Hybrid Spectral Unmixing: Using Artificial Neural Networks for Linear/Non-Linear Switching
Asmau M. Ahmed
2017-07-01
Full Text Available Spectral unmixing is a key process in identifying spectral signature of materials and quantifying their spatial distribution over an image. The linear model is expected to provide acceptable results when two assumptions are satisfied: (1 The mixing process should occur at macroscopic level and (2 Photons must interact with single material before reaching the sensor. However, these assumptions do not always hold and more complex nonlinear models are required. This study proposes a new hybrid method for switching between linear and nonlinear spectral unmixing of hyperspectral data based on artificial neural networks. The neural networks was trained with parameters within a window of the pixel under consideration. These parameters are computed to represent the diversity of the neighboring pixels and are based on the Spectral Angular Distance, Covariance and a non linearity parameter. The endmembers were extracted using Vertex Component Analysis while the abundances were estimated using the method identified by the neural networks (Vertex Component Analysis, Fully Constraint Least Square Method, Polynomial Post Nonlinear Mixing Model or Generalized Bilinear Model. Results show that the hybrid method performs better than each of the individual techniques with high overall accuracy, while the abundance estimation error is significantly lower than that obtained using the individual methods. Experiments on both synthetic dataset and real hyperspectral images demonstrated that the proposed hybrid switch method is efficient for solving spectral unmixing of hyperspectral images as compared to individual algorithms.
Improving Automated Endmember Identification for Linear Unmixing of HyspIRI Spectral Data.
Gader, P.
2016-12-01
The size of data sets produced by imaging spectrometers is increasing rapidly. There is already a processing bottleneck. Part of the reason for this bottleneck is the need for expert input using interactive software tools. This process can be very time consuming and laborious but is currently crucial to ensuring the quality of the analysis. Automated algorithms can mitigate this problem. Although it is unlikely that processing systems can become completely automated, there is an urgent need to increase the level of automation. Spectral unmixing is a key component to processing HyspIRI data. Algorithms such as MESMA have been demonstrated to achieve results but require carefully, expert construction of endmember libraries. Unfortunately, many endmembers found by automated algorithms for finding endmembers are deemed unsuitable by experts because they are not physically reasonable. Unfortunately, endmembers that are not physically reasonable can achieve very low errors between the linear mixing model with those endmembers and the original data. Therefore, this error is not a reasonable way to resolve the problem on "non-physical" endmembers. There are many potential approaches for resolving these issues, including using Bayesian priors, but very little attention has been given to this problem. The study reported on here considers a modification of the Sparsity Promoting Iterated Constrained Endmember (SPICE) algorithm. SPICE finds endmembers and abundances and estimates the number of endmembers. The SPICE algorithm seeks to minimize a quadratic objective function with respect to endmembers E and fractions P. The modified SPICE algorithm, which we refer to as SPICED, is obtained by adding the term D to the objective function. The term D pressures the algorithm to minimize sum of the squared differences between each endmember and a weighted sum of the data. By appropriately modifying the, the endmembers are pushed towards a subset of the data with the potential for
Minimum volume simplicial enclosure for spectral unmixing of remotely sensed hyperspectral data
Hendrix, E.M.T.; García, I.; Plaza, J.; Plaza, A.
2010-01-01
Spectral unmixing is an important task for remotely sensed hyperspectral data exploitation. Linear spectral unmixing relies on two main steps: 1) identification of pure spectral constituents (endmembers), and 2) end member abundance estimation in mixed pixels. One of the main problems concerning the
Spectral unmixing: estimating partial abundances
Debba, Pravesh
2009-01-01
Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...
Nielsen, Allan Aasbjerg
2001-01-01
) and non-negative least squares (NNLS), and the partial unmixing methods orthogonal subspace projection (OSP), constrained energy minimization (CEM) and an eigenvalue formulation alternative are dealt with. The solution to the eigenvalue formulation alternative proves to be identical to the CEM solution....... The matrix inversion involved in CEM can be avoided by working on (a subset of) orthogonally transformed data such as signal maximum autocorrelation factors, MAFs, or signal minimum noise fractions, MNFs. This will also cause the partial unmixing result to be independent of the noise isolated in the MAF....../MNFs not included in the analysis. CEM and the eigenvalue formulation alternative enable us to perform partial unmixing when we know one desired end-member spectrum only and not the full set of end-member spectra. This is an advantage over full unmixing and OSP. The eigenvalue formulation of CEM inspires us...
Spectral unmixing using the concept of pure variables
Kucheryavskiy, Sergey V.
2016-01-01
This comprehensive book presents an interdisciplinary approach to demonstrate how and why data analysis, signal processing, and chemometrics are essential to resolving the spectral unmixing problem.......This comprehensive book presents an interdisciplinary approach to demonstrate how and why data analysis, signal processing, and chemometrics are essential to resolving the spectral unmixing problem....
Quadratic Blind Linear Unmixing: A Graphical User Interface for Tissue Characterization
Gutierrez-Navarro, O.; Campos-Delgado, D.U.; Arce-Santana, E. R.; Jo, Javier A.
2015-01-01
Spectral unmixing is the process of breaking down data from a sample into its basic components and their abundances. Previous work has been focused on blind unmixing of multi-spectral fluorescence lifetime imaging microscopy (m-FLIM) datasets under a linear mixture model and quadratic approximations. This method provides a fast linear decomposition and can work without a limitation in the maximum number of components or end-members. Hence this work presents an interactive software which imple...
[Orthogonal Vector Projection Algorithm for Spectral Unmixing].
Song, Mei-ping; Xu, Xing-wei; Chang, Chein-I; An, Ju-bai; Yao, Li
2015-12-01
Spectrum unmixing is an important part of hyperspectral technologies, which is essential for material quantity analysis in hyperspectral imagery. Most linear unmixing algorithms require computations of matrix multiplication and matrix inversion or matrix determination. These are difficult for programming, especially hard for realization on hardware. At the same time, the computation costs of the algorithms increase significantly as the number of endmembers grows. Here, based on the traditional algorithm Orthogonal Subspace Projection, a new method called. Orthogonal Vector Projection is prompted using orthogonal principle. It simplifies this process by avoiding matrix multiplication and inversion. It firstly computes the final orthogonal vector via Gram-Schmidt process for each endmember spectrum. And then, these orthogonal vectors are used as projection vector for the pixel signature. The unconstrained abundance can be obtained directly by projecting the signature to the projection vectors, and computing the ratio of projected vector length and orthogonal vector length. Compared to the Orthogonal Subspace Projection and Least Squares Error algorithms, this method does not need matrix inversion, which is much computation costing and hard to implement on hardware. It just completes the orthogonalization process by repeated vector operations, easy for application on both parallel computation and hardware. The reasonability of the algorithm is proved by its relationship with Orthogonal Sub-space Projection and Least Squares Error algorithms. And its computational complexity is also compared with the other two algorithms', which is the lowest one. At last, the experimental results on synthetic image and real image are also provided, giving another evidence for effectiveness of the method.
Spectral Unmixing Analysis of Time Series Landsat 8 Images
Zhuo, R.; Xu, L.; Peng, J.; Chen, Y.
2018-05-01
Temporal analysis of Landsat 8 images opens up new opportunities in the unmixing procedure. Although spectral analysis of time series Landsat imagery has its own advantage, it has rarely been studied. Nevertheless, using the temporal information can provide improved unmixing performance when compared to independent image analyses. Moreover, different land cover types may demonstrate different temporal patterns, which can aid the discrimination of different natures. Therefore, this letter presents time series K-P-Means, a new solution to the problem of unmixing time series Landsat imagery. The proposed approach is to obtain the "purified" pixels in order to achieve optimal unmixing performance. The vertex component analysis (VCA) is used to extract endmembers for endmember initialization. First, nonnegative least square (NNLS) is used to estimate abundance maps by using the endmember. Then, the estimated endmember is the mean value of "purified" pixels, which is the residual of the mixed pixel after excluding the contribution of all nondominant endmembers. Assembling two main steps (abundance estimation and endmember update) into the iterative optimization framework generates the complete algorithm. Experiments using both simulated and real Landsat 8 images show that the proposed "joint unmixing" approach provides more accurate endmember and abundance estimation results compared with "separate unmixing" approach.
Spectral unmixing of hyperspectral data to map bauxite deposits
Shanmugam, Sanjeevi; Abhishekh, P. V.
2006-12-01
This paper presents a study about the potential of remote sensing in bauxite exploration in the Kolli hills of Tamilnadu state, southern India. ASTER image (acquired in the VNIR and SWIR regions) has been used in conjunction with SRTM - DEM in this study. A new approach of spectral unmixing of ASTER image data delineated areas rich in alumina. Various geological and geomorphological parameters that control bauxite formation were also derived from the ASTER image. All these information, when integrated, showed that there are 16 cappings (including the existing mines) that satisfy most of the conditions favouring bauxitization in the Kolli Hills. The study concludes that spectral unmixing of hyperspectral satellite data in the VNIR and SWIR regions may be combined with the terrain parameters to get accurate information about bauxite deposits, including their quality.
Terahertz spectral unmixing based method for identifying gastric cancer
Cao, Yuqi; Huang, Pingjie; Li, Xian; Ge, Weiting; Hou, Dibo; Zhang, Guangxin
2018-02-01
At present, many researchers are exploring biological tissue inspection using terahertz time-domain spectroscopy (THz-TDS) techniques. In this study, based on a modified hard modeling factor analysis method, terahertz spectral unmixing was applied to investigate the relationships between the absorption spectra in THz-TDS and certain biomarkers of gastric cancer in order to systematically identify gastric cancer. A probability distribution and box plot were used to extract the distinctive peaks that indicate carcinogenesis, and the corresponding weight distributions were used to discriminate the tissue types. The results of this work indicate that terahertz techniques have the potential to detect different levels of cancer, including benign tumors and polyps.
Quadratic blind linear unmixing: A graphical user interface for tissue characterization.
Gutierrez-Navarro, O; Campos-Delgado, D U; Arce-Santana, E R; Jo, Javier A
2016-02-01
Spectral unmixing is the process of breaking down data from a sample into its basic components and their abundances. Previous work has been focused on blind unmixing of multi-spectral fluorescence lifetime imaging microscopy (m-FLIM) datasets under a linear mixture model and quadratic approximations. This method provides a fast linear decomposition and can work without a limitation in the maximum number of components or end-members. Hence this work presents an interactive software which implements our blind end-member and abundance extraction (BEAE) and quadratic blind linear unmixing (QBLU) algorithms in Matlab. The options and capabilities of our proposed software are described in detail. When the number of components is known, our software can estimate the constitutive end-members and their abundances. When no prior knowledge is available, the software can provide a completely blind solution to estimate the number of components, the end-members and their abundances. The characterization of three case studies validates the performance of the new software: ex-vivo human coronary arteries, human breast cancer cell samples, and in-vivo hamster oral mucosa. The software is freely available in a hosted webpage by one of the developing institutions, and allows the user a quick, easy-to-use and efficient tool for multi/hyper-spectral data decomposition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A novel highly parallel algorithm for linearly unmixing hyperspectral images
Guerra, Raúl; López, Sebastián.; Callico, Gustavo M.; López, Jose F.; Sarmiento, Roberto
2014-10-01
Endmember extraction and abundances calculation represent critical steps within the process of linearly unmixing a given hyperspectral image because of two main reasons. The first one is due to the need of computing a set of accurate endmembers in order to further obtain confident abundance maps. The second one refers to the huge amount of operations involved in these time-consuming processes. This work proposes an algorithm to estimate the endmembers of a hyperspectral image under analysis and its abundances at the same time. The main advantage of this algorithm is its high parallelization degree and the mathematical simplicity of the operations implemented. This algorithm estimates the endmembers as virtual pixels. In particular, the proposed algorithm performs the descent gradient method to iteratively refine the endmembers and the abundances, reducing the mean square error, according with the linear unmixing model. Some mathematical restrictions must be added so the method converges in a unique and realistic solution. According with the algorithm nature, these restrictions can be easily implemented. The results obtained with synthetic images demonstrate the well behavior of the algorithm proposed. Moreover, the results obtained with the well-known Cuprite dataset also corroborate the benefits of our proposal.
Unmixing of spectral components affecting AVIRIS imagery of Tampa Bay
Carder, Kendall L.; Lee, Z. P.; Chen, Robert F.; Davis, Curtiss O.
1993-09-01
According to Kirk's as well as Morel and Gentili's Monte Carlo simulations, the popular simple expression, R approximately equals 0.33 bb/a, relating subsurface irradiance reflectance (R) to the ratio of the backscattering coefficient (bb) to absorption coefficient (a), is not valid for bb/a > 0.25. This means that it may no longer be valid for values of remote-sensing reflectance (above-surface ratio of water-leaving radiance to downwelling irradiance) where Rrs4/ > 0.01. Since there has been no simple Rrs expression developed for very turbid waters, we developed one based in part on Monte Carlo simulations and empirical adjustments to an Rrs model and applied it to rather turbid coastal waters near Tampa Bay to evaluate its utility for unmixing the optical components affecting the water- leaving radiance. With the high spectral (10 nm) and spatial (20 m2) resolution of Airborne Visible-InfraRed Imaging Spectrometer (AVIRIS) data, the water depth and bottom type were deduced using the model for shallow waters. This research demonstrates the necessity of further research to improve interpretations of scenes with highly variable turbid waters, and it emphasizes the utility of high spectral-resolution data as from AVIRIS for better understanding complicated coastal environments such as the west Florida shelf.
Comparing performance of standard and iterative linear unmixing methods for hyperspectral signatures
Gault, Travis R.; Jansen, Melissa E.; DeCoster, Mallory E.; Jansing, E. David; Rodriguez, Benjamin M.
2016-05-01
Linear unmixing is a method of decomposing a mixed signature to determine the component materials that are present in sensor's field of view, along with the abundances at which they occur. Linear unmixing assumes that energy from the materials in the field of view is mixed in a linear fashion across the spectrum of interest. Traditional unmixing methods can take advantage of adjacent pixels in the decomposition algorithm, but is not the case for point sensors. This paper explores several iterative and non-iterative methods for linear unmixing, and examines their effectiveness at identifying the individual signatures that make up simulated single pixel mixed signatures, along with their corresponding abundances. The major hurdle addressed in the proposed method is that no neighboring pixel information is available for the spectral signature of interest. Testing is performed using two collections of spectral signatures from the Johns Hopkins University Applied Physics Laboratory's Signatures Database software (SigDB): a hand-selected small dataset of 25 distinct signatures from a larger dataset of approximately 1600 pure visible/near-infrared/short-wave-infrared (VIS/NIR/SWIR) spectra. Simulated spectra are created with three and four material mixtures randomly drawn from a dataset originating from SigDB, where the abundance of one material is swept in 10% increments from 10% to 90%with the abundances of the other materials equally divided amongst the remainder. For the smaller dataset of 25 signatures, all combinations of three or four materials are used to create simulated spectra, from which the accuracy of materials returned, as well as the correctness of the abundances, is compared to the inputs. The experiment is expanded to include the signatures from the larger dataset of almost 1600 signatures evaluated using a Monte Carlo scheme with 5000 draws of three or four materials to create the simulated mixed signatures. The spectral similarity of the inputs to the
Generation, Validation, and Application of Abundance Map Reference Data for Spectral Unmixing
Williams, McKay D.
coarse scale imagery-specific AMRD, and 3) demonstration of comparisons between coarse scale unmixing abundances and AMRD. Spatial alignment was performed using our scene-wide spectral comparison (SWSC) algorithm, which aligned imagery with accuracy approaching the distance of a single fine scale pixel. We compared simple rectangular aggregation to coarse sensor point spread function (PSF) aggregation, and found that the PSF approach returned lower error, but that rectangular aggregation more accurately estimated true abundances at ground level. We demonstrated various metrics for comparing unmixing results to AMRD, including mean absolute error (MAE) and linear regression (LR). We additionally introduced reference data mean adjusted MAE (MA-MAE), and reference data confidence interval adjusted MAE (CIA-MAE), which account for known error in the reference data itself. MA-MAE analysis indicated that fully constrained linear unmixing of coarse scale imagery across all three scenes returned an error of 10.83% per class and pixel, with regression analysis yielding a slope = 0.85, intercept = 0.04, and R2 = 0.81. Our reference data research has demonstrated a viable methodology to efficiently generate, validate, and apply AMRD to specific examples of airborne remote sensing imagery, thereby enabling direct quantitative assessment of spectral unmixing performance.
(LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing
Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.
2012-01-01
The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.
Methodology to unmix spectrally similar minerals using high order derivative spectra
Debba, Pravesh
2009-07-01
Full Text Available pure vanilla extract milk Table: Chocolate cake ingredients Debba (CSIR) Unmixing spectrally similar minerals Rhodes University 2009 8 / 40 Introduction to Unmixing Ingredients Quantity unsweetened chocolate 120 grams unsweetened cocoa powder 28... grams boiling water 240 ml flour 315 grams baking powder 2 teaspoons baking soda 1 teaspoon salt 1/4 teaspoon unsalted butter 226 grams white sugar 400 grams eggs 3 large pure vanilla extract 2 teaspoons milk 240 ml Table: Chocolate cake...
Xu, Xia; Shi, Zhenwei; Pan, Bin
2018-07-01
Sparse unmixing aims at recovering pure materials from hyperpspectral images and estimating their abundance fractions. Sparse unmixing is actually ℓ0 problem which is NP-h ard, and a relaxation is often used. In this paper, we attempt to deal with ℓ0 problem directly via a multi-objective based method, which is a non-convex manner. The characteristics of hyperspectral images are integrated into the proposed method, which leads to a new spectra and multi-objective based sparse unmixing method (SMoSU). In order to solve the ℓ0 norm optimization problem, the spectral library is encoded in a binary vector, and a bit-wise flipping strategy is used to generate new individuals in the evolution process. However, a multi-objective method usually produces a number of non-dominated solutions, while sparse unmixing requires a single solution. How to make the final decision for sparse unmixing is challenging. To handle this problem, we integrate the spectral characteristic of hyperspectral images into SMoSU. By considering the spectral correlation in hyperspectral data, we improve the Tchebycheff decomposition function in SMoSU via a new regularization item. This regularization item is able to enforce the individual divergence in the evolution process of SMoSU. In this way, the diversity and convergence of population is further balanced, which is beneficial to the concentration of individuals. In the experiments part, three synthetic datasets and one real-world data are used to analyse the effectiveness of SMoSU, and several state-of-art sparse unmixing algorithms are compared.
Unsupervised Bayesian linear unmixing of gene expression microarrays.
Bazot, Cécile; Dobigeon, Nicolas; Tourneret, Jean-Yves; Zaas, Aimee K; Ginsburg, Geoffrey S; Hero, Alfred O
2013-03-19
This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores
Hua Sun
2015-11-01
Full Text Available Accurately mapping urban vegetation carbon density is challenging because of complex landscapes and mixed pixels. In this study, a novel methodology was proposed that combines a linear spectral unmixing analysis (LSUA with a linear stepwise regression (LSR, a logistic model-based stepwise regression (LMSR and k-Nearest Neighbors (kNN, to map the forest carbon density of Shenzhen City of China, using Landsat 8 imagery and sample plot data collected in 2014. The independent variables that contributed to statistically significantly improving the fit of a model to data and reducing the sum of squared errors were first selected from a total of 284 spectral variables derived from the image bands. The vegetation fraction from LSUA was then added as an independent variable. The results obtained using cross-validation showed that: (1 Compared to the methods without the vegetation information, adding the vegetation fraction increased the accuracy of mapping carbon density by 1%–9.3%; (2 As the observed values increased, the LSR and kNN residuals showed overestimates and underestimates for the smaller and larger observations, respectively, while LMSR improved the systematical over and underestimations; (3 LSR resulted in illogically negative and unreasonably large estimates, while KNN produced the greatest values of root mean square error (RMSE. The results indicate that combining the spatial modeling method LMSR and the spectral unmixing analysis LUSA, coupled with Landsat imagery, is most promising for increasing the accuracy of urban forest carbon density maps. In addition, this method has considerable potential for accurate, rapid and nondestructive prediction of urban and peri-urban forest carbon stocks with an acceptable level of error and low cost.
A FPGA implementation for linearly unmixing a hyperspectral image using OpenCL
Guerra, Raúl; López, Sebastián.; Sarmiento, Roberto
2017-10-01
Hyperspectral imaging systems provide images in which single pixels have information from across the electromagnetic spectrum of the scene under analysis. These systems divide the spectrum into many contiguos channels, which may be even out of the visible part of the spectra. The main advantage of the hyperspectral imaging technology is that certain objects leave unique fingerprints in the electromagnetic spectrum, known as spectral signatures, which allow to distinguish between different materials that may look like the same in a traditional RGB image. Accordingly, the most important hyperspectral imaging applications are related with distinguishing or identifying materials in a particular scene. In hyperspectral imaging applications under real-time constraints, the huge amount of information provided by the hyperspectral sensors has to be rapidly processed and analysed. For such purpose, parallel hardware devices, such as Field Programmable Gate Arrays (FPGAs) are typically used. However, developing hardware applications typically requires expertise in the specific targeted device, as well as in the tools and methodologies which can be used to perform the implementation of the desired algorithms in the specific device. In this scenario, the Open Computing Language (OpenCL) emerges as a very interesting solution in which a single high-level synthesis design language can be used to efficiently develop applications in multiple and different hardware devices. In this work, the Fast Algorithm for Linearly Unmixing Hyperspectral Images (FUN) has been implemented into a Bitware Stratix V Altera FPGA using OpenCL. The obtained results demonstrate the suitability of OpenCL as a viable design methodology for quickly creating efficient FPGAs designs for real-time hyperspectral imaging applications.
Rotational Spectral Unmixing of Exoplanets: Degeneracies between Surface Colors and Geography
Fujii, Yuka [NASA Goddard Institute for Space Studies, New York, NY 10025 (United States); Lustig-Yaeger, Jacob [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States); Cowan, Nicolas B., E-mail: yuka.fujii.ebihara@gmail.com [Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec, H3A 0E8 (Canada)
2017-11-01
Unmixing the disk-integrated spectra of exoplanets provides hints about heterogeneous surfaces that we cannot directly resolve in the foreseeable future. It is particularly important for terrestrial planets with diverse surface compositions like Earth. Although previous work on unmixing the spectra of Earth from disk-integrated multi-band light curves appeared successful, we point out a mathematical degeneracy between the surface colors and their spatial distributions. Nevertheless, useful constraints on the spectral shape of individual surface types may be obtained from the premise that albedo is everywhere between 0 and 1. We demonstrate the degeneracy and the possible constraints using both mock data based on a toy model of Earth, as well as real observations of Earth. Despite the severe degeneracy, we are still able to recover an approximate albedo spectrum for an ocean. In general, we find that surfaces are easier to identify when they cover a large fraction of the planet and when their spectra approach zero or unity in certain bands.
Rotational Spectral Unmixing of Exoplanets: Degeneracies Between Surface Colors and Geography
Fujii, Yuka; Lustig-Yaeger, Jacob; Cowan, Nicolas B.
2017-01-01
Unmixing the disk-integrated spectra of exoplanets provides hints about heterogeneous surfaces that we cannot directly resolve in the foreseeable future. It is particularly important for terrestrial planets with diverse surface compositions like Earth. Although previous work on unmixing the spectra of Earth from disk-integrated multi-band light curves appeared successful, we point out a mathematical degeneracy between the surface colors and their spatial distributions. Nevertheless, useful constraints on the spectral shape of individual surface types may be obtained from the premise that albedo is everywhere between 0 and 1. We demonstrate the degeneracy and the possible constraints using both mock data based on a toy model of Earth, as well as real observations of Earth. Despite the severe degeneracy, we are still able to recover an approximate albedo spectrum for an ocean. In general, we find that surfaces are easier to identify when they cover a large fraction of the planet and when their spectra approach zero or unity in certain bands.
Wright, L.; Coddington, O.; Pilewskie, P.
2017-12-01
Hyperspectral instruments are a growing class of Earth observing sensors designed to improve remote sensing capabilities beyond discrete multi-band sensors by providing tens to hundreds of continuous spectral channels. Improved spectral resolution, range and radiometric accuracy allow the collection of large amounts of spectral data, facilitating thorough characterization of both atmospheric and surface properties. We describe the development of an Informed Non-Negative Matrix Factorization (INMF) spectral unmixing method to exploit this spectral information and separate atmospheric and surface signals based on their physical sources. INMF offers marked benefits over other commonly employed techniques including non-negativity, which avoids physically impossible results; and adaptability, which tailors the method to hyperspectral source separation. The INMF algorithm is adapted to separate contributions from physically distinct sources using constraints on spectral and spatial variability, and library spectra to improve the initial guess. Using this INMF algorithm we decompose hyperspectral imagery from the NASA Hyperspectral Imager for the Coastal Ocean (HICO), with a focus on separating surface and atmospheric signal contributions. HICO's coastal ocean focus provides a dataset with a wide range of atmospheric and surface conditions. These include atmospheres with varying aerosol optical thicknesses and cloud cover. HICO images also provide a range of surface conditions including deep ocean regions, with only minor contributions from the ocean surfaces; and more complex shallow coastal regions with contributions from the seafloor or suspended sediments. We provide extensive comparison of INMF decomposition results against independent measurements of physical properties. These include comparison against traditional model-based retrievals of water-leaving, aerosol, and molecular scattering radiances and other satellite products, such as aerosol optical thickness from
Spectral unmixing of urban land cover using a generic library approach
Degerickx, Jeroen; Lordache, Marian-Daniel; Okujeni, Akpona; Hermy, Martin; van der Linden, Sebastian; Somers, Ben
2016-10-01
Remote sensing based land cover classification in urban areas generally requires the use of subpixel classification algorithms to take into account the high spatial heterogeneity. These spectral unmixing techniques often rely on spectral libraries, i.e. collections of pure material spectra (endmembers, EM), which ideally cover the large EM variability typically present in urban scenes. Despite the advent of several (semi-) automated EM detection algorithms, the collection of such image-specific libraries remains a tedious and time-consuming task. As an alternative, we suggest the use of a generic urban EM library, containing material spectra under varying conditions, acquired from different locations and sensors. This approach requires an efficient EM selection technique, capable of only selecting those spectra relevant for a specific image. In this paper, we evaluate and compare the potential of different existing library pruning algorithms (Iterative Endmember Selection and MUSIC) using simulated hyperspectral (APEX) data of the Brussels metropolitan area. In addition, we develop a new hybrid EM selection method which is shown to be highly efficient in dealing with both imagespecific and generic libraries, subsequently yielding more robust land cover classification results compared to existing methods. Future research will include further optimization of the proposed algorithm and additional tests on both simulated and real hyperspectral data.
Automatic endmember selection and nonlinear spectral unmixing of Lunar analog minerals
Rommel, Daniela; Grumpe, Arne; Felder, Marian Patrik; Wöhler, Christian; Mall, Urs; Kronz, Andreas
2017-03-01
While the interpretation of spectral reflectance data has been widely applied to detect the presence of minerals, determining and quantifying the abundances of minerals contained by planetary surfaces is still an open problem. With this paper we address one of the two main questions arising from the spectral unmixing problem. While the mathematical mixture model has been extensively researched, considerably less work has been committed to the selection of endmembers from a possibly huge database or catalog of potential endmembers. To solve the endmember selection problem we define a new spectral similarity measure that is not purely based on the reconstruction error, i.e. the squared difference between the modeled and the measured reflectance spectrum. To select reasonable endmembers, we extend the similarity measure by adding information extracted from the spectral absorption bands. This will allow for a better separation of spectrally similar minerals. Evaluating all possible subsets of a possibly very large catalog that contain at least one endmember leads to an exponential increase in computational complexity, rendering catalogs of 20-30 endmembers impractical. To overcome this computational limitation, we propose the usage of a genetic algorithm that, while initially starting with random subsets, forms new subsets by combining the best subsets and, to some extent, does a local search around the best subsets by randomly adding a few endmembers. A Monte-Carlo simulation based on synthetic mixtures and a catalog size varying from three to eight endmembers demonstrates that the genetic algorithm is expected to require less combinations to be evaluated than an exhaustive search if the catalog comprises 10 or more endmembers. Since the genetic algorithm evaluates some combinations multiple times, we propose a simple modification and store previously evaluated endmember combinations. The resulting algorithm is shown to never require more function evaluations than a
Collewet, Guylaine; Moussaoui, Saïd; Deligny, Cécile; Lucas, Tiphaine; Idier, Jérôme
2018-06-01
Multi-tissue partial volume estimation in MRI images is investigated with a viewpoint related to spectral unmixing as used in hyperspectral imaging. The main contribution of this paper is twofold. It firstly proposes a theoretical analysis of the statistical optimality conditions of the proportion estimation problem, which in the context of multi-contrast MRI data acquisition allows to appropriately set the imaging sequence parameters. Secondly, an efficient proportion quantification algorithm based on the minimisation of a penalised least-square criterion incorporating a regularity constraint on the spatial distribution of the proportions is proposed. Furthermore, the resulting developments are discussed using empirical simulations. The practical usefulness of the spectral unmixing approach for partial volume quantification in MRI is illustrated through an application to food analysis on the proving of a Danish pastry. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, C; Lin, F; DU, M; Qu, W; Mai, Z; Qu, J; Chen, T
2018-02-13
Quantum yield ratio (Q A /Q D ) and absorption ratio (K A /K D ) in all excitation wavelengths used between acceptor and donor are indispensable to quantitative fluorescence resonance energy transfer (FRET) measurement based on linearly unmixing excitation-emission spectra (ExEm-spFRET). We here describe an approach to simultaneously measure Q A /Q D and K A /K D values by linearly unmixing the excitation-emission spectra of at least two different donor-acceptor tandem constructs with unknown FRET efficiency. To measure the Q A /Q D and K A /K D values of Venus (V) to Cerulean (C), we used a wide-field fluorescence microscope to image living HepG2 cells separately expressing each of four different C-V tandem constructs at different emission wavelengths with 435 nm and 470 nm excitation respectively to obtain the corresponding excitation-emission spectrum (S DA ). Every S DA was linearly unmixed into the contributions (weights) of three excitation-emission spectra of donor (W D ) and acceptor (W A ) as well as donor-acceptor sensitisation (W S ). Plot of W S /W D versus W A /W D for the four C-V plasmids from at least 40 cells indicated a linear relationship with 1.865 of absolute intercept (Q A /Q D ) and 0.273 of the reciprocal of slope (K A /K D ), which was validated by quantitative FRET measurements adopting 1.865 of Q A /Q D and 0.273 of K A /K D for C32V, C5V, CVC and VCV constructs respectively in living HepG2 cells. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Anne Clasen
2015-11-01
Full Text Available Forest biochemical and biophysical variables and their spatial and temporal distribution are essential inputs to process-orientated ecosystem models. To provide this information, imaging spectroscopy appears to be a promising tool. In this context, the present study investigates the potential of spectral unmixing to derive sub-pixel crown component fractions in a temperate deciduous forest ecosystem. However, the high proportion of foliage in this complex vegetation structure leads to the problem of saturation effects, when applying broadband vegetation indices. This study illustrates that multiple endmember spectral mixture analysis (MESMA can contribute to overcoming this challenge. Reference fractional abundances, as well as spectral measurements of the canopy components, could be precisely determined from a crane measurement platform situated in a deciduous forest in North-East Germany. In contrast to most other studies, which only use leaf and soil endmembers, this experimental setup allowed for the inclusion of a bark endmember for the unmixing of components within the canopy. This study demonstrates that the inclusion of additional endmembers markedly improves the accuracy. A mean absolute error of 7.9% could be achieved for the fractional occurrence of the leaf endmember and 5.9% for the bark endmember. In order to evaluate the results of this field-based study for airborne and satellite-based remote sensing applications, a transfer to Airborne Imaging Spectrometer for Applications (AISA and simulated Environmental Mapping and Analysis Program (EnMAP and Sentinel-2 imagery was carried out. All sensors were capable of unmixing crown components with a mean absolute error ranging between 3% and 21%.
Yang, Qin; Zou, Hong-Yan; Zhang, Yan; Tang, Li-Juan; Shen, Guo-Li; Jiang, Jian-Hui; Yu, Ru-Qin
2016-01-15
Most of the proteins locate more than one organelle in a cell. Unmixing the localization patterns of proteins is critical for understanding the protein functions and other vital cellular processes. Herein, non-linear machine learning technique is proposed for the first time upon protein pattern unmixing. Variable-weighted support vector machine (VW-SVM) is a demonstrated robust modeling technique with flexible and rational variable selection. As optimized by a global stochastic optimization technique, particle swarm optimization (PSO) algorithm, it makes VW-SVM to be an adaptive parameter-free method for automated unmixing of protein subcellular patterns. Results obtained by pattern unmixing of a set of fluorescence microscope images of cells indicate VW-SVM as optimized by PSO is able to extract useful pattern features by optimally rescaling each variable for non-linear SVM modeling, consequently leading to improved performances in multiplex protein pattern unmixing compared with conventional SVM and other exiting pattern unmixing methods. Copyright © 2015 Elsevier B.V. All rights reserved.
Jawin, E. R.; Head, J. W., III; Cannon, K.
2017-12-01
The Aristarchus pyroclastic deposit in central Oceanus Procellarum is understood to have formed in a gas-rich explosive volcanic eruption, and has been observed to contain abundant volcanic glass. However, the interpreted color (and therefore composition) of the glass has been debated. In addition, previous analyses of the pyroclastic deposit have been performed using lower resolution data than are currently available. In this work, a nonlinear spectral unmixing model was applied to Moon Mineralogy Mapper (M3) data of the Aristarchus plateau to investigate the detailed mineralogic and crystalline nature of the Aristarchus pyroclastic deposit by using spectra of laboratory endmembers including a suite of volcanic glasses returned from the Apollo 15 and 17 missions (green, orange, black beads), as well as synthetic lunar glasses (orange, green, red, yellow). Preliminary results of the M3 unmixing model suggest that spectra of the pyroclastic deposit can be modeled by a mixture composed predominantly of a featureless endmember approximating space weathering and a smaller component of glass. The modeled spectra were most accurate with a synthetic orange glass endmember, relative to the other glasses analyzed in this work. The results confirm that there is a detectable component of glass in the Aristarchus pyroclastic deposit which may be similar to the high-Ti orange glass seen in other regional pyroclastic deposits, with only minimal contributions of other crystalline minerals. The presence of volcanic glass in the pyroclastic deposit, with the low abundance of crystalline material, would support the model that the Aristarchus pyroclastic deposit formed in a long-duration, hawaiian-style fire fountain eruption. No significant detection of devitrified black beads in the spectral modeling results (as was observed at the Apollo 17 landing site in the Taurus-Littrow pyroclastic deposit), suggests the optical density of the eruptive plume remained low throughout the
Georgia Doxani
2015-10-01
Full Text Available The Sentinel missions have been designed to support the operational services of the Copernicus program, ensuring long-term availability of data for a wide range of spectral, spatial and temporal resolutions. In particular, Sentinel-2 (S-2 data with improved high spatial resolution and higher revisit frequency (five days with the pair of satellites in operation will play a fundamental role in recording land cover types and monitoring land cover changes at regular intervals. Nevertheless, cloud coverage usually hinders the time series availability and consequently the continuous land surface monitoring. In an attempt to alleviate this limitation, the synergistic use of instruments with different features is investigated, aiming at the future synergy of the S-2 MultiSpectral Instrument (MSI and Sentinel-3 (S-3 Ocean and Land Colour Instrument (OLCI. To that end, an unmixing model is proposed with the intention of integrating the benefits of the two Sentinel missions, when both in orbit, in one composite image. The main goal is to fill the data gaps in the S-2 record, based on the more frequent information of the S-3 time series. The proposed fusion model has been applied on MODIS (MOD09GA L2G and SPOT4 (Take 5 data and the experimental results have demonstrated that the approach has high potential. However, the different acquisition characteristics of the sensors, i.e. illumination and viewing geometry, should be taken into consideration and bidirectional effects correction has to be performed in order to reduce noise in the reflectance time series.
A Novel Measurement Matrix Optimization Approach for Hyperspectral Unmixing
Su Xu
2017-01-01
Full Text Available Each pixel in the hyperspectral unmixing process is modeled as a linear combination of endmembers, which can be expressed in the form of linear combinations of a number of pure spectral signatures that are known in advance. However, the limitation of Gaussian random variables on its computational complexity or sparsity affects the efficiency and accuracy. This paper proposes a novel approach for the optimization of measurement matrix in compressive sensing (CS theory for hyperspectral unmixing. Firstly, a new Toeplitz-structured chaotic measurement matrix (TSCMM is formed by pseudo-random chaotic elements, which can be implemented by a simple hardware; secondly, rank revealing QR factorization with eigenvalue decomposition is presented to speed up the measurement time; finally, orthogonal gradient descent method for measurement matrix optimization is used to achieve optimal incoherence. Experimental results demonstrate that the proposed approach can lead to better CS reconstruction performance with low extra computational cost in hyperspectral unmixing.
Abundance estimation of spectrally similar minerals
Debba, Pravesh
2009-07-01
Full Text Available This paper evaluates a spectral unmixing method for estimating the partial abundance of spectrally similar minerals in complex mixtures. The method requires formulation of a linear function of individual spectra of individual minerals. The first...
Automated Endmember Selection for Nonlinear Unmixing of Lunar Spectra
Felder, M. P.; Grumpe, A.; Wöhler, C.; Mall, U.
2013-09-01
An important aspect of the analysis of remotely sensed lunar reflectance spectra is their decomposition into intimately mixed constituents. While some methods rely on unmixing of the observed reflectance spectra [1] or on the identification of minerals by extracting the depths and positions of mineral-specific absorption troughs [2, 3], these approaches do not allow for an automated selection of the (a priori unknown) endmembers from a large set of possible constituents. In this study, a non-linear spectral unmixing approach combined with an automated endmember selection scheme is proposed. This method is applied to reflectance spectra of the SIR-2 point spectrometer [4] carried by the Chandrayaan-1 spacecraft.
Spectral theories for linear differential equations
Sell, G.R.
1976-01-01
The use of spectral analysis in the study of linear differential equations with constant coefficients is not only a fundamental technique but also leads to far-reaching consequences in describing the qualitative behaviour of the solutions. The spectral analysis, via the Jordan canonical form, will not only lead to a representation theorem for a basis of solutions, but will also give a rather precise statement of the (exponential) growth rates of various solutions. Various attempts have been made to extend this analysis to linear differential equations with time-varying coefficients. The most complete such extensions is the Floquet theory for equations with periodic coefficients. For time-varying linear differential equations with aperiodic coefficients several authors have attempted to ''extend'' the Foquet theory. The precise meaning of such an extension is itself a problem, and we present here several attempts in this direction that are related to the general problem of extending the spectral analysis of equations with constant coefficients. The main purpose of this paper is to introduce some problems of current research. The primary problem we shall examine occurs in the context of linear differential equations with almost periodic coefficients. We call it ''the Floquet problem''. (author)
Distributed Unmixing of Hyperspectral Datawith Sparsity Constraint
Khoshsokhan, S.; Rajabi, R.; Zayyani, H.
2017-09-01
Spectral unmixing (SU) is a data processing problem in hyperspectral remote sensing. The significant challenge in the SU problem is how to identify endmembers and their weights, accurately. For estimation of signature and fractional abundance matrices in a blind problem, nonnegative matrix factorization (NMF) and its developments are used widely in the SU problem. One of the constraints which was added to NMF is sparsity constraint that was regularized by L1/2 norm. In this paper, a new algorithm based on distributed optimization has been used for spectral unmixing. In the proposed algorithm, a network including single-node clusters has been employed. Each pixel in hyperspectral images considered as a node in this network. The distributed unmixing with sparsity constraint has been optimized with diffusion LMS strategy, and then the update equations for fractional abundance and signature matrices are obtained. Simulation results based on defined performance metrics, illustrate advantage of the proposed algorithm in spectral unmixing of hyperspectral data compared with other methods. The results show that the AAD and SAD of the proposed approach are improved respectively about 6 and 27 percent toward distributed unmixing in SNR=25dB.
