Preface: Introductory Remarks: Linear Scaling Methods
Bowler, D. R.; Fattebert, J.-L.; Gillan, M. J.; Haynes, P. D.; Skylaris, C.-K.
2008-07-01
It has been just over twenty years since the publication of the seminal paper on molecular dynamics with ab initio methods by Car and Parrinello [1], and the contribution of density functional theory (DFT) and the related techniques to physics, chemistry, materials science, earth science and biochemistry has been huge. Nevertheless, significant improvements are still being made to the performance of these standard techniques; recent work suggests that speed improvements of one or even two orders of magnitude are possible [2]. One of the areas where major progress has long been expected is in O(N), or linear scaling, DFT, in which the computer effort is proportional to the number of atoms. Linear scaling DFT methods have been in development for over ten years [3] but we are now in an exciting period where more and more research groups are working on these methods. Naturally there is a strong and continuing effort to improve the efficiency of the methods and to make them more robust. But there is also a growing ambition to apply them to challenging real-life problems. This special issue contains papers submitted following the CECAM Workshop 'Linear-scaling ab initio calculations: applications and future directions', held in Lyon from 3-6 September 2007. A noteworthy feature of the workshop is that it included a significant number of presentations involving real applications of O(N) methods, as well as work to extend O(N) methods into areas of greater accuracy (correlated wavefunction methods, quantum Monte Carlo, TDDFT) and large scale computer architectures. As well as explicitly linear scaling methods, the conference included presentations on techniques designed to accelerate and improve the efficiency of standard (that is non-linear-scaling) methods; this highlights the important question of crossover—that is, at what size of system does it become more efficient to use a linear-scaling method? As well as fundamental algorithmic questions, this brings up
Seenithurai, Sonai; Chai, Jeng-Da
2017-01-01
Accurate prediction of the electronic and hydrogen storage properties of linear carbon chains (C n ) and Li-terminated linear carbon chains (Li2C n ), with n carbon atoms (n?=?5?10), has been very challenging for traditional electronic structure methods, due to the presence of strong static correlation effects. To meet the challenge, we study these properties using our newly developed thermally-assisted-occupation density functional theory (TAO-DFT), a very efficient electronic structure meth...
Li, Amanda; Muddana, Hari S; Gilson, Michael K
2014-04-08
Quantum mechanical (QM) calculations of noncovalent interactions are uniquely useful as tools to test and improve molecular mechanics force fields and to model the forces involved in biomolecular binding and folding. Because the more computationally tractable QM methods necessarily include approximations, which risk degrading accuracy, it is essential to evaluate such methods by comparison with high-level reference calculations. Here, we use the extensive Benchmark Energy and Geometry Database (BEGDB) of CCSD(T)/CBS reference results to evaluate the accuracy and speed of widely used QM methods for over 1200 chemically varied gas-phase dimers. In particular, we study the semiempirical PM6 and PM7 methods; density functional theory (DFT) approaches B3LYP, B97-D, M062X, and ωB97X-D; and symmetry-adapted perturbation theory (SAPT) approach. For the PM6 and DFT methods, we also examine the effects of post hoc corrections for hydrogen bonding (PM6-DH+, PM6-DH2), halogen atoms (PM6-DH2X), and dispersion (DFT-D3 with zero and Becke-Johnson damping). Several orders of the SAPT expansion are also compared, ranging from SAPT0 up to SAPT2+3, where computationally feasible. We find that all DFT methods with dispersion corrections, as well as SAPT at orders above SAPT2, consistently provide dimer interaction energies within 1.0 kcal/mol RMSE across all systems. We also show that a linear scaling of the perturbative energy terms provided by the fast SAPT0 method yields similar high accuracy, at particularly low computational cost. The energies of all the dimer systems from the various QM approaches are included in the Supporting Information, as are the full SAPT2+(3) energy decomposition for a subset of over 1000 systems. The latter can be used to guide the parametrization of molecular mechanics force fields on a term-by-term basis.
Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi
2017-10-11
We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.
Linear scaling of density functional algorithms
Stechel, E.B.; Feibelman, P.J.; Williams, A.R.
1993-01-01
An efficient density functional algorithm (DFA) that scales linearly with system size will revolutionize electronic structure calculations. Density functional calculations are reliable and accurate in determining many condensed matter and molecular ground-state properties. However, because current DFA's, including methods related to that of Car and Parrinello, scale with the cube of the system size, density functional studies are not routinely applied to large systems. Linear scaling is achieved by constructing functions that are both localized and fully occupied, thereby eliminating the need to calculate global eigenfunctions. It is, however, widely believed that exponential localization requires the existence of an energy gap between the occupied and unoccupied states. Despite this, the authors demonstrate that linear scaling can still be achieved for metals. Using a linear scaling algorithm, they have explicitly constructed localized, almost fully occupied orbitals for the quintessential metallic system, jellium. The algorithm is readily generalizable to any system geometry and Hamiltonian. They will discuss the conceptual issues involved, convergence properties and scaling for their new algorithm
Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach
Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-06-01
The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.
Srinivas, Kolluru; Dangat, Yuvraj; Kommagalla, Yadagiri; Vanka, Kumar; Ramana, Chepuri V
2017-06-01
Investigations on the factors that govern unusual branched alkylation of 2-aroylbenzofurans with acrylates by Ru-catalyzed carbonyl-directed C-H activation has been carried out by calculating the kinetics associated with the two key steps-the coordination of the acrylate with the intermediate ruthenacycle and the subsequent migratory insertion reaction-studied with the help of DFT calculations. Eight possible orientations for each mode of alkylation have been considered for the calculations. From these calculations, it has been understood that there is a synergistic operation of the steric and electronic effects favoring the branched alkylation. Further DFT investigations on the alkylation of the isomeric 3-aroylbenzofurans indicated a preference for the linear alkylation and this has been verified experimentally. Overall, the observed/calculated complementary selectivity in the alkylation of 2-/3-aroylbenzofurans with acrylates reveals that the substrate-dependent charge distribution of the Ru-C bond in the intermediate ruthenacycle is an important determining factor and thus the current work opens up a new domain of substrate design for controlling regioselectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Frequency scaling of linear super-colliders
Mondelli, A.; Chernin, D.; Drobot, A.; Reiser, M.; Granatstein, V.
1986-06-01
The development of electron-positron linear colliders in the TeV energy range will be facilitated by the development of high-power rf sources at frequencies above 2856 MHz. Present S-band technology, represented by the SLC, would require a length in excess of 50 km per linac to accelerate particles to energies above 1 TeV. By raising the rf driving frequency, the rf breakdown limit is increased, thereby allowing the length of the accelerators to be reduced. Currently available rf power sources set the realizable gradient limit in an rf linac at frequencies above S-band. This paper presents a model for the frequency scaling of linear colliders, with luminosity scaled in proportion to the square of the center-of-mass energy. Since wakefield effects are the dominant deleterious effect, a separate single-bunch simulation model is described which calculates the evolution of the beam bunch with specified wakefields, including the effects of using programmed phase positioning and Landau damping. The results presented here have been obtained for a SLAC structure, scaled in proportion to wavelength
Polarized atomic orbitals for linear scaling methods
Berghold, Gerd; Parrinello, Michele; Hutter, Jürg
2002-02-01
We present a modified version of the polarized atomic orbital (PAO) method [M. S. Lee and M. Head-Gordon, J. Chem. Phys. 107, 9085 (1997)] to construct minimal basis sets optimized in the molecular environment. The minimal basis set derives its flexibility from the fact that it is formed as a linear combination of a larger set of atomic orbitals. This approach significantly reduces the number of independent variables to be determined during a calculation, while retaining most of the essential chemistry resulting from the admixture of higher angular momentum functions. Furthermore, we combine the PAO method with linear scaling algorithms. We use the Chebyshev polynomial expansion method, the conjugate gradient density matrix search, and the canonical purification of the density matrix. The combined scheme overcomes one of the major drawbacks of standard approaches for large nonorthogonal basis sets, namely numerical instabilities resulting from ill-conditioned overlap matrices. We find that the condition number of the PAO overlap matrix is independent from the condition number of the underlying extended basis set, and consequently no numerical instabilities are encountered. Various applications are shown to confirm this conclusion and to compare the performance of the PAO method with extended basis-set calculations.
Supervised scale-regularized linear convolutionary filters
Loog, Marco; Lauze, Francois Bernard
2017-01-01
also be solved relatively efficient. All in all, the idea is to properly control the scale of a trained filter, which we solve by introducing a specific regularization term into the overall objective function. We demonstrate, on an artificial filter learning problem, the capabil- ities of our basic...
Hine, Nicholas D M; Dziedzic, Jacek; Haynes, Peter D; Skylaris, Chris-Kriton
2011-11-28
We present a comparison of methods for treating the electrostatic interactions of finite, isolated systems within periodic boundary conditions (PBCs), within density functional theory (DFT), with particular emphasis on linear-scaling (LS) DFT. Often, PBCs are not physically realistic but are an unavoidable consequence of the choice of basis set and the efficacy of using Fourier transforms to compute the Hartree potential. In such cases the effects of PBCs on the calculations need to be avoided, so that the results obtained represent the open rather than the periodic boundary. The very large systems encountered in LS-DFT make the demands of the supercell approximation for isolated systems more difficult to manage, and we show cases where the open boundary (infinite cell) result cannot be obtained from extrapolation of calculations from periodic cells of increasing size. We discuss, implement, and test three very different approaches for overcoming or circumventing the effects of PBCs: truncation of the Coulomb interaction combined with padding of the simulation cell, approaches based on the minimum image convention, and the explicit use of open boundary conditions (OBCs). We have implemented these approaches in the ONETEP LS-DFT program and applied them to a range of systems, including a polar nanorod and a protein. We compare their accuracy, complexity, and rate of convergence with simulation cell size. We demonstrate that corrective approaches within PBCs can achieve the OBC result more efficiently and accurately than pure OBC approaches.
Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.
Cawkwell, M J; Niklasson, Anders M N
2012-10-07
Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.
Scaled effective on-site Coulomb interaction in the DFT+U method for correlated materials
Nawa, Kenji; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji; Oguchi, Tamio; Weinert, M.
2018-01-01
The first-principles calculation of correlated materials within density functional theory remains challenging, but the inclusion of a Hubbard-type effective on-site Coulomb term (Ueff) often provides a computationally tractable and physically reasonable approach. However, the reported values of Ueff vary widely, even for the same ionic state and the same material. Since the final physical results can depend critically on the choice of parameter and the computational details, there is a need to have a consistent procedure to choose an appropriate one. We revisit this issue from constraint density functional theory, using the full-potential linearized augmented plane wave method. The calculated Ueff parameters for the prototypical transition-metal monoxides—MnO, FeO, CoO, and NiO—are found to depend significantly on the muffin-tin radius RMT, with variations of more than 2-3 eV as RMT changes from 2.0 to 2.7 aB. Despite this large variation in Ueff, the calculated valence bands differ only slightly. Moreover, we find an approximately linear relationship between Ueff(RMT) and the number of occupied localized electrons within the sphere, and give a simple scaling argument for Ueff; these results provide a rationalization for the large variation in reported values. Although our results imply that Ueff values are not directly transferable among different calculation methods (or even the same one with different input parameters such as RMT), use of this scaling relationship should help simplify the choice of Ueff.
Large-scale linear programs in planning and prediction.
2017-06-01
Large-scale linear programs are at the core of many traffic-related optimization problems in both planning and prediction. Moreover, many of these involve significant uncertainty, and hence are modeled using either chance constraints, or robust optim...
Penalized Estimation in Large-Scale Generalized Linear Array Models
Lund, Adam; Vincent, Martin; Hansen, Niels Richard
2017-01-01
Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension...
A convex optimization approach for solving large scale linear systems
Debora Cores
2017-01-01
Full Text Available The well-known Conjugate Gradient (CG method minimizes a strictly convex quadratic function for solving large-scale linear system of equations when the coefficient matrix is symmetric and positive definite. In this work we present and analyze a non-quadratic convex function for solving any large-scale linear system of equations regardless of the characteristics of the coefficient matrix. For finding the global minimizers, of this new convex function, any low-cost iterative optimization technique could be applied. In particular, we propose to use the low-cost globally convergent Spectral Projected Gradient (SPG method, which allow us to extend this optimization approach for solving consistent square and rectangular linear system, as well as linear feasibility problem, with and without convex constraints and with and without preconditioning strategies. Our numerical results indicate that the new scheme outperforms state-of-the-art iterative techniques for solving linear systems when the symmetric part of the coefficient matrix is indefinite, and also for solving linear feasibility problems.
Common Nearly Best Linear Estimates of Location and Scale ...
Common nearly best linear estimates of location and scale parameters of normal and logistic distributions, which are based on complete samples, are considered. Here, the population from which the samples are drawn is either normal or logistic population or a fusion of both distributions and the estimates are computed ...
Iche-Tarrat, N.; Marsden, Colin J.; Barros, N.; Maron, L.; Barros, N.
2008-01-01
A DFT study of the isostructural compounds [UO 2 L 5 ] n- with n=3-5 and linear [Cp 2 UL 5 ] m- with m=1-3 has been carried out for two different anionic ligands. Structurally stable structures are obtained for all systems. The coordination competition between cyanide (CN - ) and isocyanide (NC - ) as well as between cyanate (OCN - ) and iso-cyanate (NCO - ) has been studied in the uranyl case. A clear preference for cyanide and iso-cyanate complexes is reported. The coordination of five ligands in the equatorial plane is rationalized by the analysis of the MO diagram of both systems. Moreover, the qualitative comparison of the two MO diagrams shows a high similarity in agreement with the isolobality concept. The existence of linear [Cp 2 UL 5 ] - organometallic U(VI) complexes is thus proposed, as well as the possibility of obtaining complexes of both types for U(VI) and U(V) with OCN - ligands. In addition, the U(IV) linear metallocene is calculated to be stable for the latter ligand. (authors)
Electronic annealing Fermi operator expansion for DFT calculations on metallic systems
Aarons, Jolyon; Skylaris, Chris-Kriton
2018-02-01
Density Functional Theory (DFT) calculations with computational effort which increases linearly with the number of atoms (linear-scaling DFT) have been successfully developed for insulators, taking advantage of the exponential decay of the one-particle density matrix. For metallic systems, the density matrix is also expected to decay exponentially at finite electronic temperature and linear-scaling DFT methods should be possible by taking advantage of this decay. Here we present a method for DFT calculations at finite electronic temperature for metallic systems which is effectively linear-scaling (O(N)). Our method generates the elements of the one-particle density matrix and also finds the required chemical potential and electronic entropy using polynomial expansions. A fixed expansion length is always employed to generate the density matrix, without any loss in accuracy by the application of a high electronic temperature followed by successive steps of temperature reduction until the desired (low) temperature density matrix is obtained. We have implemented this method in the ONETEP linear-scaling (for insulators) DFT code which employs local orbitals that are optimised in situ. By making use of the sparse matrix machinery of ONETEP, our method exploits the sparsity of Hamiltonian and density matrices to perform calculations on metallic systems with computational cost that increases asymptotically linearly with the number of atoms. We demonstrate the linear-scaling computational cost of our method with calculation times on palladium nanoparticles with up to ˜13 000 atoms.
VLSI Architectures for Computing DFT's
Truong, T. K.; Chang, J. J.; Hsu, I. S.; Reed, I. S.; Pei, D. Y.
1986-01-01
Simplifications result from use of residue Fermat number systems. System of finite arithmetic over residue Fermat number systems enables calculation of discrete Fourier transform (DFT) of series of complex numbers with reduced number of multiplications. Computer architectures based on approach suitable for design of very-large-scale integrated (VLSI) circuits for computing DFT's. General approach not limited to DFT's; Applicable to decoding of error-correcting codes and other transform calculations. System readily implemented in VLSI.
Turbulence Spreading into Linearly Stable Zone and Transport Scaling
Hahm, T.S.; Diamond, P.H.; Lin, Z.; Itoh, K.; Itoh, S.-I.
2003-01-01
We study the simplest problem of turbulence spreading corresponding to the spatio-temporal propagation of a patch of turbulence from a region where it is locally excited to a region of weaker excitation, or even local damping. A single model equation for the local turbulence intensity I(x, t) includes the effects of local linear growth and damping, spatially local nonlinear coupling to dissipation and spatial scattering of turbulence energy induced by nonlinear coupling. In the absence of dissipation, the front propagation into the linearly stable zone occurs with the property of rapid progression at small t, followed by slower subdiffusive progression at late times. The turbulence radial spreading into the linearly stable zone reduces the turbulent intensity in the linearly unstable zone, and introduces an additional dependence on the rho* is always equal to rho i/a to the turbulent intensity and the transport scaling. These are in broad, semi-quantitative agreements with a number of global gyrokinetic simulation results with zonal flows and without zonal flows. The front propagation stops when the radial flux of fluctuation energy from the linearly unstable region is balanced by local dissipation in the linearly stable region
Scaling tests of a new algorithm for DFT hybrid-functional calculations on Trinity Haswell
Wright, Alan F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-09-01
We show scaling results for materials of interest in Sandia Radiation-Effects and High-Energy-Density-Physics Mission Areas. Each timing is from a self-consistent calculation for bulk material. Two timings are given: (1) walltime for the construction of the CR exchange operator (Exchange-Operator) and (2) walltime for everything else (non-Exchange-Operator).
Polarization properties of linearly polarized parabolic scaling Bessel beams
Guo, Mengwen; Zhao, Daomu, E-mail: zhaodaomu@yahoo.com
2016-10-07
The intensity profiles for the dominant polarization, cross polarization, and longitudinal components of modified parabolic scaling Bessel beams with linear polarization are investigated theoretically. The transverse intensity distributions of the three electric components are intimately connected to the topological charge. In particular, the intensity patterns of the cross polarization and longitudinal components near the apodization plane reflect the sign of the topological charge. - Highlights: • We investigated the polarization properties of modified parabolic scaling Bessel beams with linear polarization. • We studied the evolution of transverse intensity profiles for the three components of these beams. • The intensity patterns of the cross polarization and longitudinal components can reflect the sign of the topological charge.
Novel algorithm of large-scale simultaneous linear equations
Fujiwara, T; Hoshi, T; Yamamoto, S; Sogabe, T; Zhang, S-L
2010-01-01
We review our recently developed methods of solving large-scale simultaneous linear equations and applications to electronic structure calculations both in one-electron theory and many-electron theory. This is the shifted COCG (conjugate orthogonal conjugate gradient) method based on the Krylov subspace, and the most important issue for applications is the shift equation and the seed switching method, which greatly reduce the computational cost. The applications to nano-scale Si crystals and the double orbital extended Hubbard model are presented.
Graph-based linear scaling electronic structure theory
Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Germann, Timothy C.; Bock, Nicolas [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Mniszewski, Susan M.; Mohd-Yusof, Jamal; Wall, Michael E.; Djidjev, Hristo [Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rubensson, Emanuel H. [Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala (Sweden)
2016-06-21
We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.
Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas; Nørskov, Jens K.
2017-01-01
Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying these methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.
Planning under uncertainty solving large-scale stochastic linear programs
Infanger, G. [Stanford Univ., CA (United States). Dept. of Operations Research]|[Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft
1992-12-01
For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.
Linear Polarization Properties of Parsec-Scale AGN Jets
Alexander B. Pushkarev
2017-12-01
Full Text Available We used 15 GHz multi-epoch Very Long Baseline Array (VLBA polarization sensitive observations of 484 sources within a time interval 1996–2016 from the MOJAVE program, and also from the NRAO data archive. We have analyzed the linear polarization characteristics of the compact core features and regions downstream, and their changes along and across the parsec-scale active galactic nuclei (AGN jets. We detected a significant increase of fractional polarization with distance from the radio core along the jet as well as towards the jet edges. Compared to quasars, BL Lacs have a higher degree of polarization and exhibit more stable electric vector position angles (EVPAs in their core features and a better alignment of the EVPAs with the local jet direction. The latter is accompanied by a higher degree of linear polarization, suggesting that compact bright jet features might be strong transverse shocks, which enhance magnetic field regularity by compression.
Design techniques for large scale linear measurement systems
Candy, J.V.
1979-03-01
Techniques to design measurement schemes for systems modeled by large scale linear time invariant systems, i.e., physical systems modeled by a large number (> 5) of ordinary differential equations, are described. The techniques are based on transforming the physical system model to a coordinate system facilitating the design and then transforming back to the original coordinates. An example of a three-stage, four-species, extraction column used in the reprocessing of spent nuclear fuel elements is presented. The basic ideas are briefly discussed in the case of noisy measurements. An example using a plutonium nitrate storage vessel (reprocessing) with measurement uncertainty is also presented
Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry
Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.
2001-10-01
The linear Reconnection Scaling Experiment (RSX) at LANL is a new experiment that can create MHD relevant plasmas to look at the physics of magnetic reconnection. This experiment can scale many relevant parameters because the guns that generate the plasma and current channels do not depend on equilibrium or force balance for startup. We describe the experiment and initial electrostatic and magnetic probe data. Two parallel current channels sweep down a long plasma column and probe data accumulated over many shots gives 3D movies of magnetic reconnection. Our first data tries to define an operating regime free from kink instabilities that might otherwise confuse the data and shot repeatability. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.
Offset linear scaling for H-mode confinement
Miura, Yukitoshi; Tamai, Hiroshi; Suzuki, Norio; Mori, Masahiro; Matsuda, Toshiaki; Maeda, Hikosuke; Takizuka, Tomonori; Itoh, Sanae; Itoh, Kimitaka.
1992-01-01
An offset linear scaling for the H-mode confinement time is examined based on single parameter scans on the JFT-2M experiment. Regression study is done for various devices with open divertor configuration such as JET, DIII-D, JFT-2M. The scaling law of the thermal energy is given in the MKSA unit as W th =0.0046R 1.9 I P 1.1 B T 0.91 √A+2.9x10 -8 I P 1.0 R 0.87 P√AP, where R is the major radius, I P is the plasma current, B T is the toroidal magnetic field, A is the average mass number of plasma and neutral beam particles, and P is the heating power. This fitting has a similar root mean square error (RMSE) compared to the power law scaling. The result is also compared with the H-mode in other configurations. The W th of closed divertor H-mode on ASDEX shows a little better values than that of open divertor H-mode. (author)
Linear-scaling quantum mechanical methods for excited states.
Yam, ChiYung; Zhang, Qing; Wang, Fan; Chen, GuanHua
2012-05-21
The poor scaling of many existing quantum mechanical methods with respect to the system size hinders their applications to large systems. In this tutorial review, we focus on latest research on linear-scaling or O(N) quantum mechanical methods for excited states. Based on the locality of quantum mechanical systems, O(N) quantum mechanical methods for excited states are comprised of two categories, the time-domain and frequency-domain methods. The former solves the dynamics of the electronic systems in real time while the latter involves direct evaluation of electronic response in the frequency-domain. The localized density matrix (LDM) method is the first and most mature linear-scaling quantum mechanical method for excited states. It has been implemented in time- and frequency-domains. The O(N) time-domain methods also include the approach that solves the time-dependent Kohn-Sham (TDKS) equation using the non-orthogonal localized molecular orbitals (NOLMOs). Besides the frequency-domain LDM method, other O(N) frequency-domain methods have been proposed and implemented at the first-principles level. Except one-dimensional or quasi-one-dimensional systems, the O(N) frequency-domain methods are often not applicable to resonant responses because of the convergence problem. For linear response, the most efficient O(N) first-principles method is found to be the LDM method with Chebyshev expansion for time integration. For off-resonant response (including nonlinear properties) at a specific frequency, the frequency-domain methods with iterative solvers are quite efficient and thus practical. For nonlinear response, both on-resonance and off-resonance, the time-domain methods can be used, however, as the time-domain first-principles methods are quite expensive, time-domain O(N) semi-empirical methods are often the practical choice. Compared to the O(N) frequency-domain methods, the O(N) time-domain methods for excited states are much more mature and numerically stable, and
Recent development of linear scaling quantum theories in GAMESS
Choi, Cheol Ho [Kyungpook National Univ., Daegu (Korea, Republic of)
2003-06-01
Linear scaling quantum theories are reviewed especially focusing on the method adopted in GAMESS. The three key translation equations of the fast multipole method (FMM) are deduced from the general polypolar expansions given earlier by Steinborn and Rudenberg. Simplifications are introduced for the rotation-based FMM that lead to a very compact FMM formalism. The OPS (optimum parameter searching) procedure, a stable and efficient way of obtaining the optimum set of FMM parameters, is established with complete control over the tolerable error {epsilon}. In addition, a new parallel FMM algorithm requiring virtually no inter-node communication, is suggested which is suitable for the parallel construction of Fock matrices in electronic structure calculations.
Scaling laws for e+/e- linear colliders
Delahaye, J.P.; Guignard, G.; Raubenheimer, T.; Wilson, I.
1999-01-01
Design studies of a future TeV e + e - Linear Collider (TLC) are presently being made by five major laboratories within the framework of a world-wide collaboration. A figure of merit is defined which enables an objective comparison of these different designs. This figure of merit is shown to depend only on a small number of parameters. General scaling laws for the main beam parameters and linac parameters are derived and prove to be very effective when used as guidelines to optimize the linear collider design. By adopting appropriate parameters for beam stability, the figure of merit becomes nearly independent of accelerating gradient and RF frequency of the accelerating structures. In spite of the strong dependence of the wake fields with frequency, the single-bunch emittance blow-up during acceleration along the linac is also shown to be independent of the RF frequency when using equivalent trajectory correction schemes. In this situation, beam acceleration using high-frequency structures becomes very advantageous because it enables high accelerating fields to be obtained, which reduces the overall length and consequently the total cost of the linac. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Parameter Scaling in Non-Linear Microwave Tomography
Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar
2012-01-01
Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....
Alcolea Palafox, M.; Kattan, D.; Afseth, N. K.
2018-04-01
A theoretical and experimental vibrational study of the anti-HIV d4T (stavudine or Zerit) nucleoside analogue was carried out. The predicted spectra in the three most stable conformers in the biological active anti-form of the isolated state were compared. Comparison of the conformers with those of the natural nucleoside thymidine was carried out. The calculated spectra were scaled by using different scaling procedures and three DFT methods. The TLSE procedure leads to the lowest error and is thus recommended for scaling. With the population of these conformers the IR gas-phase spectra were predicted. The crystal unit cell of the different polymorphism forms of d4T were simulated through dimer forms by using DFT methods. The scaled spectra of these dimer forms were compared. The FT-IR spectrum was recorded in the solid state in the 400-4000 cm-1 range. The respective vibrational bands were analyzed and assigned to different normal modes of vibration by comparison with the scaled vibrational values of the different dimer forms. Through this comparison, the polymorphous form of the solid state sample was identified. The study indicates that d4T exist only in the ketonic form in the solid state. The results obtained were in agreement with those determined in related anti-HIV nucleoside analogues.
Small-scale quantum information processing with linear optics
Bergou, J.A.; Steinberg, A.M.; Mohseni, M.
2005-01-01
Full text: Photons are the ideal systems for carrying quantum information. Although performing large-scale quantum computation on optical systems is extremely demanding, non scalable linear-optics quantum information processing may prove essential as part of quantum communication networks. In addition efficient (scalable) linear-optical quantum computation proposal relies on the same optical elements. Here, by constructing multirail optical networks, we experimentally study two central problems in quantum information science, namely optimal discrimination between nonorthogonal quantum states, and controlling decoherence in quantum systems. Quantum mechanics forbids deterministic discrimination between nonorthogonal states. This is one of the central features of quantum cryptography, which leads to secure communications. Quantum state discrimination is an important primitive in quantum information processing, since it determines the limitations of a potential eavesdropper, and it has applications in quantum cloning and entanglement concentration. In this work, we experimentally implement generalized measurements in an optical system and demonstrate the first optimal unambiguous discrimination between three non-orthogonal states with a success rate of 55 %, to be compared with the 25 % maximum achievable using projective measurements. Furthermore, we present the first realization of unambiguous discrimination between a pure state and a nonorthogonal mixed state. In a separate experiment, we demonstrate how decoherence-free subspaces (DFSs) may be incorporated into a prototype optical quantum algorithm. Specifically, we present an optical realization of two-qubit Deutsch-Jozsa algorithm in presence of random noise. By introduction of localized turbulent airflow we produce a collective optical dephasing, leading to large error rates and demonstrate that using DFS encoding, the error rate in the presence of decoherence can be reduced from 35 % to essentially its pre
Grey scale, the 'crispening effect', and perceptual linearization
Belaïd, N.; Martens, J.B.
1998-01-01
One way of optimizing a display is to maximize the number of distinguishable grey levels, which in turn is equivalent to perceptually linearizing the display. Perceptual linearization implies that equal steps in grey value evoke equal steps in brightness sensation. The key to perceptual
Scaling linear colliders to 5 TeV and above
Wilson, P.B.
1997-04-01
Detailed designs exist at present for linear colliders in the 0.5-1.0 TeV center-of-mass energy range. For linear colliders driven by discrete rf sources (klystrons), the rf operating frequencies range from 1.3 GHz to 14 GHz, and the unloaded accelerating gradients from 21 MV/m to 100 MV/m. Except for the collider design at 1.3 GHz (TESLA) which uses superconducting accelerating structures, the accelerating gradients vary roughly linearly with the rf frequency. This correlation between gradient and frequency follows from the necessity to keep the ac open-quotes wall plugclose quotes power within reasonable bounds. For linear colliders at energies of 5 TeV and above, even higher accelerating gradients and rf operating frequencies will be required if both the total machine length and ac power are to be kept within reasonable limits. An rf system for a 5 TeV collider operating at 34 GHz is outlined, and it is shown that there are reasonable candidates for microwave tube sources which, together with rf pulse compression, are capable of supplying the required rf power. Some possibilities for a 15 TeV collider at 91 GHz are briefly discussed
J.F. Sturm; J. Zhang (Shuzhong)
1996-01-01
textabstractIn this paper we introduce a primal-dual affine scaling method. The method uses a search-direction obtained by minimizing the duality gap over a linearly transformed conic section. This direction neither coincides with known primal-dual affine scaling directions (Jansen et al., 1993;
On the non-linear scale of cosmological perturbation theory
Blas, Diego; Konstandin, Thomas
2013-01-01
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
On the non-linear scale of cosmological perturbation theory
Blas, Diego; Garny, Mathias; Konstandin, Thomas
2013-04-01
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
On the non-linear scale of cosmological perturbation theory
Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-04-15
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
On Numerical Stability in Large Scale Linear Algebraic Computations
Strakoš, Zdeněk; Liesen, J.
2005-01-01
Roč. 85, č. 5 (2005), s. 307-325 ISSN 0044-2267 R&D Projects: GA AV ČR 1ET400300415 Institutional research plan: CEZ:AV0Z10300504 Keywords : linear algebraic systems * eigenvalue problems * convergence * numerical stability * backward error * accuracy * Lanczos method * conjugate gradient method * GMRES method Subject RIV: BA - General Mathematics Impact factor: 0.351, year: 2005
Scale-dependent three-dimensional charged black holes in linear and non-linear electrodynamics
Rincon, Angel; Koch, Benjamin [Pontificia Universidad Catolica de Chile, Instituto de Fisica, Santiago (Chile); Contreras, Ernesto; Bargueno, Pedro; Hernandez-Arboleda, Alejandro [Universidad de los Andes, Departamento de Fisica, Bogota, Distrito Capital (Colombia); Panotopoulos, Grigorios [Universidade de Lisboa, CENTRA, Instituto Superior Tecnico, Lisboa (Portugal)
2017-07-15
In the present work we study the scale dependence at the level of the effective action of charged black holes in Einstein-Maxwell as well as in Einstein-power-Maxwell theories in (2 + 1)-dimensional spacetimes without a cosmological constant. We allow for scale dependence of the gravitational and electromagnetic couplings, and we solve the corresponding generalized field equations imposing the null energy condition. Certain properties, such as horizon structure and thermodynamics, are discussed in detail. (orig.)
Decentralised stabilising controllers for a class of large-scale linear ...
subsystems resulting from a new aggregation-decomposition technique. The method has been illustrated through a numerical example of a large-scale linear system consisting of three subsystems each of the fourth order. Keywords. Decentralised stabilisation; large-scale linear systems; optimal feedback control; algebraic ...
Lovejoy, S.; del Rio Amador, L.; Hébert, R.
2015-03-01
At scales of ≈ 10 days (the lifetime of planetary scale structures), there is a drastic transition from high frequency weather to low frequency macroweather. This scale is close to the predictability limits of deterministic atmospheric models; so that in GCM macroweather forecasts, the weather is a high frequency noise. But neither the GCM noise nor the GCM climate is fully realistic. In this paper we show how simple stochastic models can be developped that use empirical data to force the statistics and climate to be realistic so that even a two parameter model can outperform GCM's for annual global temperature forecasts. The key is to exploit the scaling of the dynamics and the enormous stochastic memories that it implies. Since macroweather intermittency is low, we propose using the simplest model based on fractional Gaussian noise (fGn): the Scaling LInear Macroweather model (SLIM). SLIM is based on a stochastic ordinary differential equations, differing from usual linear stochastic models (such as the Linear Inverse Modelling, LIM) in that it is of fractional rather than integer order. Whereas LIM implicitly assumes there is no low frequency memory, SLIM has a huge memory that can be exploited. Although the basic mathematical forecast problem for fGn has been solved, we approach the problem in an original manner notably using the method of innovations to obtain simpler results on forecast skill and on the size of the effective system memory. A key to successful forecasts of natural macroweather variability is to first remove the low frequency anthropogenic component. A previous attempt to use fGn for forecasts had poor results because this was not done. We validate our theory using hindcasts of global and Northern Hemisphere temperatures at monthly and annual resolutions. Several nondimensional measures of forecast skill - with no adjustable parameters - show excellent agreement with hindcasts and these show some skill even at decadal scales. We also compare
Non-linear variability in geophysics scaling and fractals
Lovejoy, S
1991-01-01
consequences of broken symmetry -here parity-is studied. In this model, turbulence is dominated by a hierarchy of helical (corkscrew) structures. The authors stress the unique features of such pseudo-scalar cascades as well as the extreme nature of the resulting (intermittent) fluctuations. Intermittent turbulent cascades was also the theme of a paper by us in which we show that universality classes exist for continuous cascades (in which an infinite number of cascade steps occur over a finite range of scales). This result is the multiplicative analogue of the familiar central limit theorem for the addition of random variables. Finally, an interesting paper by Pasmanter investigates the scaling associated with anomolous diffusion in a chaotic tidal basin model involving a small number of degrees of freedom. Although the statistical literature is replete with techniques for dealing with those random processes characterized by both exponentially decaying (non-scaling) autocorrelations and exponentially decaying...
The linearly scaling 3D fragment method for large scale electronic structure calculations
Zhao Zhengji [National Energy Research Scientific Computing Center (NERSC) (United States); Meza, Juan; Shan Hongzhang; Strohmaier, Erich; Bailey, David; Wang Linwang [Computational Research Division, Lawrence Berkeley National Laboratory (United States); Lee, Byounghak, E-mail: ZZhao@lbl.go [Physics Department, Texas State University (United States)
2009-07-01
The linearly scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.
Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.
Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J
2016-10-03
Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.
Pavanello, Michele [Department of Chemistry, Rutgers University, Newark, New Jersey 07102-1811 (United States); Van Voorhis, Troy [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Visscher, Lucas [Amsterdam Center for Multiscale Modeling, VU University, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Neugebauer, Johannes [Theoretische Organische Chemie, Organisch-Chemisches Institut der Westfaelischen Wilhelms-Universitaet Muenster, Corrensstrasse 40, 48149 Muenster (Germany)
2013-02-07
Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Angstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.
Dennis Raj, A.; Jeeva, M.; Shankar, M.; Venkatesa Prabhu, G.; Vimalan, M.; Vetha Potheher, I.
2017-11-01
2-Naphthol substituted Mannich base 1-morpholino(phenyl)methyl)naphthalen-2-ol (MPMN), a potential NLO active organic single crystal was developed using acetonitrile as a solvent by slow evaporation method. The experimental and theoretical analysis made towards the exploitation in the field of electro-optic and NLO applications. The cubic structure with non-centrosymmetric space group Cc was confirmed and cell dimensions of the grown crystal were obtained from single crystal X-ray diffraction (XRD) study. The formation of the Csbnd Nsbnd C vibrational band at 1115 cm-1 in Fourier Transform Infra-Red (FTIR) analysis confirms the formation of MPMN compound. The placement of protons and carbons of MPMN were identified from Nuclear Magnetic Resonance Spectroscopy (NMR) analysis. The wide optical absorption window and the lower cutoff wavelength of MPMN show the suitability of the material for the various laser related applications. The presence of dislocations and growth pattern of crystal were analyzed using chemical etching technique. The Second Harmonic Generation (SHG) of MPMN was found to be 1.57 times greater than the standard KDP crystal. The laser damage threshold was measured by using Nd: YAG laser beam passed through the sample and it was found to be 1.006 GW/cm2. The electronic structure of the molecular system and the optical properties were also studied from quantum chemical calculations using Density Functional Theory (DFT) and reported for the first time.
2013-01-01
This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.
A national-scale model of linear features improves predictions of farmland biodiversity.
Sullivan, Martin J P; Pearce-Higgins, James W; Newson, Stuart E; Scholefield, Paul; Brereton, Tom; Oliver, Tom H
2017-12-01
Modelling species distribution and abundance is important for many conservation applications, but it is typically performed using relatively coarse-scale environmental variables such as the area of broad land-cover types. Fine-scale environmental data capturing the most biologically relevant variables have the potential to improve these models. For example, field studies have demonstrated the importance of linear features, such as hedgerows, for multiple taxa, but the absence of large-scale datasets of their extent prevents their inclusion in large-scale modelling studies.We assessed whether a novel spatial dataset mapping linear and woody-linear features across the UK improves the performance of abundance models of 18 bird and 24 butterfly species across 3723 and 1547 UK monitoring sites, respectively.Although improvements in explanatory power were small, the inclusion of linear features data significantly improved model predictive performance for many species. For some species, the importance of linear features depended on landscape context, with greater importance in agricultural areas. Synthesis and applications . This study demonstrates that a national-scale model of the extent and distribution of linear features improves predictions of farmland biodiversity. The ability to model spatial variability in the role of linear features such as hedgerows will be important in targeting agri-environment schemes to maximally deliver biodiversity benefits. Although this study focuses on farmland, data on the extent of different linear features are likely to improve species distribution and abundance models in a wide range of systems and also can potentially be used to assess habitat connectivity.
A simplified density matrix minimization for linear scaling self-consistent field theory
Challacombe, M.
1999-01-01
A simplified version of the Li, Nunes and Vanderbilt [Phys. Rev. B 47, 10891 (1993)] and Daw [Phys. Rev. B 47, 10895 (1993)] density matrix minimization is introduced that requires four fewer matrix multiplies per minimization step relative to previous formulations. The simplified method also exhibits superior convergence properties, such that the bulk of the work may be shifted to the quadratically convergent McWeeny purification, which brings the density matrix to idempotency. Both orthogonal and nonorthogonal versions are derived. The AINV algorithm of Benzi, Meyer, and Tuma [SIAM J. Sci. Comp. 17, 1135 (1996)] is introduced to linear scaling electronic structure theory, and found to be essential in transformations between orthogonal and nonorthogonal representations. These methods have been developed with an atom-blocked sparse matrix algebra that achieves sustained megafloating point operations per second rates as high as 50% of theoretical, and implemented in the MondoSCF suite of linear scaling SCF programs. For the first time, linear scaling Hartree - Fock theory is demonstrated with three-dimensional systems, including water clusters and estane polymers. The nonorthogonal minimization is shown to be uncompetitive with minimization in an orthonormal representation. An early onset of linear scaling is found for both minimal and double zeta basis sets, and crossovers with a highly optimized eigensolver are achieved. Calculations with up to 6000 basis functions are reported. The scaling of errors with system size is investigated for various levels of approximation. copyright 1999 American Institute of Physics
Nuri ÖZTÜRK
2018-02-01
Full Text Available The experimental spectroscopic investigation of N-benzyloxycarbonyloxy-5-norbornene-2,3-dicarboximide (C17H15NO5 molecule has been done using 1H and 13C NMR chemical shifts, FT-IR and Raman spectroscopies. Conformational forms have been determined depending on orientation of N-benzyloxycarbonyloxy and 5-norbornene-2,3-dicarboximide (NDI groups of the title compound. The structural geometric optimizations, vibrational wavenumbers, NMR chemical shifts (in vacuum and chloroform and HOMO-LUMO analyses for all conformers of the title molecule have been done with DFT/CAM-B3LYP method at the 6-311++G(d,p basis set. Additionally, based on the calculated HOMO and LUMO energy values, some molecular properties such as ionization potential (I, electron affinity (A, electronegativity (χ, chemical hardness (h, chemical softness (z, chemical potential (μ and electrophilicity index (w parameters are determined for all conformers. The non-linear optical (NLO properties have been studied for the title molecule. We can say that the experimental spectral data are in accordance with calculated values.
Hardy inequality on time scales and its application to half-linear dynamic equations
Řehák Pavel
2005-01-01
Full Text Available A time-scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.
Dongxu Ren
2016-04-01
Full Text Available A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method’s theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.
Scale of association: hierarchical linear models and the measurement of ecological systems
Sean M. McMahon; Jeffrey M. Diez
2007-01-01
A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...
Linear arrangement of nano-scale magnetic particles formed in Cu-Fe-Ni alloys
Kang, Sung, E-mail: k3201s@hotmail.co [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeda, Mahoto [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeguchi, Masaki [Advanced Electron Microscopy Group, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba, 305-0047 (Japan); Bae, Dong-Sik [School of Nano and Advanced Materials Engineering, Changwon National University, Gyeongnam, 641-773 (Korea, Republic of)
2010-04-30
The structural evolution of nano-scale magnetic particles formed in Cu-Fe-Ni alloys on isothermal annealing at 878 K has been investigated by means of transmission electron microscopy (TEM), electron dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and field-emission scanning electron microscopy (FE-SEM). Phase decomposition of Cu-Fe-Ni occurred after an as-quenched specimen received a short anneal, and nano-scale magnetic particles were formed randomly in the Cu-rich matrix. A striking feature that two or more nano-scale particles with a cubic shape were aligned linearly along <1,0,0> directions was observed, and the trend was more pronounced at later stages of the precipitation. Large numbers of <1,0,0> linear chains of precipitates extended in three dimensions in late stages of annealing.
Linear-scaling evaluation of the local energy in quantum Monte Carlo
Austin, Brian; Aspuru-Guzik, Alan; Salomon-Ferrer, Romelia; Lester, William A. Jr.
2006-01-01
For atomic and molecular quantum Monte Carlo calculations, most of the computational effort is spent in the evaluation of the local energy. We describe a scheme for reducing the computational cost of the evaluation of the Slater determinants and correlation function for the correlated molecular orbital (CMO) ansatz. A sparse representation of the Slater determinants makes possible efficient evaluation of molecular orbitals. A modification to the scaled distance function facilitates a linear scaling implementation of the Schmidt-Moskowitz-Boys-Handy (SMBH) correlation function that preserves the efficient matrix multiplication structure of the SMBH function. For the evaluation of the local energy, these two methods lead to asymptotic linear scaling with respect to the molecule size
Three-point phase correlations: A new measure of non-linear large-scale structure
Wolstenhulme, Richard; Obreschkow, Danail
2015-01-01
We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a very good agreement for separations r>20 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the linear bias. Furtherm...
