WorldWideScience

Sample records for linear response calculations

  1. Linear response calculation using the canonical-basis TDHFB with a schematic pairing functional

    International Nuclear Information System (INIS)

    Ebata, Shuichiro; Nakatsukasa, Takashi; Yabana, Kazuhiro

    2011-01-01

    A canonical-basis formulation of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory is obtained with an approximation that the pair potential is assumed to be diagonal in the time-dependent canonical basis. The canonical-basis formulation significantly reduces the computational cost. We apply the method to linear-response calculations for even-even nuclei. E1 strength distributions for proton-rich Mg isotopes are systematically calculated. The calculation suggests strong Landau damping of giant dipole resonance for drip-line nuclei.

  2. Linear optical response of finite systems using multishift linear system solvers

    Energy Technology Data Exchange (ETDEWEB)

    Hübener, Hannes; Giustino, Feliciano [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)

    2014-07-28

    We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.

  3. Electromagnetic response in kinetic energy driven cuprate superconductors: Linear response approach

    International Nuclear Information System (INIS)

    Krzyzosiak, Mateusz; Huang, Zheyu; Feng, Shiping; Gonczarek, Ryszard

    2010-01-01

    Within the framework of the kinetic energy driven superconductivity, the electromagnetic response in cuprate superconductors is studied in the linear response approach. The kernel of the response function is evaluated and employed to calculate the local magnetic field profile, the magnetic field penetration depth, and the superfluid density, based on the specular reflection model for a purely transverse vector potential. It is shown that the low temperature magnetic field profile follows an exponential decay at the surface, while the magnetic field penetration depth depends linearly on temperature, except for the strong deviation from the linear characteristics at extremely low temperatures. The superfluid density is found to decrease linearly with decreasing doping concentration in the underdoped regime. The problem of gauge invariance is addressed and an approximation for the dressed current vertex, which does not violate local charge conservation is proposed and discussed.

  4. A new approach to calculating spatial impulse responses

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1997-01-01

    Using linear acoustics the emitted and scattered ultrasound field can be found by using spatial impulse responses as developed by Tupholme (1969) and Stepanishen (1971). The impulse response is calculated by the Rayleigh integral by summing the spherical waves emitted from all of the aperture...

  5. The giant resonances in hot nuclei. Linear response calculations

    International Nuclear Information System (INIS)

    Braghin, F.L.; Vautherin, D.; Abada, A.

    1995-01-01

    The isovector response function of hot nuclear matter is calculated using various effective Skyrme interactions. For Skyrme forces with a small effective mass the strength distribution is found to be nearly independent of temperature, and shows little collective effects. In contrast effective forces with an effective mass close to unity produce at zero temperature sizeable collective effects which disappear at temperatures of a few MeV. The relevance of these results for the saturation of the multiplicity of photons emitted by the giant dipole resonance in hot nuclei observed in recent experiments beyond T = 3 MeV is discussed. (authors). 12 refs., 3 figs

  6. Comparing light sensitivity, linearity and step response of electronic cameras for ophthalmology.

    Science.gov (United States)

    Kopp, O; Markert, S; Tornow, R P

    2002-01-01

    To develop and test a procedure to measure and compare light sensitivity, linearity and step response of electronic cameras. The pixel value (PV) of digitized images as a function of light intensity (I) was measured. The sensitivity was calculated from the slope of the P(I) function, the linearity was estimated from the correlation coefficient of this function. To measure the step response, a short sequence of images was acquired. During acquisition, a light source was switched on and off using a fast shutter. The resulting PV was calculated for each video field of the sequence. A CCD camera optimized for the near-infrared (IR) spectrum showed the highest sensitivity for both, visible and IR light. There are little differences in linearity. The step response depends on the procedure of integration and read out.

  7. Linear response theory for quantum open systems

    OpenAIRE

    Wei, J. H.; Yan, YiJing

    2011-01-01

    Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.

  8. New computational method for non-LTE, the linear response matrix

    International Nuclear Information System (INIS)

    Fournier, K.B.; Grasiani, F.R.; Harte, J.A.; Libby, S.B.; More, R.M.; Zimmerman, G.B.

    1998-01-01

    My coauthors have done extensive theoretical and computational calculations that lay the ground work for a linear response matrix method to calculate non-LTE (local thermodynamic equilibrium) opacities. I will give briefly review some of their work and list references. Then I will describe what has been done to utilize this theory to create a computational package to rapidly calculate mild non-LTE emission and absorption opacities suitable for use in hydrodynamic calculations. The opacities are obtained by performing table look-ups on data that has been generated with a non-LTE package. This scheme is currently under development. We can see that it offers a significant computational speed advantage. It is suitable for mild non-LTE, quasi-steady conditions. And it offers a new insertion path for high-quality non-LTE data. Currently, the linear response matrix data file is created using XSN. These data files could be generated by more detailed and rigorous calculations without changing any part of the implementation in the hydro code. The scheme is running in Lasnex and is being tested and developed

  9. The spin polarized linear response from density functional theory: Theory and application to atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fias, Stijn, E-mail: sfias@vub.ac.be; Boisdenghien, Zino; De Proft, Frank; Geerlings, Paul [General Chemistry (ALGC), Vrije Universiteit Brussel (Free University Brussels – VUB), Pleinlaan 2, 1050 Brussels (Belgium)

    2014-11-14

    Within the context of spin polarized conceptual density functional theory, the spin polarized linear response functions are introduced both in the [N, N{sub s}] and [N{sub α}, N{sub β}] representations. The mathematical relations between the spin polarized linear response functions in both representations are examined and an analytical expression for the spin polarized linear response functions in the [N{sub α}, N{sub β}] representation is derived. The spin polarized linear response functions were calculated for all atoms up to and including argon. To simplify the plotting of our results, we integrated χ(r, r′) to a quantity χ(r, r{sup ′}), circumventing the θ and ϕ dependence. This allows us to plot and to investigate the periodicity throughout the first three rows in the periodic table within the two different representations. For the first time, χ{sub αβ}(r, r{sup ′}), χ{sub βα}(r, r{sup ′}), and χ{sub SS}(r, r{sup ′}) plots have been calculated and discussed. By integration of the spin polarized linear response functions, different components to the polarisability, α{sub αα}, α{sub αβ}, α{sub βα}, and α{sub ββ} have been calculated.

  10. Superradiance Effects in the Linear and Nonlinear Optical Response of Quantum Dot Molecules

    Science.gov (United States)

    Sitek, A.; Machnikowski, P.

    2008-11-01

    We calculate the linear optical response from a single quantum dot molecule and the nonlinear, four-wave-mixing response from an inhomogeneously broadened ensemble of such molecules. We show that both optical signals are affected by the coupling-dependent superradiance effect and by optical interference between the two polarizations. As a result, the linear and nonlinear responses are not identical.

  11. Numerical calculation models of the elastoplastic response of a structure under seismic action

    International Nuclear Information System (INIS)

    Edjtemai, Nima.

    1982-06-01

    Two digital calculation models developed in this work have made it possible to analyze the exact dynamic behaviour of ductile structures with one or several degrees of liberty, during earthquakes. With the first model, response spectra were built in the linear and non-linear fields for different absorption and ductility values and two types of seismic accelerograms. The comparative study of these spectra made it possible to check the validity of certain hypotheses suggested for the construction of elastoplastic spectra from corresponding linear spectra. A simplified method of non-linear seismic calculation based on the modal analysis and the spectra of elastoplastic response was then applied to structures with a varying number of degrees of liberty. The results obtained in this manner were compared with those provided by an exact calculation provided by the second digital model developed by us [fr

  12. Linear density response function in the projector augmented wave method

    DEFF Research Database (Denmark)

    Yan, Jun; Mortensen, Jens Jørgen; Jacobsen, Karsten Wedel

    2011-01-01

    We present an implementation of the linear density response function within the projector-augmented wave method with applications to the linear optical and dielectric properties of both solids, surfaces, and interfaces. The response function is represented in plane waves while the single...... functions of Si, C, SiC, AlP, and GaAs compare well with previous calculations. While optical properties of semiconductors, in particular excitonic effects, are generally not well described by ALDA, we obtain excellent agreement with experiments for the surface loss function of graphene and the Mg(0001...

  13. An Analytical-empirical Calculation of Linear Attenuation Coefficient of Megavoltage Photon Beams.

    Science.gov (United States)

    Seif, F; Tahmasebi-Birgani, M J; Bayatiani, M R

    2017-09-01

    In this study, a method for linear attenuation coefficient calculation was introduced. Linear attenuation coefficient was calculated with a new method that base on the physics of interaction of photon with matter, mathematical calculation and x-ray spectrum consideration. The calculation was done for Cerrobend as a common radiotherapy modifier and Mercury. The values of calculated linear attenuation coefficient with this new method are in acceptable range. Also, the linear attenuation coefficient decreases slightly as the thickness of attenuating filter (Cerrobend or mercury) increased, so the procedure of linear attenuation coefficient variation is in agreement with other documents. The results showed that the attenuation ability of mercury was about 1.44 times more than Cerrobend. The method that was introduced in this study for linear attenuation coefficient calculation is general enough to treat beam modifiers with any shape or material by using the same formalism; however, calculating was made only for mercury and Cerrobend attenuator. On the other hand, it seems that this method is suitable for high energy shields or protector designing.

  14. Power calculation of linear and angular incremental encoders

    Science.gov (United States)

    Prokofev, Aleksandr V.; Timofeev, Aleksandr N.; Mednikov, Sergey V.; Sycheva, Elena A.

    2016-04-01

    Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and transmit the measured values back to the control unit. The capabilities of these systems are undergoing continual development in terms of their resolution, accuracy and reliability, their measuring ranges, and maximum speeds. This article discusses the method of power calculation of linear and angular incremental photoelectric encoders, to find the optimum parameters for its components, such as light emitters, photo-detectors, linear and angular scales, optical components etc. It analyzes methods and devices that permit high resolutions in the order of 0.001 mm or 0.001°, as well as large measuring lengths of over 100 mm. In linear and angular incremental photoelectric encoders optical beam is usually formulated by a condenser lens passes through the measuring unit changes its value depending on the movement of a scanning head or measuring raster. Past light beam is converting into an electrical signal by the photo-detecter's block for processing in the electrical block. Therefore, for calculating the energy source is a value of the desired value of the optical signal at the input of the photo-detecter's block, which reliably recorded and processed in the electronic unit of linear and angular incremental optoelectronic encoders. Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and

  15. Linear beam-beam tune shift calculations for the Tevatron Collider

    International Nuclear Information System (INIS)

    Johnson, D.

    1989-01-01

    A realistic estimate of the linear beam-beam tune shift is necessary for the selection of an optimum working point in the tune diagram. Estimates of the beam-beam tune shift using the ''Round Beam Approximation'' (RBA) have over estimated the tune shift for the Tevatron. For a hadron machine with unequal lattice functions and beam sizes, an explicit calculation using the beam size at the crossings is required. Calculations for various Tevatron lattices used in Collider operation are presented. Comparisons between the RBA and the explicit calculation, for elliptical beams, are presented. This paper discusses the calculation of the linear tune shift using the program SYNCH. Selection of a working point is discussed. The magnitude of the tune shift is influenced by the choice of crossing points in the lattice as determined by the pbar ''cogging effects''. Also discussed is current cogging procedures and presents results of calculations for tune shifts at various crossing points in the lattice. Finally, a comparison of early pbar tune measurements with the present linear tune shift calculations is presented. 17 refs., 13 figs., 3 tabs

  16. Calculation of reactivity using a finite impulse response filter

    Energy Technology Data Exchange (ETDEWEB)

    Suescun Diaz, Daniel [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914, RJ (Brazil); Senra Martinez, Aquilino [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914, RJ (Brazil)], E-mail: aquilino@lmp.ufrj.br; Carvalho Da Silva, Fernando [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914, RJ (Brazil)

    2008-03-15

    A new formulation is presented in this paper to solve the inverse kinetics equation. This method is based on the Laplace transform of the point kinetics equations, resulting in an expression equivalent to the inverse kinetics equation as a function of the power history. Reactivity can be written in terms of the summation of convolution with response to impulse, characteristic of a linear system. For its digital form the Z-transform is used, which is the discrete version of the Laplace transform. This new method of reactivity calculation has very special features, amongst which it can be pointed out that the linear part is characterized by a filter named finite impulse response (FIR). The FIR filter will always be, stable and non-varying in time, and, apart from this, it can be implemented in the non-recursive form. This type of implementation does not require feedback, allowing the calculation of reactivity in a continuous way.

  17. A nanolens-type enhancement in the linear and second harmonic response of a metallic dimer

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy; Biswas, Sushmita; Vaia, Richard; Urbas, Augustine

    2014-01-01

    In this paper we explore the linear and second-order nonlinear response of gold nanoparticle pairs (dimers). Despite that even-order nonlinear processes are forbidden in bulk centrosymmetric media like metals, second order nonlinear response exhibits a high degree of sensitivity for spherical nanoparticles where inversion symmetry is broken at the surface. Recent experiments demonstrate significant dependence of linear response and second-harmonic surface nonlinear response arising from the local fundamental field distribution in a dimer configuration. Our calculations are carried out taking into account high order multipolar interactions between metal nanoparticles, and demonstrate that linear and nonlinear optical responses of the dimer exhibit periodic behavior dependent on the separation distance between nanoparticles. This response increases for dimers with a large difference between particle sizes. (paper)

  18. Linear and Non-Linear Dielectric Response of Periodic Systems from Quantum Monte Carlo

    Science.gov (United States)

    Umari, Paolo

    2006-03-01

    We present a novel approach that allows to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wavefunction, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence. The polarization is sampled through forward-walking. This approach has been validated for the case of the polarizability of an isolated hydrogen atom, and then applied to a periodic system. We then calculate the linear susceptibility and second-order hyper-susceptibility of molecular-hydrogen chains whith different bond-length alternations, and assess the quality of nodal surfaces derived from density-functional theory or from Hartree-Fock. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.P. Umari, A.J. Williamson, G. Galli, and N. MarzariPhys. Rev. Lett. 95, 207602 (2005).

  19. Linear filtering applied to Monte Carlo criticality calculations

    International Nuclear Information System (INIS)

    Morrison, G.W.; Pike, D.H.; Petrie, L.M.

    1975-01-01

    A significant improvement in the acceleration of the convergence of the eigenvalue computed by Monte Carlo techniques has been developed by applying linear filtering theory to Monte Carlo calculations for multiplying systems. A Kalman filter was applied to a KENO Monte Carlo calculation of an experimental critical system consisting of eight interacting units of fissile material. A comparison of the filter estimate and the Monte Carlo realization was made. The Kalman filter converged in five iterations to 0.9977. After 95 iterations, the average k-eff from the Monte Carlo calculation was 0.9981. This demonstrates that the Kalman filter has the potential of reducing the calculational effort of multiplying systems. Other examples and results are discussed

  20. Comparison of Linear Microinstability Calculations of Varying Input Realism

    International Nuclear Information System (INIS)

    Rewoldt, G.

    2003-01-01

    The effect of varying ''input realism'' or varying completeness of the input data for linear microinstability calculations, in particular on the critical value of the ion temperature gradient for the ion temperature gradient mode, is investigated using gyrokinetic and gyrofluid approaches. The calculations show that varying input realism can have a substantial quantitative effect on the results

  1. Comparison of linear microinstability calculations of varying input realism

    International Nuclear Information System (INIS)

    Rewoldt, G.; Kinsey, J.E.

    2004-01-01

    The effect of varying 'input realism' or varying completeness of the input data for linear microinstability calculations, in particular on the critical value of the ion temperature gradient for the ion temperature gradient mode, is investigated using gyrokinetic and gyrofluid approaches. The calculations show that varying input realism can have a substantial quantitative effect on the results

  2. Competitive inhibition can linearize dose-response and generate a linear rectifier.

    Science.gov (United States)

    Savir, Yonatan; Tu, Benjamin P; Springer, Michael

    2015-09-23

    Many biological responses require a dynamic range that is larger than standard bi-molecular interactions allow, yet the also ability to remain off at low input. Here we mathematically show that an enzyme reaction system involving a combination of competitive inhibition, conservation of the total level of substrate and inhibitor, and positive feedback can behave like a linear rectifier-that is, a network motif with an input-output relationship that is linearly sensitive to substrate above a threshold but unresponsive below the threshold. We propose that the evolutionarily conserved yeast SAGA histone acetylation complex may possess the proper physiological response characteristics and molecular interactions needed to perform as a linear rectifier, and we suggest potential experiments to test this hypothesis. One implication of this work is that linear responses and linear rectifiers might be easier to evolve or synthetically construct than is currently appreciated.

  3. Calculation of U, Ra, Th and K contents in uranium ore by multiple linear regression method

    International Nuclear Information System (INIS)

    Lin Chao; Chen Yingqiang; Zhang Qingwen; Tan Fuwen; Peng Guanghui

    1991-01-01

    A multiple linear regression method was used to compute γ spectra of uranium ore samples and to calculate contents of U, Ra, Th, and K. In comparison with the inverse matrix method, its advantage is that no standard samples of pure U, Ra, Th and K are needed for obtaining response coefficients

  4. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Directory of Open Access Journals (Sweden)

    Gyungho Khim

    2015-01-01

    Full Text Available We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement.

  5. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Science.gov (United States)

    Khim, Gyungho; Park, Chun Hong; Oh, Jeong Seok

    2015-01-01

    We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement. PMID:25705715

  6. Wavelet-based linear-response time-dependent density-functional theory

    Science.gov (United States)

    Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.; Philouze, Christian; Balakirev, Maxim Y.

    2012-06-01

    Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.

  7. Non-linear wave loads and ship responses by a time-domain strip theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    . Based on this time-domain strip theory, an efficient non-linear hydroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented as a Timoshenko beam. Numerical calculations are presented for the S175 Containership...

  8. Non-Linear Wave Loads and Ship responses by a time-domain Strip Theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    . Based on this time-domain strip theory, an efficient non-linear hyroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented by the Timoshenko beam theory. Numerical calculations are presented for the S175...

  9. Linear calculations of edge current driven kink modes with BOUT++ code

    Energy Technology Data Exchange (ETDEWEB)

    Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y. [Institute of Plasma Physics, CAS, Hefei, Anhui 230031 (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Snyder, P. B.; Turnbull, A. D. [General Atomics, San Diego, California 92186 (United States); Ma, C. H.; Xi, P. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); FSC, School of Physics, Peking University, Beijing 100871 (China)

    2014-10-15

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linear growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.

  10. Linear calculations of edge current driven kink modes with BOUT++ code

    International Nuclear Information System (INIS)

    Li, G. Q.; Xia, T. Y.; Xu, X. Q.; Snyder, P. B.; Turnbull, A. D.; Ma, C. H.; Xi, P. W.

    2014-01-01

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linear growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density

  11. A versatile program for the calculation of linear accelerator room shielding.

    Science.gov (United States)

    Hassan, Zeinab El-Taher; Farag, Nehad M; Elshemey, Wael M

    2018-03-22

    This work aims at designing a computer program to calculate the necessary amount of shielding for a given or proposed linear accelerator room design in radiotherapy. The program (Shield Calculation in Radiotherapy, SCR) has been developed using Microsoft Visual Basic. It applies the treatment room shielding calculations of NCRP report no. 151 to calculate proper shielding thicknesses for a given linear accelerator treatment room design. The program is composed of six main user-friendly interfaces. The first enables the user to upload their choice of treatment room design and to measure the distances required for shielding calculations. The second interface enables the user to calculate the primary barrier thickness in case of three-dimensional conventional radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT) and total body irradiation (TBI). The third interface calculates the required secondary barrier thickness due to both scattered and leakage radiation. The fourth and fifth interfaces provide a means to calculate the photon dose equivalent for low and high energy radiation, respectively, in door and maze areas. The sixth interface enables the user to calculate the skyshine radiation for photons and neutrons. The SCR program has been successfully validated, precisely reproducing all of the calculated examples presented in NCRP report no. 151 in a simple and fast manner. Moreover, it easily performed the same calculations for a test design that was also calculated manually, and produced the same results. The program includes a new and important feature that is the ability to calculate required treatment room thickness in case of IMRT and TBI. It is characterised by simplicity, precision, data saving, printing and retrieval, in addition to providing a means for uploading and testing any proposed treatment room shielding design. The SCR program provides comprehensive, simple, fast and accurate room shielding calculations in radiotherapy.

  12. The mathematical structure of the approximate linear response relation

    International Nuclear Information System (INIS)

    Yasuda, Muneki; Tanaka, Kazuyuki

    2007-01-01

    In this paper, we study the mathematical structures of the linear response relation based on Plefka's expansion and the cluster variation method in terms of the perturbation expansion, and we show how this linear response relation approximates the correlation functions of the specified system. Moreover, by comparing the perturbation expansions of the correlation functions estimated by the linear response relation based on these approximation methods with exact perturbative forms of the correlation functions, we are able to explain why the approximate techniques using the linear response relation work well

  13. Linear augmented plane wave method for self-consistent calculations

    International Nuclear Information System (INIS)

    Takeda, T.; Kuebler, J.

    1979-01-01

    O.K. Andersen has recently introduced a linear augmented plane wave method (LAPW) for the calculation of electronic structure that was shown to be computationally fast. A more general formulation of an LAPW method is presented here. It makes use of a freely disposable number of eigenfunctions of the radial Schroedinger equation. These eigenfunctions can be selected in a self-consistent way. The present formulation also results in a computationally fast method. It is shown that Andersen's LAPW is obtained in a special limit from the present formulation. Self-consistent test calculations for copper show the present method to be remarkably accurate. As an application, scalar-relativistic self-consistent calculations are presented for the band structure of FCC lanthanum. (author)

  14. Emittance calculations for the Stanford Linear Collider injector

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Clendenin, J.E.; Helm, R.H.; Lee, M.J.; Miller, R.H.; Blocker, C.A.

    1983-03-01

    A series of measurements have been performed to determine the emittance of the high intensity, single bunch beam that is to be injected into the Stanford Linear Collider. On-line computer programs were used to control the Linac for the purpose of data acquisition and to fit the data to a model in order to deduce the beam emittance. This paper will describe the method of emittance calculation and present some of the measurement results

  15. Nonrigid, Linear Plasma Response Model Based on Perturbed Equilibria for Axisymmetric Tokamak Control Design

    International Nuclear Information System (INIS)

    Welander, A.S.; Deranian, R.D.; Humphreys, D.A.; Leuer, J.A.; Walker, M.L.

    2005-01-01

    Tokamak control design relies on an accurate linear model of the plasma response, which can often dominate the local field variations in regions under active feedback control. For example, when fluxes at selected points on the plasma boundary are regulated in DIII-D, the plasma response to a change in a coil current gives rise to a flux change which can be larger than and opposite to the flux change caused by the coil alone.In the past, rigid plasma models have been used for linear stability and shape control design. In a rigid model, the plasma current profile is considered fixed and moves rigidly in response to control coils to maintain radial and vertical force balance. In a nonrigid model, however, changes in the plasma shape and current profile are taken into account. Such models are expected to be important for future advanced tokamak control design. The present work describes development of a nonrigid plasma response model for high-accuracy multivariable control design and provides comparisons of model predictions against DIII-D experimental data. The linear perturbed plasma response model is calculated rapidly from an existing equilibrium solution

  16. Recent progress for Linear Collider SM/BSM Higgs/electroweak symmetry breaking calculations

    International Nuclear Information System (INIS)

    Reuter, Juergen

    2012-01-01

    In this paper I review the calculations (and partially simulations and theoretical studies) that have been made and published during the last two to three years focusing on the electroweak symmetry breaking sector and the Higgs boson(s) within the Standard Model and models beyond the Standard Model (BSM) at or relevant for either the International Linear Collider (ILC) or the Compact Linear Collider (CLIC), commonly abbreviated as Linear Collider (LC). (orig.)

  17. Seismic behavior of reinforced concrete structures: non linear calculation and experimental verification

    International Nuclear Information System (INIS)

    Gauvain, J.; Hoffmann, A.; Jeandidier, C.; Livolant, M.

    1978-01-01

    This study presents the tests of a reinforced concrete beam conducted by the Department of Mechanical and Thermal Studies at the Centre d'Etudes Nucleaires de Saclay, France. The actual behavior of nuclear power plant buildings submitted to seismic loads is generally non linear even for moderate seismic levels. The non-linearity is specially important for reinforced concrete type buildings. To estimate the safety factors when the building is designed by standard methods, accurate non linear calculations are necessary. For such calculations one of the most difficult point is to define a correct model for the behavior of a reinforced concrete beam subject to reversed loads. For that purpose, static and dynamic experimental tests on a shaking table have been carried out and a model reasonably accurate has been established and checked on the test results [fr

  18. Charge and pairing dynamics in the attractive Hubbard model: Mode coupling and the validity of linear-response theory

    Science.gov (United States)

    Bünemann, Jörg; Seibold, Götz

    2017-12-01

    Pump-probe experiments have turned out as a powerful tool in order to study the dynamics of competing orders in a large variety of materials. The corresponding analysis of the data often relies on standard linear-response theory generalized to nonequilibrium situations. Here we examine the validity of such an approach for the charge and pairing response of systems with charge-density wave and (or) superconducting (SC) order. Our investigations are based on the attractive Hubbard model which we study within the time-dependent Hartree-Fock approximation. In particular, we calculate the quench and pump-probe dynamics for SC and charge order parameters in order to analyze the frequency spectra and the coupling of the probe field to the specific excitations. Our calculations reveal that the "linear-response assumption" is justified for small to moderate nonequilibrium situations (i.e., pump pulses) in the case of a purely charge-ordered ground state. However, the pump-probe dynamics on top of a superconducting ground state is determined by phase and amplitude modes which get coupled far from the equilibrium state indicating the failure of the linear-response assumption.

  19. Calculation of the exponential function of linear idempotent operators

    International Nuclear Information System (INIS)

    Chavoya-Aceves, O.; Luna, H.M.

    1989-01-01

    We give a method to calculate the exponential EXP[A r ] where A is a linear operator which satisfies the reaction A n =I, n is an integer and I is the identity operator. The method is generalised to operators such that A n +1=A and is applied to obtain some Lorentz transformations which generalise the notion of 'boost'. (Author)

  20. Non-linear stochastic response of a shallow cable

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2004-01-01

    The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two...

  1. Slope Safety Calculation With A Non-Linear Mohr Criterion Using Finite Element Method

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2005-01-01

    Safety factors for soil slopes are calculated using a non-linear Mohr envelope. The often used linear Mohr-Coulomb envelope tends to overestimate the safety as the material parameters are usually determined at much higher stress levels, than those present at slope failure. Experimental data...

  2. Investigation and Calculation of Magnetic Field in Tubular Linear Reluctance Motor Using FEM

    Directory of Open Access Journals (Sweden)

    MOSALLANEJAD, A.

    2010-11-01

    Full Text Available In this paper the magnetic flux density of tubular linear reluctance motor (TLRM in open type magnetic circuit is studied. Also, all magnetic flux density calculation methods in winding of tubular linear reluctance motor are described. The effect of structure parameters on magnetic flux density is also discussed. Electromagnetic finite-element analysis is used for simulation of magnetic field, and simulation results of the magnetic field analysis with DC voltage excitation are compared with results obtained from calculation methods. The comparison yields a good agreement.

  3. Slope Safety Factor Calculations With Non-Linear Yield Criterion Using Finite Elements

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2006-01-01

    The factor of safety for a slope is calculated with the finite element method using a non-linear yield criterion of the Hoek-Brown type. The parameters of the Hoek-Brown criterion are found from triaxial test data. Parameters of the linear Mohr-Coulomb criterion are calibrated to the same triaxial...... are carried out at much higher stress levels than present in a slope failure, this leads to the conclusion that the use of the non-linear criterion leads to a safer slope design...

  4. Evaluating and interpreting the chemical relevance of the linear response kernel for atoms II: open shell.

    Science.gov (United States)

    Boisdenghien, Zino; Fias, Stijn; Van Alsenoy, Christian; De Proft, Frank; Geerlings, Paul

    2014-07-28

    Most of the work done on the linear response kernel χ(r,r') has focussed on its atom-atom condensed form χAB. Our previous work [Boisdenghien et al., J. Chem. Theory Comput., 2013, 9, 1007] was the first effort to truly focus on the non-condensed form of this function for closed (sub)shell atoms in a systematic fashion. In this work, we extend our method to the open shell case. To simplify the plotting of our results, we average our results to a symmetrical quantity χ(r,r'). This allows us to plot the linear response kernel for all elements up to and including argon and to investigate the periodicity throughout the first three rows in the periodic table and in the different representations of χ(r,r'). Within the context of Spin Polarized Conceptual Density Functional Theory, the first two-dimensional plots of spin polarized linear response functions are presented and commented on for some selected cases on the basis of the atomic ground state electronic configurations. Using the relation between the linear response kernel and the polarizability we compare the values of the polarizability tensor calculated using our method to high-level values.

  5. Final disposal room structural response calculations

    International Nuclear Information System (INIS)

    Stone, C.M.

    1997-08-01

    Finite element calculations have been performed to determine the structural response of waste-filled disposal rooms at the WIPP for a period of 10,000 years after emplacement of the waste. The calculations were performed to generate the porosity surface data for the final set of compliance calculations. The most recent reference data for the stratigraphy, waste characterization, gas generation potential, and nonlinear material response have been brought together for this final set of calculations

  6. 3D Analytical Calculation of Forces between Linear Halbach-Type Permanent Magnet Arrays

    OpenAIRE

    Allag , Hicham; Yonnet , Jean-Paul; Latreche , Mohamed E. H.

    2009-01-01

    International audience; Usely, in analytical calculation of magnetic and mechanical quantities of Halbach systems, the authors use the Fourier series approximation because the exact calculations are more difficult. In this work the interaction forces between linear Halbach arrays are analytically calculated thanks to our recent development 3D exact calculation of forces between two cuboïdal magnets with parallel and perpendicular magnetization. We essentially describe the way to separately ca...

  7. Non-linear dynamic response of reactor containment

    International Nuclear Information System (INIS)

    Takemori, T.; Sotomura, K.; Yamada, M.

    1975-01-01

    A computer program was developed to investigate the elasto-plastic behavior of structures. This program is outlined and the problems of non-linear response of structures are discussed. Since the mode superposition method is only valid in an elastic analysis, the direct integration method was adopted here. As the sample model, an actual reactor containment (reactor building) of PWR plant was adopted. This building consists of three components, that is, a concrete internal structure, a steel containment vessel and a concrete outer shield wall. These components are resting on a rigid foundation mat. Therefore they were modeled with a lumped mass model respectively and coupled on the foundation. The following assumptions were employed to establish the properties of dynamic model: rocking and swaying springs of soil can be obtained from an elastic half-space solution, and the hysteretic characteristic of springs is bi-linear; springs connecting each mass are dealt with shear beams so that both bending and shear deflections can be included (Hysteretic characteristics of springs are linear, bi-linear and tri-linear for the internal structure, the containment vessel and the outer shield wall, respectively); generally, each damping coefficient is given for each mode in modal superposition (However, a damping matrix must be made directly in a non-linear response). Therefore the damping matrix of the model was made by combining the damping matrices [C] of each component obtained by Caughy's method and a damping value of the rocking and swaying by the half-space solution. On the basis of above conditions, the non-linear response of the structure was obtained and the difference between elastic and elasto-plastic analysis is presented

  8. Lead-lag relationships between stock and market risk within linear response theory

    Science.gov (United States)

    Borysov, Stanislav; Balatsky, Alexander

    2015-03-01

    We study historical correlations and lead-lag relationships between individual stock risks (standard deviation of daily stock returns) and market risk (standard deviation of daily returns of a market-representative portfolio) in the US stock market. We consider the cross-correlation functions averaged over stocks, using historical stock prices from the Standard & Poor's 500 index for 1994-2013. The observed historical dynamics suggests that the dependence between the risks was almost linear during the US stock market downturn of 2002 and after the US housing bubble in 2007, remaining at that level until 2013. Moreover, the averaged cross-correlation function often had an asymmetric shape with respect to zero lag in the periods of high correlation. We develop the analysis by the application of the linear response formalism to study underlying causal relations. The calculated response functions suggest the presence of characteristic regimes near financial crashes, when individual stock risks affect market risk and vice versa. This work was supported by VR 621-2012-2983.

  9. Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time

    Science.gov (United States)

    Wang, Yu

    1995-08-01

    The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.

  10. A Bivariate Generalized Linear Item Response Theory Modeling Framework to the Analysis of Responses and Response Times.

    Science.gov (United States)

    Molenaar, Dylan; Tuerlinckx, Francis; van der Maas, Han L J

    2015-01-01

    A generalized linear modeling framework to the analysis of responses and response times is outlined. In this framework, referred to as bivariate generalized linear item response theory (B-GLIRT), separate generalized linear measurement models are specified for the responses and the response times that are subsequently linked by cross-relations. The cross-relations can take various forms. Here, we focus on cross-relations with a linear or interaction term for ability tests, and cross-relations with a curvilinear term for personality tests. In addition, we discuss how popular existing models from the psychometric literature are special cases in the B-GLIRT framework depending on restrictions in the cross-relation. This allows us to compare existing models conceptually and empirically. We discuss various extensions of the traditional models motivated by practical problems. We also illustrate the applicability of our approach using various real data examples, including data on personality and cognitive ability.

  11. Equivalent linear and nonlinear site response analysis for design and risk assessment of safety-related nuclear structures

    International Nuclear Information System (INIS)

    Bolisetti, Chandrakanth; Whittaker, Andrew S.; Mason, H. Benjamin; Almufti, Ibrahim; Willford, Michael

    2014-01-01

    Highlights: • Performed equivalent linear and nonlinear site response analyses using industry-standard numerical programs. • Considered a wide range of sites and input ground motions. • Noted the practical issues encountered while using these programs. • Examined differences between the responses calculated from different programs. • Results of biaxial and uniaxial analyses are compared. - Abstract: Site response analysis is a precursor to soil-structure interaction analysis, which is an essential component in the seismic analysis of safety-related nuclear structures. Output from site response analysis provides input to soil-structure interaction analysis. Current practice in calculating site response for safety-related nuclear applications mainly involves the equivalent linear method in the frequency-domain. Nonlinear time-domain methods are used by some for the assessment of buildings, bridges and petrochemical facilities. Several commercial programs have been developed for site response analysis but none of them have been formally validated for large strains and high frequencies, which are crucial for the performance assessment of safety-related nuclear structures. This study sheds light on the applicability of some industry-standard equivalent linear (SHAKE) and nonlinear (DEEPSOIL and LS-DYNA) programs across a broad range of frequencies, earthquake shaking intensities, and sites ranging from stiff sand to hard rock, all with a focus on application to safety-related nuclear structures. Results show that the equivalent linear method is unable to reproduce the high frequency acceleration response, resulting in almost constant spectral accelerations in the short period range. Analysis using LS-DYNA occasionally results in some unrealistic high frequency acceleration ‘noise’, which can be removed by smoothing the piece-wise linear backbone curve. Analysis using DEEPSOIL results in abrupt variations in the peak strains of consecutive soil layers

  12. Dose-Response Calculator for ArcGIS

    Science.gov (United States)

    Hanser, Steven E.; Aldridge, Cameron L.; Leu, Matthias; Nielsen, Scott E.

    2011-01-01

    The Dose-Response Calculator for ArcGIS is a tool that extends the Environmental Systems Research Institute (ESRI) ArcGIS 10 Desktop application to aid with the visualization of relationships between two raster GIS datasets. A dose-response curve is a line graph commonly used in medical research to examine the effects of different dosage rates of a drug or chemical (for example, carcinogen) on an outcome of interest (for example, cell mutations) (Russell and others, 1982). Dose-response curves have recently been used in ecological studies to examine the influence of an explanatory dose variable (for example, percentage of habitat cover, distance to disturbance) on a predicted response (for example, survival, probability of occurrence, abundance) (Aldridge and others, 2008). These dose curves have been created by calculating the predicted response value from a statistical model at different levels of the explanatory dose variable while holding values of other explanatory variables constant. Curves (plots) developed using the Dose-Response Calculator overcome the need to hold variables constant by using values extracted from the predicted response surface of a spatially explicit statistical model fit in a GIS, which include the variation of all explanatory variables, to visualize the univariate response to the dose variable. Application of the Dose-Response Calculator can be extended beyond the assessment of statistical model predictions and may be used to visualize the relationship between any two raster GIS datasets (see example in tool instructions). This tool generates tabular data for use in further exploration of dose-response relationships and a graph of the dose-response curve.

  13. Responsive linear-dendritic block copolymers.

    Science.gov (United States)

    Blasco, Eva; Piñol, Milagros; Oriol, Luis

    2014-06-01

    The combination of dendritic and linear polymeric structures in the same macromolecule opens up new possibilities for the design of block copolymers and for applications of functional polymers that have self-assembly properties. There are three main strategies for the synthesis of linear-dendritic block copolymers (LDBCs) and, in particular, the emergence of click chemistry has made the coupling of preformed blocks one of the most efficient ways of obtaining libraries of LDBCs. In these materials, the periphery of the dendron can be precisely functionalised to obtain functional LDBCs with self-assembly properties of interest in different technological areas. The incorporation of stimuli-responsive moieties gives rise to smart materials that are generally processed as self-assemblies of amphiphilic LDBCs with a morphology that can be controlled by an external stimulus. Particular emphasis is placed on light-responsive LDBCs. Furthermore, a brief review of the biomedical or materials science applications of LDBCs is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Wavelet-based linear-response time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.

    2012-01-01

    Highlights: ► We has been implemented LR-TD-DFT in the pseudopotential wavelet-based program. ► We have compared the results against all-electron Gaussian-type program. ► Orbital energies converges significantly faster for BigDFT than for DEMON2K. ► We report the X-ray crystal structure of the small organic molecule flugi6. ► Measured and calculated absorption spectrum of flugi6 is also reported. - Abstract: Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N 2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.

  15. Parametrisation of linear accelerator electron beam for computerised dosimetry calculations

    International Nuclear Information System (INIS)

    Millan, P.E.; Millan, S.; Hernandez, A.; Andreo, P.

    1979-01-01

    A previously published age-diffusion model has been adapted to obtain parameters for the Saggittaire linear accelerator electron beams. The calculations are shown and the results discussed. A comparison is presented between measured and predicted percentage depth doses for electron beams at various energies between 10 and 32 MeV. Theoretical isodose curves are compared, for an energy of 10 MeV, with experimental curves. The parameters obtained are used for computer electron isodose curve calculation in a program called FIJOE adapted from a previously published program. This program makes it possible to correct for irregular body contours, but not for internal inhomogeneities. (UK)

  16. Recovery coefficients as a test of system linearity of response in PET

    International Nuclear Information System (INIS)

    Geworski, L.; Munz, D.L.; Knoop, B.; Hofmann, M.; Knapp, W.H.

    2002-01-01

    Aim: New imaging protocols have created an increasing demand for quantitation in dedicated PET. Besides attenuation and scatter correction the recovery correction, accounting for the instrument's limited spatial resolution, has gained importance. For clinical practicability these corrections should work independent from the object, i.e. from the actual distribution of emitter and absorber. Aim of the study was to test this object independency, i.e. system linearity of response, by comparing recovery coefficients (RC) determined for different object geometries. In fact, this comparison may serve as a final test on system linearity of response, as measured on the quantitative accuracy by which the activity concentration in small lesions can be recovered. Method: For hot and cold spot imaging situations spatial distribution of activity is different. Therefore, scatter correction algorithm has to deal with different scatter distributions. If all factors disturbing system linearity, specifically scatter and attenuation, are corrected to a sufficient degree of accuracy, the system behaves linearly resulting in the theoretical relationship. CSRC = (1-HSRC). Thus, this equation, applied hot and cold spot measurements, will serve as a test on the effectiveness of the corrections and, hence, as a test of system linearity of response. Following IEC standard procedures (IEC 61675-1) measurements were done with and without interplane septa (2D/3D) on an ECAT EXACT 922 using a cylindrical phantom containing six spheres of different diameters (10 mm - 40 mm). All data were corrected for attenuation (transmission scan) and scatter (2D: deconvolution, 3D: scatter model), as implemented in the scanner's standard software. Recovery coefficients were determined for cold (CSRC) and hot (HSRC) lesions using both 2D and 3D acquisition mode. Results: CSRC directly measured versus CSRC calculated according to eq. (1) from HSRC resulted in an excellent agreement for both 2D and 3D data

  17. Calculation of relative tube/tube support plate displacements in steam generators under accident condition loads using non-linear dynamic analysis methodologies

    International Nuclear Information System (INIS)

    Smith, R.E.; Waisman, R.; Hu, M.H.; Frick, T.M.