Spectral analysis of linear relations and degenerate operator semigroups
Baskakov, A G; Chernyshov, K I
2002-01-01
Several problems of the spectral theory of linear relations in Banach spaces are considered. Linear differential inclusions in a Banach space are studied. The construction of the phase space and solutions is carried out with the help of the spectral theory of linear relations, ergodic theorems, and degenerate operator semigroups
MATERIAL SIGNATURE ORTHONORMAL MAPPING IN HYPERSPECTRAL UNMIXING TO ADDRESS ENDMEMBER VARIABILITY
Ali Jafari
2016-03-01
Full Text Available A new hyperspectral unmixing algorithm which considers endmember variability is presented. In the proposed algorithm, the endmembers are represented by correlated random vectors using the stochastic mixing model. Currently, there is no published theory for selecting the appropriate distribution for endmembers. The proposed algorithm first uses a linear transformation called material signature orthonormal mapping (MSOM, which transforms the endmembers to correlated Gaussian random vectors. The MSOM transformation reduces computational requirements by reducing the dimension and improves discrimination of endmembers by orthonormalizing the endmember mean vectors. In the original spectral space, the automated endmember bundles (AEB method extracts a set of spectra (endmember set for each material. The mean vector and covariance matrix of each endmember estimated directly from endmember sets in the MSOM space. Second, a new maximum likelihood method, called NCM_ML, is proposed which estimates abundances in the MSOM space using the normal compositional model (NCM. The proposed algorithm is evaluated and compared with other state-of-the-art unmixing algorithms using simulated and real hyperspectral images. Experimental results demonstrate that the proposed unmixing algorithm can unmix pixels composed of similar endmembers in hyperspectral images in the presence of spectral variability more accurately than previous methods.
Unmixing of spectrally similar minerals
Debba, Pravesh
2009-01-01
Full Text Available Goe Jar Cop Fer Goe Jar Cop Fer M\\E End-member spectrum included in E 1.00 0.00 0.00 0.00 0.78 0.03 0.05 0.14 0.00 0.00 1.00 0.00 0.00 0.03 0.94 0.00 0.01 0.02 0.00 0.00 1.00 0.00 0.03 0.06 0.89 0.02 0.00 0.00 0.00 0.00 1.00 0.03 0.00 0.01 0.92 0....04 End-member spectrum excluded from E 1.00 0.00 0.00 0.00 — 0.25 0.00 0.64 0.11 0.00 1.00 0.00 0.00 0.00 — 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.01 0.68 — 0.00 0.31 0.00 0.00 0.00 1.00 0.71 0.00 0.00 — 0.29 Mixtures 0.50 0.50 0.00 0.00 0.48 0...
Manifold regularization for sparse unmixing of hyperspectral images.
Liu, Junmin; Zhang, Chunxia; Zhang, Jiangshe; Li, Huirong; Gao, Yuelin
2016-01-01
Recently, sparse unmixing has been successfully applied to spectral mixture analysis of remotely sensed hyperspectral images. Based on the assumption that the observed image signatures can be expressed in the form of linear combinations of a number of pure spectral signatures known in advance, unmixing of each mixed pixel in the scene is to find an optimal subset of signatures in a very large spectral library, which is cast into the framework of sparse regression. However, traditional sparse regression models, such as collaborative sparse regression , ignore the intrinsic geometric structure in the hyperspectral data. In this paper, we propose a novel model, called manifold regularized collaborative sparse regression , by introducing a manifold regularization to the collaborative sparse regression model. The manifold regularization utilizes a graph Laplacian to incorporate the locally geometrical structure of the hyperspectral data. An algorithm based on alternating direction method of multipliers has been developed for the manifold regularized collaborative sparse regression model. Experimental results on both the simulated and real hyperspectral data sets have demonstrated the effectiveness of our proposed model.
Renrong Chen
2012-02-01
Full Text Available Impervious surface area (ISA is considered as an indicator of environment change and is regarded as an important input parameter for hydrological cycle simulation, water management and area pollution assessment. The Pearl River Delta (PRD, the 3rd most important economic district of China, is chosen in this paper to extract the ISA information based on Landsat images of 1998, 2003 and 2008 by using a linear spectral un-mixing method and to monitor impervious surface change by analyzing the multi-temporal Landsat-derived fractional impervious surface. Results of this study were as follows: (1 the area of ISA in the PRD increased 79.09% from 1998 to 2003 and 26.88% from 2003 to 2008 separately; (2 the spatial distribution of ISA was described according to the 1998/2003 percentage respectively. Most of middle and high percentage ISA was located in northwestern and southeastern of the whole delta, and middle percentage ISA was mainly located in the city interior, high percentage ISA was mainly located in the suburban around the city accordingly; (3 the expanding direction and trend of high percentage ISA was discussed in order to understand the change of urban in this delta; High percentage ISA moved from inner city to edge of urban area during 1998–2003 and moved to the suburban area that far from the urban area mixed with jumpily and gradually during 2003–2008. According to the discussion of high percentage ISA spatial expanded direction, it could be found out that high percentage ISA moved outward from the centre line of Pearl River of the whole delta while a high ISA percentage in both shores of the Pearl River Estuary moved toward the Pearl River; (4 combining the change of ISA with social conditions, the driving relationship was analyzed in detail. It was evident that ISA percentage change had a deep relationship with the economic development of this region in the past ten years. Contemporaneous major sport events (16th Asia Games of
An implicit spectral formula for generalized linear Schroedinger equations
Schulze-Halberg, A.; Garcia-Ravelo, J.; Pena Gil, Jose Juan
2009-01-01
We generalize the semiclassical Bohr–Sommerfeld quantization rule to an exact, implicit spectral formula for linear, generalized Schroedinger equations admitting a discrete spectrum. Special cases include the position-dependent mass Schroedinger equation or the Schroedinger equation for weighted energy. Requiring knowledge of the potential and the solution associated with the lowest spectral value, our formula predicts the complete spectrum in its exact form. (author)
Linear and nonlinear optical spectroscopy: Spectral, temporal and spatial resolution
Hvam, Jørn Marcher
1997-01-01
Selected linear and nonlinear optical spectroscopies are being described with special emphasis on the possibility of obtaining simultaneous spectral, temporal and spatial resolution. The potential of various experimental techniques is being demonstrated by specific examples mostly taken from inve...... investigations of the electronic, and opto-electronic, properties of semiconductor nanostructures....
Continental Spatio-temporal Data Analysis with Linear Spectral Mixture Model using FOSS
Kumar, U.; Nemani, R. R.; Ganguly, S.; Milesi, C.; Raja, K. S.; Wang, W.; Votava, P.; Michaelis, A.
2015-12-01
This work demonstrates the development and implementation of a Fully Constrained Least Squares (FCLS) unmixing model developed in C++ programming language with OpenCV package and boost C++ libraries in the NASA Earth Exchange (NEX). Visualization of the results is supported by GRASS GIS and statistical analysis is carried in R in a Linux system environment. FCLS was first tested on computer simulated data with Gaussian noise of various signal-to-noise ratio, and Landsat data of an agricultural scenario and an urban environment using a set of global endmembers of substrate (soils, sediments, rocks, and non-photosynthetic vegetation), vegetation that includes green photosynthetic plants and dark objects which encompasses absorptive substrate materials, clear water, deep shadows, etc. For the agricultural scenario, a spectrally diverse collection of 11 scenes of Level 1 terrain corrected, cloud free Landsat-5 TM data of Fresno, California, USA were unmixed and the results were validated with the corresponding ground data. To study an urbanized landscape, a clear sky Landsat-5 TM data were unmixed and validated with coincident World View-2 abundance maps (of 2 m spatial resolution) for an area of San Francisco, California, USA. The results were evaluated using descriptive statistics, correlation coefficient, RMSE, probability of success, boxplot and bivariate distribution function. Finally, FCLS was used for sub-pixel land cover analysis of the monthly WELD (Wen-enabled Landsat data) repository from 2008 to 2011 of North America. The abundance maps in conjunction with DMSP-OLS nighttime lights data were used to extract the urban land cover features and analyze their spatial-temporal growth.
Continental Spatio-Temporal Data Analysis with Linear Spectral Mixture Model Using FOSS
Kumar, Uttam; Nemani, Ramakrishna; Ganguly, Sangram; Milesi, Cristina; Raja, Kumar; Wang, Weile; Votava, Petr; Michaelis, Andrew
2015-01-01
This work demonstrates the development and implementation of a Fully Constrained Least Squares (FCLS) unmixing model developed in C++ programming language with OpenCV package and boost C++ libraries in the NASA Earth Exchange (NEX). Visualization of the results is supported by GRASS GIS and statistical analysis is carried in R in a Linux system environment. FCLS was first tested on computer simulated data with Gaussian noise of various signal-to-noise ratio, and Landsat data of an agricultural scenario and an urban environment using a set of global end members of substrate (soils, sediments, rocks, and non-photosynthetic vegetation), vegetation that includes green photosynthetic plants and dark objects which encompasses absorptive substrate materials, clear water, deep shadows, etc. For the agricultural scenario, a spectrally diverse collection of 11 scenes of Level 1 terrain corrected, cloud free Landsat-5 TM data of Fresno, California, USA were unmixed and the results were validated with the corresponding ground data. To study an urbanized landscape, a clear sky Landsat-5 TM data were unmixed and validated with coincident World View-2 abundance maps (of 2 m spatial resolution) for an area of San Francisco, California, USA. The results were evaluated using descriptive statistics, correlation coefficient, RMSE, probability of success, boxplot and bivariate distribution function. Finally, FCLS was used for sub-pixel land cover analysis of the monthly WELD (Wen-enabled Landsat data) repository from 2008 to 2011 of North America. The abundance maps in conjunction with DMSP-OLS nighttime lights data were used to extract the urban land cover features and analyze their spatial-temporal growth.
Nonautonomous linear Hamiltonian systems oscillation, spectral theory and control
Johnson, Russell; Novo, Sylvia; Núñez, Carmen; Fabbri, Roberta
2016-01-01
This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hami...
Asymptotic solutions and spectral theory of linear wave equations
Adam, J.A.
1982-01-01
This review contains two closely related strands. Firstly the asymptotic solution of systems of linear partial differential equations is discussed, with particular reference to Lighthill's method for obtaining the asymptotic functional form of the solution of a scalar wave equation with constant coefficients. Many of the applications of this technique are highlighted. Secondly, the methods and applications of the theory of the reduced (one-dimensional) wave equation - particularly spectral theory - are discussed. While the breadth of application and power of the techniques is emphasised throughout, the opportunity is taken to present to a wider readership, developments of the methods which have occured in some aspects of astrophysical (particularly solar) and geophysical fluid dynamics. It is believed that the topics contained herein may be of relevance to the applied mathematician or theoretical physicist interest in problems of linear wave propagation in these areas. (orig./HSI)
Spectral theory of linear operators and spectral systems in Banach algebras
Müller, Vladimir
2003-01-01
This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. The theory is presented in a unified, axiomatic and elementary way. Many results appear here for the first time in a monograph. The material is self-contained. Only a basic knowledge of functional analysis, topology, and complex analysis is assumed. The monograph should appeal both to students who would like to learn about spectral theory and to experts in the field. It can also serve as a reference book. The present second edition contains a number of new results, in particular, concerning orbits and their relations to the invariant subspace problem. This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach alg...
Hyperspectral Unmixing with Robust Collaborative Sparse Regression
Chang Li
2016-07-01
Full Text Available Recently, sparse unmixing (SU of hyperspectral data has received particular attention for analyzing remote sensing images. However, most SU methods are based on the commonly admitted linear mixing model (LMM, which ignores the possible nonlinear effects (i.e., nonlinearity. In this paper, we propose a new method named robust collaborative sparse regression (RCSR based on the robust LMM (rLMM for hyperspectral unmixing. The rLMM takes the nonlinearity into consideration, and the nonlinearity is merely treated as outlier, which has the underlying sparse property. The RCSR simultaneously takes the collaborative sparse property of the abundance and sparsely distributed additive property of the outlier into consideration, which can be formed as a robust joint sparse regression problem. The inexact augmented Lagrangian method (IALM is used to optimize the proposed RCSR. The qualitative and quantitative experiments on synthetic datasets and real hyperspectral images demonstrate that the proposed RCSR is efficient for solving the hyperspectral SU problem compared with the other four state-of-the-art algorithms.
Spatial unmixing for environmental impact monitoring of mining using UAS and WV-2
Delalieux, S.; Livens, S.; Goossens, M.; Reusen, I.; Tote, C.
2012-04-01
The three principal activities of the mineral resources mining industry - mining, mineral processing and metallurgical extraction - all produce waste. The environmental impact of these activities depends on many factors, in particular, the type of mining and the size of the operation. The effects of the mining (extraction) stage tend to be mainly local, associated with surface disturbance, the production of large amounts of solid waste material, and the spread of chemically reactive particulate matter to the atmosphere and hydrosphere. Many studies have shown the potential of remote sensing for environmental impact monitoring, e.g., [1]. However, its applicability has been limited due to the inherent spatial-spectral and temporal trade-off of most sensors. More recently, miniaturization of sensors makes it possible to capture color images from unmanned aerial systems (UAS) with a very high spatial resolution. In addition, the UAS can be deployed in a very flexible manner, allowing high temporal resolution imaging. More detailed spectral information is available from multispectral images, albeit at lower spatial resolution. Combining both types of images using image fusion can help to overcome the spatial-spectral trade-off and provide a new tool for more detailed monitoring of environmental impacts. Within the framework of the ImpactMin project, funded by the Framework Programme 7 of the European Commission, the objective of this study is to implement and apply the spatial unmixing algorithm, as proposed by [2], on images of the 'Vihovici Coal Mine' area, located in the Mostar Valley, Bosnia and Herzegovina. A WorldView2 (WV2) satellite image will be employed, which provides 8-band multispectral data at a spatial resolution of 2m. High spatial resolution images, obtained by a SmartPlanes UAS, will provide RGB data with 0.05m spatial resolution. The spatial unmixing technique is based on the idea that a linear mixing model can be used to perform the downscaling of
Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz
2015-10-01
In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.
Spectral reconstruction for a 6 MV linear accelerator
Hernandez-Bojorquez, M.; Martinez-Davalos, A.; Larraga, J. M.
2004-01-01
In this work we present the first results of an x-ray spectral reconstruction for a 6 MV Varian LINAC. The shape of the spectrum will be used in Monte Carlo treatment planning in order to improve the quality and accuracy of the calculated dose distributions. We based our simulation method on the formalism proposed by Francois et al. In this method the spectrum is reconstructed from transmission measurements under narrow beam geometry for multiple attenuator thicknesses. These data allowed us to reconstruct the x-ray spectrum through direct solution of matrix systems using spectral algebra formalism
Mitigation of Linear and Nonlinear Impairments in Spectrally Efficient Superchannels
Porto da Silva, Edson; Larsen, Knud J.; Zibar, Darko
2015-01-01
We assess numerically the performance of single-carrier digital backpropagation and maximum-likelihood sequence detection (MLSD) for DP-QPSK superchannel transmission. It is shown that MLSD is advantageous only against inter-carrier linear crosstalk....
Unmixing hyperspectral images using Markov random fields
Eches, Olivier; Dobigeon, Nicolas; Tourneret, Jean-Yves
2011-01-01
This paper proposes a new spectral unmixing strategy based on the normal compositional model that exploits the spatial correlations between the image pixels. The pure materials (referred to as endmembers) contained in the image are assumed to be available (they can be obtained by using an appropriate endmember extraction algorithm), while the corresponding fractions (referred to as abundances) are estimated by the proposed algorithm. Due to physical constraints, the abundances have to satisfy positivity and sum-to-one constraints. The image is divided into homogeneous distinct regions having the same statistical properties for the abundance coefficients. The spatial dependencies within each class are modeled thanks to Potts-Markov random fields. Within a Bayesian framework, prior distributions for the abundances and the associated hyperparameters are introduced. A reparametrization of the abundance coefficients is proposed to handle the physical constraints (positivity and sum-to-one) inherent to hyperspectral imagery. The parameters (abundances), hyperparameters (abundance mean and variance for each class) and the classification map indicating the classes of all pixels in the image are inferred from the resulting joint posterior distribution. To overcome the complexity of the joint posterior distribution, Markov chain Monte Carlo methods are used to generate samples asymptotically distributed according to the joint posterior of interest. Simulations conducted on synthetic and real data are presented to illustrate the performance of the proposed algorithm.
Sediment unmixing using detrital geochronology
Sharman, Glenn R.; Johnstone, Samuel A.
2017-11-01
Sediment mixing within sediment routing systems can exert a strong influence on the preservation of provenance signals that yield insight into the effect of environmental forcing (e.g., tectonism, climate) on the Earth's surface. Here, we discuss two approaches to unmixing detrital geochronologic data in an effort to characterize complex changes in the sedimentary record. First, we summarize 'top-down' mixing, which has been successfully employed in the past to characterize the different fractions of prescribed source distributions ('parents') that characterize a derived sample or set of samples ('daughters'). Second, we propose the use of 'bottom-up' methods, previously used primarily for grain size distributions, to model parent distributions and the abundances of these parents within a set of daughters. We demonstrate the utility of both top-down and bottom-up approaches to unmixing detrital geochronologic data within a well-constrained sediment routing system in central California. Use of a variety of goodness-of-fit metrics in top-down modeling reveals the importance of considering the range of allowable that is well mixed over any single best-fit mixture calculation. Bottom-up modeling of 12 daughter samples from beaches and submarine canyons yields modeled parent distributions that are remarkably similar to those expected from the geologic context of the sediment-routing system. In general, mixture modeling has the potential to supplement more widely applied approaches in comparing detrital geochronologic data by casting differences between samples as differing proportions of geologically meaningful end-member provenance categories.
A. M. S. Smith; L. B. Lenilte; A. T. Hudak; P. Morgan
2007-01-01
The Differenced Normalized Burn Ratio (deltaNBR) is widely used to map post-fire effects in North America from multispectral satellite imagery, but has not been rigorously validated across the great diversity in vegetation types. The importance of these maps to fire rehabilitation crews highlights the need for continued assessment of alternative remote sensing...
Comparison of modal spectral and non-linear time history analysis of a piping system
Gerard, R.; Aelbrecht, D.; Lafaille, J.P.
1987-01-01
A typical piping system of the discharge line of the chemical and volumetric control system, outside the containment, between the penetration and the heat exchanger, an operating power plant was analyzed using four different methods: Modal spectral analysis with 2% constant damping, modal spectral analysis using ASME Code Case N411 (PVRC damping), linear time history analysis, non-linear time history analysis. This paper presents an estimation of the conservatism of the linear methods compared to the non-linear analysis. (orig./HP)
On spectral properties of linear combinations of idempotents
Du, H.-K.; Deng, Ch-Y.; Mbekhta, M.; Müller, Vladimír
2007-01-01
Roč. 180, č. 3 (2007), s. 211-217 ISSN 0039-3223 R&D Projects: GA ČR(CZ) GA201/06/0128 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear combinations of idempotents * closed range * complemented subspaces Subject RIV: BA - General Mathematics Impact factor: 0.568, year: 2007
SDP_mharwit_1: Demonstration of HIFI Linear Polarization Analysis of Spectral Features
Harwit, M.
2010-03-01
We propose to observe the polarization of the 621 GHz water vapor maser in VY Canis Majoris to demonstrate the capability of HIFI to make polarization observations of Far-Infrared/Submillimeter spectral lines. The proposed Demonstration Phase would: - Show that HIFI is capable of interesting linear polarization measurements of spectral lines; - Test out the highest spectral resolving power to sort out closely spaced Doppler components; - Determine whether the relative intensities predicted by Neufeld and Melnick are correct; - Record the degree and direction of linear polarization for the closely-Doppler shifted peaks.
Bayesian Nonnegative Matrix Factorization with Volume Prior for Unmixing of Hyperspectral Images
Arngren, Morten; Schmidt, Mikkel Nørgaard; Larsen, Jan
2009-01-01
based unmixing algorithms are based on sparsity regularization encouraging pure spectral endmembers, but this is not optimal for certain applications, such as foods, where abundances are not sparse. The pixels will theoretically lie on a simplex and hence the endmembers can be estimated as the vertices...
PAN-SHARPENING APPROACHES BASED ON UNMIXING OF MULTISPECTRAL REMOTE SENSING IMAGERY
G. Palubinskas
2016-06-01
Full Text Available Model based analysis or explicit definition/listing of all models/assumptions used in the derivation of a pan-sharpening method allows us to understand the rationale or properties of existing methods and shows a way for a proper usage or proposal/selection of new methods ‘better’ satisfying the needs of a particular application. Most existing pan-sharpening methods are based mainly on the two models/assumptions: spectral consistency for high resolution multispectral data (physical relationship between multispectral and panchromatic data in a high resolution scale and spatial consistency for multispectral data (so-called Wald’s protocol first property or relationship between multispectral data in different resolution scales. Two methods, one based on a linear unmixing model and another one based on spatial unmixing, are described/proposed/modified which respect models assumed and thus can produce correct or physically justified fusion results. Earlier mentioned property ‘better’ should be measurable quantitatively, e.g. by means of so-called quality measures. The difficulty of a quality assessment task in multi-resolution image fusion or pan-sharpening is that a reference image is missing. Existing measures or so-called protocols are still not satisfactory because quite often the rationale or assumptions used are not valid or not fulfilled. From a model based view it follows naturally that a quality assessment measure can be defined as a combination of error model residuals using common or general models assumed in all fusion methods. Thus in this paper a comparison of the two earlier proposed/modified pan-sharpening methods is performed. Preliminary experiments based on visual analysis are carried out in the urban area of Munich city for optical remote sensing multispectral data and panchromatic imagery of the WorldView-2 satellite sensor.
Unmixing-Based Denoising as a Pre-Processing Step for Coral Reef Analysis
Cerra, D.; Traganos, D.; Gege, P.; Reinartz, P.
2017-05-01
Coral reefs, among the world's most biodiverse and productive submerged habitats, have faced several mass bleaching events due to climate change during the past 35 years. In the course of this century, global warming and ocean acidification are expected to cause corals to become increasingly rare on reef systems. This will result in a sharp decrease in the biodiversity of reef communities and carbonate reef structures. Coral reefs may be mapped, characterized and monitored through remote sensing. Hyperspectral images in particular excel in being used in coral monitoring, being characterized by very rich spectral information, which results in a strong discrimination power to characterize a target of interest, and separate healthy corals from bleached ones. Being submerged habitats, coral reef systems are difficult to analyse in airborne or satellite images, as relevant information is conveyed in bands in the blue range which exhibit lower signal-to-noise ratio (SNR) with respect to other spectral ranges; furthermore, water is absorbing most of the incident solar radiation, further decreasing the SNR. Derivative features, which are important in coral analysis, result greatly affected by the resulting noise present in relevant spectral bands, justifying the need of new denoising techniques able to keep local spatial and spectral features. In this paper, Unmixing-based Denoising (UBD) is used to enable analysis of a hyperspectral image acquired over a coral reef system in the Red Sea based on derivative features. UBD reconstructs pixelwise a dataset with reduced noise effects, by forcing each spectrum to a linear combination of other reference spectra, exploiting the high dimensionality of hyperspectral datasets. Results show clear enhancements with respect to traditional denoising methods based on spatial and spectral smoothing, facilitating the coral detection task.
Spectral element model for 2-D electrostatic fields in a linear synchronous motor
van Beek, T.A.; Curti, M.; Jansen, J.W.; Gysen, B.L.J.; Paulides, J.J.H.; Lomonova, E.A.
2017-01-01
This paper presents a fast and accurate 2-D spectral element model for analyzing electric field distributions in linear synchronous motors. The electric field distribution is derived using the electric scalar potential for static cases. The spatial potential and electric field distributions obtained
A spectral analysis of the domain decomposed Monte Carlo method for linear systems
Slattery, S. R.; Wilson, P. P. H. [Engineering Physics Department, University of Wisconsin - Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Evans, T. M. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830 (United States)
2013-07-01
The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)
A spectral analysis of the domain decomposed Monte Carlo method for linear systems
Slattery, S. R.; Wilson, P. P. H.; Evans, T. M.
2013-01-01
The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)
Ivanova, B. B.
2005-11-01
A stereo structural characterization of 2,5,6-thrimethylbenzimidazole (MBIZ) and 2-amino-benzimidaziole (2-NH 2-BI) and their N 1 protonation salts was carried out using a polarized solid state linear dichroic infrared spectral (IR-LD) analysis in nematic liquid crystal suspension. All experimental predicted structures were compared with the theoretical ones, obtained by ab initio calculations. The Cs to C2v* symmetry transformation as a result of protonation processes, with a view of its reflection on the infrared spectral characteristics was described.
Leverington, D. W.
2008-12-01
The use of remote-sensing techniques in the discrimination of rock and soil classes in northern regions can help support a diverse range of activities including environmental characterization, mineral exploration, and the study of Quaternary paleoenvironments. Images of low spectral resolution can commonly be used in the mapping of lithological classes possessing distinct spectral characteristics, but hyperspectral databases offer greater potential for discrimination of materials distinguished by more subtle reflectance properties. Orbiting sensors offer an especially flexible and cost-effective means for acquisition of data to workers unable to conduct airborne surveys. In an effort to better constrain the utility of hyperspectral datasets in northern research, this study undertook to investigate the effectiveness of EO-1 Hyperion data in the discrimination and mapping of surface classes at a study area on Melville Island, Nunavut. Bedrock units in the immediate study area consist of late-Paleozoic clastic and carbonate sequences of the Sverdrup Basin. Weathered and frost-shattered felsenmeer, predominantly taking the form of boulder- to pebble-sized clasts that have accumulated in place and that mantle parent bedrock units, is the most common surface material in the study area. Hyperion data were converted from at-sensor radiance to reflectance, and were then linearly unmixed on the basis of end-member spectra measured from field samples. Hyperion unmixing results effectively portray the general fractional cover of six end members, although the fraction images of several materials contain background values that in some areas overestimate surface exposure. The best separated end members include the snow, green vegetation, and red-weathering sandstone classes, whereas the classes most negatively affected by elevated fraction values include the mudstone, limestone, and 'other' sandstone classes. Local overestimates of fractional cover are likely related to the
A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems
S. S. Motsa
2013-01-01
Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.
Non-linear spectral splitting of Rydberg sodium in external fields
Gao Wei; Yang Hai-Feng; Cheng Hong; Zhang Shan-Shan; Liu Hong-Ping; Liu Dan-Feng
2015-01-01
We have studied highly excited sodium in various electric fields, parallel electric and magnetic fields, with one σ and π photon irradiation, and even in a magnetic field with a complex laser polarization configuration. The σ spectra shows a simple linear Stark effect with the applied electric field, while the π spectra exhibits a strong non-linear dependence on the electric field. The π transitions in parallel fields show a similar behavior to that in a pure electric field but the spectra get more smooth due to the magnetic field. The diamagnetic spectrum with laser polarization angles between 0 and π/2 proves that it can be reproduced by simple linear combination of π and σ components, indicating there is no interference between the π and σ channels. A full quantum calculation considering the quantum defects accounts for all the observations. The quantum defects, especially for the channel np, play an important role in the spectral profile. (paper)
Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz
2017-04-01
This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.
Cluster explosion investigated by linearly chirped spectral scattering of an expanding plasma sphere
Liu Jiansheng; Wang Cheng; Liu Bingchen; Shuai Bin; Wang Wentao; Cai Yi; Li Hongyu; Ni Guoquan; Li Ruxin; Xu Zhizhan
2006-01-01
Femtosecond explosive processes of argon clusters irradiated by linearly chirped ultraintense laser pulses have been investigated by 90 deg. side spectral scattering. The spectral redshift and blueshift, which correlate with the cluster explosion processes have been measured for negatively and positively chirped driving laser pulses, respectively. The evolution of the heated-cluster polarizability indicates that the core of the cluster is shielded from the laser field in the beginning of the explosion and enhanced scattering occurs after the fast explosion initiates. Evidence of resonant heating is found from the coincidence of enhanced scattering with enhanced absorption measured using the transmitted spectra. Anomalously large-size clusters with very low gas density have been observed in this way and can be used as clean and important cluster targets
Kwong, Justin D.; Messinger, David W.; Middleton, William D.
2009-08-01
This project is an application of hyperspectral classification and unmixing in support of an ongoing archaeological study. The study region is the Oaxaca Valley located in the state of Oaxaca, Mexico on the southern coast. This was the birthplace of the Zapotec civilization which grew into a complex state level society. Hyperion imagery is being collected over a 30,000 km2 area. Classification maps of regions of interest are generated using K-means clustering and a novel algorithm called Gradient Flow. Gradient Flow departs from conventional stochastic or deterministic approaches, using graph theory to cluster spectral data. Spectral unmixing is conducted using the RIT developed algorithm Max-D to automatically find end members. Stepwise unmixing is performed to better model the data using the end members found be Max-D. Data are efficiently shared between imaging scientists and archaeologists using Google Earth to stream images over the internet rather than downloading them. The overall goal of the project is to provide archaeologists with useful information maps without having to interpret the raw data.
Jianhui Xu
2016-11-01
Full Text Available Land surface characteristics, including soil type, terrain slope, and antecedent soil moisture, have significant impacts on surface runoff during heavy precipitation in highly urbanized areas. In this study, a Linear Spectral Mixture Analysis (LSMA method is modified to extract high-precision impervious surface, vegetation, and soil fractions. In the modified LSMA method, the representative endmembers are first selected by combining a high-resolution image from Google Earth; the unmixing results of the LSMA are then post-processed to reduce errors of misclassification with Normalized Difference Built-up Index (NDBI and Normalized Difference Vegetation Index (NDVI. The modified LSMA is applied to the Landsat 8 Operational Land Imager (OLI image from 18 October 2015 of the main urban area of Guangzhou city. The experimental result indicates that the modified LSMA shows improved extraction performance compared with the conventional LSMA, as it can significantly reduce the bias and root-mean-square error (RMSE. The improved impervious surface, vegetation, and soil fractions are used to calculate the composite curve number (CN for each pixel according to the Soil Conservation Service curve number (SCS-CN model. The composite CN is then adjusted with regional data of the terrain slope and total 5-day antecedent precipitation. Finally, the surface runoff is simulated with the SCS-CN model by combining the adjusted CN and real precipitation data at 1 p.m., 4 May 2015.
Full-range k-domain linearization in spectral-domain optical coherence tomography.
Jeon, Mansik; Kim, Jeehyun; Jung, Unsang; Lee, Changho; Jung, Woonggyu; Boppart, Stephen A
2011-03-10
A full-bandwidth k-domain linearization method for spectral-domain optical coherence tomography (SD-OCT) is demonstrated. The method uses information of the wavenumber-pixel-position provided by a translating-slit-based wavelength filter. For calibration purposes, the filter is placed either after a broadband source or at the end of the sample path, and the filtered spectrum with a narrowed line width (∼0.5 nm) is incident on a line-scan camera in the detection path. The wavelength-swept spectra are co-registered with the pixel positions according to their central wavelengths, which can be automatically measured with an optical spectrum analyzer. For imaging, the method does not require a filter or a software recalibration algorithm; it simply resamples the OCT signal from the detector array without employing rescaling or interpolation methods. The accuracy of k-linearization is maximized by increasing the k-linearization order, which is known to be a crucial parameter for maintaining a narrow point-spread function (PSF) width at increasing depths. The broadening effect is studied by changing the k-linearization order by undersampling to search for the optimal value. The system provides more position information, surpassing the optimum without compromising the imaging speed. The proposed full-range k-domain linearization method can be applied to SD-OCT systems to simplify their hardware/software, increase their speed, and improve the axial image resolution. The experimentally measured width of PSF in air has an FWHM of 8 μm at the edge of the axial measurement range. At an imaging depth of 2.5 mm, the sensitivity of the full-range calibration case drops less than 10 dB compared with the uncompensated case.
Sokolov, Alexei V; Naveira, Lucas M; Poudel, Milan P; Strohaber, James; Trendafilova, Cynthia S; Buck, William C; Wang, Jieyu; Strycker, Benjamin D; Wang, Chao; Schuessler, Hans; Kolomenskii, Alexandre; Kattawar, George W
2010-01-20
We study propagation of short laser pulses through water and use a spectral hole filling technique to essentially perform a sensitive balanced comparison of absorption coefficients for pulses of different duration. This study is motivated by an alleged violation of the Bouguer-Lambert-Beer law at low light intensities, where the pulse propagation is expected to be linear, and by a possible observation of femtosecond optical precursors in water. We find that at low intensities, absorption of laser light is determined solely by its spectrum and does not directly depend on the pulse duration, in agreement with our earlier work and in contradiction to some work of others. However, as the laser fluence is increased, interaction of light with water becomes nonlinear, causing energy exchange among the pulse's spectral components and resulting in peak-intensity dependent (and therefore pulse-duration dependent) transmission. For 30 fs pulses at 800 nm center wavelength, we determine the onset of nonlinear propagation effects to occur at a peak value of about 0.12 mJ/cm(2) of input laser energy fluence.
Monitoring intracellular oxidative events using dynamic spectral unmixing microscopy
There is increasing interest in using live-cell imaging to monitor not just individual intracellular endpoints, but to investigate the interplay between multiple molecular events as they unfold in real time within the cell. A major impediment to simultaneous acquisition of multip...
Gornushkin, I.B., E-mail: igor.gornushkin@bam.d [BAM Federal Institute for Materials Research and Testing, Berlin (Germany); Panne, U. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany); Winefordner, J.D. [University of Florida, Gainesville, Florida (United States)
2009-10-15
The purpose of this work is to improve the performance of a linear correlation method used for material identification in laser induced breakdown spectroscopy. The improved correlation procedure is proposed based on the selection and use of only essential spectral information and ignoring empty spectral fragments. The method is tested on glass samples of forensic interest. The 100% identification capability of the new method is demonstrated in contrast to the traditional approach where the identification rate falls below 100% for many samples.
Spectral Behavior of a Linearized Land-Atmosphere Model: Applications to Hydrometeorology
Gentine, P.; Entekhabi, D.; Polcher, J.
2008-12-01
The present study develops an improved version of the linearized land-atmosphere model first introduced by Lettau (1951). This model is used to investigate the spectral response of land-surface variables to a daily forcing of incoming radiation at the land-surface. An analytical solution of the problem is found in the form of temporal Fourier series and gives the atmospheric boundary-layer and soil profiles of state variables (potential temperature, specific humidity, sensible and latent heat fluxes). Moreover the spectral dependency of surface variables is expressed as function of land-surface parameters (friction velocity, vegetation height, aerodynamic resistance, stomatal conductance). This original approach has several advantages: First, the model only requires little data to work and perform well: only time series of incoming radiation at the land-surface, mean specific humidity and temperature at any given height are required. These inputs being widely available over the globe, the model can easily be run and tested under various conditions. The model will also help analysing the diurnal shape and frequency dependency of surface variables and soil-ABL profiles. In particular, a strong emphasis is being placed on the explanation and prediction of Evaporative Fraction (EF) and Bowen Ratio diurnal shapes. EF is shown to remain a diurnal constant under restricting conditions: fair and dry weather, with strong solar radiation and no clouds. Moreover, the EF pseudo-constancy value is found and given as function of surface parameters, such as aerodynamic resistance and stomatal conductance. Then, application of the model for the conception of remote-sensing tools, according to the temporal resolution of the sensor, will also be discussed. Finally, possible extensions and improvement of the model will be discussed.
Li, Sui-Xian
2018-05-07
Previous research has shown that the effectiveness of selecting filter sets from among a large set of commercial broadband filters by a vector analysis method based on maximum linear independence (MLI). However, the traditional MLI approach is suboptimal due to the need to predefine the first filter of the selected filter set to be the maximum ℓ₂ norm among all available filters. An exhaustive imaging simulation with every single filter serving as the first filter is conducted to investigate the features of the most competent filter set. From the simulation, the characteristics of the most competent filter set are discovered. Besides minimization of the condition number, the geometric features of the best-performed filter set comprise a distinct transmittance peak along the wavelength axis of the first filter, a generally uniform distribution for the peaks of the filters and substantial overlaps of the transmittance curves of the adjacent filters. Therefore, the best-performed filter sets can be recognized intuitively by simple vector analysis and just a few experimental verifications. A practical two-step framework for selecting optimal filter set is recommended, which guarantees a significant enhancement of the performance of the systems. This work should be useful for optimizing the spectral sensitivity of broadband multispectral imaging sensors.
Sui-Xian Li
2018-05-01
Full Text Available Previous research has shown that the effectiveness of selecting filter sets from among a large set of commercial broadband filters by a vector analysis method based on maximum linear independence (MLI. However, the traditional MLI approach is suboptimal due to the need to predefine the first filter of the selected filter set to be the maximum ℓ2 norm among all available filters. An exhaustive imaging simulation with every single filter serving as the first filter is conducted to investigate the features of the most competent filter set. From the simulation, the characteristics of the most competent filter set are discovered. Besides minimization of the condition number, the geometric features of the best-performed filter set comprise a distinct transmittance peak along the wavelength axis of the first filter, a generally uniform distribution for the peaks of the filters and substantial overlaps of the transmittance curves of the adjacent filters. Therefore, the best-performed filter sets can be recognized intuitively by simple vector analysis and just a few experimental verifications. A practical two-step framework for selecting optimal filter set is recommended, which guarantees a significant enhancement of the performance of the systems. This work should be useful for optimizing the spectral sensitivity of broadband multispectral imaging sensors.
Deán-Ben, X. Luís.; Stiel, Andre C.; Jiang, Yuanyuan; Ntziachristos, Vasilis; Westmeyer, Gil G.; Razansky, Daniel
2016-03-01
Synthetic and genetically encoded chromo- and fluorophores have become indispensable tools for biomedical research enabling a myriad of applications in imaging modalities based on biomedical optics. The versatility offered by the optoacoustic (photoacoustic) contrast mechanism enables to detect signals from any substance absorbing light, and hence these probes can be used as optoacoustic contrast agents. While contrast versatility generally represents an advantage of optoacoustics, the strong background signal generated by light absorption in endogeneous chromophores hampers the optoacoustic capacity to detect a photo-absorbing agent of interest. Increasing the optoacoustic sensitivity is then determined by the capability to differentiate specific features of such agent. For example, multispectral optoacoustic tomography (MSOT) exploits illuminating the tissue at multiple optical wavelengths to spectrally resolve (unmix) the contribution of different chromophores. Herein, we present an alternative approach to enhance the sensitivity and specificity in the detection of optoacoustic contrast agents. This is achieved with photoswitchable probes that change optical absorption upon illumination with specific optical wavelengths. Thereby, temporally unmixed MSOT (tuMSOT) is based on photoswitching the compounds according to defined schedules to elicit specific time-varying optoacoustic signals, and then use temporal unmixing algorithms to locate the contrast agent based on their particular temporal profile. The photoswitching kinetics is further affected by light intensity, so that tuMSOT can be employed to estimate the light fluence distribution in a biological sample. The performance of the method is demonstrated herein with the reversibly switchable fluorescent protein Dronpa and its fast-switching fatigue resistant variant Dronpa-M159T.
GEMAS: Unmixing magnetic properties of European agricultural soil
Fabian, Karl; Reimann, Clemens; Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Nurgaliev, Danis
2016-04-01
High resolution magnetic measurements provide new methods for world-wide characterization and monitoring of agricultural soil which is essential for quantifying geologic and human impact on the critical zone environment and consequences of climatic change, for planning economic and ecological land use, and for forensic applications. Hysteresis measurements of all Ap samples from the GEMAS survey yield a comprehensive overview of mineral magnetic properties in European agricultural soil on a continental scale. Low (460 Hz), and high frequency (4600 Hz) magnetic susceptibility k were measured using a Bartington MS2B sensor. Hysteresis properties were determined by a J-coercivity spectrometer, built at the paleomagnetic laboratory of Kazan University, providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set is obtained in a single run from zero field up to 1.5 T and back to -1.5 T. The resulting data are used to create the first continental-scale maps of magnetic soil parameters. Because the GEMAS geochemical atlas contains a comprehensive set of geochemical data for the same soil samples, the new data can be used to map magnetic parameters in relation to chemical and geological parameters. The data set also provides a unique opportunity to analyze the magnetic mineral fraction of the soil samples by unmixing their IRM acquisition curves. The endmember coefficients are interpreted by linear inversion for other magnetic, physical and chemical properties which results in an unprecedented and detailed view of the mineral magnetic composition of European agricultural soils.
Bautista, Pinky A; Yagi, Yukako
2012-05-01
Hematoxylin and eosin (H&E) stain is currently the most popular for routine histopathology staining. Special and/or immuno-histochemical (IHC) staining is often requested to further corroborate the initial diagnosis on H&E stained tissue sections. Digital simulation of staining (or digital staining) can be a very valuable tool to produce the desired stained images from the H&E stained tissue sections instantaneously. We present an approach to digital staining of histopathology multispectral images by combining the effects of spectral enhancement and spectral transformation. Spectral enhancement is accomplished by shifting the N-band original spectrum of the multispectral pixel with the weighted difference between the pixel's original and estimated spectrum; the spectrum is estimated using M transformed to the spectral configuration associated to its reaction to a specific stain by utilizing an N × N transformation matrix, which is derived through application of least mean squares method to the enhanced and target spectral transmittance samples of the different tissue components found in the image. Results of our experiments on the digital conversion of an H&E stained multispectral image to its Masson's trichrome stained equivalent show the viability of the method.
