanding and contracting over time. Additionally, we documented the presence of red shiner and hybrids farther downstream than prior studies have detected, which suggests that congeners in the Coosa River basin, including all remaining populations of the threatened blue shiner (Cyprinella caerulea), are at greater risk than previously thought.

  17. Tectonic setting of the Wooded Island earthquake swarm, eastern Washington

    Science.gov (United States)

    Blakely, Richard J.; Sherrod, Brian L.; Weaver, Craig S.; Rohay, Alan C.; Wells, Ray E.

    2012-01-01

    Magnetic anomalies provide insights into the tectonic implications of a swarm of ~1500 shallow (~1 km deep) earthquakes that occurred in 2009 on the Hanford site,Washington. Epicenters were concentrated in a 2 km2 area nearWooded Island in the Columbia River. The largest earthquake (M 3.0) had first motions consistent with slip on a northwest-striking reverse fault. The swarm was accompanied by 35 mm of vertical surface deformation, seen in satellite interferometry (InSAR), interpreted to be caused by ~50 mm of slip on a northwest-striking reverse fault and associated bedding-plane fault in the underlying Columbia River Basalt Group (CRBG). A magnetic anomaly over exposed CRBG at Yakima Ridge 40 km northwest of Wooded Island extends southeastward beyond the ridge to the Columbia River, suggesting that the Yakima Ridge anticline and its associated thrust fault extend southeastward in the subsurface. In map view, the concealed anticline passes through the earthquake swarm and lies parallel to reverse faults determined from first motions and InSAR data. A forward model of the magnetic anomaly near Wooded Island is consistent with uplift of concealed CRBG, with the top surface swarm and the thrust and bedding-plane faults modeled from interferometry all fall within the northeastern limb of the faulted anticline. Although fluids may be responsible for triggering the Wooded Island earthquake swarm, the seismic and aseismic deformation are consistent with regional-scale tectonic compression across the concealed Yakima Ridge anticline.

  18. Discordant introgression in a rapidly expanding hybrid swarm

    Science.gov (United States)

    Ward, Jessica L.; Blum, Mike J.; Walters, David M.; Porter, Brady A.; Burkhead, Noel; Freeman, Byron

    2012-01-01

    The erosion of species boundaries can involve rapid evolutionary change. Consequently, many aspects of the process remain poorly understood, including the formation, expansion, and evolution of hybrid swarms. Biological invasions involving hybridization present exceptional opportunities to study the erosion of species boundaries because timelines of interactions and outcomes are frequently well known. Here, we examined clinal variation across codominant and maternally inherited genetic markers as well as phenotypic traits to characterize the expansion and evolution of a hybrid swarm between native Cyprinella venusta and invasive Cyprinella lutrensis minnows. Discordant introgression of phenotype, microsatellite multilocus genotype, and mtDNA haplotype indicates that the observable expansion of the C. venusta x C. lutrensis hybrid swarm is a false invasion front. Both parental and hybrid individuals closely resembling C. lutrensis are numerically dominant in the expansion wake, indicating that the non-native parental phenotype may be selectively favored. These findings show that cryptic introgression can extend beyond the phenotypic boundaries of hybrid swarms and that hybrid swarms likely expand more rapidly than can be documented from phenotypic variation alone. Similarly, dominance of a single parental phenotype following an introduction event may lead to instances of species erosion being mistaken for species displacement without hybridization.

  19. Intelligent discrete particle swarm optimization for multiprocessor task scheduling problem

    Directory of Open Access Journals (Sweden)

    S Sarathambekai

    2017-03-01

    Full Text Available Discrete particle swarm optimization is one of the most recently developed population-based meta-heuristic optimization algorithm in swarm intelligence that can be used in any discrete optimization problems. This article presents a discrete particle swarm optimization algorithm to efficiently schedule the tasks in the heterogeneous multiprocessor systems. All the optimization algorithms share a common algorithmic step, namely population initialization. It plays a significant role because it can affect the convergence speed and also the quality of the final solution. The random initialization is the most commonly used method in majority of the evolutionary algorithms to generate solutions in the initial population. The initial good quality solutions can facilitate the algorithm to locate the optimal solution or else it may prevent the algorithm from finding the optimal solution. Intelligence should be incorporated to generate the initial population in order to avoid the premature convergence. This article presents a discrete particle swarm optimization algorithm, which incorporates opposition-based technique to generate initial population and greedy algorithm to balance the load of the processors. Make span, flow time, and reliability cost are three different measures used to evaluate the efficiency of the proposed discrete particle swarm optimization algorithm for scheduling independent tasks in distributed systems. Computational simulations are done based on a set of benchmark instances to assess the performance of the proposed algorithm.

  20. Swarm, genetic and evolutionary programming algorithms applied to multiuser detection

    Directory of Open Access Journals (Sweden)

    Paul Jean Etienne Jeszensky

    2005-02-01

    Full Text Available In this paper, the particles swarm optimization technique, recently published in the literature, and applied to Direct Sequence/Code Division Multiple Access systems (DS/CDMA with multiuser detection (MuD is analyzed, evaluated and compared. The Swarm algorithm efficiency when applied to the DS-CDMA multiuser detection (Swarm-MuD is compared through the tradeoff performance versus computational complexity, being the complexity expressed in terms of the number of necessary operations in order to reach the performance obtained through the optimum detector or the Maximum Likelihood detector (ML. The comparison is accomplished among the genetic algorithm, evolutionary programming with cloning and Swarm algorithm under the same simulation basis. Additionally, it is proposed an heuristics-MuD complexity analysis through the number of computational operations. Finally, an analysis is carried out for the input parameters of the Swarm algorithm in the attempt to find the optimum parameters (or almost-optimum for the algorithm applied to the MuD problem.

  1. Modelling Oil-Spill Detection with Swarm Drones

    Directory of Open Access Journals (Sweden)

    F. Aznar

    2014-01-01

    Full Text Available Nowadays, swarm robotics research is having a great increase due to the benefits derived from its use, such as robustness, parallelism, and flexibility. Unlike distributed robotic systems, swarm robotics emphasizes a large number of robots, and promotes scalability. Among the multiple applications of such systems we could find are exploring unstructured environments, resource monitoring, or distributed sensing. Two of these applications, monitoring, and perimeter/area detection of a given resource, have several ecological uses. One of them is the detection and monitoring of pollutants to delimit their perimeter and area accurately. Maritime activity has been increasing gradually in recent years. Many ships carry products such as oil that can adversely affect the environment. Such products can produce high levels of pollution in case of being spilled into sea. In this paper we will present a distributed system which monitors, covers, and surrounds a resource by using a swarm of homogeneous low cost drones. These drones only use their local sensory information and do not require any direct communication between them. Taking into account the properties of this kind of oil spills we will present a microscopic model for a swarm of drones, capable of monitoring these spills properly. Furthermore, we will analyse the proper macroscopic operation of the swarm. The analytical and experimental results presented here show the proper evolution of our system.

  2. Swarm Robotics with Circular Formation Motion Including Obstacles Avoidance

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2017-07-01

    Full Text Available The robots science has been developed over the past few years, where robots have become used to accomplish difficult, repetitive or accurate tasks, which are very hard for humans to carry out. In this paper, we propose an algorithm to control the motion of a swarm of robots and make them able to avoid obstacles. The proposed solution is based on forming the robots in circular fashion. A group set of robots consists of multiple groups of robots, each group of robots consists of robots forming a circular shape and each group set is a circular form of robots. The proposed algorithm is concerned with first locating the randomly generated robots in groups and secondly with the swarm robot motion and finally with the swarm obstacle avoidance and swarm reorganization after crossing the obstacle. The proposed algorithm has been simulated with five different obstacles with various numbers of randomly generated robots. The results show that the swarm in the circular form can deal with the obstacles very effectively by passing the obstacles smoothly. The proposed algorithm has been compared with flocking algorithm and it is shown that the circular formation algorithm does not need extensive computation after obstacle avoidance whereas the flocking algorithm needs extensive computation. In addition, the circular formation algorithm maintains every robot in its group after avoiding the obstacles whereas with flocking algorithm does not.

  3. Hierarchical Swarm Model: A New Approach to Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2010-01-01

    Full Text Available This paper presents a novel optimization model called hierarchical swarm optimization (HSO, which simulates the natural hierarchical complex system from where more complex intelligence can emerge for complex problems solving. This proposed model is intended to suggest ways that the performance of HSO-based algorithms on complex optimization problems can be significantly improved. This performance improvement is obtained by constructing the HSO hierarchies, which means that an agent in a higher level swarm can be composed of swarms of other agents from lower level and different swarms of different levels evolve on different spatiotemporal scale. A novel optimization algorithm (named PS2O, based on the HSO model, is instantiated and tested to illustrate the ideas of HSO model clearly. Experiments were conducted on a set of 17 benchmark optimization problems including both continuous and discrete cases. The results demonstrate remarkable performance of the PS2O algorithm on all chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms.

  4. Linear gate

    International Nuclear Information System (INIS)

    Suwono.

    1978-01-01

    A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)

  5. Modeling neuro-vascular coupling in rat cerebellum: characterization of deviations from linearity

    DEFF Research Database (Denmark)

    Rasmussen, Tina; Holstein-Rathlou, Niels-Henrik; Lauritzen, Martin

    2009-01-01

    We investigated the quantitative relation between neuronal activity and blood flow by means of a general parametric mathematical model which described the neuro-vascular system as being dynamic, linear, time-invariant, and subjected to additive noise. The model was constructed from measurements...... and dips in blood flow responses to stimulation for 60 s, and overgrowth of blood flow responses to stimulation for 600 s. In another set of experiments, stimulation frequencies were in the range 0.5-10 Hz and the stimulation duration was 15 s. The neuro-vascular system could be approximated by the linear...

  6. Swarm prevention and spring treatment against Varroa destructor in honey bee colonies (Apis mellifera)

    NARCIS (Netherlands)

    Cornelissen, B.; Gerritsen, L.J.M.

    2006-01-01

    In 2004 and 2005 experiments were carried out to test the efficacy and efficiency of Varroa control combined with swarm prevention methods in spring. Honey bee colonies were split in an artificial swarm and a brood carrier. Hereafter the swarms were treated with oxalic acid and the brood carriers

  7. Environment mapping and localization with an uncontrolled swarm of ultrasound sensor motes

    NARCIS (Netherlands)

    Duisterwinkel, E.; Demi, L.; Dubbelman, G.; Talnishnikh, E.; Wörtche, H.J.; Bergmans, J.W.M.

    2014-01-01

    A method is presented in which a (large) swarm of sensor motes perform simple ultrasonic ranging measurements. The method allows to localize the motes within the swarm, and at the same time, map the environment which the swarm has traversed. The motes float passively uncontrolled through the

  8. A New Hybrid Nelder-Mead Particle Swarm Optimization for Coordination Optimization of Directional Overcurrent Relays

    Directory of Open Access Journals (Sweden)

    An Liu

    2012-01-01

    Full Text Available Coordination optimization of directional overcurrent relays (DOCRs is an important part of an efficient distribution system. This optimization problem involves obtaining the time dial setting (TDS and pickup current (Ip values of each DOCR. The optimal results should have the shortest primary relay operating time for all fault lines. Recently, the particle swarm optimization (PSO algorithm has been considered an effective tool for linear/nonlinear optimization problems with application in the protection and coordination of power systems. With a limited runtime period, the conventional PSO considers the optimal solution as the final solution, and an early convergence of PSO results in decreased overall performance and an increase in the risk of mistaking local optima for global optima. Therefore, this study proposes a new hybrid Nelder-Mead simplex search method and particle swarm optimization (proposed NM-PSO algorithm to solve the DOCR coordination optimization problem. PSO is the main optimizer, and the Nelder-Mead simplex search method is used to improve the efficiency of PSO due to its potential for rapid convergence. To validate the proposal, this study compared the performance of the proposed algorithm with that of PSO and original NM-PSO. The findings demonstrate the outstanding performance of the proposed NM-PSO in terms of computation speed, rate of convergence, and feasibility.

  9. Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Duan, Chen; Wang, Xinggang; Shu, Shuiming; Jing, Changwei; Chang, Huawei

    2014-01-01

    Highlights: • An improved thermodynamic model taking into account irreversibility parameter was developed. • A multi-objective optimization method for designing Stirling engine was investigated. • Multi-objective particle swarm optimization algorithm was adopted in the area of Stirling engine for the first time. - Abstract: In the recent years, the interest in Stirling engine has remarkably increased due to its ability to use any heat source from outside including solar energy, fossil fuels and biomass. A large number of studies have been done on Stirling cycle analysis. In the present study, a mathematical model based on thermodynamic analysis of Stirling engine considering regenerative losses and internal irreversibilities has been developed. Power output, thermal efficiency and the cycle irreversibility parameter of Stirling engine are optimized simultaneously using Particle Swarm Optimization (PSO) algorithm, which is more effective than traditional genetic algorithms. In this optimization problem, some important parameters of Stirling engine are considered as decision variables, such as temperatures of the working fluid both in the high temperature isothermal process and in the low temperature isothermal process, dead volume ratios of each heat exchanger, volumes of each working spaces, effectiveness of the regenerator, and the system charge pressure. The Pareto optimal frontier is obtained and the final design solution has been selected by Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP). Results show that the proposed multi-objective optimization approach can significantly outperform traditional single objective approaches

  10. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Zhiwei Ye

    2015-01-01

    Full Text Available Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  11. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    Science.gov (United States)

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  12. Feature and Intensity Based Medical Image Registration Using Particle Swarm Optimization.

    Science.gov (United States)

    Abdel-Basset, Mohamed; Fakhry, Ahmed E; El-Henawy, Ibrahim; Qiu, Tie; Sangaiah, Arun Kumar

    2017-11-03

    Image registration is an important aspect in medical image analysis, and kinds use in a variety of medical applications. Examples include diagnosis, pre/post surgery guidance, comparing/merging/integrating images from multi-modal like Magnetic Resonance Imaging (MRI), and Computed Tomography (CT). Whether registering images across modalities for a single patient or registering across patients for a single modality, registration is an effective way to combine information from different images into a normalized frame for reference. Registered datasets can be used for providing information relating to the structure, function, and pathology of the organ or individual being imaged. In this paper a hybrid approach for medical images registration has been developed. It employs a modified Mutual Information (MI) as a similarity metric and Particle Swarm Optimization (PSO) method. Computation of mutual information is modified using a weighted linear combination of image intensity and image gradient vector flow (GVF) intensity. In this manner, statistical as well as spatial image information is included into the image registration process. Maximization of the modified mutual information is effected using the versatile Particle Swarm Optimization which is developed easily with adjusted less parameter. The developed approach has been tested and verified successfully on a number of medical image data sets that include images with missing parts, noise contamination, and/or of different modalities (CT, MRI). The registration results indicate the proposed model as accurate and effective, and show the posture contribution in inclusion of both statistical and spatial image data to the developed approach.

  13. Numerical thermal mathematical model correlation to thermal balance test using adaptive particle swarm optimization (APSO)

    International Nuclear Information System (INIS)

    Beck, T.; Bieler, A.; Thomas, N.

    2012-01-01

    We present structural and thermal model (STM) tests of the BepiColombo laser altimeter (BELA) receiver baffle with emphasis on the correlation of the data with a thermal mathematical model. The test unit is a part of the thermal and optical protection of the BELA instrument being tested under infrared and solar irradiation at University of Bern. An iterative optimization method known as particle swarm optimization has been adapted to adjust the model parameters, mainly the linear conductivity, in such a way that model and test results match. The thermal model reproduces the thermal tests to an accuracy of 4.2 °C ± 3.2 °C in a temperature range of 200 °C after using only 600 iteration steps of the correlation algorithm. The use of this method brings major benefits to the accuracy of the results as well as to the computational time required for the correlation. - Highlights: ► We present model correlations of the BELA receiver baffle to thermal balance tests. ► Adaptive particle swarm optimization has been adapted for the correlation. ► The method improves the accuracy of the correlation and the computational time.

  14. Linear Accelerators

    International Nuclear Information System (INIS)

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics

  15. Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Alejandro Carrasco Elizalde

    2008-01-01

    Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.

  16. Self-regulating and self-evolving particle swarm optimizer

    Science.gov (United States)

    Wang, Hui-Min; Qiao, Zhao-Wei; Xia, Chang-Liang; Li, Liang-Yu

    2015-01-01

    In this article, a novel self-regulating and self-evolving particle swarm optimizer (SSPSO) is proposed. Learning from the idea of direction reversal, self-regulating behaviour is a modified position update rule for particles, according to which the algorithm improves the best position to accelerate convergence in situations where the traditional update rule does not work. Borrowing the idea of mutation from evolutionary computation, self-evolving behaviour acts on the current best particle in the swarm to prevent the algorithm from prematurely converging. The performance of SSPSO and four other improved particle swarm optimizers is numerically evaluated by unimodal, multimodal and rotated multimodal benchmark functions. The effectiveness of SSPSO in solving real-world problems is shown by the magnetic optimization of a Halbach-based permanent magnet machine. The results show that SSPSO has good convergence performance and high reliability, and is well matched to actual problems.

  17. Monte Carlo simulation of electron swarms in H2

    International Nuclear Information System (INIS)

    Hunter, S.R.

    1977-01-01

    A Monte Carlo simulation of the motion of an electron swarm in molecular hydrogen has been studied in the range E/N 1.4-170 Td. The simulation was performed for 400-600 electrons at several values of E/N for two different sets of inelastic collision cross sections at high E/N. Results were obtained for the longitudinal diffusion coefficient Dsub(L), lateral diffusion coefficient D, swarm drift velocity W, average swarm energy and ionization and excitation production coefficients, and these were compared with experimental data where available. It is found that the results differ significantly from the experimental values and this is attributed to the isotropic scattering model used in this work. However, the results lend support to the experimental technique used recently by Blevin et al. to determine these transport parameters, and in particular confirm their results that Dsub(L) > D at high values of E/N. (Author)

  18. Cell-Division Behavior in a Heterogeneous Swarm Environment.

    Science.gov (United States)

    Erskine, Adam; Herrmann, J Michael

    2015-01-01

    We present a system of virtual particles that interact using simple kinetic rules. It is known that heterogeneous mixtures of particles can produce particularly interesting behaviors. Here we present a two-species three-dimensional swarm in which a behavior emerges that resembles cell division. We show that the dividing behavior exists across a narrow but finite band of parameters and for a wide range of population sizes. When executed in a two-dimensional environment the swarm's characteristics and dynamism manifest differently. In further experiments we show that repeated divisions can occur if the system is extended by a biased equilibrium process to control the split of populations. We propose that this repeated division behavior provides a simple model for cell-division mechanisms and is of interest for the formation of morphological structure and to swarm robotics.

  19. Quantitative analysis of distributed control paradigms of robot swarms

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    2010-01-01

    describe the physical and simulated robots, experiment scenario, and experiment setup. Third, we present our robot controllers based on behaviour based and neural network based paradigms. Fourth, we graphically show their experiment results and quantitatively analyse the results in comparison of the two......Given a task of designing controller for mobile robots in swarms, one might wonder which distributed control paradigms should be selected. Until now, paradigms of robot controllers have been within either behaviour based control or neural network based control, which have been recognized as two...... mainstreams of controller design for mobile robots. However, in swarm robotics, it is not clear how to determine control paradigms. In this paper we study the two control paradigms with various experiments of swarm aggregation. First, we introduce the two control paradigms for mobile robots. Second, we...

  20. A Swarm-Based Learning Method Inspired by Social Insects

    Science.gov (United States)

    He, Xiaoxian; Zhu, Yunlong; Hu, Kunyuan; Niu, Ben

    Inspired by cooperative transport behaviors of ants, on the basis of Q-learning, a new learning method, Neighbor-Information-Reference (NIR) learning method, is present in the paper. This is a swarm-based learning method, in which principles of swarm intelligence are strictly complied with. In NIR learning, the i-interval neighbor's information, namely its discounted reward, is referenced when an individual selects the next state, so that it can make the best decision in a computable local neighborhood. In application, different policies of NIR learning are recommended by controlling the parameters according to time-relativity of concrete tasks. NIR learning can remarkably improve individual efficiency, and make swarm more "intelligent".

  1. Recent advances in swarm intelligence and evolutionary computation

    CERN Document Server

    2015-01-01

    This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference f...