On the interaction of small-scale linear waves with nonlinear solitary waves
Xu, Chengzhu; Stastna, Marek
2017-04-01
In the study of environmental and geophysical fluid flows, linear wave theory is well developed and its application has been considered for phenomena of various length and time scales. However, due to the nonlinear nature of fluid flows, in many cases results predicted by linear theory do not agree with observations. One of such cases is internal wave dynamics. While small-amplitude wave motion may be approximated by linear theory, large amplitude waves tend to be solitary-like. In some cases, when the wave is highly nonlinear, even weakly nonlinear theories fail to predict the wave properties correctly. We study the interaction of small-scale linear waves with nonlinear solitary waves using highly accurate pseudo spectral simulations that begin with a fully nonlinear solitary wave and a train of small-amplitude waves initialized from linear waves. The solitary wave then interacts with the linear waves through either an overtaking collision or a head-on collision. During the collision, there is a net energy transfer from the linear wave train to the solitary wave, resulting in an increase in the kinetic energy carried by the solitary wave and a phase shift of the solitary wave with respect to a freely propagating solitary wave. At the same time the linear waves are greatly reduced in amplitude. The percentage of energy transferred depends primarily on the wavelength of the linear waves. We found that after one full collision cycle, the longest waves may retain as much as 90% of the kinetic energy they had initially, while the shortest waves lose almost all of their initial energy. We also found that a head-on collision is more efficient in destroying the linear waves than an overtaking collision. On the other hand, the initial amplitude of the linear waves has very little impact on the percentage of energy that can be transferred to the solitary wave. Because of the nonlinearity of the solitary wave, these results provide us some insight into wave-mean flow
Linear Scaling Solution of the Time-Dependent Self-Consistent-Field Equations
Matt Challacombe
2014-03-01
Full Text Available A new approach to solving the Time-Dependent Self-Consistent-Field equations is developed based on the double quotient formulation of Tsiper 2001 (J. Phys. B. Dual channel, quasi-independent non-linear optimization of these quotients is found to yield convergence rates approaching those of the best case (single channel Tamm-Dancoff approximation. This formulation is variational with respect to matrix truncation, admitting linear scaling solution of the matrix-eigenvalue problem, which is demonstrated for bulk excitons in the polyphenylene vinylene oligomer and the (4,3 carbon nanotube segment.
Error analysis of dimensionless scaling experiments with multiple points using linear regression
Guercan, Oe.D.; Vermare, L.; Hennequin, P.; Bourdelle, C.
2010-01-01
A general method of error estimation in the case of multiple point dimensionless scaling experiments, using linear regression and standard error propagation, is proposed. The method reduces to the previous result of Cordey (2009 Nucl. Fusion 49 052001) in the case of a two-point scan. On the other hand, if the points follow a linear trend, it explains how the estimated error decreases as more points are added to the scan. Based on the analytical expression that is derived, it is argued that for a low number of points, adding points to the ends of the scanned range, rather than the middle, results in a smaller error estimate. (letter)
The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.
Pang, Haotian; Liu, Han; Vanderbei, Robert
2014-02-01
We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.
Dual linear structured support vector machine tracking method via scale correlation filter
Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen
2018-01-01
Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.
Self-consistent field theory based molecular dynamics with linear system-size scaling
Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)
2014-04-07
We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.
Wu, Xiaocui; Ju, Weimin; Zhou, Yanlian
2015-01-01
The reliable simulation of gross primary productivity (GPP) at various spatial and temporal scales is of significance to quantifying the net exchange of carbon between terrestrial ecosystems and the atmosphere. This study aimed to verify the ability of a nonlinear two-leaf model (TL-LUEn), a linear...... two-leaf model (TL-LUE), and a big-leaf light use efficiency model (MOD17) to simulate GPP at half-hourly, daily and 8-day scales using GPP derived from 58 eddy-covariance flux sites in Asia, Europe and North America as benchmarks. Model evaluation showed that the overall performance of TL...
ONETEP: linear-scaling density-functional theory with plane-waves
Haynes, P D; Mostof, A A; Skylaris, C-K; Payne, M C
2006-01-01
This paper provides a general overview of the methodology implemented in onetep (Order-N Electronic Total Energy Package), a parallel density-functional theory code for largescale first-principles quantum-mechanical calculations. The distinctive features of onetep are linear-scaling in both computational effort and resources, obtained by making well-controlled approximations which enable simulations to be performed with plane-wave accuracy. Titanium dioxide clusters of increasing size designed to mimic surfaces are studied to demonstrate the accuracy and scaling of onetep
Zgarbová, M.; Otyepka, M.; Šponer, Jiří; Hobza, P.; Jurečka, P.
2010-01-01
Roč. 12, č. 35 (2010), s. 10476-10493 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA203/09/1476 Grant - others:GA MŠk(CZ) LC512; GA MŠk(CZ) GD203/09/H046 Program:LC; GD Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : amber empirical potential * DFT-SAPT * compensation of errors Subject RIV: BO - Biophysics Impact factor: 3.454, year: 2010
Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates
Liu Xiao-Lan; Peng Xiao-Niu; Yang Zhong-Jian; Li Min; Zhou Li
2011-01-01
Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process. The morphology, crystal structure and linear optical extinction of the gold nanoplates have been characterized. These gold nanoplates are single-crystalline with triangular, truncated triangular and hexagonal shapes, exhibiting strong surface plasmon resonance (SPR) extinction in the visible and near-infrared (NIR) region. The linear optical properties of gold nanoplates are also investigated by theoretical calculations. We further investigate the nonlinear optical properties of the gold nanoplates in solution by Z-scan technique. The nonlinear absorption (NLA) coefficient and nonlinear refraction (NLR) index are measured to be 1.18×10 2 cm/GW and −1.04×10 −3 cm 2 /GW, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Linear-scaling implementation of the direct random-phase approximation
Kállay, Mihály
2015-01-01
We report the linear-scaling implementation of the direct random-phase approximation (dRPA) for closed-shell molecular systems. As a bonus, linear-scaling algorithms are also presented for the second-order screened exchange extension of dRPA as well as for the second-order Møller–Plesset (MP2) method and its spin-scaled variants. Our approach is based on an incremental scheme which is an extension of our previous local correlation method [Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The approach extensively uses local natural orbitals to reduce the size of the molecular orbital basis of local correlation domains. In addition, we also demonstrate that using natural auxiliary functions [M. Kállay, J. Chem. Phys. 141, 244113 (2014)], the size of the auxiliary basis of the domains and thus that of the three-center Coulomb integral lists can be reduced by an order of magnitude, which results in significant savings in computation time. The new approach is validated by extensive test calculations for energies and energy differences. Our benchmark calculations also demonstrate that the new method enables dRPA calculations for molecules with more than 1000 atoms and 10 000 basis functions on a single processor
Universal Linear Scaling of Permeability and Time for Heterogeneous Fracture Dissolution
Wang, L.; Cardenas, M. B.
2017-12-01
Fractures are dynamically changing over geological time scale due to mechanical deformation and chemical reactions. However, the latter mechanism remains poorly understood with respect to the expanding fracture, which leads to a positively coupled flow and reactive transport processes, i.e., as a fracture expands, so does its permeability (k) and thus flow and reactive transport processes. To unravel this coupling, we consider a self-enhancing process that leads to fracture expansion caused by acidic fluid, i.e., CO2-saturated brine dissolving calcite fracture. We rigorously derive a theory, for the first time, showing that fracture permeability increases linearly with time [Wang and Cardenas, 2017]. To validate this theory, we resort to the direct simulation that solves the Navier-Stokes and Advection-Diffusion equations with a moving mesh according to the dynamic dissolution process in two-dimensional (2D) fractures. We find that k slowly increases first until the dissolution front breakthrough the outbound when we observe a rapid k increase, i.e., the linear time-dependence of k occurs. The theory agrees well with numerical observations across a broad range of Peclet and Damkohler numbers through homogeneous and heterogeneous 2D fractures. Moreover, the theory of linear scaling relationship between k and time matches well with experimental observations of three-dimensional (3D) fractures' dissolution. To further attest to our theory's universality for 3D heterogeneous fractures across a broad range of roughness and correlation length of aperture field, we develop a depth-averaged model that simulates the process-based reactive transport. The simulation results show that, regardless of a wide variety of dissolution patterns such as the presence of dissolution fingers and preferential dissolution paths, the linear scaling relationship between k and time holds. Our theory sheds light on predicting permeability evolution in many geological settings when the self
Graf, Daniel; Beuerle, Matthias; Schurkus, Henry F; Luenser, Arne; Savasci, Gökcen; Ochsenfeld, Christian
2018-05-08
An efficient algorithm for calculating the random phase approximation (RPA) correlation energy is presented that is as accurate as the canonical molecular orbital resolution-of-the-identity RPA (RI-RPA) with the important advantage of an effective linear-scaling behavior (instead of quartic) for large systems due to a formulation in the local atomic orbital space. The high accuracy is achieved by utilizing optimized minimax integration schemes and the local Coulomb metric attenuated by the complementary error function for the RI approximation. The memory bottleneck of former atomic orbital (AO)-RI-RPA implementations ( Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys. 2016 , 144 , 031101 and Luenser, A.; Schurkus, H. F.; Ochsenfeld, C. J. Chem. Theory Comput. 2017 , 13 , 1647 - 1655 ) is addressed by precontraction of the large 3-center integral matrix with the Cholesky factors of the ground state density reducing the memory requirements of that matrix by a factor of [Formula: see text]. Furthermore, we present a parallel implementation of our method, which not only leads to faster RPA correlation energy calculations but also to a scalable decrease in memory requirements, opening the door for investigations of large molecules even on small- to medium-sized computing clusters. Although it is known that AO methods are highly efficient for extended systems, where sparsity allows for reaching the linear-scaling regime, we show that our work also extends the applicability when considering highly delocalized systems for which no linear scaling can be achieved. As an example, the interlayer distance of two covalent organic framework pore fragments (comprising 384 atoms in total) is analyzed.
Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young
2017-05-01
This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.
Elongation cutoff technique armed with quantum fast multipole method for linear scaling.
Korchowiec, Jacek; Lewandowski, Jakub; Makowski, Marcin; Gu, Feng Long; Aoki, Yuriko
2009-11-30
A linear-scaling implementation of the elongation cutoff technique (ELG/C) that speeds up Hartree-Fock (HF) self-consistent field calculations is presented. The cutoff method avoids the known bottleneck of the conventional HF scheme, that is, diagonalization, because it operates within the low dimension subspace of the whole atomic orbital space. The efficiency of ELG/C is illustrated for two model systems. The obtained results indicate that the ELG/C is a very efficient sparse matrix algebra scheme. Copyright 2009 Wiley Periodicals, Inc.
A critical oscillation constant as a variable of time scales for half-linear dynamic equations
Řehák, Pavel
2010-01-01
Roč. 60, č. 2 (2010), s. 237-256 ISSN 0139-9918 R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : dynamic equation * time scale * half-linear equation * (non)oscillation criteria * Hille-Nehari criteria * Kneser criteria * critical constant * oscillation constant * Hardy inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0009-7
Minimization of Linear Functionals Defined on| Solutions of Large-Scale Discrete Ill-Posed Problems
Elden, Lars; Hansen, Per Christian; Rojas, Marielba
2003-01-01
The minimization of linear functionals de ned on the solutions of discrete ill-posed problems arises, e.g., in the computation of con dence intervals for these solutions. In 1990, Elden proposed an algorithm for this minimization problem based on a parametric-programming reformulation involving...... the solution of a sequence of trust-region problems, and using matrix factorizations. In this paper, we describe MLFIP, a large-scale version of this algorithm where a limited-memory trust-region solver is used on the subproblems. We illustrate the use of our algorithm in connection with an inverse heat...
Xiaocui Wu
2015-02-01
Full Text Available The reliable simulation of gross primary productivity (GPP at various spatial and temporal scales is of significance to quantifying the net exchange of carbon between terrestrial ecosystems and the atmosphere. This study aimed to verify the ability of a nonlinear two-leaf model (TL-LUEn, a linear two-leaf model (TL-LUE, and a big-leaf light use efficiency model (MOD17 to simulate GPP at half-hourly, daily and 8-day scales using GPP derived from 58 eddy-covariance flux sites in Asia, Europe and North America as benchmarks. Model evaluation showed that the overall performance of TL-LUEn was slightly but not significantly better than TL-LUE at half-hourly and daily scale, while the overall performance of both TL-LUEn and TL-LUE were significantly better (p < 0.0001 than MOD17 at the two temporal scales. The improvement of TL-LUEn over TL-LUE was relatively small in comparison with the improvement of TL-LUE over MOD17. However, the differences between TL-LUEn and MOD17, and TL-LUE and MOD17 became less distinct at the 8-day scale. As for different vegetation types, TL-LUEn and TL-LUE performed better than MOD17 for all vegetation types except crops at the half-hourly scale. At the daily and 8-day scales, both TL-LUEn and TL-LUE outperformed MOD17 for forests. However, TL-LUEn had a mixed performance for the three non-forest types while TL-LUE outperformed MOD17 slightly for all these non-forest types at daily and 8-day scales. The better performance of TL-LUEn and TL-LUE for forests was mainly achieved by the correction of the underestimation/overestimation of GPP simulated by MOD17 under low/high solar radiation and sky clearness conditions. TL-LUEn is more applicable at individual sites at the half-hourly scale while TL-LUE could be regionally used at half-hourly, daily and 8-day scales. MOD17 is also an applicable option regionally at the 8-day scale.
Cosmological large-scale structures beyond linear theory in modified gravity
Bernardeau, Francis; Brax, Philippe, E-mail: francis.bernardeau@cea.fr, E-mail: philippe.brax@cea.fr [CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette Cédex (France)
2011-06-01
We consider the effect of modified gravity on the growth of large-scale structures at second order in perturbation theory. We show that modified gravity models changing the linear growth rate of fluctuations are also bound to change, although mildly, the mode coupling amplitude in the density and reduced velocity fields. We present explicit formulae which describe this effect. We then focus on models of modified gravity involving a scalar field coupled to matter, in particular chameleons and dilatons, where it is shown that there exists a transition scale around which the existence of an extra scalar degree of freedom induces significant changes in the coupling properties of the cosmic fields. We obtain the amplitude of this effect for realistic dilaton models at the tree-order level for the bispectrum, finding them to be comparable in amplitude to those obtained in the DGP and f(R) models.
Scaling versus asymptotic scaling in the non-linear σ-model in 2D. Continuum version
Flyvbjerg, H.
1990-01-01
The two-point function of the O(N)-symmetric non-linear σ-model in two dimensions is large-N expanded and renormalized, neglecting terms of O(1/N 2 ). At finite cut-off, universal, analytical expressions relate the magnetic susceptibility and the dressed mass to the bare coupling. Removing the cut-off, a similar relation gives the renormalized coupling as a function of the mass gap. In the weak-coupling limit these relations reproduce the results of renormalization group improved weak-coupling perturbation theory to two-loop order. The constant left unknown, when the renormalization group is integrated, is determined here. The approach to asymptotic scaling is studied for various values of N. (orig.)
Wang, Zhaohui; Folsø, Rasmus; Bondini, Francesca
1999-01-01
, full-scale measurements have been performed on board a 128 m monohull fast ferry. This paper deals with the results from these full-scale measurements. The primary results considered are pitch motion, midship vertical bending moment and vertical acceleration at the bow. Previous comparisons between...
Basheer, Sabeel M. [Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015 (India); Willis, Anthony C. [Research School of Chemistry, The Australian National University, Canberra, ACT 2601 (Australia); Sreekanth, Anandaram, E-mail: sreekanth@nitt.edu [Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015 (India)
2017-03-15
Two newly synthesised pyrene based molecules are hereby reported as molecular switches. The absorption and emission response for receptors with and without F{sup −}, CN{sup −} and Cu{sup 2+} ions can mimic multiple logic gate such as AND, NOR, XNOR, OR, XOR, INHIBITION and TRANSFER gates. The fluorescence reversibility was checked with the alternative addition of fluoride and calcium ions, which can be explained by the “Read-Erase-Read-Write” logic loop. The calculated binding constant value show PyBTSC is better chemosensor than PyCTSC, and the binding affinity is in the order of Cu{sup 2+}Г‹Ж’F{sup -}Г‹Ж’CN{sup −.} The detailed mechanism was investigated using DFT and TD-DFT calculations. The fluorescence quenching behaviour of receptor-F complex can be explained by PET mechanism along with ESPT process. The proton attached to the nitrogen which is adjacent to pyrene moiety is first make the hydrogen bond with fluoride ion at the excited state, which has confirmed by natural bond orbital (NBO) and potential energy surface (PES) analysis. - Graphical abstract: The newly synthesised thiocarbazone derivates used as an effective and selective colourimetric and “turn on” fluorescence sensor for copper ion and ‘turn off’ for fluoride and cyanide anion. The presence and absence of ions were considered as input signals and the corresponding absorption and emission responses were consired as output. The proton transfer from the nitrogen adjacent to pyrene moiety, and which takes place at the excited state (ESPT).
Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludig–Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)
2015-11-14
Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.
Large-scale dynamo action due to α fluctuations in a linear shear flow
Sridhar, S.; Singh, Nishant K.
2014-12-01
We present a model of large-scale dynamo action in a shear flow that has stochastic, zero-mean fluctuations of the α parameter. This is based on a minimal extension of the Kraichnan-Moffatt model, to include a background linear shear and Galilean-invariant α-statistics. Using the first-order smoothing approximation we derive a linear integro-differential equation for the large-scale magnetic field, which is non-perturbative in the shearing rate S , and the α-correlation time τα . The white-noise case, τα = 0 , is solved exactly, and it is concluded that the necessary condition for dynamo action is identical to the Kraichnan-Moffatt model without shear; this is because white-noise does not allow for memory effects, whereas shear needs time to act. To explore memory effects we reduce the integro-differential equation to a partial differential equation, valid for slowly varying fields when τα is small but non-zero. Seeking exponential modal solutions, we solve the modal dispersion relation and obtain an explicit expression for the growth rate as a function of the six independent parameters of the problem. A non-zero τα gives rise to new physical scales, and dynamo action is completely different from the white-noise case; e.g. even weak α fluctuations can give rise to a dynamo. We argue that, at any wavenumber, both Moffatt drift and Shear always contribute to increasing the growth rate. Two examples are presented: (a) a Moffatt drift dynamo in the absence of shear and (b) a Shear dynamo in the absence of Moffatt drift.
Hung, Linda; Huang, Chen; Shin, Ilgyou; Ho, Gregory S.; Lignères, Vincent L.; Carter, Emily A.
2010-12-01
Orbital-free density functional theory (OFDFT) is a first principles quantum mechanics method to find the ground-state energy of a system by variationally minimizing with respect to the electron density. No orbitals are used in the evaluation of the kinetic energy (unlike Kohn-Sham DFT), and the method scales nearly linearly with the size of the system. The PRinceton Orbital-Free Electronic Structure Software (PROFESS) uses OFDFT to model materials from the atomic scale to the mesoscale. This new version of PROFESS allows the study of larger systems with two significant changes: PROFESS is now parallelized, and the ion-electron and ion-ion terms scale quasilinearly, instead of quadratically as in PROFESS v1 (L. Hung and E.A. Carter, Chem. Phys. Lett. 475 (2009) 163). At the start of a run, PROFESS reads the various input files that describe the geometry of the system (ion positions and cell dimensions), the type of elements (defined by electron-ion pseudopotentials), the actions you want it to perform (minimize with respect to electron density and/or ion positions and/or cell lattice vectors), and the various options for the computation (such as which functionals you want it to use). Based on these inputs, PROFESS sets up a computation and performs the appropriate optimizations. Energies, forces, stresses, material geometries, and electron density configurations are some of the values that can be output throughout the optimization. New version program summaryProgram Title: PROFESS Catalogue identifier: AEBN_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBN_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 68 721 No. of bytes in distributed program, including test data, etc.: 1 708 547 Distribution format: tar.gz Programming language: Fortran 90 Computer
The Front-End Readout as an Encoder IC for Magneto-Resistive Linear Scale Sensors
Trong-Hieu Tran
2016-09-01
Full Text Available This study proposes a front-end readout circuit as an encoder chip for magneto-resistance (MR linear scales. A typical MR sensor consists of two major parts: one is its base structure, also called the magnetic scale, which is embedded with multiple grid MR electrodes, while another is an “MR reader” stage with magnets inside and moving on the rails of the base. As the stage is in motion, the magnetic interaction between the moving stage and the base causes the variation of the magneto-resistances of the grid electrodes. In this study, a front-end readout IC chip is successfully designed and realized to acquire temporally-varying resistances in electrical signals as the stage is in motions. The acquired signals are in fact sinusoids and co-sinusoids, which are further deciphered by the front-end readout circuit via newly-designed programmable gain amplifiers (PGAs and analog-to-digital converters (ADCs. The PGA is particularly designed to amplify the signals up to full dynamic ranges and up to 1 MHz. A 12-bit successive approximation register (SAR ADC for analog-to-digital conversion is designed with linearity performance of ±1 in the least significant bit (LSB over the input range of 0.5–2.5 V from peak to peak. The chip was fabricated by the Taiwan Semiconductor Manufacturing Company (TSMC 0.35-micron complementary metal oxide semiconductor (CMOS technology for verification with a chip size of 6.61 mm2, while the power consumption is 56 mW from a 5-V power supply. The measured integral non-linearity (INL is −0.79–0.95 LSB while the differential non-linearity (DNL is −0.68–0.72 LSB. The effective number of bits (ENOB of the designed ADC is validated as 10.86 for converting the input analog signal to digital counterparts. Experimental validation was conducted. A digital decoder is orchestrated to decipher the harmonic outputs from the ADC via interpolation to the position of the moving stage. It was found that the displacement
Karimi, Samaneh; Abdulkhani, Ali; Tahir, Paridah Md; Dufresne, Alain
2016-10-01
Cellulosic nanofibers (NFs) from kenaf bast were used to reinforce glycerol plasticized thermoplastic starch (TPS) matrices with varying contents (0-10wt%). The composites were prepared by casting/evaporation method. Raw fibers (RFs) reinforced TPS films were prepared with the same contents and conditions. The aim of study was to investigate the effects of filler dimension and loading on linear and non-linear mechanical performance of fabricated materials. Obtained results clearly demonstrated that the NF-reinforced composites had significantly greater mechanical performance than the RF-reinforced counterparts. This was attributed to the high aspect ratio and nano dimension of the reinforcing agents, as well as their compatibility with the TPS matrix, resulting in strong fiber/matrix interaction. Tensile strength and Young's modulus increased by 313% and 343%, respectively, with increasing NF content from 0 to 10wt%. Dynamic mechanical analysis (DMA) revealed an elevational trend in the glass transition temperature of amylopectin-rich domains in composites. The most eminent record was +18.5°C shift in temperature position of the film reinforced with 8% NF. This finding implied efficient dispersion of nanofibers in the matrix and their ability to form a network and restrict mobility of the system. Copyright © 2016 Elsevier B.V. All rights reserved.
Linear velocity fields in non-Gaussian models for large-scale structure
Scherrer, Robert J.
1992-01-01
Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.
Corsini, Niccolò R. C., E-mail: niccolo.corsini@imperial.ac.uk; Greco, Andrea; Haynes, Peter D. [Department of Physics and Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Hine, Nicholas D. M. [Department of Physics and Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Cavendish Laboratory, J. J. Thompson Avenue, Cambridge CB3 0HE (United Kingdom); Molteni, Carla [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom)
2013-08-28
We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett.94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.
Siragusa, Enrico; Haiminen, Niina; Utro, Filippo; Parida, Laxmi
2017-10-09
Computer simulations can be used to study population genetic methods, models and parameters, as well as to predict potential outcomes. For example, in plant populations, predicting the outcome of breeding operations can be studied using simulations. In-silico construction of populations with pre-specified characteristics is an important task in breeding optimization and other population genetic studies. We present two linear time Simulation using Best-fit Algorithms (SimBA) for two classes of problems where each co-fits two distributions: SimBA-LD fits linkage disequilibrium and minimum allele frequency distributions, while SimBA-hap fits founder-haplotype and polyploid allele dosage distributions. An incremental gap-filling version of previously introduced SimBA-LD is here demonstrated to accurately fit the target distributions, allowing efficient large scale simulations. SimBA-hap accuracy and efficiency is demonstrated by simulating tetraploid populations with varying numbers of founder haplotypes, we evaluate both a linear time greedy algoritm and an optimal solution based on mixed-integer programming. SimBA is available on http://researcher.watson.ibm.com/project/5669.
Investigating actinide compounds within a hybrid MCSCF-DFT model
Fromager, E.; Jensen, H.J.A.; Wahlin, P.; Real, F.; Wahlgren, U.
2007-01-01
Complete text of publication follows: Investigations of actinide chemistry with quantum chemical methods still remain a complicated task since it requires an accurate and efficient treatment of the environment (crystal or solvent) as well as relativistic and electron correlation effects. Concerning the latter, the current correlated methods, based on either Density-Functional Theory (DFT) or Wave-Function Theory (WFT), have their advantages and drawbacks. On the one hand, Kohn-Sham DFT (KS-DFT) calculates the dynamic correlation quite accurately and at a fairly low computational cost. However, it does not treat adequately the static correlation, which is significant in some actinide compounds because of the near-degeneracy of the 5f orbitals: a first example is the bent geometry obtained in KS-DFT(B3LYP) for the neptunyl ion NpO 2 3+ , which is found to be linear within a Multi-Configurational Self-Consistent Field (MCSCF) model [1]. A second one is the stable and bent geometry obtained in KS-DFT(B3LYP) for the plutonyl ion PuO 2 4+ , which disintegrates at the MCSCF level [1]. On the other hand, WFT can describe the static correlation, using for example a MCSCF model, but then an important part of the dynamic correlation has to be neglected. This can be recovered with perturbation-theory based methods like for example CASPT2 or NEVPT2, but their computational complexity prevents large scale calculations. It is therefore of great interest to develop a hybrid MCSCF-DFT model which combines the best of both WFT and DFT approaches. The merge of WFT and DFT can be achieved by splitting the two-electron interaction into long-range and short-range parts [2]. The long-range part is then treated by WFT and the short-range part by DFT. We use the so-called 'erf' long-range interaction erf(μr 12 )/r 12 , which is based on the standard error function, and where μ is a free parameter which controls the long/short-range decomposition. The newly proposed recipe for the
Carey, G.F.; Young, D.M.
1993-12-31
The program outlined here is directed to research on methods, algorithms, and software for distributed parallel supercomputers. Of particular interest are finite element methods and finite difference methods together with sparse iterative solution schemes for scientific and engineering computations of very large-scale systems. Both linear and nonlinear problems will be investigated. In the nonlinear case, applications with bifurcation to multiple solutions will be considered using continuation strategies. The parallelizable numerical methods of particular interest are a family of partitioning schemes embracing domain decomposition, element-by-element strategies, and multi-level techniques. The methods will be further developed incorporating parallel iterative solution algorithms with associated preconditioners in parallel computer software. The schemes will be implemented on distributed memory parallel architectures such as the CRAY MPP, Intel Paragon, the NCUBE3, and the Connection Machine. We will also consider other new architectures such as the Kendall-Square (KSQ) and proposed machines such as the TERA. The applications will focus on large-scale three-dimensional nonlinear flow and reservoir problems with strong convective transport contributions. These are legitimate grand challenge class computational fluid dynamics (CFD) problems of significant practical interest to DOE. The methods developed and algorithms will, however, be of wider interest.
Tait, E W; Payne, M C; Ratcliff, L E; Haynes, P D; Hine, N D M
2016-01-01
Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable. (paper)
Narimani, Zahra; Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger
2017-01-01
Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods.
A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.
Röhl, Annika; Bockmayr, Alexander
2017-01-03
Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.
Parallel Quasi Newton Algorithms for Large Scale Non Linear Unconstrained Optimization
Rahman, M. A.; Basarudin, T.
1997-01-01
This paper discusses about Quasi Newton (QN) method to solve non-linear unconstrained minimization problems. One of many important of QN method is choice of matrix Hk. to be positive definite and satisfies to QN method. Our interest here is the parallel QN methods which will suite for the solution of large-scale optimization problems. The QN methods became less attractive in large-scale problems because of the storage and computational requirements. How ever, it is often the case that the Hessian is space matrix. In this paper we include the mechanism of how to reduce the Hessian update and hold the Hessian properties.One major reason of our research is that the QN method may be good in solving certain type of minimization problems, but it is efficiency degenerate when is it applied to solve other category of problems. For this reason, we use an algorithm containing several direction strategies which are processed in parallel. We shall attempt to parallelized algorithm by exploring different search directions which are generated by various QN update during the minimization process. The different line search strategies will be employed simultaneously in the process of locating the minimum along each direction.The code of algorithm will be written in Occam language 2 which is run on the transputer machine
Tutcuoglu, A.; Majidi, C.
2014-12-01
Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.
Mezhov, E.A.; Khananashvili, N.L.; Shmidt, V.S.
1988-01-01
A linear correlation has been established between the solubility of water in water-immiscible organic solvents and the interfacial tension at the water-solvent interface on the one hand and the parameters of the SE* and π* scales for these solvents on the other hand. This allows us, using the known tabulated SE* or π* parameters for each solvent, to predict the values of the interfacial tension and the solubility of water for the corresponding systems. We have shown that the SE* scale allows us to predict these values more accurately than other known solvent scales, since in contrast to other scales it characterizes solvents found in equilibrium with water
Generalized gravity from modified DFT
Sakatani, Yuho; Uehara, Shozo; Yoshida, Kentaroh
2017-01-01
Recently, generalized equations of type IIB supergravity have been derived from the requirement of classical kappa-symmetry of type IIB superstring theory in the Green-Schwarz formulation. These equations are covariant under generalized T-duality transformations and hence one may expect a formulation similar to double field theory (DFT). In this paper, we consider a modification of the DFT equations of motion by relaxing a condition for the generalized covariant derivative with an extra generalized vector. In this modified double field theory (mDFT), we show that the flatness condition of the modified generalized Ricci tensor leads to the NS-NS part of the generalized equations of type IIB supergravity. In particular, the extra vector fields appearing in the generalized equations correspond to the extra generalized vector in mDFT. We also discuss duality symmetries and a modification of the string charge in mDFT.
Generalized gravity from modified DFT
Sakatani, Yuho [Department of Physics, Kyoto Prefectural University of Medicine,Kyoto 606-0823 (Japan); Fields, Gravity and Strings, CTPU,Institute for Basic Sciences, Daejeon 34047 (Korea, Republic of); Uehara, Shozo [Department of Physics, Kyoto Prefectural University of Medicine,Kyoto 606-0823 (Japan); Yoshida, Kentaroh [Department of Physics, Kyoto University,Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)
2017-04-20
Recently, generalized equations of type IIB supergravity have been derived from the requirement of classical kappa-symmetry of type IIB superstring theory in the Green-Schwarz formulation. These equations are covariant under generalized T-duality transformations and hence one may expect a formulation similar to double field theory (DFT). In this paper, we consider a modification of the DFT equations of motion by relaxing a condition for the generalized covariant derivative with an extra generalized vector. In this modified double field theory (mDFT), we show that the flatness condition of the modified generalized Ricci tensor leads to the NS-NS part of the generalized equations of type IIB supergravity. In particular, the extra vector fields appearing in the generalized equations correspond to the extra generalized vector in mDFT. We also discuss duality symmetries and a modification of the string charge in mDFT.
Taousser, Fatima; Defoort, Michael; Djemai, Mohamed
2016-01-01
This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.
Riplinger, Christoph; Pinski, Peter; Becker, Ute; Neese, Frank; Valeev, Edward F.
2016-01-01
Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate
On Feature Extraction from Large Scale Linear LiDAR Data
Acharjee, Partha Pratim
Airborne light detection and ranging (LiDAR) can generate co-registered elevation and intensity map over large terrain. The co-registered 3D map and intensity information can be used efficiently for different feature extraction application. In this dissertation, we developed two algorithms for feature extraction, and usages of features for practical applications. One of the developed algorithms can map still and flowing waterbody features, and another one can extract building feature and estimate solar potential on rooftops and facades. Remote sensing capabilities, distinguishing characteristics of laser returns from water surface and specific data collection procedures provide LiDAR data an edge in this application domain. Furthermore, water surface mapping solutions must work on extremely large datasets, from a thousand square miles, to hundreds of thousands of square miles. National and state-wide map generation/upgradation and hydro-flattening of LiDAR data for many other applications are two leading needs of water surface mapping. These call for as much automation as possible. Researchers have developed many semi-automated algorithms using multiple semi-automated tools and human interventions. This reported work describes a consolidated algorithm and toolbox developed for large scale, automated water surface mapping. Geometric features such as flatness of water surface, higher elevation change in water-land interface and, optical properties such as dropouts caused by specular reflection, bimodal intensity distributions were some of the linear LiDAR features exploited for water surface mapping. Large-scale data handling capabilities are incorporated by automated and intelligent windowing, by resolving boundary issues and integrating all results to a single output. This whole algorithm is developed as an ArcGIS toolbox using Python libraries. Testing and validation are performed on a large datasets to determine the effectiveness of the toolbox and results are
Gene Golub; Kwok Ko
2009-01-01
The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.
2007-01-01
Full Text Available Hysteresis is a rate-independent non-linearity that is expressed through thresholds, switches, and branches. Exceedance of a threshold, or the occurrence of a turning point in the input, switches the output onto a particular output branch. Rate-independent branching on a very large set of switches with non-local memory is the central concept in the new definition of hysteresis. Hysteretic loops are a special case. A self-consistent mathematical description of hydrological systems with hysteresis demands a new non-linear systems theory of adequate generality. The goal of this paper is to establish this and to show how this may be done. Two results are presented: a conceptual model for the hysteretic soil-moisture characteristic at the pedon scale and a hysteretic linear reservoir at the catchment scale. Both are based on the Preisach model. A result of particular significance is the demonstration that the independent domain model of the soil moisture characteristic due to Childs, Poulavassilis, Mualem and others, is equivalent to the Preisach hysteresis model of non-linear systems theory, a result reminiscent of the reduction of the theory of the unit hydrograph to linear systems theory in the 1950s. A significant reduction in the number of model parameters is also achieved. The new theory implies a change in modelling paradigm.
Non-linear optics of nano-scale pentacene thin film
Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.
2016-07-01
We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.
Recent advances toward a general purpose linear-scaling quantum force field.
Giese, Timothy J; Huang, Ming; Chen, Haoyuan; York, Darrin M
2014-09-16
Conspectus There is need in the molecular simulation community to develop new quantum mechanical (QM) methods that can be routinely applied to the simulation of large molecular systems in complex, heterogeneous condensed phase environments. Although conventional methods, such as the hybrid quantum mechanical/molecular mechanical (QM/MM) method, are adequate for many problems, there remain other applications that demand a fully quantum mechanical approach. QM methods are generally required in applications that involve changes in electronic structure, such as when chemical bond formation or cleavage occurs, when molecules respond to one another through polarization or charge transfer, or when matter interacts with electromagnetic fields. A full QM treatment, rather than QM/MM, is necessary when these features present themselves over a wide spatial range that, in some cases, may span the entire system. Specific examples include the study of catalytic events that involve delocalized changes in chemical bonds, charge transfer, or extensive polarization of the macromolecular environment; drug discovery applications, where the wide range of nonstandard residues and protonation states are challenging to model with purely empirical MM force fields; and the interpretation of spectroscopic observables. Unfortunately, the enormous computational cost of conventional QM methods limit their practical application to small systems. Linear-scaling electronic structure methods (LSQMs) make possible the calculation of large systems but are still too computationally intensive to be applied with the degree of configurational sampling often required to make meaningful comparison with experiment. In this work, we present advances in the development of a quantum mechanical force field (QMFF) suitable for application to biological macromolecules and condensed phase simulations. QMFFs leverage the benefits provided by the LSQM and QM/MM approaches to produce a fully QM method that is able to
Testing linear growth rate formulas of non-scale endogenous growth models
Ziesemer, Thomas
2017-01-01
Endogenous growth theory has produced formulas for steady-state growth rates of income per capita which are linear in the growth rate of the population. Depending on the details of the models, slopes and intercepts are positive, zero or negative. Empirical tests have taken over the assumption of
High-performance small-scale solvers for linear Model Predictive Control
Frison, Gianluca; Sørensen, Hans Henrik Brandenborg; Dammann, Bernd
2014-01-01
, with the two main research areas of explicit MPC and tailored on-line MPC. State-of-the-art solvers in this second class can outperform optimized linear-algebra libraries (BLAS) only for very small problems, and do not explicitly exploit the hardware capabilities, relying on compilers for that. This approach...
Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)
Doebert, Steffen; Sicking, Eva
2018-02-01
The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.
Imprint of non-linear effects on HI intensity mapping on large scales
Umeh, Obinna, E-mail: umeobinna@gmail.com [Department of Physics and Astronomy, University of the Western Cape, Cape Town 7535 (South Africa)
2017-06-01
Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.
Luenser, Arne; Schurkus, Henry F; Ochsenfeld, Christian
2017-04-11
A reformulation of the random phase approximation within the resolution-of-the-identity (RI) scheme is presented, that is competitive to canonical molecular orbital RI-RPA already for small- to medium-sized molecules. For electronically sparse systems drastic speedups due to the reduced scaling behavior compared to the molecular orbital formulation are demonstrated. Our reformulation is based on two ideas, which are independently useful: First, a Cholesky decomposition of density matrices that reduces the scaling with basis set size for a fixed-size molecule by one order, leading to massive performance improvements. Second, replacement of the overlap RI metric used in the original AO-RPA by an attenuated Coulomb metric. Accuracy is significantly improved compared to the overlap metric, while locality and sparsity of the integrals are retained, as is the effective linear scaling behavior.
A large-scale linear complementarity model of the North American natural gas market
Gabriel, Steven A.; Jifang Zhuang; Kiet, Supat
2005-01-01
The North American natural gas market has seen significant changes recently due to deregulation and restructuring. For example, third party marketers can contract for transportation and purchase of gas to sell to end-users. While the intent was a more competitive market, the potential for market power exists. We analyze this market using a linear complementarity equilibrium model including producers, storage and peak gas operators, third party marketers and four end-use sectors. The marketers are depicted as Nash-Cournot players determining supply to meet end-use consumption, all other players are in perfect competition. Results based on National Petroleum Council scenarios are presented. (Author)
Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y Y
2008-01-01
We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency
Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y. Y.
2008-07-01
We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency.
Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami
2017-03-27
Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Results: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs.
Rapakoulia, Trisevgeni
2017-08-09
Motivation: Drug combination therapy for treatment of cancers and other multifactorial diseases has the potential of increasing the therapeutic effect, while reducing the likelihood of drug resistance. In order to reduce time and cost spent in comprehensive screens, methods are needed which can model additive effects of possible drug combinations. Results: We here show that the transcriptional response to combinatorial drug treatment at promoters, as measured by single molecule CAGE technology, is accurately described by a linear combination of the responses of the individual drugs at a genome wide scale. We also find that the same linear relationship holds for transcription at enhancer elements. We conclude that the described approach is promising for eliciting the transcriptional response to multidrug treatment at promoters and enhancers in an unbiased genome wide way, which may minimize the need for exhaustive combinatorial screens.
The Study of Non-Linear Acceleration of Particles during Substorms Using Multi-Scale Simulations
Ashour-Abdalla, Maha
2011-01-01
To understand particle acceleration during magnetospheric substorms we must consider the problem on multple scales ranging from the large scale changes in the entire magnetosphere to the microphysics of wave particle interactions. In this paper we present two examples that demonstrate the complexity of substorm particle acceleration and its multi-scale nature. The first substorm provided us with an excellent example of ion acceleration. On March 1, 2008 four THEMIS spacecraft were in a line extending from 8 R E to 23 R E in the magnetotail during a very large substorm during which ions were accelerated to >500 keV. We used a combination of a global magnetohydrodynamic and large scale kinetic simulations to model the ion acceleration and found that the ions gained energy by non-adiabatic trajectories across the substorm electric field in a narrow region extending across the magnetotail between x = -10 R E and x = -15 R E . In this strip called the 'wall region' the ions move rapidly in azimuth and gain 100s of keV. In the second example we studied the acceleration of electrons associated with a pair of dipolarization fronts during a substorm on February 15, 2008. During this substorm three THEMIS spacecraft were grouped in the near-Earth magnetotail (x ∼-10 R E ) and observed electron acceleration of >100 keV accompanied by intense plasma waves. We used the MHD simulations and analytic theory to show that adiabatic motion (betatron and Fermi acceleration) was insufficient to account for the electron acceleration and that kinetic processes associated with the plasma waves were important.
Flexible non-linear predictive models for large-scale wind turbine diagnostics
Bach-Andersen, Martin; Rømer-Odgaard, Bo; Winther, Ole
2017-01-01
We demonstrate how flexible non-linear models can provide accurate and robust predictions on turbine component temperature sensor data using data-driven principles and only a minimum of system modeling. The merits of different model architectures are evaluated using data from a large set...... of turbines operating under diverse conditions. We then go on to test the predictive models in a diagnostic setting, where the output of the models are used to detect mechanical faults in rotor bearings. Using retrospective data from 22 actual rotor bearing failures, the fault detection performance...... of the models are quantified using a structured framework that provides the metrics required for evaluating the performance in a fleet wide monitoring setup. It is demonstrated that faults are identified with high accuracy up to 45 days before a warning from the hard-threshold warning system....
Study of vibrations and stabilization of linear collider final doublets at the sub-nanometer scale
Bolzon, B.
2007-11-01
CLIC is one of the current projects of high energy linear colliders. Vertical beam sizes of 0.7 nm at the time of the collision and fast ground motion of a few nanometers impose an active stabilization of the final doublets at a fifth of nanometer above 4 Hz. The majority of my work concerned vibrations and active stabilization study of cantilever and slim beams in order to be representative of the final doublets of CLIC. In a first part, measured performances of different types of vibration sensors associated to an appropriate instrumentation showed that accurate measurements of ground motion are possible from 0.1 Hz up to 2000 Hz on a quiet site. Also, electrochemical sensors answering a priori the specifications of CLIC can be incorporated in the active stabilization at a fifth of nanometer. In a second part, an experimental and numerical study of beam vibrations enabled to validate the efficiency of the numerical prediction incorporated then in the simulation of the active stabilization. Also, a study of the impact of ground motion and of acoustic noise on beam vibrations showed that an active stabilization is necessary at least up to 1000 Hz. In a third part, results on the active stabilization of a beam at its two first resonances are shown down to amplitudes of a tenth of nanometer above 4 Hz by using in parallel a commercial system performing passive and active stabilization of the clamping. The last part is related to a study of a support for the final doublets of a linear collider prototype in phase of finalization, the ATF2 prototype. This work showed that relative motion between this support and the ground is below imposed tolerances (6 nm above 0.1 Hz) with appropriate boundary conditions. (author)
Chen Qi
2013-07-01
Full Text Available Non-linear chirp scaling (NLCS is a feasible method to deal with time-variant frequency modulation (FM rate problem in synthetic aperture radar (SAR imaging. However, approximations in derivation of NLCS spectrum lead to performance decline in some cases. Presented is the exact spectrum of the NLCS function. Simulation with a geosynchronous synthetic aperture radar (GEO-SAR configuration is implemented. The results show that using the presented spectrum can significantly improve imaging performance, and the NLCS algorithm is suitable for GEO-SAR imaging after modification.