Salvatore, M. R.; Goudge, T. A.; Bramble, M. S.; Edwards, C. S.; Bandfield, J. L.; Amador, E. S.; Mustard, J. F.; Christensen, P. R.
2018-02-01
We investigated the area to the northwest of the Isidis impact basin (hereby referred to as "NW Isidis") using thermal infrared emission datasets to characterize and quantify bulk surface mineralogy throughout this region. This area is home to Jezero crater and the watershed associated with its two deltaic deposits in addition to NE Syrtis and the strong and diverse visible/near-infrared spectral signatures observed in well-exposed stratigraphic sections. The spectral signatures throughout this region show a diversity of primary and secondary surface mineralogies, including olivine, pyroxene, smectite clays, sulfates, and carbonates. While previous thermal infrared investigations have sought to characterize individual mineral groups within this region, none have systematically assessed bulk surface mineralogy and related these observations to visible/near-infrared studies. We utilize an iterative spectral unmixing method to statistically evaluate our linear thermal infrared spectral unmixing models to derive surface mineralogy. All relevant primary and secondary phases identified in visible/near-infrared studies are included in the unmixing models and their modeled spectral contributions are discussed in detail. While the stratigraphy and compositional diversity observed in visible/near-infrared spectra are much better exposed and more diverse than most other regions of Mars, our thermal infrared analyses suggest the dominance of basaltic compositions with less observed variability in the amount and diversity of alteration phases. These results help to constrain the mineralogical context of these previously reported visible/near-infrared spectral identifications. The results are also discussed in the context of future in situ investigations, as the NW Isidis region has long been promoted as a region of paleoenvironmental interest on Mars.
On the Use of FOSS4G in Land Cover Fraction Estimation with Unmixing Algorithms
Kumar, U.; Milesi, C.; Raja, K.; Ganguly, S.; Wang, W.; Zhang, G.; Nemani, R. R.
2014-12-01
The popularity and usage of FOSS4G (FOSS for Geoinformatics) has increased drastically in the last two decades with increasing benefits that facilitate spatial data analysis, image processing, graphics and map production, spatial modeling and visualization. The objective of this paper is to use FOSS4G to implement and perform a quantitative analysis of three different unmixing algorithms: Constraint Least-Square (CLS), Unconstraint Least-Square, and Orthogonal Subspace Projection to estimate land cover (LC) fraction estimates from RS data. The LC fractions obtained by unmixing of mixed pixels represent mixture of more than one class per pixel rendering more accurate LC abundance estimates. The algorithms were implemented in C++ programming language with OpenCV package (http://opencv.org/) and boost C++ libraries (www.boost.org) in the NASA Earth Exchange at the NASA Advanced Supercomputing Facility. GRASS GIS was used for visualization of results and statistical analysis was carried in R in a Linux system environment. A set of global endmembers for substrate, vegetation and dark objects were used to unmix the data using the three algorithms and were compared with Singular Value decomposition unmixed outputs available in ENVI image processing software. First, computer simulated data of different signal to noise ratio were used to evaluate the algorithms. The second set of experiments was carried out in an agricultural set-up with a spectrally diverse collection of 11 Landsat-5 scenes (acquired in 2008) for an agricultural setup in Frenso, California and the ground data were collected on those specific dates when the satellite passed through the site. Finally, in the third set of experiments, a pair of coincident clear sky Landsat and World View 2 data for an urbanized area of San Francisco were used to assess the algorithm. Validation of the results using descriptive statistics, correlation coefficient (cc), RMSE, boxplot and bivariate distribution function
Arctic lead detection using a waveform unmixing algorithm from CryoSat-2 data
Lee, S.; Im, J.
2016-12-01
Arctic areas consist of ice floes, leads, and polynyas. While leads and polynyas account for small parts in the Arctic Ocean, they play a key role in exchanging heat flux, moisture, and momentum between the atmosphere and ocean in wintertime because of their huge temperature difference In this study, a linear waveform unmixing approach was proposed to detect lead fraction. CryoSat-2 waveforms for pure leads, sea ice, and ocean were used as end-members based on visual interpretation of MODIS images coincident with CryoSat-2 data. The unmixing model produced lead, sea ice, and ocean abundances and a threshold (> 0.7) was applied to make a binary classification between lead and sea ice. The unmixing model produced better results than the existing models in the literature, which are based on simple thresholding approaches. The results were also comparable with our previous research using machine learning based models (i.e., decision trees and random forest). A monthly lead fraction was calculated, dividing the number of detected leads by the total number of measurements. The lead fraction around Beaufort Sea and Fram strait was high due to the anti-cyclonic rotation of Beaufort Gyre and the outflows of sea ice to the Atlantic. The lead fraction maps produced in this study were matched well with monthly lead fraction maps in the literature. The areas with thin sea ice identified from our previous research correspond to the high lead fraction areas in the present study. Furthermore, sea ice roughness from ASCAT scatterometer was compared to a lead fraction map to see the relationship between surface roughness and lead distribution.
Oliva, Amaury M.; Filho, Hermes A.; Silva, Davi M.; Garcia, Carlos R., E-mail: aoliva@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: davijmsilva@yahoo.com.br, E-mail: cgh@instec.cu [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional; Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)
2017-07-01
In this paper, we propose a numerical methodology for the development of a method of the spectral nodal class that will generate numerical solutions free from spatial truncation errors. This method, denominated Spectral Deterministic Method (SDM), is tested as an initial study of the solutions (spectral analysis) of neutron transport equations in the discrete ordinates (S{sub N}) formulation, in one-dimensional slab geometry, multigroup approximation, with linearly anisotropic scattering, considering homogeneous and heterogeneous domains with fixed source. The unknowns in the methodology are the cell-edge, and cell average angular fluxes, the numerical values calculated for these quantities coincide with the analytic solution of the equations. These numerical results are shown and compared with the traditional ne- mesh method Diamond Difference (DD) and the coarse-mesh method spectral Green's function (SGF) to illustrate the method's accuracy and stability. The solution algorithms problems are implemented in a computer simulator made in C++ language, the same that was used to generate the results of the reference work. (author)
Homogenization of Winkler-Steklov spectral conditions in three-dimensional linear elasticity
Gómez, D.; Nazarov, S. A.; Pérez, M. E.
2018-04-01
We consider a homogenization Winkler-Steklov spectral problem that consists of the elasticity equations for a three-dimensional homogeneous anisotropic elastic body which has a plane part of the surface subject to alternating boundary conditions on small regions periodically placed along the plane. These conditions are of the Dirichlet type and of the Winkler-Steklov type, the latter containing the spectral parameter. The rest of the boundary of the body is fixed, and the period and size of the regions, where the spectral parameter arises, are of order ɛ . For fixed ɛ , the problem has a discrete spectrum, and we address the asymptotic behavior of the eigenvalues {β _k^ɛ }_{k=1}^{∞} as ɛ → 0. We show that β _k^ɛ =O(ɛ ^{-1}) for each fixed k, and we observe a common limit point for all the rescaled eigenvalues ɛ β _k^ɛ while we make it evident that, although the periodicity of the structure only affects the boundary conditions, a band-gap structure of the spectrum is inherited asymptotically. Also, we provide the asymptotic behavior for certain "groups" of eigenmodes.
Yan, Siqi; Gao, Shengqian; Zhou, Feng
2017-01-01
A novel concept to generate a linear chirped microwave signal is proposed and experimentally demonstrated. The frequency to time mapping method is employed, where the photonic crystal waveguide Mach-Zehnder interferometer structure acts as the spectral shaper thanks to the slow light effect. By o....... The utilization of the slow light effect brings in significant advantages, including the ultra-small footprint of 0.096 mm(2) and simple structure to our scheme, which may be of great importance towards its potential applications. (C) 2017 Optical Society of America...
Farag, Marwa H.; Hoenders, Bernhard J.; Knoester, Jasper; Jansen, Thomas L. C.
2017-01-01
The effect of Gaussian dynamics on the line shapes in linear absorption and two-dimensional correlation spectroscopy is well understood as the second-order cumulant expansion provides exact spectra. Gaussian solvent dynamics can be well analyzed using slope line analysis of two-dimensional
Contributions to the spectral theory of the linear Boltzmann operator for various geometries
Protopopescu, V.
1975-01-01
The linear monoenergetic Boltzmann operator with isotropic scattering is studied for various geometries and boundary conditions as the infinitesimal generator of a positivity preserving contractive semigroup in an appropriate Hilbert space. General results about the existence and the uniqueness of the solutions of the corresponding evolution problems are reviewed. The spectrum of the Boltzmann operator is analyzed for semi-infinite, slab and parallelepipedic geometries with vacuum, periodic, perfectly reflecting, generalized and diffusely reflecting boundary condition respectively. The main features of these spectra, their importance for determining the asymptotic evolution and possible generalizations to more realistic models are put together in a final section. (author)
Park, Kihong
2013-02-01
In this paper, we study a two-hop relaying network consisting of one source, one destination, and three amplify-and-forward (AF) relays with multiple antennas. To compensate for the capacity prelog factor loss of 1/2$ due to the half-duplex relaying, alternate transmission is performed among three relays, and the inter-relay interference due to the alternate relaying is aligned to make additional degrees of freedom. In addition, suboptimal linear filter designs at the nodes are proposed to maximize the achievable sum rate for different fading scenarios when the destination utilizes a minimum mean-square error filter. © 1967-2012 IEEE.
Tarasenko Alexandr
2016-01-01
Full Text Available The paper is aimed at determining the possibility of applying the simplified method proposed by the authors to calculate the tank seismic resistance in compliance with current regulations and scientific provisions. The authors propose a highly detailed numerical model for a common oil storage tank RVSPK-50000 that enables static operational loads and dynamic action of earthquakes to be calculated. Within the modal analysis the natural oscillation frequencies in the range of 0-10 Hz were calculated; the results are given for the first ten modes. The model takes into account the effect of impulsive and convective components of hydrodynamic pressure during earthquakes. Within the spectral analysis by generalized response spectra was calculated a general stress-strain state of a structure during earthquakes of 7, 8, 9 intensity degrees on the MSK-64 scale for a completely filled up, a half-filled up to the mark of 8.5 m and an empty RVSPK-50000 tank. The developed finite element model can be used to perform calculations of seismic resistance by the direct dynamic method, which will give further consideration to the impact of individual structures (floating roof, support posts, adjoined elements of added stiffness on the general stress-strain state of a tank.
MAPPING THE LINEARLY POLARIZED SPECTRAL LINE EMISSION AROUND THE EVOLVED STAR IRC+10216
Girart, J. M. [Institut de Ciencies de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciencies, C5p 2, 08193 Bellaterra, Catalunya (Spain); Patel, N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Vlemmings, W. H. T. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Rao, Ramprasad, E-mail: girart@ice.cat [Submillimeter Array, Academia Sinica Institute of Astronomy and Astrophysics, 645 N. Aohoku Place, Hilo, HI 96720 (United States)
2012-05-20
We present spectro-polarimetric observations of several molecular lines obtained with the Submillimeter Array toward the carbon-rich asymptotic giant branch star IRC+10216. We have detected and mapped the linear polarization of the CO 3-2, SiS 19-18, and CS 7-6 lines. The polarization arises at a distance of {approx_equal} 450 AU from the star and is blueshifted with respect to the Stokes I. The SiS 19-18 polarization pattern appears to be consistent with a locally radial magnetic field configuration. However, the CO 3-2 and CS 7-6 line polarization suggests an overall complex magnetic field morphology within the envelope. This work demonstrates the feasibility of using spectro-polarimetric observations to carry out tomographic imaging of the magnetic field in circumstellar envelopes.
Gifty E. Acquah
2016-08-01
Full Text Available As new markets, technologies and economies evolve in the low carbon bioeconomy, forest logging residue, a largely untapped renewable resource will play a vital role. The feedstock can however be variable depending on plant species and plant part component. This heterogeneity can influence the physical, chemical and thermochemical properties of the material, and thus the final yield and quality of products. Although it is challenging to control compositional variability of a batch of feedstock, it is feasible to monitor this heterogeneity and make the necessary changes in process parameters. Such a system will be a first step towards optimization, quality assurance and cost-effectiveness of processes in the emerging biofuel/chemical industry. The objective of this study was therefore to qualitatively classify forest logging residue made up of different plant parts using both near infrared spectroscopy (NIRS and Fourier transform infrared spectroscopy (FTIRS together with linear discriminant analysis (LDA. Forest logging residue harvested from several Pinus taeda (loblolly pine plantations in Alabama, USA, were classified into three plant part components: clean wood, wood and bark and slash (i.e., limbs and foliage. Five-fold cross-validated linear discriminant functions had classification accuracies of over 96% for both NIRS and FTIRS based models. An extra factor/principal component (PC was however needed to achieve this in FTIRS modeling. Analysis of factor loadings of both NIR and FTIR spectra showed that, the statistically different amount of cellulose in the three plant part components of logging residue contributed to their initial separation. This study demonstrated that NIR or FTIR spectroscopy coupled with PCA and LDA has the potential to be used as a high throughput tool in classifying the plant part makeup of a batch of forest logging residue feedstock. Thus, NIR/FTIR could be employed as a tool to rapidly probe/monitor the variability
Ligier, Nicolas; Carter, John; Poulet, François; Langevin, Yves; Dumas, Christophe; Gourgeot, Florian
2016-04-01
Jupiter's moon Europa harbors a very young surface dated, based on cratering rates, to 10-50 M.y (Zahnle et al. 1998, Pappalardo et al. 1999). This young age implies rapid surface recycling and reprocessing, partially engendered by a global salty subsurface liquid ocean that could result in tectonic activity (Schmidt et al. 2011, Kattenhorn et al. 2014) and active plumes (Roth et al. 2014). The surface of Europa should contain important clues about the composition of this sub-surface briny ocean and about the potential presence of material of exobiological interest in it, thus reinforcing Europa as a major target of interest for upcoming space missions such as the ESA L-class mission JUICE. To perform the investigation of the composition of the surface of Europa, a global mapping campaign of the satellite was performed between October 2011 and January 2012 with the integral field spectrograph SINFONI on the Very Large Telescope (VLT) in Chile. The high spectral binning of this instrument (0.5 nm) is suitable to detect any narrow mineral signature in the wavelength range 1.45-2.45 μm. The spatially resolved spectra we obtained over five epochs nearly cover the entire surface of Europa with a pixel scale of 12.5 by 25 m.a.s (~35 by 70 km on Europa's surface), thus permitting a global scale study. Until recently, a large majority of studies only proposed sulfate salts along with sulfuric acid hydrate and water-ice to be present on Europa's surface. However, recent works based on Europa's surface coloration in the visible wavelength range and NIR spectral analysis support the hypothesis of the predominance of chlorine salts instead of sulfate salts (Hand & Carlson 2015, Fischer et al. 2015). Our linear spectral modeling supports this new hypothesis insofar as the use of Mg-bearing chlorines improved the fits whatever the region. As expected, the distribution of sulfuric acid hydrate is correlated to the Iogenic sulfur ion implantation flux distribution (Hendrix et al
Yulong Guo
2015-02-01
Full Text Available Although remote sensing technology has been widely used to monitor inland water bodies; the lack of suitable data with high spatial and spectral resolution has severely obstructed its practical development. The objective of this study is to improve the unmixing-based fusion (UBF method to produce fused images that maintain both spectral and spatial information from the original images. Images from Environmental Satellite 1 (HJ1 and Medium Resolution Imaging Spectrometer (MERIS were used in this study to validate the method. An improved UBF (IUBF algorithm is established by selecting a proper HJ1-CCD image band for each MERIS band and thereafter applying an unsupervised classification method in each sliding window. Viewing in the visual sense—the radiance and the spectrum—the results show that the improved method effectively yields images with the spatial resolution of the HJ1-CCD image and the spectrum resolution of the MERIS image. When validated using two datasets; the ERGAS index (Relative Dimensionless Global Error indicates that IUBF is more robust than UBF. Finally, the fused data were applied to evaluate the chlorophyll a concentrations (Cchla in Taihu Lake. The result shows that the Cchla map obtained by IUBF fusion captures more detailed information than that of MERIS.
Adegoke, Oluwashina; Dhang, Prasun; Mukhopadhyay, Banibrata; Ramadevi, M. C.; Bhattacharya, Debbijoy
2018-05-01
By analysing the time series of RXTE/PCA data, the non-linear variabilities of compact sources have been repeatedly established. Depending on the variation in temporal classes, compact sources exhibit different non-linear features. Sometimes they show low correlation/fractal dimension, but in other classes or intervals of time they exhibit stochastic nature. This could be because the accretion flow around a compact object is a non-linear general relativistic system involving magnetohydrodynamics. However, the more conventional way of addressing a compact source is the analysis of its spectral state. Therefore, the question arises: What is the connection of non-linearity to the underlying spectral properties of the flow when the non-linear properties are related to the associated transport mechanisms describing the geometry of the flow? This work is aimed at addressing this question. Based on the connection between observed spectral and non-linear (time series) properties of two X-ray binaries: GRS 1915+105 and Sco X-1, we attempt to diagnose the underlying accretion modes of the sources in terms of known accretion classes, namely, Keplerian disc, slim disc, advection dominated accretion flow and general advective accretion flow. We explore the possible transition of the sources from one accretion mode to others with time. We further argue that the accretion rate must play an important role in transition between these modes.
Nageshwari, M.; Jayaprakash, P.; Kumari, C. Rathika Thaya [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India); Vinitha, G. [Department of Physics, School of Advanced Sciences, VIT Chennai, 600127 Tamil Nadu (India); Caroline, M. Lydia, E-mail: lydiacaroline2006@yahoo.co.in [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India)
2017-04-15
An efficient nonlinear optical semiorganic material L-valinium L-valine chloride (LVVCl) was synthesized and grown-up by means of slow evaporation process. Single crystal XRD evince that LVVCl corresponds to monoclinic system having acentric space group P2{sub 1}. The diverse functional groups existing in LVVCl were discovered with FTIR spectral investigation. The UV-Visible and photoluminescence spectrum discloses the optical and electronic properties respectively for the grown crystal. Several optical properties specifically extinction coefficient, reflectance, linear refractive index, electrical and optical conductivity were also determined. The SEM analysis was also carried out and it portrayed the surface morphology of LVVCl. The calculated value of laser damage threshold was 2.59 GW/cm{sup 2}. The mechanical and dielectric property of LVVCl was investigated employing microhardness and dielectric studies. The second and third order nonlinear optical characteristics of LVVCl was characterized utilizing Kurtz Perry and Z scan technique respectively clearly suggest its suitability in the domain of optics and photonics. - Graphical abstract: Good quality transparent single crystals of L-valinium L-valine chloride single crystal was grown by slow evaporation technique. The grown crystals were analyzed using different instrumentation methods to check its usefulness for the device fabrication. The determination of nonlinear refractive index (n{sub 2}), absorption coefficient (β) and third order nonlinear susceptibility was determined by Z scan technique, highlighted that LVVCl can serve as a promising candidate for opto electronic and nonlinear optical applications.
Maram, Reza; Kong, Deming; Galili, Michael
2016-01-01
We propose a novel approach for all-optical return-to-zero (RZ) to non-return-to-zero (NRZ) telecommunication data format conversion based on linear spectral phase manipulation of an RZ data signal. The operation principle is numerically analyzed and experimentally validated through successful fo...
Linear mixing model applied to AVHRR LAC data
Holben, Brent N.; Shimabukuro, Yosio E.
1993-01-01
A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55 - 3.93 microns channel was extracted and used with the two reflective channels 0.58 - 0.68 microns and 0.725 - 1.1 microns to run a Constraine Least Squares model to generate vegetation, soil, and shade fraction images for an area in the Western region of Brazil. The Landsat Thematic Mapper data covering the Emas National park region was used for estimating the spectral response of the mixture components and for evaluating the mixing model results. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse resolution data for global studies.
Chernomyrdin, Nikita V.; Zaytsev, Kirill I.; Lesnichaya, Anastasiya D.; Kudrin, Konstantin G.; Cherkasova, Olga P.; Kurlov, Vladimir N.; Shikunova, Irina A.; Perchik, Alexei V.; Yurchenko, Stanislav O.; Reshetov, Igor V.
2016-09-01
In present paper, an ability to differentiate basal cell carcinoma (BCC) and healthy skin by combining multi-spectral autofluorescence imaging, principle component analysis (PCA), and linear discriminant analysis (LDA) has been demonstrated. For this purpose, the experimental setup, which includes excitation and detection branches, has been assembled. The excitation branch utilizes a mercury arc lamp equipped with a 365-nm narrow-linewidth excitation filter, a beam homogenizer, and a mechanical chopper. The detection branch employs a set of bandpass filters with the central wavelength of spectral transparency of λ = 400, 450, 500, and 550 nm, and a digital camera. The setup has been used to study three samples of freshly excised BCC. PCA and LDA have been implemented to analyze the data of multi-spectral fluorescence imaging. Observed results of this pilot study highlight the advantages of proposed imaging technique for skin cancer diagnosis.
A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat
Reyniers, M.; Walvoort, D.J.J.; Baardemaaker, De J.
2006-01-01
The objective was to develop an optimal vegetation index (VIopt) to predict with a multi-spectral radiometer nitrogen in wheat crop (kg[N] ha-1). Optimality means that nitrogen in the crop can be measured accurately in the field during the growing season. It also means that the measurements are
Kulyanitsa, A. L.; Rukhovich, A. D.; Rukhovich, D. D.; Koroleva, P. V.; Rukhovich, D. I.; Simakova, M. S.
2017-04-01
The concept of soil line can be to describe the temporal distribution of spectral characteristics of the bare soil surface. In this case, the soil line can be referred to as the multi-temporal soil line, or simply temporal soil line (TSL). In order to create TSL for 8000 regular lattice points for the territory of three regions of Tula oblast, we used 34 Landsat images obtained in the period from 1985 to 2014 after their certain transformation. As Landsat images are the matrices of the values of spectral brightness, this transformation is the normalization of matrices. There are several methods of normalization that move, rotate, and scale the spectral plane. In our study, we applied the method of piecewise linear approximation to the spectral neighborhood of soil line in order to assess the quality of normalization mathematically. This approach allowed us to range normalization methods according to their quality as follows: classic normalization > successive application of the turn and shift > successive application of the atmospheric correction and shift > atmospheric correction > shift > turn > raw data. The normalized data allowed us to create the maps of the distribution of a and b coefficients of the TSL. The map of b coefficient is characterized by the high correlation with the ground-truth data obtained from 1899 soil pits described during the soil surveys performed by the local institute for land management (GIPROZEM).
Applications of cost-effective spectral imaging microscopy in cancer research
Barber, P R; Vojnovic, B; Atkin, G; Daley, F M; Everett, S A; Wilson, G D; Gilbey, J D
2003-01-01
The application of a cost-effective spectral imager to spatially segmenting absorptive and fluorescent chemical probes on the basis of their spectral characteristics has been demonstrated. The imager comprises a computer-controlled spectrally selective element that allows random access to a bandwidth of 15 nm between 400 and 700 nm. Further, the use of linear un-mixing of the spectral response of a sample at a single pixel has been facilitated using non-negative least squares fitting. Examples are given showing the separation of dye distributions, such as immunohistochemical markers for tumour hypoxia, from multiply stained thin tissue sections, imaged by trans-illumination microscopy. A quantitative study is also presented that shows a correlation between staining intensity and normal versus tumour tissue, and the advantage of reducing the amount of data captured for a particular study is also demonstrated. An example of the application to fluorescence microscopy is also given, showing the separation of green fluorescent protein, Cy3 and Cy5 at a single pixel. The system has been validated against samples of known optical density and of known overlapping combinations of coloured filters. These results confirm the ability of this technique to separate spectral responses that cannot be resolved with conventional colour imaging
Catalytic Unmixed Combustion of Coal with Zero Pollution
George Rizeq; Parag Kulkarni; Raul Subia; Wei Wei
2005-12-01
GE Global Research is developing an innovative energy-based technology for coal combustion with high efficiency and near-zero pollution. This Unmixed Combustion of coal (UMC-Coal) technology simultaneously converts coal, steam and air into two separate streams of high pressure CO{sub 2}-rich gas for sequestration, and high-temperature, high-pressure vitiated air for producing electricity in gas turbine expanders. The UMC process utilizes an oxygen transfer material (OTM) and eliminates the need for an air separation unit (ASU) and a CO{sub 2} separation unit as compared to conventional gasification based processes. This is the final report for the two-year DOE-funded program (DE-FC26-03NT41842) on this technology that ended in September 30, 2005. The UMC technology development program encompassed lab- and pilot-scale studies to demonstrate the UMC concept. The chemical feasibility of the individual UMC steps was established via lab-scale testing. A pilot plant, designed in a related DOE funded program (DE-FC26-00FT40974), was reconstructed and operated to demonstrate the chemistry of UMC process in a pilot-scale system. The risks associated with this promising technology including cost, lifetime and durability OTM and the impact of contaminants on turbine performance are currently being addressed in detail in a related ongoing DOE funded program (DE-FC26-00FT40974, Phase II). Results obtained to date suggest that this technology has the potential to economically meet future efficiency and environmental performance goals.
Suresh Kumar, V R; Binoy, J; Dawn Dharma Roy, S; Marchewka, M K; Jayakumar, V S
2015-01-01
Bis(melaminium) sulphate dihydrate (BMSD), an interesting melaminium derivative for nonlinear optical activity, has been subjected to vibrational spectral analysis using FT IR and FT Raman spectra. The analysis has been aided by the Potential Energy Distribution (PED) of vibrational spectral bands, derived using density functional theory (DFT) at B3LYP/6-31G(d) level. The geometry is found to correlate well with the XRD structure and the band profiles for certain vibrations in the finger print region have been theoretically explained using Evans hole. The detailed Natural Bond Orbital (NBO) analysis of the hydrogen bonding in BMSD has also been carried out to understand the correlation between the stabilization energy of hyperconjugation of the lone pair of donor with the σ(∗) orbital of hydrogen-acceptor bond and the strength of hydrogen bond. The theoretical calculation shows that BMSD has NLO efficiency, 2.66 times that of urea. The frontier molecular orbital analysis points to a charge transfer, which contributes to NLO activity, through N-H…O intermolecular hydrogen bonding between the melaminium ring and the sulphate. The molecular electrostatic potential (MEP) mapping has also been performed for the detailed analysis of the mutual interactions between melaminium ring and sulphate ion. Copyright © 2015 Elsevier B.V. All rights reserved.
Guliyev, Namig J.
2008-01-01
International audience; Inverse problems of recovering the coefficients of Sturm–Liouville problems with the eigenvalue parameter linearly contained in one of the boundary conditions are studied: 1) from the sequences of eigenvalues and norming constants; 2) from two spectra. Necessary and sufficient conditions for the solvability of these inverse problems are obtained.
Spectral Unmixing Applied to Desert Soils for the Detection of Sub-Pixel Disturbances
2012-09-01
to use this information to produce a trafficability product providing the consumer with information that is helpful in navigating through areas of...1989; Sieh and Bursik, 1986). The ring around the dome of the volcano is the result of a strombolian type of eruption (Sieh and Bursik, 1986; Sharp...6ENCHES. LANDSLIDES CUESTAS HILLSIDES AND E$-CAAPME:NT$ IN A ORY SlJEIHtJMJO Ct.IMAftC lOf.IE CAH0NA-8E0AY-HACifRM.AN M0091’a,lely d9flp .lOd \\let
Debba, Pravesh
2010-11-01
Full Text Available This paper reports on the results from ordinary least squares and ridge regression as statistical methods, and is compared to numerical optimization methods such as the stochastic method for global optimization, simulated annealing, particle swarm...
Validating the LASSO algorithm by unmixing spectral signatures in multicolor phantoms
Samarov, Daniel V.; Clarke, Matthew; Lee, Ji Yoon; Allen, David; Litorja, Maritoni; Hwang, Jeeseong
2012-03-01
As hyperspectral imaging (HSI) sees increased implementation into the biological and medical elds it becomes increasingly important that the algorithms being used to analyze the corresponding output be validated. While certainly important under any circumstance, as this technology begins to see a transition from benchtop to bedside ensuring that the measurements being given to medical professionals are accurate and reproducible is critical. In order to address these issues work has been done in generating a collection of datasets which could act as a test bed for algorithms validation. Using a microarray spot printer a collection of three food color dyes, acid red 1 (AR), brilliant blue R (BBR) and erioglaucine (EG) are mixed together at dierent concentrations in varying proportions at dierent locations on a microarray chip. With the concentration and mixture proportions known at each location, using HSI an algorithm should in principle, based on estimates of abundances, be able to determine the concentrations and proportions of each dye at each location on the chip. These types of data are particularly important in the context of medical measurements as the resulting estimated abundances will be used to make critical decisions which can have a serious impact on an individual's health. In this paper we present a novel algorithm for processing and analyzing HSI data based on the LASSO algorithm (similar to "basis pursuit"). The LASSO is a statistical method for simultaneously performing model estimation and variable selection. In the context of estimating abundances in an HSI scene these so called "sparse" representations provided by the LASSO are appropriate as not every pixel will be expected to contain every endmember. The algorithm we present takes the general framework of the LASSO algorithm a step further and incorporates the rich spatial information which is available in HSI to further improve the estimates of abundance. We show our algorithm's improvement over the standard LASSO using the dye mixture data as the test bed.
High spatial resolution spectral unmixing for mapping ash species across a complex urban environment
Jennifer Pontius; Ryan P. Hanavan; Richard A. Hallett; Bruce D. Cook; Lawrence A. Corp
2017-01-01
Ash (Fraxinus L.) species are currently threatened by the emerald ash borer (EAB; Agrilus planipennis Fairmaire) across a growing area in the eastern US. Accurate mapping of ash species is required to monitor the host resource, predict EAB spread and better understand the short- and long-term effects of EAB on the ash resource...
Zurita Milla, R.
2008-01-01
Our environment is continuously undergoing change. This change takes place at several spatial and temporal scales and it is largely driven by anthropogenic activities. In order to protect our environment and to ensure a sustainable use of natural resources, a wide variety of national and
A New Method for Non-linear and Non-stationary Time Series Analysis:
The Hilbert Spectral Analysis
CERN. Geneva
2000-01-01
A new method for analysing non-linear and non-stationary data has been developed. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero crossing and extreme, and also having symmetric envelopes defined by the local maximal and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to non-linear and non-stationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum. Classical non-l...
Lunøe, Kristoffer; Martínez-Sierra, Justo Giner; Gammelgaard, Bente; Alonso, J Ignacio García
2012-03-01
The analytical methodology for the in vivo study of selenium metabolism using two enriched selenium isotopes has been modified, allowing for the internal correction of spectral interferences and mass bias both for total selenium and speciation analysis. The method is based on the combination of an already described dual-isotope procedure with a new data treatment strategy based on multiple linear regression. A metabolic enriched isotope ((77)Se) is given orally to the test subject and a second isotope ((74)Se) is employed for quantification. In our approach, all possible polyatomic interferences occurring in the measurement of the isotope composition of selenium by collision cell quadrupole ICP-MS are taken into account and their relative contribution calculated by multiple linear regression after minimisation of the residuals. As a result, all spectral interferences and mass bias are corrected internally allowing the fast and independent quantification of natural abundance selenium ((nat)Se) and enriched (77)Se. In this sense, the calculation of the tracer/tracee ratio in each sample is straightforward. The method has been applied to study the time-related tissue incorporation of (77)Se in male Wistar rats while maintaining the (nat)Se steady-state conditions. Additionally, metabolically relevant information such as selenoprotein synthesis and selenium elimination in urine could be studied using the proposed methodology. In this case, serum proteins were separated by affinity chromatography while reverse phase was employed for urine metabolites. In both cases, (74)Se was used as a post-column isotope dilution spike. The application of multiple linear regression to the whole chromatogram allowed us to calculate the contribution of bromine hydride, selenium hydride, argon polyatomics and mass bias on the observed selenium isotope patterns. By minimising the square sum of residuals for the whole chromatogram, internal correction of spectral interferences and mass
A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion
Gevaert, C.M.; Garcia-Haro, F.J.
2015-01-01
The focus of the current study is to compare data fusion methods applied to sensors with medium- and high-spatial resolutions. Two documented methods are applied, the spatial and temporal adaptive reflectance fusion model (STARFM) and an unmixing-based method which proposes a Bayesian formulation to
Encoding Strategy Changes and Spacing Effects in the Free Recall of Unmixed Lists
Delaney, P.F.; Knowles, M.E.
2005-01-01
Memory for repeated items often improves when repetitions are separated by other items-a phenomenon called the spacing effect. In two experiments, we explored the complex interaction between study strategies, serial position, and spacing effects. When people studied several unmixed lists, they initially used mainly rote rehearsal, but some people…
Spence, Jeffrey S; Brier, Matthew R; Hart, John; Ferree, Thomas C
2013-03-01
Linear statistical models are used very effectively to assess task-related differences in EEG power spectral analyses. Mixed models, in particular, accommodate more than one variance component in a multisubject study, where many trials of each condition of interest are measured on each subject. Generally, intra- and intersubject variances are both important to determine correct standard errors for inference on functions of model parameters, but it is often assumed that intersubject variance is the most important consideration in a group study. In this article, we show that, under common assumptions, estimates of some functions of model parameters, including estimates of task-related differences, are properly tested relative to the intrasubject variance component only. A substantial gain in statistical power can arise from the proper separation of variance components when there is more than one source of variability. We first develop this result analytically, then show how it benefits a multiway factoring of spectral, spatial, and temporal components from EEG data acquired in a group of healthy subjects performing a well-studied response inhibition task. Copyright © 2011 Wiley Periodicals, Inc.
Chandra Snapshot Spectral Imaging of Comets C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR)
Lisse, Carey
2003-09-01
The highly favorable perigee passage of the very bright comets C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR) in late May 2004 provides an opportunity to study cometary x-ray emission in conjunction with the new CHIPS spectroscopic mission. In 10 ksec of on-target time for each comet, ACIS-S will obtain snapshot images of the comets in the heart of the CHIPS 0.05 0.150 keV spectroscopic monitoring period in late-May 2004. The combined observations have the potential of directly detecting for the first time the ultra-soft emission due to Mg, S, Si, and Fe predicted by McCammon et al. (2002) from soft x-ray background measurements and by Kharchenko et al. (2000, 2003) from models of solar wind minor ion charge exchange emission. New work by Wegmann, Dennerl, and Lisse (2004) allows a determination of the neutral gas production rate from the spatial scale of the emission, and an independent determination of the solar wind minor ion flux density using the x-ray surface brightness.
Lasche, George; Coldwell, Robert; Metzger, Robert
2017-09-01
A new application (known as "VRF", or "Visual RobFit") for analysis of high-resolution gamma-ray spectra has been developed using non-linear fitting techniques to fit full-spectrum nuclide shapes. In contrast to conventional methods based on the results of an initial peak-search, the VRF analysis method forms, at each of many automated iterations, a spectrum-wide shape for each nuclide and, also at each iteration, it adjusts the activities of each nuclide, as well as user-enabled parameters of energy calibration, attenuation by up to three intervening or self-absorbing materials, peak width as a function of energy, full-energy peak efficiency, and coincidence summing until no better fit to the data can be obtained. This approach, which employs a new and significantly advanced underlying fitting engine especially adapted to nuclear spectra, allows identification of minor peaks that are masked by larger, overlapping peaks that would not otherwise be possible. The application and method are briefly described and two examples are presented.
Liu, Zhaoxin; Zhao, Liaoying; Li, Xiaorun; Chen, Shuhan
2018-04-01
Owing to the limitation of spatial resolution of the imaging sensor and the variability of ground surfaces, mixed pixels are widesperead in hyperspectral imagery. The traditional subpixel mapping algorithms treat all mixed pixels as boundary-mixed pixels while ignoring the existence of linear subpixels. To solve this question, this paper proposed a new subpixel mapping method based on linear subpixel feature detection and object optimization. Firstly, the fraction value of each class is obtained by spectral unmixing. Secondly, the linear subpixel features are pre-determined based on the hyperspectral characteristics and the linear subpixel feature; the remaining mixed pixels are detected based on maximum linearization index analysis. The classes of linear subpixels are determined by using template matching method. Finally, the whole subpixel mapping results are iteratively optimized by binary particle swarm optimization algorithm. The performance of the proposed subpixel mapping method is evaluated via experiments based on simulated and real hyperspectral data sets. The experimental results demonstrate that the proposed method can improve the accuracy of subpixel mapping.
Dong, Jingtao; Lu, Rongsheng
2018-04-30
The simultaneous determination of t, n(λ), and κ(λ) of thin films can be a tough task for the high correlation of fit parameters. The strong assumptions about the type of dispersion relation are commonly used as a consequence to alleviate correlation concerns by reducing the free parameters before the nonlinear regression analysis. Here we present an angle-resolved spectral reflectometry for the simultaneous determination of weakly absorbing thin film parameters, where a reflectance interferogram is recorded in both angular and spectral domains in a single-shot measurement for the point of the sample being illuminated. The variations of the phase recovered from the interferogram as functions of t, n, and κ reveals that the unwrapped phase is monotonically related to t, n, and κ, thereby allowing the problem of correlation to be alleviated by multiple linear regression. After removing the 2π ambiguity of the unwrapped phase, the merit function based on the absolute unwrapped phase performs a 3D data cube with variables of t, n and κ at each wavelength. The unique solution of t, n, and κ can then be directly determined from the extremum of the 3D data cube at each wavelength with no need of dispersion relation. A sample of GaN thin film grown on a polished sapphire substrate is tested. The experimental data of t and [n(λ), κ(λ)] are confirmed by the scanning electron microscopy and the comparison with the results of other related works, respectively. The consistency of the results shows the proposed method provides a useful tool for the determination of the thickness and optical constants of weakly absorbing thin films.
Rasouli, Zolaikha; Ghavami, Raouf
2016-08-01
Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD = 0.12], 0.67-23.19 [LOD = 0.13] and 0.73-25.12 [LOD = 0.15] μg mL- 1 for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples.
[Source apportionment of soil heavy metals in Jiapigou goldmine based on the UNMIX model].
Ai, Jian-chao; Wang, Ning; Yang, Jing
2014-09-01
The paper determines 16 kinds of metal elements' concentration in soil samples which collected in Jipigou goldmine upper the Songhua River. The UNMIX Model which was recommended by US EPA to get the source apportionment results was applied in this study, Cd, Hg, Pb and Ag concentration contour maps were generated by using Kriging interpolation method to verify the results. The main conclusions of this study are: (1)the concentrations of Cd, Hg, Pb and Ag exceeded Jilin Province soil background values and enriched obviously in soil samples; (2)using the UNMIX Model resolved four pollution sources: source 1 represents human activities of transportation, ore mining and garbage, and the source 1's contribution is 39. 1% ; Source 2 represents the contribution of the weathering of rocks and biological effects, and the source 2's contribution is 13. 87% ; Source 3 is a comprehensive source of soil parent material and chemical fertilizer, and the source 3's contribution is 23. 93% ; Source 4 represents iron ore mining and transportation sources, and the source 4's contribution is 22. 89%. (3)the UNMIX Model results are in accordance with the survey of local land-use types, human activities and Cd, Hg and Pb content distributions.
An uncertainty inclusive un-mixing model to identify tracer non-conservativeness
Sherriff, Sophie; Rowan, John; Franks, Stewart; Fenton, Owen; Jordan, Phil; hUallacháin, Daire Ó.