  2. Particle swarm optimization for automatic creation of complex graphic characters

    International Nuclear Information System (INIS)

    Fister, Iztok; Perc, Matjaž; Ljubič, Karin; Kamal, Salahuddin M.; Iglesias, Andres; Fister, Iztok

    2015-01-01

    Nature-inspired algorithms are a very promising tool for solving the hardest problems in computer sciences and mathematics. These algorithms are typically inspired by the fascinating behavior at display in biological systems, such as bee swarms or fish schools. So far, these algorithms have been applied in many practical applications. In this paper, we present a simple particle swarm optimization, which allows automatic creation of complex two-dimensional graphic characters. The method involves constructing the base characters, optimizing the modifications of the base characters with the particle swarm optimization algorithm, and finally generating the graphic characters from the solution. We demonstrate the effectiveness of our approach with the creation of simple snowman, but we also outline in detail how more complex characters can be created

  3. A Novel Particle Swarm Optimization Algorithm for Global Optimization.

    Science.gov (United States)

    Wang, Chun-Feng; Liu, Kui

    2016-01-01

    Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms.

  4. Implementasi Algoritma Particle Swarm untuk Menyelesaikan Sistem Persamaan Nonlinear

    Directory of Open Access Journals (Sweden)

    Ardiana Rosita

    2012-09-01

    Full Text Available Penyelesaian sistem persamaan nonlinear merupakan salah satu permasalahan yang sulit pada komputasi numerik dan berbagai aplikasi teknik. Beberapa metode telah dikembangkan untuk menyelesaikan sistem persamaan ini dan metode Newton merupakan metode yang paling sering digunakan. Namun metode ini memerlukan perkiraan solusi awal dan memilih perkiraan solusi awal yang baik untuk sebagian besar sistem persamaan nonlinear tidaklah mudah. Pada makalah ini, algoritma Particle Swarm yang diusulkan oleh Jaberipour dan kawan-kawan[1] diimplementasikan. Algoritma ini merupakan pengembangan dari algoritma Particle Swarm Optimization (PSO. Algoritma ini meyelesaikan sistem persamaan nonlinear yang sebelumnya telah diubah menjadi permasalahan optimasi. Uji coba dilakukan terhadap beberapa fungsi dan sistem persamaan nonlinear untuk menguji kinerja dan efisiensi algoritma. Berdasarkan hasil uji coba, beberapa fungsi dan sistem persamaan nonlinear telah konvergen pada iterasi ke 10 sampai 20 dan terdapat fungsi yang konvergen pada iterasi ke 200. Selain itu, solusi yang dihasilkan algoritma Particle Swarm mendekati solusi eksak.

  5. Multi-objective swarm intelligence theoretical advances and applications

    CERN Document Server

    Jagadev, Alok; Panda, Mrutyunjaya

    2015-01-01

    The aim of this book is to understand the state-of-the-art theoretical and practical advances of swarm intelligence. It comprises seven contemporary relevant chapters. In chapter 1, a review of Bacteria Foraging Optimization (BFO) techniques for both single and multiple criterions problem is presented. A survey on swarm intelligence for multiple and many objectives optimization is presented in chapter 2 along with a topical study on EEG signal analysis. Without compromising the extensive simulation study, a comparative study of variants of MOPSO is provided in chapter 3. Intractable problems like subset and job scheduling problems are discussed in chapters 4 and 7 by different hybrid swarm intelligence techniques. An attempt to study image enhancement by ant colony optimization is made in chapter 5. Finally, chapter 7 covers the aspect of uncertainty in data by hybrid PSO.       

  6. A Novel Distributed Quantum-Behaved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Yangyang Li

    2017-01-01

    Full Text Available Quantum-behaved particle swarm optimization (QPSO is an improved version of particle swarm optimization (PSO and has shown superior performance on many optimization problems. But for now, it may not always satisfy the situations. Nowadays, problems become larger and more complex, and most serial optimization algorithms cannot deal with the problem or need plenty of computing cost. Fortunately, as an effective model in dealing with problems with big data which need huge computation, MapReduce has been widely used in many areas. In this paper, we implement QPSO on MapReduce model and propose MapReduce quantum-behaved particle swarm optimization (MRQPSO which achieves parallel and distributed QPSO. Comparisons are made between MRQPSO and QPSO on some test problems and nonlinear equation systems. The results show that MRQPSO could complete computing task with less time. Meanwhile, from the view of optimization performance, MRQPSO outperforms QPSO in many cases.

  7. Cultural-based particle swarm for dynamic optimisation problems

    Science.gov (United States)

    Daneshyari, Moayed; Yen, Gary G.

    2012-07-01

    Many practical optimisation problems are with the existence of uncertainties, among which a significant number belong to the dynamic optimisation problem (DOP) category in which the fitness function changes through time. In this study, we propose the cultural-based particle swarm optimisation (PSO) to solve DOP problems. A cultural framework is adopted incorporating the required information from the PSO into five sections of the belief space, namely situational, temporal, domain, normative and spatial knowledge. The stored information will be adopted to detect the changes in the environment and assists response to the change through a diversity-based repulsion among particles and migration among swarms in the population space, and also helps in selecting the leading particles in three different levels, personal, swarm and global levels. Comparison of the proposed heuristics over several difficult dynamic benchmark problems demonstrates the better or equal performance with respect to most of other selected state-of-the-art dynamic PSO heuristics.

  8. Linearization Method and Linear Complexity

    Science.gov (United States)

    Tanaka, Hidema

    We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.

  9. Mauna Kea volcano's ongoing 18-year swarm

    Science.gov (United States)

    Wech, A.; Thelen, W. A.

    2017-12-01

    Mauna Kea is a large postshield-stage volcano that forms the highest peak on Hawaii Island. The 4,205-meter high volcano erupted most recently between 6,000 and 4,500 years ago and exhibits relatively low rates of seismicity, which are mostly tectonic in origin resulting from lithospheric flexure under the weight of the volcano. Here we identify deep repeating earthquakes occurring beneath the summit of Mauna Kea. These earthquakes, which are not part of the Hawaiian Volcano Observatory's regional network catalog, were initially detected through a systematic search for coherent seismicity using envelope cross-correlation, and subsequent analysis revealed the presence of a long-term, ongoing swarm. The events have energy concentrated at 2-7 Hz, and can be seen in filtered waveforms dating back to the earliest continuous data from a single station archived at IRIS from November 1999. We use a single-station (3 component) match-filter analysis to create a catalog of the repeating earthquakes for the past 18 years. Using two templates created through phase-weighted stacking of thousands of sta/lta-triggers, we find hundreds of thousands of M1.3-1.6 earthquakes repeating every 7-12 minutes throughout this entire time period, with many smaller events occurring in between. The earthquakes occur at 28-31 km depth directly beneath the summit within a conspicuous gap in seismicity surrounding the flanks of the volcano. Magnitudes and periodicity are remarkably stable long-term, but do exhibit slight variability and occasionally display higher variability on shorter time scales. Network geometry precludes obtaining a reliable focal mechanism, but we interpret the frequency content and hypocenters to infer a volcanic source distinct from the regional tectonic seismicity responding to the load of the island. In this model, the earthquakes may result from the slow, persistent degassing of a relic magma chamber at depth.

  10. Cosmological parameter estimation using particle swarm optimization

    Science.gov (United States)

    Prasad, Jayanti; Souradeep, Tarun

    2012-06-01

    Constraining theoretical models, which are represented by a set of parameters, using observational data is an important exercise in cosmology. In Bayesian framework this is done by finding the probability distribution of parameters which best fits to the observational data using sampling based methods like Markov chain Monte Carlo (MCMC). It has been argued that MCMC may not be the best option in certain problems in which the target function (likelihood) poses local maxima or have very high dimensionality. Apart from this, there may be examples in which we are mainly interested to find the point in the parameter space at which the probability distribution has the largest value. In this situation the problem of parameter estimation becomes an optimization problem. In the present work we show that particle swarm optimization (PSO), which is an artificial intelligence inspired population based search procedure, can also be used for cosmological parameter estimation. Using PSO we were able to recover the best-fit Λ cold dark matter (LCDM) model parameters from the WMAP seven year data without using any prior guess value or any other property of the probability distribution of parameters like standard deviation, as is common in MCMC. We also report the results of an exercise in which we consider a binned primordial power spectrum (to increase the dimensionality of problem) and find that a power spectrum with features gives lower chi square than the standard power law. Since PSO does not sample the likelihood surface in a fair way, we follow a fitting procedure to find the spread of likelihood function around the best-fit point.

  11. Identification of Affine Linear Parameter Varying Models for Adaptive Interventions in Fibromyalgia Treatment.

    Science.gov (United States)

    Dos Santos, P Lopes; Deshpande, Sunil; Rivera, Daniel E; Azevedo-Perdicoúlis, T-P; Ramos, J A; Younger, Jarred

    2013-12-31

    There is good evidence that naltrexone, an opioid antagonist, has a strong neuroprotective role and may be a potential drug for the treatment of fibromyalgia. In previous work, some of the authors used experimental clinical data to identify input-output linear time invariant models that were used to extract useful information about the effect of this drug on fibromyalgia symptoms. Additional factors such as anxiety, stress, mood, and headache, were considered as additive disturbances. However, it seems reasonable to think that these factors do not affect the drug actuation, but only the way in which a participant perceives how the drug actuates on herself. Under this hypothesis the linear time invariant models can be replaced by State-Space Affine Linear Parameter Varying models where the disturbances are seen as a scheduling signal signal only acting at the parameters of the output equation. In this paper a new algorithm for identifying such a model is proposed. This algorithm minimizes a quadratic criterion of the output error. Since the output error is a linear function of some parameters, the Affine Linear Parameter Varying system identification is formulated as a separable nonlinear least squares problem. Likewise other identification algorithms using gradient optimization methods several parameter derivatives are dynamical systems that must be simulated. In order to increase time efficiency a canonical parametrization that minimizes the number of systems to be simulated is chosen. The effectiveness of the algorithm is assessed in a case study where an Affine Parameter Varying Model is identified from the experimental data used in the previous study and compared with the time-invariant model.

  12. Linear algebra

    CERN Document Server

    Said-Houari, Belkacem

    2017-01-01

    This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...

  13. SCARF - The Swarm Satellite Constellation Application and Research Facility

    DEFF Research Database (Denmark)

    Olsen, Nils

    2014-01-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, has been launched in November 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, which...... conductivity, thermospheric mass density and winds, field-aligned currents, an ionospheric plasma bubble index, the ionospheric total electron content and the dayside equatorial zonal electrical field will be calculated. This service is expected to be operational for a period of at least 5 years. The present...

  14. Sambot II: A self-assembly modular swarm robot

    Science.gov (United States)

    Zhang, Yuchao; Wei, Hongxing; Yang, Bo; Jiang, Cancan

    2018-04-01

    The new generation of self-assembly modular swarm robot Sambot II, based on the original generation of self-assembly modular swarm robot Sambot, adopting laser and camera module for information collecting, is introduced in this manuscript. The visual control algorithm of Sambot II is detailed and feasibility of the algorithm is verified by the laser and camera experiments. At the end of this manuscript, autonomous docking experiments of two Sambot II robots are presented. The results of experiments are showed and analyzed to verify the feasibility of whole scheme of Sambot II.

  15. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    2012-01-01

    of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link...... optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm...

  16. Optimal PMU Placement By Improved Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Liu, Leo; Chen, Zhe

    2013-01-01

    This paper presents an improved method of binary particle swarm optimization (IBPSO) technique for optimal phasor measurement unit (PMU) placement in a power network for complete system observability. Various effective improvements have been proposed to enhance the efficiency and convergence rate...... of conventional particle swarm optimization method. The proposed method of IBPSO ensures optimal PMU placement with and without consideration of zero injection measurements. The proposed method has been applied to standard test systems like 17 bus, IEEE 24-bus, IEEE 30-bus, New England 39-bus, IEEE 57-bus system...

  17. A dynamic inertia weight particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Jiao Bin; Lian Zhigang; Gu Xingsheng

    2008-01-01

    Particle swarm optimization (PSO) algorithm has been developing rapidly and has been applied widely since it was introduced, as it is easily understood and realized. This paper presents an improved particle swarm optimization algorithm (IPSO) to improve the performance of standard PSO, which uses the dynamic inertia weight that decreases according to iterative generation increasing. It is tested with a set of 6 benchmark functions with 30, 50 and 150 different dimensions and compared with standard PSO. Experimental results indicate that the IPSO improves the search performance on the benchmark functions significantly

  18. A Diversity-Guided Particle Swarm Optimizer - the ARPSO

    DEFF Research Database (Denmark)

    Vesterstrøm, Jacob Svaneborg; Riget, Jacques

    2002-01-01

    The particle swarm optimization (PSO) algorithm is a new population based search strat- egy, which has exhibited good performance on well-known numerical test problems. How- ever, on strongly multi-modal test problems the PSO tends to suffer from premature convergence. This is due to a decrease...... that the ARPSO prevents premature convergence to a high degree, but still keeps a rapid convergence like the basic PSO. Thus, it clearly outperforms the basic PSO as well as the implemented GA in multi-modal optimization. Keywords Particle Swarm Optimization, Diversity-Guided Search 1 Introduction The PSO model...

  19. Linear algebra

    CERN Document Server

    Stoll, R R

    1968-01-01

    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  20. Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling

    International Nuclear Information System (INIS)

    He Yaoyao; Zhou Jianzhong; Xiang Xiuqiao; Chen Heng; Qin Hui

    2009-01-01

    The goal of this paper is to present a novel chaotic particle swarm optimization (CPSO) algorithm and compares the efficiency of three one-dimensional chaotic maps within symmetrical region for long-term cascaded hydroelectric system scheduling. The introduced chaotic maps improve the global optimal capability of CPSO algorithm. Moreover, a piecewise linear interpolation function is employed to transform all constraints into restrict upriver water level for implementing the maximum of objective function. Numerical results and comparisons demonstrate the effect and speed of different algorithms on a practical hydro-system.

  1. Linear programming

    CERN Document Server

    Solow, Daniel

    2014-01-01

    This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.

  2. Linear algebra

    CERN Document Server

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  3. Linear algebra

    CERN Document Server

    Berberian, Sterling K

    2014-01-01

    Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.

  4. Linear Models

    CERN Document Server

    Searle, Shayle R

    2012-01-01

    This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.

  5. LINEAR ACCELERATOR

    Science.gov (United States)

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  6. A Combination of Genetic Algorithm and Particle Swarm Optimization for Vehicle Routing Problem with Time Windows.

    Science.gov (United States)

    Xu, Sheng-Hua; Liu, Ji-Ping; Zhang, Fu-Hao; Wang, Liang; Sun, Li-Jian

    2015-08-27

    A combination of genetic algorithm and particle swarm optimization (PSO) for vehicle routing problems with time windows (VRPTW) is proposed in this paper. The improvements of the proposed algorithm include: using the particle real number encoding method to decode the route to alleviate the computation burden, applying a linear decreasing function based on the number of the iterations to provide balance between global and local exploration abilities, and integrating with the crossover operator of genetic algorithm to avoid the premature convergence and the local minimum. The experimental results show that the proposed algorithm is not only more efficient and competitive with other published results but can also obtain more optimal solutions for solving the VRPTW issue. One new well-known solution for this benchmark problem is also outlined in the following.

  7. Swarm robotics and complex behaviour of continuum material

    Science.gov (United States)

    dell'Erba, Ramiro

    2018-05-01

    In swarm robotics, just as for an animal swarm in nature, one of the aims is to reach and maintain a desired configuration. One of the possibilities for the team, to reach this aim, is to see what its neighbours are doing. This approach generates a rules system governing the movement of the single robot just by reference to neighbour's motion. The same approach is used in position-based dynamics to simulate behaviour of complex continuum materials under deformation. Therefore, in some previous works, we have considered a two-dimensional lattice of particles and calculated its time evolution by using a rules system derived from our experience in swarm robotics. The new position of a particle, like the element of a swarm, is determined by the spatial position of the other particles. No dynamic is considered, but it can be thought as being hidden in the behaviour rules. This method has given good results in some simple situations reproducing the behaviour of deformable bodies under imposed strain. In this paper we try to stress our model to highlight its limits and how they can be improved. Some other, more complex, examples are computed and discussed. Shear test, different lattices, different fracture mechanisms and ASTM shape sample behaviour have been investigated by the software tool we have developed.

  8. Validation of Swarm accelerometer data by modelled nongravitational forces

    Czech Academy of Sciences Publication Activity Database

    Bezděk, Aleš; Sebera, J.; Klokočník, Jaroslav

    2017-01-01

    Roč. 59, č. 10 (2017), s. 2512-2521 ISSN 0273-1177 R&D Projects: GA MŠk(CZ) LG15003 Institutional support: RVO:67985815 Keywords : space -borne accelerometers * nongravitational accelerations * swarm mission Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics, space science) Impact factor: 1.401, year: 2016

  9. Reversals and collisions optimize protein exchange in bacterial swarms

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, Aboutaleb; Harvey, Cameron; Buchmann, Amy; Christley, Scott; Shrout, Joshua D.; Aranson, Igor S.; Alber, Mark

    2017-03-01

    Swarming groups of bacteria coordinate their behavior by self-organizing as a population to move over surfaces in search of nutrients and optimal niches for colonization. Many open questions remain about the cues used by swarming bacteria to achieve this self-organization. While chemical cue signaling known as quorum sensing is well-described, swarming bacteria often act and coordinate on time scales that could not be achieved via these extracellular quorum sensing cues. Here, cell-cell contact-dependent protein exchange is explored as amechanism of intercellular signaling for the bacterium Myxococcus xanthus. A detailed biologically calibrated computational model is used to study how M. xanthus optimizes the connection rate between cells and maximizes the spread of an extracellular protein within the population. The maximum rate of protein spreading is observed for cells that reverse direction optimally for swarming. Cells that reverse too slowly or too fast fail to spread extracellular protein efficiently. In particular, a specific range of cell reversal frequencies was observed to maximize the cell-cell connection rate and minimize the time of protein spreading. Furthermore, our findings suggest that predesigned motion reversal can be employed to enhance the collective behavior of biological synthetic active systems.

  10. Propulsion Trade Studies for Spacecraft Swarm Mission Design

    Science.gov (United States)

    Dono, Andres; Plice, Laura; Mueting, Joel; Conn, Tracie; Ho, Michael

    2018-01-01

    Spacecraft swarms constitute a challenge from an orbital mechanics standpoint. Traditional mission design involves the application of methodical processes where predefined maneuvers for an individual spacecraft are planned in advance. This approach does not scale to spacecraft swarms consisting of many satellites orbiting in close proximity; non-deterministic maneuvers cannot be preplanned due to the large number of units and the uncertainties associated with their differential deployment and orbital motion. For autonomous small sat swarms in LEO, we investigate two approaches for controlling the relative motion of a swarm. The first method involves modified miniature phasing maneuvers, where maneuvers are prescribed that cancel the differential delta V of each CubeSat's deployment vector. The second method relies on artificial potential functions (APFs) to contain the spacecraft within a volumetric boundary and avoid collisions. Performance results and required delta V budgets are summarized, indicating that each method has advantages and drawbacks for particular applications. The mini phasing maneuvers are more predictable and sustainable. The APF approach provides a more responsive and distributed performance, but at considerable propellant cost. After considering current state of the art CubeSat propulsion systems, we conclude that the first approach is feasible, but the modified APF method of requires too much control authority to be enabled by current propulsion systems.

  11. Steering Micro-Robotic Swarm by Dynamic Actuating Fields

    NARCIS (Netherlands)

    Chao, Q.; Yu, J; Dai, C.; Xu, T; Zhang, L.; Wang, C.C.; Jin, X.

    2016-01-01

    We present a general solution for steering microrobotic
    swarm by dynamic actuating fields. In our approach, the
    motion of micro-robots is controlled by changing the actuating
    direction of a field applied to them. The time-series sequence
    of actuating field’s directions can be

  12. The blockchain: a new framework for robotic swarm systems

    OpenAIRE

    Ferrer, Eduardo Castelló

    2016-01-01

    Swarms of robots will revolutionize many industrial applications, from targeted material delivery to precision farming. However, several of the heterogeneous characteristics that make them ideal for certain future applications --- robot autonomy, decentralized control, collective emergent behavior, etc. --- hinder the evolution of the technology from academic institutions to real-world problems. Blockchain, an emerging technology originated in the Bitcoin field, demonstrates that by combining...

  13. Analysis of lineament swarms in a Precambrian metamorphic rocks

    Indian Academy of Sciences (India)

    Addressing the geologic significance of lineaments and their correlation with joints/fractures is still unclear. The present study attempts to analyse the lineament swarms developed in a Precambrian metamorphic terrain in India using both unfiltered and filtered techniques. The unfiltered analysis technique shows that the ...