    1995-01-01

    A non-linear analysis has been performed to determine relative motions between tubes and tube support plates (TSP) during a steam line break (SLB) event for steam generators. The SLB event results in blowdown of steam and water out of the steam generator. The fluid blowdown generates pressure drops across the TSPS, resulting in out-of-plane motion. The SLB induced pressure loads are calculated with a computer program that uses a drift-flux modeling of the two-phase flow. In order to determine the relative tube/TSP motions, a nonlinear dynamic time-history analysis is performed using a structural model that considers all of the significant component members relative to the tube support system. The dynamic response of the structure to the pressure loads is calculated using a special purpose computer program. This program links the various substructures at common degrees of freedom into a combined mass and stiffness matrix. The program accounts for structural non-linearities, including potential tube and TSP interaction at any given tube position. The program also accounts for structural damping as part of the dynamic response. Incorporating all of the above effects, the equations of motion are solved to give TSP displacements at the reduced set of DOF. Using the displacement results from the dynamic analysis, plate stresses are then calculated using the detailed component models. Displacements form the dynamic analysis are imposed as boundary conditions at the DOF locations, and the finite element program then solves for the overall distorted geometry. Calculations are also performed to assure that assumptions regarding elastic response of the various structural members and support points are valid

  18. Application of the perturbation theory for sensitivity calculations in thermalhydraulics reactor calculations

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de

    1986-01-01

    The sensitivity of non linear responses associated with physical quantities governed by non linear differential systems can be studied using perturbation theory. The equivalence and formal differences between the differential and GPT formalisms are shown and both are used for sensitivity calculations of transient problems in a typical PWR coolant channel. The results obtained are encouraging with respect to the potential of the method for thermalhydraulics calculations normally performed for reactor design and safety analysis. (Author) [pt

  19. A study on the calculation of the shielding wall thickness in medical linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dept. of Radiation Oncology, Dongnam Ins. of Radiological and Medical Science, Busan (Korea, Republic of); Park, Eun Tae [Dept. of Radiation Oncology, Inje University Busan Paik Hospital, Busan (Korea, Republic of); Kim, Jung Hoon [Dept. of Radiological science, college of health sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2017-06-15

    The purpose of this study is to calculate the thickness of shielding for concrete which is mainly used for radiation shielding and study of the walls constructed to shield medical linear accelerator. The optimal shielding thickness was calculated using MCNPX(Ver.2.5.0) for 10 MV of photon beam energy generated by linear accelerator. As a result, the TVL for photon shielding was formed at 50⁓100 cm for pure concrete and concrete with Boron+polyethylene at 80⁓100 cm. The neutron shielding was calculated 100⁓140 cm for pure concrete and concrete with Boron+polyethylene at 90⁓100 cm. Based on this study, the concrete is considered to be most efficient method of using steel plates and adding Boron+polyethylene th the concrete.

  20. New nonlinear methods for linear transport calculations

    International Nuclear Information System (INIS)

    Adams, M.L.

    1993-01-01

    We present a new family of methods for the numerical solution of the linear transport equation. With these methods an iteration consists of an 'S N sweep' followed by an 'S 2 -like' calculation. We show, by analysis as well as numerical results, that iterative convergence is always rapid. We show that this rapid convergence does not depend on a consistent discretization of the S 2 -like equations - they can be discretized independently from the S N equations. We show further that independent discretizations can offer significant advantages over consistent ones. In particular, we find that in a wide range of problems, an accurate discretization of the S 2 -like equation can be combined with a crude discretization of the S N equations to produce an accurate S N answer. We demonstrate this by analysis as well as numerical results. (orig.)

  1. A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants

    Science.gov (United States)

    Cooper, Paul D.

    2010-01-01

    A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…

  2. Linearization Method and Linear Complexity

    Science.gov (United States)

    Tanaka, Hidema

    We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.

  3. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Berk, H.L.; Ye Huanchun; Breizman, B.N.

    1992-01-01

    The linear response of energetic particles of the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width; when the banana width Δ b is much larger than the mode thickness Δ m , we obtain a new compact expression for the linear power transfer. When Δ m /Δ b m /Δ b from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balanced-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances (vertical strokev parallel vertical stroke=v A ) is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands (vertical strokev parallel vertical stroke=v A /(2l-1) with l≥2) is substantially reduced. (orig.)

  4. Quantum optimal control theory in the linear response formalism

    International Nuclear Information System (INIS)

    Castro, Alberto; Tokatly, I. V.

    2011-01-01

    Quantum optimal control theory (QOCT) aims at finding an external field that drives a quantum system in such a way that optimally achieves some predefined target. In practice, this normally means optimizing the value of some observable, a so-called merit function. In consequence, a key part of the theory is a set of equations, which provides the gradient of the merit function with respect to parameters that control the shape of the driving field. We show that these equations can be straightforwardly derived using the standard linear response theory, only requiring a minor generalization: the unperturbed Hamiltonian is allowed to be time dependent. As a result, the aforementioned gradients are identified with certain response functions. This identification leads to a natural reformulation of QOCT in terms of the Keldysh contour formalism of the quantum many-body theory. In particular, the gradients of the merit function can be calculated using the diagrammatic technique for nonequilibrium Green's functions, which should be helpful in the application of QOCT to computationally difficult many-electron problems.

  5. Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems

    Science.gov (United States)

    Antown, Fadi; Dragičević, Davor; Froyland, Gary

    2018-03-01

    The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.

  6. Linear and non-linear dose-response functions reveal a hormetic relationship between stress and learning.

    Science.gov (United States)

    Zoladz, Phillip R; Diamond, David M

    2008-10-16

    Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as well as the excitatory effects of several neuromodulators, including corticosteroids, norepinephrine, corticotropin-releasing hormone, acetylcholine and dopamine. We propose that this rapid activation of the amygdala-hippocampus brain memory system results in a linear dose-response relation between emotional strength and memory formation. More prolonged stress, however, leads to an inhibition of hippocampal function, which can be attributed to compensatory cellular responses that protect hippocampal neurons from excitotoxicity. This inhibition of hippocampal functioning in response to prolonged stress is potentially relevant to the well-described curvilinear dose-response relationship between arousal and memory. Our emphasis on the temporal features of stress-brain interactions addresses how stress can activate, as well as impair, hippocampal functioning to produce a hormetic relationship between stress and learning.

  7. Electronic response and longitudinal phonons of a charge-density-wave distorted linear chain

    International Nuclear Information System (INIS)

    Giuliani, G.

    1978-01-01

    The longitudinal-phonon spectrum of an incommensurate charge-density-wave distorted linear chain at T = 0 K are calculated. This is done by direct numerical evaluation of the full static-electronic-response matrix. The electronic band structure assumed for this purpose is that of a mean-field theory 1-D Peierls insulator. The present results show how, within this simplified, but self-consistent picture, the phase and amplitude modes connect to, and interact with, the ordinary longitudinal-phonon branch. Effects due to our inclusion of (0,2ksub(F)) scattering along with the usual (-2ksub(F), 2ksub(F)) are also pointed out. An alternative approximate expression for the 1-D electronic-response matrix is also given. (author)

  8. Improved response function calculations for scintillation detectors using an extended version of the MCNP code

    CERN Document Server

    Schweda, K

    2002-01-01

    The analysis of (e,e'n) experiments at the Darmstadt superconducting electron linear accelerator S-DALINAC required the calculation of neutron response functions for the NE213 liquid scintillation detectors used. In an open geometry, these response functions can be obtained using the Monte Carlo codes NRESP7 and NEFF7. However, for more complex geometries, an extended version of the Monte Carlo code MCNP exists. This extended version of the MCNP code was improved upon by adding individual light-output functions for charged particles. In addition, more than one volume can be defined as a scintillator, thus allowing the simultaneous calculation of the response for multiple detector setups. With the implementation of sup 1 sup 2 C(n,n'3 alpha) reactions, all relevant reactions for neutron energies E sub n <20 MeV are now taken into consideration. The results of these calculations were compared to experimental data using monoenergetic neutrons in an open geometry and a sup 2 sup 5 sup 2 Cf neutron source in th...

  9. Online detector response calculations for high-resolution PET image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Pratx, Guillem [Department of Radiation Oncology, Stanford University, Stanford, CA 94305 (United States); Levin, Craig, E-mail: cslevin@stanford.edu [Departments of Radiology, Physics and Electrical Engineering, and Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305 (United States)

    2011-07-07

    Positron emission tomography systems are best described by a linear shift-varying model. However, image reconstruction often assumes simplified shift-invariant models to the detriment of image quality and quantitative accuracy. We investigated a shift-varying model of the geometrical system response based on an analytical formulation. The model was incorporated within a list-mode, fully 3D iterative reconstruction process in which the system response coefficients are calculated online on a graphics processing unit (GPU). The implementation requires less than 512 Mb of GPU memory and can process two million events per minute (forward and backprojection). For small detector volume elements, the analytical model compared well to reference calculations. Images reconstructed with the shift-varying model achieved higher quality and quantitative accuracy than those that used a simpler shift-invariant model. For an 8 mm sphere in a warm background, the contrast recovery was 95.8% for the shift-varying model versus 85.9% for the shift-invariant model. In addition, the spatial resolution was more uniform across the field-of-view: for an array of 1.75 mm hot spheres in air, the variation in reconstructed sphere size was 0.5 mm RMS for the shift-invariant model, compared to 0.07 mm RMS for the shift-varying model.

  10. Calculation of parameter failure probability of thermodynamic system by response surface and importance sampling method

    International Nuclear Information System (INIS)

    Shang Yanlong; Cai Qi; Chen Lisheng; Zhang Yangwei

    2012-01-01

    In this paper, the combined method of response surface and importance sampling was applied for calculation of parameter failure probability of the thermodynamic system. The mathematics model was present for the parameter failure of physics process in the thermodynamic system, by which the combination arithmetic model of response surface and importance sampling was established, then the performance degradation model of the components and the simulation process of parameter failure in the physics process of thermodynamic system were also present. The parameter failure probability of the purification water system in nuclear reactor was obtained by the combination method. The results show that the combination method is an effective method for the calculation of the parameter failure probability of the thermodynamic system with high dimensionality and non-linear characteristics, because of the satisfactory precision with less computing time than the direct sampling method and the drawbacks of response surface method. (authors)

  11. Magnetism of hexagonal close-packed nickel calculated by full-potential linearized augmented plane wave method

    International Nuclear Information System (INIS)

    Tian, F.; Tian, H.; Whitmore, L.; Ye, L.Y.

    2015-01-01

    The energy dependent on volume of hexagonal close-packed (hcp) nickel with different magnetism is calculated by full-potential linearized augmented plane wave method. Based on the calculation ferromagnetic state is found to be the most stable state. The magnetic moment of hcp Ni is calculated and compared to those calculated by different pseudo-potential methods. Furthermore, it is also compared to that of face-centered cubic (fcc) one with the reason discussed

  12. Calculations of beam dynamics in Sandia linear electron accelerators, 1984

    International Nuclear Information System (INIS)

    Poukey, J.W.; Coleman, P.D.

    1985-03-01

    A number of code and analytic studies were made during 1984 which pertain to the Sandia linear accelerators MABE and RADLAC. In this report the authors summarize the important results of the calculations. New results include a better understanding of gap-induced radial oscillations, leakage currents in a typical MABE gas, emittance growth in a beam passing through a series of gaps, some new diocotron results, and the latest diode simulations for both accelerators. 23 references, 30 figures, 1 table

  13. Linear dose response curves in fungi and tradescantia

    International Nuclear Information System (INIS)

    Unrau, P.

    1999-07-01

    heterozygosity (LOH) events occur because Clone 02 repairs both DSB and LCD by recombination. Clone 02 has a linear dose response for high LET radiation. Starting from the same initial yieId frequency, wild-types have a sublinear response. The sublinear response reflects a smoothly decreasing probability that 'pinks' are generated as a function of increasing high LET dose for wild-type but not Clone 02. This smoothly decreasing response would be expected for LOH in 'wild-type' humans. It reflects an increasing proportion of DNA damage being repaired by non-recombinational pathways and/or an increasing probability of cell death with increasing dose. Clone 02 at low doses and low dose rates of low LET radiation has a linear dose response, reflecting a 1/16 probability of a lesion leading to LOH, relative to high LET lesions. This differential is held to reflect: microdosimetric differences in energy deposition and, therefore, DNA damage by low and high LET radiations; the effects of lesion clustering after high LET on the probability of generating the end wild-types. While no observations have been made at very low doses and dose rates in wild-types, there is no reason to suppose that the low LET linear non-threshold dose response of Clone 02 is abnormal. The importance of the LOH somatic genetic end-point is that it reflects cancer risk in humans. The linear non-threshold low dose low LET response curves reflects either the probability that recombinational Holliday junctions are occasionally cleaved in a rare orientation to generate LOH, or the probability that low LET lesions include a small proportion of clustered events similar to high LET ionization or both. Calculations of the Poisson probability that two or more low LET lesions will be induced in the same target suggest that dose rate effects depend upon the coincidence of DNA lesions in the same target, and that the probability of LOH depends upon lesion and repair factors. But the slope of LOH in Clone 02 and all other

  14. Linear dose response curves in fungi and tradescantia

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada)

    1999-07-15

    ;pink' loss of heterozygosity (LOH) events occur because Clone 02 repairs both DSB and LCD by recombination. Clone 02 has a linear dose response for high LET radiation. Starting from the same initial yieId frequency, wild-types have a sublinear response. The sublinear response reflects a smoothly decreasing probability that 'pinks' are generated as a function of increasing high LET dose for wild-type but not Clone 02. This smoothly decreasing response would be expected for LOH in 'wild-type' humans. It reflects an increasing proportion of DNA damage being repaired by non-recombinational pathways and/or an increasing probability of cell death with increasing dose. Clone 02 at low doses and low dose rates of low LET radiation has a linear dose response, reflecting a 1/16 probability of a lesion leading to LOH, relative to high LET lesions. This differential is held to reflect: microdosimetric differences in energy deposition and, therefore, DNA damage by low and high LET radiations; the effects of lesion clustering after high LET on the probability of generating the end wild-types. While no observations have been made at very low doses and dose rates in wild-types, there is no reason to suppose that the low LET linear non-threshold dose response of Clone 02 is abnormal. The importance of the LOH somatic genetic end-point is that it reflects cancer risk in humans. The linear non-threshold low dose low LET response curves reflects either the probability that recombinational Holliday junctions are occasionally cleaved in a rare orientation to generate LOH, or the probability that low LET lesions include a small proportion of clustered events similar to high LET ionization or both. Calculations of the Poisson probability that two or more low LET lesions will be induced in the same target suggest that dose rate effects depend upon the coincidence of DNA lesions in the same target, and that the probability of LOH depends upon lesion and repair factors. But the

  15. Confirm calculation of 12 MeV non-destructive testing electron linear accelerator target

    International Nuclear Information System (INIS)

    Ma Shudong; Zhang Rutong; Guo Yanbin; Zhou Yuan; Li Xuexian; Chen Yan

    2012-01-01

    The confirm calculation of 12 MeV non-destructive testing (NDT) electron linear accelerator (LINAC) target was studied. Firstly, the most optimal target thickness and related photon dose yield, distributions of dose rate, and related photon conversion efficiencies were got by calculation with specific analysis of the physical mechanism of the interactions between the beam and target; Secondly, the photon dose rate distribution, converter efficiencies, and thickness of various kinds of targets, such as W, Au, Ta, etc. were verified by MCNP simulation and the most optimal target was got using the MCNP code; Lastly, the calculation results of theory and MCNP were compared to confirm the validity of target calculation. (authors)

  16. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    Science.gov (United States)

    Nwankwo, Obioma; Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens

    2017-01-01

    To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  17. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    Directory of Open Access Journals (Sweden)

    Obioma Nwankwo

    Full Text Available To introduce a new method of deriving a virtual source model (VSM of a linear accelerator photon beam from a phase space file (PSF for Monte Carlo (MC dose calculation.A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses.The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate for the evaluated fields.A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  18. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Berk, H.L.; Ye, Huanchun; Breizman, B.N.

    1991-07-01

    The linear response of energetic particles to the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width: when the banana width triangle b is much larger than the mode thickness triangle m , we obtain a new compact expression for the linear power transfer. When triangle m /triangle b much-lt 1, the banana orbit effect reduces the power transfer by a factor of triangle m /triangle b from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balance-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances (|υ parallel | = υ A is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands (|υ parallel |) = υ A /(2 ell - 1) with ell ≥ 2) is substantially reduced. 10 refs

  19. Linear ubiquitination signals in adaptive immune responses.

    Science.gov (United States)

    Ikeda, Fumiyo

    2015-07-01

    Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. A non-linear association between self-reported negative emotional response to stress and subsequent allostatic load

    DEFF Research Database (Denmark)

    Dich, Nadya; Doan, Stacey N; Kivimäki, Mika

    2014-01-01

    dysregulation. Allostatic load also increased with age, but the association between negative emotional response and allostatic load remained stable over time. These results provide evidence for a more nuanced understanding of the role of negative emotions in long-term physical health....... response to major life events and allostatic load, a multisystem indicator of physiological dysregulation. Study sample was 6764 British civil service workers from the Whitehall II cohort. Negative emotional response was assessed by self-report at baseline. Allostatic load was calculated using...... cardiovascular, metabolic and immune function biomarkers at three clinical follow-up examinations. A non-linear association between negative emotional response and allostatic load was observed: being at either extreme end of the distribution of negative emotional response increased the risk of physiological...

  1. A heteroscedastic generalized linear model with a non-normal speed factor for responses and response times.

    Science.gov (United States)

    Molenaar, Dylan; Bolsinova, Maria

    2017-05-01

    In generalized linear modelling of responses and response times, the observed response time variables are commonly transformed to make their distribution approximately normal. A normal distribution for the transformed response times is desirable as it justifies the linearity and homoscedasticity assumptions in the underlying linear model. Past research has, however, shown that the transformed response times are not always normal. Models have been developed to accommodate this violation. In the present study, we propose a modelling approach for responses and response times to test and model non-normality in the transformed response times. Most importantly, we distinguish between non-normality due to heteroscedastic residual variances, and non-normality due to a skewed speed factor. In a simulation study, we establish parameter recovery and the power to separate both effects. In addition, we apply the model to a real data set. © 2017 The Authors. British Journal of Mathematical and Statistical Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  2. Reactivity calculation with reduction of the nuclear power fluctuations

    International Nuclear Information System (INIS)

    Suescun Diaz, Daniel; Senra Martinez, Aquilino

    2009-01-01

    A new formulation is presented in this paper for the calculation of reactivity, which is simpler than the formulation that uses the Laplace and Z transforms. A treatment is also made to reduce the intensity of the noise found in the nuclear power signal used in the calculation of reactivity. Two classes of different filters are used for that. This treatment is based on the fact that the reactivity can be written by using the compose Simpson's rule resulting in a sum of two convolution terms with response to the impulse that is characteristic of a linear system. The linear part is calculated by using the filter named finite impulse response filter (FIR). The non-linear part is calculated using the filter exponentially adjusted by the least squares method, which does not cause attenuation in the reactivity calculation.

  3. Reactivity calculation with reduction of the nuclear power fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Suescun Diaz, Daniel [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914 RJ (Brazil)], E-mail: dsuescun@hotmail.com; Senra Martinez, Aquilino [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914 RJ (Brazil)

    2009-05-15

    A new formulation is presented in this paper for the calculation of reactivity, which is simpler than the formulation that uses the Laplace and Z transforms. A treatment is also made to reduce the intensity of the noise found in the nuclear power signal used in the calculation of reactivity. Two classes of different filters are used for that. This treatment is based on the fact that the reactivity can be written by using the compose Simpson's rule resulting in a sum of two convolution terms with response to the impulse that is characteristic of a linear system. The linear part is calculated by using the filter named finite impulse response filter (FIR). The non-linear part is calculated using the filter exponentially adjusted by the least squares method, which does not cause attenuation in the reactivity calculation.

  4. Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, A. D.; Ferraro, N. M.; Lao, L. L.; Lanctot, M. J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Izzo, V. A. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Lazarus, E. A.; Hirshman, S. P. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Park, J.-K.; Lazerson, S.; Reiman, A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Cooper, W. A. [Association Euratom-Confederation Suisse, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Liu, Y. Q. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Turco, F. [Columbia University, 116th St and Broadway, New York, New York 10027 (United States)

    2013-05-15

    With the installation of non-axisymmetric coil systems on major tokamaks for the purpose of studying the prospects of ELM-free operation, understanding the plasma response to the applied fields is a crucial issue. Application of different response models, using standard tools, to DIII-D discharges with applied non-axisymmetric fields from internal coils, is shown to yield qualitatively different results. The plasma response can be treated as an initial value problem, following the system dynamically from an initial unperturbed state, or from a nearby perturbed equilibrium approach, and using both linear and nonlinear models [A. D. Turnbull, Nucl. Fusion 52, 054016 (2012)]. Criteria are discussed under which each of the approaches can yield a valid response. In the DIII-D cases studied, these criteria show a breakdown in the linear theory despite the small 10{sup −3} relative magnitude of the applied magnetic field perturbations in this case. For nonlinear dynamical evolution simulations to reach a saturated nonlinear steady state, appropriate damping mechanisms need to be provided for each normal mode comprising the response. Other issues arise in the technical construction of perturbed flux surfaces from a displacement and from the presence of near nullspace normal modes. For the nearby equilibrium approach, in the absence of a full 3D equilibrium reconstruction with a controlled comparison, constraints relating the 2D system profiles to the final profiles in the 3D system also need to be imposed to assure accessibility. The magnetic helicity profile has been proposed as an appropriate input to a 3D equilibrium calculation and tests of this show the anticipated qualitative behavior.

  5. A quantum-mechanical perspective on linear response theory within polarizable embedding

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Norman, Patrick; Kongsted, Jacob

    2017-01-01

    We present a derivation of linear response theory within polarizable embedding starting from a rigorous quantum-mechanical treatment of a composite system. To this aim, two different subsystem decompositions (symmetric and nonsymmetric) of the linear response function are introduced and the pole...

  6. A linear chromatic mechanism drives the pupillary response.

    Science.gov (United States)

    Tsujimura, S.; Wolffsohn, J. S.; Gilmartin, B.

    2001-01-01

    Previous studies have shown that a chromatic mechanism can drive pupil responses. The aim of this research was to clarify whether a linear or nonlinear chromatic mechanism drives pupillary responses by using test stimuli of various colours that are defined in cone contrast space. The pupil and accommodation responses evoked by these test stimuli were continuously and simultaneously objectively measured by photorefraction. The results with isochromatic and isoluminant stimuli showed that the accommodative level remained approximately constant (< 0.25 D change in mean level) even when the concurrent pupillary response was large (ca. 0.30 mm). The pupillary response to an isoluminant grating was sustained, delayed (by ca. 60 ms) and larger in amplitude than that for a isochromatic uniform stimulus, which supports previous work suggesting that the chromatic mechanism contributes to the pupillary response. In a second experiment, selected chromatic test gratings were used and isoresponse contours in cone contrast space were obtained. The results showed that the isoresponse contour in cone contrast space is well described (r(2) = 0.99) by a straight line with a positive slope. The results indicate that a /L - M/ linear chromatic mechanism, whereby a signal from the long wavelength cone is subtracted from that of the middle wavelength cone and vice versa, drives pupillary responses. PMID:11674867

  7. Calculations for Extra Well Shielding for 15 MV Clinical Linear accelerator

    International Nuclear Information System (INIS)

    Mahmoud, M.A.; Emran, M.M.; Ahmad, A.S.

    2000-01-01

    A radiological survey was conducted around the walls of a clinical linear accelerator (Siemens Mevatron) in South Egypt Cancer Institute, Assiut University. Neutron measurements showed adequate results for all beam orientations. Photon measurements showed adequate results for all beam orientations except for beam orientation 270 degree, facing the control room. During operation, photon measurements were taken in order to calculate the additional shield thickness required to reduce measurements to accepted values. For convenience, lead was the material of choice for extra shielding. A value for the build up factor needed in the calculations of broad beam attenuation was estimated. Measurements inside the control room after adding the calculated lead thickness are much lower than the annual effective equivalent dose limits recommended by the ICRP-60 (International Commission on Radiation Protection) for occupational exposure. Also, measurements taken in the patients waiting hall recorded levels consistent with the six-hour daily occupancy for members of the public. The value of the build up factor was verified by calculations. Also the variation of build up factor distance from the field centre was calculated. Important and useful recommendations were reached from this experience which should be discussed to avoid facing similar situations in radiotherapy departments in Egypt

  8. Impurity strength and impurity domain modulated frequency-dependent linear and second non-linear response properties of doped quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Nirmal Kumar [Department of Physics, Suri Vidyasagar College, Suri, Birbhum 731 101, West Bengal (India); Ghosh, Manas [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2011-08-15

    We explore the pattern of frequency-dependent linear and second non-linear optical responses of repulsive impurity doped quantum dots harmonically confined in two dimensions. The dopant impurity potential chosen assumes a Gaussian form and it is doped into an on-center location. The quantum dot is subject to a periodically oscillating external electric field. For some fixed values of transverse magnetic field strength ({omega}{sub c}) and harmonic confinement potential ({omega}{sub 0}), the influence of impurity strength (V{sub 0}) and impurity domain ({xi}) on the diagonal components of the frequency-dependent linear ({alpha}{sub xx} and {alpha}{sub yy}) and second non-linear ({gamma}{sub xxxx} and {gamma}{sub yyyy}) responses of the dot are computed through a linear variational route. The investigations reveal that the optical responses undergo enhancement with increase in both V{sub 0} and {xi} values. However, in the limitingly small dopant strength regime one observes a drop in the optical responses with increase in V{sub 0}. A time-average rate of energy transfer to the system is often invoked to support the findings. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Lanczos-driven coupled-cluster damped linear response theory for molecules in polarizable environments

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Coriani, Sonia; Kongsted, Jacob

    2014-01-01

    are specifically motivated by a twofold aim: (i) computation of core excitations in realistic surroundings and (ii) examination of the effect of the differential response of the environment upon excitation solely related to the CC multipliers (herein denoted the J matrix) in computations of excitation energies......We present an extension of a previously reported implementation of a Lanczos-driven coupled-cluster (CC) damped linear response approach to molecules in condensed phases, where the effects of a surrounding environment are incorporated by means of the polarizable embedding formalism. We...... and transition moments of polarizable-embedded molecules. Numerical calculations demonstrate that the differential polarization of the environment due to the first-order CC multipliers provides only minor contributions to the solvatochromic shift for all transitions considered. We thus complement previous works...

  10. Quantum density fluctuations in liquid neon from linearized path-integral calculations

    International Nuclear Information System (INIS)

    Poulsen, Jens Aage; Scheers, Johan; Nyman, Gunnar; Rossky, Peter J.

    2007-01-01

    The Feynman-Kleinert linearized path-integral [J. A. Poulsen et al., J. Chem. Phys. 119, 12179 (2003)] representation of quantum correlation functions is applied to compute the spectrum of density fluctuations for liquid neon at T=27.6 K, p=1.4 bar, and Q vector 1.55 Aa -1 . The calculated spectrum as well as the kinetic energy of the liquid are in excellent agreement with the experiment of Cunsolo et al. [Phys. Rev. B 67, 024507 (2003)

  11. Endoreversible quantum heat engines in the linear response regime.

    Science.gov (United States)

    Wang, Honghui; He, Jizhou; Wang, Jianhui

    2017-07-01

    We analyze general models of quantum heat engines operating a cycle of two adiabatic and two isothermal processes. We use the quantum master equation for a system to describe heat transfer current during a thermodynamic process in contact with a heat reservoir, with no use of phenomenological thermal conduction. We apply the endoreversibility description to such engine models working in the linear response regime and derive expressions of the efficiency and the power. By analyzing the entropy production rate along a single cycle, we identify the thermodynamic flux and force that a linear relation connects. From maximizing the power output, we find that such heat engines satisfy the tight-coupling condition and the efficiency at maximum power agrees with the Curzon-Ahlborn efficiency known as the upper bound in the linear response regime.

  12. How linear response shaped models of neural circuits and the quest for alternatives.

    Science.gov (United States)

    Herfurth, Tim; Tchumatchenko, Tatjana

    2017-10-01

    In the past decades, many mathematical approaches to solve complex nonlinear systems in physics have been successfully applied to neuroscience. One of these tools is the concept of linear response functions. However, phenomena observed in the brain emerge from fundamentally nonlinear interactions and feedback loops rather than from a composition of linear filters. Here, we review the successes achieved by applying the linear response formalism to topics, such as rhythm generation and synchrony and by incorporating it into models that combine linear and nonlinear transformations. We also discuss the challenges encountered in the linear response applications and argue that new theoretical concepts are needed to tackle feedback loops and non-equilibrium dynamics which are experimentally observed in neural networks but are outside of the validity regime of the linear response formalism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time

    Science.gov (United States)

    Dhar, Amrit

    2017-01-01

    Abstract Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences. PMID:28177780

  14. Calculation of integrated biological response in brachytherapy

    International Nuclear Information System (INIS)

    Dale, Roger G.; Coles, Ian P.; Deehan, Charles; O'Donoghue, Joseph A.

    1997-01-01

    Purpose: To present analytical methods for calculating or estimating the integrated biological response in brachytherapy applications, and which allow for the presence of dose gradients. Methods and Materials: The approach uses linear-quadratic (LQ) formulations to identify an equivalent biologically effective dose (BED eq ) which, if applied to a specified tissue volume, would produce the same biological effect as that achieved by a given brachytherapy application. For simple geometrical cases, BED multiplying factors have been derived which allow the equivalent BED for tumors to be estimated from a single BED value calculated at a dose reference point. For more complex brachytherapy applications a voxel-by-voxel determination of the equivalent BED will be more accurate. Equations are derived which when incorporated into brachytherapy software would facilitate such a process. Results: At both high and low dose rates, the BEDs calculated at the dose reference point are shown to be lower than the true values by an amount which depends primarily on the magnitude of the prescribed dose; the BED multiplying factors are higher for smaller prescribed doses. The multiplying factors are less dependent on the assumed radiobiological parameters. In most clinical applications involving multiple sources, particularly those in multiplanar arrays, the multiplying factors are likely to be smaller than those derived here for single sources. The overall suggestion is that the radiobiological consequences of dose gradients in well-designed brachytherapy treatments, although important, may be less significant than is sometimes supposed. The modeling exercise also demonstrates that the integrated biological effect associated with fractionated high-dose-rate (FHDR) brachytherapy will usually be different from that for an 'equivalent' continuous low-dose-rate (CLDR) regime. For practical FHDR regimes involving relatively small numbers of fractions, the integrated biological effect to

  15. Linear trend and climate response of five-needle pines in the western United States related to treeline proximity

    Energy Technology Data Exchange (ETDEWEB)

    Kipfmueller, K.F. [Minnesota Univ., Minneapolis, MN (United States). Dept. of Geography; Salzer, M.W. [Arizona Univ., Tucson, AZ (United States). Laboratory of Tree-Ring Research

    2010-01-15

    This study investigated sixty-six 5-needle pine growth chronologies from 1896 to their end years in order to identify potential patterns related to linear trends in ring width. Individual chronology responses to climate were also evaluated by comparing the chronologies with seasonal temperature and precipitation data from 1896 to the present date. Chronologies exhibiting similar patterns of climate response were grouped in order to examine the role of treeline proximity on climate-growth relationships. Ring width measurements for pine sites located in the western United States were obtained from the International Tree Ring Data Bank. Growth indices were compared among all sites in order to assess the relative strength of common signals with increasing distance. Pearson correlations were used to calculate linear trends for each chronology. A cluster analysis of climate response patterns indicated that most chronologies positively associated with temperatures were located near upper treeline and contained significant positive linear trends. The study suggested that 5-needle pine treeline chronologies may be used as predictors in temperature reconstructions. However, care must be taken to determine that collection sites have not been impacted by disturbances such as fire or insect outbreaks. 35 refs., 2 tabs., 5 figs.

  16. Site response calculations for nuclear power plants

    International Nuclear Information System (INIS)

    Wight, L.H.

    1975-01-01

    Six typical sites consisting of three soil profiles with average shear wave velocities of 800, 1800, and 5000 ft/sec as well as two soil depths of 200 and 400 ft were considered. Seismic input to these sites was a synthetic accelerogram applied at the surface and corresponding to a statistically representative response spectrum. The response of each of these six sites to this input was calculated with the SHAKE program. The results of these calculations are presented

  17. Calculation of ex-core detector responses

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, R. de; Haedens, M. [Tractebel Engineering, Brussels (Belgium); Baenst, H. de [Electrabel, Brussels (Belgium)

    2005-07-01

    The purpose of this work carried out by Tractebel Engineering, is to develop and validate a method for predicting the ex-core detector responses in the NPPs operated by Electrabel. Practical applications are: prediction of ex-core calibration coefficients for startup power ascension, replacement of xenon transients by theoretical predictions, and analysis of a Rod Drop Accident. The neutron diffusion program PANTHER calculates node-integrated fission sources which are combined with nodal importance representing the contribution of a neutron born in that node to the ex-core response. These importance are computed with the Monte Carlo program MCBEND in adjoint mode, with a model of the whole core at full power. Other core conditions are treated using sensitivities of the ex-core responses to water densities, computed with forward Monte Carlo. The Scaling Factors (SF), or ratios of the measured currents to the calculated response, have been established on a total of 550 in-core flux maps taken in four NPPs. The method has been applied to 15 startup transients, using the average SF obtained from previous cycles, and to 28 xenon transients, using the SF obtained from the in-core map immediately preceding the transient. The values of power (P) and axial offset (AOi) reconstructed with the theoretical calibration agree well with the measured values. The ex-core responses calculated during a rod drop transient have been successfully compared with available measurements, and with theoretical data obtained by alternative methods. In conclusion, the method is adequate for the practical applications previously listed. (authors)

  18. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    Science.gov (United States)

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  19. Comparison of equivalent linear and non linear methods on ground response analysis: case study at West Bangka site

    International Nuclear Information System (INIS)

    Eko Rudi Iswanto; Eric Yee

    2016-01-01

    Within the framework of identifying NPP sites, site surveys are performed in West Bangka (WB), Bangka-Belitung Island Province. Ground response analysis of a potential site has been carried out using peak strain profiles and peak ground acceleration. The objective of this research is to compare Equivalent Linear (EQL) and Non Linear (NL) methods of ground response analysis on the selected NPP site (West Bangka) using Deep Soil software. Equivalent linear method is widely used because requires soil data in simple way and short time of computational process. On the other hand, non linear method is capable of representing the actual soil behaviour by considering non linear soil parameter. The results showed that EQL method has similar trends to NL method. At surface layer, the acceleration values for EQL and NL methods are resulted as 0.425 g and 0.375 g respectively. NL method is more reliable in capturing higher frequencies of spectral acceleration compared to EQL method. (author)

  20. Linear and Non-Linear Dose-Response Functions Reveal a Hormetic Relationship Between Stress and Learning

    OpenAIRE

    Zoladz, Phillip R.; Diamond, David M.

    2008-01-01

    Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as ...

  1. Modification of linear response theory for mean-field approximations

    NARCIS (Netherlands)

    Hütter, M.; Öttinger, H.C.

    1996-01-01

    In the framework of statistical descriptions of many particle systems, the influence of mean-field approximations on the linear response theory is studied. A procedure, analogous to one where no mean-field approximation is involved, is used in order to determine the first order response of the

  2. Note: A high dynamic range, linear response transimpedance amplifier.

    Science.gov (United States)

    Eckel, S; Sushkov, A O; Lamoreaux, S K

    2012-02-01

    We have built a high dynamic range (nine decade) transimpedance amplifier with a linear response. The amplifier uses junction-gate field effect transistors (JFETs) to switch between three different resistors in the feedback of a low input bias current operational amplifier. This allows for the creation of multiple outputs, each with a linear response and a different transimpedance gain. The overall bandwidth of the transimpedance amplifier is set by the bandwidth of the most sensitive range. For our application, we demonstrate a three-stage amplifier with transimpedance gains of approximately 10(9)Ω, 3 × 10(7)Ω, and 10(4)Ω with a bandwidth of 100 Hz.

  3. Non-linear signal response functions and their effects on the statistical and noise cancellation properties of isotope ratio measurements by multi-collector plasma mass spectrometry

    International Nuclear Information System (INIS)

    Doherty, W.

    2013-01-01

    A nebulizer-centric response function model of the analytical inductively coupled argon plasma ion source was used to investigate the statistical frequency distributions and noise reduction factors of simultaneously measured flicker noise limited isotope ion signals and their ratios. The response function model was extended by assuming i) a single gaussian distributed random noise source (nebulizer gas pressure fluctuations) and ii) the isotope ion signal response is a parabolic function of the nebulizer gas pressure. Model calculations of ion signal and signal ratio histograms were obtained by applying the statistical method of translation to the non-linear response function model of the plasma. Histograms of Ni, Cu, Pr, Tl and Pb isotope ion signals measured using a multi-collector plasma mass spectrometer were, without exception, negative skew. Histograms of the corresponding isotope ratios of Ni, Cu, Tl and Pb were either positive or negative skew. There was a complete agreement between the measured and model calculated histogram skew properties. The nebulizer-centric response function model was also used to investigate the effect of non-linear response functions on the effectiveness of noise cancellation by signal division. An alternative noise correction procedure suitable for parabolic signal response functions was derived and applied to measurements of isotope ratios of Cu, Ni, Pb and Tl. The largest noise reduction factors were always obtained when the non-linearity of the response functions was taken into account by the isotope ratio calculation. Possible applications of the nebulizer-centric response function model to other types of analytical instrumentation, large amplitude signal noise sources (e.g., lasers, pumped nebulizers) and analytical error in isotope ratio measurements by multi-collector plasma mass spectrometry are discussed. - Highlights: ► Isotope ion signal noise is modelled as a parabolic transform of a gaussian variable. ► Flicker

  4. INTRANS. A computer code for the non-linear structural response analysis of reactor internals under transient loads

    International Nuclear Information System (INIS)

    Ramani, D.T.

    1977-01-01

    The 'INTRANS' system is a general purpose computer code, designed to perform linear and non-linear structural stress and deflection analysis of impacting or non-impacting nuclear reactor internals components coupled with reactor vessel, shield building and external as well as internal gapped spring support system. This paper describes in general a unique computational procedure for evaluating the dynamic response of reactor internals, descretised as beam and lumped mass structural system and subjected to external transient loads such as seismic and LOCA time-history forces. The computational procedure is outlined in the INTRANS code, which computes component flexibilities of a discrete lumped mass planar model of reactor internals by idealising an assemblage of finite elements consisting of linear elastic beams with bending, torsional and shear stiffnesses interacted with external or internal linear as well as non-linear multi-gapped spring support system. The method of analysis is based on the displacement method and the code uses the fourth-order Runge-Kutta numerical integration technique as a basis for solution of dynamic equilibrium equations of motion for the system. During the computing process, the dynamic response of each lumped mass is calculated at specific instant of time using well-known step-by-step procedure. At any instant of time then, the transient dynamic motions of the system are held stationary and based on the predicted motions and internal forces of the previous instant. From which complete response at any time-step of interest may then be computed. Using this iterative process, the relationship between motions and internal forces is satisfied step by step throughout the time interval

  5. Optimal approximation of linear systems by artificial immune response

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstracts four elements, namely, antigen, antibody, reaction rules among antibodies, and driving algorithm describing how the rules are applied to antibodies, to simulate the process of immune response. Some reaction rules including clonal selection rules, immunological memory rules and immune regulation rules are introduced. Using the theorem of Markov chain, it is proofed that the new model is convergent. The experimental study on the optimal approximation of a stable linear system and an unstable one show that the approximate models searched by the new model have better performance indices than those obtained by some existing algorithms including the differential evolution algorithm and the multi-agent genetic algorithm.

  6. Robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming.

    Science.gov (United States)

    Baran, Richard; Northen, Trent R

    2013-10-15

    Untargeted metabolite profiling using liquid chromatography and mass spectrometry coupled via electrospray ionization is a powerful tool for the discovery of novel natural products, metabolic capabilities, and biomarkers. However, the elucidation of the identities of uncharacterized metabolites from spectral features remains challenging. A critical step in the metabolite identification workflow is the assignment of redundant spectral features (adducts, fragments, multimers) and calculation of the underlying chemical formula. Inspection of the data by experts using computational tools solving partial problems (e.g., chemical formula calculation for individual ions) can be performed to disambiguate alternative solutions and provide reliable results. However, manual curation is tedious and not readily scalable or standardized. Here we describe an automated procedure for the robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming optimization (RAMSI). Chemical rules among related ions are expressed as linear constraints and both the spectra interpretation and chemical formula calculation are performed in a single optimization step. This approach is unbiased in that it does not require predefined sets of neutral losses and positive and negative polarity spectra can be combined in a single optimization. The procedure was evaluated with 30 experimental mass spectra and was found to effectively identify the protonated or deprotonated molecule ([M + H](+) or [M - H](-)) while being robust to the presence of background ions. RAMSI provides a much-needed standardized tool for interpreting ions for subsequent identification in untargeted metabolomics workflows.

  7. Double sliding-window technique: a new method to calculate the neuronal response onset latency.

    Science.gov (United States)

    Berényi, Antal; Benedek, György; Nagy, Attila

    2007-10-31

    Neuronal response onset latency provides important data on the information processing within the central nervous system. In order to enhance the quality of the onset latency estimation, we have developed a 'double sliding-window' technique, which combines the advantages of mathematical methods with the reliability of standard statistical processes. This method is based on repetitive series of statistical probes between two virtual time windows. The layout of the significance curve reveals the starting points of changes in neuronal activity in the form of break-points between linear segments. A second-order difference function is applied to determine the position of maximum slope change, which corresponds to the onset of the response. In comparison with Poisson spike-train analysis, the cumulative sum technique and the method of Falzett et al., this 'double sliding-window, technique seems to be a more accurate automated procedure to calculate the response onset latency of a broad range of neuronal response characteristics.