2015-04-01
Sediment fingerprinting is being increasingly recognised as an essential tool for catchment soil and water management. Selected physico-chemical properties (tracers) of soils and river sediments are used in a statistically-based 'un-mixing' model to apportion sediment delivered to the catchment outlet (target) to its upstream sediment sources. Development of uncertainty-inclusive approaches, taking into account uncertainties in the sampling, measurement and statistical un-mixing, are improving the robustness of results. However, methodological challenges remain including issues of particle size and organic matter selectivity and non-conservative behaviour of tracers - relating to biogeochemical transformations along the transport pathway. This study builds on our earlier uncertainty-inclusive approach (FR2000) to detect and assess the impact of tracer non-conservativeness using synthetic data before applying these lessons to new field data from Ireland. Un-mixing was conducted on 'pristine' and 'corrupted' synthetic datasets containing three to fifty tracers (in the corrupted dataset one target tracer value was manually corrupted to replicate non-conservative behaviour). Additionally, a smaller corrupted dataset was un-mixed using a permutation version of the algorithm. Field data was collected in an 11 km2 river catchment in Ireland. Source samples were collected from topsoils, subsoils, channel banks, open field drains, damaged road verges and farm tracks. Target samples were collected using time integrated suspended sediment samplers at the catchment outlet at 6-12 week intervals from July 2012 to June 2013. Samples were dried (affected whereas uncertainty was only marginally impacted by the corrupted tracer. Improvement of uncertainty resulted from increasing the number of tracers in both the perfect and corrupted datasets. FR2000 was capable of detecting non-conservative tracer behaviour within the range of mean source values, therefore, it provided a more
Spectral mineral mapping for characterization of subtle geothermal prospects using ASTER data
Abubakar, A J; Hashim, M; Pour, A B
2017-01-01
In this study, the performance of ASTER data is evaluated for mapping subtle geothermal prospects in an unexplored tropical region having a number of thermal springs. The study employed a simple Decorrelation stretch with specific absorptions to highlight possible alteration zones of interest related to Geothermal (GT) systems. Hydrothermal alteration minerals are subsequently mapped using Spectral Angle Mapper (SAM) and Linear Spectral Unmixing (LSU) algorithms to target representative minerals such as clays, carbonates and AL-OH minerals as indicators of GT activity. The results were validated through field GPS survey, rock sampling and laboratory analysis using latest smart lab X-Ray Diffractometer technology. The study indicates that ASTER broadband satellite data could be used to map subtle GT prospects with the aid of an in-situ verification. However, it also shows that ASTER could not discriminate within specie minerals especially for clays using SWIR bands. Subsequent studies are aimed at looking at both ASTER and Hyperion hyperspectral data in the same area as this could have significant implications for GT resource detection in unmapped aseismic and inaccessible tropical regions using available spaceborne data. (paper)
Multiphoton spectral analysis of benzo[a]pyrene uptake and metabolism in a rat liver cell line
Barhoumi, Rola; Mouneimne, Youssef; Ramos, Ernesto; Morisseau, Christophe; Hammock, Bruce D.; Safe, Stephen; Parrish, Alan R.; Burghardt, Robert C.
2011-01-01
Dynamic analysis of the uptake and metabolism of polycyclic aromatic hydrocarbons (PAHs) and their metabolites within live cells in real time has the potential to provide novel insights into genotoxic and non-genotoxic mechanisms of cellular injury caused by PAHs. The present work, combining the use of metabolite spectra generated from metabolite standards using multiphoton spectral analysis and an 'advanced unmixing process', identifies and quantifies the uptake, partitioning, and metabolite formation of one of the most important PAHs (benzo[a]pyrene, BaP) in viable cultured rat liver cells over a period of 24 h. The application of the advanced unmixing process resulted in the simultaneous identification of 8 metabolites in live cells at any single time. The accuracy of this unmixing process was verified using specific microsomal epoxide hydrolase inhibitors, glucuronidation and sulfation inhibitors as well as several mixtures of metabolite standards. Our findings prove that the two-photon microscopy imaging surpasses the conventional fluorescence imaging techniques and the unmixing process is a mathematical technique that seems applicable to the analysis of BaP metabolites in living cells especially for analysis of changes of the ultimate carcinogen benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide. Therefore, the combination of the two-photon acquisition with the unmixing process should provide important insights into the cellular and molecular mechanisms by which BaP and other PAHs alter cellular homeostasis.
van der Wiel, M. H. D.; Pagani, L.; van der Tak, F. F. S.; Kaźmierczak, M.; Ceccarelli, C.
2013-05-01
Context. Linear rotor molecules such as CO, HCO+ and HCN are important probes of star-forming gas. For these species, temperatures of ≲ 50 K are sufficient to produce emission lines that are observable from the ground at (sub)millimeter wavelengths. Molecular gas in the environment of massive protostellar objects, however, is known to reach temperatures of several hundred K. To probe this, space-based far-infrared observations are required. Aims: We aim to reveal the gas energetics in the circumstellar environment of the prototypical high-mass protostellar object AFGL 2591. Methods: Rotational spectral line signatures of CO species, HCO+, CS, HCN and HNC from a 490-1240 GHz survey with Herschel/HIFI, complemented by ground-based JCMT and IRAM 30 m spectra, cover transitions in the energy range (Eup/k) between 5 K and ~ 300 K. Selected frequency settings in the highest frequency HIFI bands (up to 1850 GHz) extend this range to 750 K for 12C16O. The resolved spectral line profiles are used to separate and study various kinematic components. Observed line intensities are compared with a numerical model that calculates excitation balance and radiative transfer based on spherical geometry. Results: The line profiles show two emission components, the widest and bluest of which is attributed to an approaching outflow and the other to the envelope. We find evidence for progressively more redshifted and wider line profiles from the envelope gas with increasing energy level. This trend is qualitatively explained by residual outflow contribution picked up in the systematically decreasing beam size. Integrated line intensities for each species decrease as Eup/k increases from ≲ 50 to ~700 K. The H2 density and temperature of the outflow gas are constrained to ~105-106 cm-3 and 60-200 K. In addition, we derive a temperature between 9 and 17 K and N(H2) ~ 3 × 1021 cm-2 for a known foreground cloud seen in absorption, and N(H2) ≲ 1019 cm-2 for a second foreground component
Application of hierarchical Bayesian unmixing models in river sediment source apportionment
Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice
2016-04-01
Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling
Hu, Nvdan; Gong, Yulong; Wang, Xinchao; Lu, Yao; Peng, Guangyue; Yang, Long; Zhang, Shengtao; Luo, Ziping; Li, Hongru; Gao, Fang
2015-11-01
A series of new asymmetric chromophores containing aromatic substituents and possessing the excellent π-extension in space were prepared through multi-steps routes. One-photon and two-photon spectral properties of these new chromophores could be tuned by these substituents finely and simultaneously. The linear correlation of the wave numbers of the one-photon absorption and emission maxima to Hammett parameters of these substituents was presented. Near infrared two-photon absorption emission integrated areas of the target chromophores were correlated linearly to Hammett constants of these substituted groups.
UNMIX Methods Applied to Characterize Sources of Volatile Organic Compounds in Toronto, Ontario
Eugeniusz Porada
2016-06-01
Full Text Available UNMIX, a sensor modeling routine from the U.S. Environmental Protection Agency (EPA, was used to model volatile organic compound (VOC receptors in four urban sites in Toronto, Ontario. VOC ambient concentration data acquired in 2000–2009 for 175 VOC species in four air quality monitoring stations were analyzed. UNMIX, by performing multiple modeling attempts upon varying VOC menus—while rejecting the results that were not reliable—allowed for discriminating sources by their most consistent chemical characteristics. The method assessed occurrences of VOCs in sources typical of the urban environment (traffic, evaporative emissions of fuels, banks of fugitive inert gases, industrial point sources (plastic-, polymer-, and metalworking manufactures, and in secondary sources (releases from water, sediments, and contaminated urban soil. The remote sensing and robust modeling used here produces chemical profiles of putative VOC sources that, if combined with known environmental fates of VOCs, can be used to assign physical sources’ shares of VOCs emissions into the atmosphere. This in turn provides a means of assessing the impact of environmental policies on one hand, and industrial activities on the other hand, on VOC air pollution.
Couturier, Laurent, E-mail: laurent.couturier55@hotmail.fr [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Department of Materials Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); De Geuser, Frédéric; Deschamps, Alexis [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France)
2016-11-15
The fine microstructure obtained by unmixing of a solid solution either by classical precipitation or spinodal decomposition is often characterized either by small angle scattering or atom probe tomography. This article shows that a common data analysis framework can be used to analyze data obtained from these two techniques. An example of the application of this common analysis is given for characterization of the unmixing of the Fe-Cr matrix of a 15-5 PH stainless steel during long-term ageing at 350 °C and 400 °C. A direct comparison of the Cr composition fluctuations amplitudes and characteristic lengths obtained with both techniques is made showing a quantitative agreement for the fluctuation amplitudes. The origin of the discrepancy remaining for the characteristic lengths is discussed. - Highlights: •Common analysis framework for atom probe tomography and small angle scattering •Comparison of same microstructural characteristics obtained using both techniques •Good correlation of Cr composition fluctuations amplitudes from both techniques •Good correlation of Cr composition fluctuations amplitudes with classic V parameter.
Improving Land Use/Land Cover Classification by Integrating Pixel Unmixing and Decision Tree Methods
Chao Yang
2017-11-01
Full Text Available Decision tree classification is one of the most efficient methods for obtaining land use/land cover (LULC information from remotely sensed imageries. However, traditional decision tree classification methods cannot effectively eliminate the influence of mixed pixels. This study aimed to integrate pixel unmixing and decision tree to improve LULC classification by removing mixed pixel influence. The abundance and minimum noise fraction (MNF results that were obtained from mixed pixel decomposition were added to decision tree multi-features using a three-dimensional (3D Terrain model, which was created using an image fusion digital elevation model (DEM, to select training samples (ROIs, and improve ROI separability. A Landsat-8 OLI image of the Yunlong Reservoir Basin in Kunming was used to test this proposed method. Study results showed that the Kappa coefficient and the overall accuracy of integrated pixel unmixing and decision tree method increased by 0.093% and 10%, respectively, as compared with the original decision tree method. This proposed method could effectively eliminate the influence of mixed pixels and improve the accuracy in complex LULC classifications.
The accuracy of nondestructive optical methods for chlorophyll (Chl) assessment based on leaf spectral characteristics depends on the wavelengths used for Chl assessment. Using spectroscopy, the optimum wavelengths for Chl assessment (OWChl) were determined for almond, poplar, and apple trees grown ...
Lin, H.; Zhang, X.; Wu, X.; Tarnas, J. D.; Mustard, J. F.
2018-04-01
Quantitative analysis of hydrated minerals from hyperspectral remote sensing data is fundamental for understanding Martian geologic process. Because of the difficulties for selecting endmembers from hyperspectral images, a sparse unmixing algorithm has been proposed to be applied to CRISM data on Mars. However, it's challenge when the endmember library increases dramatically. Here, we proposed a new methodology termed Target Transformation Constrained Sparse Unmixing (TTCSU) to accurately detect hydrous minerals on Mars. A new version of target transformation technique proposed in our recent work was used to obtain the potential detections from CRISM data. Sparse unmixing constrained with these detections as prior information was applied to CRISM single-scattering albedo images, which were calculated using a Hapke radiative transfer model. This methodology increases success rate of the automatic endmember selection of sparse unmixing and could get more accurate abundances. CRISM images with well analyzed in Southwest Melas Chasma was used to validate our methodology in this study. The sulfates jarosite was detected from Southwest Melas Chasma, the distribution is consistent with previous work and the abundance is comparable. More validations will be done in our future work.
Unmixing demonstration with a twist: A photochromic Taylor-Couette device
Fonda, Enrico; Sreenivasan, Katepalli R.
2017-10-01
10.1119/1.4996901.1 This article describes an updated version of the famous Taylor-Couette flow reversibility demonstration. The viscous fluid confined between two concentric cylinders is forced to move by the rotating inner cylinder and visualized through the transparent outer cylinder. After a few rotations, a colored blob of fluid appears well mixed. Yet, after reversing the motion for the same number of turns, the blob reappears in the original location as if the fluid has just been unmixed. The use of household supplies makes the device inexpensive and easy to build without specific technical skills. The device can be used for demonstrations in fluid dynamics courses and outreach activities to discuss the concepts of viscosity, creeping flows, the absence of inertia, and time-reversibility.
Lênio Soares Galvão
2006-12-01
Full Text Available Water composition undergoes complex spatial and temporal variations throughout the central Amazon floodplain. This study analyzed the spectral mixtures of the optically active substances (OASs in water with spaceborne hyperspectral images. The test site was located upstream the confluence of Amazon (white water and Tapajós (clear-water rivers, where two Hyperion images were acquired from the Earth Observing One (EO-1 satellite. The first image was acquired on September 16, 2001, during the falling water period of the Amazon River. The second image was acquired on June 23, 2005, at the end of the high water period. The images were pre-processed to remove stripes of anomalous pixels, convert radiance-calibrated data to surface reflectance, mask land, clouds and macrophytes targets, and spectral subset the data within the range of 457-885nm. A sequential procedure with the techniques Minimum Noise Fraction (MNF, Pixel Purity Index (PPI and n-dimensional visualization of the MNF feature space was employed to select end-members from both images. A single set of end-members was gathered to represent the following spectrally unique OASs: clear-water; dissolved organic matter; suspended sediments; and phytoplankton. The Linear Spectral Unmixing algorithm was applied to each Hyperion image in order to map the spatial distribution of these constituents, in terms of sub-pixel fractional abundances. Results showed three patterns of changes in the water quality from high to falling flood periods: decrease of suspended inorganic matter concentration in the Amazon River; increase of suspended inorganic matter and phytoplankton concentrations in varzea lakes; and increase of phytoplankton concentration in the Tapajós River.
Lênio Soares Galvão
2007-06-01
Full Text Available Water composition undergoes complex spatial and temporal variations throughout the central Amazon floodplain. This study analyzed the spectral mixtures of the optically active substances (OASs in water with spaceborne hyperspectral images. The test site was located upstream the confluence of Amazon (white water and Tapajós (clear-water rivers, where two Hyperion images were acquired from the Earth Observing One (EO-1 satellite. The first image was acquired on September 16, 2001, during the falling water period of the Amazon River. The second image was acquired on June 23, 2005, at the end of the high water period. The images were pre-processed to remove stripes of anomalous pixels, convert radiance-calibrated data to surface reflectance, mask land, clouds and macrophytes targets, and spectral subset the data within the range of 457-885nm. A sequential procedure with the techniques Minimum Noise Fraction (MNF, Pixel Purity Index (PPI and n-dimensional visualization of the MNF feature space was employed to select end-members from both images. A single set of end-members was gathered to represent the following spectrally unique OASs: clear-water; dissolved organic matter; suspended sediments; and phytoplankton. The Linear Spectral Unmixing algorithm was applied to each Hyperion image in order to map the spatial distribution of these constituents, in terms of sub-pixel fractional abundances. Results showed three patterns of changes in the water quality from high to falling flood periods: decrease of suspended inorganic matter concentration in the Amazon River; increase of suspended inorganic matter and phytoplankton concentrations in varzea lakes; and increase of phytoplankton concentration in the Tapajós River.
Masalmah, Yahya M.; Vélez-Reyes, Miguel
2007-04-01
The authors proposed in previous papers the use of the constrained Positive Matrix Factorization (cPMF) to perform unsupervised unmixing of hyperspectral imagery. Two iterative algorithms were proposed to compute the cPMF based on the Gauss-Seidel and penalty approaches to solve optimization problems. Results presented in previous papers have shown the potential of the proposed method to perform unsupervised unmixing in HYPERION and AVIRIS imagery. The performance of iterative methods is highly dependent on the initialization scheme. Good initialization schemes can improve convergence speed, whether or not a global minimum is found, and whether or not spectra with physical relevance are retrieved as endmembers. In this paper, different initializations using random selection, longest norm pixels, and standard endmembers selection routines are studied and compared using simulated and real data.
Top local cohomology and the catenary of the unmixed part of support of a finitely generated module
Nguyen Tu Cuong; Nguyen Thi Dung; Le Thanh Nhan
2005-09-01
Let (R,m) be a Noetherian local ring and M a finitely generated R-module with dim M = d. This paper is concerned with the following property for the top local cohomology H m d (M): Ann R (0: H m d (M) p) = p for all prime ideals p is a subset of Ann R H m d ( M). It is shown that this property is equivalent to the catenary of the unmixed part Supp M/U M (0) of the support of M, where U M (0) is the largest submodule of M of dimension less than d. Some characterizations of this property in terms of systems of parameters and relations between the unmixed parts of Supp M and Supp M-circumflex are given. A connection to the so-called co-localization is discussed. (author)
Nageshwari, M.; Kumari, C. Rathika Thaya; Vinitha, G.; Mohamed, M. Peer; Sudha, S.; Caroline, M. Lydia
2018-03-01
L-Methionine-Succinic acid (2/1) (LMSA), 2C5H11NO2S·C4H6O4, a novel nonlinear optical material which belongs to the class of organic category was grown-up for the first time by the technique of slow evaporation. Purity of LMSA was improved using repetitive recrystallization. LMSA was analyzed by single crystal and powder X-ray diffraction investigation to affirm the crystal structure and crystalline character. The single crystal XRD revealed that LMSA corresponds to the crystal system of triclinic with P1 as space group showing the asymmetric unit consists of a neutral succinic acid molecule and two methionine residues which are crystallographically independent existing in zwitterionic form. The functional groups existing in LMSA was accomplished using Fourier transform infrared spectroscopy. The optical transparency and the band gap energy were identified utilizing UV-Visible spectrum. The optical constants specifically reflectance and extinction coefficient clearly indicate the elevated transparency of LMSA. The thermal analyses affirmed its thermal stability. The luminescence behavior of LMSA has been analyzed by Photoluminescence (PL) spectral study. The mechanical, laser damage threshold and dielectric investigation of LMSA was done to suggest the material for practical applications. The second and third harmonic generation efficacy was confirmed by means of Kurtz-Perry and Z-scan procedure which attest its potentiality in the domain of nonlinear optics.
Estimating the formation age distribution of continental crust by unmixing zircon ages
Korenaga, Jun
2018-01-01
Continental crust provides first-order control on Earth's surface environment, enabling the presence of stable dry landmasses surrounded by deep oceans. The evolution of continental crust is important for atmospheric evolution, because continental crust is an essential component of deep carbon cycle and is likely to have played a critical role in the oxygenation of the atmosphere. Geochemical information stored in the mineral zircon, known for its resilience to diagenesis and metamorphism, has been central to ongoing debates on the genesis and evolution of continental crust. However, correction for crustal reworking, which is the most critical step when estimating original formation ages, has been incorrectly formulated, undermining the significance of previous estimates. Here I suggest a simple yet promising approach for reworking correction using the global compilation of zircon data. The present-day distribution of crustal formation age estimated by the new "unmixing" method serves as the lower bound to the true crustal growth, and large deviations from growth models based on mantle depletion imply the important role of crustal recycling through the Earth history.
Spectral mixture analyses of hyperspectral data acquired using a tethered balloon
Chen, Xuexia; Vierling, Lee
2006-01-01
Tethered balloon remote sensing platforms can be used to study radiometric issues in terrestrial ecosystems by effectively bridging the spatial gap between measurements made on the ground and those acquired via airplane or satellite. In this study, the Short Wave Aerostat-Mounted Imager (SWAMI) tethered balloon-mounted platform was utilized to evaluate linear and nonlinear spectral mixture analysis (SMA) for a grassland-conifer forest ecotone during the summer of 2003. Hyperspectral measurement of a 74-m diameter ground instantaneous field of view (GIFOV) attained by the SWAMI was studied. Hyperspectral spectra of four common endmembers, bare soil, grass, tree, and shadow, were collected in situ, and images captured via video camera were interpreted into accurate areal ground cover fractions for evaluating the mixture models. The comparison between the SWAMI spectrum and the spectrum derived by combining in situ spectral data with video-derived areal fractions indicated that nonlinear effects occurred in the near infrared (NIR) region, while nonlinear influences were minimal in the visible region. The evaluation of hyperspectral and multispectral mixture models indicated that nonlinear mixture model-derived areal fractions were sensitive to the model input data, while the linear mixture model performed more stably. Areal fractions of bare soil were overestimated in all models due to the increased radiance of bare soil resulting from side scattering of NIR radiation by adjacent grass and trees. Unmixing errors occurred mainly due to multiple scattering as well as close endmember spectral correlation. In addition, though an apparent endmember assemblage could be derived using linear approaches to yield low residual error, the tree and shade endmember fractions calculated using this technique were erroneous and therefore separate treatment of endmembers subject to high amounts of multiple scattering (i.e. shadows and trees) must be done with caution. Including the
Cui, Qian; Shi, Jiancheng; Xu, Yuanliu
2011-12-01
Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.
Mahbub, Saabah B.; Succer, Peter; Gosnell, Martin E.; Anwaer, Ayad G.; Herbert, Benjamin; Vesey, Graham; Goldys, Ewa M.
2016-03-01
Extracting biochemical information from tissue autofluorescence is a promising approach to non-invasively monitor disease treatments at a cellular level, without using any external biomarkers. Our recently developed unsupervised hyperspectral unmixing by Dependent Component Analysis (DECA) provides robust and detailed metabolic information with proper account of intrinsic cellular heterogeneity. Moreover this method is compatible with established methods of fluorescent biomarker labelling. Recently adipose-derived stem cell (ADSC) - based therapies have been introduced for treating different diseases in animals and humans. ADSC have been shown promise in regenerative treatments for osteoarthritis and other bone and joint disorders. One of the mechanism of their action is their anti-inflammatory effects within osteoarthritic joints which aid the regeneration of cartilage. These therapeutic effects are known to be driven by secretions of different cytokines from the ADSCs. We have been using the hyperspectral unmixing techniques to study in-vitro the effects of ADSC-derived cytokine-rich secretions with the cartilage chip in both human and bovine samples. The study of metabolic effects of different cytokine treatment on different cartilage layers makes it possible to compare the merits of those treatments for repairing cartilage.
Guimarães, Ricardo J P S; Freitas, Corina C; Dutra, Luciano V; Scholte, Ronaldo G C; Amaral, Ronaldo S; Drummond, Sandra C; Shimabukuro, Yosio E; Oliveira, Guilherme C; Carvalho, Omar S
2010-07-01
This paper analyses the associations between Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) on the prevalence of schistosomiasis and the presence of Biomphalaria glabrata in the state of Minas Gerais (MG), Brazil. Additionally, vegetation, soil and shade fraction images were created using a Linear Spectral Mixture Model (LSMM) from the blue, red and infrared channels of the Moderate Resolution Imaging Spectroradiometer spaceborne sensor and the relationship between these images and the prevalence of schistosomiasis and the presence of B. glabrata was analysed. First, we found a high correlation between the vegetation fraction image and EVI and second, a high correlation between soil fraction image and NDVI. The results also indicate that there was a positive correlation between prevalence and the vegetation fraction image (July 2002), a negative correlation between prevalence and the soil fraction image (July 2002) and a positive correlation between B. glabrata and the shade fraction image (July 2002). This paper demonstrates that the LSMM variables can be used as a substitute for the standard vegetation indices (EVI and NDVI) to determine and delimit risk areas for B. glabrata and schistosomiasis in MG, which can be used to improve the allocation of resources for disease control.
Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation
Song, Huihui
resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.
Lang, Harold R.
1991-01-01
A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.
Towards H2-rich gas production from unmixed steam reforming of methane: Thermodynamic modeling
Lima da Silva, Aline; Müller, Iduvirges Lourdes
2011-10-01
In this work, the Gibbs energy minimization method is applied to investigate the unmixed steam reforming (USR) of methane to generate hydrogen for fuel cell application. The USR process is an advanced reforming technology that relies on the use of separate air and fuel/steam feeds to create a cyclic process. Under air flow (first half of the cycle), a bed of Ni-based material is oxidized, providing the heat necessary for the steam reforming that occurs subsequently during fuel/steam feed stage (second half of the cycle). In the presence of CaO sorbent, high purity hydrogen can be produced in a single reactor. In the first part of this work, it is demonstrated that thermodynamic predictions are consistent with experimental results from USR isothermal tests under fuel/steam feed. From this, it is also verified that the reacted NiO to CH4 (NiOreacted/CH4) molar ratio is a very important parameter that affects the product gas composition and decreases with time. At the end of fuel/steam flow, the reforming reaction is the most important chemical mechanism, with H2 production reaching ∼75 mol%. On the other hand, at the beginning of fuel/steam feed stage, NiO reduction reactions dominate the equilibrium system, resulting in high CO2 selectivity, negative steam conversion and low concentrations of H2. In the second part of this paper, the effect of NiOreacted/CH4 molar ratio on the product gas composition and enthalpy change during fuel flow is investigated at different temperatures for inlet H2O/CH4 molar ratios in the range of 1.2-4, considering the USR process operated with and without CaO sorbent. During fuel/steam feed stage, the energy demand increases as time passes, because endothermic reforming reaction becomes increasingly important as this stage nears its end. Thus, the duration of the second half of the cycle is limited by the conditions under which auto-thermal operation can be achieved. In absence of CaO, H2 at concentrations of approximately 73 mol% can
Calibration with near-continuous spectral measurements
Nielsen, Henrik Aalborg; Rasmussen, Michael; Madsen, Henrik
2001-01-01
In chemometrics traditional calibration in case of spectral measurements express a quantity of interest (e.g. a concentration) as a linear combination of the spectral measurements at a number of wavelengths. Often the spectral measurements are performed at a large number of wavelengths and in thi...... by an example in which the octane number of gasoline is related to near infrared spectral measurements. The performance is found to be much better that for the traditional calibration methods....
Analysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques
Ahmad Keshavarz
2017-04-01
Full Text Available Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH happened in 2010. For this purpose, by using FLAASH algorithm atmospheric correction is first performed. Then, total 360 spectral bands from 183 to 198 and from 255 to 279 have been excluded by applying the atmospheric correction algorithm due to low signal to noise ratio (SNR. After that, bands 1 to 119 have been eliminated for their irrelevancy to extracting oil spill spectral endmembers. In the next step, by using MATLAB hyperspectral toolbox, six spectral endmembers according to the ratio of oil to water have been extracted. Finally, by using extracted endmembers and SAM classification algorithm, the image has been classified into 6 classes. The classes are 100% oil, 80% oil and 20% water, 60% oil and 40% water, 40% oil and 60% water, 20% oil and 80% water, and 100% water.
Xie, Dengfeng; Zhang, Jinshui; Zhu, Xiufang; Pan, Yaozhong; Liu, Hongli; Yuan, Zhoumiqi; Yun, Ya
2016-02-05
Remote sensing technology plays an important role in monitoring rapid changes of the Earth's surface. However, sensors that can simultaneously provide satellite images with both high temporal and spatial resolution haven't been designed yet. This paper proposes an improved spatial and temporal adaptive reflectance fusion model (STARFM) with the help of an Unmixing-based method (USTARFM) to generate the high spatial and temporal data needed for the study of heterogeneous areas. The results showed that the USTARFM had higher accuracy than STARFM methods in two aspects of analysis: individual bands and of heterogeneity analysis. Taking the predicted NIR band as an example, the correlation coefficients (r) for the USTARFM, STARFM and unmixing methods were 0.96, 0.95, 0.90, respectively (p-value data fusion problems faced when using STARFM. Additionally, the USTARFM method could help researchers achieve better performance than STARFM at a smaller window size from its heterogeneous land surface quantitative representation.
Linear operator inequalities for strongly stable weakly regular linear systems
Curtain, RF
2001-01-01
We consider the question of the existence of solutions to certain linear operator inequalities (Lur'e equations) for strongly stable, weakly regular linear systems with generating operators A, B, C, 0. These operator inequalities are related to the spectral factorization of an associated Popov
Lizeth Torres
2018-05-01
Full Text Available The principal aim of a spectral observer is twofold: the reconstruction of a signal of time via state estimation and the decomposition of such a signal into the frequencies that make it up. A spectral observer can be catalogued as an online algorithm for time-frequency analysis because is a method that can compute on the fly the Fourier transform (FT of a signal, without having the entire signal available from the start. In this regard, this paper presents a novel spectral observer with an adjustable constant gain for reconstructing a given signal by means of the recursive identification of the coefficients of a Fourier series. The reconstruction or estimation of a signal in the context of this work means to find the coefficients of a linear combination of sines a cosines that fits a signal such that it can be reproduced. The design procedure of the spectral observer is presented along with the following applications: (1 the reconstruction of a simple periodical signal, (2 the approximation of both a square and a triangular signal, (3 the edge detection in signals by using the Fourier coefficients, (4 the fitting of the historical Bitcoin market data from 1 December 2014 to 8 January 2018 and (5 the estimation of a input force acting upon a Duffing oscillator. To round out this paper, we present a detailed discussion about the results of the applications as well as a comparative analysis of the proposed spectral observer vis-à-vis the Short Time Fourier Transform (STFT, which is a well-known method for time-frequency analysis.
Spectral signatures of chirality
Pedersen, Jesper Goor; Mortensen, Asger
2009-01-01
We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...
Linear Algebraic Method for Non-Linear Map Analysis
Yu, L.; Nash, B.
2009-01-01
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
Unmixing chromophores in human skin with a 3D multispectral optoacoustic mesoscopy system
Schwarz, Mathias; Aguirre, Juan; Soliman, Dominik; Buehler, Andreas; Ntziachristos, Vasilis
2016-03-01
The absorption of visible light by human skin is governed by a number of natural chromophores: Eumelanin, pheomelanin, oxyhemoglobin, and deoxyhemoglobin are the major absorbers in the visible range in cutaneous tissue. Label-free quantification of these tissue chromophores is an important step of optoacoustic (photoacoustic) imaging towards clinical application, since it provides relevant information in diseases. In tumor cells, for instance, there are metabolic changes (Warburg effect) compared to healthy cells, leading to changes in oxygenation in the environment of tumors. In malignant melanoma changes in the absorption spectrum have been observed compared to the spectrum of nonmalignant nevi. So far, optoacoustic imaging has been applied to human skin mostly in single-wavelength mode, providing anatomical information but no functional information. In this work, we excited the tissue by a tunable laser source in the spectral range from 413-680 nm with a repetition rate of 50 Hz. The laser was operated in wavelengthsweep mode emitting consecutive pulses at various wavelengths that allowed for automatic co-registration of the multispectral datasets. The multispectral raster-scan optoacoustic mesoscopy (MSOM) system provides a lateral resolution of melanin, oxyhemoglobin, and deoxyhemoglobin, three-dimensional absorption maps of all three absorbers were calculated from the multispectral dataset.
Moham P. Tiruveedhula; Joseph Fan; Ravi R. Sadasivuni; Surya S. Durbha; David L. Evans
2010-01-01
The accumulation of small diameter trees (SDTs) is becoming a nationwide concern. Forest management practices such as fire suppression and selective cutting of high grade timber have contributed to an overabundance of SDTs in many areas. Alternative value-added utilization of SDTs (for composite wood products and biofuels) has prompted the need to estimate their...
Somers, B.; Asner, G. P.
2014-09-01
The use of imaging spectroscopy for florisic mapping of forests is complicated by the spectral similarity among co-existing species. Here we evaluated an alternative spectral unmixing strategy combining a time series of EO-1 Hyperion images and an automated feature selection in Multiple Endmember Spectral Mixture Analysis (MESMA). The temporal analysis provided a way to incorporate species phenology while feature selection indicated the best phenological time and best spectral feature set to optimize the separability between tree species. Instead of using the same set of spectral bands throughout the image which is the standard approach in MESMA, our modified Wavelength Adaptive Spectral Mixture Analysis (WASMA) approach allowed the spectral subsets to vary on a per pixel basis. As such we were able to optimize the spectral separability between the tree species present in each pixel. The potential of the new approach for floristic mapping of tree species in Hawaiian rainforests was quantitatively assessed using both simulated and actual hyperspectral image time-series. With a Cohen's Kappa coefficient of 0.65, WASMA provided a more accurate tree species map compared to conventional MESMA (Kappa = 0.54; p-value < 0.05. The flexible or adaptive use of band sets in WASMA provides an interesting avenue to address spectral similarities in complex vegetation canopies.
Rayleigh imaging in spectral mammography
Berggren, Karl; Danielsson, Mats; Fredenberg, Erik
2016-03-01
Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.
Remote sensing of particle dynamics: a two-component unmixing model in a western UK shelf sea.
Mitchell, Catherine; Cunningham, Alex
2014-05-01
The relationship between the backscattering and absorption coefficients, in particular the backscattering to absorption ratio, is mediated by the type of particles present in the water column. By considering the optical signals to be driven by phytoplankton and suspended minerals, with a relatively constant influence from CDOM, radiative transfer modelling is used to propose a method for retrieving the optical contribution of phytoplankton and suspended minerals to the total absorption coefficient with mean percentage errors of below 5% for both components. These contributions can be converted to constituent concentrations if the appropriate specific inherent optical properties are known or can be determined from the maximum and minimum backscattering to absorption ratios of the data. Remotely sensed absorption and backscattering coefficients from eight years of MODIS data for the Irish Sea reveal maximum backscattering to absorption coefficient ratios over the winter (with an average for the region of 0.27), which then decrease to a minimum over the summer months (with an average of 0.06) before increasing again through to winter, indicating a change in the particles present in the water column. Application of the two-component unmixing model to this data showed seasonal cycles of both phytoplankton and suspended mineral concentrations which vary in both amplitude and periodicity depending on their location. For example, in the Bristol Channel the amplitude of the suspended mineral concentration throughout one cycle is approximately 75% greater than a yearly cycle in the eastern Irish Sea. These seasonal cycles give an insight into the complex dynamics of particles in the water column, indicating the suspension of sediment throughout the winter months and the loss of sediments from the surface layer over the summer during stratification. The relationship between the timing of the phytoplankton spring bloom and changes in the availability of light in the water
Spectral Imaging by Upconversion
Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter
2011-01-01
We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....
Suwono.
1978-01-01
A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)
Spectral Decomposition Algorithm (SDA)
National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...
Vretenar, M
2014-01-01
The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics
Linearization Method and Linear Complexity
Tanaka, Hidema
We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.
Chebyshev and Fourier spectral methods
Boyd, John P
2001-01-01
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
Linear mixing model applied to coarse resolution satellite data
Holben, Brent N.; Shimabukuro, Yosio E.
1992-01-01
A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Amaral, Cibele H.; Roberts, Dar A.; Almeida, Teodoro I. R.; Souza Filho, Carlos R.
2015-10-01
Biological invasion substantially contributes to the increasing extinction rates of native vegetative species. The remote detection and mapping of invasive species is critical for environmental monitoring. This study aims to assess the performance of a Multiple Endmember Spectral Mixture Analysis (MESMA) applied to imaging spectroscopy data for mapping Dendrocalamus sp. (bamboo) and Pinus elliottii L. (slash pine), which are invasive plant species, in a Brazilian neotropical landscape within the tropical Brazilian savanna biome. The work also investigates the spectral mixture between these exotic species and the native woody formations, including woodland savanna, submontane and alluvial seasonal semideciduous forests (SSF). Visible to Shortwave Infrared (VSWIR) imaging spectroscopy data at one-meter spatial resolution were atmospherically corrected and subset into the different spectral ranges (VIS-NIR1: 530-919 nm; and NIR2-SWIR: 1141-2352 nm). The data were further normalized via continuum removal (CR). Multiple endmember selection methods, including Interactive Endmember Selection (IES), Endmember average root mean square error (EAR), Minimum average spectral angle (MASA) and Count-based (CoB) (collectively called EMC), were employed to create endmember libraries for the targeted vegetation classes. The performance of the MESMA was assessed at the pixel and crown scales. Statistically significant differences (α = 0.05) were observed between overall accuracies that were obtained at various spectral ranges. The infrared region (IR) was critical for detecting the vegetation classes using spectral data. The invasive species endmembers exhibited spectral patterns in the IR that were not observed in the native formations. Bamboo was characterized as having a high green vegetation (GV) fraction, lower non-photosynthetic vegetation (NPV) and a low shade fraction, while pine exhibited higher NPV and shade fractions. The invasive species showed a statistically
Solow, Daniel
2014-01-01
This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Berberian, Sterling K
2014-01-01
Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.
Searle, Shayle R
2012-01-01
This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
Intermediate spectral theory and quantum dynamics
de Oliveira, Cesar R
2008-01-01
The spectral theory of linear operators plays a key role in the mathematical formulation of quantum theory. Furthermore, such a rigorous mathematical foundation leads to a more profound insight into the nature of quantum mechanics. This textbook provides a concise and comprehensible introduction to the spectral theory of (unbounded) self-adjoint operators and its application in quantum dynamics. The book places emphasis on the symbiotic relationship of these two domains by (1) presenting the basic mathematics of nonrelativistic quantum mechanics of one particle, i.e., developing the spectral theory of self-adjoint operators in infinite-dimensional Hilbert spaces from the beginning, and (2) giving an overview of many of the basic functional aspects of quantum theory, from its physical principles to the mathematical models. The book is intended for graduate (or advanced undergraduate) students and researchers interested in mathematical physics. It starts with linear operator theory, spectral questions and self-...
Olive, David J
2017-01-01
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...
Alcaraz, J.
2001-01-01
After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Spectral gamuts and spectral gamut mapping
Rosen, Mitchell R.; Derhak, Maxim W.
2006-01-01
All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.
Karloff, Howard
1991-01-01
To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming from the Simplex Method…via the Ellipsoid algorithm to Karmarkar’s algorithm. Moreover, its point of view is algorithmic and thus it provides both a history and a case history of work in complexity theory. The presentation is admirable; Karloff's style is informal (even humorous at times) without sacrificing anything necessary for understanding. Diagrams (including horizontal brackets that group terms) aid in providing clarity. The end-of-chapter notes are helpful...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews The reader will be well served by reading the monograph from cover to cover. The author succeeds in providing a concise, readable, understandable introduction to modern linear programming. —Mathematics of Computing This is a textbook intend...
Reduction of Linear Programming to Linear Approximation
Vaserstein, Leonid N.
2006-01-01
It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.
Spectral Cauchy Characteristic Extraction: Gravitational Waves and Gauge Free News
Handmer, Casey; Szilagyi, Bela; Winicour, Jeff
2015-04-01
We present a fast, accurate spectral algorithm for the characteristic evolution of the full non-linear vacuum Einstein field equations in the Bondi framework. Developed within the Spectral Einstein Code (SpEC), we demonstrate how spectral Cauchy characteristic extraction produces gravitational News without confounding gauge effects. We explain several numerical innovations and demonstrate speed, stability, accuracy, exponential convergence, and consistency with existing methods. We highlight its capability to deliver physical insights in the study of black hole binaries.
Adaptive Spectral Doppler Estimation
Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt
2009-01-01
. The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...
An Elementary Proof of the Polynomial Matrix Spectral Factorization Theorem
Ephremidze, Lasha
2010-01-01
A very simple and short proof of the polynomial matrix spectral factorization theorem (on the unit circle as well as on the real line) is presented, which relies on elementary complex analysis and linear algebra.
Introduction to spectral theory
Levitan, B M
1975-01-01
This monograph is devoted to the spectral theory of the Sturm- Liouville operator and to the spectral theory of the Dirac system. In addition, some results are given for nth order ordinary differential operators. Those parts of this book which concern nth order operators can serve as simply an introduction to this domain, which at the present time has already had time to become very broad. For the convenience of the reader who is not familar with abstract spectral theory, the authors have inserted a chapter (Chapter 13) in which they discuss this theory, concisely and in the main without proofs, and indicate various connections with the spectral theory of differential operators.
Tanwiwat Jaikuna
2017-02-01
Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.
On Longitudinal Spectral Coherence
Kristensen, Leif
1979-01-01
It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between ...... observation sites and the turbulence intensity influence the results. The limitations of the theory are discussed....
Estimation of spectral kurtosis
Sutawanir
2017-03-01
Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to
Spectrally accurate contour dynamics
Van Buskirk, R.D.; Marcus, P.S.
1994-01-01
We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use
Stevanovic, Dragan
2015-01-01
Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the
Skerovic, V; Zarubica, V; Aleksic, M; Zekovic, L; Belca, I
2010-01-01
Realization of the scale of spectral responsivity of the detectors in the Directorate of Measures and Precious Metals (DMDM) is based on silicon detectors traceable to LNE-INM. In order to realize the unit of spectral irradiance in the laboratory for photometry and radiometry of the Bureau of Measures and Precious Metals, the new method based on the calibration of the spectroradiometer by comparison with standard detector has been established. The development of the method included realization of the System of Spectral Comparisons (SSC), together with the detector spectral responsivity calibrations by means of a primary spectrophotometric system. The linearity testing and stray light analysis were preformed to characterize the spectroradiometer. Measurement of aperture diameter and calibration of transimpedance amplifier were part of the overall experiment. In this paper, the developed method is presented and measurement results with the associated measurement uncertainty budget are shown.