  14. Intraplate earthquake swarms in West Bohemia/Vogtland (Central Europe)

    Czech Academy of Sciences Publication Activity Database

    Horálek, Josef; Fischer, Tomáš

    2010-01-01

    Roč. 60, č. 1 (2010), s. 67-87 ISSN 0449-0576 Grant - others:Norway Grants(NO) A/CZ0046/2/0015 Institutional research plan: CEZ:AV0Z30120515 Keywords : earthquake swarm * West Bohemia/Vogtland * WEBNET seismic network Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.889, year: 2010

  15. The occurence of a hybrid swarm involving O. longistaminata A ...

    African Journals Online (AJOL)

    A hybrid swarm involving Oryza longistaminata, O. glaberrima and O. sativa was discovered at Jebba in Nigeria. A preliminary study in 2000 paved the way for this study which used extensive morphological and anatomical markers to identify and characterise putative hybrids and their advanced generation segregants.

  16. Swarm-based wayfinding support in open and distance learning

    NARCIS (Netherlands)

    Tattersall, Colin; Manderveld, Jocelyn; Van den Berg, Bert; Van Es, René; Janssen, José; Koper, Rob

    2005-01-01

    Please refer to the original source: Tattersall, C. Manderveld, J., Van den Berg, B., Van Es, R., Janssen, J., & Koper, R. (2005). Swarm-based wayfinding support in open and distance learning. In Alkhalifa, E.M. (Ed). Cognitively Informed Systems: Utilizing Practical Approaches to Enrich Information

  17. Particle Swarm Optimization Based of the Maximum Photovoltaic ...

    African Journals Online (AJOL)

    Photovoltaic electricity is seen as an important source of renewable energy. The photovoltaic array is an unstable source of power since the peak power point depends on the temperature and the irradiation level. A maximum peak power point tracking is then necessary for maximum efficiency. In this work, a Particle Swarm ...

  18. Weak tidal correlation of NW-Bohemia/Vogtland earthquake swarms

    Czech Academy of Sciences Publication Activity Database

    Fischer, Tomáš; Kalenda, Pavel; Skalský, Lumír

    2006-01-01

    Roč. 424, č. 3-4 (2006), s. 259-269 ISSN 0040-1951 R&D Projects: GA AV ČR IAA3012308 Institutional research plan: CEZ:AV0Z30460519 Keywords : Earth tides * earthquake swarm * triggered earthquakes Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.675, year: 2006

  19. Weak tidal correlation of NW-Bohemia/Vogtland earthquake swarms

    Czech Academy of Sciences Publication Activity Database

    Fischer, Tomáš; Kalenda, Pavel; Skalský, Lumír

    2006-01-01

    Roč. 424, č. 3-4 (2006), s. 259-269 ISSN 0040-1951 R&D Projects: GA AV ČR IAA3012308 Institutional research plan: CEZ:AV0Z30120515; CEZ:AV0Z30460519 Keywords : Earth tides * earthquake swarm * triggered earthquakes Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.675, year: 2006

  20. Optimal power flow by particle swarm optimization with an aging ...

    African Journals Online (AJOL)

    In this paper, a particle swarm optimization (PSO) with an aging leader and challengers (ALC-PSO) is applied for the solution of OPF problem of power system. This study is implemented on modified IEEE 30-bus test power system with different objectives that reflect minimization of either fuel cost or active power loss or sum ...

  1. The Swarm Initial Field Model for the 2014 geomagnetic field

    DEFF Research Database (Denmark)

    Olsen, Nils; Hulot, Gauthier; Lesur, Vincent

    2015-01-01

    agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for East...

  2. Youth on YouTube as Smart Swarms

    Science.gov (United States)

    Duncum, Paul

    2014-01-01

    Viewing YouTube culture as a creative, collaborative process similar to animal swarms can help art educators understand and embrace youth's digital practices. School-age youth are among the most prolific contributors to YouTube, not just as viewers, but also as producers. Even preschoolers now produce videos (McClure, 2010). So pervasive,…

  3. On the premature convergence of particle swarm optimization

    DEFF Research Database (Denmark)

    Larsen, Rie B.; Jouffroy, Jerome; Lassen, Benny

    2016-01-01

    This paper discusses convergence issues of the basic particle swarm optimization algorithm for different pa- rameters. For the one-dimensional case, it is shown that, for a specific range of parameters, the particles will converge prematurely, i.e. away from the actual minimum of the objective...

  4. Swarm-based adaptation: wayfinding support for lifelong learners

    NARCIS (Netherlands)

    Tattersall, Colin; Van den Berg, Bert; Van Es, René; Janssen, José; Manderveld, Jocelyn; Koper, Rob

    2004-01-01

    Please refer to the orinigal publication in: Tattersall, C. Van den Berg, B., Van Es, R., Janssen, J., Manderveld, J., Koper, R. (2004). Swarm-based adaptation: wayfinding support for lifelong learners. In P. de Bra & W. Nejdl, Adaptive Hypermedia and Adaptive Web-Based Systems (LNCS3137), (pp.

  5. Camera Network Coverage Improving by Particle Swarm Optimization

    NARCIS (Netherlands)

    Xu, Y.C.; Lei, B.; Hendriks, E.A.

    2011-01-01

    This paper studies how to improve the field of view (FOV) coverage of a camera network. We focus on a special but practical scenario where the cameras are randomly scattered in a wide area and each camera may adjust its orientation but cannot move in any direction. We propose a particle swarm

  6. Automatized Parameterization of DFTB Using Particle Swarm Optimization.

    Science.gov (United States)

    Chou, Chien-Pin; Nishimura, Yoshifumi; Fan, Chin-Chai; Mazur, Grzegorz; Irle, Stephan; Witek, Henryk A

    2016-01-12

    We present a novel density-functional tight-binding (DFTB) parametrization toolkit developed to optimize the parameters of various DFTB models in a fully automatized fashion. The main features of the algorithm, based on the particle swarm optimization technique, are discussed, and a number of initial pilot applications of the developed methodology to molecular and solid systems are presented.

  7. An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.

    Science.gov (United States)

    Zhu, Qingling; Lin, Qiuzhen; Chen, Weineng; Wong, Ka-Chun; Coello Coello, Carlos A; Li, Jianqiang; Chen, Jianyong; Zhang, Jun

    2017-09-01

    The selection of swarm leaders (i.e., the personal best and global best), is important in the design of a multiobjective particle swarm optimization (MOPSO) algorithm. Such leaders are expected to effectively guide the swarm to approach the true Pareto optimal front. In this paper, we present a novel external archive-guided MOPSO algorithm (AgMOPSO), where the leaders for velocity update are all selected from the external archive. In our algorithm, multiobjective optimization problems (MOPs) are transformed into a set of subproblems using a decomposition approach, and then each particle is assigned accordingly to optimize each subproblem. A novel archive-guided velocity update method is designed to guide the swarm for exploration, and the external archive is also evolved using an immune-based evolutionary strategy. These proposed approaches speed up the convergence of AgMOPSO. The experimental results fully demonstrate the superiority of our proposed AgMOPSO in solving most of the test problems adopted, in terms of two commonly used performance measures. Moreover, the effectiveness of our proposed archive-guided velocity update method and immune-based evolutionary strategy is also experimentally validated on more than 30 test MOPs.

  8. Auto-Clustering using Particle Swarm Optimization and Bacterial Foraging

    DEFF Research Database (Denmark)

    Rutkowski Olesen, Jakob; Cordero, Jorge; Zeng, Yifeng

    2009-01-01

    by using simplistic collaboration. Inspired by the advances in clustering using particle swarm optimization, we suggest further improvements. Moreover, we gathered standard benchmark datasets and compared our new approach against the standard K-means algorithm, obtaining promising results. Our hybrid...

  9. Handbook of swarm intelligence concepts, principles and applications

    CERN Document Server

    Shi, Yuhui; Panigrahi, Bijaya Ketan

    2011-01-01

    Recent work on the behavior of swarming creatures such as bees posits an innate collective intelligence that gives rise to myriad computational problem-solving techniques. This volume is both an introduction to the topic and a survey of leading-edge research.

  10. Earthquake swarms and the semidiurnal solid earth tide

    Energy Technology Data Exchange (ETDEWEB)

    Klein, F W

    1976-01-01

    Several correlations between peak earthquake activity during swarms and the phase and stress orientation of the calculated solid earth tide are described. The events correlating with the tide are clusters of swarm earthquakes. Swarm clusters from many sequences recorded over several years are used. Significant tidal correlations (which have less than a 5% chance of being observed if earthquakes were random) are found in the Reykjanes Peninsula in Iceland, the central Mid-Atlantic Ridge, the Imperial Valley and northern Gulf of California, and larger (m/sub b/ greater than or equal to 5.0) aftershocks of the 1965 Rat Islands earthquake. In addition, sets of larger single earthquakes on Atlantic and north-east Pacific fracture zones are significantly correlated with the calculated solid tide. No tidal correlation, however, could be found for the Matsushiro Japan swarm of 1965 to 1967. The earthquake-tide correlations other than those of the Reykjanes Peninsula and Mid-Atlantic Ridge can be interpreted as triggering caused by enhancement of the tectonic stress by tidal stress, i.e. the alignment of fault and tidal principal stresses. All tidal correlations except in the Aleutians are associated with oceanic rifts or their landward extensions. If lithospheric plates are decoupled at active rifts, then tidal stresses channeled along the lithospheric stress guide may be concentrated at ridge-type plate boundaries. Tidal triggering of earthquakes at rifts may reflect this possible amplification of tidal strains in the weakened lithosphere at ridges. 25 figures, 2 tables.

  11. Binary Cockroach Swarm Optimization for Combinatorial Optimization Problem

    Directory of Open Access Journals (Sweden)

    Ibidun Christiana Obagbuwa

    2016-09-01

    Full Text Available The Cockroach Swarm Optimization (CSO algorithm is inspired by cockroach social behavior. It is a simple and efficient meta-heuristic algorithm and has been applied to solve global optimization problems successfully. The original CSO algorithm and its variants operate mainly in continuous search space and cannot solve binary-coded optimization problems directly. Many optimization problems have their decision variables in binary. Binary Cockroach Swarm Optimization (BCSO is proposed in this paper to tackle such problems and was evaluated on the popular Traveling Salesman Problem (TSP, which is considered to be an NP-hard Combinatorial Optimization Problem (COP. A transfer function was employed to map a continuous search space CSO to binary search space. The performance of the proposed algorithm was tested firstly on benchmark functions through simulation studies and compared with the performance of existing binary particle swarm optimization and continuous space versions of CSO. The proposed BCSO was adapted to TSP and applied to a set of benchmark instances of symmetric TSP from the TSP library. The results of the proposed Binary Cockroach Swarm Optimization (BCSO algorithm on TSP were compared to other meta-heuristic algorithms.

  12. The petrology of the Saaiplaas kimberlite dyke swarm

    International Nuclear Information System (INIS)

    Allan, P.G.

    1990-01-01

    The Saaiplaas 'kimberlite' dykes are part of an east-west trending, roughly vertically dipping dyke swarm that has been intersected at various depths throughout the Orange Free State goldfields. It is shown that the Saaiplaas dykes closely resemble kimberlites in terms of their petrography and geochemistry even though certain features are more characteristic of olivine melilitites or alnoites. 5 refs

  13. Elephant swarm water search algorithm for global optimization

    Indian Academy of Sciences (India)

    S Mandal

    2018-02-07

    Feb 7, 2018 ... Evolutionary computation and metaheuristics based on swarm intelligence are .... pollen for reproduction or flowering of plants by different pollinators such as insects. Due to long-distance ...... nodes of the denote genes and regulatory interactions between genes are ..... ioral ecology, 3rd ed. Oxford, UK: ...

  14. A Robotic Swarm for Spill Finding and Perimeter Formation

    National Research Council Canada - National Science Library

    Bruemmer, David J; Dudenhoeffer, Donald D; McKay, Mark D; Anderson, Matthew O

    2002-01-01

    ... intelligence as seen in a colony of ants or swarm of bees. A suite of C2 tools, AgentTools, has been developed to enable an operator to inject high-level domain knowledge and guidance into the behavior of the otherwise autonomous robots...

  15. A Survey of Formal Methods for Intelligent Swarms

    Science.gov (United States)

    Truszkowski, Walt; Rash, James; Hinchey, Mike; Rouff, Chrustopher A.

    2004-01-01

    Swarms of intelligent autonomous spacecraft, involving complex behaviors and interactions, are being proposed for future space exploration missions. Such missions provide greater flexibility and offer the possibility of gathering more science data than traditional single spacecraft missions. The emergent properties of swarms make these missions powerful, but simultaneously far more difficult to design, and to assure that the proper behaviors will emerge. These missions are also considerably more complex than previous types of missions, and NASA, like other organizations, has little experience in developing or in verifying and validating these types of missions. A significant challenge when verifying and validating swarms of intelligent interacting agents is how to determine that the possible exponential interactions and emergent behaviors are producing the desired results. Assuring correct behavior and interactions of swarms will be critical to mission success. The Autonomous Nano Technology Swarm (ANTS) mission is an example of one of the swarm types of missions NASA is considering. The ANTS mission will use a swarm of picospacecraft that will fly from Earth orbit to the Asteroid Belt. Using an insect colony analogy, ANTS will be composed of specialized workers for asteroid exploration. Exploration would consist of cataloguing the mass, density, morphology, and chemical composition of the asteroids, including any anomalous concentrations of specific minerals. To perform this task, ANTS would carry miniaturized instruments, such as imagers, spectrometers, and detectors. Since ANTS and other similar missions are going to consist of autonomous spacecraft that may be out of contact with the earth for extended periods of time, and have low bandwidths due to weight constraints, it will be difficult to observe improper behavior and to correct any errors after launch. Providing V&V (verification and validation) for this type of mission is new to NASA, and represents the

  16. The 2011 West Bohemia (Central Europe) earthquake swarm compared with the previous swarms of 2000 and 2008

    Czech Academy of Sciences Publication Activity Database

    Čermáková, Hana; Horálek, Josef

    2015-01-01

    Roč. 19, č. 4 (2015), s. 899-913 ISSN 1383-4649 R&D Projects: GA ČR GAP210/12/2336; GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : West Bohemia/Vogtland * local seismicity * earthquake swarm Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.550, year: 2015

  17. Linear regression

    CERN Document Server

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  18. Linear Colliders

    International Nuclear Information System (INIS)

    Alcaraz, J.

    2001-01-01

    After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs

  19. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  20. Phenology of Honey Bee Swarm Departure in New Jersey, United States.

    Science.gov (United States)

    Gilley, D C; Courtright, T J; Thom, C

    2018-03-31

    Departure of swarms from honey bee (Apis mellifera Linnaeus (Hymenoptera: Apidae)) nests is an important reproductive event for wild honey bee colonies and economically costly in managed bee colonies. The seasonal timing of swarm departure varies regionally and annually, creating challenges for honey bee management and emphasizing the potential for swarming behavior to be affected by plant-pollinator phenological mismatch. In this study, we first document variability in the timing of swarm departure across the large and heterogeneous geographical area of New Jersey over 4 years using 689 swarm-cluster observations. Second, hypothesizing that honey bee colonies adaptively tune the timing of swarm departure to match floral food-resource availability, we predicted that growing degree-days could be used to account for regional and annual variability. To test this idea, we used local weather records to determine the growing degree-day on which each swarm cluster was observed and tested for differences among climate regions and years. The state-wide mean swarm cluster date was May 15 (± 0.6 d), with moderate but significant differences among the state's five climate regions and between years. Use of degree-day information suggests that local heat accumulation can account for some climate-region differences in swarm-departure timing. Annual variation existed on a scale of only several days and was not accounted for by growing degree-days, suggesting little adaptive tuning of swarm-departure timing with respect to local heat accumulation.

  1. Exopolysaccharides play a role in the swarming of the benthic bacterium Pseudoalteromonas sp. SM9913

    Directory of Open Access Journals (Sweden)

    Ang eLiu

    2016-04-01

    Full Text Available Most marine bacteria secrete exopolysaccharide (EPS, which is important for bacterial survival in the marine environment. However, it is still unclear whether the self-secreted EPS is involved in marine bacterial motility. Here we studied the role of EPS in the lateral flagella-driven swarming motility of benthic bacterium Pseudoalteromonas sp. SM9913 (SM9913 by a comparison of wild SM9913 and ΔepsT, an EPS synthesis defective mutant. Reduction of EPS production in ΔepsT did not affect the growth rate or the swimming motility, but significantly decreased the swarming motility on a swarming plate, suggesting that the EPS may play a role in SM9913 swarming. However, the expression and assembly of lateral flagella in ΔepsT were not affected. Instead, ΔepsT had a different swarming behavior from wild SM9913. The swarming of ΔepsT did not have an obvious rapid swarming period, and its rate became much lower than that of wild SM9913 after 35 h incubation. An addition of surfactin or SM9913 EPS on the surface of the swarming plate could rescue the swarming level. These results indicate that the self-secreted EPS is required for the swarming of SM9913. This study widens our understanding of the function of the EPS of benthic bacteria.

  2. Decision-making in honeybee swarms based on quality and distance information of candidate nest sites.

    Science.gov (United States)

    Laomettachit, Teeraphan; Termsaithong, Teerasit; Sae-Tang, Anuwat; Duangphakdee, Orawan

    2015-01-07

    In the nest-site selection process of honeybee swarms, an individual bee performs a waggle dance to communicate information about direction, quality, and distance of a discovered site to other bees at the swarm. Initially, different groups of bees dance to represent different potential sites, but eventually the swarm usually reaches an agreement for only one site. Here, we model the nest-site selection process in honeybee swarms of Apis mellifera and show how the swarms make adaptive decisions based on a trade-off between the quality and distance to candidate nest sites. We use bifurcation analysis and stochastic simulations to reveal that the swarm's site distance preference is moderate>near>far when the swarms choose between low quality sites. However, the distance preference becomes near>moderate>far when the swarms choose between high quality sites. Our simulations also indicate that swarms with large population size prefer nearer sites and, in addition, are more adaptive at making decisions based on available information compared to swarms with smaller population size. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Seasonal Modulation of Earthquake Swarm Activity Near Maupin, Oregon

    Science.gov (United States)

    Braunmiller, J.; Nabelek, J.; Trehu, A. M.

    2012-12-01

    Between December 2006 and November 2011, the Pacific Northwest Seismic Network (PNSN) reported 464 earthquakes in a swarm about 60 km east-southeast of Mt. Hood near the town of Maupin, Oregon. Relocation of forty-five MD≥2.5 earthquakes and regional moment tensor analysis of nine 3.3≤Mw≤3.9 earthquakes reveals a north-northwest trending, less than 1 km2 sized active fault patch on a 70° west dipping fault. At about 17 km depth, the swarm occurred at or close to the bottom of the seismogenic crust. The swarm's cumulative seismic moment release, equivalent to an Mw=4.4 earthquake, is not dominated by a single shock; it is rather mainly due to 20 MD≥3.0 events, which occurred throughout the swarm. The swarm started at the southern end and, during the first 18 months of activity, migrated to the northwest at a rate of about 1-2 m/d until reaching its northern terminus. A 10° fault bend, inferred from locations and fault plane solutions, acted as geometrical barrier that temporarily halted event migration in mid-2007 before continuing north in early 2008. The slow event migration points to a pore pressure diffusion process suggesting the swarm onset was triggered by fluid inflow into the fault zone. At 17 km depth, triggering by meteoritic water seems unlikely for a normal crustal permeability. The double couple source mechanisms preclude a magmatic intrusion at the depth of the earthquakes. However, fluids (or gases) associated with a deeper, though undocumented, magma injection beneath the Cascade Mountains, could trigger seismicity in a pre-stressed region when they have migrated upward and reached the seismogenic crust. Superimposed on overall swarm evolution, we found a statistically significant annual seismicity variation, which is likely surface driven. The annual seismicity peak during spring (March-May) coincides with the maximum snow load on the near-by Cascades. The load corresponds to a surface pressure variation of about 6 kPa, which likely

  4. Swarm Deployable Boom Assembly (DBA) Development of a Deployable Magnetometer Boom for the Swarm Spacecraft

    Science.gov (United States)

    McMahon, Paul; Jung, Hans-Juergen; Edwards, Jeff

    2013-09-01

    The Swarm programme consists of 3 magnetically clean satellites flying in close formation designed to measure the Earth's magnetic field using 2 Magnetometers mounted on a 4.3m long deployable boom.Deployment is initiated by releasing 3 HDRMs, once released the boom oscillates back and forth on a pair of pivots, similar to a restaurant kitchen door hinge, for around 120 seconds before coming to rest on 3 kinematic mounts which are used to provide an accurate reference location in the deployed position. Motion of the boom is damped through a combination of friction, spring hysteresis and flexing of the 120+ cables crossing the hinge. Considerable development work and accurate numerical modelling of the hinge motion was required to predict performance across a wide temperature range and ensure that during the 1st overshoot the boom did not damage itself, the harness or the spacecraft.Due to the magnetic cleanliness requirements of the spacecraft no magnetic materials could be used in the design of the hardware.