  8. Dynamic Response Analysis of Linear Pulse Motor with Closed Loop Control

    OpenAIRE

    山本, 行雄; 山田, 一

    1989-01-01

    A linear pulse motor can translate digital signals into linear positions without a gear system. It is important to predict a dynamic response in order to the motor that has the good performance. In this report the maximum pulse rate and the maximum speed on the linear pulse motor are obtained by using the sampling theory.

  9. Linear response at the 4-component relativistic level

    DEFF Research Database (Denmark)

    Saue, T.; Jensen, Hans Jørgen Aagaard

    2003-01-01

    The theory, implementation, and application of linear response at the 4-component relativistic closed-shell Hartree-Fock level based on the concept of quasienergy and time averaging are reported. As such, an efficient AO-driven algorithm is obtained by assigning specific Hermiticity and time...

  10. Non-linear optics of nano-scale pentacene thin film

    Science.gov (United States)

    Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.

    2016-07-01

    We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.

  11. Linear optical response of carbon nanotubes under axial magnetic field

    Science.gov (United States)

    Moradian, Rostam; Chegel, Raad; Behzad, Somayeh

    2010-04-01

    We considered single walled carbon naotubes (SWCNTs) as real three dimensional (3D) systems in a cylindrical coordinate. The optical matrix elements and linear susceptibility, χ(ω), in the tight binding approximation in terms of one-dimensional wave vector, kz and subband index, l are calculated. In an external axial magnetic field optical frequency dependence of linear susceptibility are investigated. We found that axial magnetic field has two effects on the imaginary part of the linear susceptibility spectrum, in agreement with experimental results. The first effect is broadening and the second, splitting. Also we found that for all metallic zigzag and armchair SWCNTs, the axial magnetic field leads to the creation of a peak with energy less than 1.5 eV, contrary to what is observed in the absence of a magnetic field.

  12. Linear response in the nonequilibrium zero range process

    International Nuclear Information System (INIS)

    Maes, Christian; Salazar, Alberto

    2014-01-01

    We explore a number of explicit response formulæ around the boundary driven zero range process to changes in the exit and entrance rates. In such a nonequilibrium regime kinetic (and not only thermodynamic) aspects make a difference in the response. Apart from a number of formal approaches, we illustrate a general decomposition of the linear response into entropic and frenetic contributions, the latter being realized from changes in the dynamical activity at the boundaries. In particular in this way one obtains nonlinear modifications to the Green–Kubo relation. We end by bringing some general remarks about the situation where that nonequilibrium response remains given by the (equilibrium) Kubo formula such as for the density profile in the boundary driven Lorentz gas

  13. Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor

    Science.gov (United States)

    Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.

    2018-01-01

    Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.

  14. A simplified calculation procedure for mass isotopomer distribution analysis (MIDA) based on multiple linear regression.

    Science.gov (United States)

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; García Alonso, J Ignacio

    2016-10-01

    We have developed a novel, rapid and easy calculation procedure for Mass Isotopomer Distribution Analysis based on multiple linear regression which allows the simultaneous calculation of the precursor pool enrichment and the fraction of newly synthesized labelled proteins (fractional synthesis) using linear algebra. To test this approach, we used the peptide RGGGLK as a model tryptic peptide containing three subunits of glycine. We selected glycine labelled in two 13 C atoms ( 13 C 2 -glycine) as labelled amino acid to demonstrate that spectral overlap is not a problem in the proposed methodology. The developed methodology was tested first in vitro by changing the precursor pool enrichment from 10 to 40% of 13 C 2 -glycine. Secondly, a simulated in vivo synthesis of proteins was designed by combining the natural abundance RGGGLK peptide and 10 or 20% 13 C 2 -glycine at 1 : 1, 1 : 3 and 3 : 1 ratios. Precursor pool enrichments and fractional synthesis values were calculated with satisfactory precision and accuracy using a simple spreadsheet. This novel approach can provide a relatively rapid and easy means to measure protein turnover based on stable isotope tracers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. FEAST: a two-dimensional non-linear finite element code for calculating stresses

    International Nuclear Information System (INIS)

    Tayal, M.

    1986-06-01

    The computer code FEAST calculates stresses, strains, and displacements. The code is two-dimensional. That is, either plane or axisymmetric calculations can be done. The code models elastic, plastic, creep, and thermal strains and stresses. Cracking can also be simulated. The finite element method is used to solve equations describing the following fundamental laws of mechanics: equilibrium; compatibility; constitutive relations; yield criterion; and flow rule. FEAST combines several unique features that permit large time-steps in even severely non-linear situations. The features include a special formulation for permitting many finite elements to simultaneously cross the boundary from elastic to plastic behaviour; accomodation of large drops in yield-strength due to changes in local temperature and a three-step predictor-corrector method for plastic analyses. These features reduce computing costs. Comparisons against twenty analytical solutions and against experimental measurements show that predictions of FEAST are generally accurate to ± 5%

  16. Linear-chain assemblies of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dhak, Prasanta; Kim, Min-Kwan; Lee, Jae Hyeok; Kim, Miyoung; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr

    2017-07-01

    Highlights: • Hydrothermal synthesis of pure phase 200 nm Fe{sub 3}O{sub 4} nanoparticles. • Studies of linear-chain assemblies of iron oxide nanosphere by FESEM. • Micromagnetic simulations showed the presence of 3D vortex states. • The B.E. for different numbers of particles in linear chain assemblies were calculated. - Abstract: We synthesized iron oxide nanoparticles using a simple hydrothermal approach and found several types of segments of their linear-chain self-assemblies as observed by field emission scanning electron microscopy. X-ray diffraction and transmission electron microscopy measurements confirm a well-defined single-phase FCC structure. Vibrating sample magnetometry measurements exhibit a ferromagnetic behavior. Micromagnetic numerical simulations show magnetic vortex states in the nanosphere model. Also, calculations of binding energies for different numbers of particles in the linear-chain assemblies explain a possible mechanism responsible for the self-assemblies of segments of the linear chains of nanoparticles. This work offers a step towards linear-chain self-assemblies of iron oxide nanoparticles and the effect of magnetic vortex states in individual nanoparticles on their binding energy.

  17. Non-linear Springing Excitation Due to a Bidirectional Wave Field

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher

    2005-01-01

    Significant springing vibrations in ships have recently been measured in a large ocean-going bulk carrier. So far calculations using various linear and non-linear hydrodynamic procedures have not been able to predict the measured responses. In the present paper it is shown that the springing...

  18. Diagnostics for Linear Models With Functional Responses

    OpenAIRE

    Xu, Hongquan; Shen, Qing

    2005-01-01

    Linear models where the response is a function and the predictors are vectors are useful in analyzing data from designed experiments and other situations with functional observations. Residual analysis and diagnostics are considered for such models. Studentized residuals are defined and their properties are studied. Chi-square quantile-quantile plots are proposed to check the assumption of Gaussian error process and outliers. Jackknife residuals and an associated test are proposed to det...

  19. Calculating the Responses of Self-Powered Radiation Detectors.

    Science.gov (United States)

    Thornton, D. A.

    Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual

  20. LINEAR KERNEL SUPPORT VECTOR MACHINES FOR MODELING PORE-WATER PRESSURE RESPONSES

    Directory of Open Access Journals (Sweden)

    KHAMARUZAMAN W. YUSOF

    2017-08-01

    Full Text Available Pore-water pressure responses are vital in many aspects of slope management, design and monitoring. Its measurement however, is difficult, expensive and time consuming. Studies on its predictions are lacking. Support vector machines with linear kernel was used here to predict the responses of pore-water pressure to rainfall. Pore-water pressure response data was collected from slope instrumentation program. Support vector machine meta-parameter calibration and model development was carried out using grid search and k-fold cross validation. The mean square error for the model on scaled test data is 0.0015 and the coefficient of determination is 0.9321. Although pore-water pressure response to rainfall is a complex nonlinear process, the use of linear kernel support vector machine can be employed where high accuracy can be sacrificed for computational ease and time.

  1. Calculation model of non-linear dynamic deformation of composite multiphase rods

    Directory of Open Access Journals (Sweden)

    Mishchenko Andrey Viktorovich

    2014-05-01

    Full Text Available The method of formulating non-linear physical equations for multiphase rods is suggested in the article. Composite multiphase rods possess various structures, include shear, polar, radial and axial inhomogeneity. The Timoshenko’s hypothesis with the large rotation angles is used. The method is based on the approximation of longitudinal normal stress low by basic functions expansions regarding the linear viscosity low. The shear stresses are calculated with the equilibrium equation using the subsidiary function of the longitudinal shift force. The system of differential equations connecting the internal forces and temperature with abstract deformations are offered by the basic functions. The application of power functions with arbitrary index allows presenting the compact form equations. The functional coefficients in this system are the highest order rigidity characteristics. The whole multiphase cross-section rigidity characteristics are offered the sums of the rigidity characteristics of the same phases individually. The obtained system allows formulating the well-known particular cases. Among them: hard plasticity and linear elastic deformation, different module deformation and quadratic Gerstner’s low elastic deformation. The reform of differential equations system to the quasilinear is suggested. This system contains the secant variable rigidity characteristics depending on abstract deformations. This system includes the sum of the same uniform blocks of different order. The rods phases defined the various set of uniform blocks phase materials. The integration of dynamic, kinematic and physical equations taking into account initial and edge condition defines the full dynamical multiphase rods problem. The quasilinear physical equations allow getting the variable flexibility matrix of multiphase rod and rods system.

  2. Linear response to long wavelength fluctuations using curvature simulations

    Energy Technology Data Exchange (ETDEWEB)

    Baldauf, Tobias; Zaldarriaga, Matias [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ (United States); Seljak, Uroš [Physics Department, Astronomy Department and Lawrence Berkeley National Laboratory, University of California, Berkeley, CA (United States); Senatore, Leonardo, E-mail: baldauf@ias.edu, E-mail: useljak@berkeley.edu, E-mail: senatore@stanford.edu, E-mail: matiasz@ias.edu [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA (United States)

    2016-09-01

    We study the local response to long wavelength fluctuations in cosmological N -body simulations, focusing on the matter and halo power spectra, halo abundance and non-linear transformations of the density field. The long wavelength mode is implemented using an effective curved cosmology and a mapping of time and distances. The method provides an alternative, more direct, way to measure the isotropic halo biases. Limiting ourselves to the linear case, we find generally good agreement between the biases obtained from the curvature method and the traditional power spectrum method at the level of a few percent. We also study the response of halo counts to changes in the variance of the field and find that the slope of the relation between the responses to density and variance differs from the naïve derivation assuming a universal mass function by approximately 8–20%. This has implications for measurements of the amplitude of local non-Gaussianity using scale dependent bias. We also analyze the halo power spectrum and halo-dark matter cross-spectrum response to long wavelength fluctuations and derive second order halo bias from it, as well as the super-sample variance contribution to the galaxy power spectrum covariance matrix.

  3. Engineering method of calculation and choice of main parameters of the linear induction accelerator inductors

    Directory of Open Access Journals (Sweden)

    В.Т. Чемерис

    2006-04-01

    Full Text Available  There is a method of simplified calculation and design parameters choice elaborated in this article with corresponding basing for the induction system of electron-beam sterilizer on the base of linear induction accelerator taking into account the parameters of magnetic material for production of cores and parameters of pulsed voltage.

  4. Violations of local equilibrium and linear response in classical lattice systems

    International Nuclear Information System (INIS)

    Aoki, Kenichiro; Kusnezov, Dimitri

    2003-01-01

    We quantitatively and systematically analyze how local equilibrium, and linear response in transport are violated as systems move far from equilibrium. This is done by studying heat flow in classical lattice models with and without bulk transport behavior, in 1-3 dimensions, at various temperatures. Equations of motion for the system are integrated numerically to construct the non-equilibrium steady states. Linear response and local equilibrium assumptions are seen to break down in a similar manner. We quantify the breakdown through the analysis of both microscopic and macroscopic observables and examine its transformation properties under general redefinitions of the non-equilibrium temperature

  5. Linear Magnetoelectric Effect by Orbital Magnetism

    NARCIS (Netherlands)

    Scaramucci, A.; Bousquet, E.; Fechner, M.; Mostovoy, M.; Spaldin, N. A.

    2012-01-01

    We use symmetry analysis and first-principles calculations to show that the linear magnetoelectric effect can originate from the response of orbital magnetic moments to the polar distortions induced by an applied electric field. Using LiFePO4 as a model compound we show that spin-orbit coupling

  6. Linear and non-linear calculations of the hose instability in the ion-focused regime

    International Nuclear Information System (INIS)

    Buchanan, H.L.

    1982-01-01

    A simple model is adopted to study the hose instability of an intense relativistic electron beam in a partially neutralized, low density ion channel (ion focused regime). Equations of motion for the beam and the channel are derived and linearized to obtain an approximate dispersion relation. The non-linear equations of motion are then solved numerically and the results compared to linearized data

  7. Linear and non-linear infrared response of one-dimensional vibrational Holstein polarons in the anti-adiabatic limit: Optical and acoustical phonon models

    Science.gov (United States)

    Falvo, Cyril

    2018-02-01

    The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.

  8. Determining dose rate with a semiconductor detector - Monte Carlo calculations of the detector response

    Energy Technology Data Exchange (ETDEWEB)

    Nordenfors, C

    1999-02-01

    To determine dose rate in a gamma radiation field, based on measurements with a semiconductor detector, it is necessary to know how the detector effects the field. This work aims to describe this effect with Monte Carlo simulations and calculations, that is to identify the detector response function. This is done for a germanium gamma detector. The detector is normally used in the in-situ measurements that is carried out regularly at the department. After the response function is determined it is used to reconstruct a spectrum from an in-situ measurement, a so called unfolding. This is done to be able to calculate fluence rate and dose rate directly from a measured (and unfolded) spectrum. The Monte Carlo code used in this work is EGS4 developed mainly at Stanford Linear Accelerator Center. It is a widely used code package to simulate particle transport. The results of this work indicates that the method could be used as-is since the accuracy of this method compares to other methods already in use to measure dose rate. Bearing in mind that this method provides the nuclide specific dose it is useful, in radiation protection, since knowing what the relations between different nuclides are and how they change is very important when estimating the risks

  9. A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass

    Science.gov (United States)

    Yahia, I. S.; Jilani, Asim; Abutalib, M. M.; AlFaify, S.; Shkir, M.; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; El-Naggar, A. M.

    2016-06-01

    The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ(1), nonlinear optical susceptibility χ(3), nonlinear refractive index (n2) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.

  10. Reactivity-induced time-dependencies of EBR-II linear and non-linear feedbacks

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1988-01-01

    Time-dependent linear feedback reactivities are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a kinetic code analysis of an experiment in which the change in power resulted from the dropping of a control rod. Shown with these linear reactivities are the reactivity associated with the control-rod shaft contraction and also time-dependent non-linear (mainly bowing) component deduced from the inverse kinetics of the experimentally measured fission power and the calculated linear reactivities. (author)

  11. On the calculation of linear stability with the aid of asymptotic solutions of Orr-Sommerfeld equation, 1

    International Nuclear Information System (INIS)

    Fujimura, Kaoru

    1980-11-01

    The numerical treatment of Orr-Sommerfeld equation which is the fundamental equation of linear hydrodynamic stability theory is described. Present calculation procedure is applied to the two-dimensional quasi-parallel flow for which linearized disturbance equation (Orr-Sommerfeld equation) contains one simple turning point and αR >> 1. The numerical procedure for this problem and one numerical example for Jeffery-Hamel flow (J-H III 1 ) are presented. These treatment can be extended to the other velocity profiles by slight midifications. (author)

  12. The non-linear response of the magnetosphere: 30 October 1978

    International Nuclear Information System (INIS)

    Price, C.P.; Prichard, D.

    1993-01-01

    The authors address the question of whether the response of the earth magnetosphere to the solar wind can be viewed as a nonlinear phenomena, rather than a linear response. The difficulty in answering this question is that the driving function, namely the solar wind, is very aperiodic, and it is difficult to argue that the system has time to go to any sort of a steady state in response to the driving force, prior to its making another random change. The application of nonlinear analysis methods in the face of this type of system is very limited. The authors pick a particular day, namely October 30, 1978, when the solar wind was very uniform for an extended period of time, and there is the possibility the system could converge to some type of strange attractor state within this period. They look at the auroral electrojet as a measure of the potential nonlinear response of the magnetosphere, and apply both nonlinear and linear analysis procedures to the data to try to determine if the data would support a nonlinear response of the magnetosphere to the solar wind driver, taken as the product of the solar wind speed v, and the southward component of the interplanetary magnetic field B s

  13. Dynamic Response of Non-Linear Inelsatic Systems to Poisson-Driven Stochastic Excitations

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Iwankiewicz, R.

    of an equivalent linearization techni que and substituting the non-analytical non-linearity in the original system by the cubic form in the pertinent state variables. The response moments are evaluated for the equivalent systems with the help of a generalized Ito's differential rule. The analytical results...

  14. Approximate calculation method for integral of mean square value of nonstationary response

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Fukano, Azusa

    2010-01-01

    The response of the structure subjected to nonstationary random vibration such as earthquake excitation is nonstationary random vibration. Calculating method for statistical characteristics of such a response is complicated. Mean square value of the response is usually used to evaluate random response. Integral of mean square value of the response corresponds to total energy of the response. In this paper, a simplified calculation method to obtain integral of mean square value of the response is proposed. As input excitation, nonstationary white noise and nonstationary filtered white noise are used. Integrals of mean square value of the response are calculated for various values of parameters. It is found that the proposed method gives exact value of integral of mean square value of the response.

  15. Integral linear momentum balance in combining flows for calculating the pressure drop coefficients

    International Nuclear Information System (INIS)

    Bollmann, A.

    1983-01-01

    Equations for calculating the loss coefficient in combining flows in tee functions are obtained by an integral linear momentum balance. It is a practice, when solving this type of problem, to neglect the pressure difference in the upstream location as well as the wall-fluid interaction in the lateral branch of the junction. In this work it is demonstrated the influence of the above parameters on the loss coefficient based on experimental values and by apropriate algebraic manipulation of the loss coefficient values published by previous investigators. (Author) [pt

  16. A non-linear association between self-reported negative emotional response to stress and subsequent allostatic load: prospective results from the Whitehall II cohort study.

    Science.gov (United States)

    Dich, Nadya; Doan, Stacey N; Kivimäki, Mika; Kumari, Meena; Rod, Naja Hulvej

    2014-11-01

    Previous research suggests that high levels of negative emotions may affect health. However, it is likely that the absence of an emotional response following stressful events may also be problematic. Accordingly, we investigated whether a non-linear association exists between negative emotional response to major life events and allostatic load, a multisystem indicator of physiological dysregulation. Study sample was 6764 British civil service workers from the Whitehall II cohort. Negative emotional response was assessed by self-report at baseline. Allostatic load was calculated using cardiovascular, metabolic and immune function biomarkers at three clinical follow-up examinations. A non-linear association between negative emotional response and allostatic load was observed: being at either extreme end of the distribution of negative emotional response increased the risk of physiological dysregulation. Allostatic load also increased with age, but the association between negative emotional response and allostatic load remained stable over time. These results provide evidence for a more nuanced understanding of the role of negative emotions in long-term physical health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Hydration thermodynamics beyond the linear response approximation.

    Science.gov (United States)

    Raineri, Fernando O

    2016-10-19

    The solvation energetics associated with the transformation of a solute molecule at infinite dilution in water from an initial state A to a final state B is reconsidered. The two solute states have different potentials energies of interaction, [Formula: see text] and [Formula: see text], with the solvent environment. Throughout the A [Formula: see text] B transformation of the solute, the solvation system is described by a Hamiltonian [Formula: see text] that changes linearly with the coupling parameter ξ. By focusing on the characterization of the probability density [Formula: see text] that the dimensionless perturbational solute-solvent interaction energy [Formula: see text] has numerical value y when the coupling parameter is ξ, we derive a hierarchy of differential equation relations between the ξ-dependent cumulant functions of various orders in the expansion of the appropriate cumulant generating function. On the basis of this theoretical framework we then introduce an inherently nonlinear solvation model for which we are able to find analytical results for both [Formula: see text] and for the solvation thermodynamic functions. The solvation model is based on the premise that there is an upper or a lower bound (depending on the nature of the interactions considered) to the amplitude of the fluctuations of Y in the solution system at equilibrium. The results reveal essential differences in behavior for the model when compared with the linear response approximation to solvation, particularly with regards to the probability density [Formula: see text]. The analytical expressions for the solvation properties show, however, that the linear response behavior is recovered from the new model when the room for the thermal fluctuations in Y is not restricted by the existence of a nearby bound. We compare the predictions of the model with the results from molecular dynamics computer simulations for aqueous solvation, in which either (1) the solute

  18. Dose calculation for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema

    International Nuclear Information System (INIS)

    Monajemi, T. T.; Clements, Charles M.; Sloboda, Ron S.

    2011-01-01

    Purpose: The objectives of this study were (i) to develop a dose calculation method for permanent prostate implants that incorporates a clinically motivated model for edema and (ii) to illustrate the use of the method by calculating the preimplant dosimetry error for a reference configuration of 125 I, 103 Pd, and 137 Cs seeds subject to edema-induced motions corresponding to a variety of model parameters. Methods: A model for spatially anisotropic edema that resolves linearly with time was developed based on serial magnetic resonance imaging measurements made previously at our center to characterize the edema for a group of n=40 prostate implant patients [R. S. Sloboda et al., ''Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging,'' Brachytherapy 9, 354-361 (2010)]. Model parameters consisted of edema magnitude, Δ, and period, T. The TG-43 dose calculation formalism for a point source was extended to incorporate the edema model, thus enabling calculation via numerical integration of the cumulative dose around an individual seed in the presence of edema. Using an even power piecewise-continuous polynomial representation for the radial dose function, the cumulative dose was also expressed in closed analytical form. Application of the method was illustrated by calculating the preimplant dosimetry error, RE preplan , in a 5x5x5 cm 3 volume for 125 I (Oncura 6711), 103 Pd (Theragenics 200), and 131 Cs (IsoRay CS-1) seeds arranged in the Radiological Physics Center test case 2 configuration for a range of edema relative magnitudes (Δ=[0.1,0.2,0.4,0.6,1.0]) and periods (T=[28,56,84] d). Results were compared to preimplant dosimetry errors calculated using a variation of the isotropic edema model developed by Chen et al. [''Dosimetric effects of edema in permanent prostate seed implants: A rigorous solution,'' Int. J. Radiat. Oncol., Biol., Phys. 47, 1405-1419 (2000)]. Results: As expected, RE preplan for our edema model

  19. Molecular and vibrational structure of diphenylether and its 4,4' -dibromo derivative. Infrared linear dichroism spectroscopy and density functional theory calculations

    DEFF Research Database (Denmark)

    Eriksen, Troels K; Karlsen, Eva; Spanget-Larsen, Jens

    2015-01-01

    The title compounds were investigated by means of Linear Dichroism (LD) IR spectroscopy on samples partially aligned in uniaxially stretched low-density polyethylene and by density functional theory calculations. Satisfactory overall agreement between observed and calculated vibrational wavenumbers...

  20. Relevance of sampling schemes in light of Ruelle's linear response theory

    International Nuclear Information System (INIS)

    Lucarini, Valerio; Wouters, Jeroen; Faranda, Davide; Kuna, Tobias

    2012-01-01

    We reconsider the theory of the linear response of non-equilibrium steady states to perturbations. We first show that using a general functional decomposition for space–time dependent forcings, we can define elementary susceptibilities that allow us to construct the linear response of the system to general perturbations. Starting from the definition of SRB measure, we then study the consequence of taking different sampling schemes for analysing the response of the system. We show that only a specific choice of the time horizon for evaluating the response of the system to a general time-dependent perturbation allows us to obtain the formula first presented by Ruelle. We also discuss the special case of periodic perturbations, showing that when they are taken into consideration the sampling can be fine-tuned to make the definition of the correct time horizon immaterial. Finally, we discuss the implications of our results in terms of strategies for analysing the outputs of numerical experiments by providing a critical review of a formula proposed by Reick

  1. Linear-response theory of Coulomb drag in coupled electron systems

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka

    1995-01-01

    We report a fully microscopic theory for the transconductivity, or, equivalently, the momentum transfer rate, of Coulomb coupled electron systems. We use the Kubo linear-response formalism and our main formal result expresses the transconductivity in terms of two fluctuation diagrams, which...

  2. A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, I.S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); Abutalib, M.M. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); AlFaify, S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Shkir, M. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abdel-wahab, M.Sh.; Al-Ghamdi, Attieh A. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); El-Naggar, A.M. [Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia)

    2016-06-01

    The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ{sup (1)}, nonlinear optical susceptibility χ{sup (3)}, nonlinear refractive index (n{sub 2}) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.

  3. A biological basis for the linear non-threshold dose-response relationship for low-level carcinogen exposure

    International Nuclear Information System (INIS)

    Albert, R.E.

    1981-01-01

    This chapter examines low-level dose-response relationships in terms of the two-stage mouse tumorigenesis model. Analyzes the feasibility of the linear non-threshold dose-response model which was first adopted for use in the assessment of cancer risks from ionizing radiation and more recently from chemical carcinogens. Finds that both the interaction of B(a)P with epidermal DNA of the mouse skin and the dose-response relationship for the initiation stage of mouse skin tumorigenesis showed a linear non-threshold dose-response relationship. Concludes that low level exposure to environmental carcinogens has a linear non-threshold dose-response relationship with the carcinogen acting as an initiator and the promoting action being supplied by the factors that are responsible for the background cancer rate in the target tissue

  4. Carbon 13 nuclear magnetic resonance chemical shifts empiric calculations of polymers by multi linear regression and molecular modeling

    International Nuclear Information System (INIS)

    Da Silva Pinto, P.S.; Eustache, R.P.; Audenaert, M.; Bernassau, J.M.

    1996-01-01

    This work deals with carbon 13 nuclear magnetic resonance chemical shifts empiric calculations by multi linear regression and molecular modeling. The multi linear regression is indeed one way to obtain an equation able to describe the behaviour of the chemical shift for some molecules which are in the data base (rigid molecules with carbons). The methodology consists of structures describer parameters definition which can be bound to carbon 13 chemical shift known for these molecules. Then, the linear regression is used to determine the equation significant parameters. This one can be extrapolated to molecules which presents some resemblances with those of the data base. (O.L.). 20 refs., 4 figs., 1 tab

  5. Time-dependent density functional theory of open quantum systems in the linear-response regime.

    Science.gov (United States)

    Tempel, David G; Watson, Mark A; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán

    2011-02-21

    Time-dependent density functional theory (TDDFT) has recently been extended to describe many-body open quantum systems evolving under nonunitary dynamics according to a quantum master equation. In the master equation approach, electronic excitation spectra are broadened and shifted due to relaxation and dephasing of the electronic degrees of freedom by the surrounding environment. In this paper, we develop a formulation of TDDFT linear-response theory (LR-TDDFT) for many-body electronic systems evolving under a master equation, yielding broadened excitation spectra. This is done by mapping an interacting open quantum system onto a noninteracting open Kohn-Sham system yielding the correct nonequilibrium density evolution. A pseudoeigenvalue equation analogous to the Casida equations of the usual LR-TDDFT is derived for the Redfield master equation, yielding complex energies and Lamb shifts. As a simple demonstration, we calculate the spectrum of a C(2 +) atom including natural linewidths, by treating the electromagnetic field vacuum as a photon bath. The performance of an adiabatic exchange-correlation kernel is analyzed and a first-order frequency-dependent correction to the bare Kohn-Sham linewidth based on the Görling-Levy perturbation theory is calculated.

  6. Semi-classical calculation of the spin-isospin response functions

    International Nuclear Information System (INIS)

    Chanfray, G.

    1987-03-01

    We present a semi-classical calculation of the nuclear response functions beyond the Thomas-Fermi approximation. We apply our formalism to the spin-isospin responses and show that the surface peaked h/2π corrections considerably decrease the ratio longitudinal/transverse as obtained through hadronic probes

  7. Core seismic behaviour: linear and non-linear models

    International Nuclear Information System (INIS)

    Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.

    1981-08-01

    The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here

  8. Transition to Coherence in Populations of Coupled Chaotic Oscillators: A Linear Response Approach

    International Nuclear Information System (INIS)

    Topaj, Dmitri; Kye, Won-Ho; Pikovsky, Arkady

    2001-01-01

    We consider the collective dynamics in an ensemble of globally coupled chaotic maps. The transition to the coherent state with a macroscopic mean field is analyzed in the framework of the linear response theory. The linear response function for the chaotic system is obtained using the perturbation approach to the Frobenius-Perron operator. The transition point is defined from this function by virtue of the self-excitation condition for the feedback loop. Analytical results for the coupled Bernoulli maps are confirmed by the numerics

  9. On spurious detection of linear response and misuse of the fluctuation-dissipation theorem in finite time series

    Science.gov (United States)

    Gottwald, Georg A.; Wormell, J. P.; Wouters, Jeroen

    2016-09-01

    Using a sensitive statistical test we determine whether or not one can detect the breakdown of linear response given observations of deterministic dynamical systems. A goodness-of-fit statistics is developed for a linear statistical model of the observations, based on results for central limit theorems for deterministic dynamical systems, and used to detect linear response breakdown. We apply the method to discrete maps which do not obey linear response and show that the successful detection of breakdown depends on the length of the time series, the magnitude of the perturbation and on the choice of the observable. We find that in order to reliably reject the assumption of linear response for typical observables sufficiently large data sets are needed. Even for simple systems such as the logistic map, one needs of the order of 106 observations to reliably detect the breakdown with a confidence level of 95 %; if less observations are available one may be falsely led to conclude that linear response theory is valid. The amount of data required is larger the smaller the applied perturbation. For judiciously chosen observables the necessary amount of data can be drastically reduced, but requires detailed a priori knowledge about the invariant measure which is typically not available for complex dynamical systems. Furthermore we explore the use of the fluctuation-dissipation theorem (FDT) in cases with limited data length or coarse-graining of observations. The FDT, if applied naively to a system without linear response, is shown to be very sensitive to the details of the sampling method, resulting in erroneous predictions of the response.

  10. Non-Markovian linear response theory for quantum open systems and its applications.

    Science.gov (United States)

    Shen, H Z; Li, D X; Yi, X X

    2017-01-01

    The Kubo formula is an equation that expresses the linear response of an observable due to a time-dependent perturbation. It has been extended from closed systems to open systems in recent years under the Markovian approximation, but is barely explored for open systems in non-Markovian regimes. In this paper, we derive a formula for the linear response of an open system to a time-independent external field. This response formula is available for both Markovian and non-Markovian dynamics depending on parameters in the spectral density of the environment. As an illustration of the theory, the Hall conductance of a two-band system subjected to environments is derived and discussed. With the tight-binding model, we point out the Hall conductance changes from Markovian to non-Markovian dynamics by modulating the spectral density of the environment. Our results suggest a way to the controlling of the system response, which has potential applications for quantum statistical mechanics and condensed matter physics.

  11. The log-linear response function of the bounded number-line task is unrelated to the psychological representation of quantity.

    Science.gov (United States)

    Cohen, Dale J; Quinlan, Philip T

    2018-02-01

    The bounded number-line task has been used extensively to assess the numerical competence of both children and adults. One consistent finding has been that young children display a logarithmic response function, whereas older children and adults display a more linear response function. Traditionally, these log-linear functions have been interpreted as providing a transparent window onto the nature of the participants' psychological representations of quantity (termed here a direct response strategy). Here we show that the direct response strategy produces the log-linear response function regardless of whether the psychological representation of quantity is compressive or expansive. Simply put, the log-linear response function results from task constraints rather than from the psychological representation of quantities. We also demonstrate that a proportion/subtraction response strategy produces response patterns that almost perfectly correlate with the psychological representation of quantity. We therefore urge researchers not to interpret the log-linear response pattern in terms of numerical representation.

  12. Development of NRESP98 Monte Carlo codes for the calculation of neutron response functions of neutron detectors. Calculation of the response function of spherical BF{sub 3} proportional counter

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, M.; Saito, K.; Ando, H. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-05-01

    The method to calculate the response function of spherical BF{sub 3} proportional counter, which is commonly used as neutron dose rate meter and neutron spectrometer with multi moderator system, is developed. As the calculation code for evaluating the response function, the existing code series NRESP, the Monte Carlo code for the calculation of response function of neutron detectors, is selected. However, the application scope of the existing NRESP is restricted, the NRESP98 is tuned as generally applicable code, with expansion of the geometrical condition, the applicable element, etc. The NRESP98 is tested with the response function of the spherical BF{sub 3} proportional counter. Including the effect of the distribution of amplification factor, the detailed evaluation of the charged particle transportation and the effect of the statistical distribution, the result of NRESP98 calculation fit the experience within {+-}10%. (author)

  13. The ripple electromagnetic calculation: accuracy demand and possible responses

    International Nuclear Information System (INIS)

    Cocilovo, V.; Ramogida, G.; Formisano, A.; Martone, R.; Portone, A.; Roccella, M.; Roccella, R.

    2006-01-01

    Due to a number of causes (the finite number of toroidal field coils or the presence of concentrate blocks of magnetic materials, as the neutral beam shielding) the actual magnetic configuration in a Tokamak differs from the desired one. For example, a ripple is added to the ideal axisymmetric toroidal field, impacting the equilibrium and stability of the plasma column; as a further example the magnetic field out of plasma affects the operation of a number of critical components, included the diagnostic system and the neutral beam. Therefore the actual magnetic field has to be suitably calculated and his shape controlled within the required limits. Due to the complexity of its design, the problem is quite critical for the ITER project. In this paper the problem is discussed both from mathematical and numerical point of view. In particular, a complete formulation is proposed, taking into account both the presence of the non linear magnetic materials and the fully 3D geometry. Then the quality level requirements are discussed, included the accuracy of calculations and the spatial resolution. As a consequence, the numerical tools able to fulfil the quality needs while requiring reasonable computer burden are considered. In particular possible tools based on numerical FEM scheme are considered; in addition, in spite of the presence of non linear materials, the practical possibility to use Biot-Savart based approaches, as cross check tools, is also discussed. The paper also analyses the possible geometrical simplifications of the geometry able to make possible the actual calculation while guarantying the required accuracy. Finally the characteristics required for a correction system able to effectively counteract the magnetic field degradation are presented. Of course a number of examples will be also reported and commented. (author)

  14. Non-linear dose response of a few plant taxa to acute gamma radiation

    International Nuclear Information System (INIS)

    George, J.T.; Patel, B.B.; Pius, J.; Narula, B.; Shankhadarwar, S.; Rane, V.A.; Venu-Babu, P.; Eapen, S.; Singhal, R.K.

    2014-01-01

    Micronuclei induction serves as an essential biomarker of radiation stress in a living system, and the simplicity of its detection technique has made it a widely used indicator of radiation damage. The present study was conducted to reveal the cytological dose-response of a few plant taxa, viz., Allium cepa var. aggregatum Linn., Allium sativum Linn., Chlorophytum comosum (Thunb.) Jacques and Eichhornia crassipes (Mart.) Solms, to low LET gamma radiation with special emphasis on the pattern of micronuclei induced across low and high dose regimes. A tri-phasic non-linear dose-response pattern was observed in the four taxa studied, characterized by a low dose linear segment, a plateau and a high dose linear segment. Despite a similar response trend, the critical doses where the phase transitions occurred varied amongst the plant taxa, giving an indication to their relative radiosensitivities. E. crassipes and A. sativum, with their lower critical doses for slope modifications of phase transitions, were concluded as being more radiosensitive as compared to C. comosum and A. cepa, which had relatively higher critical doses. (author)

  15. KINETIC-J: A computational kernel for solving the linearized Vlasov equation applied to calculations of the kinetic, configuration space plasma current for time harmonic wave electric fields

    Science.gov (United States)

    Green, David L.; Berry, Lee A.; Simpson, Adam B.; Younkin, Timothy R.

    2018-04-01

    We present the KINETIC-J code, a computational kernel for evaluating the linearized Vlasov equation with application to calculating the kinetic plasma response (current) to an applied time harmonic wave electric field. This code addresses the need for a configuration space evaluation of the plasma current to enable kinetic full-wave solvers for waves in hot plasmas to move beyond the limitations of the traditional Fourier spectral methods. We benchmark the kernel via comparison with the standard k →-space forms of the hot plasma conductivity tensor.

  16. Airfoil wake and linear theory gust response including sub and superresonant flow conditions

    Science.gov (United States)

    Henderson, Gregory H.; Fleeter, Sanford

    1992-01-01

    The unsteady aerodynamic gust response of a high solidity stator vane row is examined in terms of the fundamental gust modeling assumptions with particular attention given to the effects near an acoustic resonance. A series of experiments was performed with gusts generated by rotors comprised of perforated plates and airfoils. It is concluded that, for both the perforated plate and airfoil wake generated gusts, the unsteady pressure responses do not agree with the linear-theory gust predictions near an acoustic resonance. The effects of the acoustic resonance phenomena are clearly evident on the airfoil surface unsteady pressure responses. The transition of the measured lift coefficients across the acoustic resonance from the subresonant regime to the superresonant regime occurs in a simple linear fashion.

  17. Low voltage RF MEMS variable capacitor with linear C-V response

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    An RF MEMS variable capacitor, fabricated in the PolyMUMPS process and tuned electrostatically, possessing a linear capacitance-voltage response is reported. The measured quality factor of the device was 17 at 1GHz, while the tuning range was 1.2:1 and was achieved at an actuation DC voltage of 8V only. Further, the linear regression coefficient was 0.98. The variable capacitor was created such that it has both vertical and horizontal capacitances present. As the top suspended plate moves towards the bottom fixed plate, the vertical capacitance increases whereas the horizontal capacitance decreases simultaneously such that the sum of the two capacitances yields a linear capacitance-voltage relation. © 2012 The Institution of Engineering and Technology.

  18. ZIP MK 2 : A Fortran code for calculating the eigenvalues (poles and zeros and frequency responses of large sets of linear equations representing complex dynamic systems)

    International Nuclear Information System (INIS)

    Sumner, H.M.

    1969-03-01

    The KDF9/EGDON program ZIP MK 2 is the third of a series of programs for off-line digital computer analysis of dynamic systems: it has been designed specifically to cater for the needs of the design or control engineer in having an input scheme which is minimally computer-oriented. It uses numerical algorithms which are as near fool-proof as the author could discover or devise, and has comprehensive diagnostic sections to help the user in the event of faulty data or machine execution. ZIP MK 2 accepts mathematical models comprising first order linear differential and linear algebraic equations, and from these computes and factorises the transfer functions between specified pairs of output and input variables; if desired, the frequency response may be computed from the computed transfer function. The model input scheme is fully compatible with the frequency response programs FRP MK 1 and MK 2, except that, for ZIP MK 2, transport, or time-delays must be converted by the user to Pade or Bode approximations prior to input. ZIP provides the pole-zero plot, (or complex plane analysis), while FRP provides the frequency response and FIFI the time domain analyses. The pole-zero method of analysis has been little used in the past for complex models, especially where transport delays occur, and one of its primary purposes is as a research tool to investigate the usefulness of this method, for process plant, whether nuclear, chemical or other continuous processes. (author)

  19. Hydrodynamic theory for quantum plasmonics: Linear-response dynamics of the inhomogeneous electron gas

    DEFF Research Database (Denmark)

    Yan, Wei

    2015-01-01

    We investigate the hydrodynamic theory of metals, offering systematic studies of the linear-response dynamics for an inhomogeneous electron gas. We include the quantum functional terms of the Thomas-Fermi kinetic energy, the von Weizsa¨cker kinetic energy, and the exchange-correlation Coulomb...... energies under the local density approximation. The advantages, limitations, and possible improvements of the hydrodynamic theory are transparently demonstrated. The roles of various parameters in the theory are identified. We anticipate that the hydrodynamic theory can be applied to investigate the linear...... response of complex metallic nanostructures, including quantum effects, by adjusting theory parameters appropriately....

  20. Improving linear accelerator service response with a real- time electronic event reporting system.

    Science.gov (United States)

    Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L

    2014-09-08

    To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations.

  1. Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Christopher; Simon, Tom; Simon, Bill; Dempsey, James F.; Kahler, Darren; Palta, Jatinder R.; Liu Chihray; Yan Guanghua [Sun Nuclear Inc., 425-A Pineda Court, Melbourne, Florida 32940 and Department of Radiation Oncology, University of Florida, P.O. Box 100385, Gainesville, Florida 32610-0385 (United States); NRE, 202 Nuclear Science Building, University of Florida, P.O. Box 118300, Gainesville, Florida 32611-8300 and Sun Nuclear Inc., 425-A Pineda Court, Melbourne, Florida 32940 (United States); Sun Nuclear Inc., 425-A Pineda Court, Melbourne, Florida 32940 (United States); ViewRay Inc., 2 Thermo Fisher Way, Oakwood Village, Ohio 44146 (United States); Department of Radiation Oncology, University of Florida, P.O. Box 100385, Gainesville, Florida 32610-0385 (United States)

    2010-02-15

    Purpose: Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. Methods: In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm{sup 3} and a diode of surface area 0.64 mm{sup 2}. The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10x10 cm{sup 2} field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. Results: Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a {+-}0.7 mm variation in the 80%-20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping

  2. Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators

    International Nuclear Information System (INIS)

    Fox, Christopher; Simon, Tom; Simon, Bill; Dempsey, James F.; Kahler, Darren; Palta, Jatinder R.; Liu Chihray; Yan Guanghua

    2010-01-01

    Purpose: Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. Methods: In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm 3 and a diode of surface area 0.64 mm 2 . The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10x10 cm 2 field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. Results: Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a ±0.7 mm variation in the 80%-20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping parameter between in

  3. Linear response approach to active Brownian particles in time-varying activity fields

    Science.gov (United States)

    Merlitz, Holger; Vuijk, Hidde D.; Brader, Joseph; Sharma, Abhinav; Sommer, Jens-Uwe

    2018-05-01

    In a theoretical and simulation study, active Brownian particles (ABPs) in three-dimensional bulk systems are exposed to time-varying sinusoidal activity waves that are running through the system. A linear response (Green-Kubo) formalism is applied to derive fully analytical expressions for the torque-free polarization profiles of non-interacting particles. The activity waves induce fluxes that strongly depend on the particle size and may be employed to de-mix mixtures of ABPs or to drive the particles into selected areas of the system. Three-dimensional Langevin dynamics simulations are carried out to verify the accuracy of the linear response formalism, which is shown to work best when the particles are small (i.e., highly Brownian) or operating at low activity levels.