Skerovic, V; Zarubica, V; Aleksic, M [Directorate of measures and precious metals, Optical radiation Metrology department, Mike Alasa 14, 11000 Belgrade (Serbia); Zekovic, L; Belca, I, E-mail: vladanskerovic@dmdm.r [Faculty of Physics, Department for Applied physics and metrology, Studentski trg 12-16, 11000 Belgrade (Serbia)
2010-10-15
Realization of the scale of spectral responsivity of the detectors in the Directorate of Measures and Precious Metals (DMDM) is based on silicon detectors traceable to LNE-INM. In order to realize the unit of spectral irradiance in the laboratory for photometry and radiometry of the Bureau of Measures and Precious Metals, the new method based on the calibration of the spectroradiometer by comparison with standard detector has been established. The development of the method included realization of the System of Spectral Comparisons (SSC), together with the detector spectral responsivity calibrations by means of a primary spectrophotometric system. The linearity testing and stray light analysis were preformed to characterize the spectroradiometer. Measurement of aperture diameter and calibration of transimpedance amplifier were part of the overall experiment. In this paper, the developed method is presented and measurement results with the associated measurement uncertainty budget are shown.
Rectangular spectral collocation
Driscoll, Tobin A.; Hale, Nicholas
2015-01-01
Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon
Vowel Inherent Spectral Change
Assmann, Peter
2013-01-01
It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...
NONE
1998-08-01
Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.
Spectral properties of nuclear matter
Bozek, P
2006-01-01
We review self-consistent spectral methods for nuclear matter calculations. The in-medium T-matrix approach is conserving and thermodynamically consistent. It gives both the global and the single-particle properties the system. The T-matrix approximation allows to address the pairing phenomenon in cold nuclear matter. A generalization of nuclear matter calculations to the super.uid phase is discussed and numerical results are presented for this case. The linear response of a correlated system going beyond the Hartree-Fock+ Random-Phase-Approximation (RPA) scheme is studied. The polarization is obtained by solving a consistent Bethe-Salpeter (BS) equation for the coupling of dressed nucleons to an external field. We find that multipair contributions are important for the spin(isospin) response when the interaction is spin(isospin) dependent
Stochastic Spectral and Conjugate Descent Methods
Kovalev, Dmitry
2018-02-11
The state-of-the-art methods for solving optimization problems in big dimensions are variants of randomized coordinate descent (RCD). In this paper we introduce a fundamentally new type of acceleration strategy for RCD based on the augmentation of the set of coordinate directions by a few spectral or conjugate directions. As we increase the number of extra directions to be sampled from, the rate of the method improves, and interpolates between the linear rate of RCD and a linear rate independent of the condition number. We develop and analyze also inexact variants of these methods where the spectral and conjugate directions are allowed to be approximate only. We motivate the above development by proving several negative results which highlight the limitations of RCD with importance sampling.
Stochastic Spectral and Conjugate Descent Methods
Kovalev, Dmitry; Gorbunov, Eduard; Gasanov, Elnur; Richtarik, Peter
2018-01-01
The state-of-the-art methods for solving optimization problems in big dimensions are variants of randomized coordinate descent (RCD). In this paper we introduce a fundamentally new type of acceleration strategy for RCD based on the augmentation of the set of coordinate directions by a few spectral or conjugate directions. As we increase the number of extra directions to be sampled from, the rate of the method improves, and interpolates between the linear rate of RCD and a linear rate independent of the condition number. We develop and analyze also inexact variants of these methods where the spectral and conjugate directions are allowed to be approximate only. We motivate the above development by proving several negative results which highlight the limitations of RCD with importance sampling.
Spectral theory and nonlinear functional analysis
Lopez-Gomez, Julian
2001-01-01
This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.
Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors
Holben, Brent N.; Shimabukuro, Yosio E.
1993-01-01
A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55-3.95 micron channel was used with the two reflective channels 0.58-0.68 micron and 0.725-1.1 micron to run a constrained least squares model to generate fraction images for an area in the west central region of Brazil. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse spatial resolution data for global studies.
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Consys Linear Control System Design Software Package
Diamantidis, Z.
1987-01-01
This package is created in order to help engineers, researchers, students and all who work on linear control systems. The software includes all time and frequency domain analysises, spectral analysises and networks, active filters and regulators design aids. The programmes are written on Hewlett Packard computer in Basic 4.0
SPAM- SPECTRAL ANALYSIS MANAGER (UNIX VERSION)
Solomon, J. E.
1994-01-01
The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different
Vaeth, W.
1979-04-01
The correlation of signal components at different frequencies like higher harmonics cannot be detected by a normal power spectral density measurement, since this technique correlates only components at the same frequency. This paper describes a special method for measuring the correlation of two signal components at different frequencies: the CRISS power spectral density. From this new function in frequency analysis, the correlation of two components can be determined quantitatively either they stem from one signal or from two diverse signals. The principle of the method, suitable for the higher harmonics of a signal as well as for any other frequency combinations is shown for the digital frequency analysis technique. Two examples of CRISS power spectral densities demonstrates the operation of the new method. (orig.) [de
Parametric Explosion Spectral Model
Ford, S R; Walter, W R
2012-01-19
Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.
Photovoltaic spectral responsivity measurements
Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)
1998-09-01
This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.
SpectralNET – an application for spectral graph analysis and visualization
Schreiber Stuart L
2005-10-01
Full Text Available Abstract Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices and interactions (edges that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors. Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is
Spectral analysis by correlation
Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.
1969-01-01
The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr
Spectral backward radiation profile
Kwon, Sung Duck; Lee, Keun Hyun; Kim, Bo Ra; Yoon, Suk Soo
2004-01-01
Ultrasonic backward radiation profile is frequency-dependent when incident region has deptional gradient of acoustical properties or multi-layers. Until now, we have measured the profiles of principal frequencies of used transducers so that it was not easy to understand the change of the frequency component and spectrum of backward radiation from the profile. We tried to measure the spectral backward radiation profiles using DFP(digital filer package) Lecroy DSO. The very big changes in the shape and pattern of spectral backward radiation profiles leads to the conclusion that this new try could be very effective tool to evaluate frequency dependent surface area.
Spectral Ensemble Kalman Filters
Mandel, Jan; Kasanický, Ivan; Vejmelka, Martin; Fuglík, Viktor; Turčičová, Marie; Eben, Kryštof; Resler, Jaroslav; Juruš, Pavel
2014-01-01
Roč. 11, - (2014), EMS2014-446 [EMS Annual Meeting /14./ & European Conference on Applied Climatology (ECAC) /10./. 06.10.2014-10.10.2014, Prague] R&D Projects: GA ČR GA13-34856S Grant - others:NSF DMS-1216481 Institutional support: RVO:67985807 Keywords : data assimilation * spectral filter Subject RIV: DG - Athmosphere Sciences, Meteorology
Mechanical spectral shift reactor
Sherwood, D.G.; Wilson, J.F.; Salton, R.B.; Fensterer, H.F.
1981-01-01
A mechanical spectral shift reactor comprises apparatus for inserting and withdrawing water displacer elements from the reactor core for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The apparatus includes drivemechanisms for moving the displacer elements relative to the core and guide mechanisms for guiding the displayer rods through the reactor vessel
Mechanical spectral shift reactor
Sherwood, D.G.; Wilson, J.F.; Salton, R.B.; Fensterer, H.F.
1982-01-01
A mechanical spectral shift reactor comprises apparatus for inserting and withdrawing water displacer elements from the reactor core for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The apparatus includes drive mechanisms for moving the displacer elements relative to the core and guide mechanisms for guiding the displacer rods through the reactor vessel. (author)
Spectral properties of near-Earth asteroids on cometary orbits
Popescu, M.; Vaduvescu, O.; de Leon, J.; Boaca, I. L.; Gherase, R. M.; Nedelcu, D. A.; INT students, I. N. G.
2017-09-01
We studied the spectral distributions of near-Earth asteroids on cometary orbits (NEACOs) in order to identify potential dormant or extinct comets among these objects. We present the spectral observations for 19 NEACOs obtained with Isaac Newton Telescope and Infrared Telescope Facility (IRTF). Although initially classified as asteroid, one of our targets - 2007 VA85 was confirmed to be active comet 333P/LINEAR on its 2016 appearance. We found that the NEACOs population is a mixing of different compositional classes.
Multichannel spectral mode of the ALOHA up-conversion interferometer
Lehmann, L.; Darré, P.; Boulogne, H.; Delage, L.; Grossard, L.; Reynaud, F.
2018-06-01
In this paper, we propose a multichannel spectral configuration of the Astronomical Light Optical Hybrid Analysis (ALOHA) instrument dedicated to high-resolution imaging. A frequency conversion process is implemented in each arm of an interferometer to transfer the astronomical light to a shorter wavelength domain. Exploiting the spectral selectivity of this non-linear optical process, we propose to use a set of independent pump lasers in order to simultaneously study multiple spectral channels. This principle is experimentally demonstrated with a dual-channel configuration as a proof-of-principle.
On the spectral dependence of the critical temperature of superconductors
Combescot, R.
1989-01-01
The authors have solved analytically the linearized Eliashberg equations for T c in the weak coupling limit. The corrections to their result go to zero in this limit. Their calculation is valid for any spectral shape. They find a smooth dependence of T c on the spectral shape. Only the gross features of the spectrum are relevant. The authors propose for T c an interpolation formula valid for any coupling strength and any spectral shape. This formula is in good agreement with known numerical results. It agrees with all the qualitative behavior obtained from computer work
Zhao, H.; Hao, Y.; Liu, X.; Hou, M.; Zhao, X.
2018-04-01
Hyperspectral remote sensing is a completely non-invasive technology for measurement of cultural relics, and has been successfully applied in identification and analysis of pigments of Chinese historical paintings. Although the phenomenon of mixing pigments is very usual in Chinese historical paintings, the quantitative analysis of the mixing pigments in the ancient paintings is still unsolved. In this research, we took two typical mineral pigments, vermilion and stone yellow as example, made precisely mixed samples using these two kinds of pigments, and measured their spectra in the laboratory. For the mixing spectra, both fully constrained least square (FCLS) method and derivative of ratio spectroscopy (DRS) were performed. Experimental results showed that the mixing spectra of vermilion and stone yellow had strong nonlinear mixing characteristics, but at some bands linear unmixing could also achieve satisfactory results. DRS using strong linear bands can reach much higher accuracy than that of FCLS using full bands.
Linearly constrained minimax optimization
Madsen, Kaj; Schjær-Jacobsen, Hans
1978-01-01
We present an algorithm for nonlinear minimax optimization subject to linear equality and inequality constraints which requires first order partial derivatives. The algorithm is based on successive linear approximations to the functions defining the problem. The resulting linear subproblems...
Electrophysiological measurements of spectral sensitivities: a review
R.D. DeVoe
1997-02-01
Full Text Available Spectral sensitivities of visual systems are specified as the reciprocals of the intensities of light (quantum fluxes needed at each wavelength to elicit the same criterion amplitude of responses. This review primarily considers the methods that have been developed for electrophysiological determinations of criterion amplitudes of slow-wave responses from single retinal cells. Traditional flash methods can require tedious dark adaptations and may yield erroneous spectral sensitivity curves which are not seen in such modifications as ramp methods. Linear response methods involve interferometry, while constant response methods involve manual or automatic adjustments of continuous illumination to keep response amplitudes constant during spectral scans. In DC or AC computerized constant response methods, feedback to determine intensities at each wavelength is derived from the response amplitudes themselves. Although all but traditional flash methods have greater or lesser abilities to provide on-line determinations of spectral sensitivities, computerized constant response methods are the most satisfactory due to flexibility, speed and maintenance of a constant adaptation level
Spectral theory and nonlinear analysis with applications to spatial ecology
Cano-Casanova, S; Mora-Corral , C
2005-01-01
This volume details some of the latest advances in spectral theory and nonlinear analysis through various cutting-edge theories on algebraic multiplicities, global bifurcation theory, non-linear Schrödinger equations, non-linear boundary value problems, large solutions, metasolutions, dynamical systems, and applications to spatial ecology. The main scope of the book is bringing together a series of topics that have evolved separately during the last decades around the common denominator of spectral theory and nonlinear analysis - from the most abstract developments up to the most concrete applications to population dynamics and socio-biology - in an effort to fill the existing gaps between these fields.
Rupert, Michael G.; Plummer, Niel
2009-01-01
This raster data set delineates the predicted probability of unmixed young groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps were developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.
Hybrid spectral CT reconstruction.
Darin P Clark
Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with
Hybrid spectral CT reconstruction
Clark, Darin P.
2017-01-01
Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral
Noncommutativity from spectral flow
Heinzl, Thomas; Ilderton, Anton [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)
2007-07-27
We investigate the transition from second- to first-order systems. Quantum mechanically, this transforms configuration space into phase space and hence introduces noncommutativity in the former. This transition may be described in terms of spectral flow. Gaps in the energy or mass spectrum may become large which effectively truncates the available state space. Using both operator and path integral languages we explicitly discuss examples in quantum mechanics (light-front) quantum field theory and string theory.
Mechanical spectral shift reactor
Wilson, J.F.; Sherwood, D.G.
1982-01-01
A mechanical spectral shift reactor comprises a reactive core having fuel assemblies accommodating both water displacer elements and neutron absorbing control rods for selectively changing the volume of water-moderator in the core. The fuel assemblies with displacer and control rods are arranged in alternating fashion so that one displacer element drive mechanism may move displacer elements in more than one fuel assembly without interfering with the movement of control rods of a corresponding control rod drive mechanisms. (author)
Speech recognition from spectral dynamics
Carrier nature of speech; modulation spectrum; spectral dynamics ... the relationships between phonetic values of sounds and their short-term spectral envelopes .... the number of free parameters that need to be estimated from training data.
Foundations of linear and generalized linear models
Agresti, Alan
2015-01-01
A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,
Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect
Guo, Hairun; Wang, Shaofei; Zeng, Xianglong
2013-01-01
Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...
Multidomain spectral solution of compressible viscous flows
Kopriva, D.A.
1994-01-01
We develop a nonoverlapping mutidomain spectral collocation method to solve compressible viscous flows. At the interfaces, the advection terms are treated with a characteristic correction method. The diffusion terms are treated with a penalty method. Spectral accuracy is demonstrated on linear model problems in one and two space dimensions. The method is applied to a subsonic and supersonic flow over a flat plate. The results are compared to solutions of the boundary-layer equations which show that two digit accuracy in the adiabatic plate temperature is obtained with 16 points in the boundary layer for a freestream Mach number of two. A second application is to a transonic flow in a two-dimensional converging-diverging nozzle, where the computed results are compared to experimental data
Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela
2015-07-01
Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes.
Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela
2015-01-01
Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes. PMID:26233047
Llobet, X.; Appert, K.; Bondeson, A.; Vaclavik, J.
1990-01-01
Finite difference and finite element approximations of eigenvalue problems, under certain circumstances exhibit spectral pollution, i.e. the appearance of eigenvalues that do not converge to the correct value when the mesh density is increased. In the present paper this phenomenon is investigated in a homogeneous case by means of discrete dispersion relations: the polluting modes belong to a branch of the dispersion relation that is strongly distorted by the discretization method employed, or to a new, spurious branch. The analysis is applied to finite difference methods and to finite element methods, and some indications about how to avoiding polluting schemes are given. (author) 5 figs., 10 refs
Mechanical spectral shift reactor
Doshi, P.K.; George, R.A.; Dollard, W.J.
1982-01-01
A mechanical spectral shift arrangement for controlling a nuclear reactor includes a plurality of reactor coolant displacer members which are inserted into a reactor core at the beginning of the core life to reduce the volume of reactor coolant-moderator in the core at start-up. However, as the reactivity of the core declines with fuel depletion, selected displacer members are withdrawn from the core at selected time intervals to increase core moderation at a time when fuel reactivity is declining. (author)
Carlson, W.R.; Piplica, E.J.
1982-01-01
A spectral shift pressurized water reactor comprising apparatus for inserting and withdrawing water displacer elements having differing neutron absorbing capabilities for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The displacer elements comprise substantially hollow cylindrical low neutron absorbing rods and substantially hollow cylindrical thick walled stainless rods. Since the stainless steel displacer rods have greater neutron absorbing capability, they can effect greater reactivity change per rod. However, by arranging fewer stainless steel displacer rods in a cluster, the reactivity worth of the stainless steel displacer rod cluster can be less than a low neutron absorbing displacer rod cluster. (author)
Numerical linear algebra theory and applications
Beilina, Larisa; Karchevskii, Mikhail
2017-01-01
This book combines a solid theoretical background in linear algebra with practical algorithms for numerical solution of linear algebra problems. Developed from a number of courses taught repeatedly by the authors, the material covers topics like matrix algebra, theory for linear systems of equations, spectral theory, vector and matrix norms combined with main direct and iterative numerical methods, least squares problems, and eigen problems. Numerical algorithms illustrated by computer programs written in MATLAB® are also provided as supplementary material on SpringerLink to give the reader a better understanding of professional numerical software for the solution of real-life problems. Perfect for a one- or two-semester course on numerical linear algebra, matrix computation, and large sparse matrices, this text will interest students at the advanced undergraduate or graduate level.
X-ray spectral decomposition imaging system
1977-07-27
Projection measurements are made of the transmitted X-ray beam in low and high energy regions. These are combined in a non-linear processor to produce atomic-number-dependent and density-dependent projection information. This information is used to provide cross-sectional images which are free of spectral-shift artifacts and completely define the specific material properties. The invention described herein was made in the course of work under a grant from the Department of Health, Education, and Welfare.
Theory of linear operators in Hilbert space
Akhiezer, N I
1993-01-01
This classic textbook by two mathematicians from the USSR's prestigious Kharkov Mathematics Institute introduces linear operators in Hilbert space, and presents in detail the geometry of Hilbert space and the spectral theory of unitary and self-adjoint operators. It is directed to students at graduate and advanced undergraduate levels, but because of the exceptional clarity of its theoretical presentation and the inclusion of results obtained by Soviet mathematicians, it should prove invaluable for every mathematician and physicist. 1961, 1963 edition.
Intensity Conserving Spectral Fitting
Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.
2015-01-01
The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.
Integrability and Linear Stability of Nonlinear Waves
Degasperis, Antonio; Lombardo, Sara; Sommacal, Matteo
2018-03-01
It is well known that the linear stability of solutions of 1+1 partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general N× N matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for N=3 for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants.
Spectral Target Detection using Schroedinger Eigenmaps
Dorado-Munoz, Leidy P.
Applications of optical remote sensing processes include environmental monitoring, military monitoring, meteorology, mapping, surveillance, etc. Many of these tasks include the detection of specific objects or materials, usually few or small, which are surrounded by other materials that clutter the scene and hide the relevant information. This target detection process has been boosted lately by the use of hyperspectral imagery (HSI) since its high spectral dimension provides more detailed spectral information that is desirable in data exploitation. Typical spectral target detectors rely on statistical or geometric models to characterize the spectral variability of the data. However, in many cases these parametric models do not fit well HSI data that impacts the detection performance. On the other hand, non-linear transformation methods, mainly based on manifold learning algorithms, have shown a potential use in HSI transformation, dimensionality reduction and classification. In target detection, non-linear transformation algorithms are used as preprocessing techniques that transform the data to a more suitable lower dimensional space, where the statistical or geometric detectors are applied. One of these non-linear manifold methods is the Schroedinger Eigenmaps (SE) algorithm that has been introduced as a technique for semi-supervised classification. The core tool of the SE algorithm is the Schroedinger operator that includes a potential term that encodes prior information about the materials present in a scene, and enables the embedding to be steered in some convenient directions in order to cluster similar pixels together. A completely novel target detection methodology based on SE algorithm is proposed for the first time in this thesis. The proposed methodology does not just include the transformation of the data to a lower dimensional space but also includes the definition of a detector that capitalizes on the theory behind SE. The fact that target pixels and
Sourav Rout, Smruti; Wörner, Gerhard
2017-04-01
Time-scales extracted from the detailed analysis of chemically zoned minerals provide insights into crystal ages, magma storage and compositional evolution, including mixing and unmixing events. This allows having a better understanding of pre-eruptive history of large and potentially dangerous magma chambers. We present a comprehensive study of chemical diffusion across zoning and exsolution patterns of alkali feldspars in carbonatite-bearing cognate syenites from the 6.3 km3 (D.R.E) phonolitic Laacher See Tephra (LST) eruption 12.9 ka ago. The Laacher See volcano is located in the Quaternary East Eifel volcanic field of the Paleozoic Rhenish Massif in Western Germany and has produced a compositionally variable sequence in a single eruption from a magma chamber that was zoned from mafic phonolite at the base to highly evolved, actively degassing phonolite magma at the top. Diffusion chronometry is applied to major and trace element compositions obtained on alkali feldspars from carbonate-bearing syenitic cumulates. Methods used were laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) in combination with energy-dispersive and wavelength-dispersive electron microprobe analyses (EDS & WDS-EMPA). The grey scale values extracted from multiple accumulations of back-scattered electron images represent the K/Na ratio owing to the extremely low concentrations of Ba and Sr (transition and phase separation). A distinctive uphill diffusive analysis is used specifically for the phase separation in the case of exsolution features (comprising of albite- and orthoclase-rich phases) in sanidines. The error values are aggregates of propagated error through calculations and the uncertainty in temperature values. Trace element compositional data of distinct feldspar compositions that are assumed to have grown before and after silicate-carbonate unmixing are used to estimate partition coefficients between carbonate and silicate melt. The resulting values correlate
Uniform convergence of the empirical spectral distribution function
Mikosch, T; Norvaisa, R
1997-01-01
Let X be a linear process having a finite fourth moment. Assume F is a class of square-integrable functions. We consider the empirical spectral distribution function J(n,X) based on X and indexed by F. If F is totally bounded then J(n,X) satisfies a uniform strong law of large numbers. If, in
Spectral calculations in magnetohydrodynamics using the Jacobi-Davidson method
Belien, A. J. C.; van der Holst, B.; Nool, M.; van der Ploeg, A.; Goedbloed, J. P.
2001-01-01
For the solution of the generalized complex non-Hermitian eigenvalue problems Ax = lambda Bx occurring in the spectral study of linearized resistive magnetohydrodynamics (MHD) a new parallel solver based on the recently developed Jacobi-Davidson [SIAM J. Matrix Anal. Appl. 17 (1996) 401] method has
General spectral flow formula for fixed maximal domain
Booss-Bavnbek, Bernhelm; Zhu, Chaofeng
2005-01-01
of the resulting continuous family of (unbounded) self-adjoint Fredholm operators in terms of the Maslov index of two related curves of Lagrangian spaces. One curve is given by the varying domains, the other by the Cauchy data spaces. We provide rigorous definitions of the underlying concepts of spectral theory......We consider a continuous curve of linear elliptic formally self-adjoint differential operators of first order with smooth coefficients over a compact Riemannian manifold with boundary together with a continuous curve of global elliptic boundary value problems. We express the spectral flow...... and symplectic analysis and give a full (and surprisingly short) proof of our General Spectral Flow Formula for the case of fixed maximal domain. As a side result, we establish local stability of weak inner unique continuation property (UCP) and explain its role for parameter dependent spectral theory....
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
Peterson, David; Stofleth, Jerome H.; Saul, Venner W.
2017-07-11
Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.
Classifying Linear Canonical Relations
Lorand, Jonathan
2015-01-01
In this Master's thesis, we consider the problem of classifying, up to conjugation by linear symplectomorphisms, linear canonical relations (lagrangian correspondences) from a finite-dimensional symplectic vector space to itself. We give an elementary introduction to the theory of linear canonical relations and present partial results toward the classification problem. This exposition should be accessible to undergraduate students with a basic familiarity with linear algebra.
The spectral imaging facility: Setup characterization
De Angelis, Simone, E-mail: simone.deangelis@iaps.inaf.it; De Sanctis, Maria Cristina; Manzari, Paola Olga [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Ammannito, Eleonora [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, Los Angeles, California 90095-1567 (United States); Di Iorio, Tatiana [ENEA, UTMEA-TER, Rome (Italy); Liberati, Fabrizio [Opto Service SrL, Campagnano di Roma (RM) (Italy); Tarchi, Fabio; Dami, Michele; Olivieri, Monica; Pompei, Carlo [Selex ES, Campi Bisenzio (Italy); Mugnuolo, Raffaele [Italian Space Agency, ASI, Spatial Geodesy Center, Matera (Italy)
2015-09-15
The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.
Rectangular spectral collocation
Driscoll, Tobin A.
2015-02-06
Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.
Spectral evolution of galaxies
Rocca-Volmerange, B.
1989-01-01
A recent striking event in Observational Cosmology is the discovery of a large population of galaxies at extreme cosmological distances (extended from spectral redshifts ≅ 1 to ≥ 3) corresponding to a lookback time of 80% of the Universe's age. However when galaxies are observed at such remote epochs, their appearances are affected by at least two simultaneous effects which are respectively a cosmological effect and the intrinsic evolution of their stellar populations which appear younger than in our nearby galaxies. The fundamental problem is first to disentangle the respective contributions of these two effects to apparent magnitudes and colors of distant galaxies. Other effects which are likely to modify the appearance of galaxies are amplification by gravitational lensing and interaction with environment will also be considered. (author)
Spectral Line Shapes. Proceedings
Zoppi, M.; Ulivi, L.
1997-01-01
These proceedings represent papers presented at the 13th International Conference on Spectral Line Shapes which was held in Firenze,Italy from June 16-21, 1996. The topics covered a wide range of subjects emphasizing the physical processes associated with the formation of line profiles: high and low density plasma; atoms and molecules in strong laser fields, Dopple-free and ultra-fine spectroscopy; the line shapes generated by the interaction of neutrals, atoms and molecules, where the relavant quantities are single particle properties, and the interaction-induced spectroscopy. There were 131 papers presented at the conference, out of these, 6 have been abstracted for the Energy Science and Technology database
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
ATR neutron spectral characterization
Rogers, J.W.; Anderl, R.A.
1995-11-01
The Advanced Test Reactor (ATR) at INEL provides intense neutron fields for irradiation-effects testing of reactor material samples, for production of radionuclides used in industrial and medical applications, and for scientific research. Characterization of the neutron environments in the irradiation locations of the ATR has been done by means of neutronics calculations and by means of neutron dosimetry based on the use of neutron activation monitors that are placed in the various irradiation locations. The primary purpose of this report is to present the results of an extensive characterization of several ATR irradiation locations based on neutron dosimetry measurements and on least-squares-adjustment analyses that utilize both neutron dosimetry measurements and neutronics calculations. This report builds upon the previous publications, especially the reference 4 paper. Section 2 provides a brief description of the ATR and it tabulates neutron spectral information for typical irradiation locations, as derived from the more historical neutron dosimetry measurements. Relevant details that pertain to the multigroup neutron spectral characterization are covered in section 3. This discussion includes a presentation on the dosimeter irradiation and analyses and a development of the least-squares adjustment methodology, along with a summary of the results of these analyses. Spectrum-averaged cross sections for neutron monitoring and for displacement-damage prediction in Fe, Cr, and Ni are given in section 4. In addition, section4 includes estimates of damage generation rates for these materials in selected ATR irradiation locations. In section 5, the authors present a brief discussion of the most significant conclusions of this work and comment on its relevance to the present ATR core configuration. Finally, detailed numerical and graphical results for the spectrum-characterization analyses in each irradiation location are provided in the Appendix.
Spectral Theory of Chemical Bonding
Langhoff, P. W; Boatz, J. A; Hinde, R. J; Sheehy, J. A
2004-01-01
.... Wave function antisymmetry in the aggregate atomic spectral-product basis is enforced by unitary transformation performed subsequent to formation of the Hamiltonian matrix, greatly simplifying its construction...
[Review of digital ground object spectral library].
Zhou, Xiao-Hu; Zhou, Ding-Wu
2009-06-01
A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.
CMB spectral distortions as solutions to the Boltzmann equations
Ota, Atsuhisa, E-mail: a.ota@th.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)
2017-01-01
We propose to re-interpret the cosmic microwave background spectral distortions as solutions to the Boltzmann equation. This approach makes it possible to solve the second order Boltzmann equation explicitly, with the spectral y distortion and the momentum independent second order temperature perturbation, while generation of μ distortion cannot be explained even at second order in this framework. We also extend our method to higher order Boltzmann equations systematically and find new type spectral distortions, assuming that the collision term is linear in the photon distribution functions, namely, in the Thomson scattering limit. As an example, we concretely construct solutions to the cubic order Boltzmann equation and show that the equations are closed with additional three parameters composed of a cubic order temperature perturbation and two cubic order spectral distortions. The linear Sunyaev-Zel'dovich effect whose momentum dependence is different from the usual y distortion is also discussed in the presence of the next leading order Kompaneets terms, and we show that higher order spectral distortions are also generated as a result of the diffusion process in a framework of higher order Boltzmann equations. The method may be applicable to a wider class of problems and has potential to give a general prescription to non-equilibrium physics.
Non linear system become linear system
Petre Bucur
2007-01-01
Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.
Linear motor coil assembly and linear motor
2009-01-01
An ironless linear motor (5) comprising a magnet track (53) and a coil assembly (50) operating in cooperation with said magnet track (53) and having a plurality of concentrated multi-turn coils (31 a-f, 41 a-d, 51 a-k), wherein the end windings (31E) of the coils (31 a-f, 41 a-e) are substantially
SPECTRAL ANALYSIS OF EXCHANGE RATES
ALEŠA LOTRIČ DOLINAR
2013-06-01
Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates
Optical surfacing via linear ion source
Wu, Lixiang; Wei, Chaoyang; Shao, Jianda
2017-01-01
We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. The modified Fourier series, or sinusoidal wave surfaces, build a relationship between the fabrication process of optical surfaces and the surface characterization based on power spectral density (PSD) analysis. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of mid-spatial frequency (MSF) errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approach.
Optical surfacing via linear ion source
Wu, Lixiang, E-mail: wulx@hdu.edu.cn [Key Lab of RF Circuits and Systems of Ministry of Education, Zhejiang Provincial Key Lab of LSI Design, Microelectronics CAD Center, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou (China); Wei, Chaoyang, E-mail: siomwei@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Shao, Jianda, E-mail: jdshao@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)
2017-04-15
We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. The modified Fourier series, or sinusoidal wave surfaces, build a relationship between the fabrication process of optical surfaces and the surface characterization based on power spectral density (PSD) analysis. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of mid-spatial frequency (MSF) errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approach.
SPECTRAL RECONSTRUCTION BASED ON SVM FOR CROSS CALIBRATION
H. Gao
2017-05-01
Full Text Available Chinese HY-1C/1D satellites will use a 5nm/10nm-resolutional visible-near infrared(VNIR hyperspectral sensor with the solar calibrator to cross-calibrate with other sensors. The hyperspectral radiance data are composed of average radiance in the sensor’s passbands and bear a spectral smoothing effect, a transform from the hyperspectral radiance data to the 1-nm-resolution apparent spectral radiance by spectral reconstruction need to be implemented. In order to solve the problem of noise cumulation and deterioration after several times of iteration by the iterative algorithm, a novel regression method based on SVM is proposed, which can approach arbitrary complex non-linear relationship closely and provide with better generalization capability by learning. In the opinion of system, the relationship between the apparent radiance and equivalent radiance is nonlinear mapping introduced by spectral response function(SRF, SVM transform the low-dimensional non-linear question into high-dimensional linear question though kernel function, obtaining global optimal solution by virtue of quadratic form. The experiment is performed using 6S-simulated spectrums considering the SRF and SNR of the hyperspectral sensor, measured reflectance spectrums of water body and different atmosphere conditions. The contrastive result shows: firstly, the proposed method is with more reconstructed accuracy especially to the high-frequency signal; secondly, while the spectral resolution of the hyperspectral sensor reduces, the proposed method performs better than the iterative method; finally, the root mean square relative error(RMSRE which is used to evaluate the difference of the reconstructed spectrum and the real spectrum over the whole spectral range is calculated, it decreses by one time at least by proposed method.
ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.
SEDLACEK,III, A.J.FINFROCK,C.
2002-09-01
As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.
Wiedemann, H.
1981-11-01
Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Wiedemann, H.
1981-11-01
Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center
Matrices and linear transformations
Cullen, Charles G
1990-01-01
""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first
Efficient Non Linear Loudspeakers
Petersen, Bo R.; Agerkvist, Finn T.
2006-01-01
Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....
Faraway, Julian J
2014-01-01
A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition.New to the Second EditionReorganiz
Carr, Joseph
1996-01-01
The linear IC market is large and growing, as is the demand for well trained technicians and engineers who understand how these devices work and how to apply them. Linear Integrated Circuits provides in-depth coverage of the devices and their operation, but not at the expense of practical applications in which linear devices figure prominently. This book is written for a wide readership from FE and first degree students, to hobbyists and professionals.Chapter 1 offers a general introduction that will provide students with the foundations of linear IC technology. From chapter 2 onwa
Fault tolerant linear actuator
Tesar, Delbert
2004-09-14
In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.
Superconducting linear accelerator cryostat
Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.
1984-01-01
A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)
Towards spectral geometric methods for Euclidean quantum gravity
Panine, Mikhail; Kempf, Achim
2016-04-01
The unification of general relativity with quantum theory will also require a coming together of the two quite different mathematical languages of general relativity and quantum theory, i.e., of differential geometry and functional analysis, respectively. Of particular interest in this regard is the field of spectral geometry, which studies to which extent the shape of a Riemannian manifold is describable in terms of the spectra of differential operators defined on the manifold. Spectral geometry is hard because it is highly nonlinear, but linearized spectral geometry, i.e., the task to determine small shape changes from small spectral changes, is much more tractable and may be iterated to approximate the full problem. Here, we generalize this approach, allowing, in particular, nonequal finite numbers of shape and spectral degrees of freedom. This allows us to study how well the shape degrees of freedom are encoded in the eigenvalues. We apply this strategy numerically to a class of planar domains and find that the reconstruction of small shape changes from small spectral changes is possible if enough eigenvalues are used. While isospectral nonisometric shapes are known to exist, we find evidence that generically shaped isospectral nonisometric shapes, if existing, are exceedingly rare.
Biologically-inspired data decorrelation for hyper-spectral imaging
Ghita Ovidiu
2011-01-01
Full Text Available Abstract Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA, linear discriminant analysis (LDA, wavelet decomposition (WD, or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification
Estimation of spectral distribution of sky radiance using a commercial digital camera.
Saito, Masanori; Iwabuchi, Hironobu; Murata, Isao
2016-01-10
Methods for estimating spectral distribution of sky radiance from images captured by a digital camera and for accurately estimating spectral responses of the camera are proposed. Spectral distribution of sky radiance is represented as a polynomial of the wavelength, with coefficients obtained from digital RGB counts by linear transformation. The spectral distribution of radiance as measured is consistent with that obtained by spectrometer and radiative transfer simulation for wavelengths of 430-680 nm, with standard deviation below 1%. Preliminary applications suggest this method is useful for detecting clouds and studying the relation between irradiance at the ground and cloud distribution.
Impact of initial pulse shape on the nonlinear spectral compression in optical fibre
Boscolo, Sonia; Chaussard, Frederic; Andresen, Esben; Rigneault, Hervé; Finot, Christophe
2018-02-01
We theoretically study the effects of the temporal intensity profile of the initial pulse on the nonlinear propagation spectral compression process arising from nonlinear propagation in an optical fibre. Various linearly chirped input pulse profiles are considered, and their dynamics is explained with the aid of time-frequency representations. While initially parabolic-shaped pulses show enhanced spectral compression compared to Gaussian pulses, no significant spectral narrowing occurs when initially super-Gaussian pulses are used. Triangular pulses lead to a spectral interference phenomenon similar to the Fresnel bi-prism experiment.
Patten, B.C.
1983-04-01
Two issues concerning linearity or nonlinearity of natural systems are considered. Each is related to one of the two alternative defining properties of linear systems, superposition and decomposition. Superposition exists when a linear combination of inputs to a system results in the same linear combination of outputs that individually correspond to the original inputs. To demonstrate this property it is necessary that all initial states and inputs of the system which impinge on the output in question be included in the linear combination manipulation. As this is difficult or impossible to do with real systems of any complexity, nature appears nonlinear even though it may be linear. A linear system that displays nonlinear behavior for this reason is termed pseudononlinear. The decomposition property exists when the dynamic response of a system can be partitioned into an input-free portion due to state plus a state-free portion due to input. This is a characteristic of all linear systems, but not of nonlinear systems. Without the decomposition property, it is not possible to distinguish which portions of a system's behavior are due to innate characteristics (self) vs. outside conditions (environment), which is an important class of questions in biology and ecology. Some philosophical aspects of these findings are then considered. It is suggested that those ecologists who hold to the view that organisms and their environments are separate entities are in effect embracing a linear view of nature, even though their belief systems and mathematical models tend to be nonlinear. On the other hand, those who consider that organism-environment complex forms a single inseparable unit are implictly involved in non-linear thought, which may be in conflict with the linear modes and models that some of them use. The need to rectify these ambivalences on the part of both groups is indicated.
Linear colliders - prospects 1985
Rees, J.
1985-06-01
We discuss the scaling laws of linear colliders and their consequences for accelerator design. We then report on the SLAC Linear Collider project and comment on experience gained on that project and its application to future colliders. 9 refs., 2 figs
Richter, B.
1985-01-01
A report is given on the goals and progress of the SLAC Linear Collider. The author discusses the status of the machine and the detectors and give an overview of the physics which can be done at this new facility. He also gives some ideas on how (and why) large linear colliders of the future should be built
Rogner, H.H.
1989-01-01
The submitted sections on linear programming are extracted from 'Theorie und Technik der Planung' (1978) by W. Blaas and P. Henseler and reformulated for presentation at the Workshop. They consider a brief introduction to the theory of linear programming and to some essential aspects of the SIMPLEX solution algorithm for the purposes of economic planning processes. 1 fig
Rowe, C.H.; Wilton, M.S. de.
1979-01-01
An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)
Semidefinite linear complementarity problems
Eckhardt, U.
1978-04-01
Semidefinite linear complementarity problems arise by discretization of variational inequalities describing e.g. elastic contact problems, free boundary value problems etc. In the present paper linear complementarity problems are introduced and the theory as well as the numerical treatment of them are described. In the special case of semidefinite linear complementarity problems a numerical method is presented which combines the advantages of elimination and iteration methods without suffering from their drawbacks. This new method has very attractive properties since it has a high degree of invariance with respect to the representation of the set of all feasible solutions of a linear complementarity problem by linear inequalities. By means of some practical applications the properties of the new method are demonstrated. (orig.) [de
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
Handbook on linear motor application
1988-10-01
This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.
Substitution dynamical systems spectral analysis
Queffélec, Martine
2010-01-01
This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...
Spectral characterization of natural backgrounds
Winkelmann, Max
2017-10-01
As the distribution and use of hyperspectral sensors is constantly increasing, the exploitation of spectral features is a threat for camouflaged objects. To improve camouflage materials at first the spectral behavior of backgrounds has to be known to adjust and optimize the spectral reflectance of camouflage materials. In an international effort, the NATO CSO working group SCI-295 "Development of Methods for Measurements and Evaluation of Natural Background EO Signatures" is developing a method how this characterization of backgrounds has to be done. It is obvious that the spectral characterization of a background will be quite an effort. To compare and exchange data internationally the measurements will have to be done in a similar way. To test and further improve this method an international field trial has been performed in Storkow, Germany. In the following we present first impressions and lessons learned from this field campaign and describe the data that has been measured.
Adiabatic theorem and spectral concentration
Nenciu, G.
1981-01-01
The spectral concentration of arbitrary order, for the Stark effect is proved to exist for a large class of Hamiltonians appearing in nonrelativistic and relativistic quantum mechanics. The results are consequences of an abstract theorem about the spectral concentration for self-ad oint operators. A general form of the adiabatic theorem of quantum mechanics, generalizing an earlier result of the author as well as some results of Lenard, is also proved [ru
Linear ubiquitination in immunity.
Shimizu, Yutaka; Taraborrelli, Lucia; Walczak, Henning
2015-07-01
Linear ubiquitination is a post-translational protein modification recently discovered to be crucial for innate and adaptive immune signaling. The function of linear ubiquitin chains is regulated at multiple levels: generation, recognition, and removal. These chains are generated by the linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin E3 capable of forming the linear ubiquitin linkage de novo. LUBAC is not only relevant for activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in various signaling pathways, but importantly, it also regulates cell death downstream of immune receptors capable of inducing this response. Recognition of the linear ubiquitin linkage is specifically mediated by certain ubiquitin receptors, which is crucial for translation into the intended signaling outputs. LUBAC deficiency results in attenuated gene activation and increased cell death, causing pathologic conditions in both, mice, and humans. Removal of ubiquitin chains is mediated by deubiquitinases (DUBs). Two of them, OTULIN and CYLD, are constitutively associated with LUBAC. Here, we review the current knowledge on linear ubiquitination in immune signaling pathways and the biochemical mechanisms as to how linear polyubiquitin exerts its functions distinctly from those of other ubiquitin linkage types. © 2015 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.