Linear perturbation theory for tidal streams and the small-scale CDM power spectrum
Bovy, Jo; Erkal, Denis; Sanders, Jason L.
2017-04-01
Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r matter is clumpy on the smallest scales relevant for galaxy formation.
Theoretical explanation of present mirror experiments and linear stability of larger scaled machines
Berk, H.L.; Baldwin, D.E.; Cutler, T.A.; Lodestro, L.L.; Maron, N.; Pearlstein, L.D.; Rognlien, T.D.; Stewart, J.J.; Watson, D.C.
1976-01-01
A quasilinear model for the evolution of the 2XIIB mirror experiment is presented and shown to reproduce the time evolution of the experiment. From quasilinear theory it follows that the energy lifetime is the Spitzer electron drag time for T/sub e/ approximately less than 0.1T/sub i/. By computing the stability boundary of the DCLC mode, with warm plasma stabilization, the electron temperature is predicted as a function of radial scale length. In addition, the effect of finite length corrections to the Alfven cyclotron mode is assessed
Scaling behavior of ground-state energy cluster expansion for linear polyenes
Griffin, L. L.; Wu, Jian; Klein, D. J.; Schmalz, T. G.; Bytautas, L.
Ground-state energies for linear-chain polyenes are additively expanded in a sequence of terms for chemically relevant conjugated substructures of increasing size. The asymptotic behavior of the large-substructure limit (i.e., high-polymer limit) is investigated as a means of characterizing the rapidity of convergence and consequent utility of this energy cluster expansion. Consideration is directed to computations via: simple Hückel theory, a refined Hückel scheme with geometry optimization, restricted Hartree-Fock self-consistent field (RHF-SCF) solutions of fixed bond-length Parisier-Parr-Pople (PPP)/Hubbard models, and ab initio SCF approaches with and without geometry optimization. The cluster expansion in what might be described as the more "refined" approaches appears to lead to qualitatively more rapid convergence: exponentially fast as opposed to an inverse power at the simple Hückel or SCF-Hubbard levels. The substructural energy cluster expansion then seems to merit special attention. Its possible utility in making accurate extrapolations from finite systems to extended polymers is noted.
D'Souza, Sonia; Rasmussen, John; Schwirtz, Ansgar
2012-01-01
and valuable ergonomic tool. Objective: To investigate age and gender effects on the torque-producing ability in the knee and elbow in older adults. To create strength scaled equations based on age, gender, upper/lower limb lengths and masses using multiple linear regression. To reduce the number of dependent...... flexors. Results: Males were signifantly stronger than females across all age groups. Elbow peak torque (EPT) was better preserved from 60s to 70s whereas knee peak torque (KPT) reduced significantly (PGender, thigh mass and age best...... predicted KPT (R2=0.60). Gender, forearm mass and age best predicted EPT (R2=0.75). Good crossvalidation was established for both elbow and knee models. Conclusion: This cross-sectional study of muscle strength created and validated strength scaled equations of EPT and KPT using only gender, segment mass...
Roychoudhury, Subhayan; O'Regan, David D.; Sanvito, Stefano
2018-05-01
Pulay terms arise in the Hellmann-Feynman forces in electronic-structure calculations when one employs a basis set made of localized orbitals that move with their host atoms. If the total energy of the system depends on a subspace population defined in terms of the localized orbitals across multiple atoms, then unconventional Pulay terms will emerge due to the variation of the orbital nonorthogonality with ionic translation. Here, we derive the required exact expressions for such terms, which cannot be eliminated by orbital orthonormalization. We have implemented these corrected ionic forces within the linear-scaling density functional theory (DFT) package onetep, and we have used constrained DFT to calculate the reorganization energy of a pentacene molecule adsorbed on a graphene flake. The calculations are performed by including ensemble DFT, corrections for periodic boundary conditions, and empirical Van der Waals interactions. For this system we find that tensorially invariant population analysis yields an adsorbate subspace population that is very close to integer-valued when based upon nonorthogonal Wannier functions, and also but less precisely so when using pseudoatomic functions. Thus, orbitals can provide a very effective population analysis for constrained DFT. Our calculations show that the reorganization energy of the adsorbed pentacene is typically lower than that of pentacene in the gas phase. We attribute this effect to steric hindrance.
Strength and reversibility of stereotypes for a rotary control with linear scales.
Chan, Alan H S; Chan, W H
2008-02-01
Using real mechanical controls, this experiment studied strength and reversibility of direction-of-motion stereotypes and response times for a rotary control with horizontal and vertical scales. Thirty-eight engineering undergraduates (34 men and 4 women) ages 23 to 47 years (M=29.8, SD=7.7) took part in the experiment voluntarily. The effects of instruction of change of pointer position and control plane on movement compatibility were analyzed with precise quantitative measures of strength and a reversibility index of stereotype. Comparisons of the strength and reversibility values of these two configurations with those of rotary control-circular display, rotary control-digital counter, four-way lever-circular display, and four-way lever-digital counter were made. The results of this study provided significant implications for the industrial design of control panels for improved human performance.
Quantifying feedforward control: a linear scaling model for fingertip forces and object weight.
Lu, Ying; Bilaloglu, Seda; Aluru, Viswanath; Raghavan, Preeti
2015-07-01
The ability to predict the optimal fingertip forces according to object properties before the object is lifted is known as feedforward control, and it is thought to occur due to the formation of internal representations of the object's properties. The control of fingertip forces to objects of different weights has been studied extensively by using a custom-made grip device instrumented with force sensors. Feedforward control is measured by the rate of change of the vertical (load) force before the object is lifted. However, the precise relationship between the rate of change of load force and object weight and how it varies across healthy individuals in a population is not clearly understood. Using sets of 10 different weights, we have shown that there is a log-linear relationship between the fingertip load force rates and weight among neurologically intact individuals. We found that after one practice lift, as the weight increased, the peak load force rate (PLFR) increased by a fixed percentage, and this proportionality was common among the healthy subjects. However, at any given weight, the level of PLFR varied across individuals and was related to the efficiency of the muscles involved in lifting the object, in this case the wrist and finger extensor muscles. These results quantify feedforward control during grasp and lift among healthy individuals and provide new benchmarks to interpret data from neurologically impaired populations as well as a means to assess the effect of interventions on restoration of feedforward control and its relationship to muscular control. Copyright © 2015 the American Physiological Society.
Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami
2017-08-01
Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs. The software is implemented in Matlab, and is provided as supplementary information . hyunseob.song@pnnl.gov. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.
Alconis, Jenalyn; Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo; Lester Saddi, Ivan; Mongaya, Candeze; Figueroa, Kathleen Gay
2014-05-01
In response to the slew of disasters that devastates the Philippines on a regular basis, the national government put in place a program to address this problem. The Nationwide Operational Assessment of Hazards, or Project NOAH, consolidates the diverse scientific research being done and pushes the knowledge gained to the forefront of disaster risk reduction and management. Current activities of the project include installing rain gauges and water level sensors, conducting LIDAR surveys of critical river basins, geo-hazard mapping, and running information education campaigns. Approximately 700 automated weather stations and rain gauges installed in strategic locations in the Philippines hold the groundwork for the rainfall visualization system in the Project NOAH web portal at http://noah.dost.gov.ph. The system uses near real-time data from these stations installed in critical river basins. The sensors record the amount of rainfall in a particular area as point data updated every 10 to 15 minutes. The sensor sends the data to a central server either via GSM network or satellite data transfer for redundancy. The web portal displays the sensors as a placemarks layer on a map. When a placemark is clicked, it displays a graph of the rainfall data for the past 24 hours. The rainfall data is harvested by batch determined by a one-hour time frame. The program uses linear interpolation as the methodology implemented to visually represent a near real-time rainfall map. The algorithm allows very fast processing which is essential in near real-time systems. As more sensors are installed, precision is improved. This visualized dataset enables users to quickly discern where heavy rainfall is concentrated. It has proven invaluable on numerous occasions, such as last August 2013 when intense to torrential rains brought about by the enhanced Southwest Monsoon caused massive flooding in Metro Manila. Coupled with observations from Doppler imagery and water level sensors along the
Naturalness in low-scale SUSY models and "non-linear" MSSM
Antoniadis, I; Ghilencea, D M
2014-01-01
In MSSM models with various boundary conditions for the soft breaking terms (m_{soft}) and for a higgs mass of 126 GeV, there is a (minimal) electroweak fine-tuning Delta\\approx 800 to 1000 for the constrained MSSM and Delta\\approx 500 for non-universal gaugino masses. These values, often regarded as unacceptably large, may indicate a problem of supersymmetry (SUSY) breaking, rather than of SUSY itself. A minimal modification of these models is to lower the SUSY breaking scale in the hidden sector (\\sqrt f) to few TeV, which we show to restore naturalness to more acceptable levels Delta\\approx 80 for the most conservative case of low tan_beta and ultraviolet boundary conditions as in the constrained MSSM. This is done without introducing additional fields in the visible sector, unlike other models that attempt to reduce Delta. In the present case Delta is reduced due to additional (effective) quartic higgs couplings proportional to the ratio m_{soft}/(\\sqrt f) of the visible to the hidden sector SUSY breaking...
The large-scale gravitational bias from the quasi-linear regime.
Bernardeau, F.
1996-08-01
It is known that in gravitational instability scenarios the nonlinear dynamics induces non-Gaussian features in cosmological density fields that can be investigated with perturbation theory. Here, I derive the expression of the joint moments of cosmological density fields taken at two different locations. The results are valid when the density fields are filtered with a top-hat filter window function, and when the distance between the two cells is large compared to the smoothing length. In particular I show that it is possible to get the generating function of the coefficients C_p,q_ defined by _c_=C_p,q_ ^p+q-2^ where δ({vec}(x)) is the local smoothed density field. It is then possible to reconstruct the joint density probability distribution function (PDF), generalizing for two points what has been obtained previously for the one-point density PDF. I discuss the validity of the large separation approximation in an explicit numerical Monte Carlo integration of the C_2,1_ parameter as a function of |{vec}(x)_1_-{vec}(x)_2_|. A straightforward application is the calculation of the large-scale ``bias'' properties of the over-dense (or under-dense) regions. The properties and the shape of the bias function are presented in details and successfully compared with numerical results obtained in an N-body simulation with CDM initial conditions.
On the potential of zero-tail DFT-spread-OFDM in 5G networks
Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão; Sørensen, Troels Bundgaard
2014-01-01
Zero-tail Discrete Fourier Transform -spread OFDM (ZT DFT-s-OFDM) modulation allows to dynamically cope with the delay spread of the multipath channel, thus avoiding the limitations of hard-coded Cyclic Prefix (CP). In this paper, we discuss the potential of ZT DFT-s-OFDM modulation for the envis......, possibility of adopting unified radio numerology among different cells, reduced latency and support of agile link direction switching. The robustness of ZT DFT-s-OFDM towards non-idealities such as phase noise and non-linear power amplifier is also discussed....
Maurer, Reinhard J; Reuter, Karsten
2013-07-07
Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.
Herath, Narmada; Del Vecchio, Domitilla
2018-03-01
Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA+". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.
Nakano, Masahiko; Yoshikawa, Takeshi; Hirata, So; Seino, Junji; Nakai, Hiromi
2017-11-05
We have implemented a linear-scaling divide-and-conquer (DC)-based higher-order coupled-cluster (CC) and Møller-Plesset perturbation theories (MPPT) as well as their combinations automatically by means of the tensor contraction engine, which is a computerized symbolic algebra system. The DC-based energy expressions of the standard CC and MPPT methods and the CC methods augmented with a perturbation correction were proposed for up to high excitation orders [e.g., CCSDTQ, MP4, and CCSD(2) TQ ]. The numerical assessment for hydrogen halide chains, polyene chains, and first coordination sphere (C1) model of photoactive yellow protein has revealed that the DC-based correlation methods provide reliable correlation energies with significantly less computational cost than that of the conventional implementations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study.
Nimmegeers, Philippe; Lauwers, Joost; Telen, Dries; Logist, Filip; Impe, Jan Van
2017-06-01
In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a 'non-informative' and 'informative' experiment, which are heuristically designed. The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult. Copyright © 2017. Published by Elsevier Inc.
Del Rio Amador, Lenin; Lovejoy, Shaun
2016-04-01
Traditionally, most of the models for prediction of the atmosphere behavior in the macroweather and climate regimes follow a deterministic approach. However, modern ensemble forecasting systems using stochastic parameterizations are in fact deterministic/ stochastic hybrids that combine both elements to yield a statistical distribution of future atmospheric states. Nevertheless, the result is both highly complex (both numerically and theoretically) as well as being theoretically eclectic. In principle, it should be advantageous to exploit higher level turbulence type scaling laws. Concretely, in the case for the Global Circulation Models (GCM's), due to sensitive dependence on initial conditions, there is a deterministic predictability limit of the order of 10 days. When these models are coupled with ocean, cryosphere and other process models to make long range, climate forecasts, the high frequency "weather" is treated as a driving noise in the integration of the modelling equations. Following Hasselman, 1976, this has led to stochastic models that directly generate the noise, and model the low frequencies using systems of integer ordered linear ordinary differential equations, the most well-known are the Linear Inverse Models (LIM). For annual global scale forecasts, they are somewhat superior to the GCM's and have been presented as a benchmark for surface temperature forecasts with horizons up to decades. A key limitation for the LIM approach is that it assumes that the temperature has only short range (exponential) decorrelations. In contrast, an increasing body of evidence shows that - as with the models - the atmosphere respects a scale invariance symmetry leading to power laws with potentially enormous memories so that LIM greatly underestimates the memory of the system. In this talk we show that, due to the relatively low macroweather intermittency, the simplest scaling models - fractional Gaussian noise - can be used for making greatly improved forecasts
Song, Chao; Kwan, Mei-Po; Zhu, Jiping
2017-04-08
An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale.
Bajaj, Akash; Janet, Jon Paul; Kulik, Heather J.
2017-11-01
The flat-plane condition is the union of two exact constraints in electronic structure theory: (i) energetic piecewise linearity with fractional electron removal or addition and (ii) invariant energetics with change in electron spin in a half filled orbital. Semi-local density functional theory (DFT) fails to recover the flat plane, exhibiting convex fractional charge errors (FCE) and concave fractional spin errors (FSE) that are related to delocalization and static correlation errors. We previously showed that DFT+U eliminates FCE but now demonstrate that, like other widely employed corrections (i.e., Hartree-Fock exchange), it worsens FSE. To find an alternative strategy, we examine the shape of semi-local DFT deviations from the exact flat plane and we find this shape to be remarkably consistent across ions and molecules. We introduce the judiciously modified DFT (jmDFT) approach, wherein corrections are constructed from few-parameter, low-order functional forms that fit the shape of semi-local DFT errors. We select one such physically intuitive form and incorporate it self-consistently to correct semi-local DFT. We demonstrate on model systems that jmDFT represents the first easy-to-implement, no-overhead approach to recovering the flat plane from semi-local DFT.
THE STRUCTURE AND LINEAR POLARIZATION OF THE KILOPARSEC-SCALE JET OF THE QUASAR 3C 345
Roberts, David H.; Wardle, John F. C.; Marchenko, Valerie V., E-mail: roberts@brandeis.edu [Department of Physics MS-057, Brandeis University, Waltham, MA 02454-0911 (United States)
2013-02-01
Deep Very Large Array imaging of the quasar 3C 345 at 4.86 and 8.44 GHz has been used to study the structure and linear polarization of its radio jet on scales ranging from 2 to 30 kpc. There is a 7-8 Jy unresolved core with spectral index {alpha} {approx_equal} -0.24 (I{sub {nu}}{proportional_to}{nu}{sup {alpha}}). The jet (typical intensity 15 mJy beam{sup -1}) consists of a 2.''5 straight section containing two knots, and two additional non-co-linear knots at the end. The jet's total projected length is about 27 kpc. The spectral index of the jet varies over -1.1 {approx}< {alpha} {approx}< -0.5. The jet diverges with a semi-opening angle of about 9 Degree-Sign , and is nearly constant in integrated brightness over its length. A faint feature northeast of the core does not appear to be a true counter-jet, but rather an extended lobe of this FR-II radio source seen in projection. The absence of a counter-jet is sufficient to place modest constraints on the speed of the jet on these scales, requiring {beta} {approx}> 0.5. Despite the indication of jet precession in the total intensity structure, the polarization images suggest instead a jet re-directed at least twice by collisions with the external medium. Surprisingly, the electric vector position angles in the main body of the jet are neither longitudinal nor transverse, but make an angle of about 55 Degree-Sign with the jet axis in the middle while along the edges the vectors are transverse, suggesting a helical magnetic field. There is no significant Faraday rotation in the source, so that is not the cause of the twist. The fractional polarization in the jet averages 25% and is higher at the edges. In a companion paper, Roberts and Wardle show that differential Doppler boosting in a diverging relativistic velocity field can explain the electric vector pattern in the jet.
Vashishta P.
2011-05-01
Full Text Available A linear-scaling algorithm based on a divide-and-conquer (DC scheme is designed to perform large-scale molecular-dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT. This scheme is applied to the thermite reaction at an Al/Fe2O3 interface. It is found that mass diffusion and reaction rate at the interface are enhanced by a concerted metal-oxygen flip mechanism. Preliminary simulations are carried out for an aluminum particle in water based on the conventional DFT, as a target system for large-scale DC-DFT simulations. A pair of Lewis acid and base sites on the aluminum surface preferentially catalyzes hydrogen production in a low activation-barrier mechanism found in the simulations
Iqbal, Javed; Yahia, I. S.; Zahran, H. Y.; AlFaify, S.; AlBassam, A. M.; El-Naggar, A. M.
2016-12-01
2‧,7‧ dichloro-Fluorescein (DCF) is a promising organic semiconductor material in different technological aspects such as solar cell, photodiode, Schottky diode. DCF thin film/conductive glass (FTO glass) was prepared by a low-cost spin coating technique. The spectrophotometric data such as the absorbance, reflectance and transmittance were cogitated in the 350-2500 nm wavelength range, at the normal incidence. The absorption (n) and linear refractive indices (k) were computed using the Fresnel's equations. The optical band gap was evaluated and it was found that there is two band gap described as follows: (1) It is related to the band gap of FTO/glass which is equal 3.4 eV and (2) the second one is related to the absorption edge of DCF equals 2.25 eV. The non-linear parameters such as the refractive index (n2) and optical susceptibility χ(3) were evaluated by the spectroscopic method based on the refractive index. Both (n2) and χ(3) increased rapidly on increasing the wavelength with redshift absorption. Our work represents a new idea about using FTO glass for a new generation of the optical device and technology.
Mezhov, Eh.A.; Khananashvili, N.L.; Shmidt, V.S.
1988-01-01
Presence of linear correlation between water solubility in nonmiscible with it organic solvents, interfacial tension of water-solvent interface, on the one hand, and solvent effect scale parameters and these solvents π* - on the other hand, is established. It allows, using certain tabular parameters of solvent effect or each solvent π*, to predict values of interfacial tension and water solubility for corresponding systems. It is shown, that solvent effect scale allows to predict values more accurately, than other known solvent scales, as it in contrast to other scales characterizes solvents, which are in equilibrium with water
Shulkind, Gal; Nazarathy, Moshe
2012-11-05
DFT-spread (DFT-S) coherent optical OFDM was numerically and experimentally shown to provide improved nonlinear tolerance over an optically amplified dispersion uncompensated fiber link, relative to both conventional coherent OFDM and single-carrier transmission. Here we provide an analytic model rigorously accounting for this numerical result and precisely predicting the optimal bandwidth per DFT-S sub-band (or equivalently the optimal number of sub-bands per optical channel) required in order to maximize the link non-linear tolerance (NLT). The NLT advantage of DFT-S OFDM is traced to the particular statistical dependency introduced among the OFDM sub-carriers by means of the DFT spreading operation. We further extend DFT-S to a unitary-spread generalized modulation format which includes as special cases the DFT-S scheme as well as a new format which we refer to as wavelet-spread (WAV-S) OFDM, replacing the spreading DFTs by Hadamard matrices which have elements +/-1 hence are multiplier-free. The extra complexity incurred in the spreading operation is almost negligible, however the performance improvement with WAV-S relative to plain OFDM is more modest than that achieved by DFT-S, which remains the preferred format for nonlinear tolerance improvement, outperforming both plain OFDM and single-carrier schemes.
Beridze, George; Kowalski, Piotr M
2014-12-18
Ability to perform a feasible and reliable computation of thermochemical properties of chemically complex actinide-bearing materials would be of great importance for nuclear engineering. Unfortunately, density functional theory (DFT), which on many instances is the only affordable ab initio method, often fails for actinides. Among various shortcomings, it leads to the wrong estimate of enthalpies of reactions between actinide-bearing compounds, putting the applicability of the DFT approach to the modeling of thermochemical properties of actinide-bearing materials into question. Here we test the performance of DFT+U method--a computationally affordable extension of DFT that explicitly accounts for the correlations between f-electrons - for prediction of the thermochemical properties of simple uranium-bearing molecular compounds and solids. We demonstrate that the DFT+U approach significantly improves the description of reaction enthalpies for the uranium-bearing gas-phase molecular compounds and solids and the deviations from the experimental values are comparable to those obtained with much more computationally demanding methods. Good results are obtained with the Hubbard U parameter values derived using the linear response method of Cococcioni and de Gironcoli. We found that the value of Coulomb on-site repulsion, represented by the Hubbard U parameter, strongly depends on the oxidation state of uranium atom. Last, but not least, we demonstrate that the thermochemistry data can be successfully used to estimate the value of the Hubbard U parameter needed for DFT+U calculations.
El Mahdy, A. M.; Halim, Shimaa Abdel; Taha, H. O.
2018-05-01
Density functional theory (DFT) and time-dependent DFT calculations have been employed to model metallotetraphenylporphyrin dyes and metallotetraphenylporphyrin -fullerene complexes in order to investigate the geometries, electronic structures, the density of states, non-linear optical properties (NLO), IR-vis spectra, molecular electrostatic potential contours, and electrophilicity. To calculate the excited states of the tetraphenyl porphyrin analogs, time-dependent density functional theory (TD-DFT) are used. Their UV-vis spectra were also obtained and a comparison with available experimental and theoretical results is included. The results reveal that the metal and the tertiary butyl groups of the dyes are electron donors, and the tetraphenylporphyrin rings are electron acceptors. The HOMOs of the dyes fall within the (TiO2)60 and Ti38O76 band gaps and support the issue of typical interfacial electron transfer reaction. The resulting potential drop of Mn-TPP-C60 increased by ca. 3.50% under the effect of the tertiary butyl groups. The increase in the potential drop indicates that the tertiary butyl complexes could be a better choice for the strong operation of the molecular rectifiers. The introduction of metal atom and tertiary butyl groups to the tetraphenyl porphyrin moiety leads to a stronger response to the external electric field and induces higher photo-to-current conversion efficiency. This also shifts the absorption in the dyes and makes them potential candidates for harvesting light in the entire visible and near IR region for photovoltaic applications.
March, N.H.; Ludena, Eduardo V.
2004-01-01
For three model problems concerning two-electron spin-compensated ground states with spherical density, the third-order linear homogeneous differential equation constructed for the determination of ρ(r) is used here in conjunction with the von Weizsacker functional to characterize the one-body potential of density functional theory (DFT). Correlated von Weizsacker-type terms are compared to the exact DFT functional
Akhtar, Muhammad Saeed [School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590 (Pakistan); Malik, Mohammad Azad, E-mail: Azad.malik@manchester.ac.uk [School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Riaz, Saira; Naseem, Shahzad [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590 (Pakistan)
2015-06-15
The nickel doped nanocrystalline ZnS thin films were deposited onto glass substrates by chemical bath deposition (CBD). Also ZnS:Ni nanoparticles were synthesized by CBD/co-precipitation method. Powder X-ray diffraction (p-XRD) studies demonstrate that both thin films and nanoparticles correspond to sphalerite (cubic) phase of ZnS with slight shift towards higher 2θ values due to incorporation of nickel in the ZnS lattice. The crystallite sizes estimated by Scherrer equation were 4 and 2.6 nm for ZnNiS thin films and nanoparticles, respectively. Scanning Electron Microscopy (SEM) images reveal that the morphology of thin films is based on quasi-spherical particles with nano scale dimensions. Energy Dispersive X-ray (EDX) spectroscopy confirms that the as-deposited thin films have a stoichiometry consistent with the nickel doped ZnS. Full-potential linearized augmented plane wave (FP-L/APW) method based on spin-polarized density functional theory (DFT) was employed to investigate the electronic and magnetic properties of ZnNiS for the doping concentration. Exchange-correlation functional was studied using generalized gradient approximation (GGA + U) method. Electronic band structures and density of states (DOS) demonstrate 100% spin polarization (half metallicity) with ferromagnetic exchange interactions. Superconducting quantum interference device (SQUID) analysis confirms the theoretical observation of ferromagnetism in nickel doped ZnS. These ZnS based half metallic ferromagnets seem to have virtuous applications in future spintronic devices. - Highlights: • ZnS.Ni thin films and nanoparticles were deposited onto glass substrates by CBD. • p-XRD correspond to sphalerite (cubic) phase of ZnS with slight shift in peaks. • DFT was employed to investigate the properties of ZnS.Ni. • DOS demonstrate 100% spin polarization with ferromagnetic exchange interactions. • SQUID analysis confirms the theoretical observations of nickel doped ZnS.
Wang, Fei; Chen, Quanjiao; Li, Shuntang; Zhang, Chenyao; Li, Shanshan; Liu, Min; Mei, Kun; Li, Chunhua; Ma, Lixin; Yu, Xiaolan
2017-06-01
Linear DNA vaccines provide effective vaccination. However, their application is limited by high cost and small scale of the conventional polymerase chain reaction (PCR) generally used to obtain sufficient amounts of DNA effective against epidemic diseases. In this study, a two-step, large-scale PCR was established using a low-cost DNA polymerase, RKOD, expressed in Pichia pastoris. Two linear DNA vaccines encoding influenza H1N1 hemagglutinin (HA) 1, LEC-HA, and PTO-LEC-HA (with phosphorothioate-modified primers), were produced by the two-step PCR. Protective effects of the vaccines were evaluated in a mouse model. BALB/c mice were immunized three times with the vaccines or a control DNA fragment. All immunized animals were challenged by intranasal administration of a lethal dose of influenza H1N1 virus 2 weeks after the last immunization. Sera of the immunized animals were tested for the presence of HA-specific antibodies, and the total IFN-γ responses induced by linear DNA vaccines were measured. The results showed that the DNA vaccines but not the control DNA induced strong antibody and IFN-γ responses. Additionally, the PTO-LEC-HA vaccine effectively protected the mice against the lethal homologous mouse-adapted virus, with a survival rate of 100% versus 70% in the LEC-HA-vaccinated group, showing that the PTO-LEC-HA vaccine was more effective than LEC-HA. In conclusion, the results indicated that the linear H1N1 HA-coding DNA vaccines induced significant immune responses and protected mice against a lethal virus challenge. Thus, the low-cost, two-step, large-scale PCR can be considered a potential tool for rapid manufacturing of linear DNA vaccines against emerging infectious diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Kishimoto, S; Mitsui, T; Haruki, R; Yoda, Y; Taniguchi, T; Shimazaki, S; Ikeno, M; Saito, M; Tanaka, M
2014-11-01
We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm(2)) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10(7) cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on (57)Fe.
Schurkus, Henry F.; Ochsenfeld, Christian
2016-01-01
An atomic-orbital (AO) reformulation of the random-phase approximation (RPA) correlation energy is presented allowing to reduce the steep computational scaling to linear, so that large systems can be studied on simple desktop computers with fully numerically controlled accuracy. Our AO-RPA formulation introduces a contracted double-Laplace transform and employs the overlap-metric resolution-of-the-identity. First timings of our pilot code illustrate the reduced scaling with systems comprising up to 1262 atoms and 10 090 basis functions.
Unbiased structural search of small copper clusters within DFT
Cogollo-Olivo, Beatriz H.; Seriani, Nicola; Montoya, Javier A.
2015-01-01
Highlights: • We have been able to identify novel metastable structures for small Cu clusters. • We have shown that a linear structure reported for Cu_3 is actually a local maximum. • Some of the structures reported in literature are actually unstable within DFT. • Some of the isomer structures found shows the limits of educated guesses. - Abstract: The atomic structure of small Cu clusters with 3–6 atoms has been investigated by density functional theory and random search algorithm. New metastable structures have been found that lie merely tens of meV/atom above the corresponding ground state, and could therefore be present at thermodynamic equilibrium at room temperature or slightly above. Moreover, we show that the previously proposed linear configuration for Cu_3 is in fact a local maximum of the energy. Finally, we argue that the random search algorithm also provides qualitative information about the attraction basin of each structure in the energy landscape.
DFT based spatial multiplexing and maximum ratio transmission for mm-wawe large MIMO
Phan-Huy, D.-T.; Tölli, A.; Rajatheva, N.
2014-01-01
-SM-MRT). When the DFT-SM scheme alone is used, the data streams are either mapped onto different angles of departures in the case of aligned linear arrays, or mapped onto different orbital angular momentums in the case of aligned circular arrays. Maximum ratio transmission pre-equalizes the channel......By using large point-to-point multiple input multiple output (MIMO), spatial multiplexing of a large number of data streams in wireless communications using millimeter-waves (mm-waves) can be achieved. However, according to the antenna spacing and transmitter-receiver distance, the MIMO channel...... is likely to be ill-conditioned. In such conditions, highly complex schemes such as the singular value decomposition (SVD) are necessary. In this paper, we propose a new low complexity system called discrete Fourier transform based spatial multiplexing (DFT-SM) with maximum ratio transmission (DFT...
Shuo Wang
Full Text Available Random effect in cellular systems is an important topic in systems biology and often simulated with Gillespie's stochastic simulation algorithm (SSA. Abridgment refers to model reduction that approximates a group of reactions by a smaller group with fewer species and reactions. This paper presents a theoretical analysis, based on comparison of the first exit time, for the abridgment on a linear chain reaction model motivated by systems with multiple phosphorylation sites. The analysis shows that if the relaxation time of the fast subsystem is much smaller than the mean firing time of the slow reactions, the abridgment can be applied with little error. This analysis is further verified with numerical experiments for models of bistable switch and oscillations in which linear chain system plays a critical role.
Water at silica/liquid water interfaces investigated by DFT-MD simulations
Gaigeot, Marie-Pierre
This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.
Hannestad, Steen; Archidiacono, Maria; Bohr, Sebastian
2017-01-01
One of the open questions in modern cosmology is the small scale crisis of the cold dark matter paradigm. Increasing attention has recently been devoted to self-interacting dark matter models as a possible answer. However, solving the so-called "missing satellites" problem requires in addition...... the presence of an extra relativistic particle (dubbed dark radiation) scattering with dark matter in the early universe. Here we investigate the impact of different theoretical models devising dark matter dark radiation interactions on large scale cosmological observables. We use cosmic microwave background...... data to put constraints on the dark radiation component and its coupling to dark matter. We find that the values of the coupling allowed by the data imply a cut-off scale of the halo mass function consistent with the one required to match the observations of satellites in the Milky Way....
Ritz, Christian; Laursen, Rikke Pilmann; Damsgaard, Camilla Trab
2017-01-01
of a school meal programme. We propose a novel and versatile framework for simultaneous inference on parameters estimated from linear mixed models that were fitted separately for several outcomes from the same study, but did not necessarily contain the same fixed or random effects. By combining asymptotic...... sizes of practical relevance we studied simultaneous coverage through simulation, which showed that the approach achieved acceptable coverage probabilities even for small sample sizes (10 clusters) and for 2–16 outcomes. The approach also compared favourably with a joint modelling approach. We also...
A DFT + DMFT approach for nanosystems
Turkowski, Volodymyr; Kabir, Alamgir; Nayyar, Neha; Rahman, Talat S, E-mail: vturkows@mail.ucf.ed [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States)
2010-11-24
We propose a combined density-functional-theory-dynamical-mean-field-theory (DFT + DMFT) approach for reliable inclusion of electron-electron correlation effects in nanosystems. Compared with the widely used DFT + U approach, this method has several advantages, the most important of which is that it takes into account dynamical correlation effects. The formalism is illustrated through different calculations of the magnetic properties of a set of small iron clusters (number of atoms 2 {<=} N {<=} 5). It is shown that the inclusion of dynamical effects leads to a reduction in the cluster magnetization (as compared to results from DFT + U) and that, even for such small clusters, the magnetization values agree well with experimental estimations. These results justify confidence in the ability of the method to accurately describe the magnetic properties of clusters of interest to nanoscience. (fast track communication)
A DFT + DMFT approach for nanosystems
Turkowski, Volodymyr; Kabir, Alamgir; Nayyar, Neha; Rahman, Talat S
2010-01-01
We propose a combined density-functional-theory-dynamical-mean-field-theory (DFT + DMFT) approach for reliable inclusion of electron-electron correlation effects in nanosystems. Compared with the widely used DFT + U approach, this method has several advantages, the most important of which is that it takes into account dynamical correlation effects. The formalism is illustrated through different calculations of the magnetic properties of a set of small iron clusters (number of atoms 2 ≤ N ≤ 5). It is shown that the inclusion of dynamical effects leads to a reduction in the cluster magnetization (as compared to results from DFT + U) and that, even for such small clusters, the magnetization values agree well with experimental estimations. These results justify confidence in the ability of the method to accurately describe the magnetic properties of clusters of interest to nanoscience. (fast track communication)
Girard, N.; Raybaud, C.; Poncet, M.
1994-01-01
Contrast-enhanced 3D-FT MRI of the intrapetrous facial nerve was obtained in 38 patients with facial nerve disease, using a 1.0 T magnet and fast gradient-echo acquisition sequences. Contiguous millimetric sections were obtained, which could be reformatted in any desired plane. Acutely ill patients, were examined within the first 2 months, included: 24 with Bell's palsy and 6 with other acute disorders (Herpes zoster, trauma, neuroma, meningeal metastasis, middle ear granuloma). Six patients investigated more than a year after the onset of symptoms included 3 with congenital cholesteatoma, 2 with neuromas and one with a chronic Bell's palsy. The lesion was found incidentally in two cases (a suspected neurofibroma and a presumed drop metastasis from an astrocytoma). Patients with tumours had nodular, focally-enhancing lesions, except for the leptomeningeal metastasis in which the enhancement was linear. Linear, diffuse contrast enhancement of the facial nerve was found in trauma, and in the patient with a middle ear granuloma. Of the 24 patients with an acute Bell's palsy 15 exhibited linear contrast enhancement of the facial nerve. Three of these were lost to follow-up, but correlation of clinical outcome and contrast enhancement showed that only 4 of the 11 patients who made a complete recovery and all 10 patients with incomplete recovery demonstrated enhancement. Possible explanations for these findings are suggested by pathological data from the literature. 3D-FT imaging of the facial nerve thus yields direct information about the of the nerve condition and defines the morphological abnormalities. It can also demonstrate contrast enhancement which seems to have some prognostic value in acute idiopathic Bell's palsy. (orig.)
Girard, N. (Neuroradiology, Hopital Nord, 13 Marseille (France)); Raybaud, C. (Neuroradiology, Hopital Nord, 13 Marseille (France)); Poncet, M. (Neuroradiology, Hopital Nord, 13 Marseille (France))
1994-08-01
Contrast-enhanced 3D-FT MRI of the intrapetrous facial nerve was obtained in 38 patients with facial nerve disease, using a 1.0 T magnet and fast gradient-echo acquisition sequences. Contiguous millimetric sections were obtained, which could be reformatted in any desired plane. Acutely ill patients, were examined within the first 2 months, included: 24 with Bell's palsy and 6 with other acute disorders (Herpes zoster, trauma, neuroma, meningeal metastasis, middle ear granuloma). Six patients investigated more than a year after the onset of symptoms included 3 with congenital cholesteatoma, 2 with neuromas and one with a chronic Bell's palsy. The lesion was found incidentally in two cases (a suspected neurofibroma and a presumed drop metastasis from an astrocytoma). Patients with tumours had nodular, focally-enhancing lesions, except for the leptomeningeal metastasis in which the enhancement was linear. Linear, diffuse contrast enhancement of the facial nerve was found in trauma, and in the patient with a middle ear granuloma. Of the 24 patients with an acute Bell's palsy 15 exhibited linear contrast enhancement of the facial nerve. Three of these were lost to follow-up, but correlation of clinical outcome and contrast enhancement showed that only 4 of the 11 patients who made a complete recovery and all 10 patients with incomplete recovery demonstrated enhancement. Possible explanations for these findings are suggested by pathological data from the literature. 3D-FT imaging of the facial nerve thus yields direct information about the of the nerve condition and defines the morphological abnormalities. It can also demonstrate contrast enhancement which seems to have some prognostic value in acute idiopathic Bell's palsy. (orig.)
R. Talebitooti
Full Text Available In this paper the effect of quadratic and cubic non-linearities of the system consisting of the crankshaft and torsional vibration damper (TVD is taken into account. TVD consists of non-linear elastomer material used for controlling the torsional vibration of crankshaft. The method of multiple scales is used to solve the governing equations of the system. Meanwhile, the frequency response of the system for both harmonic and sub-harmonic resonances is extracted. In addition, the effects of detuning parameters and other dimensionless parameters for a case of harmonic resonance are investigated. Moreover, the external forces including both inertia and gas forces are simultaneously applied into the model. Finally, in order to study the effectiveness of the parameters, the dimensionless governing equations of the system are solved, considering the state space method. Then, the effects of the torsional damper as well as all corresponding parameters of the system are discussed.
Synthesis, Spectroscopic Properties and DFT Calculation of Novel ...
density functional theory (DFT) calculations. Keywords. ... time-dependent density functional theory (TD-DFT) calcu- lations. .... reaction, the pH of the solution was adjusted to 7 .... ORTEP diagram for L1 showing 30% probability ellipsoids.
Kang, Bongmun; Yoon, Ho-Sung
2015-02-01
Recently, microalgae was considered as a renewable energy for fuel production because its production is nonseasonal and may take place on nonarable land. Despite all of these advantages, microalgal oil production is significantly affected by environmental factors. Furthermore, the large variability remains an important problem in measurement of algae productivity and compositional analysis, especially, the total lipid content. Thus, there is considerable interest in accurate determination of total lipid content during the biotechnological process. For these reason, various high-throughput technologies were suggested for accurate measurement of total lipids contained in the microorganisms, especially oleaginous microalgae. In addition, more advanced technologies were employed to quantify the total lipids of the microalgae without a pretreatment. However, these methods are difficult to measure total lipid content in wet form microalgae obtained from large-scale production. In present study, the thermal analysis performed with two-step linear temeperature program was applied to measure heat evolved in temperature range from 310 to 351 °C of Nostoc sp. KNUA003 obtained from large-scale cultivation. And then, we examined the relationship between the heat evolved in 310-351 °C (HE) and total lipid content of the wet Nostoc cell cultivated in raceway. As a result, the linear relationship was determined between HE value and total lipid content of Nostoc sp. KNUA003. Particularly, there was a linear relationship of 98% between the HE value and the total lipid content of the tested microorganism. Based on this relationship, the total lipid content converted from the heat evolved of wet Nostoc sp. KNUA003 could be used for monitoring its lipid induction in large-scale cultivation. Copyright © 2014 Elsevier Inc. All rights reserved.
Advantages of GPU technology in DFT calculations of intercalated graphene
Pešić, J.; Gajić, R.
2014-09-01
Over the past few years, the expansion of general-purpose graphic-processing unit (GPGPU) technology has had a great impact on computational science. GPGPU is the utilization of a graphics-processing unit (GPU) to perform calculations in applications usually handled by the central processing unit (CPU). Use of GPGPUs as a way to increase computational power in the material sciences has significantly decreased computational costs in already highly demanding calculations. A level of the acceleration and parallelization depends on the problem itself. Some problems can benefit from GPU acceleration and parallelization, such as the finite-difference time-domain algorithm (FTDT) and density-functional theory (DFT), while others cannot take advantage of these modern technologies. A number of GPU-supported applications had emerged in the past several years (www.nvidia.com/object/gpu-applications.html). Quantum Espresso (QE) is reported as an integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nano-scale. It is based on DFT, the use of a plane-waves basis and a pseudopotential approach. Since the QE 5.0 version, it has been implemented as a plug-in component for standard QE packages that allows exploiting the capabilities of Nvidia GPU graphic cards (www.qe-forge.org/gf/proj). In this study, we have examined the impact of the usage of GPU acceleration and parallelization on the numerical performance of DFT calculations. Graphene has been attracting attention worldwide and has already shown some remarkable properties. We have studied an intercalated graphene, using the QE package PHonon, which employs GPU. The term ‘intercalation’ refers to a process whereby foreign adatoms are inserted onto a graphene lattice. In addition, by intercalating different atoms between graphene layers, it is possible to tune their physical properties. Our experiments have shown there are benefits from using GPUs, and we reached an
Advantages of GPU technology in DFT calculations of intercalated graphene
Pešić, J; Gajić, R
2014-01-01
Over the past few years, the expansion of general-purpose graphic-processing unit (GPGPU) technology has had a great impact on computational science. GPGPU is the utilization of a graphics-processing unit (GPU) to perform calculations in applications usually handled by the central processing unit (CPU). Use of GPGPUs as a way to increase computational power in the material sciences has significantly decreased computational costs in already highly demanding calculations. A level of the acceleration and parallelization depends on the problem itself. Some problems can benefit from GPU acceleration and parallelization, such as the finite-difference time-domain algorithm (FTDT) and density-functional theory (DFT), while others cannot take advantage of these modern technologies. A number of GPU-supported applications had emerged in the past several years (www.nvidia.com/object/gpu-applications.html). Quantum Espresso (QE) is reported as an integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nano-scale. It is based on DFT, the use of a plane-waves basis and a pseudopotential approach. Since the QE 5.0 version, it has been implemented as a plug-in component for standard QE packages that allows exploiting the capabilities of Nvidia GPU graphic cards (www.qe-forge.org/gf/proj). In this study, we have examined the impact of the usage of GPU acceleration and parallelization on the numerical performance of DFT calculations. Graphene has been attracting attention worldwide and has already shown some remarkable properties. We have studied an intercalated graphene, using the QE package PHonon, which employs GPU. The term ‘intercalation’ refers to a process whereby foreign adatoms are inserted onto a graphene lattice. In addition, by intercalating different atoms between graphene layers, it is possible to tune their physical properties. Our experiments have shown there are benefits from using GPUs, and we reached an
Molina, J. M.; Zaitchik, B. F.