  4. linear-quadratic-linear model

    Directory of Open Access Journals (Sweden)

    Tanwiwat Jaikuna

    2017-02-01

    Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  5. Calculation of the spin-isospin response functions in an extended semi-classical theory

    International Nuclear Information System (INIS)

    Chanfray, G.

    1987-01-01

    We present a semi-classical calculation of the spin isospin response-functions beyond Thomas-Fermi theory. We show that surface-peaked ℎ 2 corrections reduce the collective effects predicted by Thomas-Fermi calculations. These effects, small for a volume response, become important for surface responses probed by hadrons. This yields a considerable improvement of the agreement with the (p, p') Los Alamos data

  6. The Effects of the Use of Microsoft Math Tool (Graphical Calculator) Instruction on Students' Performance in Linear Functions

    Science.gov (United States)

    Kissi, Philip Siaw; Opoku, Gyabaah; Boateng, Sampson Kwadwo

    2016-01-01

    The aim of the study was to investigate the effect of Microsoft Math Tool (graphical calculator) on students' achievement in the linear function. The study employed Quasi-experimental research design (Pre-test Post-test two group designs). A total of ninety-eight (98) students were selected for the study from two different Senior High Schools…

  7. 2-D response mapping of multi-linear silicon drift detectors

    International Nuclear Information System (INIS)

    Castoldi, A.; Guazzoni, C.; Hartmann, R.; Mezza, D.; Strueder, L.; Tassan Garofolo, F.

    2010-01-01

    Multi-linear silicon drift detectors (MLSDDs) are good candidates to fulfill simultaneous requirements for 2-D position-sensing and spectroscopy applications. The optimization of their design and performance as 2-D imagers requires a detailed study of timing properties of the charge cloud in the MLSDD architecture. In particular it is important to experimentally determine the dependence of the measured amplitude and time-of-arrival on the photon position of interaction so as to derive the 2D detector response. In this paper we will present a detailed experimental characterization aimed at measuring the detector amplitude response and its timing response. The dependence of charge cloud drift time on precise position of interaction has been measured as a function of detector biasing conditions.

  8. Analytical calculation of central-axis dosimetric data for a dedicated 6-MV radiosurgery linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, James N.; Pino, Ramiro [Department of Radiation Physics, Unit 94, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiology, Baylor College of Medicine and Methodist Hospital, Houston, Texas 77030 (United States)

    2008-10-15

    Narrow beams are extensively used in stereotactic radiosurgery. The accuracy of treatment planning dose calculation depends largely on how well the dosimetric data are measured during the machine commissioning. Narrow beams are characterized by the lack of lateral electronic equilibrium. The lateral electronic disequilibrium in the radiation field and detector's finite size are likely to compromise the accuracy in dose measurements in these beams. This may have a profound impact on outcome in patients who undergo stereotactic radiosurgery. To confirm the measured commissioning data for a dedicated 6-MV linear accelerator-based radiosurgery system, we developed an analytical model to calculate the narrow photon beam central-axis dose. This model is an extension of a previously reported method of Nizin and Mooij for the calculation of the absorbed dose under lateral electronic disequilibrium conditions at depth of d{sub max} or greater. The scatter factor and tissue-maximum ratio were calculated for narrow beams using the parametrized model and compared to carefully measured results for the same beams. For narrow beam radii ranging from 0.2 to 1.5 cm, the differences between the analytical and measured scatter factors were no greater than 1.4%. In addition, the differences between the analytical and measured tissue-maximum ratios were within 3.3% for regions greater than the maximum dose depth. The estimated error of this analytical calculation was less than 2%, which is sufficient to validate measurement results.

  9. GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.

    Science.gov (United States)

    Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B

    2012-09-11

    In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.

  10. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    Science.gov (United States)

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  11. Non-Linear Dose Response Relationships in Biology, Toxicology, and Medicine (June 8-10, 2004). Final Report

    International Nuclear Information System (INIS)

    Calabrese, Edward J.

    2004-01-01

    The conference attracts approximately 500 scientists researching in the area of non-linear low dose effects. These scientists represent a wide range of biological/medical fields and technical disciplines. Observations that biphasic dose responses are frequently reported in each of these areas but that the recognition of similar dose response relationships across disciplines is very rarely appreciated and exploited. By bringing scientist of such diverse backgrounds together who are working on the common area of non-linear dose response relationships this will enhance our understanding of the occurrence, origin, mechanism, significance and practical applications of such dose response relationships

  12. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Evaluation of Equivalent Linearization Method

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferraioli

    2016-01-01

    Full Text Available Although the most commonly used isolation systems exhibit nonlinear inelastic behaviour, the equivalent linear elastic analysis is commonly used in the design and assessment of seismic-isolated structures. The paper investigates if the linear elastic model is suitable for the analysis of a seismically isolated multiple building structure. To this aim, its computed responses were compared with those calculated by nonlinear dynamic analysis. A common base isolation plane connects the isolation bearings supporting the adjacent structures. In this situation, the conventional equivalent linear elastic analysis may have some problems of accuracy because this method is calibrated on single base-isolated structures. Moreover, the torsional characteristics of the combined system are significantly different from those of separate isolated buildings. A number of numerical simulations and parametric studies under earthquake excitations were performed. The accuracy of the dynamic response obtained by the equivalent linear elastic model was calculated by the magnitude of the error with respect to the corresponding response considering the nonlinear behaviour of the isolation system. The maximum displacements at the isolation level, the maximum interstorey drifts, and the peak absolute acceleration were selected as the most important response measures. The influence of mass eccentricity, torsion, and high-modes effects was finally investigated.

  13. Linear ideal MHD stability calculations for ITER

    International Nuclear Information System (INIS)

    Hogan, J.T.

    1988-01-01

    A survey of MHD stability limits has been made to address issues arising from the MHD--poloidal field design task of the US ITER project. This is a summary report on the results obtained to date. The study evaluates the dependence of ballooning, Mercier and low-n ideal linear MHD stability on key system parameters to estimate overall MHD constraints for ITER. 17 refs., 27 figs

  14. Non-LTE modeling of the radiative properties of high-Z plasma using linear response methodology

    Science.gov (United States)

    Foord, Mark; Harte, Judy; Scott, Howard

    2017-10-01

    Non-local thermodynamic equilibrium (NLTE) atomic processes play a key role in the radiation flow and energetics in highly ionized high temperature plasma encountered in inertial confinement fusion (ICF) and astrophysical applications. Modeling complex high-Z atomic systems, such as gold used in ICF hohlraums, is particularly challenging given the complexity and intractable number of atomic states involved. Practical considerations, i.e. speed and memory, in large radiation-hydrodynamic simulations further limit model complexity. We present here a methodology for utilizing tabulated NLTE radiative and EOS properties for use in our radiation-hydrodynamic codes. This approach uses tabulated data, previously calculated with complex atomic models, modified to include a general non-Planckian radiation field using a linear response methodology. This approach extends near-LTE response method to conditions far from LTE. Comparisons of this tabular method with in-line NLTE simulations of a laser heated 1-D hohlraum will be presented, which show good agreement in the time-evolution of the plasma conditions. This work was performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Optimization of linear Monte Carlo calculations

    International Nuclear Information System (INIS)

    Troubetzkoy, E.S.

    1991-01-01

    The variance of the calculation is minimized on the basis of parameters generated by a learning technique. The optimum is obtained if sampling is biased proportionally to the expected root-mean-square score. In this paper, the method is compared with existing methods, which bias proportionally to the expected score

  16. Stochastic Parameter Estimation of Non-Linear Systems Using Only Higher Order Spectra of the Measured Response

    Science.gov (United States)

    Vasta, M.; Roberts, J. B.

    1998-06-01

    Methods for using fourth order spectral quantities to estimate the unknown parameters in non-linear, randomly excited dynamic systems are developed. Attention is focused on the case where only the response is measurable and the excitation is unmeasurable and known only in terms of a stochastic process model. The approach is illustrated through application to a non-linear oscillator with both non-linear damping and stiffness and with excitation modelled as a stationary Gaussian white noise process. The methods have applications in studies of the response of structures to random environmental loads, such as wind and ocean wave forces.

  17. A Hybrid Density Functional Theory/Molecular Mechanics Approach for Linear Response Properties in Heterogeneous Environments.

    Science.gov (United States)

    Rinkevicius, Zilvinas; Li, Xin; Sandberg, Jaime A R; Mikkelsen, Kurt V; Ågren, Hans

    2014-03-11

    We introduce a density functional theory/molecular mechanical approach for computation of linear response properties of molecules in heterogeneous environments, such as metal surfaces or nanoparticles embedded in solvents. The heterogeneous embedding environment, consisting from metallic and nonmetallic parts, is described by combined force fields, where conventional force fields are used for the nonmetallic part and capacitance-polarization-based force fields are used for the metallic part. The presented approach enables studies of properties and spectra of systems embedded in or placed at arbitrary shaped metallic surfaces, clusters, or nanoparticles. The capability and performance of the proposed approach is illustrated by sample calculations of optical absorption spectra of thymidine absorbed on gold surfaces in an aqueous environment, where we study how different organizations of the gold surface and how the combined, nonadditive effect of the two environments is reflected in the optical absorption spectrum.

  18. Conductance calculations with a wavelet basis set

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Bollinger, Mikkel; Jacobsen, Karsten Wedel

    2003-01-01

    We present a method based on density functional theory (DFT) for calculating the conductance of a phase-coherent system. The metallic contacts and the central region where the electron scattering occurs, are treated on the same footing taking their full atomic and electronic structure into account....... The linear-response conductance is calculated from the Green's function which is represented in terms of a system-independent basis set containing wavelets with compact support. This allows us to rigorously separate the central region from the contacts and to test for convergence in a systematic way...

  19. Calculated energy response of lithium fluoride finger-tip dosimeters

    International Nuclear Information System (INIS)

    Johns, T.F.

    1965-07-01

    Calculations have been made of the energy response of the lithium fluoride thermoluminescent dosimeters being used at A.E.E. Winfrith for the measurement of radiation doses to the finger-tips of people handling radio-active materials. It is shown that the energy response is likely to be materially affected if the sachet in which the powder is held contains elements with atomic numbers much higher than 9 (e.g. if the sachet is made from polyvinyl chloride). (author)

  20. Calculations for BDAS Setpoint with Non-conservative Boron Dilution Analysis

    International Nuclear Information System (INIS)

    Lee, Hwan Soo; Shin, Ho Cheol; Kim, Yong Bae

    2014-01-01

    BDAS (Boron Dilution Alarm System) utilizes the ex-core detector instrumentation signals to detect a possible inadvertent boron dilution event during operation mode 3, 4, 5, 6. For boron dilution analysis, discrepancies in the active coolant volume and the assumed linearity of the ex-core instrumentation response were identified for CE type PWR and they were reported by NASL-04-02 These discrepancies have potential to impact to determine BDAS setpoint in a non-conservative manner Therefore, in this study, the calculation of BDAS setpoint with those discrepancies condition about OPR1000 was performed and analyzed for checking the safety of BDAS. The new BDAS setpoint is calculated with conservative condition which recommended from Westinghouse Electric Company. The setpoint of BDAS using non-linear ICRR curve decrease to about 5% compared to the setpoint of that using linear ICRR curve. And this effect of the non-linearity is to slightly delay the boron dilution alarm during the inadvertence boron dilution at mode 3, 4, and 5

  1. Normalize the response of EPID in pursuit of linear accelerator dosimetry standardization.

    Science.gov (United States)

    Cai, Bin; Goddu, S Murty; Yaddanapudi, Sridhar; Caruthers, Douglas; Wen, Jie; Noel, Camille; Mutic, Sasa; Sun, Baozhou

    2018-01-01

    Normalize the response of electronic portal imaging device (EPID) is the first step toward an EPID-based standardization of Linear Accelerator (linac) dosimetry quality assurance. In this study, we described an approach to generate two-dimensional (2D) pixel sensitivity maps (PSM) for EPIDs response normalization utilizing an alternative beam and dark-field (ABDF) image acquisition technique and large overlapping field irradiations. The automated image acquisition was performed by XML-controlled machine operation and the PSM was generated based on a recursive calculation algorithm for Varian linacs equipped with aS1000 and aS1200 imager panels. Cross-comparisons of normalized beam profiles and 1.5%/1.5 mm 1D Gamma analysis was adopted to quantify the improvement of beam profile matching before and after PSM corrections. PSMs were derived for both photon (6, 10, 15 MV) and electron (6, 20 MeV) beams via proposed method. The PSM-corrected images reproduced a horn-shaped profile for photon beams and a relative uniform profiles for electrons. For dosimetrically matched linacs equipped with aS1000 panels, PSM-corrected images showed increased 1D-Gamma passing rates for all energies, with an average 10.5% improvement for crossline and 37% for inline beam profiles. Similar improvements in the phantom study were observed with a maximum improvement of 32% for 15 MV and 22% for 20 MeV. The PSM value showed no significant change for all energies over a 3-month period. In conclusion, the proposed approach correct EPID response for both aS1000 and aS1200 panels. This strategy enables the possibility to standardize linac dosimetry QA and to benchmark linac performance utilizing EPID as the common detector. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. Linear-quadratic model predictions for tumor control probability

    International Nuclear Information System (INIS)

    Yaes, R.J.

    1987-01-01

    Sigmoid dose-response curves for tumor control are calculated from the linear-quadratic model parameters α and Β, obtained from human epidermoid carcinoma cell lines, and are much steeper than the clinical dose-response curves for head and neck cancers. One possible explanation is the presence of small radiation-resistant clones arising from mutations in an initially homogeneous tumor. Using the mutation theory of Delbruck and Luria and of Goldie and Coldman, the authors discuss the implications of such radiation-resistant clones for clinical radiation therapy

  3. The time-walk of analog constant fraction discriminators using very fast scintillator detectors with linear and non-linear energy response

    Energy Technology Data Exchange (ETDEWEB)

    Regis, J.-M., E-mail: regis@ikp.uni-koeln.de [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Rudigier, M.; Jolie, J.; Blazhev, A.; Fransen, C.; Pascovici, G.; Warr, N. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany)

    2012-08-21

    The electronic {gamma}-{gamma} fast timing technique allows for direct nuclear lifetime determination down to the few picoseconds region by measuring the time difference between two coincident {gamma}-ray transitions. Using high resolution ultra-fast LaBr{sub 3}(Ce) scintillator detectors in combination with the recently developed mirror symmetric centroid difference method, nuclear lifetimes are measured with a time resolving power of around 5 ps. The essence of the method is to calibrate the energy dependent position (centroid) of the prompt response function of the setup which is obtained for simultaneously occurring events. This time-walk of the prompt response function induced by the analog constant fraction discriminator has been determined by systematic measurements using different photomultiplier tubes and timing adjustments of the constant fraction discriminator. We propose a universal calibration function which describes the time-walk or the combined {gamma}-{gamma} time-walk characteristics, respectively, for either a linear or a non-linear amplitude versus energy dependency of the scintillator detector output pulses.

  4. CiOpt: a program for optimization of the frequency response of linear circuits

    OpenAIRE

    Miró Sans, Joan Maria; Palà Schönwälder, Pere

    1991-01-01

    An interactive personal-computer program for optimizing the frequency response of linear lumped circuits (CiOpt) is presented. CiOpt has proved to be an efficient tool in improving designs where the inclusion of more accurate device models distorts the desired frequency response, as well as in device modeling. The outputs of CiOpt are the element values which best match the obtained and the desired frequency response. The optimization algorithms used (the Fletcher-Powell and Newton's methods,...

  5. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    DEFF Research Database (Denmark)

    Rinker, Jennifer M.

    2016-01-01

    at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four......This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a high-dimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data...... turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project...

  6. FAMREC, PWR Lateral Mechanical Fuel Rod Assembly Response

    International Nuclear Information System (INIS)

    Guenzler, R.C.

    1995-01-01

    1 - Description of program or function: The Fuel Assembly Mechanical Response Code (FAMREC) calculates the lateral mechanical response of a row of fuel assemblies while allowing for two types of nonlinearities. The first type is a geometric nonlinearity in the form of gaps between individual assemblies and between peripheral assemblies and a boundary wall. Impacting is monitored across the gaps. The second nonlinearity is the permanent deformation of the fuel assembly spacer grid to compressive loading. 2 - Method of solution: The response is calculated in the modal plane. The coupled differential equations are solved in closed form using Laplace transformations. The discrete displacements and velocities are then calculated and the gaps in the system monitored at each axial elevation for impacting. These impact forces are then applied statistically at a given time-step, and equilibrium is found using a Gaussian elimination technique. Three impact force calculation methods are available: 1- a linear impact force and crushing load audit calculation, 2- a more detailed linear impact force and crushing load calculation, and 3- a non-linear grid calculation which allows for plastic deformation of the fuel assembly spacer grids. 3 - Restrictions on the complexity of the problem: Maxima of: 3601 time-steps and forces; 80 modes; 30 applied forces; 15 fuel assemblies; and 5 impact grids per assembly

  7. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    International Nuclear Information System (INIS)

    Rinker, Jennifer M.

    2016-01-01

    This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a highdimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project. The fit of the calibrated response surface is evaluated in terms of error between the model and the training data and in terms of the convergence. The Sobol SIs are calculated using the calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the four turbulence parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed and turbulence intensity. (paper)

  8. Calculation and applications of the frequency dependent neutron detector response functions

    International Nuclear Information System (INIS)

    Van Dam, H.; Van Hagen, T.H.J.J. der; Hoogenboom, J.E.; Keijzer, J.

    1994-01-01

    The theoretical basis is presented for the evaluation of the frequency dependent function that enables to calculate the response of a neutron detector to parametric fluctuations ('noise') or oscillations in reactor core. This function describes the 'field view' of a detector and can be calculated with a static transport code under certain conditions which are discussed. Two applications are presented: the response of an ex-core detector to void fraction fluctuations in a BWR and of both in and ex-core detectors to a rotating neutron absorber near or inside a research reactor core. (authors). 7 refs., 4 figs

  9. Fluctuations of two-time quantities and non-linear response functions

    International Nuclear Information System (INIS)

    Corberi, F; Lippiello, E; Sarracino, A; Zannetti, M

    2010-01-01

    We study the fluctuations of the autocorrelation and autoresponse functions and, in particular, their variances and covariance. In a first general part of the paper, we show the equivalence of the variance of the response function to the second-order susceptibility of a composite operator, and we derive an equilibrium fluctuation-dissipation theorem beyond linear order, relating it to the other variances. In a second part of the paper we apply the formalism in the study of non-disordered ferromagnets, in equilibrium or in the coarsening kinetics following a critical or sub-critical quench. We show numerically that the variances and the non-linear susceptibility obey scaling with respect to the coherence length ξ in equilibrium, and with respect to the growing length L(t) after a quench, similar to what is known for the autocorrelation and the autoresponse functions

  10. Linear population allocation by bistable switches in response to transient stimulation.

    Science.gov (United States)

    Srimani, Jaydeep K; Yao, Guang; Neu, John; Tanouchi, Yu; Lee, Tae Jun; You, Lingchong

    2014-01-01

    Many cellular decision processes, including proliferation, differentiation, and phenotypic switching, are controlled by bistable signaling networks. In response to transient or intermediate input signals, these networks allocate a population fraction to each of two distinct states (e.g. OFF and ON). While extensive studies have been carried out to analyze various bistable networks, they are primarily focused on responses of bistable networks to sustained input signals. In this work, we investigate the response characteristics of bistable networks to transient signals, using both theoretical analysis and numerical simulation. We find that bistable systems exhibit a common property: for input signals with short durations, the fraction of switching cells increases linearly with the signal duration, allowing the population to integrate transient signals to tune its response. We propose that this allocation algorithm can be an optimal response strategy for certain cellular decisions in which excessive switching results in lower population fitness.

  11. Kovacs-Like Memory Effect in Athermal Systems: Linear Response Analysis

    Science.gov (United States)

    Plata, Carlos; Prados, Antonio

    2017-10-01

    We analyse the emergence of Kovacs-like memory effects in athermal systems within the linear response regime. This is done by starting from both the master equation for the probability distribution and the equations for the physically relevant moments. The general results are applied to a general class of models with conserved momentum and non-conserved energy. Our theoretical predictions, obtained within the first Sonine approximation, show an excellent agreement with the numerical results.

  12. Linear combination of auditory steady-state responses evoked by co-modulated tones

    DEFF Research Database (Denmark)

    Guérit, François; Marozeau, Jeremy; Epp, Bastian

    2017-01-01

    Up to medium intensities and in the 80–100-Hz region, the auditory steady-state response (ASSR) to a multi-tone carrier is commonly considered to be a linear sum of the dipoles from each tone specific ASSR generator. Here, this hypothesis was investigated when a unique modulation frequency is used...... for all carrier components. Listeners were presented with a co-modulated dual-frequency carrier (1 and 4 kHz), from which the modulator starting phase Ui of the 1-kHz component was systematically varied. The results support the hypothesis of a linear superposition of the dipoles originating from different...

  13. Energy response of imaging plates to radiation beams from standard beta sources, ortho-voltage and cobalt-60 units and linear accelerators

    Science.gov (United States)

    Gonzalez, Albin Leonel

    The response to different types of radiation beams of commercial imaging plates used for diagnostic computed radiography has been investigated in this work. Imaging plates are designed with a phosphor layer which after been irradiated; information is stored in the form of photostimulable luminescence (PSL) centers. Initial measurements of the dose distribution of a radioactive stent with the imaging plates showed similar results to those with radiochromic films, but with much shorter exposure time due to their higher sensitivity. In order to investigate further their response, the imaging plates were irradiated with calibrated beams from: standard beta sources, orthovoltage and Co-60 units and therapy linear accelerator. Initially it was found that the energy to create the storage centers (generation efficiency) when irradiated with the three standard beta sources (225 keV to 2.28 MeV) was the same. For the rest of the calibrated beams an in house reader system was built in order to perform the bleaching of the plates with a He-Ne laser (632.8 nm) and to measure the absolute number of the emitted PSL photons (storage centers produced). Bleaching curves were then obtained for different exposure times for each beam. From the graph of the calculated area under the bleaching curves (total number of storage center) versus the absorbed dose to the phosphor layer it was possible to calculate the energy to create the storage centers (generation efficiency) for photon and electron beams. The dose to the phosphor layer was calculated in the case of the electron beams following a scaling procedure, while in the case of the photon beams Monte Carlo simulations were performed. For the photons beams the measurement of the generation efficiency energy of 126 +/- 8% eV per PSL storage center, coincide with measurements using a different approach (˜148 eV) by previous investigators. The generation efficiency for the electron beam was 807 +/- 3% eV, no reference was found in the

  14. Properties of a novel linear sulfur response mode in a multiple flame photometric detector.

    Science.gov (United States)

    Clark, Adrian G; Thurbide, Kevin B

    2014-01-24

    A new linear sulfur response mode was established in the multiple flame photometric detector (mFPD) by monitoring HSO* emission in the red spectral region above 600nm. Optimal conditions for this mode were found by using a 750nm interference filter and oxygen flows to the worker flames of this device that were about 10mL/min larger than those used for monitoring quadratic S2* emission. By employing these parameters, this mode provided a linear response over about 4 orders of magnitude, with a detection limit near 5.8×10(-11)gS/s and a selectivity of sulfur over carbon of about 3.5×10(3). Specifically, the minimum detectable masses for 10 different sulfur analytes investigated ranged from 0.4 to 3.6ng for peak half-widths spanning 4-6s. The response toward ten different sulfur compounds was examined and produced an average reproducibility of 1.7% RSD (n=10) and an average equimolarity value of 1.0±0.1. In contrast to this, a conventional single flame S2* mode comparatively yielded respective values of 6.7% RSD (n=10) and 1.1±0.4. HSO* emission in the mFPD was also found to be relatively much less affected by response quenching due to hydrocarbons compared to a conventional single flame S2* emission mode. Results indicate that this new alternative linear mFPD response mode could be beneficial for sulfur monitoring applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Linear spin-wave theory of incommensurably modulated magnets

    DEFF Research Database (Denmark)

    Ziman, Timothy; Lindgård, Per-Anker

    1986-01-01

    Calculations of linearized theories of spin dynamics encounter difficulties when applied to incommensurable magnetic phases: lack of translational invariance leads to an infinite coupled system of equations. The authors resolve this for the case of a `single-Q' structure by mapping onto the problem......: at higher frequency there appear bands of response sharply defined in frequency, but broad in momentum transfer; at low frequencies there is a response maximum at the q vector corresponding to the modulation vector. They discuss generalizations necessary for application to rare-earth magnets...

  16. Response of sliding structures to seismic excitation: bibliographical study

    International Nuclear Information System (INIS)

    Sarh, K.; Duval, C.

    1992-11-01

    Calculation of the seismic response of structures on sliding supports involves the dual problem of ''non-linear'' and ''random'' dynamic behaviour. After a review of the non-linearities common in dynamics, slipping is compared with a hysteresis phenomenon. Simple examples are then used to present the Fokker-Planck equation and the equivalent linearization method. Finally, the methods for modification of the excitation spectrum intended for the engineering calculations are recalled. (authors). 21 figs., 23 refs

  17. Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses

    International Nuclear Information System (INIS)

    Sauer, G.

    1998-01-01

    Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)

  18. Testing for one Generalized Linear Single Order Parameter

    DEFF Research Database (Denmark)

    Ellegaard, Niels Langager; Christensen, Tage Emil; Dyre, Jeppe

    We examine a linear single order parameter model for thermoviscoelastic relaxation in viscous liquids, allowing for a distribution of relaxation times. In this model the relaxation of volume and entalpy is completely described by the relaxation of one internal order parameter. In contrast to prior...... work the order parameter may be chosen to have a non-exponential relaxation. The model predictions contradict the general consensus of the properties of viscous liquids in two ways: (i) The model predicts that following a linear isobaric temperature step, the normalized volume and entalpy relaxation...... responses or extrapolate from measurements of a glassy state away from equilibrium. Starting from a master equation description of inherent dynamics, we calculate the complex thermodynamic response functions. We device a way of testing for the generalized single order parameter model by measuring 3 complex...

  19. Modeling the Non-Linear Response of Fiber-Reinforced Laminates Using a Combined Damage/Plasticity Model

    Science.gov (United States)

    Schuecker, Clara; Davila, Carlos G.; Pettermann, Heinz E.

    2008-01-01

    The present work is concerned with modeling the non-linear response of fiber reinforced polymer laminates. Recent experimental data suggests that the non-linearity is not only caused by matrix cracking but also by matrix plasticity due to shear stresses. To capture the effects of those two mechanisms, a model combining a plasticity formulation with continuum damage has been developed to simulate the non-linear response of laminates under plane stress states. The model is used to compare the predicted behavior of various laminate lay-ups to experimental data from the literature by looking at the degradation of axial modulus and Poisson s ratio of the laminates. The influence of residual curing stresses and in-situ effect on the predicted response is also investigated. It is shown that predictions of the combined damage/plasticity model, in general, correlate well with the experimental data. The test data shows that there are two different mechanisms that can have opposite effects on the degradation of the laminate Poisson s ratio which is captured correctly by the damage/plasticity model. Residual curing stresses are found to have a minor influence on the predicted response for the cases considered here. Some open questions remain regarding the prediction of damage onset.

  20. Linear response theory for magnetic Schrodinger operators in disordered media

    CERN Document Server

    Bouclet, J M; Klein, A; Schenker, J

    2004-01-01

    We justify the linear response theory for an ergodic Schrodinger operator with magnetic field within the non-interacting particle approximation, and derive a Kubo formula for the electric conductivity tensor. To achieve that, we construct suitable normed spaces of measurable covariant operators where the Liouville equation can be solved uniquely. If the Fermi level falls into a region of localization, we recover the well-known Kubo-Streda formula for the quantum Hall conductivity at zero temperature.

  1. Using Linear Spectral Method when Calculating Seismic Resistance of Large-Capacity Vertical Steel Tanks

    Directory of Open Access Journals (Sweden)

    Tarasenko Alexandr

    2016-01-01

    Full Text Available The paper is aimed at determining the possibility of applying the simplified method proposed by the authors to calculate the tank seismic resistance in compliance with current regulations and scientific provisions. The authors propose a highly detailed numerical model for a common oil storage tank RVSPK-50000 that enables static operational loads and dynamic action of earthquakes to be calculated. Within the modal analysis the natural oscillation frequencies in the range of 0-10 Hz were calculated; the results are given for the first ten modes. The model takes into account the effect of impulsive and convective components of hydrodynamic pressure during earthquakes. Within the spectral analysis by generalized response spectra was calculated a general stress-strain state of a structure during earthquakes of 7, 8, 9 intensity degrees on the MSK-64 scale for a completely filled up, a half-filled up to the mark of 8.5 m and an empty RVSPK-50000 tank. The developed finite element model can be used to perform calculations of seismic resistance by the direct dynamic method, which will give further consideration to the impact of individual structures (floating roof, support posts, adjoined elements of added stiffness on the general stress-strain state of a tank.

  2. Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction

    Directory of Open Access Journals (Sweden)

    E. Çelebi

    2012-11-01

    Full Text Available The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.

  3. The Computer Program LIAR for Beam Dynamics Calculations in Linear Accelerators

    International Nuclear Information System (INIS)

    Assmann, R.W.; Adolphsen, C.; Bane, K.; Raubenheimer, T.O.; Siemann, R.H.; Thompson, K.

    2011-01-01

    Linear accelerators are the central components of the proposed next generation of linear colliders. They need to provide acceleration of up to 750 GeV per beam while maintaining very small normalized emittances. Standard simulation programs, mainly developed for storage rings, do not meet the specific requirements for high energy linear accelerators. We present a new program LIAR ('LInear Accelerator Research code') that includes wakefield effects, a 6D coupled beam description, specific optimization algorithms and other advanced features. Its modular structure allows to use and to extend it easily for different purposes. The program is available for UNIX workstations and Windows PC's. It can be applied to a broad range of accelerators. We present examples of simulations for SLC and NLC.

  4. NFAP calculation of pressure response of 1/6th scale model containment structure

    International Nuclear Information System (INIS)

    Costantino, C.J.; Pepper, S.; Reich, M.

    1988-01-01

    The details associated with the NFAP calculation of the pressure response of the 1/6th scale model containment structure are discussed in this paper. Comparisons are presented of some of the primary items of interest with those determined from the experiment. It was found from this comparison that the hoop response of the containment wall was adequately predicted by the NFAP finite element calculation, including the response in the high pressure, high strain range at which cracking of the concrete and yielding of the hoop reinforcement occurred. In the vertical or meridional direction, it was found that the model was significantly softer than predicted by the finite element calculation; that is, the vertical strains in the test were three to four times larger than computed in the NFAP calculation. These differences were noted even at low strain levels at which the concrete would not be expected to be cracked under tensile loadings. Simplified calculations for the containment indicate that the vertical stiffness of the wall is similar to that which would be determined by assuming the concrete fully cracked. Thus, the experiment indicates an anomalous behavior in the vertical direction

  5. Modeling exposure–lag–response associations with distributed lag non-linear models

    Science.gov (United States)

    Gasparrini, Antonio

    2014-01-01

    In biomedical research, a health effect is frequently associated with protracted exposures of varying intensity sustained in the past. The main complexity of modeling and interpreting such phenomena lies in the additional temporal dimension needed to express the association, as the risk depends on both intensity and timing of past exposures. This type of dependency is defined here as exposure–lag–response association. In this contribution, I illustrate a general statistical framework for such associations, established through the extension of distributed lag non-linear models, originally developed in time series analysis. This modeling class is based on the definition of a cross-basis, obtained by the combination of two functions to flexibly model linear or nonlinear exposure-responses and the lag structure of the relationship, respectively. The methodology is illustrated with an example application to cohort data and validated through a simulation study. This modeling framework generalizes to various study designs and regression models, and can be applied to study the health effects of protracted exposures to environmental factors, drugs or carcinogenic agents, among others. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24027094

  6. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings

    Energy Technology Data Exchange (ETDEWEB)

    Pavanello, Michele [Department of Chemistry, Rutgers University, Newark, New Jersey 07102-1811 (United States); Van Voorhis, Troy [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Visscher, Lucas [Amsterdam Center for Multiscale Modeling, VU University, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Neugebauer, Johannes [Theoretische Organische Chemie, Organisch-Chemisches Institut der Westfaelischen Wilhelms-Universitaet Muenster, Corrensstrasse 40, 48149 Muenster (Germany)

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Angstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.

  7. Linear regression

    CERN Document Server

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  8. Response statistics of rotating shaft with non-linear elastic restoring forces by path integration

    Science.gov (United States)

    Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael

    2017-07-01

    Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.

  9. A generalized linear factor model approach to the hierarchical framework for responses and response times.

    Science.gov (United States)

    Molenaar, Dylan; Tuerlinckx, Francis; van der Maas, Han L J

    2015-05-01

    We show how the hierarchical model for responses and response times as developed by van der Linden (2007), Fox, Klein Entink, and van der Linden (2007), Klein Entink, Fox, and van der Linden (2009), and Glas and van der Linden (2010) can be simplified to a generalized linear factor model with only the mild restriction that there is no hierarchical model at the item side. This result is valuable as it enables all well-developed modelling tools and extensions that come with these methods. We show that the restriction we impose on the hierarchical model does not influence parameter recovery under realistic circumstances. In addition, we present two illustrative real data analyses to demonstrate the practical benefits of our approach. © 2014 The British Psychological Society.

  10. A methodology for on-line calculation of temperature and thermal stress under non-linear boundary conditions

    International Nuclear Information System (INIS)

    Botto, D.; Zucca, S.; Gola, M.M.

    2003-01-01

    In the literature many works have been written dealing with the task of on-line calculation of temperature and thermal stress for machine components and structures, in order to evaluate fatigue damage accumulation and estimate residual life. One of the most widespread methodologies is the Green's function technique (GFT), by which machine parameters such as fluid temperatures, pressures and flow rates are converted into metal temperature transients and thermal stresses. However, since the GFT is based upon the linear superposition principle, it cannot be directly used in the case of varying heat transfer coefficients. In the present work, a different methodology is proposed, based upon CMS for temperature transient calculation and upon the GFT for the related thermal stress evaluation. This new approach allows variable heat transfer coefficients to be accounted for. The methodology is applied for two different case studies, taken from the literature: a thick pipe and a nozzle connected to a spherical head, both subjected to multiple convective boundary conditions

  11. Dielectric response of periodic systems from quantum Monte Carlo calculations.

    Science.gov (United States)

    Umari, P; Willamson, A J; Galli, Giulia; Marzari, Nicola

    2005-11-11

    We present a novel approach that allows us to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric-enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wave function, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence, sampled via forward walking. This approach has been validated for the case of an isolated hydrogen atom and then applied to a periodic system, to calculate the dielectric susceptibility of molecular-hydrogen chains. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.

  12. Calculation of seismic response of a flexible rotor by complex modal method, 1

    International Nuclear Information System (INIS)

    Azuma, Takao; Saito, Shinobu

    1984-01-01

    In rotary machines, at the time of earthquakes, whether the rotating part and stationary part touch or whether the bearings and seals are damaged or not are problems. In order to examine these problems, it is necessary to analyze the seismic response of a rotary shaft or sometimes a casing system. But the conventional analysis methods are unsatisfactory. Accordingly, in the case of a general shaft system supported with slide bearings and on which gyro effect acts, complex modal method must be used. This calculation method is explained in detail in the book of Lancaster, however, when this method is applied to the seismic response of rotary shafts, the calculation time is considerably different according to the method of final integration. In this study, good results were obtained when the method which did not depend on numerical integration was attempted. The equation of motion and its solution, the displacement vector of a foundation, the verification of the calculation program and the example of calculating the seismic response of two coupled rotor shafts are reported. (Kako, I.)

  13. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lemos-Pinto, M.M.P.; Cadena, M.; Santos, N.; Fernandes, T.S.; Borges, E.; Amaral, A., E-mail: marcelazoo@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2015-10-15

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates. (author)

  14. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator.

    Science.gov (United States)

    Lemos-Pinto, M M P; Cadena, M; Santos, N; Fernandes, T S; Borges, E; Amaral, A

    2015-10-01

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates.

  15. MONTE CARLO CALCULATION OF THE ENERGY RESPONSE OF THE NARF HURST-TYPE FAST- NEUTRON DOSIMETER

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, T. W.

    1963-06-15

    The response function for the fast-neutron dosimeter was calculated by the Monte Carlo technique (Code K-52) and compared with a calculation based on the Bragg-Gray principle. The energy deposition spectra so obtained show that the response spectra become softer with increased incident neutron energy ahove 3 Mev. The K-52 calculated total res nu onse is more nearly constant with energy than the BraggGray response. The former increases 70 percent from 1 Mev to 14 Mev while the latter increases 135 percent over this energy range. (auth)

  16. The calculated neutron response of a sphere with the multi-counters

    International Nuclear Information System (INIS)

    Li Taosheng; Yang Lianzhen; Li Dongyu

    2004-01-01

    Based on the difference of the neutron distribution in the moderator, three position sensitive proportional counters which are perpendicular to each other are inserted into the moderator. The energy responses with six spherical moderators and six incidence directions have been calculated by MCNP4A code. The calculated results for two divided region methods in the radial of the spherical moderator have been analyzed and compared. (authors)

  17. Extension of the linear nodal method to large concrete building calculations

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.

    1985-01-01

    The implementation of the linear nodal method in the TORT code is described, and the results of a mesh refinement study to test the effectiveness of the linear nodal and weighted diamond difference methods available in TORT are presented

  18. Calculation of static characteristics of linear step motors for control rod drives of nuclear reactors - an approximate approach

    International Nuclear Information System (INIS)

    Khan, S.H.; Ivanov, A.A.

    1993-01-01

    This paper describes an approximate method for calculating the static characteristics of linear step motors (LSM), being developed for control rod drives (CRD) in large nuclear reactors. The static characteristic of such an LSM which is given by the variation of electromagnetic force with armature displacement determines the motor performance in its standing and dynamic modes. The approximate method of calculation of these characteristics is based on the permeance analysis method applied to the phase magnetic circuit of LSM. This is a simple, fast and efficient analytical approach which gives satisfactory results for small stator currents and weak iron saturation, typical to the standing mode of operation of LSM. The method is validated by comparing theoretical results with experimental ones. (Author)

  19. A solution to the varying response of the linear power monitor induced by xenon poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Godsey, T A; Randall, J D [Texas A and M University (United States)

    1974-07-01

    After conversion to FLIP fuel at Texas A and M, the fuel temperatures were examined very carefully. It was observed that the fuel temperature at 1 Mw varied over a wide range during the week. This variation was shown to be due to the variation in response of the linear CIC which was used to establish reactor power level. A modification of the linear power monitor was designed and installed. The response of this system was verified by using cobalt wires, fuel temperature, and a fission chamber located at 6 feet from the reactor core. The system has proven to be operationally satisfactory. (author)

  20. Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range.

    Science.gov (United States)

    Lee, Youngoh; Park, Jonghwa; Cho, Soowon; Shin, Young-Eun; Lee, Hochan; Kim, Jinyoung; Myoung, Jinyoung; Cho, Seungse; Kang, Saewon; Baig, Chunggi; Ko, Hyunhyub

    2018-04-24

    Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa -1 , 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.

  1. Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation

    International Nuclear Information System (INIS)

    Shrimali, M.K.; Jangid, R.S.