Algebraic reconstruction techniques for spectral reconstruction in diffuse optical tomography
Brendel, Bernhard; Ziegler, Ronny; Nielsen, Tim
2008-01-01
Reconstruction in diffuse optical tomography (DOT) necessitates solving the diffusion equation, which is nonlinear with respect to the parameters that have to be reconstructed. Currently applied solving methods are based on the linearization of the equation. For spectral three-dimensional reconstruction, the emerging equation system is too large for direct inversion, but the application of iterative methods is feasible. Computational effort and speed of convergence of these iterative methods are crucial since they determine the computation time of the reconstruction. In this paper, the iterative methods algebraic reconstruction technique (ART) and conjugated gradients (CGs) as well as a new modified ART method are investigated for spectral DOT reconstruction. The aim of the modified ART scheme is to speed up the convergence by considering the specific conditions of spectral reconstruction. As a result, it converges much faster to favorable results than conventional ART and CG methods
Instrumentation for Linear and Nonlinear Optical Device Characterization
2018-01-31
distribution is Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Pl has acquired six pieces of equipment to extend capabilities for linear and nonlinear...optical spectral analysis • Frequency comb generation in mid-infrared Accomplishments Six major pieces of equipment have been ordered and received
Krivonos, S.O.; Sorin, A.S.
1994-06-01
We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Linearity in Process Languages
Nygaard, Mikkel; Winskel, Glynn
2002-01-01
The meaning and mathematical consequences of linearity (managing without a presumed ability to copy) are studied for a path-based model of processes which is also a model of affine-linear logic. This connection yields an affine-linear language for processes, automatically respecting open......-map bisimulation, in which a range of process operations can be expressed. An operational semantics is provided for the tensor fragment of the language. Different ways to make assemblies of processes lead to different choices of exponential, some of which respect bisimulation....
Amir-Moez, A R; Sneddon, I N
1962-01-01
Elements of Linear Space is a detailed treatment of the elements of linear spaces, including real spaces with no more than three dimensions and complex n-dimensional spaces. The geometry of conic sections and quadric surfaces is considered, along with algebraic structures, especially vector spaces and transformations. Problems drawn from various branches of geometry are given.Comprised of 12 chapters, this volume begins with an introduction to real Euclidean space, followed by a discussion on linear transformations and matrices. The addition and multiplication of transformations and matrices a
Weisberg, Sanford
2013-01-01
Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus
Koller, D.; Ritter, S.; Fork, D.C.
1996-01-01
The light-driven responses of the terminal leaflet of bean were analyzed spectrally and functionally. Laminar elevation increases rapidly in response to continuous overhead exposure of its pulvinus to blue light. This response is enhanced in its early stages by simultaneous exposure to red light. The pulvinus responds similarly to continuous overhead unmixed red, or far-red light, albeit at much lower rates. The response to overhead red, alone, or during enhancement of the response to blue, was not affected by simultaneous far-red. However, the response to blue alone, or enhanced by mixture with red, was partially inhibited by simultaneous exposure to far-red. The results suggest that the response to blue resulted mostly from a blue-absorbing pigment system, but may involve some absorption by phytochrome, while responses to red or far-red, with and without blue, may be mediated by high-irradiance responses of phytochrome. Functional differences between the responses to red and blue become apparent when the abaxial (lower), or lateral sectors of the pulvinus are exposed to them, separately and in combination. These differences suggest that red controls the photonastic unfolding of the pulvinus, whereas blue controls its phototropic responses. These responses co-exist in the same tissue, but are separate and additive. (author)
A new method of organizing spectral line intensity ratio fluctuations of nightglow emissions
Thelin, B.
1986-02-01
In this paper a new kind of linearization effect between the atmospheric night airglow emissions is presented. The same kind of linearization effect has previously been studied with spectrochemical light sources together with a spectrometer. A linear graph was obtained for atomic spectral lines and vibrational bandspectra when the spectral line intensity ratio fluctuations were plotted versus the photon energies of these emissions. To study this effect data from a number of different photometer investigations of night airglow emissions at different times and places have been used. (author)
Hamiltonian indices and rational spectral densities
Byrnes, C. I.; Duncan, T. E.
1980-01-01
Several (global) topological properties of various spaces of linear systems, particularly symmetric, lossless, and Hamiltonian systems, and multivariable spectral densities of fixed McMillan degree are announced. The study is motivated by a result asserting that on a connected but not simply connected manifold, it is not possible to find a vector field having a sink as its only critical point. In the scalar case, this is illustrated by showing that only on the space of McMillan degree = /Cauchy index/ = n, scalar transfer functions can one define a globally convergent vector field. This result holds both in discrete-time and for the nonautonomous case. With these motivations in mind, theorems of Bochner and Fogarty are used in showing that spaces of transfer functions defined by symmetry conditions are, in fact, smooth algebraic manifolds.
Spectral Hounsfield units: a new radiological concept
Hurrell, Michael Anthony; Butler, Anthony Philip Howard; Cook, Nicholas James; Butler, Philip Howard; Ronaldson, J.P.; Zainon, Rafidah
2012-01-01
Computed tomography (CT) uses radiographical density to depict different materials; although different elements have different absorption fingerprints across the range of diagnostic X-ray energies, this spectral absorption information is lost in conventional CT. The recent development of dual energy CT (DECT) allows extraction of this information to a useful but limited extent. However, the advent of new photon counting chips that have energy resolution capabilities has put multi-energy or spectral CT (SCT) on the clinical horizon. This paper uses a prototype SCT system to demonstrate how CT density measurements vary with kilovoltage. While radiologists learn about linear attenuation curves during radiology training, they do not usually need a detailed understanding of this phenomenon in their clinical practice. However SCT requires a paradigm shift in how radiologists think about CT density. Because radiologists are already familiar with the Hounsfield Unit (HU), it is proposed that a modified HU be used that includes the mean energy used to obtain the image, as a conceptual bridge between conventional CT and SCT. A suggested format would be: HU keV . (orig.)
Spectral decomposition of nonlinear systems with memory
Svenkeson, Adam; Glaz, Bryan; Stanton, Samuel; West, Bruce J.
2016-02-01
We present an alternative approach to the analysis of nonlinear systems with long-term memory that is based on the Koopman operator and a Lévy transformation in time. Memory effects are considered to be the result of interactions between a system and its surrounding environment. The analysis leads to the decomposition of a nonlinear system with memory into modes whose temporal behavior is anomalous and lacks a characteristic scale. On average, the time evolution of a mode follows a Mittag-Leffler function, and the system can be described using the fractional calculus. The general theory is demonstrated on the fractional linear harmonic oscillator and the fractional nonlinear logistic equation. When analyzing data from an ill-defined (black-box) system, the spectral decomposition in terms of Mittag-Leffler functions that we propose may uncover inherent memory effects through identification of a small set of dynamically relevant structures that would otherwise be obscured by conventional spectral methods. Consequently, the theoretical concepts we present may be useful for developing more general methods for numerical modeling that are able to determine whether observables of a dynamical system are better represented by memoryless operators, or operators with long-term memory in time, when model details are unknown.
Iterative solution of large linear systems
Young, David Matheson
1971-01-01
This self-contained treatment offers a systematic development of the theory of iterative methods. Its focal point resides in an analysis of the convergence properties of the successive overrelaxation (SOR) method, as applied to a linear system with a consistently ordered matrix. The text explores the convergence properties of the SOR method and related techniques in terms of the spectral radii of the associated matrices as well as in terms of certain matrix norms. Contents include a review of matrix theory and general properties of iterative methods; SOR method and stationary modified SOR meth
Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering.
Nie, Feiping; Zeng, Zinan; Tsang, Ivor W; Xu, Dong; Zhang, Changshui
2011-11-01
Spectral clustering (SC) methods have been successfully applied to many real-world applications. The success of these SC methods is largely based on the manifold assumption, namely, that two nearby data points in the high-density region of a low-dimensional data manifold have the same cluster label. However, such an assumption might not always hold on high-dimensional data. When the data do not exhibit a clear low-dimensional manifold structure (e.g., high-dimensional and sparse data), the clustering performance of SC will be degraded and become even worse than K -means clustering. In this paper, motivated by the observation that the true cluster assignment matrix for high-dimensional data can be always embedded in a linear space spanned by the data, we propose the spectral embedded clustering (SEC) framework, in which a linearity regularization is explicitly added into the objective function of SC methods. More importantly, the proposed SEC framework can naturally deal with out-of-sample data. We also present a new Laplacian matrix constructed from a local regression of each pattern and incorporate it into our SEC framework to capture both local and global discriminative information for clustering. Comprehensive experiments on eight real-world high-dimensional datasets demonstrate the effectiveness and advantages of our SEC framework over existing SC methods and K-means-based clustering methods. Our SEC framework significantly outperforms SC using the Nyström algorithm on unseen data.
Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges
Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.
2018-01-01
Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.
Callier, Frank M.; Desoer, Charles A.
1991-01-01
The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.
Tucker, C. J.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III
1979-01-01
Red and photographic infrared spectral data were collected using a handheld radiometer for two cuttings of alfalfa. Significant linear and non-linear correlation coefficients were found between the spectral variables and plant height, biomass, forage water content, and estimated canopy cover for the earlier alfalfa cutting. The alfalfa of later cutting experienced a period of severe drought stress which limited growth. The spectral variables were found to be highly correlated with the estimated drought scores for this alfalfa cutting.
High temperature spectral emissivity measurement using integral blackbody method
Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter
2016-10-01
Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.
On the Use of Complementary Spectral Features for Speaker Recognition
Sridhar Krishnan
2007-12-01
Full Text Available The most popular features for speaker recognition are Mel frequency cepstral coefficients (MFCCs and linear prediction cepstral coefficients (LPCCs. These features are used extensively because they characterize the vocal tract configuration which is known to be highly speaker-dependent. In this work, several features are introduced that can characterize the vocal system in order to complement the traditional features and produce better speaker recognition models. The spectral centroid (SC, spectral bandwidth (SBW, spectral band energy (SBE, spectral crest factor (SCF, spectral flatness measure (SFM, Shannon entropy (SE, and Renyi entropy (RE were utilized for this purpose. This work demonstrates that these features are robust in noisy conditions by simulating some common distortions that are found in the speakers' environment and a typical telephone channel. Babble noise, additive white Gaussian noise (AWGN, and a bandpass channel with 1Ã¢Â€Â‰dB of ripple were used to simulate these noisy conditions. The results show significant improvements in classification performance for all noise conditions when these features were used to complement the MFCC and ÃŽÂ”MFCC features. In particular, the SC and SCF improved performance in almost all noise conditions within the examined SNR range (10Ã¢Â€Â“40Ã¢Â€Â‰dB. For example, in cases where there was only one source of distortion, classification improvements of up to 8% and 10% were achieved under babble noise and AWGN, respectively, using the SCF feature.
Riechers, Paul M.; Crutchfield, James P.
2018-06-01
Nonlinearities in finite dimensions can be linearized by projecting them into infinite dimensions. Unfortunately, the familiar linear operator techniques that one would then hope to use often fail since the operators cannot be diagonalized. The curse of nondiagonalizability also plays an important role even in finite-dimensional linear operators, leading to analytical impediments that occur across many scientific domains. We show how to circumvent it via two tracks. First, using the well-known holomorphic functional calculus, we develop new practical results about spectral projection operators and the relationship between left and right generalized eigenvectors. Second, we generalize the holomorphic calculus to a meromorphic functional calculus that can decompose arbitrary functions of nondiagonalizable linear operators in terms of their eigenvalues and projection operators. This simultaneously simplifies and generalizes functional calculus so that it is readily applicable to analyzing complex physical systems. Together, these results extend the spectral theorem of normal operators to a much wider class, including circumstances in which poles and zeros of the function coincide with the operator spectrum. By allowing the direct manipulation of individual eigenspaces of nonnormal and nondiagonalizable operators, the new theory avoids spurious divergences. As such, it yields novel insights and closed-form expressions across several areas of physics in which nondiagonalizable dynamics arise, including memoryful stochastic processes, open nonunitary quantum systems, and far-from-equilibrium thermodynamics. The technical contributions include the first full treatment of arbitrary powers of an operator, highlighting the special role of the zero eigenvalue. Furthermore, we show that the Drazin inverse, previously only defined axiomatically, can be derived as the negative-one power of singular operators within the meromorphic functional calculus and we give a new general
Spectral identification and quantification of salts in the Atacama Desert
Harris, J. K.; Cousins, C. R.; Claire, M. W.
2016-10-01
Salt minerals are an important natural resource. The ability to quickly and remotely identify and quantify salt deposits and salt contaminated soils and sands is therefore a priority goal for the various industries and agencies that utilise salts. The advent of global hyperspectral imagery from instruments such as Hyperion on NASA's Earth-Observing 1 satellite has opened up a new source of data that can potentially be used for just this task. This study aims to assess the ability of Visible and Near Infrared (VNIR) spectroscopy to identify and quantify salt minerals through the use of spectral mixture analysis. The surface and near-surface soils of the Atacama Desert in Chile contain a variety of well-studied salts, which together with low cloud coverage, and high aridity, makes this region an ideal testbed for this technique. Two forms of spectral data ranging 0.35 - 2.5 μm were collected: laboratory spectra acquired using an ASD FieldSpec Pro instrument on samples from four locations in the Atacama desert known to have surface concentrations of sulfates, nitrates, chlorides and perchlorates; and images from the EO-1 satellite's Hyperion instrument taken over the same four locations. Mineral identifications and abundances were confirmed using quantitative XRD of the physical samples. Spectral endmembers were extracted from within the laboratory and Hyperion spectral datasets and together with additional spectral library endmembers fed into a linear mixture model. The resulting identification and abundances from both dataset types were verified against the sample XRD values. Issues of spectral scale, SNR and how different mineral spectra interact are considered, and the utility of VNIR spectroscopy and Hyperion in particular for mapping specific salt concentrations in desert environments is established. Overall, SMA was successful at estimating abundances of sulfate minerals, particularly calcium sulfate, from both hyperspectral image and laboratory sample spectra
Onboard spectral imager data processor
Otten, Leonard J.; Meigs, Andrew D.; Franklin, Abraham J.; Sears, Robert D.; Robison, Mark W.; Rafert, J. Bruce; Fronterhouse, Donald C.; Grotbeck, Ronald L.
1999-10-01
Previous papers have described the concept behind the MightySat II.1 program, the satellite's Fourier Transform imaging spectrometer's optical design, the design for the spectral imaging payload, and its initial qualification testing. This paper discusses the on board data processing designed to reduce the amount of downloaded data by an order of magnitude and provide a demonstration of a smart spaceborne spectral imaging sensor. Two custom components, a spectral imager interface 6U VME card that moves data at over 30 MByte/sec, and four TI C-40 processors mounted to a second 6U VME and daughter card, are used to adapt the sensor to the spacecraft and provide the necessary high speed processing. A system architecture that offers both on board real time image processing and high-speed post data collection analysis of the spectral data has been developed. In addition to the on board processing of the raw data into a usable spectral data volume, one feature extraction technique has been incorporated. This algorithm operates on the basic interferometric data. The algorithm is integrated within the data compression process to search for uploadable feature descriptions.
Intersection numbers of spectral curves
Eynard, B.
2011-01-01
We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the Marino-Vafa formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV, Marino-Vafa formula, and Mumford formula.
Spectral filtering for plant production
Young, R.E.; McMahon, M.J.; Rajapakse, N.C.; Becoteau, D.R.
1994-12-31
Research to date suggests that spectral filtering can be an effective alternative to chemical growth regulators for altering plant development. If properly implemented, it can be nonchemical and environmentally friendly. The aqueous CuSO{sub 4}, and CuCl{sub 2} solutions in channelled plastic panels have been shown to be effective filters, but they can be highly toxic if the solutions contact plants. Some studies suggest that spectral filtration limited to short EOD intervals can also alter plant development. Future research should be directed toward confirmation of the influence of spectral filters and exposure times on a broader range of plant species and cultivars. Efforts should also be made to identify non-noxious alternatives to aqueous copper solutions and/or to incorporate these chemicals permanently into plastic films and panels that can be used in greenhouse construction. It would also be informative to study the impacts of spectral filters on insect and microbal populations in plant growth facilities. The economic impacts of spectral filtering techniques should be assessed for each delivery methodology.
Spectral dimension of quantum geometries
Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes
2014-01-01
The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)
Spectral Imaging of Portolan Charts
France, Fenella G.; Wilson, Meghan A.; Ghez, Anita
2018-05-01
Spectral imaging of Portolan Charts, early nautical charts, provided extensive new information about their construction and creation. The origins of the portolan chart style have been a continual source of perplexity to numerous generations of cartographic historians. The spectral imaging system utilized incorporates a 50 megapixel mono-chrome camera with light emitting diode (LED) illumination panels that cover the range from 365 nm to 1050 nm to capture visible and non-visible information. There is little known about how portolan charts evolved, and what influenced their creation. These early nautical charts began as working navigational tools of medieval mariners, initially made in the 1300s in Italy, Portugal and Spain; however the origin and development of the portolan chart remained shrouded in mystery. Questions about these early navigational charts included whether colorants were commensurate with the time period and geographical location, and if different, did that give insight into trade routes, or possible later additions to the charts? For example; spectral data showed the red pigment on both the 1320 portolan chart and the 1565 Galapagos Islands matched vermillion, an opaque red pigment used since antiquity. The construction of these charts was also of great interest. Spectral imaging with a range of illumination modes revealed the presence of a "hidden circle" often referred to in relation to their construction. This paper will present in-depth analysis of how spectral imaging of the Portolans revealed similarities and differences, new hidden information and shed new light on construction and composition.
Paul, Subir; Nagesh Kumar, D.
2018-04-01
Hyperspectral (HS) data comprises of continuous spectral responses of hundreds of narrow spectral bands with very fine spectral resolution or bandwidth, which offer feature identification and classification with high accuracy. In the present study, Mutual Information (MI) based Segmented Stacked Autoencoder (S-SAE) approach for spectral-spatial classification of the HS data is proposed to reduce the complexity and computational time compared to Stacked Autoencoder (SAE) based feature extraction. A non-parametric dependency measure (MI) based spectral segmentation is proposed instead of linear and parametric dependency measure to take care of both linear and nonlinear inter-band dependency for spectral segmentation of the HS bands. Then morphological profiles are created corresponding to segmented spectral features to assimilate the spatial information in the spectral-spatial classification approach. Two non-parametric classifiers, Support Vector Machine (SVM) with Gaussian kernel and Random Forest (RF) are used for classification of the three most popularly used HS datasets. Results of the numerical experiments carried out in this study have shown that SVM with a Gaussian kernel is providing better results for the Pavia University and Botswana datasets whereas RF is performing better for Indian Pines dataset. The experiments performed with the proposed methodology provide encouraging results compared to numerous existing approaches.
Blyth, T S
2002-01-01
Most of the introductory courses on linear algebra develop the basic theory of finite dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num ber of illustrative and worked examples, as well as many exercises that are strategi cally placed throughout the text. Solutions to the ex...
SPAM- SPECTRAL ANALYSIS MANAGER (DEC VAX/VMS VERSION)
Solomon, J. E.
1994-01-01
The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different
Mamyrin, B.A.; Shmikk, D.V.
1979-01-01
A description and operating principle of a linear mass reflectron with V-form trajectory of ion motion -a new non-magnetic time-of-flight mass spectrometer with high resolution are presented. The ion-optical system of the device consists of an ion source with ionization by electron shock, of accelerating gaps, reflector gaps, a drift space and ion detector. Ions move in the linear mass refraction along the trajectories parallel to the axis of the analyzer chamber. The results of investigations into the experimental device are given. With an ion drift length of 0.6 m the device resolution is 1200 with respect to the peak width at half-height. Small-sized mass spectrometric transducers with high resolution and sensitivity may be designed on the base of the linear mass reflectron principle
Olver, Peter J
2018-01-01
This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...
Banach, S
1987-01-01
This classic work by the late Stefan Banach has been translated into English so as to reach a yet wider audience. It contains the basics of the algebra of operators, concentrating on the study of linear operators, which corresponds to that of the linear forms a1x1 + a2x2 + ... + anxn of algebra.The book gathers results concerning linear operators defined in general spaces of a certain kind, principally in Banach spaces, examples of which are: the space of continuous functions, that of the pth-power-summable functions, Hilbert space, etc. The general theorems are interpreted in various mathematical areas, such as group theory, differential equations, integral equations, equations with infinitely many unknowns, functions of a real variable, summation methods and orthogonal series.A new fifty-page section (``Some Aspects of the Present Theory of Banach Spaces'''') complements this important monograph.
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....
Linear programming using Matlab
Ploskas, Nikolaos
2017-01-01
This book offers a theoretical and computational presentation of a variety of linear programming algorithms and methods with an emphasis on the revised simplex method and its components. A theoretical background and mathematical formulation is included for each algorithm as well as comprehensive numerical examples and corresponding MATLAB® code. The MATLAB® implementations presented in this book are sophisticated and allow users to find solutions to large-scale benchmark linear programs. Each algorithm is followed by a computational study on benchmark problems that analyze the computational behavior of the presented algorithms. As a solid companion to existing algorithmic-specific literature, this book will be useful to researchers, scientists, mathematical programmers, and students with a basic knowledge of linear algebra and calculus. The clear presentation enables the reader to understand and utilize all components of simplex-type methods, such as presolve techniques, scaling techniques, pivoting ru...
Anon.
1994-01-01
The aim of the TESLA (TeV Superconducting Linear Accelerator) collaboration (at present 19 institutions from seven countries) is to establish the technology for a high energy electron-positron linear collider using superconducting radiofrequency cavities to accelerate its beams. Another basic goal is to demonstrate that such a collider can meet its performance goals in a cost effective manner. For this the TESLA collaboration is preparing a 500 MeV superconducting linear test accelerator at the DESY Laboratory in Hamburg. This TTF (TESLA Test Facility) consists of four cryomodules, each approximately 12 m long and containing eight 9-cell solid niobium cavities operating at a frequency of 1.3 GHz
Examination of Spectral Transformations on Spectral Mixture Analysis
Deng, Y.; Wu, C.
2018-04-01
While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.
Berlin Reflectance Spectral Library (BRSL)
Henckel, D.; Arnold, G.; Kappel, D.; Moroz, L. V.; Markus, K.
2017-09-01
The Berlin Reflectance Spectral Library (BRSL) provides a collection of reflectance spectra between 0.3 and 17 µm. It was originally dedicated to support space missions to small solar system bodies. Meanwhile the library includes selections of biconical reflectance spectra for spectral data analysis of other planetary bodies as well. The library provides reference spectra of well-characterized terrestrial analogue materials and meteorites for interpretation of remote sensing reflectance spectra of planetary surfaces. We introduce the BRSL, summarize the data available, and access to use them for further relevant applications.
Spectral ellipsometry of nanodiamond composite
Yastrebov, S.G.; Ivanov-Omskij, V.I.; Gordeev, S.K.; Garriga, M.; Alonso, I.A.
2006-01-01
Methods of spectral ellipsometry were applied for analysis of optical properties of nanodiamond based composite in spectral region 1.4-5 eV. The nanocomposite was synthesized by molding of ultradispersed nanodiamond powder in the course of heterogeneous chemical reaction of decomposition of methane, forming pyrocarbon interconnecting nanodiamond grains. The energy of σ + π plasmon of pyrocarbon component of nanodiamond composite was restored which proves to be ∼ 24 eV; using this value, an estimation was done of pyrocarbon matrix density, which occurs to be 2 g/cm 3 [ru
Linearly Adjustable International Portfolios
Fonseca, R. J.; Kuhn, D.; Rustem, B.
2010-09-01
We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.
Linearly Adjustable International Portfolios
Fonseca, R. J.; Kuhn, D.; Rustem, B.
2010-01-01
We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.
Barkman, W.E.; Adams, W.Q.; Berrier, B.R.
1978-01-01
A linear induction motor has been operated on a test bed with a feedback pulse resolution of 5 nm (0.2 μin). Slewing tests with this slide drive have shown positioning errors less than or equal to 33 nm (1.3 μin) at feedrates between 0 and 25.4 mm/min (0-1 ipm). A 0.86-m (34-in)-stroke linear motor is being investigated, using the SPACO machine as a test bed. Initial results were encouraging, and work is continuing to optimize the servosystem compensation
Hogben, Leslie
2013-01-01
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of
Linear Algebra Thoroughly Explained
Vujičić, Milan
2008-01-01
Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.
Liu, Yang; Goudge, Timothy A.; Catalano, Jeffrey G.; Wang, Alian
2018-03-01
Orbital remote sensing data acquired from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard Mars Reconnaissance Orbiter (MRO), in conjunction with other datasets, are used to perform detailed spectral and stratigraphic analyses over a portion of south Melas Chasma, Mars. The Discrete Ordinate Radiative Transfer (DISORT) model is used to retrieve atmospherically corrected single scattering albedos from CRISM I/F data for mineral identification. A sequence of interbedded poly- and monohydrated sulfates associated with interior layered deposits (ILDs) is identified and mapped. Analyses from laboratory experiments and spectral unmixing of CRISM hyperspectral data support the hypothesis of precipitation and dehydration of multiple inputs of complex Mg-Ca-Fe-SO4-Cl brines. In this scenario, the early precipitated Mg sulfates could dehydrate into monohydrated sulfate due to catalytic effects, and the later-precipitated Mg sulfates from the late-stage "clean" brine could terminate their dehydration at mid-degree of hydration to form a polyhydrated sulfate layer due to depletion of the catalytic species (e.g., Ca, Fe, and Cl). Distinct jarosite-bearing units are identified stratigraphically above the hydrated sulfate deposits. These are hypothesized to have formed either by oxidation of a fluid containing Fe(II) and SO4, or by leaching of soluble phases from precursor intermixed jarosite-Mg sulfate units that may have formed during the later stages of deposition of the hydrated sulfate sequence. Results from stratigraphic analysis of the ILDs show that the layers have a consistent northward dip towards the interior of the Melas Chasma basin, a mean dip angle of ∼6°, and neighboring strata that are approximately parallel. These strata are interpreted as initially sub-horizontal layers of a subaqueous, sedimentary evaporite deposits that underwent post-depositional tilting from slumping into the Melas Chasma basin. The interbedded hydrated sulfate
2013-05-10
AND VICTIM- ~ vAP BLAMING 4. AMERICA, LINEARLY CYCUCAL AF IMT 1768, 19840901, V5 PREVIOUS EDITION WILL BE USED. C2C Jessica Adams Dr. Brissett...his desires, his failings, and his aspirations follow the same general trend throughout history and throughout cultures. The founding fathers sought
Southworth, B.
1985-01-01
The peak of the construction phase of the Stanford Linear Collider, SLC, to achieve 50 GeV electron-positron collisions has now been passed. The work remains on schedule to attempt colliding beams, initially at comparatively low luminosity, early in 1987. (orig./HSI).
Mafra Neto, F.
1992-01-01
The dose of gamma radiation from a linear source of cesium 137 is obtained, presenting two difficulties: oblique filtration of radiation when cross the platinum wall, in different directions, and dose connection due to the scattering by the material mean of propagation. (C.G.C.)
Resistors Improve Ramp Linearity
Kleinberg, L. L.
1982-01-01
Simple modification to bootstrap ramp generator gives more linear output over longer sweep times. New circuit adds just two resistors, one of which is adjustable. Modification cancels nonlinearities due to variations in load on charging capacitor and due to changes in charging current as the voltage across capacitor increases.
LINEAR COLLIDERS: 1992 workshop
Settles, Ron; Coignet, Guy
1992-01-01
As work on designs for future electron-positron linear colliders pushes ahead at major Laboratories throughout the world in a major international collaboration framework, the LC92 workshop held in Garmisch Partenkirchen this summer, attended by 200 machine and particle physicists, provided a timely focus
Brameier, Markus
2007-01-01
Presents a variant of Genetic Programming that evolves imperative computer programs as linear sequences of instructions, in contrast to the more traditional functional expressions or syntax trees. This book serves as a reference for researchers, but also contains sufficient introduction for students and those who are new to the field
Dobbs, David E.
2013-01-01
A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.
Takeda, Seishi
1992-01-01
The status of R and D of future e + e - linear colliders proposed by the institutions throughout the world is described including the JLC, NLC, VLEPP, CLIC, DESY/THD and TESLA projects. The parameters and RF sources are discussed. (G.P.) 36 refs.; 1 tab
Observed spectral features of dust
Willner, S.P.
1984-01-01
The author concentrates on the observed properties of dust spectral features. Identifications, based on laboratory data, are given whenever plausible ones exist. There are a very large number of papers in the literature of even such a young field as infrared spectroscopy, and therefore the author refers only to the most recent paper on a topic or to another review. (Auth.)
Speech recognition from spectral dynamics
Some of the history of gradual infusion of the modulation spectrum concept into Automatic recognition of speech (ASR) comes next, pointing to the relationship of modulation spectrum processing to wellaccepted ASR techniques such as dynamic speech features or RelAtive SpecTrAl (RASTA) ﬁltering. Next, the frequency ...
Spectral ansatz in quantum electrodynamics
Atkinson, D.; Slim, H.A.
1979-01-01
An ansatz of Delbourgo and Salam for the spectral representation of the vertex function in quantum electrodynamics. The Ward-Takahashi identity is respected, and the electron propagator does not have a ghost. The infra-red and ultraviolet behaviours of the electron propagator in this theory are considered, and a rigorous existence theorem for the propagator in the Yennie gauge is presented
Spectral Diagonal Ensemble Kalman Filters
Kasanický, Ivan; Mandel, Jan; Vejmelka, Martin
2015-01-01
Roč. 22, č. 4 (2015), s. 485-497 ISSN 1023-5809 R&D Projects: GA ČR GA13-34856S Grant - others:NSF(US) DMS-1216481 Institutional support: RVO:67985807 Keywords : data assimilation * ensemble Kalman filter * spectral representation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.321, year: 2015
Biomarkers and Biological Spectral Imaging
2001-01-23
G. Sowa, H. H. Mantsch, National Research Council Canada; S. L. Zhang, Unilever Research (USA) 85 Brain tissue charcterization using spectral imaging...image registration and of the expert staff of Hill Top Research in Winnipeg for hosting the hydration study. Financial assistance from Unilever Research
Carpenter, Mark H.; Fisher, Travis C.; Nielsen, Eric J.; Frankel, Steven H.
2013-01-01
Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation methods of arbitrary order. The new methods are closely related to discontinuous Galerkin spectral collocation methods commonly known as DGFEM, but exhibit a more general entropy stability property. Although the new schemes are applicable to a broad class of linear and nonlinear conservation laws, emphasis herein is placed on the entropy stability of the compressible Navier-Stokes equations.
The structure of spectral problems and geometry: hyperbolic surfaces in E sup 3
Cieslinski, J L
2003-01-01
Working in the framework of Sym's soliton surfaces approach we point out that some simple assumptions about the structure of linear (spectral) problems of the theory of solitons lead uniquely to the geometry of some special immersions. In this paper we consider general su(2) spectral problems. Under some very weak assumptions they turn out to be associated with hyperbolic surfaces (surfaces of negative Gaussian curvature) immersed in three-dimensional Euclidean space, and especially with the so-called Bianchi surfaces.
Eko Rudi Iswanto; Eric Yee
2016-01-01
Within the framework of identifying NPP sites, site surveys are performed in West Bangka (WB), Bangka-Belitung Island Province. Ground response analysis of a potential site has been carried out using peak strain profiles and peak ground acceleration. The objective of this research is to compare Equivalent Linear (EQL) and Non Linear (NL) methods of ground response analysis on the selected NPP site (West Bangka) using Deep Soil software. Equivalent linear method is widely used because requires soil data in simple way and short time of computational process. On the other hand, non linear method is capable of representing the actual soil behaviour by considering non linear soil parameter. The results showed that EQL method has similar trends to NL method. At surface layer, the acceleration values for EQL and NL methods are resulted as 0.425 g and 0.375 g respectively. NL method is more reliable in capturing higher frequencies of spectral acceleration compared to EQL method. (author)
Spectral Correlation of Multicarrier Modulated Signals and Its Application for Signal Detection
Zhang Haijian
2010-01-01
Full Text Available Spectral correlation theory for cyclostationary time-series signals has been studied for decades. Explicit formulas of spectral correlation function for various types of analog-modulated and digital-modulated signals are already derived. In this paper, we investigate and exploit the cyclostationarity characteristics for two kinds of multicarrier modulated (MCM signals: conventional OFDM and filter bank based multicarrier (FBMC signals. The spectral correlation characterization of MCM signal can be described by a special linear periodic time-variant (LPTV system. Using this LPTV description, we have derived the explicit theoretical formulas of nonconjugate and conjugate cyclic autocorrelation function (CAF and spectral correlation function (SCF for OFDM and FBMC signals. According to theoretical spectral analysis, Cyclostationary Signatures (CS are artificially embedded into MCM signal and a low-complexity signature detector is, therefore, presented for detecting MCM signal. Theoretical analysis and simulation results demonstrate the efficiency and robustness of this CS detector compared to traditionary energy detector.
S. E. Milan
2001-02-01
Full Text Available Observations of HF radar backscatter from the auroral electrojet E region indicate the presence of five major spectral populations, as opposed to the two predominant spectral populations, types I and II, observed in the VHF regime. The Doppler shift, spectral width, backscatter power, and flow angle dependencies of these five populations are investigated and described. Two of these populations are identified with type I and type II spectral classes, and hence, are thought to be generated by the two-stream and gradient drift instabilities, respectively. The remaining three populations occur over a range of velocities which can greatly exceed the ion acoustic speed, the usual limiting velocity in VHF radar observations of the E region. The generation of these spectral populations is discussed in terms of electron density gradients in the electrojet region and recent non-linear theories of E region irregularity generation.Key words. Ionosphere (ionospheric irregularities
S. E. Milan
Full Text Available Observations of HF radar backscatter from the auroral electrojet E region indicate the presence of five major spectral populations, as opposed to the two predominant spectral populations, types I and II, observed in the VHF regime. The Doppler shift, spectral width, backscatter power, and flow angle dependencies of these five populations are investigated and described. Two of these populations are identified with type I and type II spectral classes, and hence, are thought to be generated by the two-stream and gradient drift instabilities, respectively. The remaining three populations occur over a range of velocities which can greatly exceed the ion acoustic speed, the usual limiting velocity in VHF radar observations of the E region. The generation of these spectral populations is discussed in terms of electron density gradients in the electrojet region and recent non-linear theories of E region irregularity generation.
Key words. Ionosphere (ionospheric irregularities
Finite-dimensional linear algebra
Gockenbach, Mark S
2010-01-01
Some Problems Posed on Vector SpacesLinear equationsBest approximationDiagonalizationSummaryFields and Vector SpacesFields Vector spaces Subspaces Linear combinations and spanning sets Linear independence Basis and dimension Properties of bases Polynomial interpolation and the Lagrange basis Continuous piecewise polynomial functionsLinear OperatorsLinear operatorsMore properties of linear operatorsIsomorphic vector spaces Linear operator equations Existence and uniqueness of solutions The fundamental theorem; inverse operatorsGaussian elimination Newton's method Linear ordinary differential eq
Gran, Jarle
2005-01-01
The study aims to establish an independent high accuracy spectral response scale over a broad spectral range based on standard laboratory equipment at a moderate cost. This had to be done by a primary method, where the responsivity of the detector is linked to fundamental constants. Summary, conclusion and future directions: In this thesis it has been demonstrated that an independent spectral response scale from the visual to the IR based on simple relative measurements can be established. The accuracy obtained by the hybrid self-calibration method demonstrates that state of the art accuracy is obtained with self-calibration principles. A calculable silicon trap detector with low internal losses over a wide spectral range is needed to establish the scale, in addition to a linear, spectrally independent detector with a good signal to noise ratio. By fitting the parameters in the responsivity model to a purely relative measurement we express the spectral response in terms of fundamental constants with a known uncertainty This is therefore a primary method. By applying a digital filter on the relative measurements of the InGaAs detectors in the infrared reduces the standard deviation by 30 %. In addition, by optimising the necessary scaling constant converting the relative calibration to absolute values, we have managed to establish an accurate and cost efficient spectral response scale in the IR. The full covariance analysis, which takes into account the correlation in the absolute values of the silicon detector, the correlation caused by the filter and the scaling constant, shows that the spectral response scale established in the infrared with InGaAs detectors is done with high accuracy. A similar procedure can be used in the UV, though it has not been demonstrated here. In fig. 10 the responsitivities of the detectors (a) and their associated uncertainties (b) at the 1 sigma level of confidence is compared for the three publications. We see that the responsivity
Difference equations having bases with powerlike growth which are perturbed by a spectral parameter
Tulyakov, Dmitrii N
2009-01-01
The asymptotic behaviour of solutions with powerlike growth of recurrence relations with a spectral parameter is investigated. A class of recurrence relations in which all basis solutions have powerlike growth is introduced. Recurrence relations in this class are linearly perturbed by a spectral parameter; for solutions of the new recurrence relations asymptotic formulae are obtained which are uniform with respect to the spectral parameter ranging within appropriate bounds. The theorems obtained are used for deriving new local asymptotic formulae for orthogonal and multiple orthogonal polynomials in a neighbourhood of the end-points of the support of the orthogonality weights. Bibliography: 14 titles.
Linearity and Non-linearity of Photorefractive effect in Materials ...
In this paper we have studied the Linearity and Non-linearity of Photorefractive effect in materials using the band transport model. For low light beam intensities the change in the refractive index is proportional to the electric field for linear optics while for non- linear optics the change in refractive index is directly proportional ...
Linearly Refined Session Types
Pedro Baltazar
2012-11-01
Full Text Available Session types capture precise protocol structure in concurrent programming, but do not specify properties of the exchanged values beyond their basic type. Refinement types are a form of dependent types that can address this limitation, combining types with logical formulae that may refer to program values and can constrain types using arbitrary predicates. We present a pi calculus with assume and assert operations, typed using a session discipline that incorporates refinement formulae written in a fragment of Multiplicative Linear Logic. Our original combination of session and refinement types, together with the well established benefits of linearity, allows very fine-grained specifications of communication protocols in which refinement formulae are treated as logical resources rather than persistent truths.
Kuznetsov, N.; Maz'ya, V.; Vainberg, B.
2002-08-01
This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'
The International Linear Collider
List Benno
2014-04-01
Full Text Available The International Linear Collider (ILC is a proposed e+e− linear collider with a centre-of-mass energy of 200–500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.
The International Linear Collider
List, Benno
2014-04-01
The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....... of these criteria are widely used ones, while the remaining four are ones derived from the H-principle of mathematical modeling. Many examples from practice show that the criteria derived from the H-principle function better than the known and popular criteria for the number of components. We shall briefly review...
Goldowsky, Michael P. (Inventor)
1987-01-01
A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.
Henneaux, Marc; Teitelboim, Claudio
2005-01-01
We show that duality transformations of linearized gravity in four dimensions, i.e., rotations of the linearized Riemann tensor and its dual into each other, can be extended to the dynamical fields of the theory so as to be symmetries of the action and not just symmetries of the equations of motion. Our approach relies on the introduction of two superpotentials, one for the spatial components of the spin-2 field and the other for their canonically conjugate momenta. These superpotentials are two-index, symmetric tensors. They can be taken to be the basic dynamical fields and appear locally in the action. They are simply rotated into each other under duality. In terms of the superpotentials, the canonical generator of duality rotations is found to have a Chern-Simons-like structure, as in the Maxwell case
Phinney, N.
1992-01-01
The SLAC Linear Collider has begun a new era of operation with the SLD detector. During 1991 there was a first engineering run for the SLD in parallel with machine improvements to increase luminosity and reliability. For the 1992 run, a polarized electron source was added and more than 10,000 Zs with an average of 23% polarization have been logged by the SLD. This paper discusses the performance of the SLC in 1991 and 1992 and the technical advances that have produced higher luminosity. Emphasis will be placed on issues relevant to future linear colliders such as producing and maintaining high current, low emittance beams and focusing the beams to the micron scale for collisions. (Author) tab., 2 figs., 18 refs
Linear waves and instabilities
Bers, A.
1975-01-01
The electrodynamic equations for small-amplitude waves and their dispersion relation in a homogeneous plasma are outlined. For such waves, energy and momentum, and their flow and transformation, are described. Perturbation theory of waves is treated and applied to linear coupling of waves, and the resulting instabilities from such interactions between active and passive waves. Linear stability analysis in time and space is described where the time-asymptotic, time-space Green's function for an arbitrary dispersion relation is developed. The perturbation theory of waves is applied to nonlinear coupling, with particular emphasis on pump-driven interactions of waves. Details of the time--space evolution of instabilities due to coupling are given. (U.S.)