2016-12-01
Recent findings considering high CO2 emission scenarios (RCP8.5) suggest that the tropical Andes may experience a massive warming and a significant precipitation increase (decrease) during the wet (dry) seasons by the end of the 21st century. Variations on rainfall-streamflow relationships and seasonal crop yields significantly affect human development in this region and make local communities highly vulnerable to climate change and variability. We developed an expert-informed empirical statistical downscaling (ESD) algorithm to explore and construct robust global climate predictors to perform skillful RCP8.5 projections of in-situ March-May (MAM) precipitation required for impact modeling and adaptation studies. We applied our framework to a topographically-complex region of the Colombian Andes where a number of previous studies have reported El Niño-Southern Oscillation (ENSO) as the main driver of climate variability. Supervised machine learning algorithms were trained with customized and bias-corrected predictors from NCEP reanalysis, and a cross-validation approach was implemented to assess both predictive skill and model selection. We found weak and not significant teleconnections between precipitation and lagged seasonal surface temperatures over El Niño3.4 domain, which suggests that ENSO fails to explain MAM rainfall variability in the study region. In contrast, series of Sea Level Pressure (SLP) over American Samoa -likely associated with the South Pacific Convergence Zone (SPCZ)- explains more than 65% of the precipitation variance. The best prediction skill was obtained with Selected Generalized Additive Models (SGAM) given their ability to capture linear/nonlinear relationships present in the data. While SPCZ-related series exhibited a positive linear effect in the rainfall response, SLP predictors in the north Atlantic and central equatorial Pacific showed nonlinear effects. A multimodel (MIROC, CanESM2 and CCSM) ensemble of ESD projections revealed
The photophysical behaviour of N-(2-hydroxy benzylidene) aniline or most commonly known as salicylideneaniline (SA) has been investigated using the ab initio and DFT levels of theory. The quantum chemical calculations show that the optimized non planar enol (1) form of the SA molecule is the most stable conformer ...
Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C
2010-09-21
We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.
Lipparini, Filippo; Scalmani, Giovanni; Frisch, Michael J.; Lagardère, Louis; Stamm, Benjamin; Cancès, Eric; Maday, Yvon; Piquemal, Jean-Philip; Mennucci, Benedetta
2014-01-01
We present the general theory and implementation of the Conductor-like Screening Model according to the recently developed ddCOSMO paradigm. The various quantities needed to apply ddCOSMO at different levels of theory, including quantum mechanical descriptions, are discussed in detail, with a particular focus on how to compute the integrals needed to evaluate the ddCOSMO solvation energy and its derivatives. The overall computational cost of a ddCOSMO computation is then analyzed and decomposed in the various steps: the different relative weights of such contributions are then discussed for both ddCOSMO and the fastest available alternative discretization to the COSMO equations. Finally, the scaling of the cost of the various steps with respect to the size of the solute is analyzed and discussed, showing how ddCOSMO opens significantly new possibilities when cheap or hybrid molecular mechanics/quantum mechanics methods are used to describe the solute
Lipparini, Filippo, E-mail: flippari@uni-mainz.de [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005 Paris (France); Sorbonne Universités, UPMC Univ. Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Sorbonne Universités, UPMC Univ. Paris 06, Institut du Calcul et de la Simulation, F-75005 Paris (France); Scalmani, Giovanni; Frisch, Michael J. [Gaussian, Inc., 340 Quinnipiac St. Bldg. 40, Wallingford, Connecticut 06492 (United States); Lagardère, Louis [Sorbonne Universités, UPMC Univ. Paris 06, Institut du Calcul et de la Simulation, F-75005 Paris (France); Stamm, Benjamin [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005 Paris (France); CNRS, UMR 7598 and 7616, F-75005 Paris (France); Cancès, Eric [Université Paris-Est, CERMICS, Ecole des Ponts and INRIA, 6 and 8 avenue Blaise Pascal, 77455 Marne-la-Vallée Cedex 2 (France); Maday, Yvon [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005 Paris (France); Institut Universitaire de France, Paris, France and Division of Applied Maths, Brown University, Providence, Rhode Island 02912 (United States); Piquemal, Jean-Philip [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7598 and 7616, F-75005 Paris (France); Mennucci, Benedetta [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa (Italy)
2014-11-14
We present the general theory and implementation of the Conductor-like Screening Model according to the recently developed ddCOSMO paradigm. The various quantities needed to apply ddCOSMO at different levels of theory, including quantum mechanical descriptions, are discussed in detail, with a particular focus on how to compute the integrals needed to evaluate the ddCOSMO solvation energy and its derivatives. The overall computational cost of a ddCOSMO computation is then analyzed and decomposed in the various steps: the different relative weights of such contributions are then discussed for both ddCOSMO and the fastest available alternative discretization to the COSMO equations. Finally, the scaling of the cost of the various steps with respect to the size of the solute is analyzed and discussed, showing how ddCOSMO opens significantly new possibilities when cheap or hybrid molecular mechanics/quantum mechanics methods are used to describe the solute.
Subramanian, Aneesh C.
2012-11-01
This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.
Subramanian, Aneesh C.; Hoteit, Ibrahim; Cornuelle, Bruce; Miller, Arthur J.; Song, Hajoon
2012-01-01
This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.
Pinski, Peter; Riplinger, Christoph; Neese, Frank, E-mail: evaleev@vt.edu, E-mail: frank.neese@cec.mpg.de [Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr (Germany); Valeev, Edward F., E-mail: evaleev@vt.edu, E-mail: frank.neese@cec.mpg.de [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States)
2015-07-21
In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implements sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in
Labanc, Daniel; Šulka, Martin; Pitoňák, Michal; Černušák, Ivan; Urban, Miroslav; Neogrády, Pavel
2018-05-01
We present a computational study of the stability of small homonuclear beryllium clusters Be7 - 12 in singlet electronic states. Our predictions are based on highly correlated CCSD(T) coupled cluster calculations. Basis set convergence towards the complete basis set limit as well as the role of the 1s core electron correlation are carefully examined. Our CCSD(T) data for binding energies of Be7 - 12 clusters serve as a benchmark for performance assessment of several density functional theory (DFT) methods frequently used in beryllium cluster chemistry. We observe that, from Be10 clusters on, the deviation from CCSD(T) benchmarks is stable with respect to size, and fluctuating within 0.02 eV error bar for most examined functionals. This opens up the possibility of scaling the DFT binding energies for large Be clusters using CCSD(T) benchmark values for smaller clusters. We also tried to find analogies between the performance of DFT functionals for Be clusters and for the valence-isoelectronic Mg clusters investigated recently in Truhlar's group. We conclude that it is difficult to find DFT functionals that perform reasonably well for both beryllium and magnesium clusters. Out of 12 functionals examined, only the M06-2X functional gives reasonably accurate and balanced binding energies for both Be and Mg clusters.
Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.
2015-12-01
Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.
Error compensation of IQ modulator using two-dimensional DFT
Ohshima, Takashi, E-mail: ohshima@spring8.or.jp [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Maesaka, Hirokazu [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Matsubara, Shinichi [Japan Synchrotron Radiation Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Otake, Yuji [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)
2016-06-01
It is important to precisely set and keep the phase and amplitude of an rf signal in the accelerating cavity of modern accelerators, such as an X-ray Free Electron Laser (XFEL) linac. In these accelerators an acceleration rf signal is generated or detected by an In-phase and Quadrature (IQ) modulator, or a demodulator. If there are any deviations of the phase and the amplitude from the ideal values, crosstalk between the phase and the amplitude of the output signal of the IQ modulator or the demodulator arises. This causes instability of the feedback controls that simultaneously stabilize both the rf phase and the amplitude. To compensate for such deviations, we developed a novel compensation method using a two-dimensional Discrete Fourier Transform (DFT). Because the observed deviations of the phase and amplitude of an IQ modulator involve sinusoidal and polynomial behaviors on the phase angle and the amplitude of the rf vector, respectively, the DFT calculation with these basis functions makes a good approximation with a small number of compensation coefficients. Also, we can suppress high-frequency noise components arising when we measure the deviation data. These characteristics have advantages compared to a Look Up Table (LUT) compensation method. The LUT method usually demands many compensation elements, such as about 300, that are not easy to treat. We applied the DFT compensation method to the output rf signal of a C-band IQ modulator at SACLA, which is an XFEL facility in Japan. The amplitude deviation of the IQ modulator after the DFT compensation was reduced from 15.0% at the peak to less than 0.2% at the peak for an amplitude control range of from 0.1 V to 0.9 V (1.0 V full scale) and for a phase control range from 0 degree to 360 degrees. The number of compensation coefficients is 60, which is smaller than that of the LUT method, and is easy to treat and maintain.
Agamalian, M.M.; Alamo, R.G.; Londono, J.D.; Mandelkern, L.; Wignall, G.D.
1999-01-01
SANS experiments on blends of linear, high density (HD) and long chain branched, low density (LD) polyethylenes indicate that these systems form a one-phase mixture in the melt. However, the maximum spatial resolution of pinhole cameras is approximately equal to 10 3 and it has therefore been suggested that data might also be interpreted as arising from a bi-phasic melt with large a particle size ( 1 m), because most of the scattering from the different phases would not be resolved. We have addressed this hypothesis by means of USANS experiments, which confirm that HDPEILDPE blends are homogenous in the melt on length scales up to 20 m. We have also studied blends of HDPE and short-chain branched linear low density polyethylenes (LLDPEs), which phase separate when the branch content is sufficiently high. LLDPEs prepared with Ziegler-Natta catalysts exhibit a wide distribution of compositions, and may therefore be thought of as a blend of different species. When the composition distribution is broad enough, a fraction of highly branched chains may phase separate on m-length scales, and USANS has also been used to quantify this phenomenon
Zuehlsdorff, T. J., E-mail: tjz21@cam.ac.uk; Payne, M. C. [Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Hine, N. D. M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Haynes, P. D. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)
2015-11-28
We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.
DFT-based offset-QAM OFDM for optical communications.
Zhao, Jian
2014-01-13
We experimentally demonstrate and numerically investigate a discrete-Fourier-transform (DFT) based offset quadrature-amplitude-modulation (offset-QAM) orthogonal frequency division multiplexing (OFDM) system. We investigate the scheme using a set of square-root-raised-cosine functions and a set of super-Gaussian functions as signal spectra. It is shown that offset-QAM OFDM exhibits negligible penalty for all investigated spectra, in contrast to rectangular-function based Nyquist FDM (N-FDM) and sinc-function based conventional OFDM (C-OFDM). The required guard interval (GI) length for dispersion compensation in offset-QAM OFDM is analyzed and shown to scale with twice the subcarrier spacing rather than the full OFDM bandwidth. Experimental results show that 38-Gb/s offset-16QAM OFDM supports 600-km fiber transmission with negligible penalty in the absence of GI while a GI length of eight is required in C-OFDM. Further numerical simulations show that by avoiding the GI, 112-Gb/s polarization multiplexed offset-4QAM OFDM can achieve 23% increase in net data rate over C-OFDM under the same transmission reach. We also discuss the design of the pulse-shaping filter in the DFT-based implementation and show that when compared to N-FDM, the required memory length of the filter for pulse shaping can be reduced from 60 to 2 in offset-QAM OFDM regardless of the fiber length.
Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...
DFT computational analysis of piracetam
Rajesh, P.; Gunasekaran, S.; Seshadri, S.; Gnanasambandan, T.
2014-11-01
Density functional theory calculation with B3LYP using 6-31G(d,p) and 6-31++G(d,p) basis set have been used to determine ground state molecular geometries. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of piracetam is calculated using B3LYP/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO/NLMO analysis. The calculation of first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. Molecular electrostatic potential (MEP) at a point in the space around a molecule gives an indication of the net electrostatic effect produced at that point by the total charge distribution of the molecule. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charge is also calculated. Because of vibrational analysis, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-Vis spectra and electronic absorption properties are explained and illustrated from the frontier molecular orbitals.
Calculation on uranium carbon oxygen system molecular structure by DFT
Zhang Guangfeng; Wang Xiaolin; Zou Lexi; Sun Ying; Xue Weidong; Zhu Zhenghe; Wang Hongyan
2001-01-01
The authors study on the possible molecular structures U-C-O, U-O-C, C-U-O (angular structure C a nd linear structure C ∞υ ) of carbon monoxide interacting on uranium metal surface by Density functional theory (DFT). The uranium atom is used RECP (Relativistic Effective Core Potential) and contracted valence basis sets (6s5p2d4f)/[3s3p2d2f], and for carbon and oxygen atoms all are 6-311G basis sets. The author presents the results of energy optimum which shows that triple and quintuple state are more stable. The authors get the electronic state, geometry structure, energy, harmonic frequency, mechanical property, etc. of these twelve triple and quintuple state relative stable structures. The normal vibrational analytical figure of angular structure (C s ) and linear structure (C ∞υ ) is given at the same time. It is indicated that angular structure has lower energy than linear structure, moreover the angular structure of U-C-O( 3 A ) has the lowest energy. The bond strength between uranium atom and carbon monoxide is weak and between uranium atom and oxygen atom is slightly stronger than between uranium atom and carbon atom which the authors can know by superposition population and bond energy analysis among atoms
Identifying systematic DFT errors in catalytic reactions
Christensen, Rune; Hansen, Heine Anton; Vegge, Tejs
2015-01-01
Using CO2 reduction reactions as examples, we present a widely applicable method for identifying the main source of errors in density functional theory (DFT) calculations. The method has broad applications for error correction in DFT calculations in general, as it relies on the dependence...... of the applied exchange–correlation functional on the reaction energies rather than on errors versus the experimental data. As a result, improved energy corrections can now be determined for both gas phase and adsorbed reaction species, particularly interesting within heterogeneous catalysis. We show...... that for the CO2 reduction reactions, the main source of error is associated with the C[double bond, length as m-dash]O bonds and not the typically energy corrected OCO backbone....
Chen, Yi; Zhang, Hui; Zhou, Wenzhao; Deng, Chao; Liao, Jian
2018-06-01
This study set out with the aim of investigating the solvent effects on dimethyl phthalate (DMP) using FTIR characterization, solvent parameter correlation and DFT calculation. DMP exposed to 17 organic solvents manifested varying shift in the carbonyl stretching vibration frequency (νCdbnd O). Non-alkanols induced Band I and alkanols produced Band I and Band II. Through correlating the νCdbnd O with the empirical solvent scales including acceptor parameter (AN), Schleyer's linear free energy parameter (G), and linear free salvation energy relationships (LSER), Band I was mainly ascribed to non-specific effects from either non-alkanols or alkanol polymers ((alkanol)n). νCdbnd O of the latter indicated minor red shift and less variability compared to the former. An assumption was made and validated about the sequestering of hydroxyl group by the bulky hydrophobic chain in (alkanol)n, creating what we refer to as "screening effects". Ab initio calculation, on the other hand, provided insights for possible hydrogen binding between DMP and (ethanol)n or between ethanol monomers. The two components of Band I observed in inert solvents were assigned to the two Cdbnd O groups adopting differentiated conformations. This in turn prompted our consideration that hydrogen binding was highly selective in favor of lowly associated (alkanol)n and the particular Cdbnd O group having relatively less steric hindrance and stronger electron-donating capacity. Band II was therefore believed to derive from hydrogen-bond interactions mainly in manner of 1:1 and 1:2 DMP-(alkanol)n complexes.
Quirós Segovia, M.; Condés Ruiz, S.; Drápela, K.
2016-07-01
Aim of the study: The main objective of this study was to test Geographically Weighted Regression (GWR) for developing height-diameter curves for forests on a large scale and to compare it with Linear Mixed Models (LMM). Area of study: Monospecific stands of Pinus halepensis Mill. located in the region of Murcia (Southeast Spain). Materials and Methods: The dataset consisted of 230 sample plots (2582 trees) from the Third Spanish National Forest Inventory (SNFI) randomly split into training data (152 plots) and validation data (78 plots). Two different methodologies were used for modelling local (Petterson) and generalized height-diameter relationships (Cañadas I): GWR, with different bandwidths, and linear mixed models. Finally, the quality of the estimated models was compared throughout statistical analysis. Main results: In general, both LMM and GWR provide better prediction capability when applied to a generalized height-diameter function than when applied to a local one, with R2 values increasing from around 0.6 to 0.7 in the model validation. Bias and RMSE were also lower for the generalized function. However, error analysis showed that there were no large differences between these two methodologies, evidencing that GWR provides results which are as good as the more frequently used LMM methodology, at least when no additional measurements are available for calibrating. Research highlights: GWR is a type of spatial analysis for exploring spatially heterogeneous processes. GWR can model spatial variation in tree height-diameter relationship and its regression quality is comparable to LMM. The advantage of GWR over LMM is the possibility to determine the spatial location of every parameter without additional measurements. Abbreviations: GWR (Geographically Weighted Regression); LMM (Linear Mixed Model); SNFI (Spanish National Forest Inventory). (Author)
Throckmorton, C.K.
1987-01-01
Linear features were mapped from 1:2400-scale aerial photographs of the northern half of the potential underground nuclear-waste repository site at Yucca Mountain by means of a Kern PG 2 stereoplotter. These features were thought to be the expression of fractures at the ground surface (fracture traces), and were mapped in the caprock, upper lithophysal, undifferentiated lower lithophysal and hackly units of the Tiva Canyon Member of the Miocene Paintbrush Tuff. To determine if the linear features corresponded to fracture traces observed in the field, stations (areas) were selected on the map where the traces were both abundant and located solely within one unit. These areas were visited in the field, where fracture-trace bearings and fracture-trace lengths were recorded. Additional data on fracture-trace length and fracture abundance, obtained from ground-based studies of cleared pavements located within the study area were used to help evaluate data collected for this study. 16 refs., 4 figs., 2 tabs
Wilkinson, Karl A; Hine, Nicholas D M; Skylaris, Chris-Kriton
2014-11-11
We present a hybrid MPI-OpenMP implementation of Linear-Scaling Density Functional Theory within the ONETEP code. We illustrate its performance on a range of high performance computing (HPC) platforms comprising shared-memory nodes with fast interconnect. Our work has focused on applying OpenMP parallelism to the routines which dominate the computational load, attempting where possible to parallelize different loops from those already parallelized within MPI. This includes 3D FFT box operations, sparse matrix algebra operations, calculation of integrals, and Ewald summation. While the underlying numerical methods are unchanged, these developments represent significant changes to the algorithms used within ONETEP to distribute the workload across CPU cores. The new hybrid code exhibits much-improved strong scaling relative to the MPI-only code and permits calculations with a much higher ratio of cores to atoms. These developments result in a significantly shorter time to solution than was possible using MPI alone and facilitate the application of the ONETEP code to systems larger than previously feasible. We illustrate this with benchmark calculations from an amyloid fibril trimer containing 41,907 atoms. We use the code to study the mechanism of delamination of cellulose nanofibrils when undergoing sonification, a process which is controlled by a large number of interactions that collectively determine the structural properties of the fibrils. Many energy evaluations were needed for these simulations, and as these systems comprise up to 21,276 atoms this would not have been feasible without the developments described here.
Gaosheng Li
2016-04-01
Full Text Available A novel free piston expander-linear generator (FPE-LG integrated unit was proposed to recover waste heat efficiently from vehicle engine. This integrated unit can be used in a small-scale Organic Rankine Cycle (ORC system and can directly convert the thermodynamic energy of working fluid into electric energy. The conceptual design of the free piston expander (FPE was introduced and discussed. A cam plate and the corresponding valve train were used to control the inlet and outlet valve timing of the FPE. The working principle of the FPE-LG was proven to be feasible using an air test rig. The indicated efficiency of the FPE was obtained from the p–V indicator diagram. The dynamic characteristics of the in-cylinder flow field during the intake and exhaust processes of the FPE were analyzed based on Fluent software and 3D numerical simulation models using a computation fluid dynamics method. Results show that the indicated efficiency of the FPE can reach 66.2% and the maximal electric power output of the FPE-LG can reach 22.7 W when the working frequency is 3 Hz and intake pressure is 0.2 MPa. Two large-scale vortices are formed during the intake process because of the non-uniform distribution of velocity and pressure. The vortex flow will convert pressure energy and kinetic energy into thermodynamic energy for the working fluid, which weakens the power capacity of the working fluid.
Unbiased structural search of small copper clusters within DFT
Cogollo-Olivo, Beatriz H., E-mail: bcogolloo@unicartagena.edu.co [Maestría en Ciencias Físicas, Universidad de Cartagena, 130001 Cartagena de Indias, Bolívar (Colombia); Seriani, Nicola, E-mail: nseriani@ictp.it [Condensed Matter and Statistical Physics Section, The Abdus Salam ICTP, Strada Costiera 11, 34151 Trieste (Italy); Montoya, Javier A., E-mail: jmontoyam@unicartagena.edu.co [Instituto de Matemáticas Aplicadas, Universidad de Cartagena, 130001 Cartagena de Indias, Bolívar (Colombia); Associates Program, The Abdus Salam ICTP, Strada Costiera 11, 34151 Trieste (Italy)
2015-11-05
Highlights: • We have been able to identify novel metastable structures for small Cu clusters. • We have shown that a linear structure reported for Cu{sub 3} is actually a local maximum. • Some of the structures reported in literature are actually unstable within DFT. • Some of the isomer structures found shows the limits of educated guesses. - Abstract: The atomic structure of small Cu clusters with 3–6 atoms has been investigated by density functional theory and random search algorithm. New metastable structures have been found that lie merely tens of meV/atom above the corresponding ground state, and could therefore be present at thermodynamic equilibrium at room temperature or slightly above. Moreover, we show that the previously proposed linear configuration for Cu{sub 3} is in fact a local maximum of the energy. Finally, we argue that the random search algorithm also provides qualitative information about the attraction basin of each structure in the energy landscape.
Benchmarking Hydrogen and Carbon NMR Chemical Shifts at HF, DFT, and MP2 Levels.
Flaig, Denis; Maurer, Marina; Hanni, Matti; Braunger, Katharina; Kick, Leonhard; Thubauville, Matthias; Ochsenfeld, Christian
2014-02-11
An extensive study of error distributions for calculating hydrogen and carbon NMR chemical shifts at Hartree-Fock (HF), density functional theory (DFT), and Møller-Plesset second-order perturbation theory (MP2) levels is presented. Our investigation employs accurate CCSD(T)/cc-pVQZ calculations for providing reference data for 48 hydrogen and 40 carbon nuclei within an extended set of chemical compounds covering a broad range of the NMR scale with high relevance to chemical applications, especially in organic chemistry. Besides the approximations of HF, a variety of DFT functionals, and conventional MP2, we also present results with respect to a spin component-scaled MP2 (GIAO-SCS-MP2) approach. For each method, the accuracy is analyzed in detail for various basis sets, allowing identification of efficient combinations of method and basis set approximations.
An Overview of the Adaptive Robust DFT
Djurović Igor
2010-01-01
Full Text Available Abstract This paper overviews basic principles and applications of the robust DFT (RDFT approach, which is used for robust processing of frequency-modulated (FM signals embedded in non-Gaussian heavy-tailed noise. In particular, we concentrate on the spectral analysis and filtering of signals corrupted by impulsive distortions using adaptive and nonadaptive robust estimators. Several adaptive estimators of location parameter are considered, and it is shown that their application is preferable with respect to non-adaptive counterparts. This fact is demonstrated by efficiency comparison of adaptive and nonadaptive RDFT methods for different noise environments.
z-transform DFT filters and FFT's
Bruun, G.
1978-01-01
The paper shows how discrete Fourier transformation can be implemented as a filter bank in a way which reduces the number of filter coefficients. A particular implementation of such a filter bank is directly related to the normal complex FFT algorithm. The principle developed further leads to types...... of DFT filter banks which utilize a minimum of complex coefficients. These implementations lead to new forms of FFT's, among which is acos/sinFFT for a real signal which only employs real coefficients. The new FFT algorithms use only half as many real multiplications as does the classical FFT....
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
Wiedemann, H.
1981-11-01
Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.
Wiedemann, H.
1981-11-01
Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center
Adaptive DFT-Based Interferometer Fringe Tracking
Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.
2005-12-01
An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately [InlineEquation not available: see fulltext.] milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.
Adaptive DFT-Based Interferometer Fringe Tracking
Wesley A. Traub
2005-09-01
Full Text Available An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms, using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.
Azhari, Budi; Prawinnetou, Wassy; Hutama, Dewangga Adhyaksa
2017-03-01
Indonesia has several potential ocean energies to utilize. One of them is tidal wave energy, which the potential is about 49 GW. To convert the tidal wave energy to electricity, linear permanent magnet generator (LPMG) is considered as the best appliance. In this paper, a pico-scale tidal wave power converter was designed using quasi-flat LPMG. The generator was meant to be applied in southern coast of Yogyakarta, Indonesia and was expected to generate 1 kW output. First, a quasi-flat LPMG was designed based on the expected output power and the wave characteristic at the placement site. The design was then simulated using finite element software of FEMM. Finally, the output values were calculated and the output characteristics were analyzed. The results showed that the designed power plant was able to produce output power of 725.78 Wp for each phase, with electrical efficiency of 64.5%. The output characteristics of the LPMG: output power would increase as the average wave height or wave period increases. Besides, the efficiency would increase if the external load resistance increases. Meanwhile the output power of the generator would be maximum at load resistance equals 11 Ω.
Borbulevych, Oleg Y; Plumley, Joshua A; Martin, Roger I; Merz, Kenneth M; Westerhoff, Lance M
2014-05-01
Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein-ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.
Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua [College of Chemistry and Material Science, Shandong Agricultural University, 61 Daizong Street, Tai' an 271018 (China); Wang, Qingguo, E-mail: wqgyyy@126.com [College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai' an 271018 (China); Xu, Jing, E-mail: jiaxu@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, 61 Daizong Street, Tai' an 271018 (China)
2016-11-15
Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180–914 cm{sup −1}) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention. - Graphical abstract: The fabrication process of LLDPE/LDH composite films. - Highlights: • LDH with basal spacing of 4.07 nm was synthesized by high-energy ball milling. • LLDPE composite films with homogeneous LDH dispersion were fabricated. • The properties of LLDPE/LDH composite films were improved. • LLDPE/LDH composite films show superior heat retention property.
Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I. [QuantumBio Inc., 2790 West College Avenue, State College, PA 16801 (United States); Merz, Kenneth M. Jr [University of Florida, Gainesville, Florida (United States); Westerhoff, Lance M., E-mail: lance@quantumbioinc.com [QuantumBio Inc., 2790 West College Avenue, State College, PA 16801 (United States)
2014-05-01
Semiempirical quantum-chemical X-ray macromolecular refinement using the program DivCon integrated with PHENIX is described. Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.
Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua; Wang, Qingguo; Xu, Jing
2016-01-01
Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180–914 cm −1 ) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention. - Graphical abstract: The fabrication process of LLDPE/LDH composite films. - Highlights: • LDH with basal spacing of 4.07 nm was synthesized by high-energy ball milling. • LLDPE composite films with homogeneous LDH dispersion were fabricated. • The properties of LLDPE/LDH composite films were improved. • LLDPE/LDH composite films show superior heat retention property.
Linear colliders - prospects 1985
Rees, J.
1985-06-01
We discuss the scaling laws of linear colliders and their consequences for accelerator design. We then report on the SLAC Linear Collider project and comment on experience gained on that project and its application to future colliders. 9 refs., 2 figs
Karaiskaj, Denis
2017-02-01
Two-dimensional electron gases have been the subject of research for decades. Modulation doped GaAs quantum wells in the absence of magnetic fields exhibit interesting many-body physics such as the Fermi edge singularity or Mahan exciton and can be regarded as a collective excitation of the system. Under high magnetic fields Landau levels form which have been studied using transport and optical measurements. Nonlinear coherent two-dimensional Fourier transform (2DFT) spectroscopy however provides new insights into these systems. We present the 2DFT spectra of Mahan Excitons associated with the heavy-hole and light-hole resonances observed in a modulation doped GaAs/AlGaAs single quantum well [1]. These resonances are observed to be strongly coupled through many-body interactions. The 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations and reveal striking differences. Furthermore, 2DFT spectra at high magnetic fields performed at the National High Magnetic Field Lab (NHMFL) in Tallahassee, Florida will be discussed. The spectra exhibit new features and peculiar line shapes suggesting interesting underlying physics. [1] J. Paul, C. E. Stevens, C. Liu, P. Dey, C. McIntyre, V. Turkowski, J. L. Reno, D. J. Hilton, and D. Karaiskaj, Phys. Rev. Lett.116, 157401 (2016).
A DFT+nonhomogeneous DMFT approach for finite systems
Kabir, Alamgir; Turkowski, Volodymyr; Rahman, Talat S
2015-01-01
For reliable and efficient inclusion of electron–electron correlation effects in nanosystems we formulate a combined density functional theory/nonhomogeneous dynamical mean-field theory (DFT+DMFT) approach which employs an approximate iterated perturbation theory impurity solver. We further apply the method to examine the size-dependent magnetic properties of iron nanoparticles containing 11–100 atoms. We show that for the majority of clusters the DFT+DMFT solution is in very good agreement with experimental data, much better compared to the DFT and DFT+U results. In particular, it reproduces the oscillations in magnetic moment with size as observed experimentally. We thus demonstrate that the DFT+DMFT approach can be used for accurate and realistic description of nanosystems containing about hundred atoms. (paper)
Low-lying excited states by constrained DFT
Ramos, Pablo; Pavanello, Michele
2018-04-01
Exploiting the machinery of Constrained Density Functional Theory (CDFT), we propose a variational method for calculating low-lying excited states of molecular systems. We dub this method eXcited CDFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, Nc, in the virtual space of a reference set of occupied orbitals. By imposing this population to be Nc = 1.0, we computed the first excited state of 15 molecules from a test set. Our results show that XCDFT achieves an accuracy in the predicted excitation energy only slightly worse than linear-response time-dependent DFT (TDDFT), but without incurring into problems of variational collapse typical of the more commonly adopted ΔSCF method. In addition, we selected a few challenging processes to test the limits of applicability of XCDFT. We find that in contrast to TDDFT, XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H3) with correct topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water molecules. Thus, we find XCDFT to be a competitive method among single-reference methods for computations of excited states in terms of time to solution, rate of convergence, and accuracy of the result.
Guo, Yang; Sivalingam, Kantharuban; Neese, Frank, E-mail: Frank.Neese@cec.mpg.de [Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr (Germany); Valeev, Edward F. [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24014 (United States)
2016-03-07
Multi-reference (MR) electronic structure methods, such as MR configuration interaction or MR perturbation theory, can provide reliable energies and properties for many molecular phenomena like bond breaking, excited states, transition states or magnetic properties of transition metal complexes and clusters. However, owing to their inherent complexity, most MR methods are still too computationally expensive for large systems. Therefore the development of more computationally attractive MR approaches is necessary to enable routine application for large-scale chemical systems. Among the state-of-the-art MR methods, second-order N-electron valence state perturbation theory (NEVPT2) is an efficient, size-consistent, and intruder-state-free method. However, there are still two important bottlenecks in practical applications of NEVPT2 to large systems: (a) the high computational cost of NEVPT2 for large molecules, even with moderate active spaces and (b) the prohibitive cost for treating large active spaces. In this work, we address problem (a) by developing a linear scaling “partially contracted” NEVPT2 method. This development uses the idea of domain-based local pair natural orbitals (DLPNOs) to form a highly efficient algorithm. As shown previously in the framework of single-reference methods, the DLPNO concept leads to an enormous reduction in computational effort while at the same time providing high accuracy (approaching 99.9% of the correlation energy), robustness, and black-box character. In the DLPNO approach, the virtual space is spanned by pair natural orbitals that are expanded in terms of projected atomic orbitals in large orbital domains, while the inactive space is spanned by localized orbitals. The active orbitals are left untouched. Our implementation features a highly efficient “electron pair prescreening” that skips the negligible inactive pairs. The surviving pairs are treated using the partially contracted NEVPT2 formalism. A detailed
Guo, Yang
2018-01-04
In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).
Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G.; Minenkov, Yury; Cavallo, Luigi; Neese, Frank
2018-01-01
In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).
Combined spectroscopic, DFT, TD-DFT and MD study of newly synthesized thiourea derivative
Menon, Vidya V.; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Bielenica, Anna; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, Christian
2018-03-01
A novel thiourea derivative, 1-(3-bromophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea (ANF-22) is synthesized and characterized by FTIR, FT-Raman and NMR spectroscopy experimentally and theoretically. A detailed conformational analysis of the title molecule has been conducted in order to locate the lowest energy geometry, which was further subjected to the detailed investigation of spectroscopic, reactive, degradation and docking studies by density functional theory (DFT) calculations and molecular dynamics (MD) simulations. Time dependent DFT (TD-DFT) calculations have been used also in order to simulate UV spectra and investigate charge transfer within molecule. Natural bond orbital analysis has been performed analyzing the charge delocalization and using HOMO and LUMO energies the electronic properties are analyzed. Molecular electrostatic potential map is used for the quantitative measurement of active sites in the molecule. In order to determine the locations possibly prone to electrophilic attacks we have calculated average local ionization energies and mapped them to the electron density surface. Further insight into the local reactivity properties have been obtained by calculation of Fukui functions, also mapped to the electron density surface. Possible degradation properties by the autoxidation mechanism have been assessed by calculations of bond dissociation energies for hydrogen abstraction. Atoms of title molecule with significant interactions with water molecules have been determined by calculations of radial distribution functions. The title compound can be a lead compound for developing new analgesic drug.
Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error.
Faber, Felix A; Hutchison, Luke; Huang, Bing; Gilmer, Justin; Schoenholz, Samuel S; Dahl, George E; Vinyals, Oriol; Kearnes, Steven; Riley, Patrick F; von Lilienfeld, O Anatole
2017-11-14
We investigate the impact of choosing regressors and molecular representations for the construction of fast machine learning (ML) models of 13 electronic ground-state properties of organic molecules. The performance of each regressor/representation/property combination is assessed using learning curves which report out-of-sample errors as a function of training set size with up to ∼118k distinct molecules. Molecular structures and properties at the hybrid density functional theory (DFT) level of theory come from the QM9 database [ Ramakrishnan et al. Sci. Data 2014 , 1 , 140022 ] and include enthalpies and free energies of atomization, HOMO/LUMO energies and gap, dipole moment, polarizability, zero point vibrational energy, heat capacity, and the highest fundamental vibrational frequency. Various molecular representations have been studied (Coulomb matrix, bag of bonds, BAML and ECFP4, molecular graphs (MG)), as well as newly developed distribution based variants including histograms of distances (HD), angles (HDA/MARAD), and dihedrals (HDAD). Regressors include linear models (Bayesian ridge regression (BR) and linear regression with elastic net regularization (EN)), random forest (RF), kernel ridge regression (KRR), and two types of neural networks, graph convolutions (GC) and gated graph networks (GG). Out-of sample errors are strongly dependent on the choice of representation and regressor and molecular property. Electronic properties are typically best accounted for by MG and GC, while energetic properties are better described by HDAD and KRR. The specific combinations with the lowest out-of-sample errors in the ∼118k training set size limit are (free) energies and enthalpies of atomization (HDAD/KRR), HOMO/LUMO eigenvalue and gap (MG/GC), dipole moment (MG/GC), static polarizability (MG/GG), zero point vibrational energy (HDAD/KRR), heat capacity at room temperature (HDAD/KRR), and highest fundamental vibrational frequency (BAML/RF). We present numerical
Suwono.
1978-01-01
A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)
Vretenar, M
2014-01-01
The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics
Linearization Method and Linear Complexity
Tanaka, Hidema
We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.
Optimization of auxiliary basis sets for the LEDO expansion and a projection technique for LEDO-DFT.
Götz, Andreas W; Kollmar, Christian; Hess, Bernd A
2005-09-01
We present a systematic procedure for the optimization of the expansion basis for the limited expansion of diatomic overlap density functional theory (LEDO-DFT) and report on optimized auxiliary orbitals for the Ahlrichs split valence plus polarization basis set (SVP) for the elements H, Li--F, and Na--Cl. A new method to deal with near-linear dependences in the LEDO expansion basis is introduced, which greatly reduces the computational effort of LEDO-DFT calculations. Numerical results for a test set of small molecules demonstrate the accuracy of electronic energies, structural parameters, dipole moments, and harmonic frequencies. For larger molecular systems the numerical errors introduced by the LEDO approximation can lead to an uncontrollable behavior of the self-consistent field (SCF) process. A projection technique suggested by Löwdin is presented in the framework of LEDO-DFT, which guarantees for SCF convergence. Numerical results on some critical test molecules suggest the general applicability of the auxiliary orbitals presented in combination with this projection technique. Timing results indicate that LEDO-DFT is competitive with conventional density fitting methods. (c) 2005 Wiley Periodicals, Inc.
DFT studies of hydrocarbon combustion on metal surfaces.
Arya, Mina; Mirzaei, Ali Akbar; Davarpanah, Abdol Mahmood; Barakati, Seyed Masoud; Atashi, Hossein; Mohsenzadeh, Abas; Bolton, Kim
2018-02-02
Catalytic combustion of hydrocarbons is an important technology to produce energy. Compared to conventional flame combustion, the catalyst enables this process to operate at lower temperatures; hence, reducing the energy required for efficient combustion. The reaction and activation energies of direct combustion of hydrocarbons (CH → C + H) on a series of metal surfaces were investigated using density functional theory (DFT). The data obtained for the Ag, Au, Al, Cu, Rh, Pt, and Pd surfaces were used to investigate the validity of the Brønsted-Evans-Polanyi (BEP) and transition state scaling (TSS) relations for this reaction on these surfaces. These relations were found to be valid (R 2 = 0.94 for the BEP correlation and R 2 = 1.0 for the TSS correlation) and were therefore used to estimate the energetics of the combustion reaction on Ni, Co, and Fe surfaces. It was found that the estimated transition state and activation energies (E TS = -69.70 eV and E a = 1.20 eV for Ni, E TS = -87.93 eV and E a = 1.08 eV for Co and E TS = -92.45 eV and E a = 0.83 eV for Fe) are in agreement with those obtained by DFT calculations (E TS = -69.98 eV and E a = 1.23 eV for Ni, E TS = -87.88 eV and E a = 1.08 eV for Co and E TS = -92.57 eV and E a = 0.79 eV for Fe). Therefore, these relations can be used to predict energetics of this reaction on these surfaces without doing the time consuming transition state calculations. Also, the calculations show that the activation barrier for CH dissociation decreases in the order Ag ˃ Au ˃ Al ˃ Cu ˃ Pt ˃ Pd ˃ Ni > Co > Rh > Fe.
Milani, G.; Bertolesi, E.
2017-07-01
A simple quasi analytical holonomic homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how homogenized stress-strain behavior can be evaluated semi-analytically.
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
nmr spectroscopic study and dft calculations of vibrational analyses
Preferred Customer
2Plant, Drug and Scientific Research Centre, Anadolu University, 26470, ... Density functional theory (DFT) calculations provide excellent agreement with ..... simple correlation between 1JCH and the hybridization of the carbon atom involved; ...
Redox Potentials of Ligands and Complexes – a DFT Approach
NICO
Electron affinity (EA) of an atom or molecule is the associated energy change that occurs .... As a consequence of the foregoing evidence we resolved to embark on a ... Density functional theory (DFT) calculations were performed using the ...
Redesign of the DFT/MRCI Hamiltonian
Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M., E-mail: Christel.Marian@hhu.de [Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany)
2016-01-21
The combined density functional theory and multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke [J. Chem. Phys. 111, 5645 (1999)] is a well-established semi-empirical quantum chemical method for efficiently computing excited-state properties of organic molecules. As it turns out, the method fails to treat bi-chromophores owing to the strong dependence of the parameters on the excitation class. In this work, we present an alternative form of correcting the matrix elements of a MRCI Hamiltonian which is built from a Kohn-Sham set of orbitals. It is based on the idea of constructing individual energy shifts for each of the state functions of a configuration. The new parameterization is spin-invariant and incorporates less empirism compared to the original formulation. By utilizing damping techniques together with an algorithm of selecting important configurations for treating static electron correlation, the high computational efficiency has been preserved. The robustness of the original and redesigned Hamiltonians has been tested on experimentally known vertical excitation energies of organic molecules yielding similar statistics for the two parameterizations. Besides that, our new formulation is free from artificially low-lying doubly excited states, producing qualitatively correct and consistent results for excimers. The way of modifying matrix elements of the MRCI Hamiltonian presented here shall be considered as default choice when investigating photophysical processes of bi-chromophoric systems such as singlet fission or triplet-triplet upconversion.
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Solow, Daniel
2014-01-01
This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Berberian, Sterling K
2014-01-01
Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.
Searle, Shayle R
2012-01-01
This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
Troen, Ib; Bechmann, Andreas; Kelly, Mark C.
2014-01-01
Using the Wind Atlas methodology to predict the average wind speed at one location from measured climatological wind frequency distributions at another nearby location we analyse the relative prediction errors using a linearized flow model (IBZ) and a more physically correct fully non-linear 3D...... flow model (CFD) for a number of sites in very complex terrain (large terrain slopes). We first briefly describe the Wind Atlas methodology as implemented in WAsP and the specifics of the “classical” model setup and the new setup allowing the use of the CFD computation engine. We discuss some known...
Determination of structural and spectroscopic parameters of 4-hydroxyantipyrine, using DFT method
Catikkas, B.; Aktan, E.
2010-01-01
In this study, structural and vibrational parameters were calculated. First of all, conformational analysis of 4-hydroxyantipyrine was carried out in gas phase. Then, the geometric parameters (bond length, bond angle and tortion angle) of the most stable conformer were calculated and the Infrared and Raman frequencies of fundamental modes were determined. Calculations were made by using DFT B3LYP/6-311+G(d,p) method implemented the Gaussian 03 program. Afterwards, vibrational assignments of the title molecule were calculated by using Scaled Quantum Mechanical (SQM) analysis. In conclusion, calculated values were compared with corresponding experimental results.
Thermal properties of black phosphorene and doped phosphorene (C, N & O): A DFT study
Devi, Anjna; Singh, Amarjeet
2018-04-01
In this work, we present the results from a DFT based computational study of pristine phosphorene and doped (C, N & O) phosphorene. We systematically investigated the lattice thermal properties of black phosphorene and the effect of doping on its thermal properties. We first determined the vibrational properties of pristine and doped phosphorene and from these results we calculated their thermal properties. We doped the phosphorene with C, N and O and observed that the structural stability of doped phosphorene decreases, while the thermal stability is increased as compared to pristine phosphorene. The presence of finite temperature effects in the doped system can contribute to acceleration of progress in future nano-scale technology.
Olive, David J
2017-01-01
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...
Alcaraz, J.
2001-01-01
After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Linear programming using Matlab
Ploskas, Nikolaos
2017-01-01
This book offers a theoretical and computational presentation of a variety of linear programming algorithms and methods with an emphasis on the revised simplex method and its components. A theoretical background and mathematical formulation is included for each algorithm as well as comprehensive numerical examples and corresponding MATLAB® code. The MATLAB® implementations presented in this book are sophisticated and allow users to find solutions to large-scale benchmark linear programs. Each algorithm is followed by a computational study on benchmark problems that analyze the computational behavior of the presented algorithms. As a solid companion to existing algorithmic-specific literature, this book will be useful to researchers, scientists, mathematical programmers, and students with a basic knowledge of linear algebra and calculus. The clear presentation enables the reader to understand and utilize all components of simplex-type methods, such as presolve techniques, scaling techniques, pivoting ru...
Muon contact hyperfine field in metals: A DFT calculation
Onuorah, Ifeanyi John; Bonfà, Pietro; De Renzi, Roberto
2018-05-01
In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon site determination is especially useful for measurements performed in magnetic materials, where large contact hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation of muon's hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012), 10.1103/PhysRevB.86.064437]. We establish the accuracy of the estimated muon contact field in metallic compounds with DFT and our results show improved agreement with experiments compared to those of earlier publications.
Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.
Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S
2018-05-14
C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.