    2002-01-01

    Seismic response of the liquid storage tanks isolated by lead-rubber bearings is investigated for bi-directional earthquake excitation (i.e. two horizontal components). The biaxial force-deformation behaviour of the bearings is considered as bi-linear modelled by coupled non-linear differential equations. The continuous liquid mass of the tank is modelled as lumped masses known as convective mass, impulsive mass and rigid mass. The corresponding stiffness associated with these lumped masses has been worked out depending upon the properties of the tank wall and liquid mass. Since the force-deformation behaviour of the bearings is non-linear, as a result, the seismic response is obtained by the Newmark's step-by-step method. The seismic responses of two types of the isolated tanks (i.e. slender and broad) are investigated under several recorded earthquake ground to study the effects of bi-directional interaction. Further, a parametric study is also carried out to study the effects of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: (i) the period of isolation, (ii) the damping of isolation bearings and (iii) the yield strength level of the bearings. It has been observed that the seismic response of isolated tank is found to be insensitive to interaction effect of the bearing forces. Further, there exists an optimum value of isolation damping for which the base shear in the tank attains the minimum value. Therefore, increasing the bearing damping beyond a certain value may decrease the bearing and sloshing displacements but it may increase the base shear

  2. Disorder and non-linear magnetic response of high Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Burin, J.P. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Fouad, Y. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Raboutou, A. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Peyral, P. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Lebeau, C. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Rosenblatt, J. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Mokhtari, M. (Lab. de Chimie du Solide et inorganique Moleculaire, Univ. Rennes 1, 35 (France)); Pena, O. (Lab. de Chimie du Solide et inorganique Moleculaire, Univ. Rennes 1, 35 (France)); Perrin, C. (Lab. de Chimie du Solide et inorganique Moleculaire, Univ. Rennes 1, 35 (France))

    1993-05-10

    We measure the low frequency magnetic response of YBa[sub 2]Cu[sub 3]O[sub 6.7]F[sub x] (0 [<=] x < 0.2) ceramics in a wide range of a.c. fields (10[sup -7] T [<=] [mu][sub 0]H[sub 0] [<=] 10[sup -4]). When changing the amount of disorder (varying x) on the microscopic level we find the same non linear response with field amplitude H[sub 0] as in granular conventional superconductors. The real part of the susceptibility appears as a universal function of H[sub 1](T)/H[sub 0] where H[sub 1](T) is the field of first flux penetration. The power law dependence found for H[sub 1](T) can be understood in the framework of the coherence transition of granular superconductors with random couplings. (orig.)

  3. Sampling of Stochastic Input Parameters for Rockfall Calculations and for Structural Response Calculations Under Vibratory Ground Motion

    International Nuclear Information System (INIS)

    M. Gross

    2004-01-01

    The purpose of this scientific analysis is to define the sampled values of stochastic (random) input parameters for (1) rockfall calculations in the lithophysal and nonlithophysal zones under vibratory ground motions, and (2) structural response calculations for the drip shield and waste package under vibratory ground motions. This analysis supplies: (1) Sampled values of ground motion time history and synthetic fracture pattern for analysis of rockfall in emplacement drifts in nonlithophysal rock (Section 6.3 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (2) Sampled values of ground motion time history and rock mechanical properties category for analysis of rockfall in emplacement drifts in lithophysal rock (Section 6.4 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (3) Sampled values of ground motion time history and metal to metal and metal to rock friction coefficient for analysis of waste package and drip shield damage to vibratory motion in ''Structural Calculations of Waste Package Exposed to Vibratory Ground Motion'' (BSC 2004 [DIRS 167083]) and in ''Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion'' (BSC 2003 [DIRS 163425]). The sampled values are indices representing the number of ground motion time histories, number of fracture patterns and rock mass properties categories. These indices are translated into actual values within the respective analysis and model reports or calculations. This report identifies the uncertain parameters and documents the sampled values for these parameters. The sampled values are determined by GoldSim V6.04.007 [DIRS 151202] calculations using appropriate distribution types and parameter ranges. No software development or model development was required for these calculations. The calculation of the sampled values allows parameter uncertainty to be incorporated into the rockfall and structural response calculations that support development of the seismic scenario for the

  4. A simple non-linear model of immune response

    International Nuclear Information System (INIS)

    Gutnikov, Sergei; Melnikov, Yuri

    2003-01-01

    It is still unknown why the adaptive immune response in the natural immune system based on clonal proliferation of lymphocytes requires interaction of at least two different cell types with the same antigen. We present a simple mathematical model illustrating that the system with separate types of cells for antigen recognition and patogen destruction provides more robust adaptive immunity than the system where just one cell type is responsible for both recognition and destruction. The model is over-simplified as we did not have an intention of describing the natural immune system. However, our model provides a tool for testing the proposed approach through qualitative analysis of the immune system dynamics in order to construct more sophisticated models of the immune systems that exist in the living nature. It also opens a possibility to explore specific features of highly non-linear dynamics in nature-inspired computational paradigms like artificial immune systems and immunocomputing . We expect this paper to be of interest not only for mathematicians but also for biologists; therefore we made effort to explain mathematics in sufficient detail for readers without professional mathematical background

  5. The linear transformation model with frailties for the analysis of item response times.

    Science.gov (United States)

    Wang, Chun; Chang, Hua-Hua; Douglas, Jeffrey A

    2013-02-01

    The item response times (RTs) collected from computerized testing represent an underutilized source of information about items and examinees. In addition to knowing the examinees' responses to each item, we can investigate the amount of time examinees spend on each item. In this paper, we propose a semi-parametric model for RTs, the linear transformation model with a latent speed covariate, which combines the flexibility of non-parametric modelling and the brevity as well as interpretability of parametric modelling. In this new model, the RTs, after some non-parametric monotone transformation, become a linear model with latent speed as covariate plus an error term. The distribution of the error term implicitly defines the relationship between the RT and examinees' latent speeds; whereas the non-parametric transformation is able to describe various shapes of RT distributions. The linear transformation model represents a rich family of models that includes the Cox proportional hazards model, the Box-Cox normal model, and many other models as special cases. This new model is embedded in a hierarchical framework so that both RTs and responses are modelled simultaneously. A two-stage estimation method is proposed. In the first stage, the Markov chain Monte Carlo method is employed to estimate the parametric part of the model. In the second stage, an estimating equation method with a recursive algorithm is adopted to estimate the non-parametric transformation. Applicability of the new model is demonstrated with a simulation study and a real data application. Finally, methods to evaluate the model fit are suggested. © 2012 The British Psychological Society.

  6. APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Musson, John C. [JLAB; Seaton, Chad [JLAB; Spata, Mike F. [JLAB; Yan, Jianxun [JLAB

    2012-11-01

    Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementation of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.

  7. Broad-band simulation of M7.2 earthquake on the North Tehran fault, considering non-linear soil effects

    Science.gov (United States)

    Majidinejad, A.; Zafarani, H.; Vahdani, S.

    2018-05-01

    The North Tehran fault (NTF) is known to be one of the most drastic sources of seismic hazard on the city of Tehran. In this study, we provide broad-band (0-10 Hz) ground motions for the city as a consequence of probable M7.2 earthquake on the NTF. Low-frequency motions (0-2 Hz) are provided from spectral element dynamic simulation of 17 scenario models. High-frequency (2-10 Hz) motions are calculated with a physics-based method based on S-to-S backscattering theory. Broad-band ground motions at the bedrock level show amplifications, both at low and high frequencies, due to the existence of deep Tehran basin in the vicinity of the NTF. By employing soil profiles obtained from regional studies, effect of shallow soil layers on broad-band ground motions is investigated by both linear and non-linear analyses. While linear soil response overestimate ground motion prediction equations, non-linear response predicts plausible results within one standard deviation of empirical relationships. Average Peak Ground Accelerations (PGAs) at the northern, central and southern parts of the city are estimated about 0.93, 0.59 and 0.4 g, respectively. Increased damping caused by non-linear soil behaviour, reduces the soil linear responses considerably, in particular at frequencies above 3 Hz. Non-linear deamplification reduces linear spectral accelerations up to 63 per cent at stations above soft thick sediments. By performing more general analyses, which exclude source-to-site effects on stations, a correction function is proposed for typical site classes of Tehran. Parameters for the function which reduces linear soil response in order to take into account non-linear soil deamplification are provided for various frequencies in the range of engineering interest. In addition to fully non-linear analyses, equivalent-linear calculations were also conducted which their comparison revealed appropriateness of the method for large peaks and low frequencies, but its shortage for small to

  8. Selected topics in the quantum theory of solids: collective excitations and linear response

    International Nuclear Information System (INIS)

    Balakrishnan, V.

    1977-08-01

    This report is based on the lecture notes of a course given at the Department of Physics, Indian Institute of Technology, Madras, during the period January-April 1976 for M.Sc. students. The emphasis is on the concept of elementary excitations in many-body systems, and on the technique of linear response theory. Various topics are covered in 7 sections. The second section following the introductory section is on 'second quantization' and includes discussion on creation and destruction operators, multiparticle states, time-dependent operators etc. Section 3 deals with the 'electron gas' and includes discussion on non-interacting Fermi gas, Coulomb interaction and exchange energy, the two-electron correlation function etc. Section 4 deals with the dielectric response analysis of the electron gas and includes discussion on Coulomb interaction in terms of density fluctuations, self-consistent field dielectric function etc. In section 5 the 'linear response theory' is explained. The Liouville operator, Boltzmann's superposition integral, dispersion relations etc. are explained. Quasiparticles and plasmous are discussed in the Section 6. Section 7 deals with 'lattice dynamics and phonons'. In the last section 8, spin waves are explained. The Heisenberg exchange hamiltonian, Green Function for noninteracting magnons etc. are discussed. (author)

  9. Calculated fraction of an incident current pulse that will be accelerated by an electron linear accelerator and comparisons with experimental data

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Alsmiller, F.S.; Lewis, T.A.

    1986-05-01

    In a series of previous papers, calculated results obtained using a one-dimensional ballistic model were presented to aid in the design of a prebuncher for the Oak Ridge Electron Linear Accelerator. As part of this work, a model was developed to provide limits on the fraction of an incident current pulse that would be accelerated by the existing accelerator. In this paper experimental data on this fraction are presented and the validity of the model developed previously is tested by comparing calculated and experimental data. Part of the experimental data is used to fix the physical parameters in the model and then good agreement between the calculated results and the rest of the experimental data is obtained

  10. Electron-electron scattering in linear transport in two-dimensional systems

    DEFF Research Database (Denmark)

    Hu, Ben Yu-Kuang; Flensberg, Karsten

    1996-01-01

    We describe a method for numerically incorporating electron-electron scattering in quantum wells for small deviations of the distribution function from equilibrium, within the framework of the Boltzmann equation. For a given temperature T and density n, a symmetric matrix needs to be evaluated only...... once, and henceforth it can be used to describe electron-electron scattering in any Boltzmann equation linear-response calculation for that particular T and n. Using this method, we calculate the distribution function and mobility for electrons in a quantum well, including full finite...

  11. The linear and nonlinear response of infinite periodic systems to static and/or dynamic electric fields. Implementation in CRYSTAL code

    Energy Technology Data Exchange (ETDEWEB)

    Kirtman, Bernard [Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Springborg, Michael [Physical and Theoretical Chemistry, University of Saarland, 66123 Saarbrücken (Germany); Rérat, Michel [Equipe de Chimie Physique, IPREM UMR5254, Université de Pau et des Pays de l' Adour, 64000 Pau (France); Ferrero, Mauro; Lacivita, Valentina; Dovesi, Roberto [Departimeno di Chimica, IFM, Università di Torino and NIS - Nanostructure Interfaces and Surfaces - Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Orlando, Roberto [Departimento di Scienze e Tecnologie Avanzati, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria (Italy)

    2015-01-22

    An implementation of the vector potential approach (VPA) for treating the response of infinite periodic systems to static and dynamic electric fields has been initiated within the CRYSTAL code. The VPA method is based on the solution of a time-dependent Hartree-Fock or Kohn-Sham equation for the crystal orbitals wherein the usual scalar potential, that describes interaction with the field, is replaced by the vector potential. This equation may be solved either by perturbation theory or by finite field methods. With some modification all the computational procedures of molecular ab initio quantum chemistry can be adapted for periodic systems. Accessible properties include the linear and nonlinear responses of both the nuclei and the electrons. The programming of static field pure electronic (hyper)polarizabilities has been successfully tested. Dynamic electronic (hyper)polarizabilities, as well as infrared and Raman intensities, are in progress while the addition of finite fields for calculation of vibrational (hyper)polarizabilities, through nuclear relaxation procedures, will begin shortly.

  12. A calculation model for a HTR core seismic response

    International Nuclear Information System (INIS)

    Buland, P.; Berriaud, C.; Cebe, E.; Livolant, M.

    1975-01-01

    The paper presents the experimental results obtained at Saclay on a HTGR core model and comparisons with analytical results. Two series of horizontal tests have been performed on the shaking table VESUVE: sinusoidal test and time history response. Acceleration of graphite blocks, forces on the boundaries, relative displacement of the core and PCRB model, impact velocity of the blocks on the boundaries were recorded. These tests have shown the strongly non-linear dynamic behaviour of the core. The resonant frequency of the core is dependent on the level of the excitation. These phenomena have been explained by a computer code, which is a lumped mass non-linear model. Good correlation between experimental and analytical results was obtained for impact velocities and forces on the boundaries. This comparison has shown that the damping of the core is a critical parameter for the estimation of forces and velocities. Time history displacement at the level of PCRV was reproduced on the shaking table. The analytical model was applied to this excitation and good agreement was obtained for forces and velocities. (orig./HP) [de

  13. Microstrip linear phase low pass filter based on defected ground structures for partial response modulation

    DEFF Research Database (Denmark)

    Cimoli, Bruno; Johansen, Tom Keinicke; Olmos, Juan Jose Vegas

    2018-01-01

    We report a high performance linear phase low pass filter (LPF) designed for partial response (PR) modulations. For the implementation, we adopted microstrip technology and a variant of the standard stepped‐impedance technique. Defected ground structures (DGS) are used for increasing the characte......We report a high performance linear phase low pass filter (LPF) designed for partial response (PR) modulations. For the implementation, we adopted microstrip technology and a variant of the standard stepped‐impedance technique. Defected ground structures (DGS) are used for increasing...... the characteristic impedance of transmission lines. Experimental results prove that the proposed filter can successfully modulate a non‐return‐to‐zero (NRZ) signal into a five levels PR one....

  14. Density and spin linear response of atomic Fermi superfluids with population imbalance in the BCS–BEC crossover

    International Nuclear Information System (INIS)

    Guo, Hao; Li, Yang; He, Yan; Chien, Chih-Chun

    2014-01-01

    We present a theoretical study of the density and spin (representing the two components) linear response of Fermi superfluids with tunable attractive interactions and population imbalance. In both linear response theories, we find that the fluctuations of the order parameter must be treated on equal footing with the gauge transformations associated with the symmetries of the Hamiltonian so that important constraints including various sum rules can be satisfied. Both theories can be applied to the whole BCS–Bose–Einstein condensation crossover. The spin linear responses are qualitatively different with and without population imbalance because collective-mode effects from the fluctuations of the order parameter survive in the presence of population imbalance, even though the associated symmetry is not broken by the order parameter. Since a polarized superfluid becomes unstable at low temperatures in the weak and intermediate coupling regimes, we found that the density and spin susceptibilities diverge as the system approaches the unstable regime, but the emergence of phase separation preempts the divergence. (paper)

  15. The calculated longitudinal impedance of the SLC [Stanford Linear Collider] damping rings

    International Nuclear Information System (INIS)

    Bane, K.L.F.

    1988-05-01

    A high level of current dependent bunch lengthening has been observed in the north damping ring of the Stanford Linear Collider (SLC), indicating that the ring's impedance is very inductive. This level of bunch lengthening will limit the performance of the SLC. In order to study the problem of bunch lengthening in the damping ring and the possibility of reducing their inductance we compute, in this report, the longitudinal impedance of the damping ring vacuum chamber. More specifically we find the response function of the ring to a short gaussian bunch. This function will later be used as a driving term in the longitudinal equation of motion. We also identify the important inductive elements of the vacuum chamber and estimate their contribution to the total ring inductance. This information will be useful in assessing the effect of vacuum chamber modifications. 7 refs. , 8 figs., 1 tab

  16. NFAP calculation of the response of a 1/6 scale reinforced concrete containment model

    International Nuclear Information System (INIS)

    Costantino, C.J.; Pepper, S.; Reich, M.

    1989-01-01

    The details associated with the NFAP calculation of the pressure response of the 1/6th scale model containment structure are discussed in this paper. Comparisons are presented of some of the primary items of interest with those determined from the experiment. It was found from this comparison that the hoop response of the containment wall was adequately predicted by the NFAP finite element calculation, including the response in the high pressure, high strain range at which cracking of the concrete and yielding of the hoop reinforcement occurred. In the vertical or meridional direction, it was found that the model was significantly softer than predicted by the finite element calculation; that is, the vertical strains in the test were three to four times larger than computed in the NFAP calculation. These differences were noted even at low strain levels at which the concrete would not be expected to be cracked under tensile loadings. Simplified calculations for the containment indicate that the vertical stiffness of the wall is similar to that which would be determined by assuming the concrete fully cracked. Thus, the experiment indicates an anomalous behavior in the vertical direction

  17. Calculations on nonlinear optical properties for large systems the elongation method

    CERN Document Server

    Gu, Feng Long; Springborg, Michael; Kirtman, Bernard

    2014-01-01

    For design purposes one needs to relate the structure of proposed materials to their NLO (nonlinear optical) and other properties, which is a situation where theoretical approaches can be very helpful in providing suggestions for candidate systems that subsequently can be synthesized and studied experimentally. This brief describes the quantum-mechanical treatment of the response to one or more external oscillating electric fields for molecular and macroscopic, crystalline systems. To calculate NLO properties of large systems, a linear scaling generalized elongation method for the efficient and accurate calculation is introduced. The reader should be aware that this treatment is particularly feasible for complicated three-dimensional and/or delocalized systems that are intractable when applied to conventional or other linear scaling methods.

  18. Linear response formula for piecewise expanding unimodal maps

    International Nuclear Information System (INIS)

    Baladi, Viviane; Smania, Daniel

    2008-01-01

    The average R(t) = ∫φdμ t of a smooth function ψ with respect to the SRB measure μ t of a smooth one-parameter family f t of piecewise expanding interval maps is not always Lipschitz (Baladi 2007 Commun. Math. Phys. 275 839–59, Mazzolena 2007 Master's Thesis Rome 2, Tor Vergata). We prove that if f t is tangent to the topological class of f, and if ∂ t f t | t=0 = X circle f, then R(t) is differentiable at zero, and R'(0) coincides with the resummation proposed (Baladi 2007) of the (a priori divergent) series given by Ruelle's conjecture. In fact, we show that t map μ t is differentiable within Radon measures. Linear response is violated if and only if f t is transversal to the topological class of f

  19. SU-E-T-270: Optimized Shielding Calculations for Medical Linear Accelerators (LINACs).

    Science.gov (United States)

    Muhammad, W; Lee, S; Hussain, A

    2012-06-01

    The purpose of radiation shielding is to reduce the effective equivalent dose from a medical linear accelerator (LINAC) to a point outside the room to a level determined by individual state/international regulations. The study was performed to design LINAC's room for newly planned radiotherapy centers. Optimized shielding calculations were performed for LINACs having maximum photon energy of 20 MV based on NCRP 151. The maximum permissible dose limits were kept 0.04 mSv/week and 0.002 mSv/week for controlled and uncontrolled areas respectively by following ALARA principle. The planned LINAC's room was compared to the already constructed (non-optimized) LINAC's room to evaluate the shielding costs and the other facilities those are directly related to the room design. In the evaluation process it was noted that the non-optimized room size (i.e., 610 × 610 cm 2 or 20 feet × 20 feet) is not suitable for total body irradiation (TBI) although the machine installed inside was having not only the facility of TBI but the license was acquired. By keeping this point in view, the optimized INAC's room size was kept 762 × 762 cm 2. Although, the area of the optimized rooms was greater than the non-planned room (i.e., 762 × 762 cm 2 instead of 610 × 610 cm 2), the shielding cost for the optimized LINAC's rooms was reduced by 15%. When optimized shielding calculations were re-performed for non-optimized shielding room (i.e., keeping room size, occupancy factors, workload etc. same), it was found that the shielding cost may be lower to 41 %. In conclusion, non- optimized LINAC's room can not only put extra financial burden on the hospital but also can cause of some serious issues related to providing health care facilities for patients. © 2012 American Association of Physicists in Medicine.

  20. Gauge origin independent calculations of molecular magnetisabilities in relativistic four-component theory

    DEFF Research Database (Denmark)

    Iliaš, M.; Jensen, Hans Jørgen Aagaard; Bast, R.

    2013-01-01

    of the four-component relativistic linear response method at the self-consistent field single reference level. Benefits of employing the London atomic orbitals in relativistic calculations are illustrated with Hartree-Fock wave functions on the XF3 (X = N, P, As, Sb, Bi) series of molecules. Significantly...

  1. Perturbative calculations of flow patterns in free convection between coaxial cylinders. Non-linear temperature dependences of the fluid properties

    International Nuclear Information System (INIS)

    Navarro, J. A.; Madariaga, J. A.; Santamaria, C. M.; Saviron, J. M.

    1980-01-01

    10 refs. Flow pattern calculations in natural convection between two vertical coaxial cylinders are reported. It is assumed trough the paper. that fluid properties, viscosity, thermal conductivity and density, depend no-linearly on temperature and that the aspects (height/radius) ratio of the cylinders is high. Velocity profiles are calculated trough a perturbative scheme and analytic results for the three first perturbation orders are presented. We outline also an iterative method to estimate the perturbations on the flow patterns which arise when a radial composition gradient is established by external forces in a two-component fluid. This procedure, based on semiempirical basis, is applied to gaseous convection. The influence of the molecules gas properties on tho flow is also discussed. (Author) 10 refs

  2. The response of a linear monostable system and its application in parameters estimation for PSK signals

    International Nuclear Information System (INIS)

    Duan, Chaowei; Zhan, Yafeng

    2016-01-01

    The output characteristics of a linear monostable system driven with a periodic signal and an additive white Gaussian noise are studied in this paper. Theoretical analysis shows that the output signal-to-noise ratio (SNR) decreases monotonously with the increasing noise intensity but the output SNR-gain is stable. Inspired by this high SNR-gain phenomenon, this paper applies the linear monostable system in the parameters estimation algorithm for phase shift keying (PSK) signals and improves the estimation performance. - Highlights: • The response of a linear monostable system driven with a periodic signal and an additive white Gaussian noise is analyzed. • The optimal parameter of this linear monostable system to maximum the output SNR-gain is obtained. • Application of this linear monostable system in parameters estimation algorithm for PSK signals obtains performance improvement.

  3. The theory of a general quantum system interacting with a linear dissipative system

    International Nuclear Information System (INIS)

    Feynman, R.P.; Vernon, F.L.

    2000-01-01

    A formalism has been developed, using Feynman's space-time formulation of nonrelativistic quantum mechanics whereby the behavior of a system of interest, which is coupled to other external quantum systems, may be calculated in terms of its own variables only. It is shown that the effect of the external systems in such a formalism can always be included in a general class of functionals (influence functionals) of the coordinates of the system only. The properties of influence functionals for general systems are examined. Then, specific forms of influence functionals representing the effect of definite and random classical forces, linear dissipative systems at finite temperatures, and combinations of these are analyzed in detail. The linear system analysis is first done for perfectly linear systems composed of combinations of harmonic oscillators, loss being introduced by continuous distributions of oscillators. Then approximately linear systems and restrictions necessary for the linear behavior are considered. Influence functionals for all linear systems are shown to have the same form in terms of their classical response functions. In addition, a fluctuation-dissipation theorem is derived relating temperature and dissipation of the linear system to a fluctuating classical potential acting on the system of interest which reduces to the Nyquist-Johnson relation for noise in the case of electric circuits. Sample calculations of transition probabilities for the spontaneous emission of an atom in free space and in a cavity are made. Finally, a theorem is proved showing that within the requirements of linearity all sources of noise or quantum fluctuation introduced by maser-type amplification devices are accounted for by a classical calculation of the characteristics of the maser

  4. Shielding calculation for treatment rooms of high energy linear accelerator

    International Nuclear Information System (INIS)

    Elleithy, M.A.

    2006-01-01

    A review of German Institute of Standardization (DIN) scheme of the shielding calculation and the essential data required has been done for X-rays and electron beam in the energy range from 1 MeV to 50 MeV. Shielding calculation was done for primary and secondary radiations generated during X-ray operation of Linac. In addition, shielding was done against X-rays generated (Bremsstrahlung) by useful electron beams. The calculations also covered the neutrons generated from the interactions of useful X-rays (at energies above 8 MeV) with the surrounding. The present application involved the computation of shielding against the double scattered components of X-rays and neutrons in the maze area and the thickness of the paraffin wax of the room door. A new developed computer program was designed to assist shielding thickness calculations for a new Linac installation or in replacing an existing machine. The program used a combination of published tables and figures in computing the shielding thickness at different locations for all possible radiation situations. The DIN published data of 40 MeV accelerator room was compared with the program calculations. It was found that there is good agreement between both calculations. The developed program improved the accuracy and speed of calculation

  5. Linear response theory an analytic-algebraic approach

    CERN Document Server

    De Nittis, Giuseppe

    2017-01-01

    This book presents a modern and systematic approach to Linear Response Theory (LRT) by combining analytic and algebraic ideas. LRT is a tool to study systems that are driven out of equilibrium by external perturbations. In particular the reader is provided with a new and robust tool to implement LRT for a wide array of systems. The proposed formalism in fact applies to periodic and random systems in the discrete and the continuum. After a short introduction describing the structure of the book, its aim and motivation, the basic elements of the theory are presented in chapter 2. The mathematical framework of the theory is outlined in chapters 3–5: the relevant von Neumann algebras, noncommutative $L^p$- and Sobolev spaces are introduced; their construction is then made explicit for common physical systems; the notion of isopectral perturbations and the associated dynamics are studied. Chapter 6 is dedicated to the main results, proofs of the Kubo and Kubo-Streda formulas. The book closes with a chapter about...

  6. Extreme wave and wind response predictions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Olsen, Anders S.; Mansour, Alaa E.

    2011-01-01

    codes and the short duration of the time domain simulations needed (typically 60–300s to cover the hydro- and aerodynamic memory effects in the response) the calculation of the mean out-crossing rates of a given response is fast. Thus non-linear effects can be included. Furthermore, the FORM analysis...... also identifies the most probable wave episodes leading to given responses.Because of the linearization of the failure surface in the FORM procedure the results are only asymptotically exact and thus MCS often also needs to be performed. In the present paper a scaling property inherent in the FORM...

  7. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.

    Science.gov (United States)

    Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M

    2016-06-01

    Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.

  8. Linear and non-linear optics of condensed matter

    International Nuclear Information System (INIS)

    McLean, T.P.

    1977-01-01

    Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)

  9. Response surfaces and sensitivity analyses for an environmental model of dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Iooss, Bertrand [CEA Cadarache, DEN/DER/SESI/LCFR, 13108 Saint Paul lez Durance, Cedex (France)]. E-mail: bertrand.iooss@cea.fr; Van Dorpe, Francois [CEA Cadarache, DEN/DTN/SMTM/LMTE, 13108 Saint Paul lez Durance, Cedex (France); Devictor, Nicolas [CEA Cadarache, DEN/DER/SESI/LCFR, 13108 Saint Paul lez Durance, Cedex (France)

    2006-10-15

    A parametric sensitivity analysis is carried out on GASCON, a radiological impact software describing the radionuclides transfer to the man following a chronic gas release of a nuclear facility. An effective dose received by age group can thus be calculated according to a specific radionuclide and to the duration of the release. In this study, we are concerned by 18 output variables, each depending of approximately 50 uncertain input parameters. First, the generation of 1000 Monte-Carlo simulations allows us to calculate correlation coefficients between input parameters and output variables, which give a first overview of important factors. Response surfaces are then constructed in polynomial form, and used to predict system responses at reduced computation time cost; this response surface will be very useful for global sensitivity analysis where thousands of runs are required. Using the response surfaces, we calculate the total sensitivity indices of Sobol by the Monte-Carlo method. We demonstrate the application of this method to one site of study and to one reference group near the nuclear research Center of Cadarache (France), for two radionuclides: iodine 129 and uranium 238. It is thus shown that the most influential parameters are all related to the food chain of the goat's milk, in decreasing order of importance: dose coefficient 'effective ingestion', goat's milk ration of the individuals of the reference group, grass ration of the goat, dry deposition velocity and transfer factor to the goat's milk.

  10. The development of a practical and uncomplicated predictive equation to determine liver volume from simple linear ultrasound measurements of the liver

    International Nuclear Information System (INIS)

    Childs, Jessie T.; Thoirs, Kerry A.; Esterman, Adrian J.

    2016-01-01

    This study sought to develop a practical and uncomplicated predictive equation that could accurately calculate liver volumes, using multiple simple linear ultrasound measurements combined with measurements of body size. Penalized (lasso) regression was used to develop a new model and compare it to the ultrasonic linear measurements currently used clinically. A Bland–Altman analysis showed that the large limits of agreement of the new model render it too inaccurate to be of clinical use for estimating liver volume per se, but it holds value in tracking disease progress or response to treatment over time in individuals, and is certainly substantially better as an indicator of overall liver size than the ultrasonic linear measurements currently being used clinically. - Highlights: • A new model to calculate liver volumes from simple linear ultrasound measurements. • This model was compared to the linear measurements currently used clinically. • The new model holds value in tracking disease progress or response to treatment. • This model is better as an indicator of overall liver size.

  11. The linearly scaling 3D fragment method for large scale electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Zhengji [National Energy Research Scientific Computing Center (NERSC) (United States); Meza, Juan; Shan Hongzhang; Strohmaier, Erich; Bailey, David; Wang Linwang [Computational Research Division, Lawrence Berkeley National Laboratory (United States); Lee, Byounghak, E-mail: ZZhao@lbl.go [Physics Department, Texas State University (United States)

    2009-07-01

    The linearly scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  12. Recursive Algorithm For Linear Regression

    Science.gov (United States)

    Varanasi, S. V.

    1988-01-01

    Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.

  13. How linear features alter predator movement and the functional response.

    KAUST Repository

    McKenzie, Hannah W

    2012-01-18

    In areas of oil and gas exploration, seismic lines have been reported to alter the movement patterns of wolves (Canis lupus). We developed a mechanistic first passage time model, based on an anisotropic elliptic partial differential equation, and used this to explore how wolf movement responses to seismic lines influence the encounter rate of the wolves with their prey. The model was parametrized using 5 min GPS location data. These data showed that wolves travelled faster on seismic lines and had a higher probability of staying on a seismic line once they were on it. We simulated wolf movement on a range of seismic line densities and drew implications for the rate of predator-prey interactions as described by the functional response. The functional response exhibited a more than linear increase with respect to prey density (type III) as well as interactions with seismic line density. Encounter rates were significantly higher in landscapes with high seismic line density and were most pronounced at low prey densities. This suggests that prey at low population densities are at higher risk in environments with a high seismic line density unless they learn to avoid them.

  14. How linear features alter predator movement and the functional response.

    KAUST Repository

    McKenzie, Hannah W; Merrill, Evelyn H; Spiteri, Raymond J; Lewis, Mark A

    2012-01-01

    In areas of oil and gas exploration, seismic lines have been reported to alter the movement patterns of wolves (Canis lupus). We developed a mechanistic first passage time model, based on an anisotropic elliptic partial differential equation, and used this to explore how wolf movement responses to seismic lines influence the encounter rate of the wolves with their prey. The model was parametrized using 5 min GPS location data. These data showed that wolves travelled faster on seismic lines and had a higher probability of staying on a seismic line once they were on it. We simulated wolf movement on a range of seismic line densities and drew implications for the rate of predator-prey interactions as described by the functional response. The functional response exhibited a more than linear increase with respect to prey density (type III) as well as interactions with seismic line density. Encounter rates were significantly higher in landscapes with high seismic line density and were most pronounced at low prey densities. This suggests that prey at low population densities are at higher risk in environments with a high seismic line density unless they learn to avoid them.

  15. Development of parallel-plate-based MEMS tunable capacitors with linearized capacitance–voltage response and extended tuning range

    International Nuclear Information System (INIS)

    Shavezipur, M; Nieva, P; Khajepour, A; Hashemi, S M

    2010-01-01

    This paper presents a design technique that can be used to linearize the capacitance–voltage (C–V) response and extend the tuning range of parallel-plate-based MEMS tunable capacitors beyond that of conventional designs. The proposed technique exploits the curvature of the capacitor's moving electrode which could be induced by either manipulating the stress gradients in the plate's material or using bi-layer structures. The change in curvature generates a nonlinear structural stiffness as the moving electrode undergoes out-of-plane deformation due to the actuation voltage. If the moving plate curvature is tailored such that the capacitance increment is proportional to the voltage increment, then a linear C–V response is obtained. The larger structural resistive force at higher bias voltage also delays the pull-in and increases the maximum tunability of the capacitor. Moreover, for capacitors containing an insulation layer between the two electrodes, the proposed technique completely eliminates the pull-in effect. The experimental data obtained from different capacitors fabricated using PolyMUMPs demonstrate the advantages of this design approach where highly linear C–V responses and tunabilities as high as 1050% were recorded. The design methodology introduced in this paper could be easily extended to for example, capacitive pressure and temperature sensors or infrared detectors to enhance their response characteristics.

  16. Non-linear seismic analysis of structures coupled with fluid

    International Nuclear Information System (INIS)

    Descleve, P.; Derom, P.; Dubois, J.

    1983-01-01

    This paper presents a method to calculate non-linear structure behaviour under horizontal and vertical seismic excitation, making possible the full non-linear seismic analysis of a reactor vessel. A pseudo forces method is used to introduce non linear effects and the problem is solved by superposition. Two steps are used in the method: - Linear calculation of the complete model. - Non linear analysis of thin shell elements and calculation of seismic induced pressure originating from linear and non linear effects, including permanent loads and thermal stresses. Basic aspects of the mathematical formulation are developed. It has been applied to axi-symmetric shell element using a Fourier series solution. For the fluid interaction effect, a comparison is made with a dynamic test. In an example of application, the displacement and pressure time history are given. (orig./GL)

  17. Sequential double excitations from linear-response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Martín A.; Ratner, Mark A.; Schatz, George C., E-mail: g-schatz@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chen, Lin X. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave., Lemont, Illinois 60439 (United States)

    2016-05-28

    Traditional UV/vis and X-ray spectroscopies focus mainly on the study of excitations starting exclusively from electronic ground states. However there are many experiments where transitions from excited states, both absorption and emission, are probed. In this work we develop a formalism based on linear-response time-dependent density functional theory to investigate spectroscopic properties of excited states. We apply our model to study the excited-state absorption of a diplatinum(II) complex under X-rays, and transient vis/UV absorption of pyrene and azobenzene.

  18. A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds.

    Directory of Open Access Journals (Sweden)

    Ana Calabrese

    2011-01-01

    Full Text Available In the auditory system, the stimulus-response properties of single neurons are often described in terms of the spectrotemporal receptive field (STRF, a linear kernel relating the spectrogram of the sound stimulus to the instantaneous firing rate of the neuron. Several algorithms have been used to estimate STRFs from responses to natural stimuli; these algorithms differ in their functional models, cost functions, and regularization methods. Here, we characterize the stimulus-response function of auditory neurons using a generalized linear model (GLM. In this model, each cell's input is described by: 1 a stimulus filter (STRF; and 2 a post-spike filter, which captures dependencies on the neuron's spiking history. The output of the model is given by a series of spike trains rather than instantaneous firing rate, allowing the prediction of spike train responses to novel stimuli. We fit the model by maximum penalized likelihood to the spiking activity of zebra finch auditory midbrain neurons in response to conspecific vocalizations (songs and modulation limited (ml noise. We compare this model to normalized reverse correlation (NRC, the traditional method for STRF estimation, in terms of predictive power and the basic tuning properties of the estimated STRFs. We find that a GLM with a sparse prior predicts novel responses to both stimulus classes significantly better than NRC. Importantly, we find that STRFs from the two models derived from the same responses can differ substantially and that GLM STRFs are more consistent between stimulus classes than NRC STRFs. These results suggest that a GLM with a sparse prior provides a more accurate characterization of spectrotemporal tuning than does the NRC method when responses to complex sounds are studied in these neurons.

  19. Linear response theory of activated surface diffusion with interacting adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Marti' nez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A.S.; Vega, J.L. [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Rojas-Lorenzo, G. [Instituto Superior de Tecnologi' as y Ciencias Aplicadas, Ave. Salvador Allende, esq. Luaces, 10400 La Habana (Cuba); Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain); Miret-Artes, S., E-mail: s.miret@imaff.cfmac.csic.es [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain)

    2010-05-12

    Graphical abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed. - Abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed.

  20. Adding salt to a surfactant solution: Linear rheological response of the resulting morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Gaudino, Danila; Pasquino, Rossana, E-mail: r.pasquino@unina.it; Grizzuti, Nino [DICMaPI, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy)

    2015-11-15

    The micellar system composed of Cetylpyridinium Chloride-Sodium Salicylate (CPyCl-NaSal) in brine aqueous solutions has been studied by systematically changing the salt concentration, in order to investigate the rheology of the arising morphologies. In particular, the zero-shear viscosity and the linear viscoelastic response have been measured as a function of the NaSal concentration (with [CPyCl] = 100 mM). The Newtonian viscosity shows a nonmonotonic dependence upon concentration, passing through a maximum at NaSal/CPyCl ≈ 0.6, and eventually dropping at higher salt concentrations. The progressive addition of salt determines first a transition from a Newtonian to a purely Maxwell-like behavior as the length of the micelles significantly increases. Beyond the peak viscosity, the viscoelastic data show two distinct features. On the one hand, the main relaxation time of the system strongly decreases, while the plateau modulus remains essentially constant. Calculations based on the rheological data show that, as the binding salt concentration increases, there is a decrease in micelles breaking rate and a decrease in their average length. On the other hand, in the same concentration region, a low-frequency elastic plateau is measured. Such a plateau is considered as the signature of a tenuous, but persistent branched network, whose existence is confirmed by cryo-transmission electron microscopy images.

  1. Linear constraint relations in biochemical reaction systems: I. Classification of the calculability and the balanceability of conversion rates.

    Science.gov (United States)

    van der Heijden, R T; Heijnen, J J; Hellinga, C; Romein, B; Luyben, K C

    1994-01-05

    Measurements provide the basis for process monitoring and control as well as for model development and validation. Systematic approaches to increase the accuracy and credibility of the empirical data set are therefore of great value. In (bio)chemical conversions, linear conservation relations such as the balance equations for charge, enthalpy, and/or chemical elements, can be employed to relate conversion rates. In a pactical situation, some of these rates will be measured (in effect, be calculated directly from primary measurements of, e.g., concentrations and flow rates), as others can or cannot be calculated from the measured ones. When certain measured rates can also be calculated from other measured rates, the set of equations, the accuracy and credibility of the measured rates can indeed be improved by, respectively, balancing and gross error diagnosis. The balanced conversion rates are more accurate, and form a consistent set of data, which is more suitable for further application (e.g., to calculate nonmeasured rates) than the raw measurements. Such an approach has drawn attention in previous studies. The current study deals mainly with the problem of mathematically classifying the conversion rates into balanceable and calculable rates, given the subset of measured rates. The significance of this problem is illustrated with some examples. It is shown that a simple matrix equation can be derived that contains the vector of measured conversion rates and the redundancy matrix R. Matrix R plays a predominant role in the classification problem. In supplementary articles, significance of the redundancy matrix R for an improved gross error diagnosis approach will be shown. In addition, efficient equations have been derived to calculate the balanceable and/or calculable rates. The method is completely based on matrix algebra (principally different from the graph-theoretical approach), and it is easily implemented into a computer program. (c) 1994 John Wiley & Sons

  2. Utility of low-order linear nuclear-power-plant models in plant diagnostics and control

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1981-01-01

    A low-order, linear model of a pressurized water reactor (PWR) plant is described and evaluated. The model consists of 23 linear, first-order difference equations and simulates all subsystems of both the primary and secondary sides of the plant. Comparisons between the calculated model response and available test data show the model to be an adequate representation of the actual plant dynamics. Suggested use for the model in an on-line digital plant diagnostics and control system are presented

  3. Ab initio electronic structure calculations for Mn linear chains deposited on CuN/Cu(001) surfaces

    International Nuclear Information System (INIS)

    Barral, Maria Andrea; Weht, Ruben; Lozano, Gustavo; Maria Llois, Ana

    2007-01-01

    In a recent experiment, scanning tunneling microscopy has been used to obtain a direct probe of the magnetic interaction in linear manganese chains arranged by atomic manipulation on thin insulating copper nitride islands grown on Cu(001). The local spin excitation spectra of these chains have been measured with inelastic electron tunneling spectroscopy. Analyzing the spectroscopic results with a Heisenberg Hamiltonian the interatomic coupling strength within the chains has been obtained. It has been found that the coupling strength depends on the deposition sites of the Mn atoms on the islands. In this contribution, we perform ab initio calculations for different arrangements of infinite Mn chains on CuN in order to understand the influence of the environment on the value of the magnetic interactions

  4. Linear response formula for piecewise expanding unimodal maps

    Science.gov (United States)

    Baladi, Viviane; Smania, Daniel

    2008-04-01

    The average R(t)=\\int \\varphi\\,\\rmd \\mu_t of a smooth function phiv with respect to the SRB measure μt of a smooth one-parameter family ft of piecewise expanding interval maps is not always Lipschitz (Baladi 2007 Commun. Math. Phys. 275 839-59, Mazzolena 2007 Master's Thesis Rome 2, Tor Vergata). We prove that if ft is tangent to the topological class of f, and if ∂t ft|t = 0 = X circle f, then R(t) is differentiable at zero, and R'(0) coincides with the resummation proposed (Baladi 2007) of the (a priori divergent) series \\sum_{n=0}^\\infty \\int X(y) \\partial_y (\\varphi \\circ f^n)(y)\\,\\rmd \\mu_0(y) given by Ruelle's conjecture. In fact, we show that t map μt is differentiable within Radon measures. Linear response is violated if and only if ft is transversal to the topological class of f.