  5. Moving without a purpose: an experimental study of swarm guidance in the Western honey bee, Apis mellifera.

    Science.gov (United States)

    Makinson, James C; Beekman, Madeleine

    2014-06-01

    During reproductive swarming, honey bee scouts perform two very important functions. Firstly, they find new nesting locations and return to the swarm cluster to communicate their discoveries. Secondly, once the swarm is ready to depart, informed scout bees act as guides, leading the swarm to its final destination. We have previously hypothesised that the two processes, selecting a new nest site and swarm guidance, are tightly linked in honey bees. When swarms can be laissez faire about where they nest, reaching directional consensus prior to lift off seems unnecessary. If, in contrast, it is essential that the swarm reaches a precise location, either directional consensus must be near unanimous prior to swarm departure or only a select subgroup of the scouts guide the swarm. Here, we tested experimentally whether directional consensus is necessary for the successful guidance of swarms of the Western honey bee Apis mellifera by forcing swarms into the air prior to the completion of the decision-making process. Our results show that swarms were unable to guide themselves prior to the swarm reaching the pre-flight buzzing phase of the decision-making process, even when directional consensus was high. We therefore suggest that not all scouts involved in the decision-making process attempt to guide the swarm. © 2014. Published by The Company of Biologists Ltd.

  6. Particle swarm optimization based feature enhancement and feature selection for improved emotion recognition in speech and glottal signals.

    Science.gov (United States)

    Muthusamy, Hariharan; Polat, Kemal; Yaacob, Sazali

    2015-01-01

    In the recent years, many research works have been published using speech related features for speech emotion recognition, however, recent studies show that there is a strong correlation between emotional states and glottal features. In this work, Mel-frequency cepstralcoefficients (MFCCs), linear predictive cepstral coefficients (LPCCs), perceptual linear predictive (PLP) features, gammatone filter outputs, timbral texture features, stationary wavelet transform based timbral texture features and relative wavelet packet energy and entropy features were extracted from the emotional speech (ES) signals and its glottal waveforms(GW). Particle swarm optimization based clustering (PSOC) and wrapper based particle swarm optimization (WPSO) were proposed to enhance the discerning ability of the features and to select the discriminating features respectively. Three different emotional speech databases were utilized to gauge the proposed method. Extreme learning machine (ELM) was employed to classify the different types of emotions. Different experiments were conducted and the results show that the proposed method significantly improves the speech emotion recognition performance compared to previous works published in the literature.

  7. Estimating of aquifer parameters from the single-well water-level measurements in response to advancing longwall mine by using particle swarm optimization

    Science.gov (United States)

    Buyuk, Ersin; Karaman, Abdullah

    2017-04-01

    We estimated transmissivity and storage coefficient values from the single well water-level measurements positioned ahead of the mining face by using particle swarm optimization (PSO) technique. The water-level response to the advancing mining face contains an semi-analytical function that is not suitable for conventional inversion shemes because the partial derivative is difficult to calculate . Morever, the logaritmic behaviour of the model create difficulty for obtaining an initial model that may lead to a stable convergence. The PSO appears to obtain a reliable solution that produce a reasonable fit between water-level data and model function response. Optimization methods have been used to find optimum conditions consisting either minimum or maximum of a given objective function with regard to some criteria. Unlike PSO, traditional non-linear optimization methods have been used for many hydrogeologic and geophysical engineering problems. These methods indicate some difficulties such as dependencies to initial model, evolution of the partial derivatives that is required while linearizing the model and trapping at local optimum. Recently, Particle swarm optimization (PSO) became the focus of modern global optimization method that is inspired from the social behaviour of birds of swarms, and appears to be a reliable and powerful algorithms for complex engineering applications. PSO that is not dependent on an initial model, and non-derivative stochastic process appears to be capable of searching all possible solutions in the model space either around local or global optimum points.

  8. Transient and steady state analysis in the frequency domain for time-invariant and time variant electrical networks using the algebraic operational matrices approach; Analisis transitorio y de estado estable en el dominio de la frecuencia de redes electricas invariantes y variantes en el tiempo utilizando el enfoque algebraico de las matrices operacionales

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro Castillo, Isidro Ignacio

    1999-02-01

    insight in to the properties of time varying networks by using methods of analysis in the frequency domain, which are well established for the analysis of time-invariant networks. The question arises whether these methods can be applied and modified for the analysis of time varying networks. Some possible solutions have been reported in the open literature. In this thesis a efficient solution is reported, which is based on operational matrices and, according to the author's knowledge, it has not been published before. An advantage of the method is that it can be seen as a direct extension of the Ohm's laws and the nodal analysis widely used in power systems for circuit analysis. The results presented in the thesis are validated with time domain simulations. In all cases the results obtained from both solutions matched with a vary low tolerance. [Spanish] En este trabajo el problema de predecir la distorsion armonica es tratado en forma general. El problema es presentado tal que el proceso de solucion no se limita a mantenerlo en el dominio de Fourier porque puede ser manejado en cualquier otro dominio generado por cualquier base dada por toda expansion en series ortogonales, incluidas las series de Fourier. En este trabajo se muestra que las series ortogonales tales como las series Hartley o Walsh pueden ser utilizadas para resolver mas eficientemente los problemas de distorsion armonica que la forma convencional considera en el dominio armonico. De este trabajo es claro que el dominio armonico es un caso particular de la formulacion aqui presentada. La teoria utilizada para presentar y resolver el problema de la distorsion armonica esta basada principalmente en el concepto de las matrices operacionales desarrolladas en las areas de Control y Sistemas. La aproximacion tiene la ventaja de proporcionar un marco de referencia general para resolver problemas de estado estable y dinamico en redes electricas y sistemas en general. Un hecho importante presentado en

  9. Linear programming

    CERN Document Server

    Karloff, Howard

    1991-01-01

    To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming from the Simplex Method…via the Ellipsoid algorithm to Karmarkar’s algorithm. Moreover, its point of view is algorithmic and thus it provides both a history and a case history of work in complexity theory. The presentation is admirable; Karloff's style is informal (even humorous at times) without sacrificing anything necessary for understanding. Diagrams (including horizontal brackets that group terms) aid in providing clarity. The end-of-chapter notes are helpful...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews The reader will be well served by reading the monograph from cover to cover. The author succeeds in providing a concise, readable, understandable introduction to modern linear programming. —Mathematics of Computing This is a textbook intend...

  10. Discrete Particle Swarm Optimization in the numerical solution of a system of linear Diophantine equations

    Directory of Open Access Journals (Sweden)

    Iván Amaya

    2014-01-01

    Full Text Available El presente artículo propone utilizar una versión discreta del bien conocido algoritmo metaheurístico de optimización por enjambre de partículas, DPSO, para solucionar numéricamente un sistema de ecuaciones Diofánticas lineales. Así mismo, se muestra la transformación de este tipo de problema (es decir, la solución de un sistema de ecuaciones, en uno de optimización. El presente algoritmo es capaz de encontrar todas las raíces enteras en un dominio de búsqueda dado, al menos para los ejemplos mostrados. Se utilizan algunos problemas sencillos para verificar su eficacia. Además, se muestran algunos aspectos relacionados con el tiempo de procesamiento, así como con el efecto de incrementar la población y el dominio de búsqueda. Se encontró que la estrategia mostrada aquí representa una propuesta adecuada para trabajar con sistemas que tienen más incógnitas que ecuaciones, o cuando se tiene un tamaño considerable, debido a que se requiere un gran dominio de búsqueda.

  11. A dynamic global and local combined particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Jiao Bin; Lian Zhigang; Chen Qunxian

    2009-01-01

    Particle swarm optimization (PSO) algorithm has been developing rapidly and many results have been reported. PSO algorithm has shown some important advantages by providing high speed of convergence in specific problems, but it has a tendency to get stuck in a near optimal solution and one may find it difficult to improve solution accuracy by fine tuning. This paper presents a dynamic global and local combined particle swarm optimization (DGLCPSO) algorithm to improve the performance of original PSO, in which all particles dynamically share the best information of the local particle, global particle and group particles. It is tested with a set of eight benchmark functions with different dimensions and compared with original PSO. Experimental results indicate that the DGLCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness of the algorithm to solve optimization problems.

  12. A quantum particle swarm optimizer with chaotic mutation operator

    International Nuclear Information System (INIS)

    Coelho, Leandro dos Santos

    2008-01-01

    Particle swarm optimization (PSO) is a population-based swarm intelligence algorithm that shares many similarities with evolutionary computation techniques. However, the PSO is driven by the simulation of a social psychological metaphor motivated by collective behaviors of bird and other social organisms instead of the survival of the fittest individual. Inspired by the classical PSO method and quantum mechanics theories, this work presents a novel Quantum-behaved PSO (QPSO) using chaotic mutation operator. The application of chaotic sequences based on chaotic Zaslavskii map instead of random sequences in QPSO is a powerful strategy to diversify the QPSO population and improve the QPSO's performance in preventing premature convergence to local minima. The simulation results demonstrate good performance of the QPSO in solving a well-studied continuous optimization problem of mechanical engineering design

  13. On new developments in the physics of positron swarms

    International Nuclear Information System (INIS)

    Petrovic, Z Lj; Bankovic, A; Dujko, S; Marjanovic, S; Suvakov, M; Malovic, G; Marler, J P; Buckman, S J; White, R D; Robson, R E

    2010-01-01

    Recently a new wave of swarm studies of positrons was initiated based on more complete scattering cross section sets. Initially some interesting and new physics was discovered, most importantly negative differential conductivity (NDC) that occurs only for the bulk drift velocity while it does not exist for the flux property. However the ultimate goal was to develop tools to model positron transport in realistic applications and the work that is progressing along these lines is reviewed here. It includes studies of positron transport in molecular gases, thermalization in generic swarm situations and in realistic gas filled traps and transport of positrons in crossed electric and magnetic fields. Finally we have extended the same technique of simulation (Monte Carlo) to studies of thermalization of positronium molecule. In addition, recently published first steps towards including effects of dense media on positron transport are summarized here.

  14. Celestial Navigation Fix Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Tsou Ming-Cheng

    2015-09-01

    Full Text Available A technique for solving celestial fix problems is proposed in this study. This method is based on Particle Swarm Optimization from the field of swarm intelligence, utilizing its superior optimization and searching abilities to obtain the most probable astronomical vessel position. In addition to being applicable to two-body fix, multi-body fix, and high-altitude observation problems, it is also less reliant on the initial dead reckoning position. Moreover, by introducing spatial data processing and display functions in a Geographical Information System, calculation results and chart work used in Circle of Position graphical positioning can both be integrated. As a result, in addition to avoiding tedious and complicated computational and graphical procedures, this work has more flexibility and is more robust when compared to other analytical approaches.

  15. Novel Particle Swarm Optimization and Its Application in Calibrating the Underwater Transponder Coordinates

    OpenAIRE

    Zheping Yan; Chao Deng; Benyin Li; Jiajia Zhou

    2014-01-01

    A novel improved particle swarm algorithm named competition particle swarm optimization (CPSO) is proposed to calibrate the Underwater Transponder coordinates. To improve the performance of the algorithm, TVAC algorithm is introduced into CPSO to present an extension competition particle swarm optimization (ECPSO). The proposed method is tested with a set of 10 standard optimization benchmark problems and the results are compared with those obtained through existing PSO algorithms, basic par...

  16. Ideal Directed-Energy System To Defeat Small Unmanned Aircraft System Swarms

    Science.gov (United States)

    2017-05-21

    large number of animate or inanimate things massed together and usually in motion.”19 Unlike bees that developed swarming behaviors over time...set multiple records in recent years. From 2015 to 2017, Intel increased the quantity of sUAS in their light shows conducted around the world from...successfully- tests- worlds -largest-micro-drone-swarm. 25 Ibid. 26 Chris Loterina, “Department Of Defense Tests Swarm Of 3D-Printed Micro-Drones Called Perdix

  17. Optimization of the Infrastructure of Reinforced Concrete Reservoirs by a Particle Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Kia Saeed

    2015-03-01

    Full Text Available Optimization techniques may be effective in finding the best modeling and shapes for reinforced concrete reservoirs (RCR to improve their durability and mechanical behavior, particularly for avoiding or reducing the bending moments in these structures. RCRs are one of the major structures applied for reserving fluids to be used in drinking water networks. Usually, these structures have fixed shapes which are designed and calculated based on input discharges, the conditions of the structure's topology, and geotechnical locations with various combinations of static and dynamic loads. In this research, the elements of reservoir walls are first typed according to the performance analyzed; then the range of the membrane based on the thickness and the minimum and maximum cross sections of the bar used are determined in each element. This is done by considering the variable constraints, which are estimated by the maximum stress capacity. In the next phase, based on the reservoir analysis and using the algorithm of the PARIS connector, the related information is combined with the code for the PSO algorithm, i.e., an algorithm for a swarming search, to determine the optimum thickness of the cross sections for the reservoir membrane’s elements and the optimum cross section of the bar used. Based on very complex mathematical linear models for the correct embedding and angles related to achain of peripheral strengthening membranes, which optimize the vibration of the structure, a mutual relation is selected between the modeling software and the code for a particle swarm optimization algorithm. Finally, the comparative weight of the concrete reservoir optimized by the peripheral strengthening membrane is analyzed using common methods. This analysis shows a 19% decrease in the bar’s weight, a 20% decrease in the concrete’s weight, and a minimum 13% saving in construction costs according to the items of a checklist for a concrete reservoir at 10,000 m3.

  18. 2014 mainshock-aftershock activity versus earthquake swarms in West\

    Czech Academy of Sciences Publication Activity Database

    Jakoubková, Hana; Horálek, Josef; Fischer, T.

    2018-01-01

    Roč. 175, č. 1 (2018), s. 109-131 ISSN 0033-4553 R&D Projects: GA ČR GAP210/12/2336; GA MŠk(CZ) LM2015079 Institutional support: RVO:67985530 Keywords : West Bohemia/Vogtland * earthquake swarms * mainshock-aftershock sequence * total seismic moment * statistical characteristics of earthquake activities Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.591, year: 2016

  19. The Feasibility of Radio Direction Finding for Swarm Localization

    Science.gov (United States)

    2017-09-01

    small swarm agents do not exist. This has led ARL to begin development of a custom RDF system using small, standalone, software-defined radios (SDRs...First, basic RDF theory is presented. Next, a laboratory experiment to evaluate RDF using a SDR is developed. Finally, experimental data are presented... relationships between many agents to achieve accurate relative attitude and position information.1 This is particularly important in GPS-denied environments

  20. A Mathematical Model, Implementation and Study of a Swarm System

    OpenAIRE

    Varghese, Blesson; McKee, Gerard

    2013-01-01

    The work reported in this paper is motivated towards the development of a mathematical model for swarm systems based on macroscopic primitives. A pattern formation and transformation model is proposed. The pattern transformation model comprises two general methods for pattern transformation, namely a macroscopic transformation and mathematical transformation method. The problem of transformation is formally expressed and four special cases of transformation are considered. Simulations to conf...

  1. A Swarm lithospheric magnetic field model to SH degree 80

    OpenAIRE

    Thébault, Erwan; Vigneron, Pierre; Langlais, Benoit; Hulot, Gauthier

    2016-01-01

    International audience; The Swarm constellation of satellites was launched in November 2013 and since then has delivered high-quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency to provide a number of scientific products to be made available to the scientific community on a regular basis. In this study, we present the dedicated lithospheric field inversion model. It uses carefully selected magnetic fiel...

  2. A Distributed Framework for Supporting 3D Swarming Applications

    OpenAIRE

    Pour Sadrollah, Ghazaleh; Barca, Jan Carlo; Khan, Asad; Eliasson, Jens; Senthooran, Ilankaikone

    2014-01-01

    Abstract—In-flight wireless sensor networks (WSN) are ofincreased interest owing to efficiency gains in weight and operationallifetime of IP-enabled computers. High impact 3Dswarming applications for such systems include autonomousmapping, surveying, servicing, environmental monitoring anddisaster site management. For distributed robotic applications,such as quad copter swarms, it is critical that the robots are ableto localise themselves autonomously with respect to other robotsand to share ...

  3. Swarm intelligence inspired shills and the evolution of cooperation

    OpenAIRE

    Duan, Haibin; Sun, Changhao

    2014-01-01

    Many hostile scenarios exist in real-life situations, where cooperation is disfavored and the collective behavior needs intervention for system efficiency improvement. Towards this end, the framework of soft control provides a powerful tool by introducing controllable agents called shills, who are allowed to follow well-designed updating rules for varying missions. Inspired by swarm intelligence emerging from flocks of birds, we explore here the dependence of the evolution of cooperation on s...

  4. Particle swarm optimization for programming deep brain stimulation arrays.

    Science.gov (United States)

    Peña, Edgar; Zhang, Simeng; Deyo, Steve; Xiao, YiZi; Johnson, Matthew D

    2017-02-01

    Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (⩽9.2%) and ROA (⩽1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n  =  3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations showed discrepancies

  5. Particle Swarm Optimization for Programming Deep Brain Stimulation Arrays

    Science.gov (United States)

    Peña, Edgar; Zhang, Simeng; Deyo, Steve; Xiao, YiZi; Johnson, Matthew D.

    2017-01-01

    Objective Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. Approach Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. Main Results The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (≤9.2%) and ROA (≤1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n=3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations

  6. The Best-of-n Problem in Robot Swarms

    OpenAIRE

    Valentini, Gabriele

    2016-01-01

    Collective decision making can be seen as a means of designing and understanding swarm robotics systems. While decision-making is generally conceived as the cognitive ability of individual agents to select a belief based only on their preferences and available information, collective decision making is a decentralized cognitive process, whereby an ensemble of agents gathers, shares, and processes information as a single organism and makes a choice that is not attributable to any of its indivi...

  7. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Loubriel, G.M.; Rbinett, R.D. III; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-04-01

    This paper focuses on our recent work at Sandia National Laboratories toward engineering a physics-based swarm of mobile vehicles for distributed sensing applications. Our goal is to coordinate a sensor array that optimizes sensor coverage and multivariate signal analysis by implementing artificial intelligence and evolutionary computational techniques. These intelligent control systems integrate both globally operating decision-making systems and locally cooperative information-sharing modes using genetically-trained neural networks. Once trained, neural networks have the ability to enhance real-time operational responses to dynamical environments, such as obstacle avoidance, responding to prevailing wind patterns, and overcoming other natural obscurants or interferences (jammers). The swarm realizes a collective set of sensor neurons with simple properties incorporating interactions based on basic community rules (potential fields) and complex interconnecting functions based on various neural network architectures, Therefore, the swarm is capable of redundant heterogeneous measurements which furnishes an additional degree of robustness and fault tolerance not afforded by conventional systems, while accomplishing such cognitive tasks as generalization, error correction, pattern recognition, and sensor fission. The robotic platforms could be equipped with specialized sensor devices including transmit/receive dipole antennas, chemical or biological sniffers in combination with recognition analysis tools, communication modulators, and laser diodes. Our group has been studying the collective behavior of an autonomous, multi-agent system applied to emerging threat applications. To accomplish such tasks, research in the fields of robotics, sensor technology, and swarms are being conducted within an integrated program. Mission scenarios under consideration include ground penetrating impulse radar (GPR) for detection of under-ground structures, airborne systems, and plume

  8. SOLVING ENGINEERING OPTIMIZATION PROBLEMS WITH THE SWARM INTELLIGENCE METHODS

    Directory of Open Access Journals (Sweden)

    V. Panteleev Andrei

    2017-01-01

    Full Text Available An important stage in problem solving process for aerospace and aerostructures designing is calculating their main charac- teristics optimization. The results of the four constrained optimization problems related to the design of various technical systems: such as determining the best parameters of welded beams, pressure vessel, gear, spring are presented. The purpose of each task is to minimize the cost and weight of the construction. The object functions in optimization practical problem are nonlinear functions with a lot of variables and a complex layer surface indentations. That is why using classical approach for extremum seeking is not efficient. Here comes the necessity of using such methods of optimization that allow to find a near optimal solution in acceptable amount of time with the minimum waste of computer power. Such methods include the methods of Swarm Intelligence: spiral dy- namics algorithm, stochastic diffusion search, hybrid seeker optimization algorithm. The Swarm Intelligence methods are designed in such a way that a swarm consisting of agents carries out the search for extremum. In search for the point of extremum, the parti- cles exchange information and consider their experience as well as the experience of population leader and the neighbors in some area. To solve the listed problems there has been designed a program complex, which efficiency is illustrated by the solutions of four applied problems. Each of the considered applied optimization problems is solved with all the three chosen methods. The ob- tained numerical results can be compared with the ones found in a swarm with a particle method. The author gives recommenda- tions on how to choose methods parameters and penalty function value, which consider inequality constraints.