Kurt James Werner
2016-10-01
Full Text Available The magnitude of the Discrete Fourier Transform (DFT of a discrete-time signal has a limited frequency definition. Quadratic interpolation over the three DFT samples surrounding magnitude peaks improves the estimation of parameters (frequency and amplitude of resolved sinusoids beyond that limit. Interpolating on a rescaled magnitude spectrum using a logarithmic scale has been shown to improve those estimates. In this article, we show how to heuristically tune a power scaling parameter to outperform linear and logarithmic scaling at an equivalent computational cost. Although this power scaling factor is computed heuristically rather than analytically, it is shown to depend in a structured way on window parameters. Invariance properties of this family of estimators are studied and the existence of a bias due to noise is shown. Comparing to two state-of-the-art estimators, we show that an optimized power scaling has a lower systematic bias and lower mean-squared-error in noisy conditions for ten out of twelve common windowing functions.
Effects of two-scale transverse crack systems on the non-linear behaviour of a 2D SiC-SiC composite
Morvan, J.-M.; Baste, S. [Bordeaux-1 Univ., 33 - Talence (France). Lab. de Mecanique Physique
1998-07-31
By using both an ultrasonic device and an extensometer, it is possible to know which stiffness coefficients change during the damage process of a material and which part of the global strain is either elastic or inelastic. The influence of the two damage mechanisms is described for a woven 2D SiC-SiC composite. It appears that the two scales of this composite have a great influence on its behaviour. Two elementary mechanisms occur at both scales of the material: at the mesostructure level consisting of the bundles as well as of the inter-bundle matrix and at the microstructure level made from both the fibres and the intra-bundle matrix. The inelastic strains are sensitive to this two-scale effect: an increment of strain at constant stress that comes to saturation corresponding to the inter-bundle damage process and a strain which needs an increase in stress as cracking occurs at the fibres scale. With the help of a model that predicts the compliance changes caused by a crack system in a solid, it is possible to predict the crack density variation at both scales as well as the geometry of the various crack systems during monotonous loading. Furthermore, when the crack opening is taken into account, it appears that the inelastic strain is governed by the transverse crack density. (orig.) 12 refs.
FAST TRACK COMMUNICATION A DFT + DMFT approach for nanosystems
Turkowski, Volodymyr; Kabir, Alamgir; Nayyar, Neha; Rahman, Talat S.
2010-11-01
We propose a combined density-functional-theory-dynamical-mean-field-theory (DFT + DMFT) approach for reliable inclusion of electron-electron correlation effects in nanosystems. Compared with the widely used DFT + U approach, this method has several advantages, the most important of which is that it takes into account dynamical correlation effects. The formalism is illustrated through different calculations of the magnetic properties of a set of small iron clusters (number of atoms 2 <= N <= 5). It is shown that the inclusion of dynamical effects leads to a reduction in the cluster magnetization (as compared to results from DFT + U) and that, even for such small clusters, the magnetization values agree well with experimental estimations. These results justify confidence in the ability of the method to accurately describe the magnetic properties of clusters of interest to nanoscience.
Conformational, vibrational, NMR and DFT studies of N-methylacetanilide.
Arjunan, V; Santhanam, R; Rani, T; Rosi, H; Mohan, S
2013-03-01
A detailed conformational, vibrational, NMR and DFT studies of N-methylacetanilide have been carried out. In DFT, B3LYP method have been used with 6-31G(**), 6-311++G(**) and cc-pVTZ basis sets. The vibrational frequencies were calculated resulting in IR and Raman frequencies together with intensities and Raman depolarisation ratios. The dipole moment derivatives were computed analytically. Owing to the complexity of the molecule, the potential energy distributions of the vibrational modes of the compound are also calculated. Isoelectronic molecular electrostatic potential surface (MEP) and electron density surface were examined. (1)H and (13)C NMR isotropic chemical shifts were calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound were also determined from TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.
Karloff, Howard
1991-01-01
To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming from the Simplex Method…via the Ellipsoid algorithm to Karmarkar’s algorithm. Moreover, its point of view is algorithmic and thus it provides both a history and a case history of work in complexity theory. The presentation is admirable; Karloff's style is informal (even humorous at times) without sacrificing anything necessary for understanding. Diagrams (including horizontal brackets that group terms) aid in providing clarity. The end-of-chapter notes are helpful...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews The reader will be well served by reading the monograph from cover to cover. The author succeeds in providing a concise, readable, understandable introduction to modern linear programming. —Mathematics of Computing This is a textbook intend...
Kjærgaard, Thomas; Baudin, Pablo; Bykov, Dmytro
2017-01-01
We present a scalable cross-platform hybrid MPI/OpenMP/OpenACC implementation of the Divide–Expand–Consolidate (DEC) formalism with portable performance on heterogeneous HPC architectures. The Divide–Expand–Consolidate formalism is designed to reduce the steep computational scaling of conventiona...
Julie Vercelloni
Full Text Available Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.
Predictions of Physicochemical Properties of Ionic Liquids with DFT
Karl Karu
2016-07-01
Full Text Available Nowadays, density functional theory (DFT-based high-throughput computational approach is becoming more efficient and, thus, attractive for finding advanced materials for electrochemical applications. In this work, we illustrate how theoretical models, computational methods, and informatics techniques can be put together to form a simple DFT-based throughput computational workflow for predicting physicochemical properties of room-temperature ionic liquids. The developed workflow has been used for screening a set of 48 ionic pairs and for analyzing the gathered data. The predicted relative electrochemical stabilities, ionic charges and dynamic properties of the investigated ionic liquids are discussed in the light of their potential practical applications.
Implementation of DFT application on ternary optical computer
Junjie, Peng; Youyi, Fu; Xiaofeng, Zhang; Shuai, Kong; Xinyu, Wei
2018-03-01
As its characteristics of huge number of data bits and low energy consumption, optical computing may be used in the applications such as DFT etc. which needs a lot of computation and can be implemented in parallel. According to this, DFT implementation methods in full parallel as well as in partial parallel are presented. Based on resources ternary optical computer (TOC), extensive experiments were carried out. Experimental results show that the proposed schemes are correct and feasible. They provide a foundation for further exploration of the applications on TOC that needs a large amount calculation and can be processed in parallel.
Predicting near-UV electronic circular dichroism in nucleosomal DNA by means of DFT response theory.
Norman, Patrick; Parello, Joseph; Polavarapu, Prasad L; Linares, Mathieu
2015-09-14
It is demonstrated that time-dependent density functional theory (DFT) calculations can accurately predict changes in near-UV electronic circular dichroism (ECD) spectra of DNA as the structure is altered from the linear (free) B-DNA form to the supercoiled N-DNA form found in nucleosome core particles. At the DFT/B3LYP level of theory, the ECD signal response is reduced by a factor of 6.7 in going from the B-DNA to the N-DNA form, and it is illustrated how more than 90% of the individual base-pair dimers contribute to this strong hypochromic effect. Of the several inter-base pair parameters, an increase in twist angles is identified as to strongly contribute to a reduced ellipticity. The present work provides first evidence that first-principles calculations can elucidate changes in DNA dichroism due to the supramolecular organization of the nucleoprotein particle and associates these changes with the local structural features of nucleosomal DNA.
Probing the (110)-Oriented plane of rutile ZnF2: A DFT investigation
Tamijani, Ali Abbaspour; Ebrahimiaqda, Elham
2017-12-01
For many years, rutile-like crystals have given rise to pronounced enthusiasm amongst mineralogists. In this context, rutile-type ZnF2 has found numerous applications across a variety of disciplines, ranging from material sciences to optoelectronics. Surprisingly, very limited literature is concerned with the molecular adsorption on ZnF2 surfaces and related energetics. Additionally, surface probing with small particles is a well-entrenched technique to analyze the interfacial properties. In this regard, small organic species are valuable picks. In the present work, we have employed electronic structure calculations to simulate the adsorption of methane, chloroform, pyrrole, benzene, naphthalene, anthracene, tetracene and pentacene at the (110) plane of rutile ZnF2. Dispersion-corrected DFT method was chosen to predict the binding energies and structures of molecule-adsorbed surfaces. Interestingly, a linear proportionality relationship was found between the binding energies of aromatic adsorbates and their respective molecular lengths. By applying this relationship, we were able to predict the adsorption energy of pentacene on ZnF2 to within 2% of our DFT-based result.
Datta, D P
2003-01-01
A new class of finitely differentiable scale free solutions to the simplest class of ordinary differential equations is presented. Consequently, the real number set gets replaced by an extended physical set, each element of which is endowed with an equivalence class of infinitesimally separated neighbours in the form of random fluctuations. We show how a sense of time and evolution is intrinsically defined by the infinite continued fraction of the golden mean irrational number (Radical radicand 5 -1)/2, which plays a key role in this extended SL(2,R) formalism of calculus analogous to El Naschie's theory of E sup ( supinfinity sup ) spacetime manifold. Time may thereby undergo random inversions generating well defined random scales, thus allowing a dynamical system to evolve self similarly over the set of multiple scales. The late time stochastic fluctuations of a dynamical system enjoys the generic 1/f spectrum. A universal form of the related probability density is also derived. We prove that the golden mea...
Datta, Dhurjati Prasad
2003-01-01
A new class of finitely differentiable scale free solutions to the simplest class of ordinary differential equations is presented. Consequently, the real number set gets replaced by an extended physical set, each element of which is endowed with an equivalence class of infinitesimally separated neighbours in the form of random fluctuations. We show how a sense of time and evolution is intrinsically defined by the infinite continued fraction of the golden mean irrational number (Radical radicand 5 -1)/2, which plays a key role in this extended SL(2,R) formalism of calculus analogous to El Naschie's theory of E (∞) spacetime manifold. Time may thereby undergo random inversions generating well defined random scales, thus allowing a dynamical system to evolve self similarly over the set of multiple scales. The late time stochastic fluctuations of a dynamical system enjoys the generic 1/f spectrum. A universal form of the related probability density is also derived. We prove that the golden mean number is intrinsically random, letting all measurements in the physical universe fundamentally uncertain. The present analysis offers an explanation of the universal occurrence of the golden mean in diverse natural and biological processes as well as the mass spectrum of high energy particle physics
Schleyer, F.; Cairns, Iver H.; Kim, E.-H.
2013-01-01
Linear mode conversion (LMC) is the linear transfer of energy from one wave mode to another in an inhomogeneous plasma. It is relevant to laboratory plasmas and multiple solar system radio emissions, such as continuum radiation from planetary magnetospheres and type II and III radio bursts from the solar corona and solar wind. This paper simulates LMC of waves defined by warm, magnetized fluid theory, specifically the conversion of Langmuir/z-mode waves to electromagnetic (EM) radiation. The primary focus is the calculation of the energy and power conversion efficiencies for LMC as functions of the angle of incidence θ of the Langmuir/z-mode wave, temperature β=T e /m e c 2 , adiabatic index γ, and orientation angle φ between the ambient density gradient ∇N 0 and ambient magnetic field B 0 in a warm, unmagnetized plasma. The ratio of these efficiencies is found to agree well as a function of θ, γ, and β with an analytical relation that depends on the group speeds of the Langmuir/z and EM wave modes. The results demonstrate that the energy conversion efficiency ε is strongly dependent on γβ, φ and θ, with ε∝(γβ) 1/2 and θ∝(γβ) 1/2 . The power conversion efficiency ε p , on the other hand, is independent of γβ but does vary significantly with θ and φ. The efficiencies are shown to be maximum for approximately perpendicular density gradients (φ≈90°) and minimal for parallel orientation (φ=0°) and both the energy and power conversion efficiencies peak at the same θ.
Afroz, Ziya; Zulkarnain,; Ahmad, Afaq; Alam, Mohammad Jane; Faizan, Mohd; Ahmad, Shabbir
2016-01-01
DFT and TD-DFT studies of o-phenylenediamine (PDA), 3,5-dinitrosalicylic acid (DNSA) and their charge transfer complex have been carried out at B3LYP/6-311G(d,p) level of theory. Molecular geometry and various other molecular properties like natural atomic charges, ionization potential, electron affinity, band gap, natural bond orbital (NBO) and frontier molecular analysis have been presented at same level of theory. Frontier molecular orbital and natural bond orbital analysis show the charge delocalization from PDA to DNSA.
DFT reactivity indices in confined many-electron atoms + ∫
Unknown
Functional Theory (DFT) based global descriptors of chemical reactivity for atoms .... interesting due to its utility as a model in the wide variety of applications ... hydrogen atom at Rc = 2⋅0 au is expected to correspond to the energy value of ...
CHANNEL ESTIMATION FOR ZT DFT-s-OFDM
2018-01-01
A signal modulated according to zero-tail discrete Fourier transform spread orthogonal frequency division multiplexing (ZT DFT-s-OFDM) is received over a channel. The signal is down-sampled into a first sequence comprising N samples, N corresponding to the number of used subcarriers. The first Nh...
DFT computations of the lattice constant, stable atomic structure and ...
This paper presents the most stable atomic structure and lattice constant of Fullerenes (C60). FHI-aims DFT code was used to predict the stable structure and the computational lattice constant of C60. These were compared with known experimental structures and lattice constants of C60. The results obtained showed that ...
Reduction of Linear Programming to Linear Approximation
Vaserstein, Leonid N.
2006-01-01
It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.
Suresh, S.; Gunasekaran, S.; Srinivasan, S.
2015-03-01
The solid phase FT-IR and FT-Raman spectra of 4-Hydroxy-2-methyl-N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (Piroxicam) have been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of piroxicam in the ground state have been calculated by Hartree-Fock (HF) and density functional theory (DFT) methods using 6-311++G(d,p) basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental obtained by FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) are also performed. The linear polarizability (α) and the first order hyper polarizability (β) values of the title compound have been computed. The molecular stability arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.
Spectroscopic data of Labdane Diterpenes: a theoretical analysis via NMR and DFT
Souza, Fabrine S. de; Silva, Silvana de O.; Alves, Cláudio N.; Guilhon, Giselle M.S.P.
2015-01-01
Labdane diterpenes exhibit important bioactivities such as cardiovascular effects in rats as well as effects in the treatment of autoimmune diseases and Alzheimer syndrome. Recently, the labdane diterpenes ent-13-epi-manoil oxide, ribenone and ribenol were isolated from Croton palanostigma. The computational method DFT/B3LYP/cc-pVDZ was used to optimize the structures of these diterpenes and to calculate infrared data. Chemical shifts (δ H and δ C ) of the minimum energy structures (local minimum) were calculated and compared with the experimental data. Comparison of the NMR data by simple linear regression (SLR) showed satisfactory statistical results with a correlation coefficient (R 2 ) and predictive ability (Q 2 ) of over 98%. The predicted NMR data were used to confirm the δ H values that have not been published. (author)
Computational prediction of the pKas of small peptides through Conceptual DFT descriptors
Frau, Juan; Hernández-Haro, Noemí; Glossman-Mitnik, Daniel
2017-03-01
The experimental pKa of a group of simple amines have been plotted against several Conceptual DFT descriptors calculated by means of different density functionals, basis sets and solvation schemes. It was found that the best fits are those that relate the pKa of the amines with the global hardness η through the MN12SX density functional in connection with the Def2TZVP basis set and the SMD solvation model, using water as a solvent. The parameterized equation resulting from the linear regression analysis has then been used for the prediction of the pKa of small peptides of interest in the study of diabetes and Alzheimer disease. The accuracy of the results is relatively good, with a MAD of 0.36 units of pKa.
Polycyclic Aromatic Hydrocarbons Adsorption onto Graphene: A DFT and AIMD Study
Bing Li
2018-05-01
Full Text Available Density functional theory (DFT calculations and ab-initio molecular dynamics (AIMD simulations were performed to understand graphene and its interaction with polycyclic aromatic hydrocarbons (PAHs molecules. The adsorption energy was predicted to increase with the number of aromatic rings in the adsorbates, and linearly correlate with the hydrophobicity of PAHs. Additionally, the analysis of the electronic properties showed that PAHs behave as mild n-dopants and introduce electrons into graphene; but do not remarkably modify the band gap of graphene, indicating that the interaction between PAHs and graphene is physisorption. We have also discovered highly sensitive strain dependence on the adsorption strength of PAHs onto graphene surface. The AIMD simulation indicated that a sensitive and fast adsorption process of PAHs can be achieved by choosing graphene as the adsorbent. These findings are anticipated to shed light on the future development of graphene-based materials with potential applications in the capture and removal of persistent aromatic pollutants.
Density Functional Theory and Materials Modeling at Atomistic Length Scales
Swapan K. Ghosh
2002-04-01
Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.
DFT study of Al doped armchair SWCNTs
Dhiman, Shobhna, E-mail: s-dhiman@hotmail.com [Department of Applied Science, PEC, University of Technology, Chandigarh -160012 (India); Rani, Anita [Guru Nanak College for Girls, Sri Muktsar Sahib, Punjab-152026 (India); Kumar, Ranjan; Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh-160014 (India)
2016-05-23
Electronic properties of endohedrally doped armchair single-walled carbon nanotubes (SWCNTs) with a chain of six Al atoms have been studied using ab-initio density functional theory. We investigate the binding energy/atom, ionization potential, electron Affinity and Homo-Lumo gap of doped armchair SWNTs from (4,4) to (6,6) with two ends open. BE/dopant atom and ionization potential is maximum for (6, 6) doped armchair carbon nanotube; suggest that it is more stable than (4, 4) and (5, 5) doped tubes. HOMO - LUMO gap of Al doped arm chair carbon nanotubes decreases linearly with the increase in diameter of the tube. This shows that confinement induce a strong effect on electronic properties of doped tubes. These combined systems can be used for future nano electronics. The ab–initio calculations were performed with SIESTA code using generalized gradient approximation (GGA).
Tanwiwat Jaikuna
2017-02-01
Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.
Seenithurai, Sonai; Chai, Jeng-Da
2016-01-01
Due to the presence of strong static correlation effects and noncovalent interactions, accurate prediction of the electronic and hydrogen storage properties of Li-adsorbed acenes with n linearly fused benzene rings (n = 3 - 8) has been very challenging for conventional electronic structure methods. To meet the challenge, we study these properties using our recently developed thermally-assisted-occupation density functional theory (TAO-DFT) with dispersion corrections. In contrast to pure acen...
Stamm, G; Eichbaum, G; Hagemann, G
1997-09-01
The following three screen-film combinations were compared: a) a combination of anticrossover film and UV-light emitting screens, b) a combination of blue-light emitting screens and film, and c) a conventional green fluorescing screen-film combination. Radiographs of a specially designed plexiglass phantom (0.2 x 0.2 x 0.12 m3) with bar patterns of lead and plaster and of air, respectively were obtained using the following parameters: 12 pulse generator, 0.6 mm focus size, 4.7 mm aluminum pre-filter, a grid with 40 lines/cm (12:1) and a focus-detector distance of 1.15 m. Image analysis was performed using an IBAS system and a Zeiss Kontron computer. Display conditions were the following: display distance 0.12 m, a vario film objective 35/70 (Zeiss), a video camera tube with a PbO photocathode, 625 lines (Siemens Heimann), an IBAS image matrix of 512 x 512 pixels with a resolution of 7 lines/mm, the projected matrix area was 5000 microns2. Grey scale ranges were measured on a line perpendicular to the grouped bar patterns. The difference between the maximum and minimum density value served as signal. The spatial resolution of the detector system was measured when the signal value was three times higher than the standard deviation of the means of multiple density measurements. The results showed considerable advantages of the two new screen-film combinations as compared to the conventional screen-film combination. The result was contradictory to the findings with pure visual assessment of thresholds (part I) that had found no differences. The authors concluded that (automatic) interactive image analysis algorithms serve as an objective measure and are specifically advantageous when small differences in image quality are to be evaluated.
Blanchard, Didier; Maronsson, Jon Bergmann; Riktor, M.D.
2012-01-01
, around the 2-fold (C2) and 3-fold (C3) axes were observed at temperatures from 120 to 440 K. The experimentally obtained activation energies (EaC2 = 39 and 76 meV and EaC3 = 214 meV) and mean residence times between reorientational jumps are comparable with the energy barriers obtained from DFT......In this work, hindered rotations of the BH4- tetrahedra in Mg(BH4)2 were studied by quasielastic neutron scattering, using two instruments with different energy resolution, in combination with density functional theory (DFT) calculations. Two thermally activated reorientations of the BH4- units...... calculations. A linear dependency of the energy barriers for rotations around the C2 axis parallel to the Mg-Mg axis with the distance between these two axes was revealed by the DFT calculations. At the lowest temperature (120 K) only 15% of the BH4- units undergo rotational motion and from comparison with DFT...
DFT Study of dimers of dimethyl sulfoxide in gas phase
Reza Fazaeli
2014-10-01
Full Text Available Density functional (DFT calculations at M05-2x/aug-cc-pVDZ level were used to analyze the interactions between dimethyl sulfoxide (DMSO dimers. The structures obtained have been ana-lyzed with the Atoms in Molecules (AIMs and Natural Bond Orbital (NBO methodologies. Four minima were located on the potential energy surface of the dimers. Three types of interac-tions are observed, CH•••O, CH•••S hydrogen bonds and orthogonal interaction between the lone pair of the oxygen with the electron-deficient region of the sulfur atom. Stabilization energies of dimers including BSSE and ZPE are in the range 27–40 kJmol-1. The most stable conformers of dimers at DFT level is cyclic structure with antiparallel orientation of S=O groups pairing with three C–H∙∙∙O and a S∙∙∙O interactions.
Hidden scale invariance of metals
Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.
2015-01-01
Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general “hidden” scale invariance...... of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were...... available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant...
Coupé, Christophe
2018-01-01
As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for 'difficult' variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS, we
Christophe Coupé
2018-04-01
Full Text Available As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM, which address grouping of observations, and generalized linear mixed-effects models (GLMM, which offer a family of distributions for the dependent variable. Generalized additive models (GAM are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS. We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for ‘difficult’ variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships
DFT-Assisted Polymorph Identification from Lattice Raman Fingerprinting.
Bedoya-Martínez, Natalia; Schrode, Benedikt; Jones, Andrew O F; Salzillo, Tommaso; Ruzié, Christian; Demitri, Nicola; Geerts, Yves H; Venuti, Elisabetta; Della Valle, Raffaele Guido; Zojer, Egbert; Resel, Roland
2017-08-03
A combined experimental and theoretical approach, consisting of lattice phonon Raman spectroscopy and density functional theory (DFT) calculations, is proposed as a tool for lattice dynamics characterization and polymorph phase identification. To illustrate the reliability of the method, the lattice phonon Raman spectra of two polymorphs of the molecule 2,7-dioctyloxy[1]benzothieno[3,2-b]benzothiophene are investigated. We show that DFT calculations of the lattice vibrations based on the known crystal structures, including many-body dispersion van der Waals (MBD-vdW) corrections, predict experimental data within an accuracy of ≪5 cm -1 (≪0.6 meV). Due to the high accuracy of the simulations, they can be used to unambiguously identify different polymorphs and to characterize the nature of the lattice vibrations and their relationship to the structural properties. More generally, this work implies that DFT-MBD-vdW is a promising method to describe also other physical properties that depend on lattice dynamics like charge transport.
DFT Study of Optical Properties of Pt-based Complexes
Oprea, Corneliu I.; Dumbravǎ, Anca; Moscalu, Florin; Nicolaides, Atnanassios; Gîrţu, Mihai A.
2010-01-01
We report Density Functional Theory (DFT) calculations providing the geometrical and electronic structures, as well as the vibrational and optical properties of the homologous series of Pt-pyramidalized olefin complexes (CH2)n-(C8H10)Pt(PH3)2, where n = 0, 1, and 2, in their neutral and oxidized states. All complexes were geometry optimized for the singlet ground state in vacuum using DFT methods with B3LYP exchange-correlation functional and the Effective Core Potential LANL2DZ basis set, within the frame of Gaussian03 quantum chemistry package. We find the coordination geometry of Pt to be distorted square planar, with dihedral angles ranging from 0°, for n = 0 and 1, which have C2V symmetry to 3.4°, for n = 2 with C2 symmetry. The Mulliken charge analysis allows a discussion of the oxidation state of the Pt ion. Electronic transitions were calculated at the same level of theory by means of Time Dependant-DFT. For n = 2 the electronic absorption bands are located in the UV region of the spectrum, the transitions being assigned to metal to ligand charge transfers. The relevance of these Pt-based compounds as possible pigments for dye-sensitized solar cells is discussed.
Mohr, Stephan; Dawson, William; Wagner, Michael; Caliste, Damien; Nakajima, Takahito; Genovese, Luigi
2017-10-10
We present CheSS, the "Chebyshev Sparse Solvers" library, which has been designed to solve typical problems arising in large-scale electronic structure calculations using localized basis sets. The library is based on a flexible and efficient expansion in terms of Chebyshev polynomials and presently features the calculation of the density matrix, the calculation of matrix powers for arbitrary powers, and the extraction of eigenvalues in a selected interval. CheSS is able to exploit the sparsity of the matrices and scales linearly with respect to the number of nonzero entries, making it well-suited for large-scale calculations. The approach is particularly adapted for setups leading to small spectral widths of the involved matrices and outperforms alternative methods in this regime. By coupling CheSS to the DFT code BigDFT, we show that such a favorable setup is indeed possible in practice. In addition, the approach based on Chebyshev polynomials can be massively parallelized, and CheSS exhibits excellent scaling up to thousands of cores even for relatively small matrix sizes.
Blanchard, Didier; Riktor, M.D.; Maronsson, Jon Bergmann
2010-01-01
Hydrogen dynamics in crystalline calcium borohydride can be initiated by long-range diffusion or localized motion such as rotations, librations, and vibrations. Herein, the rotational and translational diffusion were studied by quasielastic neutron scattering (QENS) by using two instruments...... with different time scales in combination with density functional theory (DFT) calculations. Two thermally activated reorientational motions were observed, around the 2-fold (C2) and 3-fold (C3) axes of the BH4− units, at temperature from 95 to 280K. The experimental energy barriers (EaC2 = 0.14 eV and EaC3 = 0...... of the interstitial H2 might come from the synthesis of the compound or a side reaction with trapped synthesis residue leading to the partial oxidation of the compound and hydrogen release....
Arjunan, V; Thillai Govindaraja, S; Jayapraksh, A; Mohan, S
2013-04-15
Quantum chemical calculations of energy, structural parameters and vibrational wavenumbers of 4-bromoisoquinoline (4BIQ) were carried out by using B3LYP method using 6-311++G(**), cc-pVTZ and LANL2DZ basis sets. The optimised geometrical parameters obtained by DFT calculations are in good agreement with electron diffraction data. Interpretations of the experimental FTIR and FT-Raman spectra have been reported with the aid of the theoretical wavenumbers. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The thermodynamic parameters have also been computed. Electronic properties of the molecule were discussed through the molecular electrostatic potential surface, HOMO-LUMO energy gap and NBO analysis. To provide precise assignments of (1)H and (13)CNMR spectra, isotropic shielding and chemical shifts were calculated with the Gauge-Invariant Atomic Orbital (GIAO) method. Copyright © 2013 Elsevier B.V. All rights reserved.
Phinney, N.
1992-01-01
The SLAC Linear Collider has begun a new era of operation with the SLD detector. During 1991 there was a first engineering run for the SLD in parallel with machine improvements to increase luminosity and reliability. For the 1992 run, a polarized electron source was added and more than 10,000 Zs with an average of 23% polarization have been logged by the SLD. This paper discusses the performance of the SLC in 1991 and 1992 and the technical advances that have produced higher luminosity. Emphasis will be placed on issues relevant to future linear colliders such as producing and maintaining high current, low emittance beams and focusing the beams to the micron scale for collisions. (Author) tab., 2 figs., 18 refs
Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.
2018-05-01
New charge transfer complex (CTC) between the electron donor 2,3-diaminopyridine (DAP) with the electron acceptor chloranilic (CLA) acid has been synthesized and characterized experimentally and theoretically using a variety of physicochemical techniques. The experimental work included the use of elemental analysis, UV-vis, IR and 1H NMR studies to characterize the complex. Electronic spectra have been carried out in different hydrogen bonded solvents, methanol (MeOH), acetonitrile (AN) and 1:1 mixture from AN-MeOH. The molecular composition of the complex was identified to be 1:1 from Jobs and molar ratio methods. The stability constant was determined using minimum-maximum absorbances method where it recorded high values confirming the high stability of the formed complex. The solid complex was prepared and characterized by elemental analysis that confirmed its formation in 1:1 stoichiometric ratio. Both IR and NMR studies asserted the existence of proton and charge transfers in the formed complex. For supporting the experimental results, DFT computations were carried out using B3LYP/6-31G(d,p) method to compute the optimized structures of the reactants and complex, their geometrical parameters, reactivity parameters, molecular electrostatic potential map and frontier molecular orbitals. The analysis of DFT results strongly confirmed the high stability of the formed complex based on existing charge transfer beside proton transfer hydrogen bonding concordant with experimental results. The origin of electronic spectra was analyzed using TD-DFT method where the observed λmax are strongly consisted with the computed ones. TD-DFT showed the contributed states for various electronic transitions.
Erum, Nazia; Azhar Iqbal, Muhammad
2017-09-01
Detailed ab-initio calculations are performed to investigate structural, elastic, mechanical, magneto-electronic and optical properties of the KXF3 (X = V, Fe, Co, Ni) fluoro-perovskites using Full Potential Linearized Augmented Plane Wave (FP-LAPW) method within the framework of density functional theory (DFT). The calculated structural parameters by DFT and analytical methods are found consistent with the experimental results. From the elastic and mechanical properties, it can be inferred that these compounds are elastically stable and anisotropic while KCoF3 is harder than rest of the compounds. Furthermore, thermal behavior of these compounds is analyzed by calculating Debye temperature (θD). The calculated spin dependent magneto-electronic properties in these compounds reveal that exchange splitting is dominated by N-3d orbital. The stable magnetic phase optimizations verify the experimental observations at low temperature. Type of chemical bonding is analyzed with the help of variations in electron density difference distribution that is induced due to changes of the second cation. The linear optical properties are also discussed in terms of optical spectra. The present methodology represents an influential approach to calculate the whole set of mechanical and magneto-opto-electronic parameters, which would support to understand various physical phenomena and empower device engineers for implementing these materials in spintronic applications.
Arjunan, V; Thillai Govindaraja, S; Jose, Sujin P; Mohan, S
2014-07-15
The Fourier transform infrared and FT-Raman spectra of 2-benzothiazole acetonitrile (BTAN) have been recorded in the range 4000-450 and 4000-100 cm(-1) respectively. The conformational analysis of the compound has been carried out to obtain the stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies. The experimental vibrational frequencies are compared with the wavenumbers derived theoretically by B3LYP gradient calculations employing the standard 6-31G(**), high level 6-311++G(**) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the normal modes obtained from the B3LYP methods are in good agreement with the experimental data. The (1)H (400 MHz; CDCl3) and (13)C (100 MHz;CDCl3) nuclear magnetic resonance (NMR) spectra are also recorded. The electronic properties, the energies of the highest occupied and lowest unoccupied molecular orbitals are measured by DFT approach. The kinetic stability of the molecule has been determined from the frontier molecular orbital energy gap. The charges of the atoms and the structure-chemical reactivity relations of the compound are determined by its chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods. The non-linear optical properties of the compound have been discussed by measuring the polarisability and hyperpolarisability tensors. Copyright © 2014 Elsevier B.V. All rights reserved.
Neese, Frank; Wennmohs, Frank; Hansen, Andreas; Becker, Ute
2009-01-01
In this paper, the possibility is explored to speed up Hartree-Fock and hybrid density functional calculations by forming the Coulomb and exchange parts of the Fock matrix by different approximations. For the Coulomb part the previously introduced Split-RI-J variant (F. Neese, J. Comput. Chem. 24 (2003) 1740) of the well-known 'density fitting' approximation is used. The exchange part is formed by semi-numerical integration techniques that are closely related to Friesner's pioneering pseudo-spectral approach. Our potentially linear scaling realization of this algorithm is called the 'chain-of-spheres exchange' (COSX). A combination of semi-numerical integration and density fitting is also proposed. Both Split-RI-J and COSX scale very well with the highest angular momentum in the basis sets. It is shown that for extended basis sets speed-ups of up to two orders of magnitude compared to traditional implementations can be obtained in this way. Total energies are reproduced with an average error of <0.3 kcal/mol as determined from extended test calculations with various basis sets on a set of 26 molecules with 20-200 atoms and up to 2000 basis functions. Reaction energies agree to within 0.2 kcal/mol (Hartree-Fock) or 0.05 kcal/mol (hybrid DFT) with the canonical values. The COSX algorithm parallelizes with a speedup of 8.6 observed for 10 processes. Minimum energy geometries differ by less than 0.3 pm in the bond distances and 0.5 deg. in the bond angels from their canonical values. These developments enable highly efficient and accurate self-consistent field calculations including nonlocal Hartree-Fock exchange for large molecules. In combination with the RI-MP2 method and large basis sets, second-order many body perturbation energies can be obtained for medium sized molecules with unprecedented efficiency. The algorithms are implemented into the ORCA electronic structure system
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Redox properties of biscyclopentadienyl uranium(V) imido-halide complexes: a relativistic DFT study.
Elkechai, Aziz; Kias, Farida; Talbi, Fazia; Boucekkine, Abdou
2014-06-01
Calculations of ionization energies (IE) and electron affinities (EA) of a series of biscyclopentadienyl imido-halide uranium(V) complexes Cp*2U(=N-2,6-(i)Pr2-C6H3)(X) with X = F, Cl, Br, and I, related to the U(IV)/U(V) and U(V)/U(VI) redox systems, were carried out, for the first time, using density functional theory (DFT) in the framework of the relativistic zeroth order regular approximation (ZORA) coupled with the conductor-like screening model (COSMO) solvation approach. A very good linear correlation (R(2) = 0.993) was obtained, between calculated ionization energies at the ZORA/BP86/TZP level, and the experimental half-wave oxidation potentials E1/2. A similar linear correlation between the computed electron affinities and the electrochemical reduction U(IV)/U(III) potentials (R(2) = 0.996) is obtained. The importance of solvent effects and of spin-orbit coupling is definitively confirmed. The molecular orbital analysis underlines the crucial role played by the 5f orbitals of the central metal whereas the Nalewajski-Mrozek (N-M) bond indices explain well the bond distances variations following the redox processes. The IE variation of the complexes, i.e., IE(F) uranium charges and E1/2 in the reduction process of the U(V) species.
Rintoul, Llew; Harper, Shannon R; Arnold, Dennis P
2013-11-21
Theoretical calculations of the geometries, electronic structures and electronic absorption spectra of a series of covalently-linked porphyrin dimers are reported. The diporphyrins comprise 5,10,15-triphenylporphyrinatozinc(II) (ZnTriPP) units linked through the meso carbons by two-atom bridges, namely 1,2-ethanediyl (1), trans-1,2-ethenediyl (2), ethynediyl (3), 1,2-iminomethenediyl (4), and transdiazenediyl (5). The structures were optimised in toluene solvent by Density Functional Theory (DFT), using the integral equation formalism variant of the polarizable continuum model. The calculations were performed using the B3LYP functional and the 6-31G(d,p) basis set. The complete molecules were modelled, with no substitution of smaller groups on the periphery. In parallel, the compounds 2–5 were prepared by known or novel synthetic routes, to enable comparisons of experimental electronic absorption spectra with those calculated using time dependent-DFT at the same level of theory. As the ethane dimer 1 is not yet synthetically accessible, the model monomer meso-2-phenylethylZnTriPP was used for comparisons with the theoretical predictions. The results form a self-consistent set, enabling for the first time legitimate comparisons of the electronic structures of the series, especially regarding the degree to which the porphyrin p-systems interact by conjugation across the bridges. The theoretical calculations of the electronic transitions match the observed spectra in toluene to a remarkable degree, especially with respect to the peak maximum of the Q band, which represents to a large degree the energy of the HOMO–LUMO transition. The imine 4 is intrinsically polar due to the asymmetric bridge, and the HOMO is located almost exclusively on the ZnTriPP unit attached to the nitrogen of the imine, and the LUMO on the C-attached ring. Thus the Q-band transition is mapped as a comprehensive charge-transfer from the former ring to the latter. This may have consequences
Emma, P.
1995-01-01
The Stanford Linear Collider (SLC) is the first and only high-energy e + e - linear collider in the world. Its most remarkable features are high intensity, submicron sized, polarized (e - ) beams at a single interaction point. The main challenges posed by these unique characteristics include machine-wide emittance preservation, consistent high intensity operation, polarized electron production and transport, and the achievement of a high degree of beam stability on all time scales. In addition to serving as an important machine for the study of Z 0 boson production and decay using polarized beams, the SLC is also an indispensable source of hands-on experience for future linear colliders. Each new year of operation has been highlighted with a marked improvement in performance. The most significant improvements for the 1994-95 run include new low impedance vacuum chambers for the damping rings, an upgrade to the optics and diagnostics of the final focus systems, and a higher degree of polarization from the electron source. As a result, the average luminosity has nearly doubled over the previous year with peaks approaching 10 30 cm -2 s -1 and an 80% electron polarization at the interaction point. These developments as well as the remaining identifiable performance limitations will be discussed
Analyzing the errors of DFT approximations for compressed water systems
Alfè, D.; Bartók, A. P.; Csányi, G.; Gillan, M. J.
2014-01-01
We report an extensive study of the errors of density functional theory (DFT) approximations for compressed water systems. The approximations studied are based on the widely used PBE and BLYP exchange-correlation functionals, and we characterize their errors before and after correction for 1- and 2-body errors, the corrections being performed using the methods of Gaussian approximation potentials. The errors of the uncorrected and corrected approximations are investigated for two related types of water system: first, the compressed liquid at temperature 420 K and density 1.245 g/cm 3 where the experimental pressure is 15 kilobars; second, thermal samples of compressed water clusters from the trimer to the 27-mer. For the liquid, we report four first-principles molecular dynamics simulations, two generated with the uncorrected PBE and BLYP approximations and a further two with their 1- and 2-body corrected counterparts. The errors of the simulations are characterized by comparing with experimental data for the pressure, with neutron-diffraction data for the three radial distribution functions, and with quantum Monte Carlo (QMC) benchmarks for the energies of sets of configurations of the liquid in periodic boundary conditions. The DFT errors of the configuration samples of compressed water clusters are computed using QMC benchmarks. We find that the 2-body and beyond-2-body errors in the liquid are closely related to similar errors exhibited by the clusters. For both the liquid and the clusters, beyond-2-body errors of DFT make a substantial contribution to the overall errors, so that correction for 1- and 2-body errors does not suffice to give a satisfactory description. For BLYP, a recent representation of 3-body energies due to Medders, Babin, and Paesani [J. Chem. Theory Comput. 9, 1103 (2013)] gives a reasonably good way of correcting for beyond-2-body errors, after which the remaining errors are typically 0.5 mE h ≃ 15 meV/monomer for the liquid and the
Hydrogen molecule on lithium adsorbed graphene: A DFT study
Kaur, Gagandeep; Gupta, Shuchi; Gaganpreet; Dharamvir, Keya
2016-01-01
Electronic structure calculations for the adsorption of molecular hydrogen on lithium (Li) decorated and pristine graphene have been studied systematically using SIESTA code [1] within the framework of the first-principle DFT under the Perdew-Burke-Ernzerhof (PBE) form of the generalized gradient approximation (GGA)[2], including spin polarization. The energy of adsorption of hydrogen molecule on graphene is always enhanced by the presence of co-adsorbed lithium. The most efficient adsorption configuration is when H 2 is lying parallel to lithium adsorbed graphene which is in contrast to its adsorption on pristine graphene (PG) where it prefers perpendicular orientation.
Reaction pathways of the dissociation of methylal: A DFT study
Frey, H -M; Beaud, P; Gerber, T; Mischler, B; Radi, P P; Tzannis, A -P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
Schemata for modelling combustion processes do not yet include reaction rates for oxygenated fuels like methylal (DMM) which is considered as an additive or replacement for diesel due to its low sooting propensity. Density functional theory (DFT) studies of the possible reaction pathways for different dissociation steps of methylal are presented. Cleavage of a hydrogen bond to the methoxy group or the central carbon atom were simulated at the BLYP/6-311++G{sup **} level of theory. The results are compared to the experiment when dissociating and/or ionising DMM with femtosecond pulses. (author) 1 fig., 1 tab., 1 ref.
Digital circuit testing a guide to DFT and other techniques
Wong, Francis C
1991-01-01
Recent technological advances have created a testing crisis in the electronics industry--smaller, more highly integrated electronic circuits and new packaging techniques make it increasingly difficult to physically access test nodes. New testing methods are needed for the next generation of electronic equipment and a great deal of emphasis is being placed on the development of these methods. Some of the techniques now becoming popular include design for testability (DFT), built-in self-test (BIST), and automatic test vector generation (ATVG). This book will provide a practical introduction to
Synthesis and DFT calculations of some 2-aminothiazoles
Rezania, Jafar; Behzadi, Hadi; Shockravi, Abbas; Ehsani, Morteza; Akbarzadeh, Elahe
2018-04-01
A series of 2-aminothiazole derivatives have been synthesized by the reaction of acetyl compounds with thiourea and iodine as catalyst under solvent-free condition, a green chemistry method. The quantum chemical calculations at the DFT/B3LYP level of theory in gas phase were carried out for starting acetyl derivatives. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and related reactivity descriptor of acetyl derivatives, as well as, enthalpy of reactions are calculated in order to investigate the reaction properties of acetyl compounds and yields of the reactions. The calculated reactivity descriptors are well correlated to activity of different acetyl derivatives.
Trans-dinitroglycoluril isomers-A DFT treatment
Lemi Türker
2017-02-01
Full Text Available Isomers of trans-1,4-Dinitroglycoluril (trans-DINGU and their 1,3-tautomers are considered within the constraints of B3LYP/6-31++G (d,p and B3LYP/CC-PVTZ levels of DFT calculations. Additionally, the interactions of these isomers and proton in vacuum are investigated. The data have revealed that two of the three isomers undergo CH bond cleavage as the result of interaction with proton in vacuum. The total energies, some structural properties, the calculated IR and UV spectra are discussed.
Wang, Lin-Wang; Zhao, Zhengji; Meza, Juan
2006-01-01
Density functional theory (DFT) is the most widely used ab initio method in material simulations. It accounts for 75% of the NERSC allocation time in the material science category. The DFT can be used to calculate the electronic structure, the charge density, the total energy and the atomic forces of a material system. With the advance of the HPC power and new algorithms, DFT can now be used to study thousand atom systems in some limited ways (e.g, a single selfconsistent calculation without atomic relaxation). But there are many problems which either requires much larger systems (e.g, >100,000 atoms), or many total energy calculation steps (e.g. for molecular dynamics or atomic relaxations). Examples include: grain boundary, dislocation energies and atomic structures, impurity transport and clustering in semiconductors, nanostructure growth, electronic structures of nanostructures and their internal electric fields. Due to the O(N 3 ) scaling of the conventional DFT algorithms (as implemented in codes like Qbox, Paratec, Petots), these problems are beyond the reach even for petascale computers. As the proposed petascale computers might have millions of processors, new computational paradigms and algorithms are needed to solve the above large scale problems. In particular, O(N) scaling algorithms with parallelization capability up to millions of processors are needed. For a large material science problem, a natural approach to achieve this goal is by divide-and-conquer method: to spatially divide the system into many small pieces, and solve each piece by a small local group of processors. This solves the O(N) scaling and the parallelization problem at the same time. However, the challenge of this approach is for how to divide the system into small pieces and how to patch them up without the trace of the spatial division. Here, we present a linear scaling 3 dimensional fragment (LS3DF) method which uses a novel division-patching scheme that cancels out the
Synthesis, Characterisation and DFT Calculations of Azo-Imine Dyes
Sevil Özkınalı
2017-11-01
Full Text Available In this study, azo dyes containing an imine group were synthesised by coupling p-hydroxybenzylidene aniline with the diazonium salts of p-toluidine, 4-aminophenol, aniline, p-chloroaniline, p-fluoroaniline, and p-nitroaniline. The compounds were characterised by melting point, elemental, UV-Vis and IR analyses as well as 1H-NMR and 13C-NMR spectroscopies. Moreover, the experimental data were supplemented with density functional theory (DFT calculations. The experimental data on FT-IR and UV–Vis spectra of the compounds were compared with theoretical results. The DFT calculations were performed to obtain the ground state geometries of the compounds using the B3LYP hybrid functional level with 6-311++g(2d,2p basis set. Frontier molecular orbital energies, band gap energies and some chemical reactivity parameters, such as chemical hardness and electronegativity, were calculated and compared with experimental values. A significant correlation was observed between the dipole moment and polarities of the solvents and the absorption wavelength of the compounds.