  5. Linear Optical Response of Silicon Nanotubes Under Axial Magnetic Field

    Science.gov (United States)

    Chegel, Raad; Behzad, Somayeh

    2013-01-01

    We investigated the optical properties of silicon nanotubes (SiNTs) in the low energy region, E < 0.5 eV, and middle energy region, 1.8 eV < E < 2 eV. The dependence of optical matrix elements and linear susceptibility on radius and magnetic field, in terms of one-dimensional (1-d) wavevector and subband index, is calculated using the tight-binding approximation. It is found that, on increasing the nanotube diameter, the low-energy peaks show red-shift and their intensities are decreased. Also, we found that in the middle energy region all tubes have two distinct peaks, where the energy position of the second peak is approximately constant and independent of the nanotube diameter. Comparing the band structure of these tubes in different magnetic fields, several differences are clearly seen, such as splitting of degenerate bands, creation of additional band-edge states, and bandgap modification. It is found that applying the magnetic field leads to a phase transition in zigzag silicon hexagonal nanotubes (Si h-NTs), unlike in zigzag silicon gear-like nanotubes (Si g-NTs), which remain semiconducting in any magnetic field. We found that the axial magnetic field has two effects on the linear susceptibility spectrum, namely broadening and splitting. The axial magnetic field leads to the creation of a peak with energy less than 0.2 eV in metallic Si h-NTs, whereas in the absence of a magnetic field such a transition is not allowed.

  6. Non-linear calculation of PCRV using dynamic relaxation

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1979-01-01

    A brief review is presented of a numerical method called the dynamic relaxation method for stress analysis of the concrete in prestressed concrete pressure vessels. By this method the three-dimensional elliptic differential equations of the continuum are changed into the four-dimensional hyperbolic differential equations known as wave equations. The boundary value problem of the static system is changed into an initial and boundary value problem for which a solution exists if the physical system is defined at time t=0. The effect of non-linear stress-strain behaviour of the material as well as creep and cracking are considered

  7. An analytical method for the calculation of static characteristics of linear step motors for control rod drives in nuclear reactors

    International Nuclear Information System (INIS)

    Khan, S.H.; Ivanov, A.A.

    1995-01-01

    An analytical method for calculating static characteristics of linear dc step motors (LSM) is described. These multiphase passive-armature motors are now being developed for control rod drives (CRD) in large nuclear reactors. The static characteristics of such LSM is defined by the variation of electromagnetic force with armature displacement and it determines motor performance in its standing and dynamic modes of operation. The proposed analytical technique for calculating this characteristic is based on the permeance analysis method applied to phase magnetic circuits of LSM. Reluctances of various parts of phase magnetic circuit is calculated analytically by assuming probable flux paths and by taking into account complex nature of magnetic field distribution in it. For given armature positions stator and armature iron saturations are taken into account by an efficient iterative algorithm which gives fast convergence. The method is validated by comparing theoretical results with experimental ones which shows satisfactory agreement for small stator currents and weak iron saturation

  8. Linearization of the Lorenz system

    International Nuclear Information System (INIS)

    Li, Chunbiao; Sprott, Julien Clinton; Thio, Wesley

    2015-01-01

    A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation

  9. Linearization of the Lorenz system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunbiao, E-mail: goontry@126.com [School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Engineering Technology Research and Development Center of Jiangsu Circulation Modernization Sensor Network, Jiangsu Institute of Commerce, Nanjing 211168 (China); Sprott, Julien Clinton [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States); Thio, Wesley [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 (United States)

    2015-05-08

    A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation.

  10. Preface: Introductory Remarks: Linear Scaling Methods

    Science.gov (United States)

    Bowler, D. R.; Fattebert, J.-L.; Gillan, M. J.; Haynes, P. D.; Skylaris, C.-K.

    2008-07-01

    It has been just over twenty years since the publication of the seminal paper on molecular dynamics with ab initio methods by Car and Parrinello [1], and the contribution of density functional theory (DFT) and the related techniques to physics, chemistry, materials science, earth science and biochemistry has been huge. Nevertheless, significant improvements are still being made to the performance of these standard techniques; recent work suggests that speed improvements of one or even two orders of magnitude are possible [2]. One of the areas where major progress has long been expected is in O(N), or linear scaling, DFT, in which the computer effort is proportional to the number of atoms. Linear scaling DFT methods have been in development for over ten years [3] but we are now in an exciting period where more and more research groups are working on these methods. Naturally there is a strong and continuing effort to improve the efficiency of the methods and to make them more robust. But there is also a growing ambition to apply them to challenging real-life problems. This special issue contains papers submitted following the CECAM Workshop 'Linear-scaling ab initio calculations: applications and future directions', held in Lyon from 3-6 September 2007. A noteworthy feature of the workshop is that it included a significant number of presentations involving real applications of O(N) methods, as well as work to extend O(N) methods into areas of greater accuracy (correlated wavefunction methods, quantum Monte Carlo, TDDFT) and large scale computer architectures. As well as explicitly linear scaling methods, the conference included presentations on techniques designed to accelerate and improve the efficiency of standard (that is non-linear-scaling) methods; this highlights the important question of crossover—that is, at what size of system does it become more efficient to use a linear-scaling method? As well as fundamental algorithmic questions, this brings up

  11. Linear scaling of density functional algorithms

    International Nuclear Information System (INIS)

    Stechel, E.B.; Feibelman, P.J.; Williams, A.R.

    1993-01-01

    An efficient density functional algorithm (DFA) that scales linearly with system size will revolutionize electronic structure calculations. Density functional calculations are reliable and accurate in determining many condensed matter and molecular ground-state properties. However, because current DFA's, including methods related to that of Car and Parrinello, scale with the cube of the system size, density functional studies are not routinely applied to large systems. Linear scaling is achieved by constructing functions that are both localized and fully occupied, thereby eliminating the need to calculate global eigenfunctions. It is, however, widely believed that exponential localization requires the existence of an energy gap between the occupied and unoccupied states. Despite this, the authors demonstrate that linear scaling can still be achieved for metals. Using a linear scaling algorithm, they have explicitly constructed localized, almost fully occupied orbitals for the quintessential metallic system, jellium. The algorithm is readily generalizable to any system geometry and Hamiltonian. They will discuss the conceptual issues involved, convergence properties and scaling for their new algorithm

  12. A fresh look at linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    Science.gov (United States)

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  13. A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    Science.gov (United States)

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…

  14. Calculating Outcrossing Rates used in Decision Support Systems for Ships

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    Onboard decision support systems (DSS) are used to increase the operational safety of ships. Ideally, DSS can estimate - in the statistical sense - future ship responses on a time scale of the order of 1-3 hours taking into account speed and course changes. The calculations depend on both...... analysis, and the paper derives and describes the main ideas. The concept is illustrated by an example, where the limit state of a non-linear ship response is considered. The results from the parallel system analysis are in agreement with corresponding Monte Carlo simulations. However, the computational...

  15. The sense of balance in humans: Structural features of otoconia and their response to linear acceleration.

    Directory of Open Access Journals (Sweden)

    Rüdiger Kniep

    Full Text Available We explored the functional role of individual otoconia within the otolith system of mammalians responsible for the detection of linear accelerations and head tilts in relation to the gravity vector. Details of the inner structure and the shape of intact human and artificial otoconia were studied using environmental scanning electron microscopy (ESEM, including decalcification by ethylenediaminetetraacetic acid (EDTA to discriminate local calcium carbonate density. Considerable differences between the rhombohedral faces of human and artificial otoconia already indicate that the inner architecture of otoconia is not consistent with the point group -3m. This is clearly confirmed by decalcified otoconia specimen which are characterized by a non-centrosymmetric volume distribution of the compact 3+3 branches. This structural evidence for asymmetric mass distribution was further supported by light microscopy in combination with a high speed camera showing the movement of single otoconia specimen (artificial specimen under gravitational influence within a viscous medium (artificial endolymph. Moreover, the response of otoconia to linear acceleration forces was investigated by particle dynamics simulations. Both, time-resolved microscopy and computer simulations of otoconia acceleration show that the dislocation of otoconia include significant rotational movement stemming from density asymmetry. Based on these findings, we suggest an otolith membrane expansion/stiffening mechanism for enhanced response to linear acceleration transmitted to the vestibular hair cells.

  16. Exposure-lag-response in Longitudinal Studies: Application of Distributed Lag Non-linear Models in an Occupational Cohort.

    Science.gov (United States)

    Neophytou, Andreas M; Picciotto, Sally; Brown, Daniel M; Gallagher, Lisa E; Checkoway, Harvey; Eisen, Ellen A; Costello, Sadie

    2018-02-13

    Prolonged exposures can have complex relationships with health outcomes, as timing, duration, and intensity of exposure are all potentially relevant. Summary measures such as cumulative exposure or average intensity of exposure may not fully capture these relationships. We applied penalized and unpenalized distributed lag non-linear models (DLNMs) with flexible exposure-response and lag-response functions in order to examine the association between crystalline silica exposure and mortality from lung cancer and non-malignant respiratory disease in a cohort study of 2,342 California diatomaceous earth workers, followed 1942-2011. We also assessed associations using simple measures of cumulative exposure assuming linear exposure-response and constant lag-response. Measures of association from DLNMs were generally higher than from simpler models. Rate ratios from penalized DLNMs corresponding to average daily exposures of 0.4 mg/m3 during lag years 31-50 prior to the age of observed cases were 1.47 (95% confidence interval (CI) 0.92, 2.35) for lung cancer and 1.80 (95% CI: 1.14, 2.85) for non-malignant respiratory disease. Rate ratios from the simpler models for the same exposure scenario were 1.15 (95% CI: 0.89-1.48) and 1.23 (95% CI: 1.03-1.46) respectively. Longitudinal cohort studies of prolonged exposures and chronic health outcomes should explore methods allowing for flexibility and non-linearities in the exposure-lag-response. © The Author(s) 2018. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  17. Zn-VI quasiparticle gaps and optical spectra from many-body calculations.

    Science.gov (United States)

    Riefer, A; Weber, N; Mund, J; Yakovlev, D R; Bayer, M; Schindlmayr, Arno; Meier, C; Schmidt, W G

    2017-06-01

    The electronic band structures of hexagonal ZnO and cubic ZnS, ZnSe, and ZnTe compounds are determined within hybrid-density-functional theory and quasiparticle calculations. It is found that the band-edge energies calculated on the [Formula: see text] (Zn chalcogenides) or GW (ZnO) level of theory agree well with experiment, while fully self-consistent QSGW calculations are required for the correct description of the Zn 3d bands. The quasiparticle band structures are used to calculate the linear response and second-harmonic-generation (SHG) spectra of the Zn-VI compounds. Excitonic effects in the optical absorption are accounted for within the Bethe-Salpeter approach. The calculated spectra are discussed in the context of previous experimental data and present SHG measurements for ZnO.

  18. Fourier imaging of non-linear structure formation

    Energy Technology Data Exchange (ETDEWEB)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2017-04-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  19. Fourier imaging of non-linear structure formation

    International Nuclear Information System (INIS)

    Brandbyge, Jacob; Hannestad, Steen

    2017-01-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  20. Response of Non-Linear Shock Absorbers-Boundary Value Problem Analysis

    Science.gov (United States)

    Rahman, M. A.; Ahmed, U.; Uddin, M. S.

    2013-08-01

    A nonlinear boundary value problem of two degrees-of-freedom (DOF) untuned vibration damper systems using nonlinear springs and dampers has been numerically studied. As far as untuned damper is concerned, sixteen different combinations of linear and nonlinear springs and dampers have been comprehensively analyzed taking into account transient terms. For different cases, a comparative study is made for response versus time for different spring and damper types at three important frequency ratios: one at r = 1, one at r > 1 and one at r <1. The response of the system is changed because of the spring and damper nonlinearities; the change is different for different cases. Accordingly, an initially stable absorber may become unstable with time and vice versa. The analysis also shows that higher nonlinearity terms make the system more unstable. Numerical simulation includes transient vibrations. Although problems are much more complicated compared to those for a tuned absorber, a comparison of the results generated by the present numerical scheme with the exact one shows quite a reasonable agreement

  1. Proportional counter response calculations for gallium solar neutrino detectors

    International Nuclear Information System (INIS)

    Kouzes, R.T.; Reynolds, D.

    1989-01-01

    Gallium bases solar neutrino detectors are sensitive to the primary pp reaction in the sun. Two experiments using gallium, SAGE in the Soviet Union and GALLEX in Europe, are under construction and will produce data by 1989. The radioactive /sup 71/Ge produced by neutrinos interacting with the gallium detector material, is chemically extracted and counted in miniature proportional counters. A number of calculations have been carried out to simulate the response of these counters to the decay of /sup 71/Ge and to background events

  2. Development of a power-period calculation unit for nuclear reactor Control

    International Nuclear Information System (INIS)

    Martin, J.

    1966-10-01

    The apparatus studied is a digital calculating assembly which makes it possible to prepare and to present numerically the period and power of a nuclear reactor during operation, from start-up to nominal power. The pulses from a fission chamber are analyzed continuously, using real time. A small number of elements is required because of the systematic use of a calculation technique comprising the determination of a base 2 logarithm by a linear approximation. The accuracy obtained for the period is of the order of 14%; the response time of the order of the calculated period value. An approximate value of the power (30%) is given at each calculation cycle together with the power thresholds required for the control. (author) [fr

  3. Analysis of the computational methods on the equipment shock response based on ANSYS environments

    International Nuclear Information System (INIS)

    Wang Yu; Li Zhaojun

    2005-01-01

    With the developments and completions of equipment shock vibration theory, math calculation method simulation technique and other aspects, equipment shock calculation methods are gradually developing form static development to dynamic and from linearity to non-linearity. Now, the equipment shock calculation methods applied worldwide in engineering practices mostly include equivalent static force method, Dynamic Design Analysis Method (abbreviated to DDAM) and real-time simulation method. The DDAM is a method based on the modal analysis theory, which inputs the shock design spectrum as shock load and gets hold of the shock response of the integrated system by applying separate cross-modal integrating method within the frequency domain. The real-time simulation method is to carry through the computational analysis of the equipment shock response within the time domain, use the time-history curves obtained from real-time measurement or spectrum transformation as the equipment shock load and find an iterative solution of a differential equation of the system movement by using the computational procedure within the time domain. Conclusions: Using the separate DDAM and Real-time Simulation Method, this paper carried through the shock analysis of a three-dimensional frame floating raft in ANSYS environments, analyzed the result, and drew the following conclusion: Because DDAM does not calculate damping, non-linear effect and phase difference between mode responses, the result is much bigger than that of real-time simulation method. The coupling response is much complex when the mode result of 3-dimension structure is being calculated, and the coupling response of non-shock direction is also much bigger than that of real-time simulation method when DDAM is applied. Both DDAM and real-time simulation method has its good points and scope of application. The designers should select the design method that is economic and in point according to the features and anti

  4. Non linear system become linear system

    Directory of Open Access Journals (Sweden)

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  5. How to calculate linear absorption spectra with lifetime broadening using fewest switches surface hopping trajectories: A simple generalization of ground-state Kubo theory

    International Nuclear Information System (INIS)

    Petit, Andrew S.; Subotnik, Joseph E.

    2014-01-01

    In this paper, we develop a surface hopping approach for calculating linear absorption spectra using ensembles of classical trajectories propagated on both the ground and excited potential energy surfaces. We demonstrate that our method allows the dipole-dipole correlation function to be determined exactly for the model problem of two shifted, uncoupled harmonic potentials with the same harmonic frequency. For systems where nonadiabatic dynamics and electronic relaxation are present, preliminary results show that our method produces spectra in better agreement with the results of exact quantum dynamics calculations than spectra obtained using the standard ground-state Kubo formalism. As such, our proposed surface hopping approach should find immediate use for modeling condensed phase spectra, especially for expensive calculations using ab initio potential energy surfaces

  6. Wigner-Kirkwood expansion of the quasi-elastic nuclear responses and application to spin-isospin responses

    International Nuclear Information System (INIS)

    Chanfray, G.

    1988-01-01

    We derive a semi-classical Wigner-Kirkwood expansion (Planck constant expansion) of the linear response functions. We find that the semi-classical results compare very well to the quantum mechanical calculations. We apply our formalism to the spin-isospin responses and show that surface-peaked Planck constant 2 corrections considerably decrease the ratio longitudinal/transverse as obtained through the Los Alamos (longitudinal momentum) experiment

  7. Calculation of Multisphere Neutron Spectrometer Response Functions in Energy Range up to 20 MeV

    CERN Document Server

    Martinkovic, J

    2005-01-01

    Multisphere neutron spectrometer is a basic instrument of neutron measurements in the scattered radiation field at charged-particles accelerators for radiation protection and dosimetry purposes. The precise calculation of the spectrometer response functions is a necessary condition of the propriety of neutron spectra unfolding. The results of the response functions calculation for the JINR spectrometer with LiI(Eu) detector (a set of 6 homogeneous and 1 heterogeneous moderators, "bare" detector within cadmium cover and without it) at two geometries of the spectrometer irradiation - in uniform monodirectional and uniform isotropic neutron fields - are given. The calculation was carried out by the code MCNP in the neutron energy range 10$^{-8}$-20 MeV.

  8. A Capacitor-Free, Fast Transient Response Linear Voltage Regulator In a 180nm CMOS

    DEFF Research Database (Denmark)

    Deleuran, Alexander N.; Lindbjerg, Nicklas; Pedersen, Martin K.

    2015-01-01

    A 1.8 V capacitor-free linear regulator with fast transient response based on a new topology with a fast and slow regulation loop is presented. The design has been laid out and simulated in a 0.18 µm CMOS process. The design has a low component count and is tailored for system-on-chip integration...

  9. A Design of Mechanical Frequency Converter Linear and Non-linear Spring Combination for Energy Harvesting

    International Nuclear Information System (INIS)

    Yamamoto, K; Fujita, T; Kanda, K; Maenaka, K; Badel, A; Formosa, F

    2014-01-01

    In this study, the improvement of energy harvesting from wideband vibration with random change by using a combination of linear and nonlinear spring system is investigated. The system consists of curved beam spring for non-linear buckling, which supports the linear mass-spring resonator. Applying shock acceleration generates a snap through action to the buckling spring. From the FEM analysis, we showed that the snap through acceleration from the buckling action has no relationship with the applied shock amplitude and duration. We use this uniform acceleration as an impulse shock source for the linear resonator. It is easy to obtain the maximum shock response from the uniform snap through acceleration by using a shock response spectrum (SRS) analysis method. At first we investigated the relationship between the snap-through behaviour and an initial curved deflection. Then a time response result for non-linear springs with snap through and minimum force that makes a buckling behaviour were obtained by FEM analysis. By obtaining the optimum SRS frequency for linear resonator, we decided its resonant frequency with the MATLAB simulator

  10. Particle-hole calculation of the longitudinal response function of 12C

    International Nuclear Information System (INIS)

    Dellafiore, A.; Lenz, F.; Brieva, F.A.

    1985-01-01

    The longitudinal response function of 12 C in the range of momentum transfers 200 MeV/c< or =q< or =550 MeV/c is calculated in the Tamm-Dancoff approximation. The particle-hole Green's function is evaluated by means of a doorway-state expansion. This method allows us to take into account finite-range residual interactions in the continuum, including exchange processes. At low momentum transfers, calculations agree qualitatively with the data. The data cannot be reproduced at momentum transfers around 450 MeV/c. This discrepancy can be accounted for neither by uncertainties in the residual interaction, nor by more complicated processes in the nuclear final states

  11. Elementary linear programming with applications

    CERN Document Server

    Kolman, Bernard

    1995-01-01

    Linear programming finds the least expensive way to meet given needs with available resources. Its results are used in every area of engineering and commerce: agriculture, oil refining, banking, and air transport. Authors Kolman and Beck present the basic notions of linear programming and illustrate how they are used to solve important common problems. The software on the included disk leads students step-by-step through the calculations. The Second Edition is completely revised and provides additional review material on linear algebra as well as complete coverage of elementary linear program

  12. Theory of orbital magnetoelectric response

    International Nuclear Information System (INIS)

    Malashevich, Andrei; Souza, Ivo; Coh, Sinisa; Vanderbilt, David

    2010-01-01

    We extend the recently developed theory of bulk orbital magnetization to finite electric fields, and use it to calculate the orbital magnetoelectric (ME) response of periodic insulators. Working in the independent-particle framework, we find that the finite-field orbital magnetization can be written as a sum of three gauge-invariant contributions, one of which has no counterpart at zero field. The extra contribution is collinear with and explicitly dependent on the electric field. The expression for the orbital magnetization is suitable for first-principles implementations, allowing one to calculate the ME response coefficients by numerical differentiation. Alternatively, perturbation-theory techniques may be used, and for that purpose we derive an expression directly for the linear ME tensor by taking the first field-derivative analytically. Two types of terms are obtained. One, the 'Chern-Simons' term, depends only on the unperturbed occupied orbitals and is purely isotropic. The other, 'Kubo' terms, involve the first-order change in the orbitals and give isotropic as well as anisotropic contributions to the response. In ordinary ME insulators all terms are generally present, while in strong Z 2 topological insulators only the Chern-Simons term is allowed, and is quantized. In order to validate the theory, we have calculated under periodic boundary conditions the linear ME susceptibility for a 3D tight-binding model of an ordinary ME insulator, using both the finite-field and perturbation-theory expressions. The results are in excellent agreement with calculations on bounded samples.

  13. Bunch lengthening calculations for the SLC [Stanford Linear Collider] damping rings

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Ruth, R.D.

    1989-03-01

    The problem of bunch lengthening in electron storage rings has been treated by many people, and there have been many experiments. In the typical experiment, the theory is used to determine the impedance of the ring. What has been lacking thus far, however, is a calculation of bunch lengthening that uses a carefully calculated ring impedance (or wakefield). In this paper we begin by finding the potential well distortion due to some very simple impedance models, in order to illustrate different types of bunch lengthening behavior. We then give a prescription for extending potential well calculations into the turbulent regime once the threshold is known. Then finally, using the wakefield calculated for the SLC damping rings, combined with the measured value of the threshold, we calculate bunch lengthening for the damping rings, and compare the results with the measurements. 9 refs., 6 figs

  14. Responsive gelation of hydrophobized linear polymer

    DEFF Research Database (Denmark)

    Madsen, Claus Greve; Toeth, Joachim; Jørgensen, Lene

    In this study we present the rheological properties of a physically linked polymer network, composed of linear hydrophilic chains, modified with hydrophobic moieties in each end. Solutions of the polymer in ethanol-water mixtures showed Newtonian behaviour up to about 99 % ethanol, with the highest...

  15. Calculation of Lightning Transient Responses on Wind Turbine Towers

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An efficient method is proposed in this paper for calculating lightning transient responses on wind turbine towers. In the proposed method, the actual tower body is simplified as a multiconductor grid in the shape of cylinder. A set of formulas are given for evaluating the circuit parameters of the branches in the multiconductor grid. On the basis of the circuit parameters, the multiconductor grid is further converted into an equivalent circuit. The circuit equation is built in frequency-domain to take into account the effect of the frequency-dependent characteristic of the resistances and inductances on lightning transients. The lightning transient responses can be obtained by using the discrete Fourier transform with exponential sampling to take the inverse transform of the frequency-domain solution of the circuit equation. A numerical example has been given for examining the applicability of the proposed method.

  16. Comparison of Damage Models for Predicting the Non-Linear Response of Laminates Under Matrix Dominated Loading Conditions

    Science.gov (United States)

    Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.

    2010-01-01

    Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.

  17. Optical measurement of the weak non-linearity in the eardrum vibration response to auditory stimuli

    Science.gov (United States)

    Aerts, Johan

    The mammalian hearing organ consists of the external ear (auricle and ear canal) followed by the middle ear (eardrum and ossicles) and the inner ear (cochlea). Its function is to convert the incoming sound waves and convert them into nerve pulses which are processed in the final stage by the brain. The main task of the external and middle ear is to concentrate the incoming sound waves on a smaller surface to reduce the loss that would normally occur in transmission from air to inner ear fluid. In the past it has been shown that this is a linear process, thus without serious distortions, for sound waves going up to pressures of 130 dB SPL (˜90 Pa). However, at large pressure changes up to several kPa, the middle ear movement clearly shows non-linear behaviour. Thus, it is possible that some small non-linear distortions are also present in the middle ear vibration at lower sound pressures. In this thesis a sensitive measurement set-up is presented to detect this weak non-linear behaviour. Essentially, this set-up consists of a loud-speaker which excites the middle ear, and the resulting vibration is measured with an heterodyne vibrometer. The use of specially designed acoustic excitation signals (odd random phase multisines) enables the separation of the linear and non-linear response. The application of this technique on the middle ear demonstrates that there are already non-linear distortions present in the vibration of the middle ear at a sound pressure of 93 dB SPL. This non-linear component also grows strongly with increasing sound pressure. Knowledge of this non-linear component can contribute to the improvement of modern hearing aids, which operate at higher sound pressures where the non-linearities could distort the signal considerably. It is also important to know the contribution of middle ear non-linearity to otoacoustic emissions. This are non-linearities caused by the active feedback amplifier in the inner ear, and can be detected in the external and

  18. A Linear Electromagnetic Piston Pump

    Science.gov (United States)

    Hogan, Paul H.

    Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.

  19. NUMERICAL CALCULATIONS IN GEOMECHANICS APPLICABLE TO LINEAR STRUCTURES

    Directory of Open Access Journals (Sweden)

    Vlasov Aleksandr Nikolaevich

    2012-10-01

    Full Text Available The article covers the problem of applicability of finite-element and engineering methods to the development of a model of interaction between pipeline structures and the environment in the complex conditions with a view to the simulation and projection of exogenous geological processes, trustworthy assessment of their impacts on the pipeline, and the testing of varied calculation methodologies. Pipelining in the areas that have a severe continental climate and permafrost soils is accompanied by cryogenic and exogenous processes and developments. It may also involve the development of karst and/or thermokarst. The adverse effect of the natural environment is intensified by the anthropogenic impact produced onto the natural state of the area, causing destruction of forests and other vegetation, changing the ratio of soils in the course of the site planning, changing the conditions that impact the surface and underground waters, and causing the thawing of the bedding in the course of the energy carrier pumping, etc. The aforementioned consequences are not covered by effective regulatory documents. The latter constitute general and incomplete recommendations in this respect. The appropriate mathematical description of physical processes in complex heterogeneous environments is a separate task to be addressed. The failure to consider the above consequences has repeatedly caused both minor damages (denudation of the pipeline, insulation stripping and substantial accidents; the rectification of their consequences was utterly expensive. Pipelining produces a thermal impact on the environment; it may alter the mechanical properties of soils and de-frost the clay. The stress of the pipeline is one of the principal factors that determines its strength and safety. The pipeline stress exposure caused by loads and impacts (self-weight, internal pressure, etc. may be calculated in advance, and the accuracy of these calculations is sufficient for practical

  20. LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A. [Fermilab; Edstrom, D. [Fermilab; Halavanau, A. [Northern Illinois U.

    2017-07-16

    The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.

  1. Calculating Quench Propagation with ANSYS(regsign)

    International Nuclear Information System (INIS)

    Caspi, S.; Chiesa, L.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.; Hinkins, R.; Lietzke, A.F.; Prestemon, S.

    2002-01-01

    A commercial Finite-Element-Analysis program, ANSYS(reg s ign), is widely used in structural and thermal analysis. With the program's ability to include non-linear material properties and import complex CAD files, one can generate coil geometries and simulate quench propagation in superconducting magnets. A 'proof-of-principle' finite element model was developed assuming a resistivity that increases linearly from zero to its normal value at a temperature consistent with the assumed B magnetic field. More sophisticated models could easily include finer-grained coil, cable, structural, and circuit details. A quench is provoked by raising the temperature of an arbitrary superconducting element above its T c . The time response to this perturbation is calculated using small time-steps to allow convergence between steps. Snapshots of the temperature and voltage distributions allow examination of longitudinal and turn-to-turn quench propagation, quench-front annihilation, and cryo-stability. Modeling details are discussed, and a computed voltage history was compared with measurements from a recent magnet test.

  2. Application of backtracking algorithm to depletion calculations

    International Nuclear Information System (INIS)

    Wu Mingyu; Wang Shixi; Yang Yong; Zhang Qiang; Yang Jiayin

    2013-01-01

    Based on the theory of linear chain method for analytical depletion calculations, the burnup matrix is decoupled by the divide and conquer strategy and the linear chain with Markov characteristic is formed. The density, activity and decay heat of every nuclide in the chain then can be calculated by analytical solutions. Every possible reaction path of the nuclide must be considered during the linear chain establishment process. To confirm the calculation precision and efficiency, the algorithm which can cover all the reaction paths and search the paths automatically according to the problem description and precision restrictions should be found. Through analysis and comparison of several kinds of searching algorithms, the backtracking algorithm was selected to establish and calculate the linear chains in searching process using depth first search (DFS) method, forming an algorithm which can solve the depletion problem adaptively and with high fidelity. The complexity of the solution space and time was analyzed by taking into account depletion process and the characteristics of the backtracking algorithm. The newly developed depletion program was coupled with Monte Carlo program MCMG-Ⅱ to calculate the benchmark burnup problem of the first core of China Experimental Fast Reactor (CEFR) and the preliminary verification and validation of the program were performed. (authors)

  3. Analytical expression for position sensitivity of linear response beam position monitor having inter-electrode cross talk

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh, E-mail: mukeshk@rrcat.gov.in [Beam Diagnostics Section, Indus Operations, Beam Dynamics & Diagnostics Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013 MP (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094 (India); Ojha, A.; Garg, A.D.; Puntambekar, T.A. [Beam Diagnostics Section, Indus Operations, Beam Dynamics & Diagnostics Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013 MP (India); Senecha, V.K. [Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094 (India); Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013 MP (India)

    2017-02-01

    According to the quasi electrostatic model of linear response capacitive beam position monitor (BPM), the position sensitivity of the device depends only on the aperture of the device and it is independent of processing frequency and load impedance. In practice, however, due to the inter-electrode capacitive coupling (cross talk), the actual position sensitivity of the device decreases with increasing frequency and load impedance. We have taken into account the inter-electrode capacitance to derive and propose a new analytical expression for the position sensitivity as a function of frequency and load impedance. The sensitivity of a linear response shoe-box type BPM has been obtained through simulation using CST Studio Suite to verify and confirm the validity of the new analytical equation. Good agreement between the simulation results and the new analytical expression suggest that this method can be exploited for proper designing of BPM.

  4. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    International Nuclear Information System (INIS)

    Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto

    2015-01-01

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model

  5. Seismic analysis of equipment system with non-linearities such as gap and friction using equivalent linearization method

    International Nuclear Information System (INIS)

    Murakami, H.; Hirai, T.; Nakata, M.; Kobori, T.; Mizukoshi, K.; Takenaka, Y.; Miyagawa, N.

    1989-01-01

    Many of the equipment systems of nuclear power plants contain a number of non-linearities, such as gap and friction, due to their mechanical functions. It is desirable to take such non-linearities into account appropriately for the evaluation of the aseismic soundness. However, in usual design works, linear analysis method with rough assumptions is applied from engineering point of view. An equivalent linearization method is considered to be one of the effective analytical techniques to evaluate non-linear responses, provided that errors to a certain extent are tolerated, because it has greater simplicity in analysis and economization in computing time than non-linear analysis. The objective of this paper is to investigate the applicability of the equivalent linearization method to evaluate the maximum earthquake response of equipment systems such as the CANDU Fuelling Machine which has multiple non- linearities

  6. Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids

    International Nuclear Information System (INIS)

    Holzwarth, N.A.; Matthews, G.E.; Dunning, R.B.; Tackett, A.R.; Zeng, Y.

    1997-01-01

    The projector augmented-wave (PAW) method was developed by Bloechl as a method to accurately and efficiently calculate the electronic structure of materials within the framework of density-functional theory. It contains the numerical advantages of pseudopotential calculations while retaining the physics of all-electron calculations, including the correct nodal behavior of the valence-electron wave functions and the ability to include upper core states in addition to valence states in the self-consistent iterations. It uses many of the same ideas developed by Vanderbilt in his open-quotes soft pseudopotentialclose quotes formalism and in earlier work by Bloechl in his open-quotes generalized separable potentials,close quotes and has been successfully demonstrated for several interesting materials. We have developed a version of the PAW formalism for general use in structural and dynamical studies of materials. In the present paper, we investigate the accuracy of this implementation in comparison with corresponding results obtained using pseudopotential and linearized augmented-plane-wave (LAPW) codes. We present results of calculations for the cohesive energy, equilibrium lattice constant, and bulk modulus for several representative covalent, ionic, and metallic materials including diamond, silicon, SiC, CaF 2 , fcc Ca, and bcc V. With the exception of CaF 2 , for which core-electron polarization effects are important, the structural properties of these materials are represented equally well by the PAW, LAPW, and pseudopotential formalisms. copyright 1997 The American Physical Society

  7. Linear and nonlinear analysis of fluid slosh dampers

    Science.gov (United States)

    Sayar, B. A.; Baumgarten, J. R.

    1982-11-01

    A vibrating structure and a container partially filled with fluid are considered coupled in a free vibration mode. To simplify the mathematical analysis, a pendulum model to duplicate the fluid motion and a mass-spring dashpot representing the vibrating structure are used. The equations of motion are derived by Lagrange's energy approach and expressed in parametric form. For a wide range of parametric values the logarithmic decrements of the main system are calculated from theoretical and experimental response curves in the linear analysis. However, for the nonlinear analysis the theoretical and experimental response curves of the main system are compared. Theoretical predictions are justified by experimental observations with excellent agreement. It is concluded finally that for a proper selection of design parameters, containers partially filled with viscous fluids serve as good vibration dampers.

  8. A high-order finite-difference linear seakeeping solver tool for calculation of added resistance in waves

    DEFF Research Database (Denmark)

    Amini Afshar, Mostafa; Bingham, Harry B.; Read, Robert

    During recent years a computational strategy has been developed at the Technical University of Denmark for numerical simulation of water wave problems based on the high-order nite-dierence method, [2],[4]. These methods exhibit a linear scaling of the computational eort as the number of grid points...... increases. This understanding is being applied to develop a tool for predicting the added resistance (drift force) of ships in ocean waves. We expect that the optimal scaling properties of this solver will allow us to make a convincing demonstration of convergence of the added resistance calculations based...... on both near-eld and far-eld methods. The solver has been written inside a C++ library known as Overture [3], which can be used to solve partial dierential equations on overlapping grids based on the high-order nite-dierence method. The resulting code is able to solve, in the time domain, the linearised...

  9. A noble refractive optical scanner with linear response

    Science.gov (United States)

    Mega, Yair J.; Lai, Zhenhua; DiMarzio, Charles A.

    2013-03-01

    Many applications in various fields of science and engineering use steered optical beam systems. Currently, many methods utilize mirrors in order to steer the beam. However, this approach is an off-axis solution, which normally increases the total size of the system as well as its error and complexity. Other methods use a "Risely Prisms" based solution, which is on-axis solution, however it poses some difficulties from an engineering standpoint, and therefore isn't widely used. We present here a novel technique for steering a beam on its optical axis with a linear deflection response. We derived the formulation for the profile required of the refractive optical component necessary for preforming the beam steering. The functionality of the device was simulated analytically using Matlab, as well as using a ray-tracing software, Zemax, and showed agreement with the analytical model. An optical element was manufactured based on the proposed design and the device was tested. The results show agreement with our hypothesis. We also present some proposed geometries of the several other devices, all based on the same concept, which can be used for higher performance applications such as two-dimensional scanner, video rate scanner etc.

  10. Testing For The Linearity of Responses To Multiple Anthropogenic Climate Forcings

    Science.gov (United States)

    Forest, C. E.; Stone, P. H.; Sokolov, A. P.

    To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally aver- aged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous stud- ies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(TG + TS + TO) - TGSO]/TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitiv- ities of 3.0, 4.5, and 6.2 C, respectively. The values of TGSO for these three cases o are 0.52, 0.62, and 0.76 C. The dependence of linearity on climate system properties, o the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.

  11. Identifying the nonlinear mechanical behaviour of micro-speakers from their quasi-linear electrical response

    Science.gov (United States)

    Zilletti, Michele; Marker, Arthur; Elliott, Stephen John; Holland, Keith

    2017-05-01

    In this study model identification of the nonlinear dynamics of a micro-speaker is carried out by purely electrical measurements, avoiding any explicit vibration measurements. It is shown that a dynamic model of the micro-speaker, which takes into account the nonlinear damping characteristic of the device, can be identified by measuring the response between the voltage input and the current flowing into the coil. An analytical formulation of the quasi-linear model of the micro-speaker is first derived and an optimisation method is then used to identify a polynomial function which describes the mechanical damping behaviour of the micro-speaker. The analytical results of the quasi-linear model are compared with numerical results. This study potentially opens up the possibility of efficiently implementing nonlinear echo cancellers.

  12. Calculations of dosimetric parameter and REM meter response for BE(d, n) source

    International Nuclear Information System (INIS)

    Chen Changmao

    1988-01-01

    Based on the recent data about neutron spectra, the average energy, effictive energy and conversion coefficient of fluence to dose equivalent are calculated for some Be (α, n) neutron sources which have differene types and structures. The responses of 2202D and 0075 REM meter for thses spectral neutrons are also estimated. The results indicate that the relationship between average energy and conversion coefficient or REM meter responses can be described by simple functions

  13. LINEAR AND NON-LINEAR ANALYSES OF CABLE-STAYED STEEL FRAME SUBJECTED TO SEISMIC ACTIONS

    Directory of Open Access Journals (Sweden)

    Marko Đuran

    2017-01-01

    Full Text Available In this study, linear and non-linear dynamic analyses of a cable-stayed steel frame subjected to seismic actions are performed. The analyzed cable-stayed frame is the main supporting structure of a wide-span sports hall. Since the complex dynamic behavior of cable-stayed structures results in significant geometric nonlinearity, a nonlinear time history analysis is conducted. As a reference, an analysis using the European standard approach, the so-called linear modal response spectrum method, is also performed. The analyses are conducted for different seismic actions considering dependence on the response spectrums for various ground types and the corresponding artificially generated accelerograms. Despite fundamental differences between the two analyses, results indicate that the modal response spectrum analysis is surprisingly consistent with the internal forces and bending moment distributions of the nonlinear time history analysis. However, significantly smaller values of bending moments, internal forces, and displacements are obtained with the response spectrum analysis.

  14. From linear to generalized linear mixed models: A case study in repeated measures

    Science.gov (United States)

    Compared to traditional linear mixed models, generalized linear mixed models (GLMMs) can offer better correspondence between response variables and explanatory models, yielding more efficient estimates and tests in the analysis of data from designed experiments. Using proportion data from a designed...

  15. Relativistic effects on linear and nonlinear polarizabilities studied by effective-core potential, Douglas-Kroll, and Dirac-Hartree-Fock response theory

    DEFF Research Database (Denmark)

    Norman, Patrick; Schimmelpfennig, Bernd; Ruud, Kenneth

    2002-01-01

    A systematic investigation of a hierarchy of methods for including relativistic effects in the calculation of linear and nonlinear optical properties was carried out. The simple ECP method and the more involved spin-averaged Douglas-Kroll approximation were compared to benchmark results obtained...

  16. Linear response coupled cluster theory with the polarizable continuum model within the singles approximation for the solvent response

    Science.gov (United States)

    Caricato, Marco

    2018-04-01

    We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.

  17. Stochastic Response of an Inclined Shallow Cable with Linear Viscous Dampers under Stochastic Excitation

    DEFF Research Database (Denmark)

    Zhou, Qiang; Nielsen, Søren R.K.; Qu, Weilian

    2010-01-01

    Considering the coupling between the in-plane and out-of-plane vibration, the stochastic response of an inclined shallow cable with linear viscous dampers subjected to Gaussian white noise excitation is investigated in this paper. Selecting the static deflection shape due to a concentrated force...... together with the C-type Gram-Charlier expansion with a fourth-order closure are applied to obtain statistical moments, power spectral density and probabilistic density function of the cable response, whose availability is verified by Monte Carlo method. Taking a typical cable as an example, the influence...... of several factors, which include excitation level and direction as well as damper size, on the dynamic response of the cable is extensively investigated. It is found that the sum of mean square in-plane and out-of-plane displacement is primarily independent of the load direction when the excitation level...

  18. Linear increases in BOLD response associated with increasing proportion of incongruent trials across time in a colour Stroop task.

    Science.gov (United States)

    Mitchell, Rachel L C

    2010-05-01

    Selective attention is popularly assessed with colour Stroop tasks in which participants name the ink colour of colour words, whilst resisting interference from the natural tendency to read the words. Prior studies hinted that the key brain regions (dorsolateral prefrontal (dlPFC) and anterior cingulate cortex (ACC)) may vary their degree of involvement, dependent on attentional demand. This study aimed to determine whether a parametrically varied increase in attentional demand resulted in linearly increased activity in these regions, and/or whether additional regions would be recruited during high attentional demand. Twenty-eight healthy young adults underwent fMRI whilst naming the font colour of colour words. Linear increases in BOLD response were assessed with increasing percentage incongruent trials per block (0, 20, 40, 60, 80, and 100%). Whilst ACC activation increased linearly according to incongruity level, dlPFC activity appeared constant. Together with behavioural evidence of reduced Stroop interference, these data support a load-dependent conflict-related response in ACC, but not dlPFC.