  9. Climatology of GPS signal loss observed by Swarm satellites

    Directory of Open Access Journals (Sweden)

    C. Xiong

    2018-04-01

    Full Text Available By using 3-year global positioning system (GPS measurements from December 2013 to November 2016, we provide in this study a detailed survey on the climatology of the GPS signal loss of Swarm onboard receivers. Our results show that the GPS signal losses prefer to occur at both low latitudes between ±5 and ±20° magnetic latitude (MLAT and high latitudes above 60° MLAT in both hemispheres. These events at all latitudes are observed mainly during equinoxes and December solstice months, while totally absent during June solstice months. At low latitudes the GPS signal losses are caused by the equatorial plasma irregularities shortly after sunset, and at high latitude they are also highly related to the large density gradients associated with ionospheric irregularities. Additionally, the high-latitude events are more often observed in the Southern Hemisphere, occurring mainly at the cusp region and along nightside auroral latitudes. The signal losses mainly happen for those GPS rays with elevation angles less than 20°, and more commonly occur when the line of sight between GPS and Swarm satellites is aligned with the shell structure of plasma irregularities. Our results also confirm that the capability of the Swarm receiver has been improved after the bandwidth of the phase-locked loop (PLL widened, but the updates cannot radically avoid the interruption in tracking GPS satellites caused by the ionospheric plasma irregularities. Additionally, after the PLL bandwidth increased larger than 0.5 Hz, some unexpected signal losses are observed even at middle latitudes, which are not related to the ionospheric plasma irregularities. Our results suggest that rather than 1.0 Hz, a PLL bandwidth of 0.5 Hz is a more suitable value for the Swarm receiver.

  10. Climatology of GPS signal loss observed by Swarm satellites

    Science.gov (United States)

    Xiong, Chao; Stolle, Claudia; Park, Jaeheung

    2018-04-01

    By using 3-year global positioning system (GPS) measurements from December 2013 to November 2016, we provide in this study a detailed survey on the climatology of the GPS signal loss of Swarm onboard receivers. Our results show that the GPS signal losses prefer to occur at both low latitudes between ±5 and ±20° magnetic latitude (MLAT) and high latitudes above 60° MLAT in both hemispheres. These events at all latitudes are observed mainly during equinoxes and December solstice months, while totally absent during June solstice months. At low latitudes the GPS signal losses are caused by the equatorial plasma irregularities shortly after sunset, and at high latitude they are also highly related to the large density gradients associated with ionospheric irregularities. Additionally, the high-latitude events are more often observed in the Southern Hemisphere, occurring mainly at the cusp region and along nightside auroral latitudes. The signal losses mainly happen for those GPS rays with elevation angles less than 20°, and more commonly occur when the line of sight between GPS and Swarm satellites is aligned with the shell structure of plasma irregularities. Our results also confirm that the capability of the Swarm receiver has been improved after the bandwidth of the phase-locked loop (PLL) widened, but the updates cannot radically avoid the interruption in tracking GPS satellites caused by the ionospheric plasma irregularities. Additionally, after the PLL bandwidth increased larger than 0.5 Hz, some unexpected signal losses are observed even at middle latitudes, which are not related to the ionospheric plasma irregularities. Our results suggest that rather than 1.0 Hz, a PLL bandwidth of 0.5 Hz is a more suitable value for the Swarm receiver.

  11. The 2017 Maple Creek Seismic Swarm in Yellowstone National Park

    Science.gov (United States)

    Pang, G.; Hale, J. M.; Farrell, J.; Burlacu, R.; Koper, K. D.; Smith, R. B.

    2017-12-01

    The University of Utah Seismograph Stations (UUSS) performs near-real-time monitoring of seismicity in the region around Yellowstone National Park in partnership with the United States Geological Survey and the National Park Service. UUSS operates and maintains 29 seismic stations with network code WY (short-period, strong-motion, and broadband) and records data from five other seismic networks—IW, MB, PB, TA, and US—to enhance the location capabilities in the Yellowstone region. A seismic catalog is produced using a conventional STA/LTA detector and single-event location techniques (Hypoinverse). On June 12, 2017, a seismic swarm began in Yellowstone National Park about 5 km east of Hebgen Lake. The swarm is adjacent to the source region of the 1959 MW 7.3 Hebgen Lake earthquake, in an area corresponding to positive Coulumb stress change from that event. As of Aug. 1, 2017, the swarm consists of 1481 earthquakes with 1 earthquake above magnitude 4, 8 earthquakes in the magnitude 3 range, 115 earthquakes in the magnitude 2 range, 469 earthquakes in the magnitude 1 range, 856 earthquakes in the magnitude 0 range, 22 earthquakes with negative magnitudes, and 10 earthquakes with no magnitude. Earthquake depths are mostly between 3 and 10 km and earthquake depth increases toward the northwest. Moment tensors for the 2 largest events (3.6 MW and 4.4. MW) show strike-slip faulting with T axes oriented NE-SW, consistent with the regional stress field. We are currently using waveform cross-correlation methods to measure differential travel times that are being used with the GrowClust program to generate high-accuracy relative relocations. Those locations will be used to identify structures in the seismicity and make inferences about the tectonic and magmatic processes causing the swarm.

  12. Simulation of Swarm Intelligence and Possible Applications in Engineering

    OpenAIRE

    Öztürk, Savaş; Esin, E.

    2003-01-01

    Modeling biological and natural systems in order to solve complex problems have become popular. Traditional techniques fail at solving some types of problems. On the other hand, it is seen that these kind of problems are solved in nature without help of human. Swarm intelligence(SI) as a research field, proposes such solutions. SI models the collective behavior of the social insects like ants, bees or termites and their coordination without communication. The emerged intelligence has some spe...

  13. Parallel and Cooperative Particle Swarm Optimizer for Multimodal Problems

    Directory of Open Access Journals (Sweden)

    Geng Zhang

    2015-01-01

    Full Text Available Although the original particle swarm optimizer (PSO method and its related variant methods show some effectiveness for solving optimization problems, it may easily get trapped into local optimum especially when solving complex multimodal problems. Aiming to solve this issue, this paper puts forward a novel method called parallel and cooperative particle swarm optimizer (PCPSO. In case that the interacting of the elements in D-dimensional function vector X=[x1,x2,…,xd,…,xD] is independent, cooperative particle swarm optimizer (CPSO is used. Based on this, the PCPSO is presented to solve real problems. Since the dimension cannot be split into several lower dimensional search spaces in real problems because of the interacting of the elements, PCPSO exploits the cooperation of two parallel CPSO algorithms by orthogonal experimental design (OED learning. Firstly, the CPSO algorithm is used to generate two locally optimal vectors separately; then the OED is used to learn the merits of these two vectors and creates a better combination of them to generate further search. Experimental studies on a set of test functions show that PCPSO exhibits better robustness and converges much closer to the global optimum than several other peer algorithms.

  14. Some recent studies of electron swarms in gases

    International Nuclear Information System (INIS)

    Tagashira, H.

    1992-01-01

    Some recent studies of electron swarms in gases under the action of an electric field are introduced. The studies include a new type of continuity equation for electrons having a form in which the partial derivative of the electron density with respect to position and to time are interchanged, a method to deduce the time-of-flight and arrival-time-spectrum swarm parameters based on a Fourier-transformed Boltzmann equation, an examination of the correspondence between experimental and theoretical electron drift velocities, and an automatic technique to deduce the electron-gas molecule collision cross section from electron drift velocity data. A method for the deduction of electron collision cross sections with gas molecules having vibrational excitation cross sections greater than the elastic momentum transfer cross section by using a gas mixture technique, an integral type of method for solution of the Boltzmann equation with salient numerical stability, a quantitative analysis of the effect of Penning ionisation, and the behaviour of electron swarms under radio frequency electric fields, are also briefly discussed. 28 refs., 3 figs

  15. Identifying Interacting Genetic Variations by Fish-Swarm Logic Regression

    Science.gov (United States)

    Yang, Aiyuan; Yan, Chunxia; Zhu, Feng; Zhao, Zhongmeng; Cao, Zhi

    2013-01-01

    Understanding associations between genotypes and complex traits is a fundamental problem in human genetics. A major open problem in mapping phenotypes is that of identifying a set of interacting genetic variants, which might contribute to complex traits. Logic regression (LR) is a powerful multivariant association tool. Several LR-based approaches have been successfully applied to different datasets. However, these approaches are not adequate with regard to accuracy and efficiency. In this paper, we propose a new LR-based approach, called fish-swarm logic regression (FSLR), which improves the logic regression process by incorporating swarm optimization. In our approach, a school of fish agents are conducted in parallel. Each fish agent holds a regression model, while the school searches for better models through various preset behaviors. A swarm algorithm improves the accuracy and the efficiency by speeding up the convergence and preventing it from dropping into local optimums. We apply our approach on a real screening dataset and a series of simulation scenarios. Compared to three existing LR-based approaches, our approach outperforms them by having lower type I and type II error rates, being able to identify more preset causal sites, and performing at faster speeds. PMID:23984382

  16. Identifying Interacting Genetic Variations by Fish-Swarm Logic Regression

    Directory of Open Access Journals (Sweden)

    Xuanping Zhang

    2013-01-01

    Full Text Available Understanding associations between genotypes and complex traits is a fundamental problem in human genetics. A major open problem in mapping phenotypes is that of identifying a set of interacting genetic variants, which might contribute to complex traits. Logic regression (LR is a powerful multivariant association tool. Several LR-based approaches have been successfully applied to different datasets. However, these approaches are not adequate with regard to accuracy and efficiency. In this paper, we propose a new LR-based approach, called fish-swarm logic regression (FSLR, which improves the logic regression process by incorporating swarm optimization. In our approach, a school of fish agents are conducted in parallel. Each fish agent holds a regression model, while the school searches for better models through various preset behaviors. A swarm algorithm improves the accuracy and the efficiency by speeding up the convergence and preventing it from dropping into local optimums. We apply our approach on a real screening dataset and a series of simulation scenarios. Compared to three existing LR-based approaches, our approach outperforms them by having lower type I and type II error rates, being able to identify more preset causal sites, and performing at faster speeds.

  17. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.

    Science.gov (United States)

    Garro, Beatriz A; Vázquez, Roberto A

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.

  18. A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations

    Science.gov (United States)

    Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.

  19. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    Science.gov (United States)

    Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  20. Biobotic insect swarm based sensor networks for search and rescue

    Science.gov (United States)

    Bozkurt, Alper; Lobaton, Edgar; Sichitiu, Mihail; Hedrick, Tyson; Latif, Tahmid; Dirafzoon, Alireza; Whitmire, Eric; Verderber, Alexander; Marin, Juan; Xiong, Hong

    2014-06-01

    The potential benefits of distributed robotics systems in applications requiring situational awareness, such as search-and-rescue in emergency situations, are indisputable. The efficiency of such systems requires robotic agents capable of coping with uncertain and dynamic environmental conditions. For example, after an earthquake, a tremendous effort is spent for days to reach to surviving victims where robotic swarms or other distributed robotic systems might play a great role in achieving this faster. However, current technology falls short of offering centimeter scale mobile agents that can function effectively under such conditions. Insects, the inspiration of many robotic swarms, exhibit an unmatched ability to navigate through such environments while successfully maintaining control and stability. We have benefitted from recent developments in neural engineering and neuromuscular stimulation research to fuse the locomotory advantages of insects with the latest developments in wireless networking technologies to enable biobotic insect agents to function as search-and-rescue agents. Our research efforts towards this goal include development of biobot electronic backpack technologies, establishment of biobot tracking testbeds to evaluate locomotion control efficiency, investigation of biobotic control strategies with Gromphadorhina portentosa cockroaches and Manduca sexta moths, establishment of a localization and communication infrastructure, modeling and controlling collective motion by learning deterministic and stochastic motion models, topological motion modeling based on these models, and the development of a swarm robotic platform to be used as a testbed for our algorithms.

  1. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Hasan Abdulameer

    2014-01-01

    Full Text Available Existing face recognition methods utilize particle swarm optimizer (PSO and opposition based particle swarm optimizer (OPSO to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM. In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented.

  2. Monte Carlo simulation of electron swarms in H2

    International Nuclear Information System (INIS)

    Hunter, S.R.

    1976-05-01

    A Monte-Carlo simulation of the motion of an electron swarm in molecular hydrogen was studied in the range E/N = 1.4-170 Td (1 Td = 10 -17 V/cms 2 ). The simulation was performed for 400-600 electrons at several values of E/N for two different sets of inelastic collision cross sections at high values of E/N. The longitudinal diffusion coefficient Dsub(L), lateral diffusion coefficient D, swarm drift velocity W, average swarm energy epsilon, and the ionization and excitation production coefficients were obtained and compared with experimental results where these are available. It was found that the results obtained differ significantly from the experimental values and this is attributed to the isotopic scattering model used in this work. However, the results lend support to the experimental technique reported by Blevin et al used to determine these transport parameters, and in particular confirm their result that Dsub(L) > D at high values of E/N. (author)

  3. A Synchronous-Asynchronous Particle Swarm Optimisation Algorithm

    Science.gov (United States)

    Ab Aziz, Nor Azlina; Mubin, Marizan; Mohamad, Mohd Saberi; Ab Aziz, Kamarulzaman

    2014-01-01

    In the original particle swarm optimisation (PSO) algorithm, the particles' velocities and positions are updated after the whole swarm performance is evaluated. This algorithm is also known as synchronous PSO (S-PSO). The strength of this update method is in the exploitation of the information. Asynchronous update PSO (A-PSO) has been proposed as an alternative to S-PSO. A particle in A-PSO updates its velocity and position as soon as its own performance has been evaluated. Hence, particles are updated using partial information, leading to stronger exploration. In this paper, we attempt to improve PSO by merging both update methods to utilise the strengths of both methods. The proposed synchronous-asynchronous PSO (SA-PSO) algorithm divides the particles into smaller groups. The best member of a group and the swarm's best are chosen to lead the search. Members within a group are updated synchronously, while the groups themselves are asynchronously updated. Five well-known unimodal functions, four multimodal functions, and a real world optimisation problem are used to study the performance of SA-PSO, which is compared with the performances of S-PSO and A-PSO. The results are statistically analysed and show that the proposed SA-PSO has performed consistently well. PMID:25121109

  4. Theory of periodic swarming of bacteria: Application to Proteus mirabilis

    Science.gov (United States)

    Czirók, A.; Matsushita, M.; Vicsek, T.

    2001-03-01

    The periodic swarming of bacteria is one of the simplest examples for pattern formation produced by the self-organized collective behavior of a large number of organisms. In the spectacular colonies of Proteus mirabilis (the most common species exhibiting this type of growth), a series of concentric rings are developed as the bacteria multiply and swarm following a scenario that periodically repeats itself. We have developed a theoretical description for this process in order to obtain a deeper insight into some of the typical processes governing the phenomena in systems of many interacting living units. Our approach is based on simple assumptions directly related to the latest experimental observations on colony formation under various conditions. The corresponding one-dimensional model consists of two coupled differential equations investigated here both by numerical integrations and by analyzing the various expressions obtained from these equations using a few natural assumptions about the parameters of the model. We determine the phase diagram corresponding to systems exhibiting periodic swarming, and discuss in detail how the various stages of the colony development can be interpreted in our framework. We point out that all of our theoretical results are in excellent agreement with the complete set of available observations. Thus the present study represents one of the few examples where self-organized biological pattern formation is understood within a relatively simple theoretical approach, leading to results and predictions fully compatible with experiments.

  5. Evolving Self-Organized Behavior for Homogeneous and Heterogeneous UAV or UCAV Swarms

    National Research Council Canada - National Science Library

    Price, Ian C

    2006-01-01

    This investigation uses a self-organization (SO) approach to enable cooperative search and destruction of retaliating targets with swarms of homogeneous and heterogeneous unmanned aerial vehicles (UAVs...

  6. Synthesis of a Controller for Swarming Robots Performing Underwater Mine Countermeasures

    National Research Council Canada - National Science Library

    Tan, Yong

    2004-01-01

    This Trident Scholar project involved the synthesis of a swarm controller that is suitable for controlling movements of a group of autonomous robots performing underwater mine countermeasures (UMCM...

  7. Towards Realization of Intelligent Medical Treatment at Nanoscale by Artificial Microscopic Swarm Control Systems

    Directory of Open Access Journals (Sweden)

    Alireza Rowhanimanesh

    2017-07-01

    Full Text Available Background: In this paper, the novel concept of artificial microscopic swarm control systems is proposed as a promising approach towards realization of intelligent medical treatment at nanoscale. In this new paradigm, treatment is done autonomously at nanoscale within the patient’s body by the proposed swarm control systems.Methods: From control engineering perspective, medical treatment can be considered as a control problem, in which the ultimate goal is to find the best feasible way to change the state of diseased tissue from unhealthy to healthy in presence of uncertainty. Although a living tissue is a huge swarm of microscopic cells, nearly all of the common treatment methods are based on macroscopic centralized control paradigm. Inspired by natural microscopic swarm control systems such as nervous, endocrine and immune systems that work based on swarm control paradigm, medical treatment needs a paradigm shift from macroscopic centralized control to microscopic swarm control. An artificial microscopic swarm control system consists of a huge number of very simple autonomous microscopic agents that exploit swarm intelligence to realize sense, control (computing and actuation at nanoscale in local, distributed and decentralized manner. This control system can be designed based on mathematical analysis and computer simulation.Results: The proposed approach is used for treatment of atherosclerosis and cancer based on mathematical analysis and in-silico study.Conclusion: The notion of artificial microscopic swarm control systems opens new doors towards realization of autonomous and intelligent medical treatment at nanoscale within the patient’s body.

  8. Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization

    Directory of Open Access Journals (Sweden)

    Huanqing Cui

    2017-03-01

    Full Text Available Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.

  9. Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization.

    Science.gov (United States)

    Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong

    2017-03-01

    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors' memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.

  10. Pseudomonad Swarming Motility Is Restricted to a Narrow Range of High Matric Water Potentials

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Smets, Barth F.

    2012-01-01

    Using a novel experimental system that allows control of the matric potential of an agar slab, we explored the hydration conditions under which swarming motility is possible. If there is recognition that this physical parameter is a key determinant of swarming, it is usually neither controlled nor...... measured rigorously but only manipulated through proxies, namely, the agar concentration and the drying time of "soft" agar plates (swarming plates). We contend that this not only obscures the biophysical mechanisms underlying swarming but also impedes a full assessment of its clinical and environmental...

  11. An Orthogonal Multi-Swarm Cooperative PSO Algorithm with a Particle Trajectory Knowledge Base

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2017-01-01

    Full Text Available A novel orthogonal multi-swarm cooperative particle swarm optimization (PSO algorithm with a particle trajectory knowledge base is presented in this paper. Different from the traditional PSO algorithms and other variants of PSO, the proposed orthogonal multi-swarm cooperative PSO algorithm not only introduces an orthogonal initialization mechanism and a particle trajectory knowledge base for multi-dimensional optimization problems, but also conceives a new adaptive cooperation mechanism to accomplish the information interaction among swarms and particles. Experiments are conducted on a set of benchmark functions, and the results show its better performance compared with traditional PSO algorithm in aspects of convergence, computational efficiency and avoiding premature convergence.

  12. Improved quantum-behaved particle swarm optimization with local search strategy

    Directory of Open Access Journals (Sweden)

    Maolong Xi

    2017-03-01

    Full Text Available Quantum-behaved particle swarm optimization, which was motivated by analysis of particle swarm optimization and quantum system, has shown compared performance in finding the optimal solutions for many optimization problems to other evolutionary algorithms. To address the problem of premature, a local search strategy is proposed to improve the performance of quantum-behaved particle swarm optimization. In proposed local search strategy, a super particle is presented which is a collection body of randomly selected particles’ dimension information in the swarm. The selected probability of particles in swarm is different and determined by their fitness values. To minimization problems, the fitness value of one particle is smaller; the selected probability is more and will contribute more information in constructing the super particle. In addition, in order to investigate the influence on algorithm performance with different local search space, four methods of computing the local search radius are applied in local search strategy and propose four variants of local search quantum-behaved particle swarm optimization. Empirical studies on a suite of well-known benchmark functions are undertaken in order to make an overall performance comparison among the proposed methods and other quantum-behaved particle swarm optimization. The simulation results show that the proposed quantum-behaved particle swarm optimization variants have better advantages over the original quantum-behaved particle swarm optimization.

  13. ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (DEC VAX VERSION)

    Science.gov (United States)

    Frisch, H.