Extended linear chain compounds
Linear chain substances span a large cross section of contemporary chemistry ranging from covalent polymers, to organic charge transfer com plexes to nonstoichiometric transition metal coordination complexes. Their commonality, which coalesced intense interest in the theoretical and exper imental solid state physics/chemistry communities, was based on the obser vation that these inorganic and organic polymeric substrates exhibit striking metal-like electrical and optical properties. Exploitation and extension of these systems has led to the systematic study of both the chemistry and physics of highly and poorly conducting linear chain substances. To gain a salient understanding of these complex materials rich in anomalous aniso tropic electrical, optical, magnetic, and mechanical properties, the conver gence of diverse skills and talents was required. The constructive blending of traditionally segregated disciplines such as synthetic and physical organic, inorganic, and polymer chemistry, crystallog...
Diamond, Jared M.
1966-01-01
1. The relation between osmotic gradient and rate of osmotic water flow has been measured in rabbit gall-bladder by a gravimetric procedure and by a rapid method based on streaming potentials. Streaming potentials were directly proportional to gravimetrically measured water fluxes. 2. As in many other tissues, water flow was found to vary with gradient in a markedly non-linear fashion. There was no consistent relation between the water permeability and either the direction or the rate of water flow. 3. Water flow in response to a given gradient decreased at higher osmolarities. The resistance to water flow increased linearly with osmolarity over the range 186-825 m-osM. 4. The resistance to water flow was the same when the gall-bladder separated any two bathing solutions with the same average osmolarity, regardless of the magnitude of the gradient. In other words, the rate of water flow is given by the expression (Om — Os)/[Ro′ + ½k′ (Om + Os)], where Ro′ and k′ are constants and Om and Os are the bathing solution osmolarities. 5. Of the theories advanced to explain non-linear osmosis in other tissues, flow-induced membrane deformations, unstirred layers, asymmetrical series-membrane effects, and non-osmotic effects of solutes could not explain the results. However, experimental measurements of water permeability as a function of osmolarity permitted quantitative reconstruction of the observed water flow—osmotic gradient curves. Hence non-linear osmosis in rabbit gall-bladder is due to a decrease in water permeability with increasing osmolarity. 6. The results suggest that aqueous channels in the cell membrane behave as osmometers, shrinking in concentrated solutions of impermeant molecules and thereby increasing membrane resistance to water flow. A mathematical formulation of such a membrane structure is offered. PMID:5945254
Fundamentals of linear algebra
Dash, Rajani Ballav
2008-01-01
FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.
Sander, K F
1964-01-01
Linear Network Theory covers the significant algebraic aspect of network theory, with minimal reference to practical circuits. The book begins the presentation of network analysis with the exposition of networks containing resistances only, and follows it up with a discussion of networks involving inductance and capacity by way of the differential equations. Classification and description of certain networks, equivalent networks, filter circuits, and network functions are also covered. Electrical engineers, technicians, electronics engineers, electricians, and students learning the intricacies
Non linear viscoelastic models
Agerkvist, Finn T.
2011-01-01
Viscoelastic eects are often present in loudspeaker suspensions, this can be seen in the displacement transfer function which often shows a frequency dependent value below the resonance frequency. In this paper nonlinear versions of the standard linear solid model (SLS) are investigated....... The simulations show that the nonlinear version of the Maxwell SLS model can result in a time dependent small signal stiness while the Kelvin Voight version does not....
Relativistic Linear Restoring Force
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
Superconducting linear colliders
Anon.
1990-01-01
The advantages of superconducting radiofrequency (SRF) for particle accelerators have been demonstrated by successful operation of systems in the TRISTAN and LEP electron-positron collider rings respectively at the Japanese KEK Laboratory and at CERN. If performance continues to improve and costs can be lowered, this would open an attractive option for a high luminosity TeV (1000 GeV) linear collider
Perturbed asymptotically linear problems
Bartolo, R.; Candela, A. M.; Salvatore, A.
2012-01-01
The aim of this paper is investigating the existence of solutions of some semilinear elliptic problems on open bounded domains when the nonlinearity is subcritical and asymptotically linear at infinity and there is a perturbation term which is just continuous. Also in the case when the problem has not a variational structure, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is "stable" unde...
Miniature linear cooler development
Pruitt, G.R.
1993-01-01
An overview is presented of the status of a family of miniature linear coolers currently under development by Hughes Aircraft Co. for use in hand held, volume limited or power limited infrared applications. These coolers, representing the latest additions to the Hughes family of TOP trademark [twin-opposed piston] linear coolers, have been fabricated and tested in three different configurations. Each configuration is designed to utilize a common compressor assembly resulting in reduced manufacturing costs. The baseline compressor has been integrated with two different expander configurations and has been operated with two different levels of input power. These various configuration combinations offer a wide range of performance and interface characteristics which may be tailored to applications requiring limited power and size without significantly compromising cooler capacity or cooldown characteristics. Key cooler characteristics and test data are summarized for three combinations of cooler configurations which are representative of the versatility of this linear cooler design. Configurations reviewed include the shortened coldfinger [1.50 to 1.75 inches long], limited input power [less than 17 Watts] for low power availability applications; the shortened coldfinger with higher input power for lightweight, higher performance applications; and coldfingers compatible with DoD 0.4 Watt Common Module coolers for wider range retrofit capability. Typical weight of these miniature linear coolers is less than 500 grams for the compressor, expander and interconnecting transfer line. Cooling capacity at 80K at room ambient conditions ranges from 400 mW to greater than 550 mW. Steady state power requirements for maintaining a heat load of 150 mW at 80K has been shown to be less than 8 Watts. Ongoing reliability growth testing is summarized including a review of the latest test article results
Avram Mihai
2017-01-01
Full Text Available The paper presents a linear pneumatic actuator with short working stroke. It consists of a pneumatic motor (a simple stroke cylinder or a membrane chamber, two 2/2 pneumatic distributors “all or nothing” electrically commanded for controlling the intake/outtake flow to/from the active chamber of the motor, a position transducer and a microcontroller. There is also presented the theoretical analysis (mathematical modelling and numerical simulation accomplished.
Avram Mihai; Niţu Constantin; Bucşan Constantin; Grămescu Bogdan
2017-01-01
The paper presents a linear pneumatic actuator with short working stroke. It consists of a pneumatic motor (a simple stroke cylinder or a membrane chamber), two 2/2 pneumatic distributors “all or nothing” electrically commanded for controlling the intake/outtake flow to/from the active chamber of the motor, a position transducer and a microcontroller. There is also presented the theoretical analysis (mathematical modelling and numerical simulation) accomplished.
Scheffel, J.
1984-03-01
The linear Grad-Shafranov equation for a toroidal, axisymmetric plasma is solved analytically. Exact solutions are given in terms of confluent hyper-geometric functions. As an alternative, simple and accurate WKBJ solutions are presented. With parabolic pressure profiles, both hollow and peaked toroidal current density profiles are obtained. As an example the equilibrium of a z-pinch with a square-shaped cross section is derived.(author)
Buttram, M.T.; Ginn, J.W.
1988-06-21
A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.
Springer, T A
1998-01-01
"[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...
Parametric Linear Dynamic Logic
Peter Faymonville
2014-08-01
Full Text Available We introduce Parametric Linear Dynamic Logic (PLDL, which extends Linear Dynamic Logic (LDL by temporal operators equipped with parameters that bound their scope. LDL was proposed as an extension of Linear Temporal Logic (LTL that is able to express all ω-regular specifications while still maintaining many of LTL's desirable properties like an intuitive syntax and a translation into non-deterministic Büchi automata of exponential size. But LDL lacks capabilities to express timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to express all ω-regular properties and that subsumes parameterized extensions of LTL like Parametric LTL and PROMPT-LTL. Our main technical contribution is a translation of PLDL formulas into non-deterministic Büchi word automata of exponential size via alternating automata. This yields a PSPACE model checking algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give tight upper and lower bounds on optimal parameter values for both problems. These results show that PLDL model checking and realizability are not harder than LTL model checking and realizability.
Quantum linear Boltzmann equation
Vacchini, Bassano; Hornberger, Klaus
2009-01-01
We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.
Emma, P.
1995-01-01
The Stanford Linear Collider (SLC) is the first and only high-energy e + e - linear collider in the world. Its most remarkable features are high intensity, submicron sized, polarized (e - ) beams at a single interaction point. The main challenges posed by these unique characteristics include machine-wide emittance preservation, consistent high intensity operation, polarized electron production and transport, and the achievement of a high degree of beam stability on all time scales. In addition to serving as an important machine for the study of Z 0 boson production and decay using polarized beams, the SLC is also an indispensable source of hands-on experience for future linear colliders. Each new year of operation has been highlighted with a marked improvement in performance. The most significant improvements for the 1994-95 run include new low impedance vacuum chambers for the damping rings, an upgrade to the optics and diagnostics of the final focus systems, and a higher degree of polarization from the electron source. As a result, the average luminosity has nearly doubled over the previous year with peaks approaching 10 30 cm -2 s -1 and an 80% electron polarization at the interaction point. These developments as well as the remaining identifiable performance limitations will be discussed
Preliminary evaluation of vector flow and spectral velocity estimation
Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per
Spectral estimation is considered as the golden standard in ultrasound velocity estimation. For spectral velocity estimation the blood flow angle is set by the ultrasound operator. Vector flow provides temporal and spatial estimates of the blood flow angle and velocity. A comparison of vector flow...... line covering the vessel diameter. A commercial ultrasound scanner (ProFocus 2202, BK Medical, Denmark) and a 7.6 MHz linear transducer was used (8670, BK Medical). The mean vector blood flow angle estimations were calculated {52(18);55(23);60(16)}°. For comparison the fixed angles for spectral...... estimation were obtained {52;56;52}°. The mean vector velocity estimates at PS {76(15);95(17);77(16)}cm/s and at end diastole (ED) {17(6);18(6);24(6)}cm/s were calculated. For comparison spectral velocity estimates at PS {77;110;76}cm/s and ED {18;18;20}cm/s were obtained. The mean vector angle estimates...
Frequency-chirped readout of spatial-spectral absorption features
Chang, Tiejun; Mohan, R. Krishna; Harris, Todd L.; Merkel, Kristian D.; Tian Mingzhen; Babbitt, Wm. Randall
2004-01-01
This paper examines the physical mechanisms of reading out spatial-spectral absorption features in an inhomogeneously broadened medium using linear frequency-chirped electric fields. A Maxwell-Bloch model using numerical calculation for angled beams with arbitrary phase modulation is used to simulate the chirped field readout process. The simulation results indicate that any spatial-spectral absorption feature can be read out with a chirped field with the appropriate bandwidth, duration, and intensity. Mapping spectral absorption features into temporal intensity modulations depends on the chirp rate of the field. However, when probing a spatial-spectral grating with a chirped field, a beat signal representing the grating period can be created by interfering the emitted photon echo chirped field with a reference chirped field, regardless of the chirp rate. Comparisons are made between collinear and angled readout configurations. Readout signal strength and spurious signal distortions are investigated as functions of the grating strength and the Rabi frequency of the readout pulse. Using a collinear readout geometry, distortions from optical nutation on the transmitted field and higher-order harmonics are observed, both of which are avoided in an angled beam geometry
Automatic parquet block sorting using real-time spectral classification
Astrom, Anders; Astrand, Erik; Johansson, Magnus
1999-03-01
This paper presents a real-time spectral classification system based on the PGP spectrograph and a smart image sensor. The PGP is a spectrograph which extracts the spectral information from a scene and projects the information on an image sensor, which is a method often referred to as Imaging Spectroscopy. The classification is based on linear models and categorizes a number of pixels along a line. Previous systems adopting this method have used standard sensors, which often resulted in poor performance. The new system, however, is based on a patented near-sensor classification method, which exploits analogue features on the smart image sensor. The method reduces the enormous amount of data to be processed at an early stage, thus making true real-time spectral classification possible. The system has been evaluated on hardwood parquet boards showing very good results. The color defects considered in the experiments were blue stain, white sapwood, yellow decay and red decay. In addition to these four defect classes, a reference class was used to indicate correct surface color. The system calculates a statistical measure for each parquet block, giving the pixel defect percentage. The patented method makes it possible to run at very high speeds with a high spectral discrimination ability. Using a powerful illuminator, the system can run with a line frequency exceeding 2000 line/s. This opens up the possibility to maintain high production speed and still measure with good resolution.
Spectral Envelope Transformation in Singing Voice for Advanced Pitch Shifting
José L. Santacruz
2016-11-01
Full Text Available The aim of the present work is to perform a step towards more natural pitch shifting techniques in singing voice for its application in music production and entertainment systems. In this paper, we present an advanced method to achieve natural modifications when applying a pitch shifting process to singing voice by modifying the spectral envelope of the audio excerpt. To this end, an all-pole model has been selected to model the spectral envelope, which is estimated using a constrained non-linear optimization. The analysis of the global variations of the spectral envelope was carried out by identifying changes of the parameters of the model along with the changes of the pitch. With the obtained spectral envelope transformation functions, we applied our pitch shifting scheme to some sustained vowels in order to compare results with the same transformation made by using the Flex Pitch plugin of Logic Pro X and pitch synchronous overlap and add technique (PSOLA. This comparison has been carried out by means of both an objective and a subjective evaluation. The latter was done with a survey open to volunteers on our website.
Spectral synchronicity in brain signals
de Jesus Euan Campos, Carolina; Ombao, Hernando; Ortega, Joaquí n
2018-01-01
This paper addresses the problem of identifying brain regions with similar oscillatory patterns detected from electroencephalograms. We introduce the hierarchical spectral merger (HSM) clustering method where the feature of interest is the spectral curve and the similarity metric used is the total variance distance. The HSM method is compared with clustering using features derived from independent-component analysis. Moreover, the HSM method is applied to 2 different electroencephalogram datasets. The first was recorded at resting state where the participant was not engaged in any cognitive task; the second was recorded during a spontaneous epileptic seizure. The results of the analyses using the HSM method demonstrate that clustering could evolve over the duration of the resting state and during epileptic seizure.
Spectral synchronicity in brain signals
de Jesus Euan Campos, Carolina
2018-05-04
This paper addresses the problem of identifying brain regions with similar oscillatory patterns detected from electroencephalograms. We introduce the hierarchical spectral merger (HSM) clustering method where the feature of interest is the spectral curve and the similarity metric used is the total variance distance. The HSM method is compared with clustering using features derived from independent-component analysis. Moreover, the HSM method is applied to 2 different electroencephalogram datasets. The first was recorded at resting state where the participant was not engaged in any cognitive task; the second was recorded during a spontaneous epileptic seizure. The results of the analyses using the HSM method demonstrate that clustering could evolve over the duration of the resting state and during epileptic seizure.
Spectral computations for bounded operators
Ahues, Mario; Limaye, Balmohan
2001-01-01
Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approximate such operators by finite rank operators, then solve the original eigenvalue problem approximately. Serving as both an outstanding text for graduate students and as a source of current results for research scientists, Spectral Computations for Bounded Operators addresses the issue of solving eigenvalue problems for operators on infinite dimensional spaces. From a review of classical spectral theory through concrete approximation techniques to finite dimensional situations that can be implemented on a computer, this volume illustrates the marriage of pure and applied mathematics. It contains a variety of recent developments, including a new type of approximation that encompasses a variety of approximation methods but is simple to verify in practice. It also suggests a new stopping criterion for the QR Method and outlines advances in both the iterative refineme...
Modal planes are spectral triples
Gayral, Victor; Iochum, Bruno; Schuecker, Thomas; Gracia-Bondia, Jose M.; Varilly, Joseph C.
2003-09-01
Axioms for nonunital spectral triples, extending those introduced in the unital case by Connes, are proposed. As a guide, and for the sake of their importance in noncommutative quantum field theory, the spaces R 2N endowed with Moyal products are intensively investigated. Some physical applications, such as the construction of noncommutative Wick monomials and the computation of the Connes-Lott functional action, are given for these noncommutative hyperplanes. (author)
Remote sensing of species diversity using Landsat 8 spectral variables
Madonsela, Sabelo; Cho, Moses Azong; Ramoelo, Abel; Mutanga, Onisimo
2017-11-01
The application of remote sensing in biodiversity estimation has largely relied on the Normalized Difference Vegetation Index (NDVI). The NDVI exploits spectral information from red and near infrared bands of Landsat images and it does not consider canopy background conditions hence it is affected by soil brightness which lowers its sensitivity to vegetation. As such NDVI may be insufficient in explaining tree species diversity. Meanwhile, the Landsat program also collects essential spectral information in the shortwave infrared (SWIR) region which is related to plant properties. The study was intended to: (i) explore the utility of spectral information across Landsat-8 spectrum using the Principal Component Analysis (PCA) and estimate alpha diversity (α-diversity) in the savannah woodland in southern Africa, and (ii) define the species diversity index (Shannon (H‧), Simpson (D2) and species richness (S) - defined as number of species in a community) that best relates to spectral variability on the Landsat-8 Operational Land Imager dataset. We designed 90 m × 90 m field plots (n = 71) and identified all trees with a diameter at breast height (DbH) above 10 cm. H‧, D2 and S were used to quantify tree species diversity within each plot and the corresponding spectral information on all Landsat-8 bands were extracted from each field plot. A stepwise linear regression was applied to determine the relationship between species diversity indices (H‧, D2 and S) and Principal Components (PCs), vegetation indices and Gray Level Co-occurrence Matrix (GLCM) texture layers with calibration (n = 46) and test (n = 23) datasets. The results of regression analysis showed that the Simple Ratio Index derivative had a higher relationship with H‧, D2 and S (r2= 0.36; r2= 0.41; r2= 0.24 respectively) compared to NDVI, EVI, SAVI or their derivatives. Moreover the Landsat-8 derived PCs also had a higher relationship with H‧ and D2 (r2 of 0.36 and 0.35 respectively) than the
Garbet, X.; Mourgues, F.; Samain, A.
1987-01-01
Among the various instabilities which could explain the anomalous electron heat transport observed in tokamaks during additional heating, a microtearing turbulence is a reasonable candidate since it affects directly the magnetic topology. This turbulence may be described in a proper frame rotating around the majors axis by a static potential vector. In strong non linear regimes, the flow of electrons along the stochastic field lines induces a current. The point is to know whether this current can sustain the turbulence. The mechanisms of this self-consistency, involving the combined effects of the thermal diamagnetism and of the electric drift are presented here
Wangler, Thomas P
2008-01-01
Thomas P. Wangler received his B.S. degree in physics from Michigan State University, and his Ph.D. degree in physics and astronomy from the University of Wisconsin. After postdoctoral appointments at the University of Wisconsin and Brookhaven National Laboratory, he joined the staff of Argonne National Laboratory in 1966, working in the fields of experimental high-energy physics and accelerator physics. He joined the Accelerator Technology Division at Los Alamos National Laboratory in 1979, where he specialized in high-current beam physics and linear accelerator design and technology. In 2007
Richter, B.; Bell, R.A.; Brown, K.L.
1980-06-01
The SLAC LINEAR COLLIDER is designed to achieve an energy of 100 GeV in the electron-positron center-of-mass system by accelerating intense bunches of particles in the SLAC linac and transporting the electron and positron bunches in a special magnet system to a point where they are focused to a radius of about 2 microns and made to collide head on. The rationale for this new type of colliding beam system is discussed, the project is described, some of the novel accelerator physics issues involved are discussed, and some of the critical technical components are described
Lopez, Cesar
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to
USGS Spectral Library Version 7
Kokaly, Raymond F.; Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Hoefen, Todd M.; Pearson, Neil C.; Wise, Richard A.; Benzel, William M.; Lowers, Heather A.; Driscoll, Rhonda L.; Klein, Anna J.
2017-04-10
We have assembled a library of spectra measured with laboratory, field, and airborne spectrometers. The instruments used cover wavelengths from the ultraviolet to the far infrared (0.2 to 200 microns [μm]). Laboratory samples of specific minerals, plants, chemical compounds, and manmade materials were measured. In many cases, samples were purified, so that unique spectral features of a material can be related to its chemical structure. These spectro-chemical links are important for interpreting remotely sensed data collected in the field or from an aircraft or spacecraft. This library also contains physically constructed as well as mathematically computed mixtures. Four different spectrometer types were used to measure spectra in the library: (1) Beckman™ 5270 covering the spectral range 0.2 to 3 µm, (2) standard, high resolution (hi-res), and high-resolution Next Generation (hi-resNG) models of Analytical Spectral Devices (ASD) field portable spectrometers covering the range from 0.35 to 2.5 µm, (3) Nicolet™ Fourier Transform Infra-Red (FTIR) interferometer spectrometers covering the range from about 1.12 to 216 µm, and (4) the NASA Airborne Visible/Infra-Red Imaging Spectrometer AVIRIS, covering the range 0.37 to 2.5 µm. Measurements of rocks, soils, and natural mixtures of minerals were made in laboratory and field settings. Spectra of plant components and vegetation plots, comprising many plant types and species with varying backgrounds, are also in this library. Measurements by airborne spectrometers are included for forested vegetation plots, in which the trees are too tall for measurement by a field spectrometer. This report describes the instruments used, the organization of materials into chapters, metadata descriptions of spectra and samples, and possible artifacts in the spectral measurements. To facilitate greater application of the spectra, the library has also been convolved to selected spectrometer and imaging spectrometers sampling and
Spectral properties of generalized eigenparameter dependent ...
Jost function, spectrum, the spectral singularities, and the properties of the principal vectors corresponding to the spectral singularities of L, if. ∞Σn=1 n(∣1 - an∣ + ∣bnl) < ∞. Mathematics Subject Classication (2010): 34L05, 34L40, 39A70, 47A10, 47A75. Key words: Discrete equations, eigenparameter, spectral analysis, ...
Calibrating spectral images using penalized likelihood
Heijden, van der G.W.A.M.; Glasbey, C.
2003-01-01
A new method is presented for automatic correction of distortions and for spectral calibration (which band corresponds to which wavelength) of spectral images recorded by means of a spectrograph. The method consists of recording a bar-like pattern with an illumination source with spectral bands
Adinkras, Dessins, Origami, and Supersymmetry Spectral Triples
Marcolli, Matilde; Zolman, Nick
2016-01-01
We investigate the spectral geometry and spectral action functionals associated to 1D Supersymmetry Algebras, using the classification of these superalgebras in terms of Adinkra graphs and the construction of associated dessin d'enfant and origami curves. The resulting spectral action functionals are computed in terms of the Selberg (super) trace formula.
Automated computation of autonomous spectral submanifolds for nonlinear modal analysis
Ponsioen, Sten; Pedergnana, Tiemo; Haller, George
2018-04-01
We discuss an automated computational methodology for computing two-dimensional spectral submanifolds (SSMs) in autonomous nonlinear mechanical systems of arbitrary degrees of freedom. In our algorithm, SSMs, the smoothest nonlinear continuations of modal subspaces of the linearized system, are constructed up to arbitrary orders of accuracy, using the parameterization method. An advantage of this approach is that the construction of the SSMs does not break down when the SSM folds over its underlying spectral subspace. A further advantage is an automated a posteriori error estimation feature that enables a systematic increase in the orders of the SSM computation until the required accuracy is reached. We find that the present algorithm provides a major speed-up, relative to numerical continuation methods, in the computation of backbone curves, especially in higher-dimensional problems. We illustrate the accuracy and speed of the automated SSM algorithm on lower- and higher-dimensional mechanical systems.
[Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].
Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong
2015-11-01
With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.
Special set linear algebra and special set fuzzy linear algebra
Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.
2009-01-01
The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...
Munehiro, H
1980-05-29
When driving the carriage of a printer through a rotating motor, there are problems regarding the limited accuracy of the carriage position due to rotation or contraction and ageing of the cable. In order to solve the problem, a direct drive system was proposed, in which the printer carriage is driven by a linear motor. If one wants to keep the motor circuit of such a motor compact, then the magnetic flux density in the air gap must be reduced or the motor travel must be reduced. It is the purpose of this invention to create an electrodynamic linear motor, which on the one hand is compact and light and on the other hand has a relatively high constant force over a large travel. The invention is characterised by the fact that magnetic fields of alternating polarity are generated at equal intervals in the magnetic field, and that the coil arrangement has 2 adjacent coils, whose size corresponds to half the length of each magnetic pole. A logic circuit is provided to select one of the two coils and to determine the direction of the current depending on the signals of a magnetic field sensor on the coil arrangement.
Kozarov, A.; Petrov, O.; Antonov, J.; Sotirova, S.; Petrova, B.
2006-01-01
The purpose of the linear wind-power generator described in this article is to decrease the following disadvantages of the common wind-powered turbine: 1) large bending and twisting moments to the blades and the shaft, especially when strong winds and turbulence exist; 2) significant values of the natural oscillation period of the construction result in the possibility of occurrence of destroying resonance oscillations; 3) high velocity of the peripheral parts of the rotor creating a danger for birds; 4) difficulties, connected with the installation and the operation on the mountain ridges and passages where the wind energy potential is the largest. The working surfaces of the generator in questions driven by the wind are not connected with a joint shaft but each moves along a railway track with few oscillations. So the sizes of each component are small and their number can be rather large. The mechanical trajectory is not a circle but a closed outline in a vertical plain, which consists of two rectilinear sectors, one above the other, connected in their ends by semi-circumferences. The mechanical energy of each component turns into electrical on the principle of the linear electrical generator. A regulation is provided when the direction of the wind is perpendicular to the route. A possibility of effectiveness is shown through aiming of additional quantities of air to the movable components by static barriers
Linearly Polarized IR Spectroscopy Theory and Applications for Structural Analysis
Kolev, Tsonko
2011-01-01
A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, "Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis" demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscop
Linear polarization observations of some X-ray sources
Shakhovskoy, N.M.; Efimov, Yu.S.
1975-01-01
Multicolour linear polarization of optical radiation of the X-ray sources Sco X-1, Cyg X-2, Cyg X-1 and Her X-1 was measured at the Crimean Astrophysical Observatory in 1970-1973. These observations indicate that polarization of Sco X-1 in the ultraviolet, blue and red spectral regions appears to be variable. No statistically significant variations of polarization were found for the other three sources observed. (Auth.)
A new method of organizing spectral line intensity ratio fluctuations of auroral emissions
Thelin, B.
1986-02-01
In this paper a new kind of linearization effect between the atmospheric auroral emissions is presented. The same kind of linearization effect has previously been found in nightglow emissions from photometer measurements and in the spectrochemical field from studies of optical light sources. Linear graphs have been obtained for atomic spectral lines and vibrational bandspectra when the spectral line ratio fluctuations were plotted versus the photon energies of these emissions. This new effect has been studied with a spectrophotometer in auroral emissions, where linear graphs have been obtained on different auroral occasions. By doing such studies of auroral light it is possible to see the importance of the inelastic scattering cross section between electrons - atoms and electrons - molecules. In this way it has shown to be possible to determine the mean energy of the interacting thermal electrons that are active in the different auroral phases. (author)
Kobayashi, Hiroyuki; Tsuchiya, Kousuke; Ogino, Kenji; Vacha, Martin
2012-01-01
Single-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers. © 2012 The Owner Societies.
Spectrally accurate initial data in numerical relativity
Battista, Nicholas A.
Einstein's theory of general relativity has radically altered the way in which we perceive the universe. His breakthrough was to realize that the fabric of space is deformable in the presence of mass, and that space and time are linked into a continuum. Much evidence has been gathered in support of general relativity over the decades. Some of the indirect evidence for GR includes the phenomenon of gravitational lensing, the anomalous perihelion of mercury, and the gravitational redshift. One of the most striking predictions of GR, that has not yet been confirmed, is the existence of gravitational waves. The primary source of gravitational waves in the universe is thought to be produced during the merger of binary black hole systems, or by binary neutron stars. The starting point for computer simulations of black hole mergers requires highly accurate initial data for the space-time metric and for the curvature. The equations describing the initial space-time around the black hole(s) are non-linear, elliptic partial differential equations (PDE). We will discuss how to use a pseudo-spectral (collocation) method to calculate the initial puncture data corresponding to single black hole and binary black hole systems.
Spectral analysis of noisy nonlinear maps
Hirshman, S.P.; Whitson, J.C.
1982-01-01
A path integral equation formalism is developed to obtain the frequency spectrum of nonlinear mappings exhibiting chaotic behavior. The one-dimensional map, x/sub n+1/ = f(x/sub n/), where f is nonlinear and n is a discrete time variable, is analyzed in detail. This map is introduced as a paradigm of systems whose exact behavior is exceedingly complex, and therefore irretrievable, but which nevertheless possess smooth, well-behaved solutions in the presence of small sources of external noise. A Boltzmann integral equation is derived for the probability distribution function p(x,n). This equation is linear and is therefore amenable to spectral analysis. The nonlinear dynamics in f(x) appear as transition probability matrix elements, and the presence of noise appears simply as an overall multiplicative scattering amplitude. This formalism is used to investigate the band structure of the logistic equation and to analyze the effects of external noise on both the invariant measure and the frequency spectrum of x/sub n/ for several values of lambda epsilon [0,1
Linearization of the Lorenz system
Li, Chunbiao; Sprott, Julien Clinton; Thio, Wesley
2015-01-01
A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation
Topics in computational linear optimization
Hultberg, Tim Helge
2000-01-01
Linear optimization has been an active area of research ever since the pioneering work of G. Dantzig more than 50 years ago. This research has produced a long sequence of practical as well as theoretical improvements of the solution techniques avilable for solving linear optimization problems...... of high quality solvers and the use of algebraic modelling systems to handle the communication between the modeller and the solver. This dissertation features four topics in computational linear optimization: A) automatic reformulation of mixed 0/1 linear programs, B) direct solution of sparse unsymmetric...... systems of linear equations, C) reduction of linear programs and D) integration of algebraic modelling of linear optimization problems in C++. Each of these topics is treated in a separate paper included in this dissertation. The efficiency of solving mixed 0-1 linear programs by linear programming based...
Linearization of the Lorenz system
Li, Chunbiao, E-mail: goontry@126.com [School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Engineering Technology Research and Development Center of Jiangsu Circulation Modernization Sensor Network, Jiangsu Institute of Commerce, Nanjing 211168 (China); Sprott, Julien Clinton [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States); Thio, Wesley [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 (United States)
2015-05-08
A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation.
Spectral methods. Fundamentals in single domains
Canuto, C.
2006-01-01
Since the publication of ''Spectral Methods in Fluid Dynamics'' 1988, spectral methods have become firmly established as a mainstream tool for scientific and engineering computation. The authors of that book have incorporated into this new edition the many improvements in the algorithms and the theory of spectral methods that have been made since then. This latest book retains the tight integration between the theoretical and practical aspects of spectral methods, and the chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is also greatly expanded. (orig.)
Linear perturbations of a self-similar solution of hydrodynamics with non-linear heat conduction
Dubois-Boudesocque, Carine
2000-01-01
The stability of an ablative flow, where a shock wave is located upstream a thermal front, is of importance in inertial confinement fusion. The present model considers an exact self-similar solution to the hydrodynamic equations with non-linear heat conduction for a semi-infinite slab. For lack of an analytical solution, a high resolution numerical procedure is devised, which couples a finite difference method with a relaxation algorithm using a two-domain pseudo-spectral method. Stability of this solution is studied by introducing linear perturbation method within a Lagrangian-Eulerian framework. The initial and boundary value problem is solved by a splitting of the equations between a hyperbolic system and a parabolic equation. The boundary conditions of the hyperbolic system are treated, in the case of spectral methods, according to Thompson's approach. The parabolic equation is solved by an influence matrix method. These numerical procedures have been tested versus exact solutions. Considering a boundary heat flux perturbation, the space-time evolution of density, velocity and temperature are shown. (author) [fr
On the linear programming bound for linear Lee codes.
Astola, Helena; Tabus, Ioan
2016-01-01
Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.
Ghrefat, Habes A.; Goodell, Philip C.
2011-08-01
The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR-SWIR (0.4-2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen
Measuring Identification and Quantification Errors in Spectral CT Material Decomposition
Aamir Younis Raja
2018-03-01
Full Text Available Material decomposition methods are used to identify and quantify multiple tissue components in spectral CT but there is no published method to quantify the misidentification of materials. This paper describes a new method for assessing misidentification and mis-quantification in spectral CT. We scanned a phantom containing gadolinium (1, 2, 4, 8 mg/mL, hydroxyapatite (54.3, 211.7, 808.5 mg/mL, water and vegetable oil using a MARS spectral scanner equipped with a poly-energetic X-ray source operated at 118 kVp and a CdTe Medipix3RX camera. Two imaging protocols were used; both with and without 0.375 mm external brass filter. A proprietary material decomposition method identified voxels as gadolinium, hydroxyapatite, lipid or water. Sensitivity and specificity information was used to evaluate material misidentification. Biological samples were also scanned. There were marked differences in identification and quantification between the two protocols even though spectral and linear correlation of gadolinium and hydroxyapatite in the reconstructed images was high and no qualitative segmentation differences in the material decomposed images were observed. At 8 mg/mL, gadolinium was correctly identified for both protocols, but concentration was underestimated by over half for the unfiltered protocol. At 1 mg/mL, gadolinium was misidentified in 38% of voxels for the filtered protocol and 58% of voxels for the unfiltered protocol. Hydroxyapatite was correctly identified at the two higher concentrations for both protocols, but mis-quantified for the unfiltered protocol. Gadolinium concentration as measured in the biological specimen showed a two-fold difference between protocols. In future, this methodology could be used to compare and optimize scanning protocols, image reconstruction methods, and methods for material differentiation in spectral CT.
Planck 2013 results. IX. HFI spectral response
Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leahy, J P; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; North, C; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Santos, D; Savini, G; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A
2014-01-01
The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (including out-of-band signal rejection) of all HFI detectors. This was determined by measuring the output of a continuously scanned Fourier transform spectrometer coupled with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. Ver...
Introduction to linear elasticity
Gould, Phillip L
2013-01-01
Introduction to Linear Elasticity, 3rd Edition, provides an applications-oriented grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical, and biomedical engineering, as well as materials and earth science. The book is distinct from the traditional text aimed at graduate students in solid mechanics by introducing the subject at a level appropriate for advanced undergraduate and beginning graduate students. The author's presentation allows students to apply the basic notions of stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials, viscoelasticity and finite method analysis. This book also: Emphasizes tensor-based approach while still distilling down to explicit notation Provides introduction to theory of plates, theory of shells, wave propagation, viscoelasticity and plasticity accessible to advanced undergraduate students Appropriate for courses following emerging trend of teaching solid mechan...
Haniger, L.; Elger, R.; Kocandrle, L.; Zdebor, J.
1986-01-01
A linear step drive is described developed in Czechoslovak-Soviet cooperation and intended for driving WWER-1000 control rods. The functional principle is explained of the motor and the mechanical and electrical parts of the drive, power control, and the indicator of position are described. The motor has latches situated in the reactor at a distance of 3 m from magnetic armatures, it has a low structural height above the reactor cover, which suggests its suitability for seismic localities. Its magnetic circuits use counterpoles; the mechanical shocks at the completion of each step are damped using special design features. The position indicator is of a special design and evaluates motor position within ±1% of total travel. A drive diagram and the flow chart of both the control electronics and the position indicator are presented. (author) 4 figs
Tjutju, R.L.
1977-01-01
Pulse amplifier is standard significant part of spectrometer. Apart from other type of amplification, it's a combination of amplification and pulse shaping. Because of its special purpose the device should fulfill the following : High resolution is desired to gain a high yield comparable to its actual state of condition. High signal to noise is desired to nhν resolution. High linearity to facilitate calibration. A good overload recovery, in order to the device will capable of analizing a low energy radiation which appear joinly on the high energy fields. Other expections of the device are its economical and practical use its extentive application. For that reason it's built on a standard NIM principle. Taking also into account the above mentioned considerations. High quality component parts are used throughout, while its availability in the domestic market is secured. (author)
1976-01-01
This report covers the activity of the Linear Accelerator Laboratory during the period June 1974-June 1976. The activity of the Laboratory is essentially centered on high energy physics. The main activities were: experiments performed with the colliding rings (ACO), construction of the new colliding rings and beginning of the work at higher energy (DCI), bubble chamber experiments with the CERN PS neutrino beam, counter experiments with CERN's PS and setting-up of equipment for new experiments with CERN's SPS. During this period a project has also been prepared for an experiment with the new PETRA colliding ring at Hamburg. On the other hand, intense collaboration with the LURE Laboratory, using the electron synchrotron radiation emitted by ACO and DCI, has been developed [fr
Van Atta, C.M.; Beringer, R.; Smith, L.
1959-01-01
A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.
Tip, A.
1998-06-01
Starting from Maxwell's equations for a linear, nonconducting, absorptive, and dispersive medium, characterized by the constitutive equations D(x,t)=ɛ1(x)E(x,t)+∫t-∞dsχ(x,t-s)E(x,s) and H(x,t)=B(x,t), a unitary time evolution and canonical formalism is obtained. Given the complex, coordinate, and frequency-dependent, electric permeability ɛ(x,ω), no further assumptions are made. The procedure leads to a proper definition of band gaps in the periodic case and a new continuity equation for energy flow. An S-matrix formalism for scattering from lossy objects is presented in full detail. A quantized version of the formalism is derived and applied to the generation of Čerenkov and transition radiation as well as atomic decay. The last case suggests a useful generalization of the density of states to the absorptive situation.
Spectral representation in stochastic quantization
Nakazato, Hiromichi.
1988-10-01
A spectral representation of stationary 2-point functions is investigated based on the operator formalism in stochastic quantization. Assuming the existence of asymptotic non-interacting fields, we can diagonalize the total Hamiltonian in terms of asymptotic fields and show that the correlation length along the fictious time is proportional to the physical mass expected in the usual field theory. A relation between renormalization factors in the operator formalism is derived as a byproduct and its validity is checked with the perturbative results calculated in this formalism. (orig.)
Spectral Tensor-Train Decomposition
Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.
2016-01-01
The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT...... adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online (http://pypi.python.org/pypi/TensorToolbox/)....
Spectral filtering for CW searches
D'Antonio, S; Frasca, S; Palomba, C
2009-01-01
In the hierarchical all-sky search method for periodic sources developed in the Virgo Collaboration, after the first incoherent step based on the Hough transform we have a number of candidates that must be analyzed using a much longer time baseline periodogram. In this step, we correct the signal power spread due to the Earth rotation, which becomes relevant for observation times greater than ∼1 sidereal day, using a bank of matched filters on the power spectrum. Describing the wave as the combination of a linearly polarized and a circularly polarized component, the spread depends on two parameters: the polarization angle of the linearly polarized wave component and the percentage of linear polarization. Here we discuss in detail the issue of how many filters must be built to properly cover the parameter space and give some implementation details of the procedure.
Near-infrared spectral imaging Michelson interferometer for astronomical applications
Wells, C. W.; Potter, A. E.; Morgan, T. H.
1980-01-01
The design and operation of an imaging Michelson interferometer-spectrometer used for near-infrared (0.8 micron to 2.5 microns) spectral imaging are reported. The system employs a rapid scan interferometer modified for stable low resolution (250/cm) performance and a 42 element PbS linear detector array. A microcomputer system is described which provides data acquisition, coadding, and Fourier transformation for near real-time presentation of the spectra of all 42 scene elements. The electronic and mechanical designs are discussed and telescope performance data presented.
Wu, Zhejun; Kudenov, Michael W.
2017-05-01
This paper presents a reconstruction algorithm for the Spatial-Spectral Multiplexing (SSM) optical system. The goal of this algorithm is to recover the three-dimensional spatial and spectral information of a scene, given that a one-dimensional spectrometer array is used to sample the pupil of the spatial-spectral modulator. The challenge of the reconstruction is that the non-parametric representation of the three-dimensional spatial and spectral object requires a large number of variables, thus leading to an underdetermined linear system that is hard to uniquely recover. We propose to reparameterize the spectrum using B-spline functions to reduce the number of unknown variables. Our reconstruction algorithm then solves the improved linear system via a least- square optimization of such B-spline coefficients with additional spatial smoothness regularization. The ground truth object and the optical model for the measurement matrix are simulated with both spatial and spectral assumptions according to a realistic field of view. In order to test the robustness of the algorithm, we add Poisson noise to the measurement and test on both two-dimensional and three-dimensional spatial and spectral scenes. Our analysis shows that the root mean square error of the recovered results can be achieved within 5.15%.
Computer Program For Linear Algebra
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Quaternion Linear Canonical Transform Application
Bahri, Mawardi
2015-01-01
Quaternion linear canonical transform (QLCT) is a generalization of the classical linear canonical transfom (LCT) using quaternion algebra. The focus of this paper is to introduce an application of the QLCT to study of generalized swept-frequency filter
Recursive Algorithm For Linear Regression
Varanasi, S. V.