  19. Evaluation of ETOG-3Q/ETOG-3, FLANGE-II, XLACS, NJOY and linear/recent/groupie codes for calculations of resonance and reference cross sections

    International Nuclear Information System (INIS)

    Anaf, J.; Chalhoub, E.S.

    1991-01-01

    The NJOY and LINEAR/RECENT/GROUPIE calculational procedures for the resolved and unresolved resonance contributions and background cross sections are evaluated. Elastic scattering, fission and capture multigroup cross sections generated by these codes and the previously validated ETOG-3Q, ETOG-3, FLANGE-II and XLACS are compared. Constant weighting function and zero Kelvin temperature are considered. Discrepancies are presented and analyzed. (author)

  20. Calculation of foundation response to spatially varying ground motion by finite element method

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.

    1995-01-01

    This paper presents a general method to compute the response of a rigid foundation of arbitrary shape resting on a homogeneous or multilayered elastic soil when subjected to a spatially varying ground motion. The foundation response is calculated from the free-field ground motion and the contact tractions between the foundation and the soil. The spatial variation of ground motion in this study is introduced by a coherence function and the contact tractions are obtained numerically using the Finite Element Method in the process of calculating the dynamic compliance of the foundation. Applications of this method to a massless rigid disc supported on an elastic half space and to that founded on an elastic medium consisting of a layer of constant thickness supported on an elastic half space are described. The numerical results obtained are in very good agreement with analytical solutions published in the literature. (authors). 5 refs., 8 figs

  1. Comparison of calculated and measured spectral response and intrinsic efficiency for a boron-loaded plastic neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Kamykowski, E.A. (Grumman Corporate Research Center, Bethpage, NY (United States))

    1992-07-15

    Boron-loaded scintillators offer the potential for neutron spectrometers with a simplified, peak-shaped response. The Monte Carlo code, MCNP, has been used to calculate the detector characteristics of a scintillator made of a boron-loaded plastic, BC454, for neutrons between 1 and 7 MeV. Comparisons with measurements are made of spectral response for neutron energies between 4 and 6 MeV and of intrinsic efficiencies for neutrons up to 7 MeV. In order to compare the calculated spectra with measured data, enhancements to MCNP were introduced to generate tallies of light output spectra for recoil events terminating in a final capture by {sup 10}B. The comparison of measured and calculated spectra shows agreement in response shape, full width at half maximum, and recoil energy deposition. Intrinsic efficiencies measured to 7 MeV are also in agreement with the MCNP calculations. These results validate the code predictions and affirm the value of MCNP as a useful tool for development of sensor concepts based on boron-loaded plastics. (orig.).

  2. Who Will Win?: Predicting the Presidential Election Using Linear Regression

    Science.gov (United States)

    Lamb, John H.

    2007-01-01

    This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…

  3. The dynamic response of a linear brushless D.C. motor

    Energy Technology Data Exchange (ETDEWEB)

    Moghani, J.S.; Eastham, J.F. [Univ. of Bath (United Kingdom). School of Electrical and Electronic Engineering

    1995-12-31

    The paper describes the use of the Matlab Analogue Simulation Toolbox SIMULINK for the closed loop dynamic modeling of a linear brushless dc motor which is supplied from a delta-modulated inverter. The work is validated by experimental results taken from a large test rig. Linear version of all rotating machines are possible; a rotating machine can be notionally cut along a radial plane and unrolled to yield a linear version. The most popular form of linear machine, as judged by the quantities that have been produced is the linear induction motor. This has the advantage of first an inexpensive secondary that is often a simple iron backed conducting plate, and secondly the possibility of simple voltage control. The linear brushless synchronous motor is potentially more expensive to produce than its induction counterpart because of the permanent magnets which provide the excitation mmf and the necessity of an inverter supply. However the machine has a power factor efficiency product which can be double that of an induction motor together with about twice the tractive force per pole area.

  4. Linear models with R

    CERN Document Server

    Faraway, Julian J

    2014-01-01

    A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition.New to the Second EditionReorganiz

  5. Affine-response model of molecular solvation of ions: Accurate predictions of asymmetric charging free energies.

    Science.gov (United States)

    Bardhan, Jaydeep P; Jungwirth, Pavel; Makowski, Lee

    2012-09-28

    Two mechanisms have been proposed to drive asymmetric solvent response to a solute charge: a static potential contribution similar to the liquid-vapor potential, and a steric contribution associated with a water molecule's structure and charge distribution. In this work, we use free-energy perturbation molecular-dynamics calculations in explicit water to show that these mechanisms act in complementary regimes; the large static potential (∼44 kJ/mol/e) dominates asymmetric response for deeply buried charges, and the steric contribution dominates for charges near the solute-solvent interface. Therefore, both mechanisms must be included in order to fully account for asymmetric solvation in general. Our calculations suggest that the steric contribution leads to a remarkable deviation from the popular "linear response" model in which the reaction potential changes linearly as a function of charge. In fact, the potential varies in a piecewise-linear fashion, i.e., with different proportionality constants depending on the sign of the charge. This discrepancy is significant even when the charge is completely buried, and holds for solutes larger than single atoms. Together, these mechanisms suggest that implicit-solvent models can be improved using a combination of affine response (an offset due to the static potential) and piecewise-linear response (due to the steric contribution).

  6. On the Linear Relation between the Mean and the Standard Deviation of a Response Time Distribution

    Science.gov (United States)

    Wagenmakers, Eric-Jan; Brown, Scott

    2007-01-01

    Although it is generally accepted that the spread of a response time (RT) distribution increases with the mean, the precise nature of this relation remains relatively unexplored. The authors show that in several descriptive RT distributions, the standard deviation increases linearly with the mean. Results from a wide range of tasks from different…

  7. Global calculation of PWR reactor core using the two group energy solution by the response matrix method

    International Nuclear Information System (INIS)

    Conti, C.F.S.; Watson, F.V.

    1991-01-01

    A computational code to solve a two energy group neutron diffusion problem has been developed base d on the Response Matrix Method. That method solves the global problem of PWR core, without using the cross sections homogenization process, thus it is equivalent to a pontwise core calculation. The present version of the code calculates the response matrices by the first order perturbative method and considers developments on arbitrary order Fourier series for the boundary fluxes and interior fluxes. (author)

  8. Kovacs effect in the one-dimensional Ising model: A linear response analysis

    Science.gov (United States)

    Ruiz-García, M.; Prados, A.

    2014-01-01

    We analyze the so-called Kovacs effect in the one-dimensional Ising model with Glauber dynamics. We consider small enough temperature jumps, for which a linear response theory has been recently derived. Within this theory, the Kovacs hump is directly related to the monotonic relaxation function of the energy. The analytical results are compared with extensive Monte Carlo simulations, and an excellent agreement is found. Remarkably, the position of the maximum in the Kovacs hump depends on the fact that the true asymptotic behavior of the relaxation function is different from the stretched exponential describing the relevant part of the relaxation at low temperatures.

  9. Linear electro-optical properties of tetragonal BaTiO 3

    Indian Academy of Sciences (India)

    Linear optical susceptibility and clamped linear electro-optical tensor coefficients of tetragonal BaTiO3 are calculated using a formalism based on bond charge theory. Calculated values are in close agreement with experimental data. The covalent Ti–O bonds constituting distorted TiO6 octahedral groups are found to be ...

  10. MACK-IV, a new version of MACK: a program to calculate nuclear response functions from data in ENDF/B format

    International Nuclear Information System (INIS)

    Abdou, M.A.; Gohar, Y.; Wright, R.Q.

    1978-07-01

    MACK-IV calculates nuclear response functions important to the neutronics analysis of nuclear and fusion systems. A central part of the code deals with the calculation of the nuclear response function for nuclear heating more commonly known as the kerma factor. Pointwise and multigroup neutron kerma factors, individual reactions, helium, hydrogen, and tritium production response functions are calculated from any basic nuclear data library in ENDF/B format. The program processes all reactions in the energy range of 0 to 20 MeV for fissionable and nonfissionable materials. The program also calculates the gamma production cross sections and the gamma production energy matrix. A built-in computational capability permits the code to calculate the cross sections in the resolved and unresolved resonance regions from resonance parameters in ENDF/B with an option for Doppler broadening. All energy pointwise and multigroup data calculated by the code can be punched, printed and/or written on tape files. Multigroup response functions (e.g., kerma factors, reaction cross sections, gas production, atomic displacements, etc.) can be outputted in the format of MACK-ACTIVITY-Table suitable for direct use with current neutron (and photon) transport codes

  11. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    Science.gov (United States)

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  12. Two-dimensional Fast ESPRIT Algorithm for Linear Array SAR Imaging

    Directory of Open Access Journals (Sweden)

    Zhao Yi-chao

    2015-10-01

    Full Text Available The linear array Synthetic Aperture Radar (SAR system is a popular research tool, because it can realize three-dimensional imaging. However, owning to limitations of the aircraft platform and actual conditions, resolution improvement is difficult in cross-track and along-track directions. In this study, a twodimensional fast Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT algorithm for linear array SAR imaging is proposed to overcome these limitations. This approach combines the Gerschgorin disks method and the ESPRIT algorithm to estimate the positions of scatterers in cross and along-rack directions. Moreover, the reflectivity of scatterers is obtained by a modified pairing method based on “region growing”, replacing the least-squares method. The simulation results demonstrate the applicability of the algorithm with high resolution, quick calculation, and good real-time response.

  13. An improved multiple linear regression and data analysis computer program package

    Science.gov (United States)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  14. Sparsity Prevention Pivoting Method for Linear Programming

    DEFF Research Database (Denmark)

    Li, Peiqiang; Li, Qiyuan; Li, Canbing

    2018-01-01

    When the simplex algorithm is used to calculate a linear programming problem, if the matrix is a sparse matrix, it will be possible to lead to many zero-length calculation steps, and even iterative cycle will appear. To deal with the problem, a new pivoting method is proposed in this paper....... The principle of this method is avoided choosing the row which the value of the element in the b vector is zero as the row of the pivot element to make the matrix in linear programming density and ensure that most subsequent steps will improve the value of the objective function. One step following...... this principle is inserted to reselect the pivot element in the existing linear programming algorithm. Both the conditions for inserting this step and the maximum number of allowed insertion steps are determined. In the case study, taking several numbers of linear programming problems as examples, the results...

  15. Sparsity Prevention Pivoting Method for Linear Programming

    DEFF Research Database (Denmark)

    Li, Peiqiang; Li, Qiyuan; Li, Canbing

    2018-01-01

    . The principle of this method is avoided choosing the row which the value of the element in the b vector is zero as the row of the pivot element to make the matrix in linear programming density and ensure that most subsequent steps will improve the value of the objective function. One step following......When the simplex algorithm is used to calculate a linear programming problem, if the matrix is a sparse matrix, it will be possible to lead to many zero-length calculation steps, and even iterative cycle will appear. To deal with the problem, a new pivoting method is proposed in this paper...... this principle is inserted to reselect the pivot element in the existing linear programming algorithm. Both the conditions for inserting this step and the maximum number of allowed insertion steps are determined. In the case study, taking several numbers of linear programming problems as examples, the results...

  16. Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section

    Energy Technology Data Exchange (ETDEWEB)

    Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Mora-Ramos, M.E. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos, México (Mexico); Kasapoglu, E.; Ungan, F.; Yesilgul, U. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sakiroglu, S. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey); Sari, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sökmen, I. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey)

    2013-11-15

    The 1s-like and 2p-like donor impurity energy states are studied in a semiconductor quantum wire of equilateral triangular cross section as functions of the impurity position and the geometrical size of the structure. Linear and nonlinear coefficients for the optical absorption and relative refractive index change associated with 1s→2p transitions are calculated for both the x-polarization and y-polarization of the incident light. The results show a mixed effect of redshift and blueshift depending on the location of the donor atom. Also, strong nonlinear contributions to the optical absorption coefficient are obtained for both polarizations in the on-center impurity case. -- Highlights: • The 1s- and 2p-like impurity states in triangular quantum-well wires. • Optical absorption and relative refractive index changes are calculated. • Redshift and blueshift in the optical structures depend on the donor position. • Strong nonlinear contributions to the absorption coefficient have been obtained.

  17. Study of horizontal-vertical interactive Sway Rocking (SR) model for basemat uplift. Part 2: non-linear response analysis and validation

    International Nuclear Information System (INIS)

    Momma, T.; Shirahama, K.; Suzuki, K.; Ogihara, M.

    1995-01-01

    Non-linear earthquake response analyses of a BWR MARK-II type nuclear reactor building are conducted by using a Sway Rocking model (SR model) proposed in Part 1 considering the interaction between horizontal and vertical motion. The results are compared with those of accurate mathematical model using the Green Function method. Horizontal response of the SR model agrees very well with that of the Green Function model. The floor response spectra of induced vertical motions by both methods are also corresponding well in periodic characteristics as well as peak-levels. From these results, it is confirmed that the horizontal-vertical interactive SR model is applicable to non-linear response analyses considering basemat uplift. Based on the comparison of the induced vertical motions due to basemat uplift by both methods, an application limit of the horizontal-vertical interactive SR model is set up at the ground contact ratio of about 50%. (author). 4 refs., 8 figs., 1 tab

  18. Linear algebra a first course with applications

    CERN Document Server

    Knop, Larry E

    2008-01-01

    Linear Algebra: A First Course with Applications explores the fundamental ideas of linear algebra, including vector spaces, subspaces, basis, span, linear independence, linear transformation, eigenvalues, and eigenvectors, as well as a variety of applications, from inventories to graphics to Google's PageRank. Unlike other texts on the subject, this classroom-tested book gives students enough time to absorb the material by focusing on vector spaces early on and using computational sections as numerical interludes. It offers introductions to Maple™, MATLAB®, and TI-83 Plus for calculating matri

  19. Non linear structures seismic analysis by modal synthesis

    International Nuclear Information System (INIS)

    Aita, S.; Brochard, D.; Guilbaud, D.; Gibert, R.J.

    1987-01-01

    The structures submitted to a seismic excitation, may present a great amplitude response which induces a non linear behaviour. These non linearities have an important influence on the response of the structure. Even in this case (local shocks) the modal synthesis method remains attractive. In this paper we will present the way of taking into account, a local non linearity (shock between structures) in the seismic response of structures, by using the modal synthesis method [fr

  20. Linear, no threshold response at low doses of ionizing radiation: ideology, prejudice and science

    International Nuclear Information System (INIS)

    Kesavan, P.C.

    2014-01-01

    The linear, no threshold (LNT) response model assumes that there is no threshold dose for the radiation-induced genetic effects (heritable mutations and cancer), and it forms the current basis for radiation protection standards for radiation workers and the general public. The LNT model is, however, based more on ideology than valid radiobiological data. Further, phenomena such as 'radiation hormesis', 'radioadaptive response', 'bystander effects' and 'genomic instability' are now demonstrated to be radioprotective and beneficial. More importantly, the 'differential gene expression' reveals that qualitatively different proteins are induced by low and high doses. This finding negates the LNT model which assumes that qualitatively similar proteins are formed at all doses. Thus, all available scientific data challenge the LNT hypothesis. (author)

  1. Laminated materials with plastic interfaces: modeling and calculation

    International Nuclear Information System (INIS)

    Sandino Aquino de los Ríos, Gilberto; Castañeda Balderas, Rubén; Diaz Diaz, Alberto; Duong, Van Anh; Chataigner, Sylvain; Caron, Jean-François; Ehrlacher, Alain; Foret, Gilles

    2009-01-01

    In this paper, a model of laminated plates called M4-5N and validated in a previous paper is modified in order to take into account interlaminar plasticity by means of displacement discontinuities at the interfaces. These discontinuities are calculated by adapting a 3D plasticity model. In order to compute the model, a Newton–Raphson-like method is employed. In this method, two sub-problems are considered: one is linear and the other is non-linear. In the linear problem the non-linear equations of the model are linearized and the calculations are performed by making use of a finite element software. By iterating the resolution of each sub-problem, one obtains after convergence the solution of the global problem. The model is then applied to the problem of a double lap, adhesively bonded joint subjected to a tensile load. The adhesive layer is modeled by an elastic–plastic interface. The results of the M4-5N model are compared with those of a commercial finite element software. A good agreement between the two computation techniques is obtained and validates the non-linear calculations proposed in this paper. Finally, the numerical tool and a delamination criterion are applied to predict delamination onset in composite laminates

  2. Piecewise linear regression splines with hyperbolic covariates

    International Nuclear Information System (INIS)

    Cologne, John B.; Sposto, Richard

    1992-09-01

    Consider the problem of fitting a curve to data that exhibit a multiphase linear response with smooth transitions between phases. We propose substituting hyperbolas as covariates in piecewise linear regression splines to obtain curves that are smoothly joined. The method provides an intuitive and easy way to extend the two-phase linear hyperbolic response model of Griffiths and Miller and Watts and Bacon to accommodate more than two linear segments. The resulting regression spline with hyperbolic covariates may be fit by nonlinear regression methods to estimate the degree of curvature between adjoining linear segments. The added complexity of fitting nonlinear, as opposed to linear, regression models is not great. The extra effort is particularly worthwhile when investigators are unwilling to assume that the slope of the response changes abruptly at the join points. We can also estimate the join points (the values of the abscissas where the linear segments would intersect if extrapolated) if their number and approximate locations may be presumed known. An example using data on changing age at menarche in a cohort of Japanese women illustrates the use of the method for exploratory data analysis. (author)

  3. The cellular approach to band structure calculations

    International Nuclear Information System (INIS)

    Verwoerd, W.S.

    1982-01-01

    A short introduction to the cellular approach in band structure calculations is given. The linear cellular approach and its potantial applicability in surface structure calculations is given some consideration in particular

  4. Reflections on the nature of non-linear responses of the climate to forcing

    Science.gov (United States)

    Ditlevsen, Peter

    2017-04-01

    On centennial to multi-millennial time scales the paleoclimatic record shows that climate responds in a very non-linear way to the external forcing. Perhaps most puzzling is the change in glacial period duration at the Middle Pleistocene Transition. From a dynamical systems perspective, this could be a change in frequency locking between the orbital forcing and the climatic response or it could be a non-linear resonance phenomenon. In both cases the climate system shows a non-trivial oscillatory behaviour. From the records it seems that this behaviour can be described by an effective dynamics on a low-dimensional slow manifold. These different possible dynamical behaviours will be discussed. References: Arianna Marchionne, Peter Ditlevsen, and Sebastian Wieczorek, "Three types of nonlinear resonances", arXiv:1605.00858 Peter Ashwin and Peter Ditlevsen, "The middle Pleistocene transition as a generic bifurcation on a slow manifold", Climate Dynamics, 45, 2683, 2015. Peter D. Ditlevsen, "The bifurcation structure and noise assisted transitions in the Pleistocene glacial cycles", Paleoceanography, 24, PA3204, 2009

  5. Experimental validation for calcul methods of structures having shock non-linearity

    International Nuclear Information System (INIS)

    Brochard, D.; Buland, P.

    1987-01-01

    For the seismic analysis of non-linear structures, numerical methods have been developed which need to be validated on experimental results. The aim of this paper is to present the design method of a test program which results will be used for this purpose. Some applications to nuclear components will illustrate this presentation [fr

  6. Response matrix calculation of a Bonner Sphere Spectrometer using ENDF/B-VII libraries

    Energy Technology Data Exchange (ETDEWEB)

    Morató, Sergio; Juste, Belén; Miró, Rafael; Verdú, Gumersindo [Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (Spain); Guardia, Vicent, E-mail: bejusvi@iqn.upv.es [GD Energy Services, Valencia (Spain). Grupo dominguis

    2017-07-01

    The present work is focused on the reconstruction of a neutron spectra using a multisphere spectrometer also called Bonner Spheres System (BSS). To that, the determination of the response detector curves is necessary therefore we have obtained the response matrix of a neutron detector by Monte Carlo (MC) simulation with MCNP6 where the use of unstructured mesh geometries is introduced as a novelty. The aim of these curves was to study the theoretical response of a widespread neutron spectrometer exposed to neutron radiation. A neutron detector device has been used in this work which is formed by a multispheres spectrometer (BSS) that uses 6 high density polyethylene spheres with different diameters. The BSS consists of a set of 0.95 g/cm{sup 3} high density polyethylene spheres. The detector is composed of a lithium iodide 6LiI cylindrical scintillator crystal 4mm x 4mm size LUDLUM Model 42 coupled to a photomultiplier tube. Thermal tables are required to include polyethylene cross section in the simulation. These data are essential to get correct and accurate results in problems involving neutron thermalization. Nowadays available literature present the response matrix calculated with ENDF.B.V cross section libraries (V.Mares et al 1993) or with ENDF.B.VI (R.Vega Carrillo et al 2007). This work uses two novelties to calculate the response matrix. On the one hand the use of unstructured meshes to simulate the geometry of the detector and the Bonner Spheres and on the other hand the use of the updated ENDF.B.VII cross sections libraries. A set of simulations have been performed to obtain the detector response matrix. 29 mono energetic neutron beams between 10 KeV to 20 MeV were used as source for each moderator sphere up to a total of 174 simulations. Each mono energetic source was defined with the same diameter as the moderating sphere used in its corresponding simulation and the spheres were uniformly irradiated from the top of the photomultiplier tube. Some

  7. Linearity Analysis and Efficiency Testing of The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) Science Cameras for Flight

    Science.gov (United States)

    Walker, Salma C.; Rachmeler, Laurel; Winebarger, Amy; Champey, Patrick; Bethge, Christian

    2018-01-01

    To unveil the complexity of the solar atmosphere, measurement of the magnetic field in the upper chromosphere and transition region is fundamentally important, as this is where the forces transition from plasma to magnetic field dominated. Measurements of the field are also needed to elucidate the energy transport from the lower atmospheric regions to the corona beyond. Such an advance in heliospheric knowledge became possible with the first flight of the international solar sounding rocket mission, CLASP. For the first time, linear polarization was measured in Hydrogen Lyman-Alpha at 121.60 nm in September 2015. For linear polarization measurements in this emission line, high sensitivity is required due to the relatively weak polarization signal compared to the intensity. To achieve this high sensitivity, a low-noise sensor is required with good knowledge of its characterization, including linearity. This work presents further refinement of the linearity characterization of the cameras flown in 2015. We compared the current from a photodiode in the light path to the digital response of the detectors. Pre-flight CCD linearity measurements were taken for all three flight cameras and calculations of the linear fits and residuals were performed. However, the previous calculations included a smearing pattern and a digital saturation region on the detectors which were not properly taken into account. The calculations have been adjusted and were repeated for manually chosen sub-regions on the detectors that were found not to be affected. We present a brief overview of the instrument, the calibration data and procedures, and a comparison of the old and new linearity results. The CLASP cameras will be reused for the successor mission, CLASP2, which will measure the Magnesium II h & k emission lines between 279.45 nm and 280.35 nm. The new approach will help to better prepare for and to improve the camera characterization for CLASP2.

  8. Linearity Analysis and Efficiency Testing of The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) Science Cameras for Flight

    Science.gov (United States)

    Walker, S. C.; Rachmeler, L.; Winebarger, A. R.; Champey, P. R.; Bethge, C.

    2017-12-01

    To unveil the complexity of the solar atmosphere, measurement of the magnetic field in the upper chromosphere and transition region is fundamentally important, as this is where the forces transition from plasma to magnetic field dominated. Measurements of the field are also needed to shed light on the energy transport from the lower atmospheric regions to the corona beyond. Such an advance in heliospheric knowledge became possible with the first flight of the international solar sounding rocket mission, CLASP. For the first time, linear polarization was measured in H Lyman-Alpha at 121.60 nm in September 2015. For linear polarization measurements in this line, high sensitivity is required due to the relatively weak polarization signal compared to the intensity. To achieve this high sensitivity, a low-noise sensor is required with good knowledge of its characterization, including linearity. This work presents further refinement of the linearity characterization of the cameras flown in 2015. We compared the current from a photodiode in the light path to the digital response of the detectors. Pre-flight CCD linearity measurements were taken for all three flight cameras and calculations of the linear fits and residuals were performed. However, the previous calculations included a smearing pattern and a digital saturation region on the detectors which were not properly taken into account. The calculations have been adjusted and were repeated for manually chosen sub-regions on the detectors that were found not to be affected. We present a brief overview of the instrument, the calibration data and procedures, and a comparison of the old and new linearity results. The CLASP cameras will be reused for the successor mission, CLASP2, which will measure the Mg II h & k lines between 279.45 nm and 280.35 nm. The new approach will help to better prepare for and to improve the camera characterization for CLASP2.

  9. KTOE, KEDAK to ENDF/B Format Conversion with Linear Linear Interpolation

    International Nuclear Information System (INIS)

    Panini, Gian Carlo

    1985-01-01

    1 - Nature of physical problem solved: This code performs a fully automated translation from KEDAK into ENDF-4 or -5 format. Output is on tape in card image format. 2 - Method of solution: Before translation the reactions are sorted in the ENDF format order. Linear-linear interpolation rule is preserved. The resonance parameters for both resolved and unresolved, could also be translated and a background cross section is formed as the difference of the calculated contribution from the parameters and the point-wise data given in the original file. Elastic angular distributions originally given in tabulated form are converted into Legendre polynomial coefficients. Energy distributions are calculated using a simple evaporation model with the temperature expressed as a function of the incident mass. 3 - Restrictions on the complexity of the problem: The existing restrictions both on KEDAK and ENDF have been applied to the array sizes used in the code, except for the number of points in a section which in the ENDF format are limited to 5000 points. The code only translates one material at a time

  10. Introducing linear functions: an alternative statistical approach

    Science.gov (United States)

    Nolan, Caroline; Herbert, Sandra

    2015-12-01

    The introduction of linear functions is the turning point where many students decide if mathematics is useful or not. This means the role of parameters and variables in linear functions could be considered to be `threshold concepts'. There is recognition that linear functions can be taught in context through the exploration of linear modelling examples, but this has its limitations. Currently, statistical data is easily attainable, and graphics or computer algebra system (CAS) calculators are common in many classrooms. The use of this technology provides ease of access to different representations of linear functions as well as the ability to fit a least-squares line for real-life data. This means these calculators could support a possible alternative approach to the introduction of linear functions. This study compares the results of an end-of-topic test for two classes of Australian middle secondary students at a regional school to determine if such an alternative approach is feasible. In this study, test questions were grouped by concept and subjected to concept by concept analysis of the means of test results of the two classes. This analysis revealed that the students following the alternative approach demonstrated greater competence with non-standard questions.

  11. Calculations of the response functions of Bonner spheres with a spherical 3He proportional counter using a realistic detector model

    International Nuclear Information System (INIS)

    Wiegel, B.; Alevra, A.V.; Siebert, B.R.L.

    1994-11-01

    A realistic geometry model of a Bonner sphere system with a spherical 3 He-filled proportional counter and 12 polyethylene moderating spheres with diameters ranging from 7,62 cm (3'') to 45,72 cm (18'') is introduced. The MCNP Monte Carlo computer code is used to calculate the responses of this Bonner sphere system to monoenergetic neutrons in the energy range between 1 meV to 20 MeV. The relative uncertainties of the responses due to the Monte Carlo calculations are less than 1% for spheres up to 30,48 cm (12'') in diameter and less than 2% for the 15'' and 18'' spheres. Resonances in the carbon cross section are seen as significant structures in the response functions. Additional calculations were made to study the influence of the 3 He number density and the polyethylene mass density on the response as well as the angular dependence of the Bonner sphere system. The calculated responses can be adjusted to a large set of calibration measurements with only a single fit factor common to all sphere diameters and energies. (orig.) [de

  12. Linear response theory for long-range interacting systems in quasistationary states.

    Science.gov (United States)

    Patelli, Aurelio; Gupta, Shamik; Nardini, Cesare; Ruffo, Stefano

    2012-02-01

    Long-range interacting systems, while relaxing to equilibrium, often get trapped in long-lived quasistationary states which have lifetimes that diverge with the system size. In this work, we address the question of how a long-range system in a quasistationary state (QSS) responds to an external perturbation. We consider a long-range system that evolves under deterministic Hamilton dynamics. The perturbation is taken to couple to the canonical coordinates of the individual constituents. Our study is based on analyzing the Vlasov equation for the single-particle phase-space distribution. The QSS represents a stable stationary solution of the Vlasov equation in the absence of the external perturbation. In the presence of small perturbation, we linearize the perturbed Vlasov equation about the QSS to obtain a formal expression for the response observed in a single-particle dynamical quantity. For a QSS that is homogeneous in the coordinate, we obtain an explicit formula for the response. We apply our analysis to a paradigmatic model, the Hamiltonian mean-field model, which involves particles moving on a circle under Hamiltonian dynamics. Our prediction for the response of three representative QSSs in this model (the water-bag QSS, the Fermi-Dirac QSS, and the Gaussian QSS) is found to be in good agreement with N-particle simulations for large N. We also show the long-time relaxation of the water-bag QSS to the Boltzmann-Gibbs equilibrium state. © 2012 American Physical Society

  13. Non-linear dielectric monitoring of biological suspensions

    International Nuclear Information System (INIS)

    Treo, E F; Felice, C J

    2007-01-01

    Non-linear dielectric spectroscopy as a tool for in situ monitoring of enzyme assumes a non-linear behavior of the sample when a sinusoidal voltage is applied to it. Even many attempts have been made to improve the original experiments, all of them had limited success. In this paper we present upgrades made to a non-linear dielectric spectrometer developed and the results obtained when using different cells. We emphasized on the electrode surface, characterizing the grinding and polishing procedure. We found that the biological medium does not behave as expected, and the non-linear response is generated in the electrode-electrolyte interface. The electrochemistry of this interface can bias unpredictably the measured non-linear response

  14. Shade response of a full size TESSERA module

    Science.gov (United States)

    Slooff, Lenneke H.; Carr, Anna J.; de Groot, Koen; Jansen, Mark J.; Okel, Lars; Jonkman, Rudi; Bakker, Jan; de Gier, Bart; Harthoorn, Adriaan

    2017-08-01

    A full size TESSERA shade tolerant module has been made and was tested under various shadow conditions. The results show that the dedicated electrical interconnection of cells result in an almost linear response under shading. Furthermore, the voltage at maximum power point is almost independent of the shadow. This decreases the demand on the voltage range of the inverter. The increased shadow linearity results in a calculated increase in annual yield of about 4% for a typical Dutch house.

  15. A computational methodology for a micro launcher engine test bench using a combined linear static and dynamic in frequency response analysis

    Directory of Open Access Journals (Sweden)

    Ion DIMA

    2017-03-01

    Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces, displacements and stress function of frequency, under a combined linear static (101 Solution - Linear Static and dynamic load in frequency response (108 Solution - Frequency Response, Direct Method, applied to a micro launcher engine test bench, using NASTRAN 400 Solution - Implicit Nonlinear. NASTRAN/PATRAN software is used. Practically in PATRAN the preprocessor has to define a linear or nonlinear static load at step 1 and a dynamic in frequency response load (time dependent at step 2. In Analyze the following options are chosen: for Solution Type Implicit Nonlinear Solution (SOL 400 is selected, for Subcases Static Load and Transient Dynamic is chosen and for Subcase Select the two cases static and dynamic will be selected. NASTRAN solver will overlap results from static analysis with the dynamic analysis. The running time will be reduced three times if using Krylov solver. NASTRAN SYSTEM (387 = -1 instruction is used in order to activate Krylov option. Also, in Analysis the OP2 Output Format shall be selected, meaning that in bdf NASTRAN input file the PARAM POST 1 instruction shall be written. The structural damping can be defined in two different ways: either at the material card or using the PARAM, G, 0.05 instruction (in this example a damping coefficient by 5% was used. The SDAMPING instruction in pair with TABDMP1 work only for dynamic in frequency response, modal method, or in direct method with viscoelastic material, not for dynamic in frequency response, direct method (DFREQ, with linear elastic material. The Direct method – DFREQ used in this example is more accurate. A set in translation of boundary conditions was used and defined at the base of the test bench.

  16. Non linear self consistency of microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.

    1987-01-01

    The self consistency of a microtearing turbulence is studied in non linear regimes where the ergodicity of the flux lines determines the electron response. The current which sustains the magnetic perturbation via the Ampere law results from the combines action of the radial electric field in the frame where the island chains are static and of the thermal electron diamagnetism. Numerical calculations show that at usual values of β pol in Tokamaks the turbulence can create a diffusion coefficient of order ν th p 2 i where p i is the ion larmor radius and ν th the electron ion collision frequency. On the other hand, collisionless regimes involving special profiles of each mode near the resonant surface seem possible

  17. Affine-response model of molecular solvation of ions: Accurate predictions of asymmetric charging free energies

    Science.gov (United States)

    Bardhan, Jaydeep P.; Jungwirth, Pavel; Makowski, Lee

    2012-01-01

    Two mechanisms have been proposed to drive asymmetric solvent response to a solute charge: a static potential contribution similar to the liquid-vapor potential, and a steric contribution associated with a water molecule's structure and charge distribution. In this work, we use free-energy perturbation molecular-dynamics calculations in explicit water to show that these mechanisms act in complementary regimes; the large static potential (∼44 kJ/mol/e) dominates asymmetric response for deeply buried charges, and the steric contribution dominates for charges near the solute-solvent interface. Therefore, both mechanisms must be included in order to fully account for asymmetric solvation in general. Our calculations suggest that the steric contribution leads to a remarkable deviation from the popular “linear response” model in which the reaction potential changes linearly as a function of charge. In fact, the potential varies in a piecewise-linear fashion, i.e., with different proportionality constants depending on the sign of the charge. This discrepancy is significant even when the charge is completely buried, and holds for solutes larger than single atoms. Together, these mechanisms suggest that implicit-solvent models can be improved using a combination of affine response (an offset due to the static potential) and piecewise-linear response (due to the steric contribution). PMID:23020318

  18. Linear and Non-Linear Response of Liquid and Solid Particles to Energetic Radiation

    Science.gov (United States)

    1991-03-11

    but with the beam left within and upon the surface of a spherical particle illuminat - circularly polarized. (The fifth-order corrected, linearly po...specific situation. Figure 1 shows a schematic of the imaging system under consideration. The incident illuminat - ing radiation is generated from a pulsed

  19. Self-consistent-field calculations of atoms and ions using a modified local-density approximation

    International Nuclear Information System (INIS)

    Liberman, D.A.; Albritton, J.R.; Wilson, B.G.; Alley, W.E.

    1994-01-01

    Local-density-approximation calculations of atomic structure are useful for the description of atoms and ions in plasmas. The large number of different atomic configurations that exist in typical plasmas leads one to consider the expression of total energies in terms of a Taylor series in the orbital occupation numbers. Two schemes for computing the second derivative Taylor-series coefficients are given; the second, and better one, uses the linear response method developed by Zangwill and Soven [Phys. Rev. A 21, 1561 (1980)] for the calculation of optical response in atoms. A defect in the local-density approximation causes some second derivatives involving Rydberg orbitals to be infinite. This is corrected by using a modified local-density approximation that had previously been proposed [Phys. Rev. B 2, 244 (1970)

  20. The art of linear electronics

    CERN Document Server

    Hood, John Linsley

    2013-01-01

    The Art of Linear Electronics presents the principal aspects of linear electronics and techniques in linear electronic circuit design. The book provides a wide range of information on the elucidation of the methods and techniques in the design of linear electronic circuits. The text discusses such topics as electronic component symbols and circuit drawing; passive and active semiconductor components; DC and low frequency amplifiers; and the basic effects of feedback. Subjects on frequency response modifying circuits and filters; audio amplifiers; low frequency oscillators and waveform generato

  1. Pancreatic beta cell function increases in a linear dose-response manner following exercise training in adults with prediabetes

    DEFF Research Database (Denmark)

    Malin, Steven K; Solomon, Thomas; Blaszczak, Alecia

    2013-01-01

    While some studies suggest that a linear dose-response relationship exists between exercise and insulin sensitivity, the exercise dose required to enhance pancreatic beta-cell function is unknown. Thirty-five older, obese adults with prediabetes underwent a progressive 12-week supervised exercise...

  2. Non-linear frequency response of non-isothermal adsorption controlled by micropore diffusion with variable diffusivity

    Directory of Open Access Journals (Sweden)

    MENKA PETKOVSKA

    2000-12-01

    Full Text Available The concept of higher order frequency response functions (FRFs is used for the analysis of non-linear adsorption kinetics on a particle scale, for the case of non-isothermal micropore diffusion with variable diffusivity. Six series of FRFs are defined for the general non-isothermal case. A non-linerar mathematical model is postulated and the first and second order FRFs derived and simulated. A variable diffusivity influences the shapes of the second order FRFs relating the sorbate concentration in the solid phase and t he gas pressure significantly, but they still keep their characteristics which can be used for discrimination of this from other kinetic mechanisms. It is also shown that first and second order particle FRFs offter sufficient information for an easy and fast estimation of all model parameters, including those defining the system non-linearity.

  3. Dose calculation on voxels phantoms using the GEANT4 code

    International Nuclear Information System (INIS)

    Martins, Maximiano C.; Santos, Denison S.; Queiroz Filho, Pedro P.; Begalli, Marcia

    2009-01-01

    This work implemented an anthropomorphic phantom of voxels on the structure of Monte Carlo GEANT4, for utilization by professionals from the radioprotection, external dosimetry and medical physics. This phantom allows the source displacement that can be isotropic punctual, plain beam, linear or radioactive gas, in order to obtain diverse irradiation geometries. In them, the radioactive sources exposure is simulated viewing the determination of effective dose or the dose in each organ of the human body. The Zubal head and body trunk phantom was used, and we can differentiate the organs and tissues by the chemical constitution in soft tissue, lung tissue, bone tissue, water and air. The calculation method was validated through the comparison with other well established method, the Visual Monte Carlo (VMC). Besides, a comparison was done with the international recommendation for the evaluation of dose by exposure to punctual sources, described in the document TECDOC - 1162- Generic Procedures for Assessment and Response During a Radiological Emergency, where analytical expressions for this calculation are given. Considerations are made on the validity limits of these expressions for various irradiation geometries, including linear sources, immersion into clouds and contaminated soils

  4. A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network.

    Science.gov (United States)

    Maier, M; Müller, K W; Heussinger, C; Köhler, S; Wall, W A; Bausch, A R; Lieleg, O

    2015-05-01

    Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics.

  5. A computer tool for a minimax criterion in binary response and heteroscedastic simple linear regression models.

    Science.gov (United States)

    Casero-Alonso, V; López-Fidalgo, J; Torsney, B

    2017-01-01

    Binary response models are used in many real applications. For these models the Fisher information matrix (FIM) is proportional to the FIM of a weighted simple linear regression model. The same is also true when the weight function has a finite integral. Thus, optimal designs for one binary model are also optimal for the corresponding weighted linear regression model. The main objective of this paper is to provide a tool for the construction of MV-optimal designs, minimizing the maximum of the variances of the estimates, for a general design space. MV-optimality is a potentially difficult criterion because of its nondifferentiability at equal variance designs. A methodology for obtaining MV-optimal designs where the design space is a compact interval [a, b] will be given for several standard weight functions. The methodology will allow us to build a user-friendly computer tool based on Mathematica to compute MV-optimal designs. Some illustrative examples will show a representation of MV-optimal designs in the Euclidean plane, taking a and b as the axes. The applet will be explained using two relevant models. In the first one the case of a weighted linear regression model is considered, where the weight function is directly chosen from a typical family. In the second example a binary response model is assumed, where the probability of the outcome is given by a typical probability distribution. Practitioners can use the provided applet to identify the solution and to know the exact support points and design weights. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Calculation methods of reactivity using derivatives of nuclear power and Filter fir

    International Nuclear Information System (INIS)

    Diaz, Daniel Suescun

    2007-01-01

    This work presents two new methods for the solution of the inverse point kinetics equation. The first method is based on the integration by parts of the integral of the inverse point kinetics equation, which results in a power series in terms of the nuclear power in time dependence. Applying some conditions to the nuclear power, the reactivity is represented as first and second derivatives of this nuclear power. This new calculation method for reactivity has special characteristics, amongst which the possibility of using different sampling periods, and the possibility of restarting the calculation, after its interruption associated it with a possible equipment malfunction, allowing the calculation of reactivity in a non-continuous way. Apart from this reactivity can be obtained with or without dependency on the nuclear power memory. The second method is based on the Laplace transform of the point kinetics equations, resulting in an expression equivalent to the inverse kinetics equation as a function of the power history. The reactivity can be written in terms of the summation of convolution with response to impulse, characteristic of a linear system. For its digital form the Z-transform is used, which is the discrete version of the Laplace transform. In this method it can be pointed out that the linear part is equivalent to a filter named Finite Impulse Response (Fir). The Fir filter will always be, stable and non-varying in time, and, apart from this, it can be implemented in the non-recursive way. This type of implementation does not require feedback, allowing the calculation of reactivity in a continuous way. The proposed methods were validated using signals with random noise and showing the relationship between the reactivity difference and the degree of the random noise. (author)

  7. Swelling and Shrinking Properties of Thermo-Responsive Polymeric Ionic Liquid Hydrogels with Embedded Linear pNIPAAM

    Directory of Open Access Journals (Sweden)

    Simon Gallagher

    2014-03-01

    Full Text Available In this study, varying concentrations of linear pNIPAAM have been incorporated for the first time into a thermo-responsive polymeric ionic liquid (PIL hydrogel, namely tributyl-hexyl phosphonium 3-sulfopropylacrylate (P-SPA, to produce semi-interpenetrating polymer networks. The thermal properties of the resulting hydrogels have been investigated along with their thermo-induced shrinking and reswelling capabilities. The semi-interpenetrating networks (IPN hydrogels were found to have improved shrinking and reswelling properties compared with their PIL counterpart. At elevated temperatures (50–80 °C, it was found that the semi-IPN with the highest concentration of hydrophobic pNIPAAM exhibited the highest shrinking percentage of ~40% compared to the conventional P-SPA, (27%. This trend was also found to occur for the reswelling measurements, with semi-IPN hydrogels producing the highest reswelling percentage of ~67%, with respect to its contracted state. This was attributed to an increase in water affinity due to the presence of hydrophilic pNIPAAM. Moreover, the presence of linear pNIPAAM in the polymer matrix leads to improved shrinking and reswelling response compared to the equivalent PIL.