    1994-01-01

    This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following

  14. ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (CDC VERSION)

    Science.gov (United States)

    Armstrong, E. S.

    1994-01-01

    This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following

  15. Particle swarm optimization of ascent trajectories of multistage launch vehicles

    Science.gov (United States)

    Pontani, Mauro

    2014-02-01

    Multistage launch vehicles are commonly employed to place spacecraft and satellites in their operational orbits. If the rocket characteristics are specified, the optimization of its ascending trajectory consists of determining the optimal control law that leads to maximizing the final mass at orbit injection. The numerical solution of a similar problem is not trivial and has been pursued with different methods, for decades. This paper is concerned with an original approach based on the joint use of swarming theory and the necessary conditions for optimality. The particle swarm optimization technique represents a heuristic population-based optimization method inspired by the natural motion of bird flocks. Each individual (or particle) that composes the swarm corresponds to a solution of the problem and is associated with a position and a velocity vector. The formula for velocity updating is the core of the method and is composed of three terms with stochastic weights. As a result, the population migrates toward different regions of the search space taking advantage of the mechanism of information sharing that affects the overall swarm dynamics. At the end of the process the best particle is selected and corresponds to the optimal solution to the problem of interest. In this work the three-dimensional trajectory of the multistage rocket is assumed to be composed of four arcs: (i) first stage propulsion, (ii) second stage propulsion, (iii) coast arc (after release of the second stage), and (iv) third stage propulsion. The Euler-Lagrange equations and the Pontryagin minimum principle, in conjunction with the Weierstrass-Erdmann corner conditions, are employed to express the thrust angles as functions of the adjoint variables conjugate to the dynamics equations. The use of these analytical conditions coming from the calculus of variations leads to obtaining the overall rocket dynamics as a function of seven parameters only, namely the unknown values of the initial state

  16. Reduction of Linear Programming to Linear Approximation

    OpenAIRE

    Vaserstein, Leonid N.

    2006-01-01

    It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.

  17. An Earthquake Swarm Search Implemented at Major Convergent Margins to Test for Associated Aseismic Slip

    Science.gov (United States)

    Holtkamp, S. G.; Pritchard, M. E.; Lohman, R. B.; Brudzinski, M. R.

    2009-12-01

    Recent geodetic analysis indicates earthquake swarms may be associated with slow slip such that earthquakes may only represent a fraction of the moment release. To investigate this potential relationship, we have developed a manual search approach to identify earthquake swarms from a seismicity catalog. Our technique is designed to be insensitive to spatial and temporal scales and the total number of events, as seismicity rates vary in different fault zones. Our first application of this technique on globally recorded earthquakes in South America detects 35 possible swarms of varying spatial scale, with 18 in the megathrust region and 8 along the volcanic arc. Three swarms in the vicinity of the arc appear to be triggered by the Mw=8.5 2001 Peru earthquake, and are examined for possible triggering mechanisms. Coulomb stress modeling suggests that static stress changes due to the earthquake are insufficient to trigger activity, so a dynamic or secondary triggering mechanism is more likely. Volcanic swarms are often associated with ground deformation, either associated with fluid movement (e.g. dike intrusion or chamber inflation or deflation) or fault movement, although these processes are sometimes difficult to differentiate. The only swarm along the arc with sufficient geodetic data that we can process and model is near Ticsani Volcano in Peru. In this case, a swarm of events southeast of the volcano precedes a more typical earthquake sequence beneath the volcano, and evidence for deformation is found in the location of the swarm, but there is no evidence for aseismic slip. Rather, we favor a model where the swarm is associated with deflation of a magma body to the southeast that triggered the earthquake sequence by promoting movement on a fault beneath Ticsani. Since swarms on the subduction interface may indicate aseismic moment release, with a direct impact on hazard, we examine potential relations between swarms and megathrust ruptures. We find evidence that

  18. The January 2006 Volcanic-Tectonic Earthquake Swarm at Mount Martin, Alaska

    Science.gov (United States)

    Dixon, James P.; Power, John A.

    2009-01-01

    On January 8, 2006, a swarm of volcanic-tectonic earthquakes began beneath Mount Martin at the southern end of the Katmai volcanic cluster. This was the first recorded swarm at Mount Martin since continuous seismic monitoring began in 1996. The number of located earthquakes increased during the next four days, reaching a peak on January 11. For the next two days, the seismic activity decreased, and on January 14, the number of events increased to twice the previous day's total. Following this increase in activity, seismicity declined, returning to background levels by the end of the month. The Alaska Volcano Observatory located 860 earthquakes near Mount Martin during January 2006. No additional signs of volcanic unrest were noted in association with this earthquake swarm. The earthquakes in the Mount Martin swarm, relocated using the double difference technique, formed an elongated cluster dipping to the southwest. Focal mechanisms beneath Mount Martin show a mix of normal, thrust, and strike-slip solutions, with normal focal mechanisms dominating. For earthquakes more than 1 km from Mount Martin, all focal mechanisms showed normal faulting. The calculated b-value for the Mount Martin swarm is 0.98 and showed no significant change before, during, or after the swarm. The triggering mechanism for the Mount Martin swarm is unknown. The time-history of earthquake occurrence is indicative of a volcanic cause; however, there were no low-frequency events or observations, such as increased steaming associated with the swarm. During the swarm, there was no change in the b-value, and the distribution and type of focal mechanisms were similar to those in the period before the anomalous activity. The short duration of the swarm, the similarity in observed focal mechanisms, and the lack of additional signs of unrest suggest this swarm did not result from a large influx of magma within the shallow crust beneath Mount Martin.

  19. A Novel Optimal Control Method for Impulsive-Correction Projectile Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Ruisheng Sun

    2016-01-01

    Full Text Available This paper presents a new parametric optimization approach based on a modified particle swarm optimization (PSO to design a class of impulsive-correction projectiles with discrete, flexible-time interval, and finite-energy control. In terms of optimal control theory, the task is described as the formulation of minimum working number of impulses and minimum control error, which involves reference model linearization, boundary conditions, and discontinuous objective function. These result in difficulties in finding the global optimum solution by directly utilizing any other optimization approaches, for example, Hp-adaptive pseudospectral method. Consequently, PSO mechanism is employed for optimal setting of impulsive control by considering the time intervals between two neighboring lateral impulses as design variables, which makes the briefness of the optimization process. A modification on basic PSO algorithm is developed to improve the convergence speed of this optimization through linearly decreasing the inertial weight. In addition, a suboptimal control and guidance law based on PSO technique are put forward for the real-time consideration of the online design in practice. Finally, a simulation case coupled with a nonlinear flight dynamic model is applied to validate the modified PSO control algorithm. The results of comparative study illustrate that the proposed optimal control algorithm has a good performance in obtaining the optimal control efficiently and accurately and provides a reference approach to handling such impulsive-correction problem.

  20. ROBUST MPC FOR STABLE LINEAR SYSTEMS

    Directory of Open Access Journals (Sweden)

    M.A. Rodrigues

    2002-03-01

    Full Text Available In this paper, a new model predictive controller (MPC, which is robust for a class of model uncertainties, is developed. Systems with stable dynamics and time-invariant model uncertainty are treated. The development herein proposed is focused on real industrial systems where the controller is part of an on-line optimization scheme and works in the output-tracking mode. In addition, the system has a time-varying number of degrees of freedom since some of the manipulated inputs may become constrained. Moreover, the number of controlled outputs may also vary during system operation. Consequently, the actual system may show operating conditions with a number of controlled outputs larger than the number of available manipulated inputs. The proposed controller uses a state-space model, which is aimed at the representation of the output-predicted trajectory. Based on this model, a cost function is proposed whereby the output error is integrated along an infinite prediction horizon. It is considered the case of multiple operating points, where the controller stabilizes a set of models corresponding to different operating conditions for the system. It is shown that closed-loop stability is guaranteed by the feasibility of a linear matrix optimization problem.

  1. Particle Swarm Optimization applied to combinatorial problem aiming the fuel recharge problem solution in a nuclear reactor; Particle swarm optimization aplicado ao problema combinatorio com vistas a solucao do problema de recarga em um reator nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson Alvarenga de Moura; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: ameneses@con.ufrj.br; schirru@lmp.ufrj.br

    2005-07-01

    This work focuses on the usage the Artificial Intelligence technique Particle Swarm Optimization (PSO) to optimize the fuel recharge at a nuclear reactor. This is a combinatorial problem, in which the search of the best feasible solution is done by minimizing a specific objective function. However, in this first moment it is possible to compare the fuel recharge problem with the Traveling Salesman Problem (TSP), since both of them are combinatorial, with one advantage: the evaluation of the TSP objective function is much more simple. Thus, the proposed methods have been applied to two TSPs: Oliver 30 and Rykel 48. In 1995, KENNEDY and EBERHART presented the PSO technique to optimize non-linear continued functions. Recently some PSO models for discrete search spaces have been developed for combinatorial optimization. Although all of them having different formulation from the ones presented here. In this paper, we use the PSO theory associated with to the Random Keys (RK)model, used in some optimizations with Genetic Algorithms. The Particle Swarm Optimization with Random Keys (PSORK) results from this association, which combines PSO and RK. The adaptations and changings in the PSO aim to allow the usage of the PSO at the nuclear fuel recharge. This work shows the PSORK being applied to the proposed combinatorial problem and the obtained results. (author)

  2. Precise Orbit Solution for Swarm Using Space-Borne GPS Data and Optimized Pseudo-Stochastic Pulses

    Directory of Open Access Journals (Sweden)

    Bingbing Zhang

    2017-03-01

    Full Text Available Swarm is a European Space Agency (ESA project that was launched on 22 November 2013, which consists of three Swarm satellites. Swarm precise orbits are essential to the success of the above project. This study investigates how well Swarm zero-differenced (ZD reduced-dynamic orbit solutions can be determined using space-borne GPS data and optimized pseudo-stochastic pulses under high ionospheric activity. We choose Swarm space-borne GPS data from 1–25 October 2014, and Swarm reduced-dynamic orbits are obtained. Orbit quality is assessed by GPS phase observation residuals and compared with Precise Science Orbits (PSOs released by ESA. Results show that pseudo-stochastic pulses with a time interval of 6 min and a priori standard deviation (STD of 10−2 mm/s in radial (R, along-track (T and cross-track (N directions are optimized to Swarm ZD reduced-dynamic precise orbit determination (POD. During high ionospheric activity, the mean Root Mean Square (RMS of Swarm GPS phase residuals is at 9–11 mm, Swarm orbit solutions are also compared with Swarm PSOs released by ESA and the accuracy of Swarm orbits can reach 2–4 cm in R, T and N directions. Independent Satellite Laser Ranging (SLR validation indicates that Swarm reduced-dynamic orbits have an accuracy of 2–4 cm. Swarm-B orbit quality is better than those of Swarm-A and Swarm-C. The Swarm orbits can be applied to the geomagnetic, geoelectric and gravity field recovery.

  3. Earthquake Swarm Along the San Andreas Fault near Palmdale, Southern California, 1976 to 1977.

    Science.gov (United States)

    McNally, K C; Kanamori, H; Pechmann, J C; Fuis, G

    1978-09-01

    Between November 1976 and November 1977 a swarm of small earthquakes (local magnitude foreshock sequences, such as tight clustering of hypocenters and time-dependent rotations of stress axes inferred from focal mechanisms. However, because of our present lack of understanding of the processes that precede earthquake faulting, the implications of the swarm for future large earthquakes on the San Andreas fault are unknown.

  4. Visualization of Biosurfactant Film Flow in a Bacillus subtilis Swarm Colony on an Agar Plate.

    Science.gov (United States)

    Kim, Kyunghoon; Kim, Jung Kyung

    2015-08-26

    Collective bacterial dynamics plays a crucial role in colony development. Although many research groups have studied the behavior of fluidic swarm colonies, the detailed mechanics of its motion remains elusive. Here, we developed a visualization method using submicron fluorescent beads for investigating the flow field in a thin layer of fluid that covers a Bacillus subtilis swarm colony growing on an agar plate. The beads were initially embedded in the agar plate and subsequently distributed spontaneously at the upper surface of the expanding colony. We conducted long-term live cell imaging of the B. subtilis colony using the fluorescent tracers, and obtained high-resolution velocity maps of microscale vortices in the swarm colony using particle image velocimetry. A distinct periodic fluctuation in the average speed and vorticity of flow in swarm colony was observed at the inner region of the colony, and correlated with the switch between bacterial swarming and growth phases. At the advancing edge of the colony, both the magnitudes of velocity and vorticity of flow in swarm colony were inversely correlated with the spreading speed of the swarm edge. The advanced imaging tool developed in this study would facilitate further understanding of the effect of micro vortices in swarm colony on the collective dynamics of bacteria.

  5. Westward tilt of low-latitude plasma blobs as observed by the Swarm constellation

    DEFF Research Database (Denmark)

    Park, Jaeheung; Luehr, Hermann; Michaelis, Ingo

    2015-01-01

    In this study we investigate the three-dimensional structure of low-latitude plasma blobs using multi-instrument and multisatellite observations of the Swarm constellation. During the early commissioning phase the Swarm satellites were flying at the same altitude with zonal separation of about 0...

  6. Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots.

    Science.gov (United States)

    Duarte, Miguel; Costa, Vasco; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.

  7. Use of the Comprehensive Inversion method for Swarm satellite data analysis

    DEFF Research Database (Denmark)

    Sabaka, T. J.; Tøffner-Clausen, Lars; Olsen, Nils

    2013-01-01

    An advanced algorithm, known as the “Comprehensive Inversion” (CI), is presented for the analysis of Swarm measurements to generate a consistent set of Level-2 data products to be delivered by the Swarm “Satellite Constellation Application and Research Facility” (SCARF) to the European Space Agency...

  8. The transport parameters of an electron swarm in nitrogen at elevated E/N

    International Nuclear Information System (INIS)

    Blevin, H.A.; Fletcher, J.; Reid, I.D.

    1980-06-01

    Values of the electron drift velocity, the longitudonal diffusion coefficient and the transverse diffusion coefficient for electron swarms in nitrogen over the range 50 Td <= E/N <500 Td have been determined by a method of counting and analysing the photons produced by such an electron swarm in a drift tube. A measure of the Nitrogen E state deactivation rate is presented

  9. linear-quadratic-linear model

    Directory of Open Access Journals (Sweden)

    Tanwiwat Jaikuna

    2017-02-01

    Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  10. Cat Swarm Optimization Based Functional Link Artificial Neural Network Filter for Gaussian Noise Removal from Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2016-01-01

    Full Text Available Gaussian noise is one of the dominant noises, which degrades the quality of acquired Computed Tomography (CT image data. It creates difficulties in pathological identification or diagnosis of any disease. Gaussian noise elimination is desirable to improve the clarity of a CT image for clinical, diagnostic, and postprocessing applications. This paper proposes an evolutionary nonlinear adaptive filter approach, using Cat Swarm Functional Link Artificial Neural Network (CS-FLANN to remove the unwanted noise. The structure of the proposed filter is based on the Functional Link Artificial Neural Network (FLANN and the Cat Swarm Optimization (CSO is utilized for the selection of optimum weight of the neural network filter. The applied filter has been compared with the existing linear filters, like the mean filter and the adaptive Wiener filter. The performance indices, such as peak signal to noise ratio (PSNR, have been computed for the quantitative analysis of the proposed filter. The experimental evaluation established the superiority of the proposed filtering technique over existing methods.

  11. Particle Swarm Optimization applied to combinatorial problem aiming the fuel recharge problem solution in a nuclear reactor

    International Nuclear Information System (INIS)

    Meneses, Anderson Alvarenga de Moura; Schirru, Roberto

    2005-01-01

    This work focuses on the usage the Artificial Intelligence technique Particle Swarm Optimization (PSO) to optimize the fuel recharge at a nuclear reactor. This is a combinatorial problem, in which the search of the best feasible solution is done by minimizing a specific objective function. However, in this first moment it is possible to compare the fuel recharge problem with the Traveling Salesman Problem (TSP), since both of them are combinatorial, with one advantage: the evaluation of the TSP objective function is much more simple. Thus, the proposed methods have been applied to two TSPs: Oliver 30 and Rykel 48. In 1995, KENNEDY and EBERHART presented the PSO technique to optimize non-linear continued functions. Recently some PSO models for discrete search spaces have been developed for combinatorial optimization. Although all of them having different formulation from the ones presented here. In this paper, we use the PSO theory associated with to the Random Keys (RK)model, used in some optimizations with Genetic Algorithms. The Particle Swarm Optimization with Random Keys (PSORK) results from this association, which combines PSO and RK. The adaptations and changings in the PSO aim to allow the usage of the PSO at the nuclear fuel recharge. This work shows the PSORK being applied to the proposed combinatorial problem and the obtained results. (author)

  12. Penerapan Metode Particle Swarm Optimization Pada Optimasi Prediksi Pemasaran Langsung

    Directory of Open Access Journals (Sweden)

    Yuni Eka Achyani

    2018-04-01

    Full Text Available Abstrak Dalam persaingan ketat saat ini, promosi yang baik dapat memberikan kredibilitas untuk produk baru. Promosi perlu mendapat perhatian lebih dan serius, karena dalam kehidupan sehari-hari timbul produk unggulan, jika tidak mengetahuinya, kemungkinan produk yang ditawarkan kepada konsumen kurang ditanggapi oleh pasar, oleh karena itu perusahaan harus mengupayakan produknya, meyakinkan dan mempengaruhi konsumen untuk menciptakan permintaan akan produk ini. Langkah yang bisa dilakukan oleh perusahaan untuk melakukannya adalah dengan melakukan pemasaran langsung. Peningkatan akurasi prediksi pemasaran langsung dapat dilakukan dengan cara melakukan seleksi terhadap atribut, karena seleksi atribut mengurangi dimensi dari data sehingga operasi algoritma data mining dapat berjalan lebih efektif dan lebih cepat. Dalam penelitian ini akan digunakan metode support vector machine dan akan dilakukan seleksi atribut dengan menggunakan particle swarm optimization untuk prediksi pemasaran langsung. Setelah dilakukan pengujian maka hasil yang didapat adalah support vector machine menghasilkan nilai akurasi sebesar 88,71 %, nilai precision 89,47% dan nilai AUC sebesar 0,896. Kemudian dilakukan seleksi atribut dengan menggunakan particle swarm optimization dimana atribut yang semula berjumlah 16 variabel prediktor terpilih 12 atribut yang digunakan. Hasil menunjukkan nilai akurasi yang lebih tinggi yaitu sebesar 89,38%, nilai precision 89,89% dan nilai AUC sebesar 0,909 dengan nilai akurasi klasifikasi sangat baik (excellent clasiffication. Sehingga dicapai peningkatan akurasi sebesar 0,67 %, dan peningkatan AUC sebesar 0,013. Kata Kunci: Particle Swarm Optimization, Pemasaran Langsung, Seleksi Atribut Abstract In the current intense competition a good promotion can provide credibility for a new product. Promotion needs to get more attention and serious, because in everyday life arise a prime product, if not find out, the possibility of products offered to

  13. LMI-based gain scheduled controller synthesis for a class of linear parameter varying systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Anderson, Brian; Lanzon, Alexander

    2006-01-01

    This paper presents a novel method for constructing controllers for a class of single-input multiple-output (SIMO) linear parameter varying (LPV) systems. This class of systems encompasses many physical systems, in particular systems where individual components vary with time, and is therefore...... of significant practical relevance to control designers. The control design presented in this paper has the properties that the system matrix of the closed loop is multi-affine in the various scalar parameters, and that the resulting controller ensures a certain degree of stability for the closed loop even when...... as a standard linear time-invariant (LTI) design combined with a set of linear matrix inequalities, which can be solved efficiently with software tools. The design procedure is illustrated by a numerical example....

  14. Trojan asteroids - Populations, dynamical structure and origin of the L4 and L5 swarms

    International Nuclear Information System (INIS)

    Shoemaker, E.M.; Shoemaker, C.S.; Wolfe, R.F.