Reactive sites influence in PMMA oligomers reactivity: a DFT study
Paz, C. V.; Vásquez, S. R.; Flores, N.; García, L.; Rico, J. L.
2018-01-01
In this work, we present a theoretical study of methyl methacrylate (MMA) living anionic polymerization. The study was addressed to understanding two important experimental observations made for Michael Szwarc in 1956. The unexpected effect of reactive sites concentration in the propagation rate, and the self-killer behavior of MMA (deactivating of living anionic polymerization). The theoretical calculations were performed by density functional theory (DFT) to obtain the frontier molecular orbitals values. These values were used to calculate and analyze the chemical interaction descriptors in DFT-Koopmans’ theorem. As a result, it was observed that the longest chain-length species (related with low concentration of reactive sites) exhibit the highest reactivity (behavior associated with the increase of the propagation rate). The improvement in this reactivity was attributed to the crosslinking produced in the polymethyl methacrylate chains. Meanwhile, the self-killer behavior was associated with the intermolecular forces present in the reactive sites. This behavior was associated to an obstruction in solvation, since the active sites remained active through all propagation species. The theoretical results were in good agreement with the Szwarc experiments.
Vanilla Technicolor at Linear Colliders
T. Frandsen, Mads; Jarvinen, Matti; Sannino, Francesco
2011-01-01
We analyze the reach of Linear Colliders (LC)s for models of dynamical electroweak symmetry breaking. We show that LCs can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, till the maximum energy in the center-of-mass of the colliding leptons. In ...
Boo, Bong Hyun; Kwak, Hae Ran; Hong, Seung Ki [Chungnam National University, Daejeon (Korea, Republic of); Park, Chan Jo [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); No, Kwang Hyun [Sookmyung Womens University, Seoul (Korea, Republic of)
2010-08-15
We have searched low-lying conformers of calix[4]arene and found one global minimum having a cone shape, together with three conformers such as partial cone-shape conformers. We then elucidated the thermodynamics for the conformational changes by performing density-functional theory (DFT) calculations. The time-dependent DFT calculation enabled us to assign the absorption spectrum and to reveal a variation of the excitation energies with geometry.
Swart, M.; Bickelhaupt, F.M.
2006-01-01
We have carried out an extensive exploration of the gas-phase basicity of archetypal anionic bases across the periodic system using the generalized gradient approximation of density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. First, we validate DFT as a reliable tool for computing proton
Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing.
Yang, Qi; He, Zhixue; Yang, Zhu; Yu, Shaohua; Yi, Xingwen; Shieh, William
2012-01-30
Coherent optical OFDM (CO-OFDM) combined with orthogonal band multiplexing provides a scalable and flexible solution for achieving ultra high-speed rate. Among many CO-OFDM implementations, digital Fourier transform spread (DFT-S) CO-OFDM is proposed to mitigate fiber nonlinearity in long-haul transmission. In this paper, we first illustrate the principle of DFT-S OFDM. We then experimentally evaluate the performance of coherent optical DFT-S OFDM in a band-multiplexed transmission system. Compared with conventional clipping methods, DFT-S OFDM can reduce the OFDM peak-to-average power ratio (PAPR) value without suffering from the interference of the neighboring bands. With the benefit of much reduced PAPR, we successfully demonstrate 1.45 Tb/s DFT-S OFDM over 480 km SSMF transmission.
Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine
Srivastava, Santosh K.; Singh, Vipin B.
2013-11-01
Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.
Linearly constrained minimax optimization
Madsen, Kaj; Schjær-Jacobsen, Hans
1978-01-01
We present an algorithm for nonlinear minimax optimization subject to linear equality and inequality constraints which requires first order partial derivatives. The algorithm is based on successive linear approximations to the functions defining the problem. The resulting linear subproblems...
Souza, Fabrine S. de; Silva, Silvana de O.; Alves, Cláudio N.; Guilhon, Giselle M.S.P. [Universidade Federal do Pará (UFPA), Belém, PA (Brazil). Instituto de Ciências Exatas e Naturais; Faria, Lênio J.G. de; Brasil, Davi do S.B., E-mail: davibb@ufpa.br [Universidade Federal do Pará, Belém, PA (Brazil). Instituto de Tecnologia; Muller, Adolfo H. [Centro Universitário do Estado do Pará, Belém, PA (Brazil)
2015-06-15
Labdane diterpenes exhibit important bioactivities such as cardiovascular effects in rats as well as effects in the treatment of autoimmune diseases and Alzheimer syndrome. Recently, the labdane diterpenes ent-13-epi-manoil oxide, ribenone and ribenol were isolated from Croton palanostigma. The computational method DFT/B3LYP/cc-pVDZ was used to optimize the structures of these diterpenes and to calculate infrared data. Chemical shifts (δ{sub H} and δ{sub C}) of the minimum energy structures (local minimum) were calculated and compared with the experimental data. Comparison of the NMR data by simple linear regression (SLR) showed satisfactory statistical results with a correlation coefficient (R{sup 2} ) and predictive ability (Q{sup 2}) of over 98%. The predicted NMR data were used to confirm the δ{sub H} values that have not been published. (author)
Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes.
Fayet, Guillaume; Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Rotureau, Patricia; Adamo, Carlo
2010-02-26
This work presents a quantitative structure-property relationship (QSPR)-based approach allowing an accurate prediction of the excited-state properties of organic dyes (anthraquinones and azobenzenes) from ground-state molecular descriptors, obtained within the (conceptual) density functional theory (DFT) framework. The ab initio computation of the descriptors was achieved at several levels of theory, so that the influence of the basis set size as well as of the modeling of environmental effects could be statistically quantified. It turns out that, for the entire data set, a statistically-robust four-variable multiple linear regression based on PCM-PBE0/6-31G calculations delivers a R(adj)(2) of 0.93 associated to predictive errors allowing for rapid and efficient dye design. All the selected descriptors are independent of the dye's family, an advantage over previously designed QSPR schemes. On top of that, the obtained accuracy is comparable to the one of the today's reference methods while exceeding the one of hardness-based fittings. QSPR relationships specific to both families of dyes have also been built up. This work paves the way towards reliable and computationally affordable color design for organic dyes. Copyright 2009 Elsevier Inc. All rights reserved.
DFT Modeling of Cross-Linked Polyethylene: Role of Gold Atoms and Dispersion Interactions.
Blaško, Martin; Mach, Pavel; Antušek, Andrej; Urban, Miroslav
2018-02-08
Using DFT modeling, we analyze the concerted action of gold atoms and dispersion interactions in cross-linked polyethylene. Our model consists of two oligomer chains (PEn) with 7, 11, 15, 19, or 23 carbon atoms in each oligomer cross-linked with one to three Au atoms through C-Au-C bonds. In structures with a single gold atom the C-Au-C bond is located in the central position of the oligomer. Binding energies (BEs) with respect to two oligomer radical fragments and Au are as high as 362-489 kJ/mol depending on the length of the oligomer chain. When the dispersion contribution in PEn-Au-PEn oligomers is omitted, BE is almost independent of the number of carbon atoms, lying between 293 and 296 kJ/mol. The dispersion energy contributions to BEs in PEn-Au-PEn rise nearly linearly with the number of carbon atoms in the PEn chain. The carbon-carbon distance in the C-Au-C moiety is around 4.1 Å, similar to the bond distance between saturated closed shell chains in the polyethylene crystal. BEs of pure saturated closed shell PEn-PEn oligomers are 51-187 kJ/mol. Both Au atoms and dispersion interactions contribute considerably to the creation of nearly parallel chains of oligomers with reasonably high binding energies.
Tanak, H.; Pawlus, K.; Marchewka, M. K.
2016-10-01
Melaminium N-acetylglycinate dihydrate, an organic material has been synthesized and characterized by X-ray diffraction, FT-IR, and FT-Raman spectroscopies for the protiated and deuteriated crystals. The title complex crystallizes in the triclinic system, and the space group is P-1 with a = 5.642(1) Å, b = 7.773(2) Å, c = 15.775(3) Å, α = 77.28(1)°, β = 84.00(1)°, γ = 73.43(1)° and Z = 2. The molecular geometry, vibrational frequencies and intensity of the vibrational bands have been interpreted with the aid of structure optimization based on density functional method (B3LYP) with the 6-311++G(d,p) basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. The intermolecular hydrogen bonding interactions of the title compound have been investigated using the natural bonding orbital analysis. It reveals that the O-H···O, N-H···N and N-H···O intermolecular interactions significantly influence crystal packing of this molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, thermodynamic properties, frontier orbitals and chemical reactivity descriptors were also performed at 6-311++G(d,p) level of theory.
Electrocatalytic aerobic epoxidation of alkenes: Experimental and DFT investigation
Magdesieva, Tatiana V.; Borisova, Nataliya E.; Dolganov, Alexander V.; Ustynyuk, Yuri A.
2012-01-01
A new method for electrocatalytic aerobic epoxidation of alkenes catalyzed by binuclear Cu(II) complexes with azomethine ligands based on 2,6-diformyl-4-tert-butylphenol is described. In acetonitrile–water (5%), at the potential of Cu II /Cu I redox couple (–0.8 V vs. Ag/AgCl/KCl) at room temperature the epoxide is obtained in an average yield of around 50%. Contrary to the majority of known epoxidations, no strong oxidants are involved and no free hydrogen peroxide is formed in the reaction, thus making it ecologically friendly. The DFT quantum-chemical modeling of the reaction mechanism revealed that a copper hydroperoxo-complex rather than hydrogen peroxide or a copper oxo-complex oxidizes alkene. The process is very selective since neither products of hydroxylation of benzene ring in styrene nor of allylic oxidation of cyclohexene were detected.
Doped phosphorene for hydrogen capture: A DFT study
Zhang, Hong-ping; Hu, Wei; Du, Aijun; Lu, Xiong; Zhang, Ya-ping; Zhou, Jian; Lin, Xiaoyan; Tang, Youhong
2018-03-01
Hydrogen capture and storage is the core of hydrogen energy application. With its high specific surface area, direct bandgap, and variety of potential applications, phosphorene has attracted much research interest. In this study, density functional theory (DFT) is utilized to study the interactions between doped phosphorenes and hydrogen molecules. The effects of different dopants and metallic or nonmetallic atoms on phosphorene/hydrogen interactions is systematically studied by adsorption energy, electron density difference, partial density of states analysis, and Hirshfeld population. Our results indicate that the metallic dopants Pt, Co, and Ni can help to improve the hydrogen capture ability of phosphorene, whereas the nonmetallic dopants have no effect on it. Among the various metallic dopants, Pt performs very differently, such that it can help to dissociate H2 on phosphorene. Specified doped phosphorene could be a promising candidate for hydrogen storage, with behaviors superior to those of intrinsic graphene sheet.
Charge transfer properties of pentacene adsorbed on silver: DFT study
N, Rekha T.; Rajkumar, Beulah J. M., E-mail: beulah-rajkumar@yahoo.co.in [PG & Research Department of Physics, Lady Doak College, Madurai 625002 (India)
2015-06-24
Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.
Foundations of linear and generalized linear models
Agresti, Alan
2015-01-01
A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,
Resent advance in electron linear accelerators
Takeda, Seishi; Tsumori, Kunihiko; Takamuku, Setsuo; Okada, Toichi; Hayashi, Koichiro; Kawanishi, Masaharu
1986-01-01
In recently constructed electron linear accelerators, there has been remarkable advance both in acceleration of a high-current single bunch electron beam for radiation research and in generation of high accelerating gradient for high energy accelerators. The ISIR single bunch electron linear accelerator has been modified an injector to increase a high-current single bunch charge up to 67 nC, which is ten times greater than the single bunch charge expected in early stage of construction. The linear collider projects require a high accelerating gradient of the order of 100 MeV/m in the linear accelerators. High-current and high-gradient linear accelerators make it possible to obtain high-energy electron beam with small-scale linear accelerators. The advance in linear accelerators stimulates the applications of linear accelerators not only to fundamental research of science but also to industrial uses. (author)
DADOS ESPECTROSCÓPICOS DE DITERPENOS LABDÂNICOS: UMA ANÁLISE TEÓRICA VIA RMN E DFT
Fabrine S. de Souza
2015-05-01
Full Text Available Labdane diterpenes exhibit important bioactivities such as cardiovascular effects in rats as well as effects in the treatment of autoimmune diseases and Alzheimer syndrome. Recently, the labdane diterpenes ent-13-epi-manoil oxide, ribenone and ribenol were isolated from Croton palanostigma. The computational method DFT/B3LYP/cc-pVDZ was used to optimize the structures of these diterpenes and to calculate infrared data. Chemical shifts (δH and δC of the minimum energy structures (local minimum were calculated and compared with the experimental data. Comparison of the NMR data by simple linear regression (SLR showed satisfactory statistical results with a correlation coefficient (R2 and predictive ability (Q2 of over 98%. The predicted NMR data were used to confirm the δH values that have not been published.
Montoya, Joseph H; Tsai, Charlie; Vojvodic, Aleksandra; Nørskov, Jens K
2015-07-08
The electrochemical production of NH3 under ambient conditions represents an attractive prospect for sustainable agriculture, but electrocatalysts that selectively reduce N2 to NH3 remain elusive. In this work, we present insights from DFT calculations that describe limitations on the low-temperature electrocatalytic production of NH3 from N2 . In particular, we highlight the linear scaling relations of the adsorption energies of intermediates that can be used to model the overpotential requirements in this process. By using a two-variable description of the theoretical overpotential, we identify fundamental limitations on N2 reduction analogous to those present in processes such as oxygen evolution. Using these trends, we propose new strategies for catalyst design that may help guide the search for an electrocatalyst that can achieve selective N2 reduction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arjunan, V; Raj, Arushma; Ravindran, P; Mohan, S
2014-01-24
The vibrational fundamental modes of 2-(methylthio)benzimidazole (2MTBI) have been analysed by combining FTIR, FT-Raman and quantum chemical calculations. The structural parameters of the compound are determined from the optimised geometry by B3LYP with 6-31G(∗∗), 6-311++G(∗∗) and cc-pVTZ basis sets and giving energies, harmonic vibrational frequencies, depolarisation ratios, IR intensities and Raman activities. (1)H and (13)C NMR spectra have been analysed and (1)H and (13)C nuclear magnetic resonance chemical shifts are calculated using the gauge independent atomic orbital (GIAO) method. The structure-activity relationship of the compound is also investigated by conceptual DFT methods. The chemical reactivity and site selectivity of the molecule has been determined with the help of global and local reactivity descriptors. Copyright © 2013 Elsevier B.V. All rights reserved.
Fast numerical algorithm for the linear canonical transform.
Hennelly, Bryan M; Sheridan, John T
2005-05-01
The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier transform (FT), and the Fresnel transform (FST) describing free-space propagation. Currently there are numerous efficient algorithms used (for purposes of numerical simulation in the area of optical signal processing) to calculate the discrete FT, FRT, and FST. All of these algorithms are based on the use of the fast Fourier transform (FFT). In this paper we develop theory for the discrete linear canonical transform (DLCT), which is to the LCT what the discrete Fourier transform (DFT) is to the FT. We then derive the fast linear canonical transform (FLCT), an N log N algorithm for its numerical implementation by an approach similar to that used in deriving the FFT from the DFT. Our algorithm is significantly different from the FFT, is based purely on the properties of the LCT, and can be used for FFT, FRT, and FST calculations and, in the most general case, for the rapid calculation of the effect of any QPS.
Riffet, Vanessa; Jacquemin, Denis; Cauët, Emilie; Frison, Gilles
2014-08-12
We assess the pros and cons of a large panel of DFT exchange-correlation functionals for the prediction of the electronic structure of hydrogen-rich peptide radicals formed after electron attachment on a protonated peptide. Indeed, despite its importance in the understanding of the chemical changes associated with the reduction step, the question of the attachment site of an electron and, more generally, of the reduced species formed in the gas phase through electron-induced dissociation (ExD) processes in mass spectrometry is still a matter of debate. For hydrogen-rich peptide radicals in which several positive groups and low-lying π* orbitals can capture the incoming electron in ExD, inclusion of full Hartree-Fock exchange at long-range interelectronic distance is a prerequisite for an accurate description of the electronic states, thereby excluding several popular exchange-correlation functionals, e.g., B3LYP, M06-2X, or CAM-B3LYP. However, we show that this condition is not sufficient by comparing the results obtained with asymptotically correct range-separated hybrids (M11, LC-BLYP, LC-BPW91, ωB97, ωB97X, and ωB97X-D) and with reference CASSCF-MRCI and EOM-CCSD calculations. The attenuation parameter ω significantly tunes the spin density distribution and the excited states vertical energies. The investigated model structures, ranging from methylammonium to hexapeptide, allow us to obtain a description of the nature and energy of the electronic states, depending on (i) the presence of hydrogen bond(s) around the cationic site(s), (ii) the presence of π* molecular orbitals (MOs), and (iii) the selected DFT approach. It turns out that, in the present framework, LC-BLYP and ωB97 yields the most accurate results.
Verma, U. P.; Nayak, V. [School of Studies in Phyics, jiwaji University, Gwalior-474011 (India)
2016-05-23
Quantum mechanical first principle calculations have been performed to study the electronic and structural properties of TiN and TiAs in zinc blende (ZB) and rock salt (RS) structures. The full-potential linearized augmented plane wave (FP-LAPW) method has been used within the framework of density functional theory (DFT). The exchange correlation functional has been solved employing generalized gradient approximation (GGA). Our predicted results for lattice constants are in good agreement with the earlier findings. The electronic band structures of TiX are metallic in both the phases.
Sini, Gjergji; Sears, John S.; Brédas, Jean-Luc
2011-01-01
We have evaluated the performance of several density functional theory (DFT) functionals for the description of the ground-state electronic structure and charge transfer in donor/acceptor complexes. The tetrathiafulvalene- tetracyanoquinodimethane (TTF-TCNQ) complex has been considered as a model test case. Hybrid functionals have been chosen together with recently proposed long-range corrected functionals (ωB97X, ωB97X-D, LRC-ωPBEh, and LC-ωPBE) in order to assess the sensitivity of the results to the treatment and magnitude of exact exchange. The results show an approximately linear dependence of the ground-state charge transfer with the HOMO TTF-LUMOTCNQ energy gap, which in turn depends linearly on the percentage of exact exchange in the functional. The reliability of ground-state charge transfer values calculated in the framework of a monodeterminantal DFT approach was also examined. © 2011 American Chemical Society.
Sini, Gjergji
2011-03-08
We have evaluated the performance of several density functional theory (DFT) functionals for the description of the ground-state electronic structure and charge transfer in donor/acceptor complexes. The tetrathiafulvalene- tetracyanoquinodimethane (TTF-TCNQ) complex has been considered as a model test case. Hybrid functionals have been chosen together with recently proposed long-range corrected functionals (ωB97X, ωB97X-D, LRC-ωPBEh, and LC-ωPBE) in order to assess the sensitivity of the results to the treatment and magnitude of exact exchange. The results show an approximately linear dependence of the ground-state charge transfer with the HOMO TTF-LUMOTCNQ energy gap, which in turn depends linearly on the percentage of exact exchange in the functional. The reliability of ground-state charge transfer values calculated in the framework of a monodeterminantal DFT approach was also examined. © 2011 American Chemical Society.
Prashanth, J.; Reddy, Byru Venkatram
2018-03-01
The Fourier transform infrared (FTIR) spectra of organic compounds 4-fluoro-2-azido-1-phenylethanone (FAP), 4-chloro-2-azido-1-phenylethanone (CAP) and 4-bromo-2-azido-1-phenylethanone (BAP) have been recorded in the region 4000-400 cm-1. The optimized molecular structure for global minimum energy of the titled molecules is determined by evaluating torsional potentials as a function of rotation angle about free rotation bonds among the substituent groups subjecting them to DFT employing B3LYP functional with 6-311++G (d,p) basis set. The vibrational frequencies along with infrared intensities are computed by SQM procedure. The rms error between observed and calculated frequencies is found to be 9.27, 8.17 and 7.95 cm-1 for FAP, CAP and BAP, respectively which shows good agreement between experimental and scaled values of calculated frequencies obtained by DFT. The vibrational assignments of all the fundamental bands of each molecule are made unambiguously using PED and eigen vectors obtained in the computations. The computed values of dipole moment, polarizability and hyperpolarizability indicate that the titled molecules exhibit NLO behaviour and hence may be considered for potential applicants for the development of NLO materials. HOMO and LUMO energies evaluated in the study demonstrate chemical stability of the molecules. NBO analysis is made to study the stability of the molecules arising from hyper conjugative interactions and charge delocalization. The molecular electrostatic surface potential (MESP) and thermodynamic parameters are also evaluated.
Linear regression in astronomy. II
Feigelson, Eric D.; Babu, Gutti J.
1992-01-01
A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.
Linear inflation from quartic potential
Kannike, Kristjan; Racioppi, Antonio [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Raidal, Martti [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Institute of Physics, University of Tartu,Tartu (Estonia)
2016-01-07
We show that if the inflaton has a non-minimal coupling to gravity and the Planck scale is dynamically generated, the results of Coleman-Weinberg inflation are confined in between two attractor solutions: quadratic inflation, which is ruled out by the recent measurements, and linear inflation which, instead, is in the experimental allowed region. The minimal scenario has only one free parameter — the inflaton’s non-minimal coupling to gravity — that determines all physical parameters such as the tensor-to-scalar ratio and the reheating temperature of the Universe. Should the more precise future measurements of inflationary parameters point towards linear inflation, further interest in scale-invariant scenarios would be motivated.
A Linear Electromagnetic Piston Pump
Hogan, Paul H.
Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.
Cosmological perturbations beyond linear order
CERN. Geneva
2013-01-01
Cosmological perturbation theory is the standard tool to understand the formation of the large scale structure in the Universe. However, its degree of applicability is limited by the growth of the amplitude of the matter perturbations with time. This problem can be tackled with by using N-body simulations or analytical techniques that go beyond the linear calculation. In my talk, I'll summarise some recent efforts in the latter that ameliorate the bad convergence of the standard perturbative expansion. The new techniques allow better analytical control on observables (as the matter power spectrum) over scales very relevant to understand the expansion history and formation of structure in the Universe.
Vibrational spectroscopic study and NBO analysis on tranexamic acid using DFT method
Muthu, S.; Prabhakaran, A.
2014-08-01
In this work, we reported the vibrational spectra of tranexamic acid (TA) by experimental and quantum chemical calculation. The solid phase FT-Raman and FT-IR spectra of the title compound were recorded in the region 4000 cm-1 to 100 cm-1 and 4000 cm-1 to 400 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of TA in the ground state have been calculated by using density functional theory (DFT) B3LYP method with standard 6-31G(d,p) basis set. The scaled theoretical wavenumber showed very good agreement with the experimental values. The vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes. Stability of the molecule, arising from hyperconjugative interactions and charge delocalization, has been analyzed using Natural Bond Orbital (NBO) analysis. The results show that ED in the σ* and π* antibonding orbitals and second order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electrostatic potential mapped onto an isodensity surface has been obtained. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase.
Design of Pd-Based Bimetallic Catalysts for ORR: A DFT Calculation Study
Lihui Ou
2015-01-01
Full Text Available Developing Pd-lean catalysts for oxygen reduction reaction (ORR is the key for large-scale application of proton exchange membrane fuel cells (PEMFCs. In the present paper, we have proposed a multiple-descriptor strategy for designing efficient and durable ORR Pd-based alloy catalysts. We demonstrated that an ideal Pd-based bimetallic alloy catalyst for ORR should possess simultaneously negative alloy formation energy, negative surface segregation energy of Pd, and a lower oxygen binding ability than pure Pt. By performing detailed DFT calculations on the thermodynamics, surface chemistry and electronic properties of Pd-M alloys, Pd-V, Pd-Fe, Pd-Zn, Pd-Nb, and Pd-Ta, are identified theoretically to have stable Pd segregated surface and improved ORR activity. Factors affecting these properties are analyzed. The alloy formation energy of Pd with transition metals M can be mainly determined by their electron interaction. This may be the origin of the negative alloy formation energy for Pd-M alloys. The surface segregation energy of Pd is primarily determined by the surface energy and the atomic radius of M. The metals M which have smaller atomic radius and higher surface energy would tend to favor the surface segregation of Pd in corresponding Pd-M alloys.
FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate
Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.
2013-08-01
Melaminium perchlorate monohydrate (MPM), an organic material has been synthesized by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MPM crystal belongs to triclinic system with space group P-1. FTIR and FT Raman spectra are recorded at room temperature. Functional group assignment has been made for the melaminium cations and perchlorate anions. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory (DFT) calculations using Firefly (PC GAMESS) version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with experimental values. The assignment of the bands has been made on the basis of the calculated PED. The Mulliken charges, HOMO-LUMO orbital energies are analyzed directly from Firefly program log files and graphically illustrated. HOMO-LUMO energy gap and other related molecular properties are also calculated. The theoretically constructed FT-IR and FT-Raman spectra of MPM coincide with the experimental one. The chemical structure of the compound has been established by 1H and 13C NMR spectra. No detectable signal was observed during powder test for second harmonic generation.
Amira Jalil Fragoso-Medina
2017-10-01
Full Text Available The structure of the ortho-, meta- and para- hybrid diindolylmethane-phenylboronic acids and their interactions were optimized with by a quantum chemical method, using density functional theory at the (DFT level. Thus, infrared bands were assigned based on the scaled theoretical wavenumbers by correlating the respective experimental data of the molecules. In addition, the corresponding 1H-/13C-/11B-NMR experimental and theoretical chemical shifts were correlated. The target molecules showed a poor treatment of the OH shifts in the GIAO method due to the absence of explicit solvent effects in these calculations; therefore, they were explicitly considered with acetone molecules. Moreover, the electron density at the hydrogen bond critical point increased, generating stabilization energy, from weak to moderate or weak to strong, serving as an indicator of the strength of the hydrogen bond between the different intermolecular interactions. Finally, some properties related to the reactive behavior of the target molecules associated with their cytotoxic effects and metabolic pathways were also calculated.
Linear gate with prescaled window
Koch, J; Bissem, H H; Krause, H; Scobel, W [Hamburg Univ. (Germany, F.R.). 1. Inst. fuer Experimentalphysik
1978-07-15
An electronic circuit is described that combines the features of a linear gate, a single channel analyzer and a prescaler. It allows selection of a pulse height region between two adjustable thresholds and scales the intensity of the spectrum within this window down by a factor 2sup(N) (0<=N<=9), whereas the complementary part of the spectrum is transmitted without being affected.
Linear polarization of BY Draconis
Koch, R.H.; Pfeiffer, R.J.
1976-01-01
Linear polarization measurements are reported in four bandpasses for the flare star BY Dra. The red polarization is intrinsically variable at a confidence level greater than 99 percent. On a time scale of many months, the variability is not phase-locked to either a rotational or a Keplerian ephemeris. The observations of the three other bandpasses are useful principally to indicate a polarization spectrum rising toward shorter wavelengths
An EQT-based cDFT approach for a confined Lennard-Jones fluid mixture
Motevaselian, M. H.; Mashayak, S. Y.; Aluru, N. R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
2015-09-28
Empirical potential-based quasi-continuum theory (EQT) provides a route to incorporate atomistic detail into continuum framework such as the Nernst-Planck equation. EQT can also be used to construct a grand potential functional for classical density functional theory (cDFT). The combination of EQT and cDFT provides a simple and fast approach to predict the inhomogeneous density, potential profiles, and thermodynamic properties of confined fluids. We extend the EQT-cDFT approach to confined fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen inside slit-like channels of graphene. We show that the EQT-cDFT predictions for the structure of the confined fluid mixture compare well with the molecular dynamics simulation results. In addition, our results show that graphene slit nanopores exhibit a selective adsorption of methane over hydrogen.
All-optical generation of DFT-S-OFDM superchannels using periodic sinc pulses.
Lowery, Arthur James; Zhu, Chen; Viterbo, Emanuele; Corcoran, Bill
2014-11-03
Discrete-Fourier-transform spread (DFT-S) optical Orthogonal Frequency Division Multiplexed (OFDM) signals offer improved nonlinearity performance in long haul optical communications systems, and can be used to form superchannels. In this paper we propose how DFT-S-OFDM superchannels can be generated and demultiplexed using all-optical techniques, and demonstrate the feasibility using numerical simulations. We also discuss how each wavelength channel is similar to recently proposed Orthogonally Time-Division Multiplexed (OrthTDM) systems using periodic-sinc pulses from, for example, a Nyquist laser. The key difference between OrthTDM and DFT-S-OFDM is the synchronization of the symbol boundaries of every modulation tributary; because of this we show that OrthTDM cannot be formed into superchannels that can be demultiplexed without penalties, but DFT-S-OFDM can be.
Methyl Iodide Oxidative Addition to Rhodium(I) Complexes: a DFT ...
NJD
to the understanding of the role of the steric and electronic prop- erties of the different .... The pure Density Functional Theory (DFT) calculations were carried out using .... Since quantum computational methods are applied for the first time to ...
Electronic and Optical Properties of CuO Based on DFT+U and GW Approximation
Ahmad, F; Agusta, M K; Dipojono, H K
2016-01-01
We report ab initio calculations of electronic structure and optical properties of monoclinic CuO based on DFT+U and GW approximation. CuO is an antiferromagnetic material with strong electron correlations. Our calculation shows that DFT+U and GW approximation sufficiently reliable to investigate the material properties of CuO. The calculated band gap of DFT+U for reasonable value of U slightly underestimates. The use of GW approximation requires adjustment of U value to get realistic result. Hybridization Cu 3dxz, 3dyz with O 2p plays an important role in the formation of band gap. The calculated optical properties based on DFT+U and GW corrections by solving Bethe-Salpeter are in good agreement with the calculated electronic properties and the experimental result. (paper)
Karabacak, Mehmet; Cinar, Mehmet
2012-02-01
In this work, the molecular conformation, vibrational and electronic transition analysis of 2-amino-5-bromobenzoic acid (2A5BrBA) were presented for the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. FT-IR and FT-Raman spectra were recorded in the regions of 400-4000 cm(-1) and 50-4000 cm(-1), respectively. There are four conformers, C1, C2, C3 and C4 for this molecule. The geometrical parameters, energies and wavenumbers have been obtained for all four conformers. The computational results diagnose the most stable conformer of 2A5BrBA as the C1 form. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Raman activities calculated by DFT method have been converted to the corresponding Raman intensities using Raman scattering theory. The UV spectra of investigated compound were recorded in the region of 200-400 nm for ethanol and water solutions. The electronic properties were evaluated with help of time-dependent DFT (TD-DFT) theoretically and results were compared with experimental observations. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. The observed and the calculated geometric parameters, vibrational wavenumbers and electronic transitions were compared with observed data and found to be in good agreement. Copyright © 2011 Elsevier B.V. All rights reserved.
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
Peterson, David; Stofleth, Jerome H.; Saul, Venner W.
2017-07-11
Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.
Classifying Linear Canonical Relations
Lorand, Jonathan
2015-01-01
In this Master's thesis, we consider the problem of classifying, up to conjugation by linear symplectomorphisms, linear canonical relations (lagrangian correspondences) from a finite-dimensional symplectic vector space to itself. We give an elementary introduction to the theory of linear canonical relations and present partial results toward the classification problem. This exposition should be accessible to undergraduate students with a basic familiarity with linear algebra.
Palladium(0) alkyne complexes as active species: A DFT-investigation
Ahlquist, Mårten Sten Gösta; Fabrizi, Giancarlo; Cacchi, Sandro
2005-01-01
Alkynes have been found to be excellent ligands for Pd(0); the stability of a range of alkyne-Pd(0) complexes, and their reactivity in oxidative addition, have been investigated by DFT methods.......Alkynes have been found to be excellent ligands for Pd(0); the stability of a range of alkyne-Pd(0) complexes, and their reactivity in oxidative addition, have been investigated by DFT methods....
Pablo Rivero
2015-06-01
Full Text Available We present in this article a pseudopotential (PP database for DFT calculations in the context of the SIESTA code [1–3]. Comprehensive optimized PPs in two formats (psf files and input files for ATM program are provided for 20 chemical elements for LDA and GGA exchange-correlation potentials. Our data represents a validated database of PPs for SIESTA DFT calculations. Extensive transferability tests guarantee the usefulness of these PPs.
Application of DFT Filter Banks and Cosine Modulated Filter Banks in Filtering
Lin, Yuan-Pei; Vaidyanathan, P. P.
1994-01-01
None given. This is a proposal for a paper to be presented at APCCAS '94 in Taipei, Taiwan. (From outline): This work is organized as follows: Sec. II is devoted to the construction of the new 2m channel under-decimated DFT filter bank. Implementation and complexity of this DFT filter bank are discussed therein. IN a similar manner, the new 2m channel cosine modulated filter bank is discussed in Sec. III. Design examples are given in Sec. IV.
DFT Perspective on the Thermochemistry of Carbon Nitride Synthesis
Melissen, Sigismund T. A. G.
2016-10-11
Graphitic (g)-CxNyHz has become a popular family of photoharvesters in photocatalytic water splitting cells, as well as other applications in chemistry. In this Article, different g-CxNyHz structures were studied thermochemically using DFT. Following a benchmark study with different families of functionals, the B3LYP functional was shown to accurately capture the thermochemistry of carbon nitride synthesis. A triple-ζ polarized basis set, in combination with Civalleri’s modification to Grimme’s D2 formalism (with s6 = 0.5) for dispersion interactions, yielded accurate geometries. Grimme’s D3 formalism with Becke–Johnson damping was used to refine the energetic description of dispersion interactions. The stepwise cycloaddition of cyanamide to form melamine was shown to be exergonic, whereas the stepwise deamination of melamine to form g-C3N4 was shown to be endergonic. Of those structures respecting the [C6N9H3]n chemical formula, the structure commonly known as “melon” was found to be most stable, whereas the sp3-hybridized [C6N9H3]n elucidated by Horvath-Bordon et al. was found to be the least stable. Fully polymerized triazine-based g-C3N4 appeared slightly more stable than heptazine-based g-C3N4.
DFT Studies on Interaction between Lanthanum and Hydroxyamide
Pati, Anindita; Kundu, T. K.; Pal, Snehanshu
2018-03-01
Extraction and separation of individual rare earth elements has been a challenge as they are chemically very similar. Solvent extraction is the most suitable way for extraction of rare earth elements. Acidic, basic, neutral, chelating are the major classes of extractants for solvent extraction of rare earth elements. The coordination complex of chelating extractants is very selective with positively charged metal ion. Hence they are widely used. Hydroxyamide is capable of forming chelates with metal cations. In this present study interactions of hydroxyamide ligand with lanthanum have been investigated using density functional theory (DFT). Two different functional such as raB97XD and B3LYP are applied along with 6-31+G(d,p) basis set for carbon, nitrogen, hydrogen and SDD basis set for lanthanum. Stability of formed complexes has been evaluated based on calculated interaction energies and solvation energies. Frontier orbital (highest occupied molecular orbital or HOMO and lowest unoccupied molecular orbital or LUMO) energies of the molecule have also been calculated. Electronegativity, chemical hardness, chemical softness and chemical potential are also determined for these complexes to get an idea about the reactivity. From the partial charge distribution it is seen that oxygen atoms in hydroxyamide have higher negative charge. The double bonded oxygen atom present in the hydroxyamide structure has higher electron density and so it forms bond with lanthanum but the singly bonded oxygen atom in the hydroxyamide structure is weaker donor atom and so it is less available for interaction with lanthanum.
DFT Perspective on the Thermochemistry of Carbon Nitride Synthesis
Melissen, Sigismund T. A. G.; Steinmann, Stephan N.; Le Bahers, Tangui; Sautet, Philippe
2016-01-01
Graphitic (g)-CxNyHz has become a popular family of photoharvesters in photocatalytic water splitting cells, as well as other applications in chemistry. In this Article, different g-CxNyHz structures were studied thermochemically using DFT. Following a benchmark study with different families of functionals, the B3LYP functional was shown to accurately capture the thermochemistry of carbon nitride synthesis. A triple-ζ polarized basis set, in combination with Civalleri’s modification to Grimme’s D2 formalism (with s6 = 0.5) for dispersion interactions, yielded accurate geometries. Grimme’s D3 formalism with Becke–Johnson damping was used to refine the energetic description of dispersion interactions. The stepwise cycloaddition of cyanamide to form melamine was shown to be exergonic, whereas the stepwise deamination of melamine to form g-C3N4 was shown to be endergonic. Of those structures respecting the [C6N9H3]n chemical formula, the structure commonly known as “melon” was found to be most stable, whereas the sp3-hybridized [C6N9H3]n elucidated by Horvath-Bordon et al. was found to be the least stable. Fully polymerized triazine-based g-C3N4 appeared slightly more stable than heptazine-based g-C3N4.
3-Iodobenzaldehyde: XRD, FT-IR, Raman and DFT studies.
Kumar, Chandraju Sadolalu Chidan; Parlak, Cemal; Tursun, Mahir; Fun, Hoong-Kun; Rhyman, Lydia; Ramasami, Ponnadurai; Alswaidan, Ibrahim A; Keşan, Gürkan; Chandraju, Siddegowda; Quah, Ching Kheng
2015-06-15
The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed. Copyright © 2015 Elsevier B.V. All rights reserved.
DFT application for chlorin derivatives photosensitizer drugs modeling
Machado, Neila; Carvalho, B. G.; Téllez Soto, C. A.; Martin, A. A.; Favero, P. P.
2018-04-01
Photodynamic therapy is an alternative form of cancer treatment that meets the desire for a less aggressive approach to the body. It is based on the interaction between a photosensitizer, activating light, and molecular oxygen. This interaction results in a cascade of reactions that leads to localized cell death. Many studies have been conducted to discover an ideal photosensitizer, which aggregates all the desirable characteristics of a potent cell killer and generates minimal side effects. Using Density Functional Theory (DFT) implemented in the program Vienna Ab-initio Simulation Package, new chlorin derivatives with different functional groups were simulated to evaluate the different absorption wavelengths to permit resonant absorption with the incident laser. Gaussian 09 program was used to determine vibrational wave numbers and Natural Bond Orbitals. The chosen drug with the best characteristics for the photosensitizer was a modified model of the original chlorin, which was called as Thiol chlorin. According to our calculations it is stable and is 19.6% more efficient at optical absorption in 708 nm in comparison to the conventional chlorin e6. Vibrational modes, optical and electronic properties were predicted. In conclusion, this study is an attempt to improve the development of new photosensitizer drugs through computational methods that save time and contribute to decrease the numbers of animals for model application.
Proton transfers in the Strecker reaction revealed by DFT calculations
Shinichi Yamabe
2014-08-01
Full Text Available The Strecker reaction of acetaldehyde, NH3, and HCN to afford alanine was studied by DFT calculations for the first time, which involves two reaction stages. In the first reaction stage, the aminonitrile was formed. The rate-determining step is the deprotonation of the NH3+ group in MeCH(OH-NH3+ to form 1-aminoethanol, which occurs with an activation energy barrier (ΔE≠ of 9.6 kcal/mol. The stereochemistry (R or S of the aminonitrile product is determined at the NH3 addition step to the carbonyl carbon of the aldehyde. While the addition of CN− to the carbon atom of the protonated imine 7 appears to scramble the stereochemistry, the water cluster above the imine plane reinforces the CN− to attack the imine group below the plane. The enforcement hinders the scrambling. In the second stage, the aminonitrile transforms to alanine, where an amide Me-CH(NH2-C(=O-NH2 is the key intermediate. The rate-determining step is the hydrolysis of the cyano group of N(amino-protonated aminonitrile which occurs with an ΔE≠ value of 34.7 kcal/mol. In the Strecker reaction, the proton transfer along the hydrogen bonds plays a crucial role.
Linear polarized fluctuations in the cosmic microwave background
Partridge, R.B.; Nowakowski, J.; Martin, H.M.
1988-01-01
We report here limits on the linear (and circular) polarization of the cosmic microwave background on small angular scales, 18''≤ θ ≤ 160''. The limits are based on radio maps of Stokes parameters and polarisation (linear and circular). (author)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Yang, Zhihui; Luo, Shuang; Wei, Zongsu; Ye, Tiantian; Spinney, Richard; Chen, Dong; Xiao, Ruiyang
2016-01-01
The second‒order rate constants (k) of hydroxyl radical (·OH) with polychlorinated biphenyls (PCBs) in the gas phase are of scientific and regulatory importance for assessing their global distribution and fate in the atmosphere. Due to the limited number of measured k values, there is a need to model the k values for unknown PCBs congeners. In the present study, we developed a quantitative structure–activity relationship (QSAR) model with quantum chemical descriptors using a sequential approach, including correlation analysis, principal component analysis, multi−linear regression, validation, and estimation of applicability domain. The result indicates that the single descriptor, polarizability (α), plays an important role in determining the reactivity with a global standardized function of lnk = −0.054 × α ‒ 19.49 at 298 K. In order to validate the QSAR predicted k values and expand the current k value database for PCBs congeners, an independent method, density functional theory (DFT), was employed to calculate the kinetics and thermodynamics of the gas‒phase ·OH oxidation of 2,4′,5-trichlorobiphenyl (PCB31), 2,2′,4,4′-tetrachlorobiphenyl (PCB47), 2,3,4,5,6-pentachlorobiphenyl (PCB116), 3,3′,4,4′,5,5′-hexachlorobiphenyl (PCB169), and 2,3,3′,4,5,5′,6-heptachlorobiphenyl (PCB192) at 298 K at B3LYP/6–311++G**//B3LYP/6–31 + G** level of theory. The QSAR predicted and DFT calculated k values for ·OH oxidation of these PCB congeners exhibit excellent agreement with the experimental k values, indicating the robustness and predictive power of the single–descriptor based QSAR model we developed. - Highlights: • We developed a single−descriptor based QSAR model for ·OH oxidation of PCBs. • We independently validated the QSAR predicted k values of five PCB congeners with the DFT method. • The QSAR predicted and DFT calculated k for the five PCB congeners exhibit excellent agreement. - We developed a single
Yumura, Takashi; Yamamoto, Wataru
2017-09-20
We employed density functional theory (DFT) calculations with dispersion corrections to investigate energetically preferred alignments of certain p,p'-dimethylaminonitrostilbene (DANS) molecules inside an armchair (m,m) carbon nanotube (n × DANS@(m,m)), where the number of inner molecules (n) is no greater than 3. Here, three types of alignments of DANS are considered: a linear alignment in a parallel fashion and stacking alignments in parallel and antiparallel fashions. According to DFT calculations, a threshold tube diameter for containing DANS molecules in linear or stacking alignments was found to be approximately 1.0 nm. Nanotubes with diameters smaller than 1.0 nm result in the selective formation of linearly aligned DANS molecules due to strong confinement effects within the nanotubes. By contrast, larger diameter nanotubes allow DANS molecules to align in a stacking and linear fashion. The type of alignment adopted by the DANS molecules inside a nanotube is responsible for their second-order non-linear optical properties represented by their static hyperpolarizability (β 0 values). In fact, we computed β 0 values of DANS assemblies taken from optimized n × DANS@(m,m) structures, and their values were compared with those of a single DANS molecule. DFT calculations showed that β 0 values of DANS molecules depend on their alignment, which decrease in the following order: linear alignment > parallel stacking alignment > antiparallel stacking alignment. In particular, a linear alignment has a β 0 value more significant than that of the same number of isolated molecules. Therefore, the linear alignment of DANS molecules, which is only allowed inside smaller diameter nanotubes, can strongly enhance their second-order non-linear optical properties. Since the nanotube confinement determines the alignment of DANS molecules, a restricted nanospace can be utilized to control their second-order non-linear optical properties. These DFT findings can assist in the
Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam
2016-12-01
The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb)=dIp,a(Meb)/d[Meb]=19.65μAμM(-1)), a low detection limit (LOD (Meb)=19nM) and a wide linear dynamic range (0.06-3μM) was resulted for the voltammetric quantification of Meb. Copyright © 2016 Elsevier B.V. All rights reserved.
Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam
2016-01-01
The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb) = dI p,a (Meb) / d[Meb] = 19.65 μA μM −1 ), a low detection limit (LOD (Meb) = 19 nM) and a wide linear dynamic range (0.06–3 μM) was resulted for the voltammetric quantification of Meb. - Highlights: • Electrochemical oxidation mechanism of Meb was investigated. • A carbon nanostructure modified electrode was developed for the determination of Meb. • The modified electrode surface was characterized by SEM and impedance studies. • This study provides an effective chemically modified electrode with satisfactory repeatability and reproducibility
Synthesis, Spectroscopic and DFT Characterization of 4â-(4-tert ...
In this work the synthesis, spectral characterization and non-linear optical properties of metal-free .... following literature methods23–26 The advantage of this method ..... Synthesis of phthalocyanine conjugates with gold nanoparticles and.
Darula, Radoslav; Sorokin, Sergey
2013-01-01
An electro-magneto-mechanical system combines three physical domains - a mechanical structure, a magnetic field and an electric circuit. The interaction between these domains is analysed for a structure with two degrees of freedom (translational and rotational) and two electrical circuits. Each...... electrical circuit is described by a differential equation of the 1st order, which is considered to contribute to the coupled system by 0.5 DOF. The electrical and mechanical systems are coupled via a magnetic circuit, which is inherently non-linear, due to a non-linear nature of the electro-magnetic force...
Nguyen, Duy Duc; Spanget-Larsen, Jens
SRLD spectra of Quinizarin, Anthrarufin, and Chrysazin partially aligned in stretched polyethylene were measured at the ASTRID synchrotron UV1 beamline (ISA, Aarhus University), yielding absorbance and polarization data up to 57000 cm-1. The observed absorption bands were assigned to electronic t...
Non linear system become linear system
Petre Bucur
2007-01-01
Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.
Linear motor coil assembly and linear motor
2009-01-01
An ironless linear motor (5) comprising a magnet track (53) and a coil assembly (50) operating in cooperation with said magnet track (53) and having a plurality of concentrated multi-turn coils (31 a-f, 41 a-d, 51 a-k), wherein the end windings (31E) of the coils (31 a-f, 41 a-e) are substantially
IR and NMR spectroscopic correlation of enterobactin by DFT
Moreno, M.; Zacarias, A.; Porzel, A.; Velasquez, L.; Gonzalez, G.; Alegría-Arcos, M.; Gonzalez-Nilo, F.; Gross, E. K. U.
2018-06-01
Emerging and re-emerging epidemic diseases pose an ongoing threat to global health. Currently, Enterobactin and Enterobactin derivatives have gained interest, owing to their potential application in the pharmaceutical field. As it is known [J. Am. Chem. Soc (1979) 101, 20, 6097-6104], Enterobactin (H6EB) is an efficient iron carrier synthesized and secreted by many microbial species. In order to facilitate the elucidation of enterobactin and its analogues, here we propose the creation of a H6EB standard set using Density Functional Theory Infrared (IR) and NMR spectra. We used two exchange-correlation (xc) functionals (PBE including long-range corrections sbnd LC-PBEsbnd and mPW1), 2 basis sets (QZVP and 6-31G(d)) and 2 grids (fine and ultrafine) for most of the H6EB structures dependent of dihedral angles. The results show a significant difference between the Osbnd H and Nsbnd H bands, while the Cdbnd O amide and Osbnd (Cdbnd O)sbnd IR bands are often found on top of each other. The NMR DFT calculations show a strong dependence on the xc functional, basis set, and grid used for the H6EB structure. Calculated 1H and 13C NMR spectra enable the effect of the solvent to be understood in the context of the experimental measurements. The good agreement between the experimental and the calculated spectra using LC-PBE/QZVP and ultrafine grid suggest the possibility of the systems reported here to be considered as a standard set. The dependence of electrostatic potential and frontier orbitals with the catecholamide dihedral angles of H6EB is described. The matrix-assisted laser desorption/ionization time of the flight mass spectrometry (MALDI-TOF MS) of H6EB is also reported of manner to enrich the knowledge about its reactivity.
ITMETH, Iterative Routines for Linear System
Greenbaum, A.
1989-01-01
1 - Description of program or function: ITMETH is a collection of iterative routines for solving large, sparse linear systems. 2 - Method of solution: ITMETH solves general linear systems of the form AX=B using a variety of methods: Jacobi iteration; Gauss-Seidel iteration; incomplete LU decomposition or matrix splitting with iterative refinement; diagonal scaling, matrix splitting, or incomplete LU decomposition with the conjugate gradient method for the problem AA'Y=B, X=A'Y; bi-conjugate gradient method with diagonal scaling, matrix splitting, or incomplete LU decomposition; and ortho-min method with diagonal scaling, matrix splitting, or incomplete LU decomposition. ITMETH also solves symmetric positive definite linear systems AX=B using the conjugate gradient method with diagonal scaling or matrix splitting, or the incomplete Cholesky conjugate gradient method
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Gąsiorski, P.; Matusiewicz, M.; Gondek, E.; Uchacz, T.; Wojtasik, K.; Danel, A.; Shchur, Ya.; Kityk, A. V.
2018-01-01
Paper reports the synthesis and spectroscopic studies of two novel 1-Methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoxaline (PQX) derivatives with 6-substituted methyl (MeMPPQX) or methoxy (MeOMPPQX) side groups. The optical absorption and fluorescence emission spectra are recorded in solvents of different polarity. Steady state and time-resolved spectroscopy provide photophysical characterization of MeMPPQX and MeOMPPQX dyes as materials for potential luminescence or electroluminescence applications. Measured optical absorption and fluorescence emission spectra are compared with quantum-chemical DFT/TDDFT calculations using long-range corrected xc-functionals, LRC-BLYP and CAM-B3LYP in combination with self-consistent reaction field model based on linear response (LR), state specific (SS) or corrected linear response (CLR) solvations. Performances of relevant theoretical models and approaches are compared. The reparameterized LRC-BLYP functional (ω = 0.231 Bohr-1) in combination with CLR solvation provides most accurate prediction of both excitation and emission energies. The MeMPPQX and MeOMPPQX dyes represent efficient fluorescence emitters in blue-green region of the visible spectra.
Matrices and linear transformations
Cullen, Charles G
1990-01-01
""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first
Efficient Non Linear Loudspeakers
Petersen, Bo R.; Agerkvist, Finn T.
2006-01-01
Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....
Faraway, Julian J
2014-01-01
A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition.New to the Second EditionReorganiz
Carr, Joseph
1996-01-01
The linear IC market is large and growing, as is the demand for well trained technicians and engineers who understand how these devices work and how to apply them. Linear Integrated Circuits provides in-depth coverage of the devices and their operation, but not at the expense of practical applications in which linear devices figure prominently. This book is written for a wide readership from FE and first degree students, to hobbyists and professionals.Chapter 1 offers a general introduction that will provide students with the foundations of linear IC technology. From chapter 2 onwa
Fault tolerant linear actuator
Tesar, Delbert
2004-09-14
In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.
Superconducting linear accelerator cryostat
Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.
1984-01-01
A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)
Patten, B.C.
1983-04-01
Two issues concerning linearity or nonlinearity of natural systems are considered. Each is related to one of the two alternative defining properties of linear systems, superposition and decomposition. Superposition exists when a linear combination of inputs to a system results in the same linear combination of outputs that individually correspond to the original inputs. To demonstrate this property it is necessary that all initial states and inputs of the system which impinge on the output in question be included in the linear combination manipulation. As this is difficult or impossible to do with real systems of any complexity, nature appears nonlinear even though it may be linear. A linear system that displays nonlinear behavior for this reason is termed pseudononlinear. The decomposition property exists when the dynamic response of a system can be partitioned into an input-free portion due to state plus a state-free portion due to input. This is a characteristic of all linear systems, but not of nonlinear systems. Without the decomposition property, it is not possible to distinguish which portions of a system's behavior are due to innate characteristics (self) vs. outside conditions (environment), which is an important class of questions in biology and ecology. Some philosophical aspects of these findings are then considered. It is suggested that those ecologists who hold to the view that organisms and their environments are separate entities are in effect embracing a linear view of nature, even though their belief systems and mathematical models tend to be nonlinear. On the other hand, those who consider that organism-environment complex forms a single inseparable unit are implictly involved in non-linear thought, which may be in conflict with the linear modes and models that some of them use. The need to rectify these ambivalences on the part of both groups is indicated.
Parallel Implementation of Gamma-Point Pseudopotential Plane-Wave DFT with Exact Exchange
Bylaska, Eric J.; Tsemekhman, Kiril L.; Baden, Scott B.; Weare, John H.; Jonsson, Hannes
2011-01-01
One of the more persistent failures of conventional density functional theory (DFT) methods has been their failure to yield localized charge states such as polarons, excitons and solitons in solid-state and extended systems. It has been suggested that conventional DFT functionals, which are not self-interaction free, tend to favor delocalized electronic states since self-interaction creates a Coulomb barrier to charge localization. Pragmatic approaches in which the exchange correlation functionals are augmented with small amount of exact exchange (hybrid-DFT, e.g. B3LYP and PBE0) have shown promise in localizing charge states and predicting accurate band gaps and reaction barriers. We have developed a parallel algorithm for implementing exact exchange into pseudopotential plane-wave density functional theory and we have implemented it in the NWChem program package. The technique developed can readily be employed in plane-wave DFT programs. Furthermore, atomic forces and stresses are straightforward to implement, making it applicable to both confined and extended systems, as well as to Car-Parrinello ab initio molecular dynamic simulations. This method has been applied to several systems for which conventional DFT methods do not work well, including calculations for band gaps in oxides and the electronic structure of a charge trapped state in the Fe(II) containing mica, annite.
Richter, B.
1985-01-01
A report is given on the goals and progress of the SLAC Linear Collider. The author discusses the status of the machine and the detectors and give an overview of the physics which can be done at this new facility. He also gives some ideas on how (and why) large linear colliders of the future should be built
Rogner, H.H.
1989-01-01
The submitted sections on linear programming are extracted from 'Theorie und Technik der Planung' (1978) by W. Blaas and P. Henseler and reformulated for presentation at the Workshop. They consider a brief introduction to the theory of linear programming and to some essential aspects of the SIMPLEX solution algorithm for the purposes of economic planning processes. 1 fig
Rowe, C.H.; Wilton, M.S. de.
1979-01-01
An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)
Pseudo-atomic orbitals as basis sets for the O(N) DFT code CONQUEST
Torralba, A S; Brazdova, V; Gillan, M J; Bowler, D R [Materials Simulation Laboratory, UCL, Gower Street, London WC1E 6BT (United Kingdom); Todorovic, M; Miyazaki, T [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Choudhury, R [London Centre for Nanotechnology, UCL, 17-19 Gordon Street, London WC1H 0AH (United Kingdom)], E-mail: david.bowler@ucl.ac.uk
2008-07-23
Various aspects of the implementation of pseudo-atomic orbitals (PAOs) as basis functions for the linear scaling CONQUEST code are presented. Preliminary results for the assignment of a large set of PAOs to a smaller space of support functions are encouraging, and an important related proof on the necessary symmetry of the support functions is shown. Details of the generation and integration schemes for the PAOs are also given.
Semidefinite linear complementarity problems
Eckhardt, U.
1978-04-01
Semidefinite linear complementarity problems arise by discretization of variational inequalities describing e.g. elastic contact problems, free boundary value problems etc. In the present paper linear complementarity problems are introduced and the theory as well as the numerical treatment of them are described. In the special case of semidefinite linear complementarity problems a numerical method is presented which combines the advantages of elimination and iteration methods without suffering from their drawbacks. This new method has very attractive properties since it has a high degree of invariance with respect to the representation of the set of all feasible solutions of a linear complementarity problem by linear inequalities. By means of some practical applications the properties of the new method are demonstrated. (orig.) [de
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
Redox Potentials of Ligands and Complexes – a DFT Approach
NICO
A review of the limited literature concerned with theoretical ways to predict experimentally measured redox potentials of ligands and ... electrode surface, over-potentials and high solvent resistance, ... A correlation coefficient of 0.969 in the linear relation with ... of E0' were performed in two steps, i.e. calculation of the free.
Wavelet-based linear-response time-dependent density-functional theory
Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.
2012-01-01
Highlights: ► We has been implemented LR-TD-DFT in the pseudopotential wavelet-based program. ► We have compared the results against all-electron Gaussian-type program. ► Orbital energies converges significantly faster for BigDFT than for DEMON2K. ► We report the X-ray crystal structure of the small organic molecule flugi6. ► Measured and calculated absorption spectrum of flugi6 is also reported. - Abstract: Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N 2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.
Handbook on linear motor application
1988-10-01
This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.
Linear and Nonlinear Finite Elements.
1983-12-01
Metzler. Con/ ugte rapdent solution of a finite element elastic problem with high Poson rato without scaling and once with the global stiffness matrix K...nonzero c, that makes u(0) = 1. According to the linear, small deflection theory of the membrane the central displacement given to the membrane is not... theory is possible based on the approximations (l-y 2 )t = +y’ 2 +y , (1-y)’ 1-y’ 2 - y" (6) that change eq. (5) to V) = , [yŖ(1 + y") - Qy
Chen, Xi; Li, An; Gao, Guanjun; Shieh, William
2011-12-19
In this paper we experimentally demonstrate transmission performance of optical DFT-spread OFDM systems in comparison with conventional OFDM systems. A 440.8-Gb/s superchannel consisting of 8 x 55.1-Gb/s densely-spaced DFT-S OFDM signal is successfully received after 1120-km transmission with a spectral efficiency of 3.5 b/s/Hz. It is shown that DFT-S OFDM can achieve an improvement of 1 dB in Q factor and 1 dB in launch power over conventional OFDM. Additionally, unique word aided phase estimation algorithm is proposed and demonstrated enabling extremely long OFDM symbol transmission.
Derian, R; Tokár, K; Somogyi, B; Gali, Á; Štich, I
2017-12-12
We present a time-dependent density functional theory (TDDFT) study of the optical gaps of light-emitting nanomaterials, namely, pristine and heavily B- and P-codoped silicon crystalline nanoparticles. Twenty DFT exchange-correlation functionals sampled from the best currently available inventory such as hybrids and range-separated hybrids are benchmarked against ultra-accurate quantum Monte Carlo results on small model Si nanocrystals. Overall, the range-separated hybrids are found to perform best. The quality of the DFT gaps is correlated with the deviation from Koopmans' theorem as a possible quality guide. In addition to providing a generic test of the ability of TDDFT to describe optical properties of silicon crystalline nanoparticles, the results also open up a route to benchmark-quality DFT studies of nanoparticle sizes approaching those studied experimentally.
Linear ubiquitination in immunity.
Shimizu, Yutaka; Taraborrelli, Lucia; Walczak, Henning
2015-07-01
Linear ubiquitination is a post-translational protein modification recently discovered to be crucial for innate and adaptive immune signaling. The function of linear ubiquitin chains is regulated at multiple levels: generation, recognition, and removal. These chains are generated by the linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin E3 capable of forming the linear ubiquitin linkage de novo. LUBAC is not only relevant for activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in various signaling pathways, but importantly, it also regulates cell death downstream of immune receptors capable of inducing this response. Recognition of the linear ubiquitin linkage is specifically mediated by certain ubiquitin receptors, which is crucial for translation into the intended signaling outputs. LUBAC deficiency results in attenuated gene activation and increased cell death, causing pathologic conditions in both, mice, and humans. Removal of ubiquitin chains is mediated by deubiquitinases (DUBs). Two of them, OTULIN and CYLD, are constitutively associated with LUBAC. Here, we review the current knowledge on linear ubiquitination in immune signaling pathways and the biochemical mechanisms as to how linear polyubiquitin exerts its functions distinctly from those of other ubiquitin linkage types. © 2015 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.
Krivonos, S.O.; Sorin, A.S.
1994-06-01
We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Linearity in Process Languages
Nygaard, Mikkel; Winskel, Glynn
2002-01-01
The meaning and mathematical consequences of linearity (managing without a presumed ability to copy) are studied for a path-based model of processes which is also a model of affine-linear logic. This connection yields an affine-linear language for processes, automatically respecting open......-map bisimulation, in which a range of process operations can be expressed. An operational semantics is provided for the tensor fragment of the language. Different ways to make assemblies of processes lead to different choices of exponential, some of which respect bisimulation....
Amir-Moez, A R; Sneddon, I N
1962-01-01
Elements of Linear Space is a detailed treatment of the elements of linear spaces, including real spaces with no more than three dimensions and complex n-dimensional spaces. The geometry of conic sections and quadric surfaces is considered, along with algebraic structures, especially vector spaces and transformations. Problems drawn from various branches of geometry are given.Comprised of 12 chapters, this volume begins with an introduction to real Euclidean space, followed by a discussion on linear transformations and matrices. The addition and multiplication of transformations and matrices a
Weisberg, Sanford
2013-01-01
Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus
Plazas-Nossa, Leonardo; Torres, Andrés
2014-01-01
The objective of this work is to introduce a forecasting method for UV-Vis spectrometry time series that combines principal component analysis (PCA) and discrete Fourier transform (DFT), and to compare the results obtained with those obtained by using DFT. Three time series for three different study sites were used: (i) Salitre wastewater treatment plant (WWTP) in Bogotá; (ii) Gibraltar pumping station in Bogotá; and (iii) San Fernando WWTP in Itagüí (in the south part of Medellín). Each of these time series had an equal number of samples (1051). In general terms, the results obtained are hardly generalizable, as they seem to be highly dependent on specific water system dynamics; however, some trends can be outlined: (i) for UV range, DFT and PCA/DFT forecasting accuracy were almost the same; (ii) for visible range, the PCA/DFT forecasting procedure proposed gives systematically lower forecasting errors and variability than those obtained with the DFT procedure; and (iii) for short forecasting times the PCA/DFT procedure proposed is more suitable than the DFT procedure, according to processing times obtained.
The International Linear Collider Progress Report 2015
Evans, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yamamoto, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
2015-07-15
The International Committee for Future Accelerators (ICFA) set up the Global Design Effort (GDE) for the design of the International Linear Collider (ILC) in 2005. Drawing on the resources of over 300 national laboratories, universities and institutes worldwide, the GDE produced a Reference Design Report in 2007, followed by a more detailed Technical Design Report (TDR) in 2013. Following this report, the GDE was disbanded. A compact core team, the Linear Collider Collaboration (LCC), replaced it. This is still under the auspices of ICFA and is directly overseen by the Linear Collider Board, which reports to ICFA. The LCC is charged with continuing the design effort on a much-reduced scale until the Project is approved for construction. An additional mandate of the LCC was to bring together all linear collider work, including the CERN-based Compact Linear Collider (CLIC) under one structure in order to exploit synergies between the two studies.
The principles and construction of linear colliders
Rees, J.
1986-09-01
The problems posed to the designers and builders of high-energy linear colliders are discussed. Scaling laws of linear colliders are considered. The problem of attainment of small interaction areas is addressed. The physics of damping rings, which are designed to condense beam bunches in phase space, is discussed. The effect of wake fields on a particle bunch in a linac, particularly the conventional disk-loaded microwave linac structures, are discussed, as well as ways of dealing with those effects. Finally, the SLAC Linear Collider is described. 18 refs., 17 figs
Comparing linear probability model coefficients across groups
Holm, Anders; Ejrnæs, Mette; Karlson, Kristian Bernt
2015-01-01
of the following three components: outcome truncation, scale parameters and distributional shape of the predictor variable. These results point to limitations in using linear probability model coefficients for group comparisons. We also provide Monte Carlo simulations and real examples to illustrate......This article offers a formal identification analysis of the problem in comparing coefficients from linear probability models between groups. We show that differences in coefficients from these models can result not only from genuine differences in effects, but also from differences in one or more...... these limitations, and we suggest a restricted approach to using linear probability model coefficients in group comparisons....
S. Karslıoğlu
2017-07-01
Full Text Available A new imidazo[4,5-f][1,10]phenanthroline (imp derivative imidazo-N5,N6-bis((4-(1H-imidazo[4,5-f][1,10]phenanthroline-2-ylphenylmethylene-1,10-phenanthroline-5,6-diamine (impap was synthesized in five steps starting from bare phenanthroline (phen precursors. The novel compound was fully characterized by 1H-NMR, IR, elemental analysis and electrospray ionization mass spectroscopy (ESI-MS techniques. Solid state emission spectrum of impap showed two distinct strong emission maxima with large Stokes shifts. The ground state gas phase geometry of impap was predicted by DFT calculations. Excited state properties of the molecule were examined through TD-DFT calculations conducted at the optimized geometry. Responsible transitions for the strong fluorescence of impap were assigned to single component charge transfer transitions with large oscillator strengths based on the ground state calculated molecular orbital contributions.
Cornard, Jean-Paul; Rasmiwetti; Merlin, Jean-Claude
2005-01-01
We investigated theoretically, by density functional theoretical calculations and by vibrational and electronic spectroscopies, the structure and the molecular spectroscopic properties of the 4-nitrocatechol molecule with varying pH. The lower energy stable structures of the neutral, monoanion and dianion forms were compared, and influence of water solvation was examined. The Raman and UV-visible spectra of 4-nitrocatechol and of its singly deprotonated form were recorded by varying the pH from 2 to 9. A calculation of the vibrational frequencies has allowed a complete assignment of the Raman spectra of the two forms of 4-nitrocatechol, and has permitted to investigate the evolution of vibrational normal modes upon deprotonation. Based on the molecular orbital analysis and the time dependent DFT (TD-DFT) calculations, we discussed the electronic structure and the assignment of the absorption bands in the electronic spectra of 4-nitrocatechol and mono-deprotonated 4-nitrocatechol
Activation mechanism of ammonium ions on sulfidation of malachite (-201) surface by DFT study
Wu, Dandan; Mao, Yingbo; Deng, Jiushuai; Wen, Shuming
2017-07-01
The activation mechanism of ammonium ions on the sulfidation of malachite (-201) was determined by density functional theory (DFT) calculations. Results of DFT calculations indicated that interlayer sulfidation occurs during the sulfidation process of malachite (-201). The absorption of both the ammonium ion and sulfide ion on the malachite (-201) surface is stronger than that of sulfur ion. After sulfidation was activated with ammonium ion, the Cu 3d orbital peak is closer to the Fermi level and characterized by a stronger peak value. Therefore, the addition of ammonium ions activated the sulfidation of malachite (-201), thereby improving the flotation performance.
Chemical Information revealed by Mössbauer spectroscopy and DFT calculations
Nakashima, Satoru, E-mail: snaka@hiroshima-u.ac.jp [Hiroshima University, Natural Science Center for Basic Research and Development (Japan)
2017-11-15
Mixed-valence state of binuclear metallocene derivatives and spin-crossover (SCO) phenomena of the assembled Fe(II) complexes have been studied by using Mössbauer spectroscopy. The understanding of the results obtained by Mössbauer spectra is well supported by means of X-ray structural analysis and density functional theory (DFT) calculation. Benchmark study of relativisitic DFT calculation by using Mössbauer isomer shifts of Eu, Np complexes reveals the validity of the calculation. Such study sheds light on the bonding character of 4f and 5f electron. These results are reviewed.
Techniques for Computing the DFT Using the Residue Fermat Number Systems and VLSI
Truong, T. K.; Chang, J. J.; Hsu, I. S.; Pei, D. Y.; Reed, I. S.
1985-01-01
The integer complex multiplier and adder over the direct sum of two copies of a finite field is specialized to the direct sum of the rings of integers modulo Fermat numbers. Such multiplications and additions can be used in the implementation of a discrete Fourier transform (DFT) of a sequence of complex numbers. The advantage of the present approach is that the number of multiplications needed for the DFT can be reduced substantially over the previous approach. The architectural designs using this approach are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
Callier, Frank M.; Desoer, Charles A.
1991-01-01
The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.
Shyichuk, Andrii; Runowski, Marcin; Lis, Stefan; Kaczkowski, Jakub; Jezierski, Andrzej
2015-01-30
Several computational methods, both semiempirical and ab initio, were used to study the influence of the amount of dopant on crystal cell dimensions of CeF3 doped with Tb(3+) ions (CeF3 :Tb(3+) ). AM1, RM1, PM3, PM6, and PM7 semiempirical parameterization models were used, while the Sparkle model was used to represent the lanthanide cations in all cases. Ab initio calculations were performed by means of GGA+U/PBE projector augmented wave density functional theory. The computational results agree well with the experimental data. According to both computation and experiment, the crystal cell parameters undergo a linear decrease with increasing amount of the dopant. The computations performed using Sparkle/PM3 and DFT methods resulted in the best agreement with the experiment with the average deviation of about 1% in both cases. Typical Sparkle/PM3 computation on a 2×2×2 supercell of CeF3:Tb3+ lasted about two orders of magnitude shorter than the DFT computation concerning a unit cell of this material. © 2014 Wiley Periodicals, Inc.
Komoto, Keenan T; Kowalczyk, Tim
2016-10-06
To support the development and characterization of chromophores with targeted photophysical properties, excited-state electronic structure calculations should rapidly and accurately predict how derivatization of a chromophore will affect its excitation and emission energies. This paper examines whether a time-independent excited-state density functional theory (DFT) approach meets this need through a case study of BODIPY chromophore photophysics. A restricted open-shell Kohn-Sham (ROKS) treatment of the S 1 excited state of BODIPY dyes is contrasted with linear-response time-dependent density functional theory (TDDFT). Vertical excitation energies predicted by the two approaches are remarkably different due to overestimation by TDDFT and underestimation by ROKS relative to experiment. Overall, ROKS with a standard hybrid functional provides the more accurate description of the S 1 excited state of BODIPY dyes, but excitation energies computed by the two methods are strongly correlated. The two approaches also make similar predictions of shifts in the excitation energy upon functionalization of the chromophore. TDDFT and ROKS models of the S 1 potential energy surface are then examined in detail for a representative BODIPY dye through molecular dynamics sampling on both model surfaces. We identify the most significant differences in the sampled surfaces and analyze these differences along selected normal modes. Differences between ROKS and TDDFT descriptions of the S 1 potential energy surface for this BODIPY derivative highlight the continuing need for validation of widely used approximations in excited state DFT through experimental benchmarking and comparison to ab initio reference data.
Swart, M.; Rosler, E.; Bickelhaupt, F.M.
2006-01-01
We have carried out an extensive exploration of the gas-phase basicity of archetypal neutral bases across the periodic system using the generalized gradient approximation (GGA) of the density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. First, we validate DFT as a reliable tool for computing
Ghosh, Pritam [Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Burdwan, Durgapur 713209, West Bengal (India); Chemistry Department, Jadavpur University, Kolkata 32, West Bengal (India); Roy, Partha [Chemistry Department, Jadavpur University, Kolkata 32, West Bengal (India); Ghosh, Ananta [Chemistry Department, Burdwan Raj College, The University of Burdwan, West Bengal (India); Jana, Saibal [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Murmu, Naresh Chandra [Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Burdwan, Durgapur 713209, West Bengal (India); Mukhopadhyay, Subhra Kanti [Department of Microbiology, The University of Burdwan, Burdwan 713104 (India); Banerjee, Priyabrata, E-mail: pr_banerjee@cmeri.res.in [Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Burdwan, Durgapur 713209, West Bengal (India); Academy of Scientific and Innovative Research at CSIR-Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur 713209, West Bengal (India)
2017-05-15
Explosive and Pollutant Nitro Aromatics (epNACs) like 2,4,6-trinitrophenol (TNP) has been detected from various surface water specimens by luminescent Schiff base Organic Frameworks (SOFs) by fluorometric method. Fluorescence intensity of the receptor SOFs have been quenched in presence of TNP due to RET and ICT, which has been confirmed through solid and solution level spectroscopic studies like FT-IR, {sup 1}H-NMR, fluorescence titration. Modern DFT (DFT-D3) calculations of the possible host guest conformers have been performed for exploration of plausible route of interaction between receptor and epNACs. The outcome of theoretical calculations is in line with experimental findings where TNP and receptor conformation mimic parallel displaced type π- π interaction. TD-DFT has been executed with both receptor and receptor ···TNP adduct, the fluorescence quenching is in line with experimental outcome. Limit of TNP detection has been found as low as 5 μM with 2.97×10{sup 4} M{sup -1} as binding constant. In real time stepping, TNP as mutagenic agent for aquatic life has been detected inside prokaryotic cells like candidia albicans in ppm level.
Order-constrained linear optimization.
Tidwell, Joe W; Dougherty, Michael R; Chrabaszcz, Jeffrey S; Thomas, Rick P
2017-11-01
Despite the fact that data and theories in the social, behavioural, and health sciences are often represented on an ordinal scale, there has been relatively little emphasis on modelling ordinal properties. The most common analytic framework used in psychological science is the general linear model, whose variants include ANOVA, MANOVA, and ordinary linear regression. While these methods are designed to provide the best fit to the metric properties of the data, they are not designed to maximally model ordinal properties. In this paper, we develop an order-constrained linear least-squares (OCLO) optimization algorithm that maximizes the linear least-squares fit to the data conditional on maximizing the ordinal fit based on Kendall's τ. The algorithm builds on the maximum rank correlation estimator (Han, 1987, Journal of Econometrics, 35, 303) and the general monotone model (Dougherty & Thomas, 2012, Psychological Review, 119, 321). Analyses of simulated data indicate that when modelling data that adhere to the assumptions of ordinary least squares, OCLO shows minimal bias, little increase in variance, and almost no loss in out-of-sample predictive accuracy. In contrast, under conditions in which data include a small number of extreme scores (fat-tailed distributions), OCLO shows less bias and variance, and substantially better out-of-sample predictive accuracy, even when the outliers are removed. We show that the advantages of OCLO over ordinary least squares in predicting new observations hold across a variety of scenarios in which researchers must decide to retain or eliminate extreme scores when fitting data. © 2017 The British Psychological Society.
Bolzon, B
2007-11-15
CLIC is one of the current projects of high energy linear colliders. Vertical beam sizes of 0.7 nm at the time of the collision and fast ground motion of a few nanometers impose an active stabilization of the final doublets at a fifth of nanometer above 4 Hz. The majority of my work concerned vibrations and active stabilization study of cantilever and slim beams in order to be representative of the final doublets of CLIC. In a first part, measured performances of different types of vibration sensors associated to an appropriate instrumentation showed that accurate measurements of ground motion are possible from 0.1 Hz up to 2000 Hz on a quiet site. Also, electrochemical sensors answering a priori the specifications of CLIC can be incorporated in the active stabilization at a fifth of nanometer. In a second part, an experimental and numerical study of beam vibrations enabled to validate the efficiency of the numerical prediction incorporated then in the simulation of the active stabilization. Also, a study of the impact of ground motion and of acoustic noise on beam vibrations showed that an active stabilization is necessary at least up to 1000 Hz. In a third part, results on the active stabilization of a beam at its two first resonances are shown down to amplitudes of a tenth of nanometer above 4 Hz by using in parallel a commercial system performing passive and active stabilization of the clamping. The last part is related to a study of a support for the final doublets of a linear collider prototype in phase of finalization, the ATF2 prototype. This work showed that relative motion between this support and the ground is below imposed tolerances (6 nm above 0.1 Hz) with appropriate boundary conditions. (author)
Blyth, T S
2002-01-01
Most of the introductory courses on linear algebra develop the basic theory of finite dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num ber of illustrative and worked examples, as well as many exercises that are strategi cally placed throughout the text. Solutions to the ex...
Han, Zhong-Kang; Gao, Yi
2016-02-01
Single-atom catalysts have attracted wide attention owing to their extremely high atom efficiency and activities. In this paper, we applied density functional theory with the inclusion of the on-site Coulomb interaction (DFT+U) to investigate water adsorption and dissociation on clean CeO 2 (111) surfaces and single transition metal atoms (STMAs) adsorbed on the CeO 2 (111) surface. It is found that the most stable water configuration is molecular adsorption on the clean CeO 2 (111) surface and dissociative adsorption on STMA/CeO 2 (111) surfaces, respectively. In addition, our results indicate that the more the electrons that transfer from STMA to the ceria substrate, the stronger the binding energies between the STMA and ceria surfaces. A linear relationship is identified between the water dissociation barriers and the d band centers of STMA, known as the generalized Brønsted-Evans-Polanyi principle. By combining the oxygen spillovers, single-atom dispersion stabilities, and water dissociation barriers, Zn, Cr, and V are identified as potential candidates for the future design of ceria-supported single-atom catalysts for reactions in which the dissociation of water plays an important role, such as the water-gas shift reaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ba-DOPED ZnO MATERIALS: A DFT SIMULATION TO INVESTIGATE THE DOPING EFFECT ON FERROELECTRICITY
Luis H. da S. Lacerda
2016-04-01
Full Text Available ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.
Rossberg, Andre [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Froehlich, D.R. [Heidelberg Univ. (Germany). Physikalisch-Chemisches Inst.
2017-06-01
We used iterative transformation factor analysis (ITFA) in order to isolate the EXAFS spectral contributions of the complexing ligand from a Am(III)/formate pH-series. Thermodynamic calculations were used as constraint for ITFA and for density functional theory (DFT) calculations to identify the coordination mode within the formed complexes.
The Influence of Square Planar Platinum Complexes on DNA Bases Pairing. An ab initio DFT Study
Burda, J. V.; Šponer, Jiří; Leszczynski, J.
2001-01-01
Roč. 3, č. 19 (2001), s. 4404-4411 ISSN 1463-9076 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : DNA base pairing * platinated base pairs * ab initio DFT study Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.787, year: 2001
Stepwise or concerted? DFT study on the mechanism of ionic Diels-Alder reaction of chromanes
Haghdadi Mina
2016-01-01
Full Text Available The stepwise and concerted Ionic Diels-Alder reaction between phenyl (pyridin-2-ylmethylene oxonium and styrene derivatives are explored using theoretical method. The results support using computational method via persistent intermediates. The DFT method was essential to reproduce a reasonable potential energy surface for these challenging systems.
DFT study of zigzag (n, 0) single-walled carbon nanotubes: C-13 NMR chemical shifts
Kupka, T.; Stachów, M.; Stobinski, L.; Kaminský, Jakub
2016-01-01
Roč. 67, Jun (2016), s. 14-19 ISSN 1093-3263 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : zigzag SWCNT * cyclacenes * theoretical modeling * DFT * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.754, year: 2016
Tah, Bidisha; Pal, Prabir; Roy, Sourav; Dutta, Debodyuti; Mishra, Sabyashachi; Ghosh, Manash; Talapatra, G B
2014-08-14
In this article Quantum mechanical (QM) calculations by Density Functional Theory (DFT) have been performed of all amino acids present in bovine insulin. Simulated Raman spectra of those amino acids are compared with their experimental spectra and the major bands are assigned. The results are in good agreement with experiment. We have also verified the DFT results with Quantum mechanical molecular mechanics (QM/MM) results for some amino acids. QM/MM results are very similar with the DFT results. Although the theoretical calculation of individual amino acids are feasible, but the calculated Raman spectrum of whole protein molecule is difficult or even quite impossible task, since it relies on lengthy and costly quantum-chemical computation. However, we have tried to simulate the Raman spectrum of whole protein by adding the proportionate contribution of the Raman spectra of each amino acid present in this protein. In DFT calculations, only the contributions of disulphide bonds between cysteines are included but the contribution of the peptide and hydrogen bonds have not been considered. We have recorded the Raman spectra of bovine insulin using micro-Raman set up. The experimental spectrum is found to be very similar with the resultant simulated Raman spectrum with some exceptions. Copyright © 2014 Elsevier B.V. All rights reserved.
Structures of cefradine dihydrate and cefaclor dihydrate from DFT-D calculations
van de Streek, Jacco; Rantanen, Jukka; Bond, Andrew D
2013-01-01
in the zwitterionic form in the two dihydrate structures. A potential ambiguity concerning the orientation of the cyclohexadienyl ring in cefradine dihydrate is also clarified, and on the basis of the calculated energies it is shown that disorder should not be expected at room temperature. The DFT-D methods can...
Abdali, Salim; Niehaus, T.A.; Jalkanen, Karl J.
2003-01-01
. Ab initio (DFT at the B3LYP/6-31G* level of theory) and semi-empirical (SCC-DFTB) with and without dispersion correction were applied to simulate the VA spectra of [Leu] enkephalin. In these calculations structures taken from X-ray measurements for different conformers of the molecule were used...
Ab Initio and DFT Potential Energy Surfaces for Cyanuric Chloride Reactions
Pai, Sharmila
1998-01-01
... on the potential energy surface were calculated using the 6-31G and 6-311 +Gbasis sets. DFT(B3LYP) geometry optimizations and zero-point corrections for critical points on the potential energy surface were calculated with the 6-31G, 6-311...
Exploring Systematic Discrepancies in DFT Calculations of Chlorine Nuclear Quadrupole Couplings
Socha, Ondřej; Hodgkinson, P.; Widdifield, C. M.; Yates, J. R.; Dračínský, Martin
2017-01-01
Roč. 121, č. 21 (2017), s. 4103-4113 ISSN 1089-5639 R&D Projects: GA ČR GA15-11223S Institutional support: RVO:61388963 Keywords : NMR spectroscopy * DFT calculations * quadrupolar coupling Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.847, year: 2016
DFT study of the mechanism and stereoselectivity of the 1,3-dipolar ...
and methyl acrylate) using DFT method. An ana- lysis of ..... field (SCRF)30,46 model based on the polarizable con- tinuum model (PCM) of Tomasi's group47 have been applied. ... stereoselectivity relative to the gas-phase since the trends of ...
Structural changes in the water tetramer. A combined Monte Carlo and DFT study
Vítek, A.; Kalus, R.; Paidarová, Ivana
2010-01-01
Roč. 12, č. 41 (2010), s. 13657-13666 ISSN 1463-9076 R&D Projects: GA AV ČR IAA401870702 Institutional research plan: CEZ:AV0Z40400503 Keywords : Monte Carlo Study * DFT study * water tetramer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.454, year: 2010
RHF and DFT study of the optimized molecular structure and atomic ...
Restricted HartreeFock (RHF) and Density Functional Theory (DFT) studies were carried out on the organic semi conductor material Pentacene. 6-31G and 6-31G* basis sets were used to optimize the molecule and compute the charge distribution at both levels of theory. The results show that the Carbon-Hydrogen bonds in ...
Experimental and DFT study of thiol-stabilized Pt/CNTs catalysts.
Li, L; Chen, S G; Wei, Z D; Qi, X Q; Xia, M R; Wang, Y Q
2012-12-28
Using a combination of experiments and density functional theory (DFT) calculations, we explored the mechanisms of the stabilization effect of the thiolized (-SH) group on the Pt/SH-CNTs catalyst. Pt particles supported on the hydroxyl functionalized CNTs (Pt/OH-CNTs) are synthesized as a baseline for comparison. Experimentally, the platinum on OH-CNTs has a stronger tendency for aggregation than that on SH-CNTs. The differences in the oxidation resistance, migration activation energy, and corrosion resistance between the Pt/SH-CNTs and Pt/OH-CNTs are calculated using DFT. The DFT calculations indicate that the -SH group enhances the oxidation resistance of the Pt cluster and CNTs and restricts Pt migration on the CNTs. DFT calculations also suggest that the enhanced stability of Pt/SH-CNTs originates from the increased interaction between Pt and SH-CNTs and the depressed d-band center of the Pt NPs. Thus, the functional groups on the CNTs used for stabilization of supported Pt NPs should provide a deposit and anchor site for Pt NPs and maintain the perfect structure of CNTs rather than destroying it.
Pyrone-based Cu(II) complexes, their characterization, DFT based ...
... of P. G. Studies and. Research in Chemistry and Pharmacy, R. D. University, Jabalpur 482 001, India ... fascination.2,3 Such type of metal complexes are quite interesting due to .... in the ground state were optimized by the DFT method using B3LYP ..... Vogel A I 1996 In A Text Book of Qualitative Inorganic. Analysis (7th ...
Melander, Marko; Jónsson, Elvar Örn; Mortensen, Jens Jørgen
2016-01-01
molecules to periodic systems in one-, two-, or three-dimensions. As such, this implementation is relevant for a wide variety of applications. We also present how to extract the electronic coupling element and reorganization energy from the resulting diabatic cDFT-PAW wave functions for the parametrization...
Synthesis, X-ray crystallography, and DFT calculations of a novel phosphoramide
Shariatinia, Z.; Dušek, Michal; Eigner, Václav
2014-01-01
Roč. 640, č. 14 (2014), 2945-2955 ISSN 0044-2313 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : phosphoramide * x-ray structure * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.160, year: 2014
Synthesis, spectroscopy, X-ray crystallography, and DFT computations of nanosized phosphazenes
Shariatinia, Z.; Moghadam, E.J.; Maghsoudi, N.; Mousavi, H.S.M.; Dušek, Michal; Eigner, Václav
2015-01-01
Roč. 641, č. 5 (2015), s. 967-978 ISSN 0044-2313 Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : phosphazene * ultrasonic * nanoparticle * x-ray crystallography * DFT calculation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.261, year: 2015
Study of uncertainties of height measurements of monoatomic steps on Si 5 × 5 using DFT
Campbell, A.C.; Jelínek, Pavel; Klapetek, P.
2017-01-01
Roč. 28, č. 3 (2017), 1-6, č. článku 034005. ISSN 0957-0233 Institutional support: RVO:68378271 Keywords : DFT * AFM Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.585, year: 2016
A DFT study on benzene adsorption over tungsten sulfides: surface model and adsorption geometries
Koide, R.; Hensen, E.J.M.; Paul, J.F.; Cristol, S.; Payen, E.; Nakamura, H.; Santen, van R.A.