1988-01-01
Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.
Dynamical systems and linear algebra
Colonius, Fritz (Prof.)
2007-01-01
Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)
Linear spaces: history and theory
Albrecht Beutelspracher
1990-01-01
Linear spaces belong to the most fundamental geometric and combinatorial structures. In this paper I would like to give an onerview about the theory of embedding finite linear spaces in finite projective planes.
Linear versus non-linear supersymmetry, in general
Ferrara, Sergio [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, UniversityC.L.A.,Los Angeles, CA 90095-1547 (United States); Kallosh, Renata [SITP and Department of Physics, Stanford University,Stanford, California 94305 (United States); Proeyen, Antoine Van [Institute for Theoretical Physics, Katholieke Universiteit Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Wrase, Timm [Institute for Theoretical Physics, Technische Universität Wien,Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)
2016-04-12
We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.
Linear versus non-linear supersymmetry, in general
Ferrara, Sergio; Kallosh, Renata; Proeyen, Antoine Van; Wrase, Timm
2016-01-01
We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.
Monahan, John F
2008-01-01
Preface Examples of the General Linear Model Introduction One-Sample Problem Simple Linear Regression Multiple Regression One-Way ANOVA First Discussion The Two-Way Nested Model Two-Way Crossed Model Analysis of Covariance Autoregression Discussion The Linear Least Squares Problem The Normal Equations The Geometry of Least Squares Reparameterization Gram-Schmidt Orthonormalization Estimability and Least Squares Estimators Assumptions for the Linear Mean Model Confounding, Identifiability, and Estimability Estimability and Least Squares Estimators F
Curvature Effect and the Spectral Softening Phenomenon Detected ...
soft spectral evolution, indicating that this spectral softening is not a rare phenomenon .... of time, there exists a temporal steep decay phase accompanied by spectral softening. (d) In most cases, the temporal power law index α and the spectral.
Templates for Linear Algebra Problems
Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der
1995-01-01
The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and
Linearization of CIF through SOS
Nadales Agut, D.E.; Reniers, M.A.; Luttik, B.; Valencia, F.
2011-01-01
Linearization is the procedure of rewriting a process term into a linear form, which consist only of basic operators of the process language. This procedure is interesting both from a theoretical and a practical point of view. In particular, a linearization algorithm is needed for the Compositional
Engberg, Uffe Henrik; Winskel, Glynn
This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...
Spectral element simulation of ultrafiltration
Hansen, M.; Barker, Vincent A.; Hassager, Ole
1998-01-01
for the unknowns at the mesh nodes. This system is solved via a technique combining the penalty method, Newton-Raphson iterations, static condensation, and a solver for banded linear systems. In addition, a smoothing technique is used to handle a singularity in the boundary condition at the membrane...
On the classification of the spectrally stable standing waves of the Hartree problem
Georgiev, Vladimir; Stefanov, Atanas
2018-05-01
We consider the fractional Hartree model, with general power non-linearity and arbitrary spatial dimension. We construct variationally the "normalized" solutions for the corresponding Choquard-Pekar model-in particular a number of key properties, like smoothness and bell-shapedness are established. As a consequence of the construction, we show that these solitons are spectrally stable as solutions to the time-dependent Hartree model. In addition, we analyze the spectral stability of the Moroz-Van Schaftingen solitons of the classical Hartree problem, in any dimensions and power non-linearity. A full classification is obtained, the main conclusion of which is that only and exactly the "normalized" solutions (which exist only in a portion of the range) are spectrally stable.
Two Efficient Generalized Laguerre Spectral Algorithms for Fractional Initial Value Problems
D. Baleanu
2013-01-01
Full Text Available We present a direct solution technique for approximating linear multiterm fractional differential equations (FDEs on semi-infinite interval, using generalized Laguerre polynomials. We derive the operational matrix of Caputo fractional derivative of the generalized Laguerre polynomials which is applied together with generalized Laguerre tau approximation for implementing a spectral solution of linear multiterm FDEs on semi-infinite interval subject to initial conditions. The generalized Laguerre pseudo-spectral approximation based on the generalized Laguerre operational matrix is investigated to reduce the nonlinear multiterm FDEs and its initial conditions to nonlinear algebraic system, thus greatly simplifying the problem. Through several numerical examples, we confirm the accuracy and performance of the proposed spectral algorithms. Indeed, the methods yield accurate results, and the exact solutions are achieved for some tested problems.
A singular-value decomposition approach to X-ray spectral estimation from attenuation data
Tominaga, Shoji
1986-01-01
A singular-value decomposition (SVD) approach is described for estimating the exposure-rate spectral distributions of X-rays from attenuation data measured withvarious filtrations. This estimation problem with noisy measurements is formulated as the problem of solving a system of linear equations with an ill-conditioned nature. The principle of the SVD approach is that a response matrix, representing the X-ray attenuation effect by filtrations at various energies, can be expanded into summation of inherent component matrices, and thereby the spectral distributions can be represented as a linear combination of some component curves. A criterion function is presented for choosing the components needed to form a reliable estimate. The feasibility of the proposed approach is studied in detail in a computer simulation using a hypothetical X-ray spectrum. The application results of the spectral distributions emitted from a therapeutic X-ray generator are shown. Finally some advantages of this approach are pointed out. (orig.)
Richards, J.A.
1977-01-01
A linear particle accelerator which provides a pulsed beam of charged particles of uniform energy is described. The accelerator is in the form of an evacuated dielectric tube, inside of which a particle source is located at one end of the tube, with a target or window located at the other end of the dielectric tube. Along the length of the tube are externally located pairs of metal plates, each insulated from each other in an insulated housing. Each of the plates of a pair are connected to an electrical source of voltage of opposed polarity, with the polarity of the voltage of the plates oriented so that the plate of a pair, nearer to the particle source, is of the opposed polarity to the charge of the particle emitted by the source. Thus, a first plate about the tube located nearest the particle source, attracts a particle which as it passes through the tube past the first plate is then repelled by the reverse polarity of the second plate of the pair to continue moving towards the target
Generalized Linear Covariance Analysis
Carpenter, James R.; Markley, F. Landis
2014-01-01
This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.
Equipartitioning in linear accelerators
Jameson, R.A.
1982-01-01
Emittance growth has long been a concern in linear accelerators, as has the idea that some kind of energy balance, or equipartitioning, between the degrees of freedom, would ameliorate the growth. M. Prome observed that the average transverse and longitudinal velocity spreads tend to equalize as current in the channel is increased, while the sum of the energy in the system stays nearly constant. However, only recently have we shown that an equipartitioning requirement on a bunched injected beam can indeed produce remarkably small emittance growth. The simple set of equations leading to this condition are outlined. At the same time, Hofmann has investigated collective instabilities in transported beams and has identified thresholds and regions in parameter space where instabilities occur. Evidence is presented that shows transport system boundaries to be quite accurate in computer simulations of accelerating systems. Discussed are preliminary results of efforts to design accelerators that avoid parameter regions where emittance is affected by the instabilities identified by Hofmann. These efforts suggest that other mechanisms are present. The complicated behavior of the RFQ linac in this framework also is shown
Equipartitioning in linear accelerators
Jameson, R.A.
1981-01-01
Emittance growth has long been a concern in linear accelerators, as has the idea that some kind of energy balance, or equipartitioning, between the degrees of freedom, would ameliorate the growth. M. Prome observed that the average transverse and longitudinal velocity spreads tend to equalize as current in the channel is increased, while the sum of the energy in the system stays nearly constant. However, only recently have we shown that an equipartitioning requirement on a bunched injected beam can indeed produce remarkably small emittance growth. The simple set of equations leading to this condition are outlined below. At the same time, Hofmann, using powerful analytical and computational methods, has investigated collective instabilities in transported beams and has identified thresholds and regions in parameter space where instabilities occur. This is an important generalization. Work that he will present at this conference shows that the results are essentially the same in r-z coordinates for transport systems, and evidence is presented that shows transport system boundaries to be quite accurate in computer simulations of accelerating systems also. Discussed are preliminary results of efforts to design accelerators that avoid parameter regions where emittance is affected by the instabilities identified by Hofmann. These efforts suggest that other mechanisms are present. The complicated behavior of the RFQ linac in this framework also is shown
Briggs, R.J.
1986-06-01
The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs
Berkeley Proton Linear Accelerator
Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.
1953-10-13
A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.
Random linear codes in steganography
Kamil Kaczyński
2016-12-01
Full Text Available Syndrome coding using linear codes is a technique that allows improvement in the steganographic algorithms parameters. The use of random linear codes gives a great flexibility in choosing the parameters of the linear code. In parallel, it offers easy generation of parity check matrix. In this paper, the modification of LSB algorithm is presented. A random linear code [8, 2] was used as a base for algorithm modification. The implementation of the proposed algorithm, along with practical evaluation of algorithms’ parameters based on the test images was made.[b]Keywords:[/b] steganography, random linear codes, RLC, LSB
Linear Prediction Using Refined Autocorrelation Function
M. Shahidur Rahman
2007-07-01
Full Text Available This paper proposes a new technique for improving the performance of linear prediction analysis by utilizing a refined version of the autocorrelation function. Problems in analyzing voiced speech using linear prediction occur often due to the harmonic structure of the excitation source, which causes the autocorrelation function to be an aliased version of that of the vocal tract impulse response. To estimate the vocal tract characteristics accurately, however, the effect of aliasing must be eliminated. In this paper, we employ homomorphic deconvolution technique in the autocorrelation domain to eliminate the aliasing effect occurred due to periodicity. The resulted autocorrelation function of the vocal tract impulse response is found to produce significant improvement in estimating formant frequencies. The accuracy of formant estimation is verified on synthetic vowels for a wide range of pitch frequencies typical for male and female speakers. The validity of the proposed method is also illustrated by inspecting the spectral envelopes of natural speech spoken by high-pitched female speaker. The synthesis filter obtained by the current method is guaranteed to be stable, which makes the method superior to many of its alternatives.
Chen, Q G; Xu, Y; Zhu, H H; Chen, H; Lin, B
2015-01-01
A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565–750 nm. The spectral parameter, defined as the ratio of wavebands at 565–750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66–1.06, 1.06–1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems. (paper)
Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.
2015-08-01
A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as 1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.
Data Field Modeling and Spectral-Spatial Feature Fusion for Hyperspectral Data Classification.
Liu, Da; Li, Jianxun
2016-12-16
Classification is a significant subject in hyperspectral remote sensing image processing. This study proposes a spectral-spatial feature fusion algorithm for the classification of hyperspectral images (HSI). Unlike existing spectral-spatial classification methods, the influences and interactions of the surroundings on each measured pixel were taken into consideration in this paper. Data field theory was employed as the mathematical realization of the field theory concept in physics, and both the spectral and spatial domains of HSI were considered as data fields. Therefore, the inherent dependency of interacting pixels was modeled. Using data field modeling, spatial and spectral features were transformed into a unified radiation form and further fused into a new feature by using a linear model. In contrast to the current spectral-spatial classification methods, which usually simply stack spectral and spatial features together, the proposed method builds the inner connection between the spectral and spatial features, and explores the hidden information that contributed to classification. Therefore, new information is included for classification. The final classification result was obtained using a random forest (RF) classifier. The proposed method was tested with the University of Pavia and Indian Pines, two well-known standard hyperspectral datasets. The experimental results demonstrate that the proposed method has higher classification accuracies than those obtained by the traditional approaches.
Spectral dimension in causal set quantum gravity
Eichhorn, Astrid; Mizera, Sebastian
2014-01-01
We evaluate the spectral dimension in causal set quantum gravity by simulating random walks on causal sets. In contrast to other approaches to quantum gravity, we find an increasing spectral dimension at small scales. This observation can be connected to the nonlocality of causal set theory that is deeply rooted in its fundamentally Lorentzian nature. Based on its large-scale behaviour, we conjecture that the spectral dimension can serve as a tool to distinguish causal sets that approximate manifolds from those that do not. As a new tool to probe quantum spacetime in different quantum gravity approaches, we introduce a novel dimensional estimator, the causal spectral dimension, based on the meeting probability of two random walkers, which respect the causal structure of the quantum spacetime. We discuss a causal-set example, where the spectral dimension and the causal spectral dimension differ, due to the existence of a preferred foliation. (paper)
Quality assurance of the Brewer spectral UV measurements in Finland
K. Lakkala
2008-06-01
Full Text Available The quality assurance of the two Brewer spectrophotometers of the Finnish Meteorological Institute is discussed in this paper. The complete data processing chain from raw signal to high quality spectra is presented. The quality assurance includes daily maintenance, laboratory characterizations, calculation of long-term spectral responsivity, data processing and quality assessment. The cosine correction of the measurements is based on a new method, and is included in the data processing software. The results showed that the actual cosine correction factor of the two Finnish Brewers can vary between 1.08–1.13 and 1.08–1.12, respectively, depending on the sky radiance distribution and wavelength. The temperature characterization showed a linear temperature dependence between the instruments' internal temperature and the photon counts per cycle, and a temperature correction was used for correcting the measurements. The long-term spectral responsivity was calculated using the time series of several lamps using two slightly different methods. The long-term spectral responsivity was scaled to the irradiance scale of the Helsinki University of Technology (HUT for the whole of the measurement time-periods 1990–2006 and 1995–2006 for Sodankylä and Jokioinen, respectively. Both Brewers have participated in many international spectroradiometer comparisons, and have shown good stability. The differences between the Brewers and the portable reference spectroradiometer QASUME have been within 5% during 2002–2007.
Spectral CT of carotid atherosclerotic plaque: comparison with histology
Zainon, R.; Doesburg, R.M. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Ronaldson, J.P.; Gieseg, S.P. [University of Otago, Centre for Bioengineering, Christchurch (New Zealand); Janmale, T. [University of Canterbury, Free Radical Biochemistry Laboratory, School of Biological Sciences, Christchurch (New Zealand); Scott, N.J. [University of Otago, Department of Medicine, Christchurch (New Zealand); Buckenham, T.M. [University of Otago, Department of Academic Radiology, Christchurch (New Zealand); Butler, A.P.H. [University of Otago, Centre for Bioengineering, Christchurch (New Zealand); University of Otago, Department of Academic Radiology, Christchurch (New Zealand); University of Canterbury, Department of Electrical and Computer Engineering, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); Butler, P.H. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); Roake, J.A. [Christchurch Hospital, Department of Vascular, Endovascular and Transplant Surgery, Christchurch (New Zealand); Anderson, N.G. [University of Otago, Centre for Bioengineering, Christchurch (New Zealand); University of Otago, Department of Academic Radiology, Christchurch (New Zealand); University of Otago, Christchurch, Department of Radiology, PO Box 4345, Christchurch (New Zealand)
2012-12-15
To distinguish components of vulnerable atherosclerotic plaque by imaging their energy response using spectral CT and comparing images with histology. After spectroscopic calibration using phantoms of plaque surrogates, excised human carotid atherosclerotic plaques were imaged using MARS CT using a photon-processing detector with a silicon sensor layer and microfocus X-ray tube (50 kVp, 0.5 mA) at 38-{mu}m voxel size. The plaques were imaged, sectioned and re-imaged using four threshold energies: 10, 16, 22 and 28 keV; then sequentially stained with modified Von Kossa, Perl's Prussian blue and Oil-Red O, and photographed. Relative Hounsfield units across the energies were entered into a linear algebraic material decomposition model to identify the unknown plaque components. Lipid, calcium, iron and water-like components of plaque have distinguishable energy responses to X-ray, visible on spectral CT images. CT images of the plaque surface correlated very well with histological photographs. Calcium deposits (>1,000 {mu}m) in plaque are larger than iron deposits (<100 {mu}m), but could not be distinguished from each other within the same voxel using the energy range available. Spectral CT displays energy information in image form at high spatial resolution, enhancing the intrinsic contrast of lipid, calcium and iron within atheroma. (orig.)
Enamel dose calculation by electron paramagnetic resonance spectral simulation technique
Dong Guofu; Cong Jianbo; Guo Linchao; Ning Jing; Xian Hong; Wang Changzhen; Wu Ke
2011-01-01
Objective: To optimize the enamel electron paramagnetic resonance (EPR) spectral processing by using the EPR spectral simulation method to improve the accuracy of enamel EPR dosimetry and reduce artificial error. Methods: The multi-component superimposed EPR powder spectral simulation software was developed to simulate EPR spectrum models of the background signal (BS) and the radiation- induced signal (RS) of irradiated enamel respectively. RS was extracted from the multi-component superimposed spectrum of irradiated enamel and its amplitude was calculated. The dose-response curve was then established for calculating the doses of a group of enamel samples. The result of estimated dose was compared with that calculated by traditional method. Results: BS was simulated as a powder spectrum of gaussian line shape with the following spectrum parameters: g=2.00 35 and Hpp=0.65-1.1 mT, RS signal was also simulated as a powder spectrum but with axi-symmetric spectrum characteristics. The spectrum parameters of RS were: g ⊥ =2.0018, g ‖ =1.9965, Hpp=0.335-0.4 mT. The amplitude of RS had a linear response to radiation dose with the regression equation as y=240.74x + 76 724 (R 2 =0.9947). The expectation of relative error of dose estimation was 0.13. Conclusions: EPR simulation method has improved somehow the accuracy and reliability of enamel EPR dose estimation. (authors)
Spectral measurements of loess TL
Rendell, H.M.; Mann, S.J.; Townsend, P.D.
1988-01-01
Variations in thermoluminescence (TL) glow curves are reported for two loess samples when examined with broad band filters in the range 275-650 nm. Samples show striking differences in bleaching behaviour, when their TL emissions are observed in the u.v., blue, green and yellow spectral regions. The age estimates, given by the equivalent dose (ED) values, differ by up to a factor of two for analyses using the green and u.v. TL signals. These ED values also vary with prolonged room temperature storage between the bleaching and irradiation steps. The anomalies in the bleaching behaviour are interpreted in terms of changes in TL efficiency. The results have major implications for the regeneration method of TL dating for these fine-grained sediments and suggest that reliable dates obtained by it may be fortuitous. (author)
Elementary principles of spectral distributions
French, J.B.
1980-01-01
It is a common observation that as we add particles, one by one, to a simple system, things get steadily more and more complicated. For example if the system is describable in shell-model terms, i.e., with a model space in which m particles are distributed over N single-particle states, then as long as m << N, the dimensionality increases rapidly with particle number. On the other hand, for the usual (1 + 2)-body Hamiltonian, the (m greater than or equal to 2)-particle spectrum and wave functions are determined by operators defined in the one-particle space (for the single-particle energies) and the two-particle space (for the interactions). We may say then that the input information becomes more and more fragmented as the particle number increases, the fixed amount of information being distributed over more and more matrix elements. On the other hand there arise also new simplicities whose origin is connected with the operation of statistical laws. There is a macroscopic simplicity corresponding to the fact that the smoothed spectrum takes on a characteristic shape defined by a few parameters (low-order moments) of the spectrum. There is a microscopic simplicity corresponding to a remarkable spectral rigidity which extends over the entire spectrum and guarantees us that the fluctuations from uniformity in the spectrum are small and in many cases carry little information. The purpose of spectral-distribution theory, as applied to these problems, is to deal with the complexities by taking advantage of the simplicities
Rodríguez Díaz, L. F.; Oostra, B.
2017-07-01
The Astronomical Observatory of the Universidad de los Andes in Bogotá, Colombia, did a spectral monitoring during 2014 and 2015 to AB Aurigae, the brightest Herbig Ae/be star in the northern hemisphere. The aim of this project is applying spectral techniques, in order to identify specific features that could help us not only to understand how this star is forming, but also to establish a pattern to explain general star formation processes. We have recorded 19 legible spectra with a resolving power of R = 11,0000, using a 40 cm Meade telescope with an eShel spectrograph, coupled by a 50-micron optical fiber. We looked for the prominent absorption lines, the Sodium doublet at 5890Å and 5896Å, respectively and Magnesium II at 4481Å; to measure radial velocities of the star, but, we did not find a constant value. Instead, it ranges from 15 km/s to 32 km/s. This variability could be explained by means of an oscillation or pulsation of the external layers of the star. Other variabilities are observed in some emission lines: Hα, Hβ, He I at 5876Å and Fe II at 5018Å. It seems this phenomenon could be typical in stars that are forming and have a circumstellar disk around themselves. This variability is associated with the nonhomogeneous surface of the star and the interaction that it has with its disk. Results of this interaction could be seen also in the stellar wind ejected by the star. More data are required in order to look for a possible period in the changes of radial velocity of the star, the same for the variability of He I and Fe II, and phenomena present in Hα. We plan to take new data in January of 2017.
Buckling feedback of the spectral calculations
Jing Xingqing; Shan Wenzhi; Luo Jingyu
1992-01-01
This paper studies the problems about buckling feedback of spectral calculations in physical calculations of the reactor and presents a useful method by which the buckling feedback of spectral calculations is implemented. The effect of the buckling feedback in spectra and the broad group cross section, convergence of buckling feedback iteration and the effect of the spectral zones dividing are discussed in the calculations. This method has been used for the physical design of HTR-10 MW Test Module
Spectral survey of helium lines in a linear plasma device for use in HELIOS imaging
Ray, H. B., E-mail: rayhb@ornl.gov [University of Tennessee, Knoxville, Tennessee 37996 (United States); Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Biewer, T. M.; Fehling, D. T.; Isler, R. C.; Unterberg, E. A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
2016-11-15
Fast visible cameras and a filterscope are used to examine the visible light emission from Oak Ridge National Laboratory’s Proto-MPEX. The filterscope has been configured to perform helium line ratio measurements using emission lines at 667.9, 728.1, and 706.5 nm. The measured lines should be mathematically inverted and the ratios compared to a collisional radiative model (CRM) to determine T{sub e} and n{sub e}. Increasing the number of measurement chords through the plasma improves the inversion calculation and subsequent T{sub e} and n{sub e} localization. For the filterscope, one spatial chord measurement requires three photomultiplier tubes (PMTs) connected to pellicle beam splitters. Multiple, fast visible cameras with narrowband filters are an alternate technique for performing these measurements with superior spatial resolution. Each camera contains millions of pixels; each pixel is analogous to one filterscope PMT. The data can then be inverted and the ratios compared to the CRM to determine 2-dimensional “images” of T{sub e} and n{sub e} in the plasma. An assessment is made in this paper of the candidate He I emission lines for an imaging technique.
Park, Kihong; Alouini, Mohamed-Slim
2013-01-01
In this paper, we study a two-hop relaying network consisting of one source, one destination, and three amplify-and-forward (AF) relays with multiple antennas. To compensate for the capacity prelog factor loss of 1/2$ due to the half-duplex relaying
Spectral survey of helium lines in a linear plasma device for use in HELIOS imaging
Ray, H. B.; Biewer, T. M.; Fehling, D. T.; Isler, R. C.; Unterberg, E. A.
2016-11-01
Fast visible cameras and a filterscope are used to examine the visible light emission from Oak Ridge National Laboratory's Proto-MPEX. The filterscope has been configured to perform helium line ratio measurements using emission lines at 667.9, 728.1, and 706.5 nm. The measured lines should be mathematically inverted and the ratios compared to a collisional radiative model (CRM) to determine Te and ne. Increasing the number of measurement chords through the plasma improves the inversion calculation and subsequent Te and ne localization. For the filterscope, one spatial chord measurement requires three photomultiplier tubes (PMTs) connected to pellicle beam splitters. Multiple, fast visible cameras with narrowband filters are an alternate technique for performing these measurements with superior spatial resolution. Each camera contains millions of pixels; each pixel is analogous to one filterscope PMT. The data can then be inverted and the ratios compared to the CRM to determine 2-dimensional "images" of Te and ne in the plasma. An assessment is made in this paper of the candidate He I emission lines for an imaging technique.
Generation of pulsed light in the visible spectral region based on non-linear cavity dumping
Johansson, Sandra; Andersen, Martin; Tidemand-Lichtenberg, Peter
of 215 kHz. Both lasers were pumped with 808 nm laser diodes delivering 4 W of output power. The circulating power of the 1342 nm laser was 57 W and the peak power of the 1064 nm laser reaching the PPKTP crystal was 17 W. A peak power of approximately 4 W at 593 nm was measured. Accounting...
Magnetic modeling of a Linear Synchronous Machine with the spectral element method
Curti, M.; Paulides, J.J.H.; Lomonova, E.
2017-01-01
The field calculus for electrical machines is realized solving subdomain problems. Most often, the latter are solved using either finite element analysis or the semi-analytical solution of a Laplace or Poisson equation obtained by separation of variables. The first option can capture complex
Magnetic modeling of a Linear Synchronous Machine with the spectral element method
Curti, M.; Paulides, J.J.H.; Lomonova, E.
2017-01-01
The field calculus for electrical machines (EMs) is realized solving subdomain problems. Most often, the latter are solved using either finite element analysis (FEA) or the semi-analytical solution of a Laplace or Poisson equation obtained by separation of variables. The first option can capture
Linear study of Kelvin-Helmholtz instability for a viscous compressible fluid
Hallo, L.; Gauthier, S.
1992-01-01
The linear phase of the process leading to a developed turbulence is particularly important for the study of flow stability. A Galerkin spectral method adapted to the study of the mixture layer of one fluid is proposed from a sheared initial velocity profile. An algebraic mapping is developed to improve accuracy near high gradient zone. Validation is obtained by analytic methods for non-viscous flow and multi-domain spectral methods for viscous and compressible flow. Rates of growth are presented for subsonic and slightly supersonic flow. An extension of the method is presented for the study of the linear stability of a mixture with variable concentration and transport properties
Spectrally-engineered solar thermal photovoltaic devices
Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang
2018-03-27
A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.
Spacetime Discontinuous Galerkin FEM: Spectral Response
Abedi, R; Omidi, O; Clarke, P L
2014-01-01
Materials in nature demonstrate certain spectral shapes in terms of their material properties. Since successful experimental demonstrations in 2000, metamaterials have provided a means to engineer materials with desired spectral shapes for their material properties. Computational tools are employed in two different aspects for metamaterial modeling: 1. Mircoscale unit cell analysis to derive and possibly optimize material's spectral response; 2. macroscale to analyze their interaction with conventional material. We compare two different approaches of Time-Domain (TD) and Frequency Domain (FD) methods for metamaterial applications. Finally, we discuss advantages of the TD method of Spacetime Discontinuous Galerkin finite element method (FEM) for spectral analysis of metamaterials
Spectral features in the cosmic ray fluxes
Lipari, Paolo
2018-01-01
The cosmic ray energy distributions contain spectral features, that is narrow energy regions where the slope of the spectrum changes rapidly. The identification and study of these features is of great importance to understand the astrophysical mechanisms of acceleration and propagation that form the spectra. In first approximation a spectral feature is often described as a discontinuous change in slope, however very valuable information is also contained in its width, that is the length of the energy interval where the change in spectral index develops. In this work we discuss the best way to define and parameterize the width a spectral feature, and for illustration discuss some of the most prominent known structures.
High-Order Sparse Linear Predictors for Audio Processing
Giacobello, Daniele; van Waterschoot, Toon; Christensen, Mads Græsbøll
2010-01-01
Linear prediction has generally failed to make a breakthrough in audio processing, as it has done in speech processing. This is mostly due to its poor modeling performance, since an audio signal is usually an ensemble of different sources. Nevertheless, linear prediction comes with a whole set...... of interesting features that make the idea of using it in audio processing not far fetched, e.g., the strong ability of modeling the spectral peaks that play a dominant role in perception. In this paper, we provide some preliminary conjectures and experiments on the use of high-order sparse linear predictors...... in audio processing. These predictors, successfully implemented in modeling the short-term and long-term redundancies present in speech signals, will be used to model tonal audio signals, both monophonic and polyphonic. We will show how the sparse predictors are able to model efﬁciently the different...
Damped oscillations of linear systems a mathematical introduction
Veselić, Krešimir
2011-01-01
The theory of linear damped oscillations was originally developed more than hundred years ago and is still of vital research interest to engineers, mathematicians and physicists alike. This theory plays a central role in explaining the stability of mechanical structures in civil engineering, but it also has applications in other fields such as electrical network systems and quantum mechanics. This volume gives an introduction to linear finite dimensional damped systems as they are viewed by an applied mathematician. After a short overview of the physical principles leading to the linear system model, a largely self-contained mathematical theory for this model is presented. This includes the geometry of the underlying indefinite metric space, spectral theory of J-symmetric matrices and the associated quadratic eigenvalue problem. Particular attention is paid to the sensitivity issues which influence numerical computations. Finally, several recent research developments are included, e.g. Lyapunov stability and ...
Hydrogen quasienergies from spectral analysis of wavepackets
Dondera, M.; Muller, H.G.; Gavrila, M.
2002-01-01
Quasienergies (qe) are calculated traditionally by solving the time-independent Floquet system of differential equations. A number of such calculations have been carried out successfully in the past for atomic hydrogen, albeit not at the frequencies of operation of current super intense lasers. We now present a method for calculating qe based on the evolution of a wave packet of the Schroedinger equation with a time-periodic Hamiltonian, that is an extension of the well known 'spectral method' for obtaining (real) eigenenergies of a time-independent Hamiltonian. The present method is based on propagating a wave packet Ψ(t) with an appropriately chosen initial condition Ψ(0) in a periodic field of constant amplitude, and then Fourier analyzing the autocorrelation function A(t) = . The Fourier transform of the autocorrelation function displays a set of lines, whose location and widths are related to the complex qe of the Floquet states present in the expansion of the wave packet. When these lines are non-overlapping, standard fitting techniques allow the extraction of the real and imaginary parts of the qe. For the case of overlapping lines, we apply the more elaborate technique of 'filter diagonalization'. Our method was tested by comparison with qe obtained from other sources, e.g., the solution of the system of differential equations. We apply the method to 3D hydrogen in a laser field of linear polarization, at the frequently used photon energy ω = 1.55 eV (wavelength 800 nm). We consider Floquet states belonging to several symmetry manifolds m. The field amplitude is varied from zero to several a.u. We thus obtain a 'Floquet map' for the real part of the qe of the lower states, and separately, the imaginary parts (widths) of the qe. The Floquet map displays interesting pseudo-crossings. We interpret the results in terms of avoided crossings of trajectories of the qe in the complex energy plane, and discuss their physical significance. (authors)
Lossless compression of multispectral images using spectral information
Ma, Long; Shi, Zelin; Tang, Xusheng
2009-10-01
Multispectral images are available for different purposes due to developments in spectral imaging systems. The sizes of multispectral images are enormous. Thus transmission and storage of these volumes of data require huge time and memory resources. That is why compression algorithms must be developed. A salient property of multispectral images is that strong spectral correlation exists throughout almost all bands. This fact is successfully used to predict each band based on the previous bands. We propose to use spectral linear prediction and entropy coding with context modeling for encoding multispectral images. Linear prediction predicts the value for the next sample and computes the difference between predicted value and the original value. This difference is usually small, so it can be encoded with less its than the original value. The technique implies prediction of each image band by involving number of bands along the image spectra. Each pixel is predicted using information provided by pixels in the previous bands in the same spatial position. As done in the JPEG-LS, the proposed coder also represents the mapped residuals by using an adaptive Golomb-Rice code with context modeling. This residual coding is context adaptive, where the context used for the current sample is identified by a context quantization function of the three gradients. Then, context-dependent Golomb-Rice code and bias parameters are estimated sample by sample. The proposed scheme was compared with three algorithms applied to the lossless compression of multispectral images, namely JPEG-LS, Rice coding, and JPEG2000. Simulation tests performed on AVIRIS images have demonstrated that the proposed compression scheme is suitable for multispectral images.
Bessel smoothing filter for spectral-element mesh
Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.
2017-06-01
Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the
Multi-material decomposition of spectral CT images
Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.
2010-04-01
Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.
Spectrally adapted red flare tracers with superior spectral performance
Ramy Sadek
2017-12-01
Full Text Available The production of bright light, with vivid color, is the primary purpose of signaling, illuminating devices, and fire control purposes. This study, reports on the development of red flame compositions with enhanced performance in terms of luminous intensity, and color quality. The light intensity and the imprint spectra of developed red flame compositions to standard NATO red tracer (R-284 NATO were measured using digital luxmeter, and UV–Vis. spectrometer. The main giving of this study is that the light intensity of standard NATO red tracer was increased by 72%, the color quality was also improved by 60% (over the red band from 650 to 780 nm. This enhanced spectral performance was achieved by means of deriving the combustion process to maximize the formation of red color emitting species in the combustion flame. Thanks to the optimum ratio of color source to color intensifier using aluminum metal fuel; this approach offered the highest intensity and color quality. Upon combustion, aluminum was found to maximize the formation SrCL (the main reactive red color emitting species and to minimize the interfering incandescent emission resulted from MgO and SrO. Quantification of active red color emitting species in the combustion flame was conducted using chemical equilibrium thermodynamic code named ICT. The improvement in red flare performance, established the rule that the color intensifier should be in the range from 10 to 15 Wt % of the total composition.
Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations
Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava
2018-06-01
The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.
Spectral transform and solvability of nonlinear evolution equations
Degasperis, A.
1979-01-01
These lectures deal with an exciting development of the last decade, namely the resolving method based on the spectral transform which can be considered as an extension of the Fourier analysis to nonlinear evolution equations. Since many important physical phenomena are modeled by nonlinear partial wave equations this method is certainly a major breakthrough in mathematical physics. We follow the approach, introduced by Calogero, which generalizes the usual Wronskian relations for solutions of a Sturm-Liouville problem. Its application to the multichannel Schroedinger problem will be the subject of these lectures. We will focus upon dynamical systems described at time t by a multicomponent field depending on one space coordinate only. After recalling the Fourier technique for linear evolution equations we introduce the spectral transform method taking the integral equations of potential scattering as an example. The second part contains all the basic functional relationships between the fields and their spectral transforms as derived from the Wronskian approach. In the third part we discuss a particular class of solutions of nonlinear evolution equations, solitons, which are considered by many physicists as a first step towards an elementary particle theory, because of their particle-like behaviour. The effect of the polarization time-dependence on the motion of the soliton is studied by means of the corresponding spectral transform, leading to new concepts such as the 'boomeron' and the 'trappon'. The rich dynamic structure is illustrated by a brief report on the main results of boomeron-boomeron and boomeron-trappon collisions. In the final section we discuss further results concerning important properties of the solutions of basic nonlinear equations. We introduce the Baecklund transform for the special case of scalar fields and demonstrate how it can be used to generate multisoliton solutions and how the conservation laws are obtained. (HJ)
Linearized spectrum correlation analysis for line emission measurements.
Nishizawa, T; Nornberg, M D; Den Hartog, D J; Sarff, J S
2017-08-01
A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.
Linear Programming and Network Flows
Bazaraa, Mokhtar S; Sherali, Hanif D
2011-01-01
The authoritative guide to modeling and solving complex problems with linear programming-extensively revised, expanded, and updated The only book to treat both linear programming techniques and network flows under one cover, Linear Programming and Network Flows, Fourth Edition has been completely updated with the latest developments on the topic. This new edition continues to successfully emphasize modeling concepts, the design and analysis of algorithms, and implementation strategies for problems in a variety of fields, including industrial engineering, management science, operations research
LINEAR2007, Linear-Linear Interpolation of ENDF Format Cross-Sections
2007-01-01
1 - Description of program or function: LINEAR converts evaluated cross sections in the ENDF/B format into a tabular form that is subject to linear-linear interpolation in energy and cross section. The code also thins tables of cross sections already in that form. Codes used subsequently need thus to consider only linear-linear data. IAEA1311/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: - Linear VERS. 2007-1 (JAN. 2007): checked against all ENDF/B-VII; increased page size from 60,000 to 600,000 points 2 - Method of solution: Each section of data is considered separately. Each section of File 3, 23, and 27 data consists of a table of cross section versus energy with any of five interpolation laws. LINEAR will replace each section with a new table of energy versus cross section data in which the interpolation law is always linear in energy and cross section. The histogram (constant cross section between two energies) interpolation law is converted to linear-linear by substituting two points for each initial point. The linear-linear is not altered. For the log-linear, linear-log and log- log laws, the cross section data are converted to linear by an interval halving algorithm. Each interval is divided in half until the value at the middle of the interval can be approximated by linear-linear interpolation to within a given accuracy. The LINEAR program uses a multipoint fractional error thinning algorithm to minimize the size of each cross section table
A convex optimization approach for solving large scale linear systems
Debora Cores
2017-01-01
Full Text Available The well-known Conjugate Gradient (CG method minimizes a strictly convex quadratic function for solving large-scale linear system of equations when the coefficient matrix is symmetric and positive definite. In this work we present and analyze a non-quadratic convex function for solving any large-scale linear system of equations regardless of the characteristics of the coefficient matrix. For finding the global minimizers, of this new convex function, any low-cost iterative optimization technique could be applied. In particular, we propose to use the low-cost globally convergent Spectral Projected Gradient (SPG method, which allow us to extend this optimization approach for solving consistent square and rectangular linear system, as well as linear feasibility problem, with and without convex constraints and with and without preconditioning strategies. Our numerical results indicate that the new scheme outperforms state-of-the-art iterative techniques for solving linear systems when the symmetric part of the coefficient matrix is indefinite, and also for solving linear feasibility problems.
Spatial Analysis of Linear Structures in the Exploration of Groundwater
Abdramane Dembele
2017-11-01
Full Text Available The analysis of linear structures on major geological formations plays a crucial role in resource exploration in the Inner Niger Delta. Highlighting and mapping of the large lithological units were carried out using image fusion, spectral bands (RGB coding, Principal Component Analysis (PCA, and band ratio methods. The automatic extraction method of linear structures has permitted the obtaining of a structural map with 82,659 linear structures, distributed on different stratigraphic stages. The intensity study shows an accentuation in density over 12.52% of the total area, containing 22.02% of the linear structures. The density and nodes (intersections of fractures formed by the linear structures on the different lithologies allowed to observe the behavior of the region’s aquifers in the exploration of subsoil resources. The central density, in relation to the hydrographic network of the lowlands, shows the conditioning of the flow and retention of groundwater in the region, and in-depth fluids. The node areas and high-density linear structures, have shown an ability to have rejections in deep (pores that favor the formation of structural traps for oil resources.
Elementary linear programming with applications
Kolman, Bernard
1995-01-01
Linear programming finds the least expensive way to meet given needs with available resources. Its results are used in every area of engineering and commerce: agriculture, oil refining, banking, and air transport. Authors Kolman and Beck present the basic notions of linear programming and illustrate how they are used to solve important common problems. The software on the included disk leads students step-by-step through the calculations. The Second Edition is completely revised and provides additional review material on linear algebra as well as complete coverage of elementary linear program
Hood, John Linsley
2013-01-01
The Art of Linear Electronics presents the principal aspects of linear electronics and techniques in linear electronic circuit design. The book provides a wide range of information on the elucidation of the methods and techniques in the design of linear electronic circuits. The text discusses such topics as electronic component symbols and circuit drawing; passive and active semiconductor components; DC and low frequency amplifiers; and the basic effects of feedback. Subjects on frequency response modifying circuits and filters; audio amplifiers; low frequency oscillators and waveform generato
Linearity and Non-linearity of Photorefractive effect in Materials ...
Linearity and Non-linearity of Photorefractive effect in Materials using the Band transport ... For low light beam intensities the change in the refractive index is ... field is spatially phase shifted by /2 relative to the interference fringe pattern, which ...
The linear programming bound for binary linear codes
Brouwer, A.E.
1993-01-01
Combining Delsarte's (1973) linear programming bound with the information that certain weights cannot occur, new upper bounds for dmin (n,k), the maximum possible minimum distance of a binary linear code with given word length n and dimension k, are derived.
Spectral affinity in protein networks.
Voevodski, Konstantin; Teng, Shang-Hua; Xia, Yu
2009-11-29
Protein-protein interaction (PPI) networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to quickly find nodes closest to a queried vertex in any protein
Spectral affinity in protein networks
Teng Shang-Hua
2009-11-01
Full Text Available Abstract Background Protein-protein interaction (PPI networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. Results We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. Conclusion We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to
A Black Hole Spectral Signature
Titarchuk, Lev; Laurent, Philippe
2000-03-01
An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole'', an unique observational signature. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we present analytical calculations and Monte-Carlo simulations of the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) into the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Greens) function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index over a wide range of the plasma temperature 0 - 10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200-400 keV which are related to the average energy of electrons mec2 impinging upon the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore we demonstrate that the change of spectral shapes from the soft X-ray state to the hard X-ray state is clearly to be
Linear and non-linear optics of condensed matter
McLean, T.P.
1977-01-01
Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)