    1989-01-01

    The origin of Trojan asteroids, their populations, and dynamical structures are examined. Data available of Trojan asteroids reveal that the total population of Trojans of greater than 15-km diam is roughly half that estimated for the main-belt asteroids. Two-thirds of the known Trojans are in the L4 swarm. Bright Trojans are as numerous in the L5 swarm as in L4 swarm, but faint L5 Trojans are only half as numerous. Similarities of characteristic orbital parameters among certain Trojans indicate the presence of five and possibly as many as eight collisional groups in the L4 swarm. It is suggested that the magnitude distribution of L4 Trojans is probably a result of strong collisional evolution. It is suggested that the present Trojans are chiefly fragments of Jupiter planetesimals that were captured during an episode of heavy flux near Jupiter during the dispersal of the planetesimal swarm. 40 refs

  15. Supervised self-organization of homogeneous swarms using ergodic projections of Markov chains.

    Science.gov (United States)

    Chattopadhyay, Ishanu; Ray, Asok

    2009-12-01

    This paper formulates a self-organization algorithm to address the problem of global behavior supervision in engineered swarms of arbitrarily large population sizes. The swarms considered in this paper are assumed to be homogeneous collections of independent identical finite-state agents, each of which is modeled by an irreducible finite Markov chain. The proposed algorithm computes the necessary perturbations in the local agents' behavior, which guarantees convergence to the desired observed state of the swarm. The ergodicity property of the swarm, which is induced as a result of the irreducibility of the agent models, implies that while the local behavior of the agents converges to the desired behavior only in the time average, the overall swarm behavior converges to the specification and stays there at all times. A simulation example illustrates the underlying concept.

  16. Anti-predatory particle swarm optimization: Solution to nonconvex economic dispatch problems

    Energy Technology Data Exchange (ETDEWEB)

    Selvakumar, A. Immanuel [Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamilnadu (India); Thanushkodi, K. [Department of Electronics and Instrumentation Engineering, Government College of Technology, Coimbatore 641013, Tamilnadu (India)

    2008-01-15

    This paper proposes a new particle swarm optimization (PSO) strategy namely, anti-predatory particle swarm optimization (APSO) to solve nonconvex economic dispatch problems. In the classical PSO, the movement of a particle (bird) is governed by three behaviors: inertial, cognitive and social. The cognitive and social behaviors are the components of the foraging activity, which help the swarm of birds to locate food. Another activity that is observed in birds is the anti-predatory nature, which helps the swarm to escape from the predators. In this work, the anti-predatory activity is modeled and embedded in the classical PSO to form APSO. This inclusion enhances the exploration capability of the swarm. To validate the proposed APSO model, it is applied to two test systems having nonconvex solution spaces. Satisfactory results are obtained when compared with previous approaches. (author)

  17. DualTrust: A Trust Management Model for Swarm-Based Autonomic Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maiden, Wendy M. [Washington State Univ., Pullman, WA (United States)

    2010-05-01

    Trust management techniques must be adapted to the unique needs of the application architectures and problem domains to which they are applied. For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, certain characteristics of the mobile agent ant swarm -- their lightweight, ephemeral nature and indirect communication -- make this adaptation especially challenging. This thesis looks at the trust issues and opportunities in swarm-based autonomic computing systems and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. After analyzing the applicability of trust management research as it has been applied to architectures with similar characteristics, this thesis specifies the required characteristics for trust management mechanisms used to monitor the trustworthiness of entities in a swarm-based autonomic computing system and describes a trust model that meets these requirements.

  18. Earthquake Swarm in Armutlu Peninsula, Eastern Marmara Region, Turkey

    Science.gov (United States)

    Yavuz, Evrim; Çaka, Deniz; Tunç, Berna; Serkan Irmak, T.; Woith, Heiko; Cesca, Simone; Lühr, Birger-Gottfried; Barış, Şerif

    2015-04-01

    The most active fault system of Turkey is North Anatolian Fault Zone and caused two large earthquakes in 1999. These two earthquakes affected the eastern Marmara region destructively. Unbroken part of the North Anatolian Fault Zone crosses north of Armutlu Peninsula on east-west direction. This branch has been also located quite close to Istanbul known as a megacity with its high population, economic and social aspects. A new cluster of microseismic activity occurred in the direct vicinity southeastern of the Yalova Termal area. Activity started on August 2, 2014 with a series of micro events, and then on August 3, 2014 a local magnitude is 4.1 event occurred, more than 1000 in the followed until August 31, 2014. Thus we call this tentatively a swarm-like activity. Therefore, investigation of the micro-earthquake activity of the Armutlu Peninsula has become important to understand the relationship between the occurrence of micro-earthquakes and the tectonic structure of the region. For these reasons, Armutlu Network (ARNET), installed end of 2005 and equipped with currently 27 active seismic stations operating by Kocaeli University Earth and Space Sciences Research Center (ESSRC) and Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum (GFZ), is a very dense network tool able to record even micro-earthquakes in this region. In the 30 days period of August 02 to 31, 2014 Kandilli Observatory and Earthquake Research Institute (KOERI) announced 120 local earthquakes ranging magnitudes between 0.7 and 4.1, but ARNET provided more than 1000 earthquakes for analyzes at the same time period. In this study, earthquakes of the swarm area and vicinity regions determined by ARNET were investigated. The focal mechanism of the August 03, 2014 22:22:42 (GMT) earthquake with local magnitude (Ml) 4.0 is obtained by the moment tensor solution. According to the solution, it discriminates a normal faulting with dextral component. The obtained focal mechanism solution is

  19. Antibiotic-Induced Anomalous Statistics of Collective Bacterial Swarming

    Science.gov (United States)

    Benisty, Sivan; Ben-Jacob, Eshel; Ariel, Gil; Be'er, Avraham

    2015-01-01

    Under sublethal antibiotics concentrations, the statistics of collectively swarming Bacillus subtilis transitions from normal to anomalous, with a heavy-tailed speed distribution and a two-step temporal correlation of velocities. The transition is due to changes in the properties of the bacterial motion and the formation of a motility-defective subpopulation that self-segregates into regions. As a result, both the colonial expansion and the growth rate are not affected by antibiotics. This phenomenon suggests a new strategy bacteria employ to fight antibiotic stress.

  20. Differential Evolution and Particle Swarm Optimization for Partitional Clustering

    DEFF Research Database (Denmark)

    Krink, Thiemo; Paterlini, Sandra

    2006-01-01

    for numerical optimisation, which are hardly known outside the search heuristics field, are particle swarm optimisation (PSO) and differential evolution (DE). The performance of GAs for a representative point evolution approach to clustering is compared with PSO and DE. The empirical results show that DE......Many partitional clustering algorithms based on genetic algorithms (GA) have been proposed to tackle the problem of finding the optimal partition of a data set. Very few studies considered alternative stochastic search heuristics other than GAs or simulated annealing. Two promising algorithms...

  1. Chaotic Hopfield Neural Network Swarm Optimization and Its Application

    Directory of Open Access Journals (Sweden)

    Yanxia Sun

    2013-01-01

    Full Text Available A new neural network based optimization algorithm is proposed. The presented model is a discrete-time, continuous-state Hopfield neural network and the states of the model are updated synchronously. The proposed algorithm combines the advantages of traditional PSO, chaos and Hopfield neural networks: particles learn from their own experience and the experiences of surrounding particles, their search behavior is ergodic, and convergence of the swarm is guaranteed. The effectiveness of the proposed approach is demonstrated using simulations and typical optimization problems.

  2. Combined Data with Particle Swarm Optimization for Structural Damage Detection

    Directory of Open Access Journals (Sweden)

    Fei Kang

    2013-01-01

    Full Text Available This paper proposes a damage detection method based on combined data of static and modal tests using particle swarm optimization (PSO. To improve the performance of PSO, some immune properties such as selection, receptor editing, and vaccination are introduced into the basic PSO and an improved PSO algorithm is formed. Simulations on three benchmark functions show that the new algorithm performs better than PSO. The efficiency of the proposed damage detection method is tested on a clamped beam, and the results demonstrate that it is more efficient than PSO, differential evolution, and an adaptive real-parameter simulated annealing genetic algorithm.

  3. Particle swarm optimization applied to automatic lens design

    Science.gov (United States)

    Qin, Hua

    2011-06-01

    This paper describes a novel application of Particle Swarm Optimization (PSO) technique to lens design. A mathematical model is constructed, and merit functions in an optical system are employed as fitness functions, which combined radiuses of curvature, thicknesses among lens surfaces and refractive indices regarding an optical system. By using this function, the aberration correction is carried out. A design example using PSO is given. Results show that PSO as optical design tools is practical and powerful, and this method is no longer dependent on the lens initial structure and can arbitrarily create search ranges of structural parameters of a lens system, which is an important step towards automatic design with artificial intelligence.

  4. Multidimensional particle swarm optimization for machine learning and pattern recognition

    CERN Document Server

    Kiranyaz, Serkan; Gabbouj, Moncef

    2013-01-01

    For many engineering problems we require optimization processes with dynamic adaptation as we aim to establish the dimension of the search space where the optimum solution resides and develop robust techniques to avoid the local optima usually associated with multimodal problems. This book explores multidimensional particle swarm optimization, a technique developed by the authors that addresses these requirements in a well-defined algorithmic approach.  After an introduction to the key optimization techniques, the authors introduce their unified framework and demonstrate its advantages in chal

  5. PID control for chaotic synchronization using particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.-D. [Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan (China)], E-mail: wdchang@mail.stu.edu.tw

    2009-01-30

    In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.

  6. Photothermal depth profiling for multilayered Structures by particle swarm optimization

    International Nuclear Information System (INIS)

    Chen, Z J; Fang, J W; Zhang, S Y

    2011-01-01

    This paper presents a method to reconstruct thermal conductivity depth profile of a layered medium using noisy photothermal data. The method tries to obtain an accurate reconstruction of discontinuous profile using particle swarm optimization (PSO) algorithm and total variation (TV) regularization. The reconstructions of different thermal conductivity profiles have been tested on simulated photothermal data. The simulation results show that the method can find accurately the locations of discontinuities, and the reconstructed profiles are in agreement with the original ones. Moreover, the results also show the method has good robustness and anti-noise capability.

  7. A decoupled power flow algorithm using particle swarm optimization technique

    International Nuclear Information System (INIS)

    Acharjee, P.; Goswami, S.K.

    2009-01-01

    A robust, nondivergent power flow method has been developed using the particle swarm optimization (PSO) technique. The decoupling properties between the power system quantities have been exploited in developing the power flow algorithm. The speed of the power flow algorithm has been improved using a simple perturbation technique. The basic power flow algorithm and the improvement scheme have been designed to retain the simplicity of the evolutionary approach. The power flow is rugged, can determine the critical loading conditions and also can handle the flexible alternating current transmission system (FACTS) devices efficiently. Test results on standard test systems show that the proposed method can find the solution when the standard power flows fail.

  8. Directing orbits of chaotic systems by particle swarm optimization

    International Nuclear Information System (INIS)

    Liu Bo; Wang Ling; Jin Yihui; Tang Fang; Huang Dexian

    2006-01-01

    This paper applies a novel evolutionary computation algorithm named particle swarm optimization (PSO) to direct the orbits of discrete chaotic dynamical systems towards desired target region within a short time by adding only small bounded perturbations, which could be formulated as a multi-modal numerical optimization problem with high dimension. Moreover, the synchronization of chaotic systems is also studied, which can be dealt with as an online problem of directing orbits. Numerical simulations based on Henon Map demonstrate the effectiveness and efficiency of PSO, and the effects of some parameters are also investigated

  9. Light Focusing through Scattering Media by Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Huang Hui-Ling; Chen Zi-Yang; Sun Cun-Zhi; Liu Ji-Lin; Pu Ji-Xiong

    2015-01-01

    We demonstrate light focusing through scattering media by introducing particle swarm optimization for modulating the phase wavefront. Light refocusing is simulated numerically based on the angular spectrum method and the circular Gaussian distribution model of the scattering media. Experimentally, a spatial light modulator is used to control the phase of incident light, so as to make the scattered light converge to a focus. The influence of divided segments of input light and the effect of the number of iterations on light intensity enhancement are investigated. Simulation results are found to be in good agreement with the theoretical analysis for light refocusing. (paper)

  10. Optimization of mechanical structures using particle swarm optimization

    International Nuclear Information System (INIS)

    Leite, Victor C.; Schirru, Roberto

    2015-01-01

    Several optimization problems are dealed with the particle swarm optimization (PSO) algorithm, there is a wide kind of optimization problems, it may be applications related to logistics or the reload of nuclear reactors. This paper discusses the use of the PSO in the treatment of problems related to mechanical structure optimization. The geometry and material characteristics of mechanical components are important for the proper functioning and performance of the systems were they are applied, particularly to the nuclear field. Calculations related to mechanical aspects are all made using ANSYS, while the PSO is programed in MATLAB. (author)

  11. PID control for chaotic synchronization using particle swarm optimization

    International Nuclear Information System (INIS)

    Chang, W.-D.

    2009-01-01

    In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.

  12. Thermal design of an electric motor using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Jandaud, P-O; Harmand, S; Fakes, M

    2012-01-01

    In this paper, flow inside an electric machine called starter-alternator is studied parametrically with CFD in order to be used by a thermal lumped model coupled to an optimization algorithm using Particle Swarm Optimization (PSO). In a first case, the geometrical parameters are symmetric allowing us to model only one side of the machine. The optimized thermal results are not conclusive. In a second case, all the parameters are independent. In this case, the flow is strongly influenced by the dissymmetry. Optimization results are this time a clear improvement compared to the original machine.

  13. Optimization of mechanical structures using particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Victor C.; Schirru, Roberto, E-mail: victor.coppo.leite@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (LMP/PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Monitoracao de Processos

    2015-07-01

    Several optimization problems are dealed with the particle swarm optimization (PSO) algorithm, there is a wide kind of optimization problems, it may be applications related to logistics or the reload of nuclear reactors. This paper discusses the use of the PSO in the treatment of problems related to mechanical structure optimization. The geometry and material characteristics of mechanical components are important for the proper functioning and performance of the systems were they are applied, particularly to the nuclear field. Calculations related to mechanical aspects are all made using ANSYS, while the PSO is programed in MATLAB. (author)

  14. Algorithms for Rapidly Dispersing Robot Swarms in Unknown Environments

    OpenAIRE

    Hsiang, Tien-Ruey; Arkin, Esther M.; Bender, Michael; Fekete, Sandor P.; Mitchell, Joseph S. B.

    2002-01-01

    We develop and analyze algorithms for dispersing a swarm of primitive robots in an unknown environment, R. The primary objective is to minimize the makespan, that is, the time to fill the entire region. An environment is composed of pixels that form a connected subset of the integer grid. There is at most one robot per pixel and robots move horizontally or vertically at unit speed. Robots enter R by means of k>=1 door pixels Robots are primitive finite automata, only having local communicatio...

  15. Towards diagnostic tools for analysing Swarm data through model retrievals

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Plank, Gernot; Haagmans, R.

    polar orbits between 300 and 550 km altitude. Goal of the current study is to build tools and to analyze datasets, in order to allow a fast diagnosis of the Swarm system performance in orbit during the commission phase and operations of the spacecraft. The effects on the reconstruction of the magnetic...... field resulting from various error sources are investigated. By using a specially developed software package closed loop simulations are performed aiming at different scenarios. We start from the simple noise-free case and move on to more complex and realistic situations which include attitude errors...

  16. Swarm Underwater Acoustic 3D Localization: Kalman vs Monte Carlo

    Directory of Open Access Journals (Sweden)

    Sergio Taraglio

    2015-07-01

    Full Text Available Two three-dimensional localization algorithms for a swarm of underwater vehicles are presented. The first is grounded on an extended Kalman filter (EKF scheme used to fuse some proprioceptive data such as the vessel's speed and some exteroceptive measurements such as the time of flight (TOF sonar distance of the companion vessels. The second is a Monte Carlo particle filter localization processing the same sensory data suite. The results of several simulations using the two approaches are presented, with comparison. The case of a supporting surface vessel is also considered. An analysis of the robustness of the two approaches against some system parameters is given.

  17. Water reservoir maintained by cell growth fuels the spreading of a bacterial swarm.

    Science.gov (United States)

    Wu, Yilin; Berg, Howard C

    2012-03-13

    Flagellated bacteria can swim across moist surfaces within a thin layer of fluid, a means for surface colonization known as swarming. This fluid spreads with the swarm, but how it does so is unclear. We used micron-sized air bubbles to study the motion of this fluid within swarms of Escherichia coli. The bubbles moved diffusively, with drift. Bubbles starting at the swarm edge drifted inward for the first 5 s and then moved outward. Bubbles starting 30 μm from the swarm edge moved inward for the first 20 s, wandered around in place for the next 40 s, and then moved outward. Bubbles starting at 200 or 300 μm from the edge moved outward or wandered around in place, respectively. So the general trend was inward near the outer edge of the swarm and outward farther inside, with flows converging on a region about 100 μm from the swarm edge. We measured cellular metabolic activities with cells expressing a short-lived GFP and cell densities with cells labeled with a membrane fluorescent dye. The fluorescence plots were similar, with peaks about 80 μm from the swarm edge and slopes that mimicked the particle drift rates. These plots suggest that net fluid flow is driven by cell growth. Fluid depth is largest in the multilayered region between approximately 30 and 200 μm from the swarm edge, where fluid agitation is more vigorous. This water reservoir travels with the swarm, fueling its spreading. Intercellular communication is not required; cells need only grow.

  18. On the significance of the noise model for the performance of a linear MPC in closed-loop operation

    DEFF Research Database (Denmark)

    Hagdrup, Morten; Boiroux, Dimitri; Mahmoudi, Zeinab

    2016-01-01

    This paper discusses the significance of the noise model for the performance of a Model Predictive Controller when operating in closed-loop. The process model is parametrized as a continuous-time (CT) model and the relevant sampled-data filtering and control algorithms are developed. Using CT...... models typically means less parameters to identify. Systematic tuning of such controllers is discussed. Simulation studies are conducted for linear time-invariant systems showing that choosing a noise model of low order is beneficial for closed-loop performance. (C) 2016, IFAC (International Federation...

  19. Particle Swarm Optimization approach to defect detection in armour ceramics.

    Science.gov (United States)

    Kesharaju, Manasa; Nagarajah, Romesh

    2017-03-01

    In this research, various extracted features were used in the development of an automated ultrasonic sensor based inspection system that enables defect classification in each ceramic component prior to despatch to the field. Classification is an important task and large number of irrelevant, redundant features commonly introduced to a dataset reduces the classifiers performance. Feature selection aims to reduce the dimensionality of the dataset while improving the performance of a classification system. In the context of a multi-criteria optimization problem (i.e. to minimize classification error rate and reduce number of features) such as one discussed in this research, the literature suggests that evolutionary algorithms offer good results. Besides, it is noted that Particle Swarm Optimization (PSO) has not been explored especially in the field of classification of high frequency ultrasonic signals. Hence, a binary coded Particle Swarm Optimization (BPSO) technique is investigated in the implementation of feature subset selection and to optimize the classification error rate. In the proposed method, the population data is used as input to an Artificial Neural Network (ANN) based classification system to obtain the error rate, as ANN serves as an evaluator of PSO fitness function. Copyright © 2016. Published by Elsevier B.V.

  20. Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Jui-Yu Wu

    2013-01-01

    Full Text Available Stochastic global optimization (SGO algorithms such as the particle swarm optimization (PSO approach have become popular for solving unconstrained global optimization (UGO problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO method and an artificial immune algorithm-based PSO (AIA-PSO method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.

  1. Sperm from sneaker male squids exhibit chemotactic swarming to CO₂.

    Science.gov (United States)

    Hirohashi, Noritaka; Alvarez, Luis; Shiba, Kogiku; Fujiwara, Eiji; Iwata, Yoko; Mohri, Tatsuma; Inaba, Kazuo; Chiba, Kazuyoshi; Ochi, Hiroe; Supuran, Claudiu T; Kotzur, Nico; Kakiuchi, Yasutaka; Kaupp, U Benjamin; Baba, Shoji A

    2013-05-06

    Behavioral traits of sperm are adapted to the reproductive strategy that each species employs. In polyandrous species, spermatozoa often form motile clusters, which might be advantageous for competing with sperm from other males. Despite this presumed advantage for reproductive success, little is known about how sperm form such functional assemblies. Previously, we reported that males of the coastal squid Loligo bleekeri produce two morphologically different euspermatozoa that are linked to distinctly different mating behaviors. Consort and sneaker males use two distinct insemination sites, one inside and one outside the female's body, respectively. Here, we show that sperm release a self-attracting molecule that causes only sneaker sperm to swarm. We identified CO2 as the sperm chemoattractant and membrane-bound flagellar carbonic anhydrase as its sensor. Downstream signaling results from the generation of extracellular H(+), intracellular acidosis, and recovery from acidosis. These signaling events elicit Ca(2+)-dependent turning behavior, resulting in chemotactic swarming. These results illuminate the bifurcating evolution of sperm underlying the distinct fertilization strategies of this species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Improved Quantum Particle Swarm Optimization for Mangroves Classification

    Directory of Open Access Journals (Sweden)

    Zhehuang Huang

    2016-01-01

    Full Text Available Quantum particle swarm optimization (QPSO is a population based optimization algorithm inspired by social behavior of bird flocking which combines the ideas of quantum computing. For many optimization problems, traditional QPSO algorithm can produce high-quality solution within a reasonable computation time and relatively stable convergence characteristics. But QPSO algorithm also showed some unsatisfactory issues in practical applications, such as premature convergence and poor ability in global optimization. To solve these problems, an improved quantum particle swarm optimization algorithm is proposed and implemented in this paper. There are three main works in this paper. Firstly, an improved QPSO algorithm is introduced which can enhance decision making ability of the model. Secondly, we introduce synergetic neural network model to mangroves classification for the first time which can better handle fuzzy matching of remote sensing image. Finally, the improved QPSO algorithm is used to realize the optimization of network parameter. The experiments on mangroves classification showed that the improved algorithm has more powerful global exploration ability and faster convergence speed.