2007-01-01
Benzene adsorption on a WS2(100) surface was studied by ab initio periodic DFT computations. Benzene adsorption is facile on the bridge site of the bare W edge via ¿2 or ¿3 coordination. Taking into account the stable configuration at the W edge under typical hydrotreating reaction conditions (623
DFT calculations on N2O decomposition by binuclear Fe complexes in Fe/ZSM-5
Yakovlev, A.L.; Zhidomirov, G.M.; Santen, van R.A.
2001-01-01
N2O decomposition catalyzed by oxidized Fe clusters localized in the micropores of Fe/ZSM-5 has been studied using the DFT approach and a binuclear cluster model of the active site. Three different reaction routes were found, depending on temperature and water pressure. The results show that below
Complexation of the lithium cation with beauvericin: experimental and DFT study
Makrlík, E.; Toman, Petr; Vaňura, P.
2012-01-01
Roč. 1024, 26 September (2012), s. 142-145 ISSN 0022-2860 R&D Projects: GA ČR(CZ) GAP205/10/2280 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : extraction * DFT * complexation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.404, year: 2012
Complexation of the cesium cation with lithium ionophore VIII: extraction and DFT study
Makrlík, E.; Novák, Vít; Vaňura, P.; Bouř, Petr
2013-01-01
Roč. 298, č. 3 (2013), s. 2065-2068 ISSN 0236-5731 Institutional support: RVO:61388963 Keywords : cesium cation * lithium ionophore VIII * complexation * extraction and stability constants * water-nitrobenzene system * DFT calculations * structures Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 1.415, year: 2013
Mamyrin, B.A.; Shmikk, D.V.
1979-01-01
A description and operating principle of a linear mass reflectron with V-form trajectory of ion motion -a new non-magnetic time-of-flight mass spectrometer with high resolution are presented. The ion-optical system of the device consists of an ion source with ionization by electron shock, of accelerating gaps, reflector gaps, a drift space and ion detector. Ions move in the linear mass refraction along the trajectories parallel to the axis of the analyzer chamber. The results of investigations into the experimental device are given. With an ion drift length of 0.6 m the device resolution is 1200 with respect to the peak width at half-height. Small-sized mass spectrometric transducers with high resolution and sensitivity may be designed on the base of the linear mass reflectron principle
Olver, Peter J
2018-01-01
This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...
Banach, S
1987-01-01
This classic work by the late Stefan Banach has been translated into English so as to reach a yet wider audience. It contains the basics of the algebra of operators, concentrating on the study of linear operators, which corresponds to that of the linear forms a1x1 + a2x2 + ... + anxn of algebra.The book gathers results concerning linear operators defined in general spaces of a certain kind, principally in Banach spaces, examples of which are: the space of continuous functions, that of the pth-power-summable functions, Hilbert space, etc. The general theorems are interpreted in various mathematical areas, such as group theory, differential equations, integral equations, equations with infinitely many unknowns, functions of a real variable, summation methods and orthogonal series.A new fifty-page section (``Some Aspects of the Present Theory of Banach Spaces'''') complements this important monograph.
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....
Anon.
1994-01-01
The aim of the TESLA (TeV Superconducting Linear Accelerator) collaboration (at present 19 institutions from seven countries) is to establish the technology for a high energy electron-positron linear collider using superconducting radiofrequency cavities to accelerate its beams. Another basic goal is to demonstrate that such a collider can meet its performance goals in a cost effective manner. For this the TESLA collaboration is preparing a 500 MeV superconducting linear test accelerator at the DESY Laboratory in Hamburg. This TTF (TESLA Test Facility) consists of four cryomodules, each approximately 12 m long and containing eight 9-cell solid niobium cavities operating at a frequency of 1.3 GHz
Linearly Adjustable International Portfolios
Fonseca, R. J.; Kuhn, D.; Rustem, B.
2010-09-01
We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.
Linearly Adjustable International Portfolios
Fonseca, R. J.; Kuhn, D.; Rustem, B.
2010-01-01
We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.
Barkman, W.E.; Adams, W.Q.; Berrier, B.R.
1978-01-01
A linear induction motor has been operated on a test bed with a feedback pulse resolution of 5 nm (0.2 μin). Slewing tests with this slide drive have shown positioning errors less than or equal to 33 nm (1.3 μin) at feedrates between 0 and 25.4 mm/min (0-1 ipm). A 0.86-m (34-in)-stroke linear motor is being investigated, using the SPACO machine as a test bed. Initial results were encouraging, and work is continuing to optimize the servosystem compensation
Hogben, Leslie
2013-01-01
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of
Linear Algebra Thoroughly Explained
Vujičić, Milan
2008-01-01
Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.
Liu, G.; Yang, J.; Luo, X.L.; Lin, C.B.; Peng, J.X.; Yang, Y.
2013-01-01
Although the discrete Fourier transform (DFT) based pulse shape discrimination (PSD) method, realized by transforming the digitized scintillation pulses into frequency coefficients by using DFT, has been proven to effectively discriminate neutrons and γ rays, its discrimination performance depends strongly on the selection of the discrimination parameter obtained by the combination of these frequency coefficients. In order to thoroughly understand and apply the DFT-based PSD in organic scintillation detectors, a comparison of three different discrimination parameters, i.e. the amplitude of zero-frequency component, the amplitude difference between the amplitude of zero-frequency component and the amplitude of base-frequency component, and the ratio of the amplitude of base-frequency component to the amplitude of zero-frequency component, is described in this paper. An experimental setup consisting of an Americium–Beryllium (Am–Be) source, a BC501A liquid scintillator detector, and a 5Gsample/s 8-bit oscilloscope was built to assess the performance of the DFT-based PSD with each of these discrimination parameters in terms of the figure-of-merit (based on the separation of the event distributions). The third technique, which uses the ratio of the amplitude of base-frequency component to the amplitude of zero-frequency component as the discrimination parameter, is observed to provide the best discrimination performance in this research. - Highlights: • The spectrum difference between neutron pulse and γ-ray pulse was investigated. • The DFT-based PSD with different parameter definitions was assessed. • The way of using the ratio of magnitude spectrum provides the best performance. • The performance differences were explained from noise suppression features
Markovic, B.; Tamborini, D.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2012-07-15
We present a compact high performance time-to-digital converter (TDC) module that provides 10 ps timing resolution, 160 ns dynamic range and a differential non-linearity better than 1.5% LSB{sub rms}. The TDC can be operated either as a general-purpose time-interval measurement device, when receiving external START and STOP pulses, or in photon-timing mode, when employing the on-chip SPAD (single photon avalanche diode) detector for detecting photons and time-tagging them. The instrument precision is 15 ps{sub rms} (i.e., 36 ps{sub FWHM}) and in photon timing mode it is still better than 70 ps{sub FWHM}. The USB link to the remote PC allows the easy setting of measurement parameters, the fast download of acquired data, and their visualization and storing via an user-friendly software interface. The module proves to be the best candidate for a wide variety of applications such as: fluorescence lifetime imaging, time-of-flight ranging measurements, time-resolved positron emission tomography, single-molecule spectroscopy, fluorescence correlation spectroscopy, diffuse optical tomography, optical time-domain reflectometry, quantum optics, etc.
Zielińska, Agnieszka; Paradowska, Katarzyna; Jakowski, Jacek; Wawer, Iwona
2008-02-01
13C CP MAS NMR spectra of the flavonoids: morin, kaempferol, 3,7-dihydroxyflavone, tricin and isoflavones: genistein and formononetin were recorded to characterize solid-state conformations. Intramolecular hydrogen bonds forming five-, six- and seven-membered rings are present in the two morin molecules in the crystals - their 13C resonances have been assigned with the aid of the calculated shielding constants. Linear relationships between the calculated shielding constants σDFT (ppm) and chemical shifts ( δCPMAS, ppm) were obtained for all studied compounds. Higher correlation coefficients suggest that the conformation with "clockwise" orientation of both OH groups is more probable in the solid 3,7-dihydroxyflavone, whereas in the solid formononetin the OH and OCH 3 substituents are directed "anticlockwise". The barrier to the rotation of phenyl ring B decreases in the order: morin (2'-OH, 3-OH) > kaempferol (3-OH) > tricin.
Core seismic behaviour: linear and non-linear models
Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.
1981-08-01
The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here
Zhang, Yu-ying; Wang, Meng-jie; Chang, Chun-ran; Xu, Kang-zhen; Ma, Hai-xia; Zhao, Feng-qi
2018-05-01
The standard thermite reaction enthalpies (ΔrHmθ) for seven metal oxides were theoretically analyzed using density functional theory (DFT) under five different functional levels, and the results were compared with experimental values. Through the comparison of the linear fitting constants, mean error and root mean square error, the Perdew-Wang functional within the framework of local density approximation (LDA-PWC) and Perdew-Burke-Ernzerhof exchange-correlation functional within the framework of generalized gradient approximation (GGA-PBE) were selected to further calculate the thermite reaction enthalpies for metal composite oxides (MCOs). According to the Kirchhoff formula, the standard molar reaction enthalpies for these MCOs were obtained and their standard molar enthalpies of formation (ΔfHmθ) were finally calculated. The results indicated that GGA-PBE is the most suitable one out of the total five methods to calculate these oxides. Tungstate crystals present the maximum deviation of the enthalpies of thermite reactions for MCOs and these of their physical metal oxide mixtures, but ferrite crystals are the minimum. The correlation coefficients are all above 0.95, meaning linear fitting results are very precise. And the molar enthalpies of formation for NiMoO4, CuMoO4, PbZrO3 (Pm/3m), PbZrO3 (PBA2), PbZrO3 (PBam), MgZrO3, CdZrO3, MnZrO3, CuWO4 and Fe2WO6 were first obtained as -1078.75, -1058.45, -1343.87, -1266.54, -1342.29, -1333.03, -1210.43, -1388.05, -1131.07 and - 1860.11 kJ·mol-1, respectively.
Ramesh, Gaddam; Reddy, Byru Venkatram
2018-05-01
In this investigation, the monomeric structure is determined for picolinic and isonicotinic acids based on geometry optimization for one of the four possible conformers and intramolecular hydrogen bond of Osbnd H⋯O using density functional theory (DFT) employing B3LYP functional supplemented with 6-311++G(d,p) basis set. Using this optimized monomeric form, the dimer structure is determined based on minimum energy and length of hydrogen bonds obtained for two possible dimeric forms yielded due to head-to-tail intermolecular Osbnd H⋯N hydrogen bond (dimer 1) linkage and tail-to -tail intermolecular Osbnd H⋯O hydrogen bond (dimer 2) linkage between pyridine ring and carboxyl group. The structure parameters obtained for monomer and dimer forms are in good agreement with the experimental literature values. The vibrational assignments have been made unambiguously for all the vibrations from FTIR and FT-Raman spectra based on the potential energy distribution (PED) and eigen vectors obtained in DFT and inverse vibrational problem (IVP) computations. The rms error between the observed and scaled frequencies is 7.7 and 9.4 cm-1 for PIA and INA, respectively. A 74-element modified valence force field is derived by Wilson's GF matrix method using 58 experimental frequencies of the two molecules in overlay least-squares technique. The average error between observed and computed frequencies by this method is calculated to be 10.39 cm-1. The results of both DFT and IVP computations yielded good agreement between observed and calculated frequencies. The NLO behaviour using hyperpolarizability values; and HOMO and LUMO energies; of the two molecules are investigated by DFT. Charge density distribution and site of chemical reactivity of the molecules are studied by molecular electrostatic surface potential (MESP). Stability of the molecules arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO
Linear programming mathematics, theory and algorithms
1996-01-01
Linear Programming provides an in-depth look at simplex based as well as the more recent interior point techniques for solving linear programming problems. Starting with a review of the mathematical underpinnings of these approaches, the text provides details of the primal and dual simplex methods with the primal-dual, composite, and steepest edge simplex algorithms. This then is followed by a discussion of interior point techniques, including projective and affine potential reduction, primal and dual affine scaling, and path following algorithms. Also covered is the theory and solution of the linear complementarity problem using both the complementary pivot algorithm and interior point routines. A feature of the book is its early and extensive development and use of duality theory. Audience: The book is written for students in the areas of mathematics, economics, engineering and management science, and professionals who need a sound foundation in the important and dynamic discipline of linear programming.
Linear independence of localized magnon states
Schmidt, Heinz-Juergen; Richter, Johannes; Moessner, Roderich
2006-01-01
At the magnetic saturation field, certain frustrated lattices have a class of states known as 'localized multi-magnon states' as exact ground states. The number of these states scales exponentially with the number N of spins and hence they have a finite entropy also in the thermodynamic limit N → ∞ provided they are sufficiently linearly independent. In this paper, we present rigorous results concerning the linear dependence or independence of localized magnon states and investigate special examples. For large classes of spin lattices, including what we call the orthogonal type and the isolated type, as well as the kagome, the checkerboard and the star lattice, we have proven linear independence of all localized multi-magnon states. On the other hand, the pyrochlore lattice provides an example of a spin lattice having localized multi-magnon states with considerable linear dependence
2013-05-10
AND VICTIM- ~ vAP BLAMING 4. AMERICA, LINEARLY CYCUCAL AF IMT 1768, 19840901, V5 PREVIOUS EDITION WILL BE USED. C2C Jessica Adams Dr. Brissett...his desires, his failings, and his aspirations follow the same general trend throughout history and throughout cultures. The founding fathers sought
Southworth, B.
1985-01-01
The peak of the construction phase of the Stanford Linear Collider, SLC, to achieve 50 GeV electron-positron collisions has now been passed. The work remains on schedule to attempt colliding beams, initially at comparatively low luminosity, early in 1987. (orig./HSI).
Mafra Neto, F.
1992-01-01
The dose of gamma radiation from a linear source of cesium 137 is obtained, presenting two difficulties: oblique filtration of radiation when cross the platinum wall, in different directions, and dose connection due to the scattering by the material mean of propagation. (C.G.C.)
Resistors Improve Ramp Linearity
Kleinberg, L. L.
1982-01-01
Simple modification to bootstrap ramp generator gives more linear output over longer sweep times. New circuit adds just two resistors, one of which is adjustable. Modification cancels nonlinearities due to variations in load on charging capacitor and due to changes in charging current as the voltage across capacitor increases.
LINEAR COLLIDERS: 1992 workshop
Settles, Ron; Coignet, Guy
1992-01-01
As work on designs for future electron-positron linear colliders pushes ahead at major Laboratories throughout the world in a major international collaboration framework, the LC92 workshop held in Garmisch Partenkirchen this summer, attended by 200 machine and particle physicists, provided a timely focus
Brameier, Markus
2007-01-01
Presents a variant of Genetic Programming that evolves imperative computer programs as linear sequences of instructions, in contrast to the more traditional functional expressions or syntax trees. This book serves as a reference for researchers, but also contains sufficient introduction for students and those who are new to the field
Dobbs, David E.
2013-01-01
A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.
Takeda, Seishi
1992-01-01
The status of R and D of future e + e - linear colliders proposed by the institutions throughout the world is described including the JLC, NLC, VLEPP, CLIC, DESY/THD and TESLA projects. The parameters and RF sources are discussed. (G.P.) 36 refs.; 1 tab
Mohamadi, Maryam; Faghih-Mirzaei, Ehsan; Ebrahimipour, S. Yousef; Sheikhshoaie, Iran; Haase, Wolfgang; Foro, Sabine
2017-07-01
A cis-dioxido Mo(VI) complex, [MoO2(L)(MeOH)], [L2-: (3-methoxy-2-oxidobenzylidene) benzohydrazonate], has been synthesized and characterized using physicochemical and spectroscopic techniques including elemental analysis, FT-IR, 1HNMR, UV-Vis spectroscopy, molar conductivity and single crystal X-ray diffraction. DFT calculations in the ground state of the complex were carried out using hybrid functional B3LYP with DGDZVP as basis set. Non-linear optical properties including electric dipole moment (μ), polarizability (α) and molecular first hyperpolarizability (β) of the compound were also computed. The values of linear polarizability and first hyperpolarizability obtained for the studied molecule indicated that the compound could be a good candidate of nonlinear optical materials. TD-DFT calculation and molecular electrostatic potential (MEP) were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the complex at different temperatures have been calculated. The interaction of a synthesized complex, with bovine serum albumin was also thoroughly investigated using experimental and theoretical studies. UV-Vis absorption and fluorescence quenching techniques were used to determine the binding parameters as well as the mechanism of the interaction. The values of binding constants were in the range of 104-105 M-1 demonstrating a moderate interaction between the synthesized complex and BSA making the protein suitable for transportation and delivery of the compound. Thermodynamic parameters were also indicating a binding through van der Waals force or hydrogen bond of [MoO2(L)(MeOH)] to BSA. The results obtained from docking studies were consistent to those obtained from experimental studies.
Linear regression in astronomy. I
Isobe, Takashi; Feigelson, Eric D.; Akritas, Michael G.; Babu, Gutti Jogesh
1990-01-01
Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.
Reda M. El-Shishtawy
2016-04-01
Full Text Available The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4 were investigated using density functional theory (DFT and time-dependent (TD-DFT density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0, and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs. Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.
Tai, Chin-Kuen; Chuang, Wen-Hua; Wang, Bo-Cheng
2013-01-01
The DFT/B3LYP/LANL2DZ and TD-DFT calculations have been performed to generate the optimized structures, electronic and photo-physical properties for the porphyrin and zinc(II)–porphyrin (metalloporphyrin) derivatives. The substituted group and side chain effects for these derivatives are discussed in this study. According to the calculation results, the side chain moiety extends the π-delocalization length from the porphyrin core to the side chain moiety. The substituted group with a stronger electron-donating ability increases the energy level of highest occupied molecular orbital (E HOMO ). The side chain moiety with a lower resonance energy decreases E HOMO , the energy level of the lowest unoccupied molecular orbital (E LUMO ), and the energy gap (E g ) between HOMO and LUMO in the porphyrin and zinc(II)–porphyrin derivatives. The natural bonding orbital (NBO) analysis determines the possible electron transfer mechanism from the electron-donating to -withdrawing groups (the side chain moiety) in these porphyrin derivatives. The projected density of state (PDOS) analysis shows that the electron-donating group affects the electron density distribution in both HOMO and LUMO, and the side chain moiety influence the electron density distribution in LUMO. The calculated photo-physical properties (absorption wavelengths and the related oscillator strength, f) in dichloromethane environment for porphyrin and zinc(II)–porphyrin derivatives have been simulated by using the TD-DFT method within the Polarizable Continuum Model (PCM). The present of both of the substituted group and the side chain moiety in these derivatives results in a red shift and broadening of the range of the absorption peaks of the Q/Soret band as compared to porphin. -- Highlights: • Side chain moiety extends the π-delocalization for the porphyrins. • Substituted group increases the energy of highest occupied molecular orbital. • Side chain moiety influences the Q/Soret band of
Finite-dimensional linear algebra
Gockenbach, Mark S
2010-01-01
Some Problems Posed on Vector SpacesLinear equationsBest approximationDiagonalizationSummaryFields and Vector SpacesFields Vector spaces Subspaces Linear combinations and spanning sets Linear independence Basis and dimension Properties of bases Polynomial interpolation and the Lagrange basis Continuous piecewise polynomial functionsLinear OperatorsLinear operatorsMore properties of linear operatorsIsomorphic vector spaces Linear operator equations Existence and uniqueness of solutions The fundamental theorem; inverse operatorsGaussian elimination Newton's method Linear ordinary differential eq
Wavelet-based linear-response time-dependent density-functional theory
Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.; Philouze, Christian; Balakirev, Maxim Y.
2012-06-01
Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.
Novel Trolox derivatives as antioxidant: A DFT investigation
Farmanzadeh Dvood
2016-01-01
Full Text Available In this paper the antioxidant activity of Trolox derivatives were investigated by density function theory and polarization continuum model as solvent model in order to propose the novel derivatives with higher antioxidant activity from a theoretical viewpoint. The effects of various ortho and meta substituents on the reaction enthalpies of antioxidant mechanisms of Trolox were investigated. Also the effect of reducing the number of atoms in the heterocyclic ring and effect of replacing the oxygen heteroatom of Trolox with other heteroatoms on the antioxidant activity of Trolox were evaluated. Results show that the NH2, OH and NHMe substituents in meta and ortho positions decrease the BDE and IP values and also increase the antioxidant activity of Trolox from the theoretical viewpoint. The derivatives e, c and d with NH, S and Se instead of O have higher antioxidant activity from the theoretical viewpoint. Obtained results show that reducing the number of atom in the heterocyclic ring (derivatives a and b decrease the BDE and IP values and also increase the antioxidant activity of Trolox from the theoretical viewpoint. The linear dependencies between BDE of OH bond and IP values of studied Trolox derivatives and corresponding EHOMO and R(O-H values can be useful to propose novel derivatives with higher antioxidant activity from the theoretical viewpoint.
Linearity and Non-linearity of Photorefractive effect in Materials ...
In this paper we have studied the Linearity and Non-linearity of Photorefractive effect in materials using the band transport model. For low light beam intensities the change in the refractive index is proportional to the electric field for linear optics while for non- linear optics the change in refractive index is directly proportional ...
Linearly Refined Session Types
Pedro Baltazar
2012-11-01
Full Text Available Session types capture precise protocol structure in concurrent programming, but do not specify properties of the exchanged values beyond their basic type. Refinement types are a form of dependent types that can address this limitation, combining types with logical formulae that may refer to program values and can constrain types using arbitrary predicates. We present a pi calculus with assume and assert operations, typed using a session discipline that incorporates refinement formulae written in a fragment of Multiplicative Linear Logic. Our original combination of session and refinement types, together with the well established benefits of linearity, allows very fine-grained specifications of communication protocols in which refinement formulae are treated as logical resources rather than persistent truths.
Kuznetsov, N.; Maz'ya, V.; Vainberg, B.
2002-08-01
This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'
The International Linear Collider
List Benno
2014-04-01
Full Text Available The International Linear Collider (ILC is a proposed e+e− linear collider with a centre-of-mass energy of 200–500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.
The International Linear Collider
List, Benno
2014-04-01
The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....... of these criteria are widely used ones, while the remaining four are ones derived from the H-principle of mathematical modeling. Many examples from practice show that the criteria derived from the H-principle function better than the known and popular criteria for the number of components. We shall briefly review...
Goldowsky, Michael P. (Inventor)
1987-01-01
A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.
Henneaux, Marc; Teitelboim, Claudio
2005-01-01
We show that duality transformations of linearized gravity in four dimensions, i.e., rotations of the linearized Riemann tensor and its dual into each other, can be extended to the dynamical fields of the theory so as to be symmetries of the action and not just symmetries of the equations of motion. Our approach relies on the introduction of two superpotentials, one for the spatial components of the spin-2 field and the other for their canonically conjugate momenta. These superpotentials are two-index, symmetric tensors. They can be taken to be the basic dynamical fields and appear locally in the action. They are simply rotated into each other under duality. In terms of the superpotentials, the canonical generator of duality rotations is found to have a Chern-Simons-like structure, as in the Maxwell case
Linear waves and instabilities
Bers, A.
1975-01-01
The electrodynamic equations for small-amplitude waves and their dispersion relation in a homogeneous plasma are outlined. For such waves, energy and momentum, and their flow and transformation, are described. Perturbation theory of waves is treated and applied to linear coupling of waves, and the resulting instabilities from such interactions between active and passive waves. Linear stability analysis in time and space is described where the time-asymptotic, time-space Green's function for an arbitrary dispersion relation is developed. The perturbation theory of waves is applied to nonlinear coupling, with particular emphasis on pump-driven interactions of waves. Details of the time--space evolution of instabilities due to coupling are given. (U.S.)
Extended linear chain compounds
Linear chain substances span a large cross section of contemporary chemistry ranging from covalent polymers, to organic charge transfer com plexes to nonstoichiometric transition metal coordination complexes. Their commonality, which coalesced intense interest in the theoretical and exper imental solid state physics/chemistry communities, was based on the obser vation that these inorganic and organic polymeric substrates exhibit striking metal-like electrical and optical properties. Exploitation and extension of these systems has led to the systematic study of both the chemistry and physics of highly and poorly conducting linear chain substances. To gain a salient understanding of these complex materials rich in anomalous aniso tropic electrical, optical, magnetic, and mechanical properties, the conver gence of diverse skills and talents was required. The constructive blending of traditionally segregated disciplines such as synthetic and physical organic, inorganic, and polymer chemistry, crystallog...
Diamond, Jared M.
1966-01-01
1. The relation between osmotic gradient and rate of osmotic water flow has been measured in rabbit gall-bladder by a gravimetric procedure and by a rapid method based on streaming potentials. Streaming potentials were directly proportional to gravimetrically measured water fluxes. 2. As in many other tissues, water flow was found to vary with gradient in a markedly non-linear fashion. There was no consistent relation between the water permeability and either the direction or the rate of water flow. 3. Water flow in response to a given gradient decreased at higher osmolarities. The resistance to water flow increased linearly with osmolarity over the range 186-825 m-osM. 4. The resistance to water flow was the same when the gall-bladder separated any two bathing solutions with the same average osmolarity, regardless of the magnitude of the gradient. In other words, the rate of water flow is given by the expression (Om — Os)/[Ro′ + ½k′ (Om + Os)], where Ro′ and k′ are constants and Om and Os are the bathing solution osmolarities. 5. Of the theories advanced to explain non-linear osmosis in other tissues, flow-induced membrane deformations, unstirred layers, asymmetrical series-membrane effects, and non-osmotic effects of solutes could not explain the results. However, experimental measurements of water permeability as a function of osmolarity permitted quantitative reconstruction of the observed water flow—osmotic gradient curves. Hence non-linear osmosis in rabbit gall-bladder is due to a decrease in water permeability with increasing osmolarity. 6. The results suggest that aqueous channels in the cell membrane behave as osmometers, shrinking in concentrated solutions of impermeant molecules and thereby increasing membrane resistance to water flow. A mathematical formulation of such a membrane structure is offered. PMID:5945254
Fundamentals of linear algebra
Dash, Rajani Ballav
2008-01-01
FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.
Sander, K F
1964-01-01
Linear Network Theory covers the significant algebraic aspect of network theory, with minimal reference to practical circuits. The book begins the presentation of network analysis with the exposition of networks containing resistances only, and follows it up with a discussion of networks involving inductance and capacity by way of the differential equations. Classification and description of certain networks, equivalent networks, filter circuits, and network functions are also covered. Electrical engineers, technicians, electronics engineers, electricians, and students learning the intricacies
Non linear viscoelastic models
Agerkvist, Finn T.
2011-01-01
Viscoelastic eects are often present in loudspeaker suspensions, this can be seen in the displacement transfer function which often shows a frequency dependent value below the resonance frequency. In this paper nonlinear versions of the standard linear solid model (SLS) are investigated....... The simulations show that the nonlinear version of the Maxwell SLS model can result in a time dependent small signal stiness while the Kelvin Voight version does not....
Relativistic Linear Restoring Force
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
Superconducting linear colliders
Anon.
1990-01-01
The advantages of superconducting radiofrequency (SRF) for particle accelerators have been demonstrated by successful operation of systems in the TRISTAN and LEP electron-positron collider rings respectively at the Japanese KEK Laboratory and at CERN. If performance continues to improve and costs can be lowered, this would open an attractive option for a high luminosity TeV (1000 GeV) linear collider
Perturbed asymptotically linear problems
Bartolo, R.; Candela, A. M.; Salvatore, A.
2012-01-01
The aim of this paper is investigating the existence of solutions of some semilinear elliptic problems on open bounded domains when the nonlinearity is subcritical and asymptotically linear at infinity and there is a perturbation term which is just continuous. Also in the case when the problem has not a variational structure, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is "stable" unde...
Miniature linear cooler development
Pruitt, G.R.
1993-01-01
An overview is presented of the status of a family of miniature linear coolers currently under development by Hughes Aircraft Co. for use in hand held, volume limited or power limited infrared applications. These coolers, representing the latest additions to the Hughes family of TOP trademark [twin-opposed piston] linear coolers, have been fabricated and tested in three different configurations. Each configuration is designed to utilize a common compressor assembly resulting in reduced manufacturing costs. The baseline compressor has been integrated with two different expander configurations and has been operated with two different levels of input power. These various configuration combinations offer a wide range of performance and interface characteristics which may be tailored to applications requiring limited power and size without significantly compromising cooler capacity or cooldown characteristics. Key cooler characteristics and test data are summarized for three combinations of cooler configurations which are representative of the versatility of this linear cooler design. Configurations reviewed include the shortened coldfinger [1.50 to 1.75 inches long], limited input power [less than 17 Watts] for low power availability applications; the shortened coldfinger with higher input power for lightweight, higher performance applications; and coldfingers compatible with DoD 0.4 Watt Common Module coolers for wider range retrofit capability. Typical weight of these miniature linear coolers is less than 500 grams for the compressor, expander and interconnecting transfer line. Cooling capacity at 80K at room ambient conditions ranges from 400 mW to greater than 550 mW. Steady state power requirements for maintaining a heat load of 150 mW at 80K has been shown to be less than 8 Watts. Ongoing reliability growth testing is summarized including a review of the latest test article results
Avram Mihai
2017-01-01
Full Text Available The paper presents a linear pneumatic actuator with short working stroke. It consists of a pneumatic motor (a simple stroke cylinder or a membrane chamber, two 2/2 pneumatic distributors “all or nothing” electrically commanded for controlling the intake/outtake flow to/from the active chamber of the motor, a position transducer and a microcontroller. There is also presented the theoretical analysis (mathematical modelling and numerical simulation accomplished.
Avram Mihai; Niţu Constantin; Bucşan Constantin; Grămescu Bogdan
2017-01-01
The paper presents a linear pneumatic actuator with short working stroke. It consists of a pneumatic motor (a simple stroke cylinder or a membrane chamber), two 2/2 pneumatic distributors “all or nothing” electrically commanded for controlling the intake/outtake flow to/from the active chamber of the motor, a position transducer and a microcontroller. There is also presented the theoretical analysis (mathematical modelling and numerical simulation) accomplished.
Scheffel, J.
1984-03-01
The linear Grad-Shafranov equation for a toroidal, axisymmetric plasma is solved analytically. Exact solutions are given in terms of confluent hyper-geometric functions. As an alternative, simple and accurate WKBJ solutions are presented. With parabolic pressure profiles, both hollow and peaked toroidal current density profiles are obtained. As an example the equilibrium of a z-pinch with a square-shaped cross section is derived.(author)
Buttram, M.T.; Ginn, J.W.
1988-06-21
A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.
An online re-linearization scheme suited for Model Predictive and Linear Quadratic Control
Henriksen, Lars Christian; Poulsen, Niels Kjølstad
This technical note documents the equations for primal-dual interior-point quadratic programming problem solver used for MPC. The algorithm exploits the special structure of the MPC problem and is able to reduce the computational burden such that the computational burden scales with prediction...... horizon length in a linear way rather than cubic, which would be the case if the structure was not exploited. It is also shown how models used for design of model-based controllers, e.g. linear quadratic and model predictive, can be linearized both at equilibrium and non-equilibrium points, making...
Springer, T A
1998-01-01
"[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...
Parametric Linear Dynamic Logic
Peter Faymonville
2014-08-01
Full Text Available We introduce Parametric Linear Dynamic Logic (PLDL, which extends Linear Dynamic Logic (LDL by temporal operators equipped with parameters that bound their scope. LDL was proposed as an extension of Linear Temporal Logic (LTL that is able to express all ω-regular specifications while still maintaining many of LTL's desirable properties like an intuitive syntax and a translation into non-deterministic Büchi automata of exponential size. But LDL lacks capabilities to express timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to express all ω-regular properties and that subsumes parameterized extensions of LTL like Parametric LTL and PROMPT-LTL. Our main technical contribution is a translation of PLDL formulas into non-deterministic Büchi word automata of exponential size via alternating automata. This yields a PSPACE model checking algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give tight upper and lower bounds on optimal parameter values for both problems. These results show that PLDL model checking and realizability are not harder than LTL model checking and realizability.
Quantum linear Boltzmann equation
Vacchini, Bassano; Hornberger, Klaus
2009-01-01
We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.
Linear zonal atmospheric prediction for adaptive optics
McGuire, Patrick C.; Rhoadarmer, Troy A.; Coy, Hanna A.; Angel, J. Roger P.; Lloyd-Hart, Michael
2000-07-01
We compare linear zonal predictors of atmospheric turbulence for adaptive optics. Zonal prediction has the possible advantage of being able to interpret and utilize wind-velocity information from the wavefront sensor better than modal prediction. For simulated open-loop atmospheric data for a 2- meter 16-subaperture AO telescope with 5 millisecond prediction and a lookback of 4 slope-vectors, we find that Widrow-Hoff Delta-Rule training of linear nets and Back- Propagation training of non-linear multilayer neural networks is quite slow, getting stuck on plateaus or in local minima. Recursive Least Squares training of linear predictors is two orders of magnitude faster and it also converges to the solution with global minimum error. We have successfully implemented Amari's Adaptive Natural Gradient Learning (ANGL) technique for a linear zonal predictor, which premultiplies the Delta-Rule gradients with a matrix that orthogonalizes the parameter space and speeds up the training by two orders of magnitude, like the Recursive Least Squares predictor. This shows that the simple Widrow-Hoff Delta-Rule's slow convergence is not a fluke. In the case of bright guidestars, the ANGL, RLS, and standard matrix-inversion least-squares (MILS) algorithms all converge to the same global minimum linear total phase error (approximately 0.18 rad2), which is only approximately 5% higher than the spatial phase error (approximately 0.17 rad2), and is approximately 33% lower than the total 'naive' phase error without prediction (approximately 0.27 rad2). ANGL can, in principle, also be extended to make non-linear neural network training feasible for these large networks, with the potential to lower the predictor error below the linear predictor error. We will soon scale our linear work to the approximately 108-subaperture MMT AO system, both with simulations and real wavefront sensor data from prime focus.
Cahoon, James B.; Kling, Matthias F.; Sawyer, Karma R.; Andersen, Lars K.; Harris, Charles B.
2008-04-30
The photochemical disproportionation mechanism of [CpW(CO){sub 3}]{sub 2} in the presence of Lewis bases PR{sub 3} was investigated on the nano- and microsecond time-scales with Step-Scan FTIR time-resolved infrared spectroscopy. 532 nm laser excitation was used to homolytically cleave the W-W bond, forming the 17-electron radicals CpW(CO){sub 3} and initiating the reaction. With the Lewis base PPh{sub 3}, disproportionation to form the ionic products CpW(CO){sub 3}PPh{sub 3}{sup +} and CpW(CO){sub 3}{sup -} was directly monitored on the microsecond time-scale. Detailed examination of the kinetics and concentration dependence of this reaction indicates that disproportionation proceeds by electron transfer from the 19-electron species CpW(CO){sub 3}PPh{sub 3} to the 17-electron species CpW(CO){sub 3}. This result is contrary to the currently accepted disproportionation mechanism which predicts electron transfer from the 19-electron species to the dimer [CpW(CO){sub 3}]{sub 2}. With the Lewis base P(OMe){sub 3} on the other hand, ligand substitution to form the product [CpW(CO){sub 2}P(OMe){sub 3}]{sub 2} is the primary reaction on the microsecond time-scale. Density Functional Theory (DFT) calculations support the experimental results and suggest that the differences in the reactivity between P(OMe){sub 3} and PPh{sub 3} are due to steric effects. The results indicate that radical-to-radical electron transfer is a previously unknown but important process for the formation of ionic products with the organometallic dimer [CpW(CO){sub 3}]{sub 2} and may also be applicable to the entire class of organometallic dimers containing a single metal-metal bond.
Yi-hua Zhong
2013-01-01
Full Text Available Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex method and dual simplex method. But their computational complexities are exponential, which is not satisfactory for solving large-scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar to that of interior point method used for solving linear programming problems in crisp environment before, but its feasible direction and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end condition is involved in linear ranking function. Their correctness and rationality are proved. Moreover, choice of the initial interior point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative method for solving fuzzy number linear programming problems.
Stamm, G.; Eichbaum, G.; Hagemann, G.
1997-01-01
The following three screen-film combinations were compared: (a) A combination of anticross-over film and UV-light emitting screens, (b) a combination of blue-light emitting screens and film, and (c) a conventional green fluorescing screen-film combination. Radiographs of a specially designed plexiglass phantom (0.2x0.2x0.12 m 3 ) with bar patterns of lead and plaster and of air, respectively were obtained using the following parameters: 12 pulse generator, 0.6 mm focus size, 4.7 mm aluminium prefilter, a grid with 40 lines/cm (12:1) and a focus-detector distance of 1.15 m. Image analysis was performed using an IBAS system and a Zeiss Kontron computer. Display conditions were the following: Display distance 0.12 m, a vario film objective 35/70 (Zeiss), a video camera tube with a Pb0 photocathode, 625 lines (Siemens Heimann), an IBAS image matrix of 512x512 pixels with a resolution of 7 lines/mm, the projected matrix area was 5000 μm 2 . Grey scale ranges were measured on a line perpendicular to the grouped bar patterns. The difference between the maximum and minimum density value served as signal. The spatial resolution of the detector system was measured when the signal value was three times higher than the standard deviation of the means of multiple density measurements. The results showed considerable advantages of the two new screen-film combinations as compared to the conventional screen-film combination. The result was contradictory to the findings with pure visual assessment of thresholds (part I) that had found no differences. The authors concluded that (automatic) interactive image analysis algorithms serve as an objective measure and are specifically advantageous when small differences in image quality are to be evaluated. (orig.) [de
First Principle simulations of electrochemical interfaces - a DFT study
Ahmed, Rizwan
for the whole system to qualify as a proper electrochemical interface. I have also contributed to the model, which accounts for pH in the first principle electrode-electrolyte interface simulations. This is an important step forward, since electrochemical reaction rate and barrier for charge transfer can......In this thesis, I have looked beyond the computational hydrogen electrode (CHE) model, and focused on the first principle simulations which treats the electrode-electrolyte interfaces explicitly. Since obtaining a realistic electrode-electrolyte interface was difficult, I aimed to address various...... challenges regarding first principle electrochemical interface modeling in order to bridge the gap between the model interface used in simulations and real catalyst at operating conditions. Atomic scale insight for the processes and reactions that occur at the electrochemical interface presents a challenge...
Amina A. Soayed
2015-03-01
Full Text Available Condensation of barbituric acid with hydrazine hydrate yielded barbiturichydrazone (L which was characterized using IR, 1H NMR and mass spectra. The Co(II, Ni(II and Cu(II complexes derived from this ligand have been synthesized and structurally characterized by elemental analyses, spectroscopic methods (IR, UV–Vis and ESR and thermal analyses (TGA, DTG and DTA and the structures were further elucidated using quantum chemical density functional theory. Complexes of L were found to have the ML.nH2O stoichiometry with either tetrahedral or octahedral geometry. The ESR data showed the Cu(II complex to be in a tetragonal geometry. Theoretical investigation of the electronic structure of metal complexes at the TD-DFT/B3LYP level of theory has been carried out and discussed. The fundamental vibrational wavenumbers were calculated and a good agreement between observed and scaled calculated wavenumbers was achieved. Thermal studies were performed to deduce the stabilities of the ligand and complexes. Thermodynamic parameters, such as the order of reactions (n, activation energy ΔE∗, enthalpy of reaction ΔH∗ and entropy ΔS∗ were calculated from DTA curves using Horowitz–Metzger method. The ligand L and its complexes have been screened for their antifungal and antibacterial activities and were found to possess better biological activities compared to those of unsubstituted barbituric acid complexes.
Sienkiewicz-Gromiuk, Justyna
2018-01-01
The DFT studies were carried out with the B3LYP method utilizing the 6-31G and 6-311++G(d,p) basis sets depending on whether the aim of calculations was to gain the geometry at equilibrium, or to calculate the optimized molecular structure of (benzylthio)acetic acid (Hbta) in the forms of monomer and dimer. The minimum conformational energy search was followed by the potential energy surface (PES) scan of all rotary bonds existing in the acid molecule. The optimized geometrical monomeric and dimeric structures of the title compound were compared with the experimental structural data in the solid state. The detailed vibrational interpretation of experimental infrared and Raman bands was performed on the basis of theoretically simulated ESFF-scaled wavenumbers calculated for the monomer and dimer structures of Hbta. The electronic characteristics of Hbta is also presented in terms of Mulliken atomic charges, frontier molecular orbitals and global reactivity descriptors. Additionally, the MEP and ESP surfaces were computed to predict coordination sites for potential metal complex formation.
Arockia Doss, M; Savithiri, S; Rajarajan, G; Thanikachalam, V; Anbuselvan, C
2015-12-05
FT-IR and FT-Raman spectra of 3-pentyl-2,6-di(furan-2-yl) piperidin-4-one (3-PFPO) were recorded in the solid phase. The structural and spectroscopic analyses of 3-PFPO were made by using B3LYP/HF level with 6-311++G(d, p) basis set. The fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Comparison of the observed fundamental vibrational frequencies of 3-PFPO with calculated results by HF and DFT methods indicates that B3LYP is superior to HF method for molecular vibrational problems. The electronic properties such as excitation energies, oscillator strength, wavelengths and HOMO-LUMO energies were obtained by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E((2))) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen, oxygen and hydrogen were calculated using B3LYP/6-311++G(d, p) level theory. Moreover, thermodynamic properties (heat capacities, entropy and enthalpy) of the title compound at different temperatures were calculated in gas phase. Copyright © 2015 Elsevier B.V. All rights reserved.
Anaerobic degradation of linear alkylbenzene sulfonate
Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær
2003-01-01
Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically...... increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...
Parallel beam dynamics simulation of linear accelerators
Qiang, Ji; Ryne, Robert D.
2002-01-01
In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity beams and to the study of beam transport in a proposed accelerator for the development of accelerator-driven waste transmutation technologies
Fast Solvers for Dense Linear Systems
Kauers, Manuel [Research Institute for Symbolic Computation (RISC), Altenbergerstrasse 69, A4040 Linz (Austria)
2008-10-15
It appears that large scale calculations in particle physics often require to solve systems of linear equations with rational number coefficients exactly. If classical Gaussian elimination is applied to a dense system, the time needed to solve such a system grows exponentially in the size of the system. In this tutorial paper, we present a standard technique from computer algebra that avoids this exponential growth: homomorphic images. Using this technique, big dense linear systems can be solved in a much more reasonable time than using Gaussian elimination over the rationals.
Guo-Jun Kang
2016-11-01
Full Text Available The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH3-YD2 and TPhe-YD were systematically investigated by density functional theory (DFT and time-dependent density functional theory (TD-DFT to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molecular geometries and photophysical properties of dyes before and after binding to the TiO2 cluster were fully investigated. From the analyses of natural bond orbital (NBO, extended charge decomposition analysis (ECDA, and electron density variations (Δρ between the excited state and ground state, it was found that the introduction of N(CH32 and 1,1,2-triphenylethene groups enhanced the intramolecular charge-transfer (ICT character compared to YD2-o-C8. The absorption wavelength and transition possess character were significantly influenced by N(CH32 and 1,1,2-triphenylethene groups. NCH3-YD2 with N(CH32 groups in the donor part is an effective way to improve the interactions between the dyes and TiO2 surface, light having efficiency (LHE, and free energy change (ΔGinject, which is expected to be an efficient dye for use in dye-sensitized solar cells (DSSCs.