  3. Cat swarm optimization based evolutionary framework for multi document summarization

    Science.gov (United States)

    Rautray, Rasmita; Balabantaray, Rakesh Chandra

    2017-07-01

    Today, World Wide Web has brought us enormous quantity of on-line information. As a result, extracting relevant information from massive data has become a challenging issue. In recent past text summarization is recognized as one of the solution to extract useful information from vast amount documents. Based on number of documents considered for summarization, it is categorized as single document or multi document summarization. Rather than single document, multi document summarization is more challenging for the researchers to find accurate summary from multiple documents. Hence in this study, a novel Cat Swarm Optimization (CSO) based multi document summarizer is proposed to address the problem of multi document summarization. The proposed CSO based model is also compared with two other nature inspired based summarizer such as Harmony Search (HS) based summarizer and Particle Swarm Optimization (PSO) based summarizer. With respect to the benchmark Document Understanding Conference (DUC) datasets, the performance of all algorithms are compared in terms of different evaluation metrics such as ROUGE score, F score, sensitivity, positive predicate value, summary accuracy, inter sentence similarity and readability metric to validate non-redundancy, cohesiveness and readability of the summary respectively. The experimental analysis clearly reveals that the proposed approach outperforms the other summarizers included in the study.

  4. ADAPTIVE DISTRIBUTION OF A SWARM OF HETEROGENEOUS ROBOTS

    Directory of Open Access Journals (Sweden)

    Amanda Prorok

    2016-02-01

    Full Text Available We present a method that distributes a swarm of heterogeneous robots among a set of tasks that require specialized capabilities in order to be completed. We model the system of heterogeneous robots as a community of species, where each species (robot type is defined by the traits (capabilities that it owns. Our method is based on a continuous abstraction of the swarm at a macroscopic level as we model robots switching between tasks. We formulate an optimization problem that produces an optimal set of transition rates for each species, so that the desired trait distribution is reached as quickly as possible. Since our method is based on the derivation of an analytical gradient, it is very efficient with respect to state-of-the-art methods. Building on this result, we propose a real-time optimization method that enables an online adaptation of transition rates. Our approach is well-suited for real-time applications that rely on online redistribution of large-scale robotic systems.

  5. Optimasi Bobot Jaringan Syaraf Tiruan Mengunakan Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Harry Ganda Nugraha

    2014-01-01

    Abstract Forecasting problem is common problem that easily found in decision making process. The popular tool to handle that problem is artificial neural network. Artificial neural network have been widely use because its ability to forecast nonlinear time series data. The learning method that have been widely use to train artificial neural network weight is backpropagation. Otherwise backpropagation learning process sometimes find problem such as over fiting so it can’t generalized the problem. Particle swarm optimization method had been proposed to train artificial neural network weigth. Mean square error, mean absolute percentage error, normalized mean square error, prediction of change in direction, average relative variance had been use to measures the model performance. Indonesia inflation time series data had been use to analyzed the model. The proposed method show that hybrid system could handle the time series forecasting problem as good as backpropagation artificial neural network   Keywords—artificial neural network, particle swarm optimization, prediction of change in direction, average relative variance.

  6. Collective Behavior of Animals: Swarming and Complex Patterns

    Directory of Open Access Journals (Sweden)

    Cañizo, J. A.

    2010-12-01

    Full Text Available In this short note we review some of the individual based models of the collective motion of agents, called swarming. These models based on ODEs (ordinary differential equations exhibit a complex rich asymptotic behavior in terms of patterns, that we show numerically. Moreover, we comment on how these particle models are connected to partial differential equations to describe the evolution of densities of individuals in a continuum manner. The mathematical questions behind the stability issues of these PDE (partial differential equations models are questions of actual interest in mathematical biology research.

    En esta nota repasamos algunos modelos basados en individuos para describir el movimiento colectivo de agentes, a lo que nos referimos usando la voz inglesa swarming. Estos modelos se basan en EDOs (ecuaciones diferenciales ordinarias y muestran un comportamiento asintótico complejo y rico en patrones, que mostramos numéricamente. Además, comentamos cómo se conectan estos modelos de partículas con las ecuaciones en derivadas parciales para describir la evolución de densidades de individuos de forma continua. Las cuestiones matemáticas relacionadas con la estabilidad de de estos modelos de EDP's (ecuaciones en derivadas parciales despiertan gran interés en la investigación en biología matemática.

  7. Multispecies Coevolution Particle Swarm Optimization Based on Previous Search History

    Directory of Open Access Journals (Sweden)

    Danping Wang

    2017-01-01

    Full Text Available A hybrid coevolution particle swarm optimization algorithm with dynamic multispecies strategy based on K-means clustering and nonrevisit strategy based on Binary Space Partitioning fitness tree (called MCPSO-PSH is proposed. Previous search history memorized into the Binary Space Partitioning fitness tree can effectively restrain the individuals’ revisit phenomenon. The whole population is partitioned into several subspecies and cooperative coevolution is realized by an information communication mechanism between subspecies, which can enhance the global search ability of particles and avoid premature convergence to local optimum. To demonstrate the power of the method, comparisons between the proposed algorithm and state-of-the-art algorithms are grouped into two categories: 10 basic benchmark functions (10-dimensional and 30-dimensional, 10 CEC2005 benchmark functions (30-dimensional, and a real-world problem (multilevel image segmentation problems. Experimental results show that MCPSO-PSH displays a competitive performance compared to the other swarm-based or evolutionary algorithms in terms of solution accuracy and statistical tests.

  8. Parameter identification for continuous point emission source based on Tikhonov regularization method coupled with particle swarm optimization algorithm.

    Science.gov (United States)

    Ma, Denglong; Tan, Wei; Zhang, Zaoxiao; Hu, Jun

    2017-03-05

    In order to identify the parameters of hazardous gas emission source in atmosphere with less previous information and reliable probability estimation, a hybrid algorithm coupling Tikhonov regularization with particle swarm optimization (PSO) was proposed. When the source location is known, the source strength can be estimated successfully by common Tikhonov regularization method, but it is invalid when the information about both source strength and location is absent. Therefore, a hybrid method combining linear Tikhonov regularization and PSO algorithm was designed. With this method, the nonlinear inverse dispersion model was transformed to a linear form under some assumptions, and the source parameters including source strength and location were identified simultaneously by linear Tikhonov-PSO regularization method. The regularization parameters were selected by L-curve method. The estimation results with different regularization matrixes showed that the confidence interval with high-order regularization matrix is narrower than that with zero-order regularization matrix. But the estimation results of different source parameters are close to each other with different regularization matrixes. A nonlinear Tikhonov-PSO hybrid regularization was also designed with primary nonlinear dispersion model to estimate the source parameters. The comparison results of simulation and experiment case showed that the linear Tikhonov-PSO method with transformed linear inverse model has higher computation efficiency than nonlinear Tikhonov-PSO method. The confidence intervals from linear Tikhonov-PSO are more reasonable than that from nonlinear method. The estimation results from linear Tikhonov-PSO method are similar to that from single PSO algorithm, and a reasonable confidence interval with some probability levels can be additionally given by Tikhonov-PSO method. Therefore, the presented linear Tikhonov-PSO regularization method is a good potential method for hazardous emission

  9. Predicting Complexation Thermodynamic Parameters of β-Cyclodextrin with Chiral Guests by Using Swarm Intelligence and Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Luckhana Lawtrakul

    2009-05-01

    Full Text Available The Particle Swarm Optimization (PSO and Support Vector Machines (SVMs approaches are used for predicting the thermodynamic parameters for the 1:1 inclusion complexation of chiral guests with β-cyclodextrin. A PSO is adopted for descriptor selection in the quantitative structure-property relationships (QSPR of a dataset of 74 chiral guests due to its simplicity, speed, and consistency. The modified PSO is then combined with SVMs for its good approximating properties, to generate a QSPR model with the selected features. Linear, polynomial, and Gaussian radial basis functions are used as kernels in SVMs. All models have demonstrated an impressive performance with R2 higher than 0.8.

  10. An Improved Particle Swarm Optimization for Selective Single Machine Scheduling with Sequence Dependent Setup Costs and Downstream Demands

    Directory of Open Access Journals (Sweden)

    Kun Li

    2015-01-01

    Full Text Available This paper investigates a special single machine scheduling problem derived from practical industries, namely, the selective single machine scheduling with sequence dependent setup costs and downstream demands. Different from traditional single machine scheduling, this problem further takes into account the selection of jobs and the demands of downstream lines. This problem is formulated as a mixed integer linear programming model and an improved particle swarm optimization (PSO is proposed to solve it. To enhance the exploitation ability of the PSO, an adaptive neighborhood search with different search depth is developed based on the decision characteristics of the problem. To improve the search diversity and make the proposed PSO algorithm capable of getting out of local optimum, an elite solution pool is introduced into the PSO. Computational results based on extensive test instances show that the proposed PSO can obtain optimal solutions for small size problems and outperform the CPLEX and some other powerful algorithms for large size problems.

  11. Langevin dynamics encapsulate the microscopic and emergent macroscopic properties of midge swarms

    Science.gov (United States)

    2018-01-01

    In contrast to bird flocks, fish schools and animal herds, midge swarms maintain cohesion but do not possess global order. High-speed imaging techniques are now revealing that these swarms have surprising properties. Here, I show that simple models found on the Langevin equation are consistent with this wealth of recent observations. The models predict correctly that large accelerations, exceeding 10 g, will be common and they predict correctly the coexistence of core condensed phases surrounded by dilute vapour phases. The models also provide new insights into the influence of environmental conditions on swarm dynamics. They predict that correlations between midges increase the strength of the effective force binding the swarm together. This may explain why such correlations are absent in laboratory swarms but present in natural swarms which contend with the wind and other disturbances. Finally, the models predict that swarms have fluid-like macroscopic mechanical properties and will slosh rather than slide back and forth after being abruptly displaced. This prediction offers a promising avenue for future experimentation that goes beyond current quasi-static testing which has revealed solid-like responses. PMID:29298958

  12. Turbulence modulation induced by bubble swarm in oscillating-grid turbulence

    International Nuclear Information System (INIS)

    Morikawa, Koichi; Urano, Shigeyuki; Saito, Takayuki

    2007-01-01

    In the present study, liquid-phase turbulence modulation induced by a bubble swarm ascending in arbitrary turbulence was experimentally investigated. Liquid-phase homogeneous isotropic turbulence was formed using an oscillating grid in a cylindrical acrylic vessel of 149 mm in inner diameter. A bubble swarm consisting of 19 bubbles of 2.8 mm in equivalent diameter was examined; the bubble size and launching time were completely controlled using a bubble launching device through audio speakers. This bubble launching device was able to repeatedly control the bubble swarm arbitrarily and precisely. The bubble swarm was launched at a frequency of 4 Hz. The liquid phase motion was measured via two LDA (Laser Doppler Anemometer) probes. The turbulence intensity, spatial correlation and integral scale were calculated from LDA data obtained by the two spatially-separate-point measurement. When the bubble swarm was added, the turbulence intensity dramatically changed. The original isotropic turbulence was modulated to the anisotropic turbulence by the mutual interference between the bubble swarm and ambient isotropic turbulence. The integral scales were calculated from the spatial correlation function. The effects of the bubble swarm on the integral scales showed the tendencies similar to those on turbulence intensity. (author)

  13. A novel hybrid particle swarm optimization for economic dispatch with valve-point loading effects

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, Taher, E-mail: niknam@sutech.ac.i [Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, P.O. 71555-313 (Iran, Islamic Republic of); Mojarrad, Hasan Doagou, E-mail: hasan_doagou@yahoo.co [Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, P.O. 71555-313 (Iran, Islamic Republic of); Meymand, Hamed Zeinoddini, E-mail: h.zeinaddini@gmail.co [Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, P.O. 71555-313 (Iran, Islamic Republic of)

    2011-04-15

    Economic dispatch (ED) is one of the important problems in the operation and management of the electric power systems which is formulated as an optimization problem. Modern heuristics stochastic optimization techniques appear to be efficient in solving ED problem without any restriction because of their ability to seek the global optimal solution. One of modern heuristic algorithms is particle swarm optimization (PSO). In PSO algorithm, particles change place to get close to the best position and find the global minimum point. Also, differential evolution (DE) is a robust statistical method for solving non-linear and non-convex optimization problem. The fast convergence of DE degrades its performance and reduces its search capability that leads to a higher probability towards obtaining a local optimum. In order to overcome this drawback a hybrid method is presented to solve the ED problem with valve-point loading effect by integrating the variable DE with the fuzzy adaptive PSO called FAPSO-VDE. DE is the main optimizer and the PSO is used to maintain the population diversity and prevent leading to misleading local optima for every improvement in the solution of the DE run. The parameters of proposed hybrid algorithm such as inertia weight, mutation and crossover factors are adaptively adjusted. The feasibility and effectiveness of the proposed hybrid algorithm is demonstrated for two case studies and results are compared with those of other methods. It is shown that FAPSO-VDE has high quality solution, superior convergence characteristics and shorter computation time.

  14. Global Characteristics of Electromagnetic Ion Cyclotron Waves Deduced From Swarm Satellites

    Science.gov (United States)

    Kim, Hyangpyo; Hwang, Junga; Park, Jaeheung; Bortnik, Jacob; Lee, Jaejin

    2018-02-01

    It is well known that electromagnetic ion cyclotron (EMIC) waves play an important role in controlling particle dynamics inside the Earth's magnetosphere, especially in the outer radiation belt. In order to understand the results of wave-particle interactions due to EMIC waves, it is important to know how the waves are distributed and what features they have. In this paper, we present some statistical analyses on the spatial distribution of EMIC waves in the low Earth orbit by using Swarm satellites from December 2013 to June 2017 ( 3.5 years) as a function of magnetic local time, magnetic latitude, and magnetic longitude. We also study the wave characteristics such as ellipticity, wave normal angle, peak frequency, and wave power using our automatic wave detection algorithm based on the method of Bortnik et al. (2007, https://doi.org/10.1029/2006JA011900). We also investigate the geomagnetic control of the EMIC waves by comparing with geomagnetic activity represented by Kp and Dst indices. We find that EMIC waves are detected with a peak occurrence rate at midlatitude including subauroral region, dawn sector (3-7 magnetic local time), and linear polarization dominated with an oblique propagating direction to the background magnetic field. In addition, our result shows that the waves have some relation with geomagnetic activity; that is, they occur preferably during the geomagnetic storm's late recovery phase at low Earth orbit.

  15. A Method for Consensus Reaching in Product Kansei Evaluation Using Advanced Particle Swarm Optimization.

    Science.gov (United States)

    Yang, Yan-Pu

    2017-01-01

    Consumers' opinions toward product design alternatives are often subjective and perceptual, which reflect their perception about a product and can be described using Kansei adjectives. Therefore, Kansei evaluation is often employed to determine consumers' preference. However, how to identify and improve the reliability of consumers' Kansei evaluation opinions toward design alternatives has an important role in adding additional insurance and reducing uncertainty to successful product design. To solve this problem, this study employs a consensus model to measure consistence among consumers' opinions, and an advanced particle swarm optimization (PSO) algorithm combined with Linearly Decreasing Inertia Weight (LDW) method is proposed for consensus reaching by minimizing adjustment of consumers' opinions. Furthermore, the process of the proposed method is presented and the details are illustrated using an example of electronic scooter design evaluation. The case study reveals that the proposed method is promising for reaching a consensus through searching optimal solutions by PSO and improving the reliability of consumers' evaluation opinions toward design alternatives according to Kansei indexes.

  16. Automatic Parameter Tuning for the Morpheus Vehicle Using Particle Swarm Optimization

    Science.gov (United States)

    Birge, B.

    2013-01-01

    A high fidelity simulation using a PC based Trick framework has been developed for Johnson Space Center's Morpheus test bed flight vehicle. There is an iterative development loop of refining and testing the hardware, refining the software, comparing the software simulation to hardware performance and adjusting either or both the hardware and the simulation to extract the best performance from the hardware as well as the most realistic representation of the hardware from the software. A Particle Swarm Optimization (PSO) based technique has been developed that increases speed and accuracy of the iterative development cycle. Parameters in software can be automatically tuned to make the simulation match real world subsystem data from test flights. Special considerations for scale, linearity, discontinuities, can be all but ignored with this technique, allowing fast turnaround both for simulation tune up to match hardware changes as well as during the test and validation phase to help identify hardware issues. Software models with insufficient control authority to match hardware test data can be immediately identified and using this technique requires very little to no specialized knowledge of optimization, freeing model developers to concentrate on spacecraft engineering. Integration of the PSO into the Morpheus development cycle will be discussed as well as a case study highlighting the tool's effectiveness.

  17. Loss of FliL alters Proteus mirabilis surface sensing and temperature-dependent swarming.

    Science.gov (United States)

    Lee, Yi-Ying; Belas, Robert

    2015-01-01

    Proteus mirabilis is a dimorphic motile bacterium well known for its flagellum-dependent swarming motility over surfaces. In liquid, P. mirabilis cells are 1.5- to 2.0-μm swimmer cells with 4 to 6 flagella. When P. mirabilis encounters a solid surface, where flagellar rotation is limited, swimmer cells differentiate into elongated (10- to 80-μm), highly flagellated swarmer cells. In order for P. mirabilis to swarm, it first needs to detect a surface. The ubiquitous but functionally enigmatic flagellar basal body protein FliL is involved in P. mirabilis surface sensing. Previous studies have suggested that FliL is essential for swarming through its involvement in viscosity-dependent monitoring of flagellar rotation. In this study, we constructed and characterized ΔfliL mutants of P. mirabilis and Escherichia coli. Unexpectedly and unlike other fliL mutants, both P. mirabilis and E. coli ΔfliL cells swarm (Swr(+)). Further analysis revealed that P. mirabilis ΔfliL cells also exhibit an alteration in their ability to sense a surface: e.g., ΔfliL P. mirabilis cells swarm precociously over surfaces with low viscosity that normally impede wild-type swarming. Precocious swarming is due to an increase in the number of elongated swarmer cells in the population. Loss of fliL also results in an inhibition of swarming at <30°C. E. coli ΔfliL cells also exhibit temperature-sensitive swarming. These results suggest an involvement of FliL in the energetics and function of the flagellar motor. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...

  19. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    Science.gov (United States)

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  20. Alarm systems detect volcanic tremor and earthquake swarms during Redoubt eruption, 2009

    Science.gov (United States)

    Thompson, G.; West, M. E.

    2009-12-01

    We ran two alarm algorithms on real-time data from Redoubt volcano during the 2009 crisis. The first algorithm was designed to detect escalations in continuous seismicity (tremor). This is implemented within an application called IceWeb which computes reduced displacement, and produces plots of reduced displacement and spectrograms linked to the Alaska Volcano Observatory internal webpage every 10 minutes. Reduced displacement is a measure of the amplitude of volcanic tremor, and is computed by applying a geometrical spreading correction to a displacement seismogram. When the reduced displacement at multiple stations exceeds pre-defined thresholds and there has been a factor of 3 increase in reduced displacement over the previous hour, a tremor alarm is declared. The second algorithm was to designed to detect earthquake swarms. The mean and median event rates are computed every 5 minutes based on the last hour of data from a real-time event catalog. By comparing these with thresholds, three swarm alarm conditions can be declared: a new swarm, an escalation in a swarm, and the end of a swarm. The end of swarm alarm is important as it may mark a transition from swarm to continuous tremor. Alarms from both systems were dispatched using a generic alarm management system which implements a call-down list, allowing observatory scientists to be called in sequence until someone acknowledged the alarm via a confirmation web page. The results of this simple approach are encouraging. The tremor alarm algorithm detected 26 of the 27 explosive eruptions that occurred from 23 March - 4 April. The swarm alarm algorithm detected all five of the main volcanic earthquake swarm episodes which occurred during the Redoubt crisis on 26-27 February, 21-23 March, 26 March, 2-4 April and 3-7 May. The end-of-swarm alarms on 23 March and 4 April were particularly helpful as they were caused by transitions from swarm to tremor shortly preceding explosive eruptions; transitions which were