  8. Stanford Linear Collider magnet positioning

    International Nuclear Information System (INIS)

    Wand, B.T.

    1991-08-01

    For the installation of the Stanford Linear Collider (SLC) the positioning and alignment of the beam line components was performed in several individual steps. In the following the general procedures for each step are outlined. The calculation of ideal coordinates for the magnets in the entire SLC will be discussed in detail. Special emphasis was given to the mathematical algorithms and geometry used in the programs to calculate these ideal positions. 35 refs., 21 figs

  9. A note on the relationships between multiple imputation, maximum likelihood and fully Bayesian methods for missing responses in linear regression models.

    Science.gov (United States)

    Chen, Qingxia; Ibrahim, Joseph G

    2014-07-01

    Multiple Imputation, Maximum Likelihood and Fully Bayesian methods are the three most commonly used model-based approaches in missing data problems. Although it is easy to show that when the responses are missing at random (MAR), the complete case analysis is unbiased and efficient, the aforementioned methods are still commonly used in practice for this setting. To examine the performance of and relationships between these three methods in this setting, we derive and investigate small sample and asymptotic expressions of the estimates and standard errors, and fully examine how these estimates are related for the three approaches in the linear regression model when the responses are MAR. We show that when the responses are MAR in the linear model, the estimates of the regression coefficients using these three methods are asymptotically equivalent to the complete case estimates under general conditions. One simulation and a real data set from a liver cancer clinical trial are given to compare the properties of these methods when the responses are MAR.

  10. Linear and nonlinear auditory response properties of interneurons in a high-order avian vocal motor nucleus during wakefulness.

    Science.gov (United States)

    Raksin, Jonathan N; Glaze, Christopher M; Smith, Sarah; Schmidt, Marc F

    2012-04-01

    Motor-related forebrain areas in higher vertebrates also show responses to passively presented sensory stimuli. However, sensory tuning properties in these areas, especially during wakefulness, and their relation to perception, are poorly understood. In the avian song system, HVC (proper name) is a vocal-motor structure with auditory responses well defined under anesthesia but poorly characterized during wakefulness. We used a large set of stimuli including the bird's own song (BOS) and many conspecific songs (CON) to characterize auditory tuning properties in putative interneurons (HVC(IN)) during wakefulness. Our findings suggest that HVC contains a diversity of responses that vary in overall excitability to auditory stimuli, as well as bias in spike rate increases to BOS over CON. We used statistical tests to classify cells in order to further probe auditory responses, yielding one-third of neurons that were either unresponsive or suppressed and two-thirds with excitatory responses to one or more stimuli. A subset of excitatory neurons were tuned exclusively to BOS and showed very low linearity as measured by spectrotemporal receptive field analysis (STRF). The remaining excitatory neurons responded well to CON stimuli, although many cells still expressed a bias toward BOS. These findings suggest the concurrent presence of a nonlinear and a linear component to responses in HVC, even within the same neuron. These characteristics are consistent with perceptual deficits in distinguishing BOS from CON stimuli following lesions of HVC and other song nuclei and suggest mirror neuronlike qualities in which "self" (here BOS) is used as a referent to judge "other" (here CON).

  11. Time delays between core power production and external detector response from Monte Carlo calculations

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.

    1996-01-01

    One primary concern for design of safety systems for reactors is the time response of external detectors to changes in the core. This paper describes a way to estimate the time delay between the core power production and the external detector response using Monte Carlo calculations and suggests a technique to measure the time delay. The Monte Carlo code KENO-NR was used to determine the time delay between the core power production and the external detector response for a conceptual design of the Advanced Neutron Source (ANS) reactor. The Monte Carlo estimated time delay was determined to be about 10 ms for this conceptual design of the ANS reactor

  12. Pulse height non-linearity in LaBr3:Ce crystal for gamma ray spectrometry and imaging

    International Nuclear Information System (INIS)

    Pani, R.; Cinti, M.N.; Pellegrini, R.; Bennati, P.; Ridolfi, S.; Scafe, R.; Orsolini Cencelli, V.; De Notaristefani, F.; Fabbri, A.; Navarria, F.L.; Lanconelli, N.; Moschini, G.; Boccaccio, P.

    2011-01-01

    In this paper the response in term of pulse height linearity of two Hamamatsu photomultipliers is investigated, when coupled to a LaBr 3 :Ce scintillation crystal. The two photodetectors have high quantum efficiency and in particular 30% for R6231-01 and 42% for R7600-200 tube. The substantial difference is in the dynode structure, linear focused and metal channel for R6231 and R7600 respectively. In this work in order to verify the non-linearity effects on the pulse height distribution, due principally to the high and fast light production of LaBr 3 :Ce scintillator, we propose a 'peak by peak' procedure to calibrate the pulse height distribution. Utilizing a specific fragmentation of the calibration curve in subsets, the calculated energy values are very similar for both PMTs. This result confirmed the potentiality of the procedure to highlight the non-linearity effects on pulse height distribution.

  13. Linear response at the 4-component relativistic density-functional level: application to the frequency-dependent dipole polarizability of Hg, AuH and PtH2

    International Nuclear Information System (INIS)

    Salek, Pawel; Helgaker, Trygve; Saue, Trond

    2005-01-01

    We report the implementation and application of linear response density-functional theory (DFT) based on the 4-component relativistic Dirac-Coulomb Hamiltonian. The theory is cast in the language of second quantization and is based on the quasienergy formalism (Floquet theory), replacing the initial state dependence of the Runge-Gross theorem by periodic boundary conditions. Contradictions in causality and symmetry of the time arguments are thereby avoided and the exchange-correlation potential and kernel can be expressed as functional derivatives of the quasienergy. We critically review the derivation of the quasienergy analogues of the Hohenberg-Kohn theorem and the Kohn-Sham formalism and discuss the nature of the quasienergy exchange-correlation functional. Structure is imposed on the response equations in terms of Hermiticity and time-reversal symmetry. It is observed that functionals of spin and current densities, corresponding to time-antisymmetric operators, contribute to frequency-dependent and not static electric properties. Physically, this follows from the fact that only a time-dependent electric field creates a magnetic field. It is furthermore observed that hybrid functionals enhance spin polarization since only exact exchange contributes to anti-Hermitian trial vectors. We apply 4-component relativistic linear response DFT to the calculation of the frequency-dependent polarizability of the isoelectronic series Hg, AuH and PtH 2 . Unlike for the molecules, the effect of electron correlation on the polarizability of the mercury atom is very large, about 25%. We observe a remarkable performance of the local-density approximation (LDA) functional in reproducing the experimental frequency-dependent polarizability of this atom, clearly superior to that of the BLYP and B3LYP functionals. This allows us to extract Cauchy moments (S(-4) = 382.82 and S(-6) = 6090.89 a.u.) that we believe are superior to experiment since we go to higher order in the Cauchy

  14. Seismic calculations for underground reactor buildings

    International Nuclear Information System (INIS)

    Altes, J.; Koschmieder, D.

    1977-08-01

    Embedding the buildings in soil changes their seismic response behaviour as compared to surface buildings, i.e. higher stiffness and increased radiation damping is attained. Finite element models are best suited for determinig the effects of embedment and of layered subsoil. The code used was the LUSH2-programme, which is applicable to 2-dimensional problems and provides an approximate treatment for non-linear dynamic soil behaviour. For embedded buildings there is a good agreement between 2- and 3-dimensional models of the response for points below the soil surface. It is therefore permissible to use the less costly 2-dimensional programmes. To simulate earthquake, three different acceleration-time histories, derived from actual measurements and from artificial synthesis, with differing response spectra were fed in. The soil characteristics assumed are applicable to a representative site in Germany. Three different types of models were examined, using analytical models with only a few elements for parametric studies and with up to 716 elements for more precise calculations. A comparison was made between the semi-embedment, the total embedment, and installation of the reactor building above-ground. (orig.) [de

  15. Biostatistics Series Module 6: Correlation and Linear Regression.

    Science.gov (United States)

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient ( r ). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P correlation coefficient can also be calculated for an idea of the correlation in the population. The value r 2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation ( y = a + bx ), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.

  16. Analysis of Nonlinear Dynamics in Linear Compressors Driven by Linear Motors

    Science.gov (United States)

    Chen, Liangyuan

    2018-03-01

    The analysis of dynamic characteristics of the mechatronics system is of great significance for the linear motor design and control. Steady-state nonlinear response characteristics of a linear compressor are investigated theoretically based on the linearized and nonlinear models. First, the influence factors considering the nonlinear gas force load were analyzed. Then, a simple linearized model was set up to analyze the influence on the stroke and resonance frequency. Finally, the nonlinear model was set up to analyze the effects of piston mass, spring stiffness, driving force as an example of design parameter variation. The simulating results show that the stroke can be obtained by adjusting the excitation amplitude, frequency and other adjustments, the equilibrium position can be adjusted by adjusting the DC input, and to make the more efficient operation, the operating frequency must always equal to the resonance frequency.

  17. The application of rational approximation in the calculation of a temperature field with a non-linear surface heat-transfer coefficient during quenching for 42CrMo steel cylinder

    Science.gov (United States)

    Cheng, Heming; Huang, Xieqing; Fan, Jiang; Wang, Honggang

    1999-10-01

    The calculation of a temperature field has a great influence upon the analysis of thermal stresses and stains during quenching. In this paper, a 42CrMo steel cylinder was used an example for investigation. From the TTT diagram of the 42CrMo steel, the CCT diagram was simulated by mathematical transformation, and the volume fraction of phase constituents was calculated. The thermal physical properties were treated as functions of temperature and the volume fraction of phase constituents. The rational approximation was applied to the finite element method. The temperature field with phase transformation and non-linear surface heat-transfer coefficients was calculated using this technique, which can effectively avoid oscillationin the numerical solution for a small time step. The experimental results of the temperature field calculation coincide with the numerical solutions.

  18. Critical dose threshold for TL dose response non-linearity: Dependence on the method of analysis: It’s not only the data

    International Nuclear Information System (INIS)

    Datz, H.; Horowitz, Y.S.; Oster, L.; Margaliot, M.

    2011-01-01

    It is demonstrated that the method of data analysis, i.e., the method of the phenomenological/theoretical interpretation of dose response data, can greatly influence the estimation of the onset of deviation from dose response linearity of the high temperature thermoluminescence in LiF:Mg,Ti (TLD-100).

  19. A Linear Gradient Theory Model for Calculating Interfacial Tensions of Mixtures

    DEFF Research Database (Denmark)

    Zou, You-Xiang; Stenby, Erling Halfdan

    1996-01-01

    excellent agreement between the predicted and experimental IFTs at high and moderate levels of IFTs, while the agreement is reasonably accurate in the near-critical region as the used equations of state reveal classical scaling behavior. To predict accurately low IFTs (sigma ... with proper scaling behavior at the critical point is at least required.Key words: linear gradient theory; interfacial tension; equation of state; influence parameter; density profile....

  20. Dynamic Response of a Floating Bridge Structure

    OpenAIRE

    Viuff, Thomas; Leira, Bernt Johan; Øiseth, Ole; Xiang, Xu

    2016-01-01

    A theoretical overview of the stochastic dynamic analysis of a floating bridge structure is presented. Emphasis is on the wave-induced response and the waves on the sea surface are idealized as a zero mean stationary Gaussian process. The first-order wave load processes are derived using linear potential theory and the structural idealization is based on the Finite Element Method. A frequency response calculation is presented for a simplified floating bridge structure example emphasising the ...

  1. Dynamic linearization system for a radiation gauge

    International Nuclear Information System (INIS)

    Panarello, J.A.

    1977-01-01

    The linearization system and process converts a high resolution non-linear analog input signal, representative of the thickness of an object, into a high resolution linear analog output signal suitable for use in driving a variety of output devices. The system requires only a small amount of memory for storing pre-calculated non-linear correction coefficients. The system channels the input signal to separate circuit paths so that it may be used directly to; locate an appropriate correction coefficient; develop a correction term after an appropriate correction coefficient is located; and develop a linearized signal having the same high resolution inherent in the input signal. The system processes the linearized signal to compensate for the possible errors introduced by radiation source noise. The processed linearized signal is the high resolution linear analog output signal which accurately represents the thickness of the object being gauged

  2. Evaluation of bipolar phototransistors response used as detectors in megavoltage beams generated by a linear accelerator

    International Nuclear Information System (INIS)

    Silva, J.O. da; Magalhaes, C.M.S. de; Santos, L.A.P. dos

    2007-01-01

    Commercial bipolar phototransistors have been used as detectors for low energy X-rays. However, when they are used in high energy X-ray beams, there is a certain loss of sensitivity to the ionizing radiation. This damage is cumulative and irreversible. There are several factors that yield variations in the phototransistor response when it is under high energy radiation, such as its fabrication technology and its electrical characteristics. The aim of this work is to present experimental results that are used to correlate the response curve of SMT (Surface-Mount Technology) bipolar phototransistors with their loss of sensitivity after irradiation from a Linac (linear accelerator) megavoltage beams. (author)

  3. Calculations of stationary solutions for the non linear viscous resistive MHD equations in slab geometry

    International Nuclear Information System (INIS)

    Edery, D.

    1983-11-01

    The reduced system of the non linear resistive MHD equations is used in the 2-D one helicity approximation in the numerical computations of stationary tearing modes. The critical magnetic Raynolds number S (S=tausub(r)/tausub(H) where tausub(R) and tausub(H) are respectively the characteristic resistive and hydro magnetic times) and the corresponding linear solution are computed as a starting approximation for the full non linear equations. These equations are then treated numerically by an iterative procedure which is shown to be rapidly convergent. A numerical application is given in the last part of this paper

  4. Local correlation detection with linearity enhancement in streaming data

    KAUST Repository

    Xie, Qing; Shang, Shuo; Yuan, Bo; Pang, Chaoyi; Zhang, Xiangliang

    2013-01-01

    -correlation calculation with time delay allowed. In addition, we introduce a shape-based similarity measure into the framework, which ref nes the results by representative trend patterns to enhance the signif cance of linearity. The similarity of proposed linear

  5. Research on linear driving of wave maker; Zoha sochi no linear drive ka kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, I; Taniguchi, S; Nohara, T [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1997-10-01

    The water tank test of marine structures or submarine structures uses a wave maker to generate waves. A typical flap wave maker uses the wave making flap penetrating a water surface whose bottom is fixed on a tank bottom through a hinge, and the top is connected with a rod driven by rotating servomotor for reciprocating motion of the flap. However, this driving gear using a rotating servomotor and a bowl- screw has some defects such as noise caused by bowl rotation, backlash due to wear and limited driving speed. A linear motor with less friction mechanisms was thus applied to the driving gear. The performance test result of the prototype driving gear using a linear motor showed the possibility of the linear driven wave maker. The linear driven wave maker could also achieve low noise and simple mechanism. The sufficient durability and applicability of the linear driven wave maker mechanism were confirmed through strength calculation necessary for improving the prototype wave maker. 1 ref., 5 figs., 2 tabs.

  6. Importance of the alignment of polar π conjugated molecules inside carbon nanotubes in determining second-order non-linear optical properties.

    Science.gov (United States)

    Yumura, Takashi; Yamamoto, Wataru

    2017-09-20

    We employed density functional theory (DFT) calculations with dispersion corrections to investigate energetically preferred alignments of certain p,p'-dimethylaminonitrostilbene (DANS) molecules inside an armchair (m,m) carbon nanotube (n × DANS@(m,m)), where the number of inner molecules (n) is no greater than 3. Here, three types of alignments of DANS are considered: a linear alignment in a parallel fashion and stacking alignments in parallel and antiparallel fashions. According to DFT calculations, a threshold tube diameter for containing DANS molecules in linear or stacking alignments was found to be approximately 1.0 nm. Nanotubes with diameters smaller than 1.0 nm result in the selective formation of linearly aligned DANS molecules due to strong confinement effects within the nanotubes. By contrast, larger diameter nanotubes allow DANS molecules to align in a stacking and linear fashion. The type of alignment adopted by the DANS molecules inside a nanotube is responsible for their second-order non-linear optical properties represented by their static hyperpolarizability (β 0 values). In fact, we computed β 0 values of DANS assemblies taken from optimized n × DANS@(m,m) structures, and their values were compared with those of a single DANS molecule. DFT calculations showed that β 0 values of DANS molecules depend on their alignment, which decrease in the following order: linear alignment > parallel stacking alignment > antiparallel stacking alignment. In particular, a linear alignment has a β 0 value more significant than that of the same number of isolated molecules. Therefore, the linear alignment of DANS molecules, which is only allowed inside smaller diameter nanotubes, can strongly enhance their second-order non-linear optical properties. Since the nanotube confinement determines the alignment of DANS molecules, a restricted nanospace can be utilized to control their second-order non-linear optical properties. These DFT findings can assist in the

  7. Calculation of the interfacial tension of the methane-water system with the linear gradient theory

    DEFF Research Database (Denmark)

    Schmidt, Kurt A. G.; Folas, Georgios; Kvamme, Bjørn

    2007-01-01

    The linear gradient theory (LGT) combined with the Soave-Redlich-Kwong (SRK EoS) and the Peng-Robinson (PR EoS) equations of state has been used to correlate the interfacial tension data of the methane-water system. The pure component influence parameters and the binary interaction coefficient...... for the mixture influence parameter have been obtained for this system. The model was successfully applied to correlate the interfacial tension data set to within 2.3% for the linear gradient theory and the SRK EoS (LGT-SRK) and 2.5% for the linear gradient theory and PE EoS (LGT-PR). A posteriori comparison...... of data not used in the parameterisation were to within 3.2% for the LGT-SRK model and 2.7% for the LGT-PR model. An exhaustive literature review resulted in a large database for the investigation which covers a wide range of temperature and pressures. The results support the success of the linear...

  8. Lysis solution composition and non-linear dose-response to ionizing radiation in the non-denaturing DNA filter elution technique

    International Nuclear Information System (INIS)

    Radford, I.R.

    1990-01-01

    The suggestion by Okayasu and Iliakis (1989) that the non-linear dose-response curve, obtained with the non-denaturing filter elution technique for mammalian cells exposed to low-LET radiation, is the result of a technical artefact, was not confirmed. (author)

  9. Analysis of γ spectra in airborne radioactivity measurements using multiple linear regressions

    International Nuclear Information System (INIS)

    Bao Min; Shi Quanlin; Zhang Jiamei

    2004-01-01

    This paper describes the net peak counts calculating of nuclide 137 Cs at 662 keV of γ spectra in airborne radioactivity measurements using multiple linear regressions. Mathematic model is founded by analyzing every factor that has contribution to Cs peak counts in spectra, and multiple linear regression function is established. Calculating process adopts stepwise regression, and the indistinctive factors are eliminated by F check. The regression results and its uncertainty are calculated using Least Square Estimation, then the Cs peak net counts and its uncertainty can be gotten. The analysis results for experimental spectrum are displayed. The influence of energy shift and energy resolution on the analyzing result is discussed. In comparison with the stripping spectra method, multiple linear regression method needn't stripping radios, and the calculating result has relation with the counts in Cs peak only, and the calculating uncertainty is reduced. (authors)

  10. Multilevel domain decomposition for electronic structure calculations

    International Nuclear Information System (INIS)

    Barrault, M.; Cances, E.; Hager, W.W.; Le Bris, C.

    2007-01-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure

  11. A finite element method for SSI time history calculation

    International Nuclear Information System (INIS)

    Ni, X.; Gantenbein, F.; Petit, M.

    1989-01-01

    The method which is proposed is based on a finite element modelization for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method is presented, then applications are given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior are described

  12. Applied Research of Enterprise Cost Control Based on Linear Programming

    Directory of Open Access Journals (Sweden)

    Yu Shuo

    2015-01-01

    This paper researches the enterprise cost control through the linear programming model, and analyzes the restriction factors of the labor of enterprise production, raw materials, processing equipment, sales price, and other factors affecting the enterprise income, so as to obtain an enterprise cost control model based on the linear programming. This model can calculate rational production mode in the case of limited resources, and acquire optimal enterprise income. The production guiding program and scheduling arrangement of the enterprise can be obtained through calculation results, so as to provide scientific and effective guidance for the enterprise production. This paper adds the sensitivity analysis in the linear programming model, so as to learn about the stability of the enterprise cost control model based on linear programming through the sensitivity analysis, and verify the rationality of the model, and indicate the direction for the enterprise cost control. The calculation results of the model can provide a certain reference for the enterprise planning in the market economy environment, which have strong reference and practical significance in terms of the enterprise cost control.

  13. Calculation of neutron shielding using an unidimensional model of transportation in formulation of discrete ordinates with scattering linearly anisotropic and a speed

    International Nuclear Information System (INIS)

    Libotte, Rafael Barbosa; Alves Filho, Hermes; Oliva, Amaury Muñoz

    2017-01-01

    The physical phenomenon of transport of neutral particles in a host environment is of interest in various scientific applications, e.g., nuclear reactors, shielding calculations, radiological protection, nuclear medicine, agronomy, materials science, oil prospecting, etc. In all these areas there is a need for an accurate description of the transport of the particles in the host medium. In this class of applications are the neutron shielding problems, also referred to as 'fixed-source' problems, where the interaction of the particles with the medium does not produce new neutrons, i.e., non-multiplicative medium. In this context, the development of tools that model these problems is relevant and of a beneficial return to society. In this work, we propose the development of deterministic mathematical and computational modeling of neutron transport using the linearized equation of Boltzmann applied to neutron shielding problems. Here we present also the development of a spectro-nodal method (coarse mesh) considering the scattering phenomenon as being linearly anisotropic. We show the results using a computational application, developed in Java language, version 1.8.0 9 1

  14. Summary of calculations of dynamic response characteristics and design stress of the 1/5 scale PSE torus

    International Nuclear Information System (INIS)

    Arthur, D.

    1977-01-01

    The Lawrence Livermore Laboratory is currently involved in a 1/5 scale testing program on the Mark I BWR pressure suppression system. A key element of the test setup is a pressure vessel that is a 90 0 sector of a torus. Proper performance of the 90 0 torus depends on its structural integrity and structural dynamic characteristics. It must sustain the internal pressurization of the planned tests, and its dynamic response to the transient test loads should be minimal. If the structural vibrations are too great, interpretation of important load cell and pressure transducer data will be difficult. The purpose of the report is to bring together under one cover calculations pertaining to the structural dynamic characteristics and structural integrity of 90 0 torus. The report is divided into the following sections: (1) system description in which the torus and associated hardware are briefly described; (2) structural dynamics in which calculations of natural frequency and dynamic response are presented; and (3) structural integrity in which stress calculations for design purposes are presented; and an appendix which contains an LLL internal report comparing the expected load cell response for a three and four-point supported torus

  15. Solving the linear radiation problem using a volume method on an overset grid

    DEFF Research Database (Denmark)

    Read, Robert; Bingham, Harry B.

    2012-01-01

    of numerical results with established analytical solutions. The linear radiation problem is considered in this paper. A two-dimensional computational tool has been developed to calculate the force applied to a floating body of arbitrary form in response to a prescribed displacement. Fourier transforms......This paper describes recent progress towards the development of a computational tool, based on potential ow theory, that can accurately and effciently simulate wave-induced loadings on marine structures. Engsig-Karup et al. (2009) have successfully developed an arbitrary-order, finite...

  16. Implantation of a new calculation method of fuel depletion in the CITHAM code

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.

    1985-01-01

    It is evaluated the accuracy of the linear aproximation method used in the CITHAN code to obtain the solution of depletion equations. Results are compared with the Benchmark problem. The convenience of depletion chain before criticality calculations is analysed. The depletion calculation was modified using linear combination technic of linear chains. (M.C.K.) [pt

  17. Multivariate covariance generalized linear models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Jørgensen, Bent

    2016-01-01

    are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...

  18. A non-linear, finite element, heat conduction code to calculate temperatures in solids of arbitrary geometry

    International Nuclear Information System (INIS)

    Tayal, M.

    1987-01-01

    Structures often operate at elevated temperatures. Temperature calculations are needed so that the design can accommodate thermally induced stresses and material changes. A finite element computer called FEAT has been developed to calculate temperatures in solids of arbitrary shapes. FEAT solves the classical equation for steady state conduction of heat. The solution is obtained for two-dimensional (plane or axisymmetric) or for three-dimensional problems. Gap elements are use to simulate interfaces between neighbouring surfaces. The code can model: conduction; internal generation of heat; prescribed convection to a heat sink; prescribed temperatures at boundaries; prescribed heat fluxes on some surfaces; and temperature-dependence of material properties like thermal conductivity. The user has a option of specifying the detailed variation of thermal conductivity with temperature. For convenience to the nuclear fuel industry, the user can also opt for pre-coded values of thermal conductivity, which are obtained from the MATPRO data base (sponsored by the U.S. Nuclear Regulatory Commission). The finite element method makes FEAT versatile, and enables it to accurately accommodate complex geometries. The optional link to MATPRO makes it convenient for the nuclear fuel industry to use FEAT, without loss of generality. Special numerical techniques make the code inexpensive to run, for the type of material non-linearities often encounter in the analysis of nuclear fuel. The code, however, is general, and can be used for other components of the reactor, or even for non-nuclear systems. The predictions of FEAT have been compared against several analytical solutions. The agreement is usually better than 5%. Thermocouple measurements show that the FEAT predictions are consistent with measured changes in temperatures in simulated pressure tubes. FEAT was also found to predict well, the axial variations in temperatures in the end-pellets(UO 2 ) of two fuel elements irradiated

  19. Spatial Processes in Linear Ordering

    Science.gov (United States)

    von Hecker, Ulrich; Klauer, Karl Christoph; Wolf, Lukas; Fazilat-Pour, Masoud

    2016-01-01

    Memory performance in linear order reasoning tasks (A > B, B > C, C > D, etc.) shows quicker, and more accurate responses to queries on wider (AD) than narrower (AB) pairs on a hypothetical linear mental model (A -- B -- C -- D). While indicative of an analogue representation, research so far did not provide positive evidence for spatial…

  20. Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media

    Science.gov (United States)

    Gallican, Valentin; Brenner, Renald; Suquet, Pierre

    2017-11-01

    This article addresses the asymptotic response of viscoelastic heterogeneous media in the frequency domain, at high and low frequencies, for different types of elementary linear viscoelastic constituents. By resorting to stationary principles for complex viscoelasticity and adopting a classification of the viscoelastic behaviours based on the nature of their asymptotic regimes, either elastic or viscous, four exact relations are obtained on the overall viscoelastic complex moduli in each case. Two relations are related to the asymptotic uncoupled heterogeneous problems, while the two remaining ones result from the viscoelastic coupling that manifests itself in the transient regime. These results also provide exact conditions on certain integrals in time of the effective relaxation spectrum. This general setting encompasses the results obtained in preceding studies on mixtures of Maxwell constituents [1,2]. xml:lang="fr"

  1. On the Boundary between Nonlinear Jump Phenomenon and Linear Response of Hypoid Gear Dynamics

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2011-01-01

    Full Text Available A nonlinear time-varying (NLTV dynamic model of a hypoid gear pair system with time-dependent mesh point, line-of-action vector, mesh stiffness, mesh damping, and backlash nonlinearity is formulated to analyze the transitional phase between nonlinear jump phenomenon and linear response. It is found that the classical jump discontinuity will occur if the dynamic mesh force exceeds the mean value of tooth mesh force. On the other hand, the propensity for the gear response to jump disappears when the dynamic mesh force is lower than the mean mesh force. Furthermore, the dynamic analysis is able to distinguish the specific tooth impact types from analyzing the behaviors of the dynamic mesh force. The proposed theory is general and also applicable to high-speed spur, helical and spiral bevel gears even though those types of gears are not the primary focus of this paper.

  2. Calculation of the linear heat generation rates which violate the thermomechanical limit of plastic deformation of the fuel cladding in function of the burn up of a BWR fuel rod type

    International Nuclear Information System (INIS)

    Lucatero, M.A.; Hernandez L, H.

    2003-01-01

    The linear heat generation rates (LHGR) for a BWR type generic fuel rod, as function of the burnup that violate the thermomechanical limit of circumferential plastic deformation of the can (canning) in nominal operation in stationary state of the fuel rod are calculated. The evaluation of the LHGR in function of the burnt of the fuel, is carried out under the condition that the deformation values of the circumferential plastic deformation of the can exceeds in 0.1 the thermomechanical value operation limit of 1%. The results of the calculations are compared with the generation rates of linear operation heat in function of the burnt for this fuel rod type. The calculations are carried out with the FEMAXI-V and RODBURN codes. The results show that for exhibitions or burnt between 0 and 16,000 M Wd/tU a minimum margin of 160.8 W/cm exists among LHGR (439.6 W/cm) operation peak for the given fuel and maximum LHGR of the fuel (calculated) to reach 1.1% of circumferential plastic deformation of the can, for the peak factor of power of 1.40. For burnt of 20,000 MWd/tU and 60,000 MWd/tU exist a margin of 150.3 and 298.6 W/cm, respectively. (Author)

  3. Electronic annealing Fermi operator expansion for DFT calculations on metallic systems

    Science.gov (United States)

    Aarons, Jolyon; Skylaris, Chris-Kriton

    2018-02-01

    Density Functional Theory (DFT) calculations with computational effort which increases linearly with the number of atoms (linear-scaling DFT) have been successfully developed for insulators, taking advantage of the exponential decay of the one-particle density matrix. For metallic systems, the density matrix is also expected to decay exponentially at finite electronic temperature and linear-scaling DFT methods should be possible by taking advantage of this decay. Here we present a method for DFT calculations at finite electronic temperature for metallic systems which is effectively linear-scaling (O(N)). Our method generates the elements of the one-particle density matrix and also finds the required chemical potential and electronic entropy using polynomial expansions. A fixed expansion length is always employed to generate the density matrix, without any loss in accuracy by the application of a high electronic temperature followed by successive steps of temperature reduction until the desired (low) temperature density matrix is obtained. We have implemented this method in the ONETEP linear-scaling (for insulators) DFT code which employs local orbitals that are optimised in situ. By making use of the sparse matrix machinery of ONETEP, our method exploits the sparsity of Hamiltonian and density matrices to perform calculations on metallic systems with computational cost that increases asymptotically linearly with the number of atoms. We demonstrate the linear-scaling computational cost of our method with calculation times on palladium nanoparticles with up to ˜13 000 atoms.

  4. Phase diagram of the Blume-Emery-Griffiths model on the simple cubic lattice calculated by the linear chain approximation

    International Nuclear Information System (INIS)

    Albayrak, Erhan; Keskin, Mustafa

    2000-01-01

    The linear chain approximation is used to study the temperature dependence of the order parameters and the phase diagrams of the Blume-Emery-Griffiths model on the simple cubic lattice with dipole-dipole, quadrupole-quadrupole coupling strengths and a crystal-field interaction. The problem is approached introducing first a trial one-dimensional Hamiltonian whose free energy can be calculated exactly by the transfer matrix method. Then using the Bogoliubov variational principle, the free energy of the model is determined. It is assumed that the dipolar and quadrupolar intrachain coupling constants are much stronger than the corresponding interchain constants and confined the attention to the case of nearest-neighbor interactions. The phase transitions are examined and the phase diagrams are obtained for several values of the coupling strengths in the three different planes. A comparison with other approximate techniques is also made

  5. Phase diagram of the Blume-Emery-Griffiths model on the simple cubic lattice calculated by the linear chain approximation

    CERN Document Server

    Albayrak, E

    2000-01-01

    The linear chain approximation is used to study the temperature dependence of the order parameters and the phase diagrams of the Blume-Emery-Griffiths model on the simple cubic lattice with dipole-dipole, quadrupole-quadrupole coupling strengths and a crystal-field interaction. The problem is approached introducing first a trial one-dimensional Hamiltonian whose free energy can be calculated exactly by the transfer matrix method. Then using the Bogoliubov variational principle, the free energy of the model is determined. It is assumed that the dipolar and quadrupolar intrachain coupling constants are much stronger than the corresponding interchain constants and confined the attention to the case of nearest-neighbor interactions. The phase transitions are examined and the phase diagrams are obtained for several values of the coupling strengths in the three different planes. A comparison with other approximate techniques is also made.

  6. Linear cascade calculations of matrix due to neutron-induced nuclear reactions

    International Nuclear Information System (INIS)

    Avila, Ricardo E

    2000-01-01

    A method is developed to calculate the total number of displacements created by energetic particles resulting from neutron-induced nuclear reactions. The method is specifically conceived to calculate the damage in lithium ceramics by the 6L i(n, α)T reaction. The damage created by any particle is related to that caused by atoms from the matrix recoiling after collision with the primary particle. An integral equation for that self-damage is solved by interactions, using the magic stopping powers of Ziegler, Biersack and Littmark. A projectile-substrate dependent Kinchin-Pease model is proposed, giving and analytic approximation to the total damage as a function of the initial particle energy (au)

  7. A finite element method for SSI time history calculations

    International Nuclear Information System (INIS)

    Ni, X.M.; Gantenbein, F.; Petit, M.

    1989-01-01

    The method which is proposed is based on a finite element modelisation for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method will be presented, then applications will be given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior will be described

  8. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations

    Science.gov (United States)

    Fernandez, Fernando R.; Malerba, Paola; White, John A.

    2015-01-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971

  9. MARIOLA: A model for calculating the response of mediterranean bush ecosystem to climatic variations

    Energy Technology Data Exchange (ETDEWEB)

    Uso-Domenech, J.L.; Ramo, M.P. [Department of Mathematics, Campus de Penyeta Roja, University Jaume I, Castellon (Spain); Villacampa-Esteve, Y. [Department of Analysis and Applied Mathematics, University of Alicante (Spain); Stuebing-Martinez, G. [Department of Botany, University of Valencia (Spain); Karjalainen, T. [Faculty of Forestry, University of Joensuu (Finland)

    1995-07-01

    The paper summarizes the bush ecosystem model developed for assessing the effects of climatic change on the behaviour of mediterranean bushes assuming that temperature, humidity and rain-fall are the basic dimensions of the niche occupied by shrub species. In this context, changes in the monthly weather pattern serve only to outline the growth conditions due to the nonlinearity of response of shrubs to climatic factors. The plant-soil-atmosphere system is described by means of ordinary non-linear differential equations for the state variables: green biomass, woody biomass, the residues of green and woody biomasses, faecal detritus of mammals on the soil, and the total organic matter of the soil. The behaviour of the flow variables is described by means of equations obtained from non-linear multiple regressions from the state variables and the input variables. The model has been applied with success to the behaviour of Cistus albidus in two zones of the Province of Alicante (Spain). The data base for the parametrical locations (zone 1) and validation (zone 2) is based upon measurements taken weekly over a 2-year period. The model is used to simulate the response of this shrub to a decreasing tendency in precipitation combined with a simultaneous rise in temperature. A period of 10 years is simulated and it is observed that plants with woody biomass smaller than 85 g die between the first and the third month and other plants` biomass decreases during this period, and strongly thereafter

  10. Study on the ELDRS of bipolar linear operational amplifier

    International Nuclear Information System (INIS)

    Yang Hui; Liu Yanfang; Chen Yu; Bai Hua; Zhang Dong

    2011-01-01

    Bipolar linear devices laboratory irradiation testing results are significantly different from the actual in flight exposure to the radiation. In this paper the total dose irradiation of operational amplifiers, and analysis upon the total dose response of these bipolar circuits under the different test conditions were investigated in the same experiment. Total dose tests of bipolar linear operational amplifiers show susceptible to dose rate, bias and room temperature annealing during exposure. The critical sensitive parameters of operational amplifier are input bias current, input offset current, input offset voltage, and open loop gain, which exhibits both bias and dose rate dependence. With calculating the change of each electrical parameter (Δpara) for each sample at 300 Gy radiation level, it has been found that ratio of the Δpara at low dose rate to the Δpara at high dose rate exceeds 2.46 times for any of the parameters. So these parts are considered to be ELDRS susceptible. After room temperature annealing, the main parameters have time dependence effect at low dose rate and without time dependent effect at high dose rate. (authors)

  11. RCS Leak Rate Calculation with High Order Least Squares Method

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Kang, Young Kyu; Kim, Yang Ki

    2010-01-01

    As a part of action items for Application of Leak before Break(LBB), RCS Leak Rate Calculation Program is upgraded in Kori unit 3 and 4. For real time monitoring of operators, periodic calculation is needed and corresponding noise reduction scheme is used. This kind of study was issued in Korea, so there have upgraded and used real time RCS Leak Rate Calculation Program in UCN unit 3 and 4 and YGN unit 1 and 2. For reduction of the noise in signals, Linear Regression Method was used in those programs. Linear Regression Method is powerful method for noise reduction. But the system is not static with some alternative flow paths and this makes mixed trend patterns of input signal values. In this condition, the trend of signal and average of Linear Regression are not entirely same pattern. In this study, high order Least squares Method is used to follow the trend of signal and the order of calculation is rearranged. The result of calculation makes reasonable trend and the procedure is physically consistence

  12. Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    International Nuclear Information System (INIS)

    Blanchard, M.; Schuller, T.; Sipp, D.; Schmid, P. J.

    2015-01-01

    The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated

  13. Status of the Monte Carlo library least-squares (MCLLS) approach for non-linear radiation analyzer problems

    Science.gov (United States)

    Gardner, Robin P.; Xu, Libai

    2009-10-01

    The Center for Engineering Applications of Radioisotopes (CEAR) has been working for over a decade on the Monte Carlo library least-squares (MCLLS) approach for treating non-linear radiation analyzer problems including: (1) prompt gamma-ray neutron activation analysis (PGNAA) for bulk analysis, (2) energy-dispersive X-ray fluorescence (EDXRF) analyzers, and (3) carbon/oxygen tool analysis in oil well logging. This approach essentially consists of using Monte Carlo simulation to generate the libraries of all the elements to be analyzed plus any other required background libraries. These libraries are then used in the linear library least-squares (LLS) approach with unknown sample spectra to analyze for all elements in the sample. Iterations of this are used until the LLS values agree with the composition used to generate the libraries. The current status of the methods (and topics) necessary to implement the MCLLS approach is reported. This includes: (1) the Monte Carlo codes such as CEARXRF, CEARCPG, and CEARCO for forward generation of the necessary elemental library spectra for the LLS calculation for X-ray fluorescence, neutron capture prompt gamma-ray analyzers, and carbon/oxygen tools; (2) the correction of spectral pulse pile-up (PPU) distortion by Monte Carlo simulation with the code CEARIPPU; (3) generation of detector response functions (DRF) for detectors with linear and non-linear responses for Monte Carlo simulation of pulse-height spectra; and (4) the use of the differential operator (DO) technique to make the necessary iterations for non-linear responses practical. In addition to commonly analyzed single spectra, coincidence spectra or even two-dimensional (2-D) coincidence spectra can also be used in the MCLLS approach and may provide more accurate results.

  14. Fast numerical algorithm for the linear canonical transform.

    Science.gov (United States)

    Hennelly, Bryan M; Sheridan, John T

    2005-05-01

    The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier transform (FT), and the Fresnel transform (FST) describing free-space propagation. Currently there are numerous efficient algorithms used (for purposes of numerical simulation in the area of optical signal processing) to calculate the discrete FT, FRT, and FST. All of these algorithms are based on the use of the fast Fourier transform (FFT). In this paper we develop theory for the discrete linear canonical transform (DLCT), which is to the LCT what the discrete Fourier transform (DFT) is to the FT. We then derive the fast linear canonical transform (FLCT), an N log N algorithm for its numerical implementation by an approach similar to that used in deriving the FFT from the DFT. Our algorithm is significantly different from the FFT, is based purely on the properties of the LCT, and can be used for FFT, FRT, and FST calculations and, in the most general case, for the rapid calculation of the effect of any QPS.

  15. Effect of chamber enclosure time on soil respiration flux: A comparison of linear and non-linear flux calculation methods

    DEFF Research Database (Denmark)

    Kandel, Tanka P; Lærke, Poul Erik; Elsgaard, Lars

    2016-01-01

    One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre-deployment flu......One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre...... was placed on fixed collars, and CO2 concentration in the chamber headspace were recorded at 1-s intervals for 45 min. Fluxes were measured in different soil types (sandy, sandy loam and organic soils), and for various manipulations (tillage, rain and drought) and soil conditions (temperature and moisture......) to obtain a range of fluxes with different shapes of flux curves. The linear method provided more stable flux results during short enclosure times (few min) but underestimated initial fluxes by 15–300% after 45 min deployment time. Non-linear models reduced the underestimation as average underestimation...

  16. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling.

    Science.gov (United States)

    Kawashima, Issaku; Kumano, Hiroaki

    2017-01-01

    Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  17. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling

    Directory of Open Access Journals (Sweden)

    Issaku Kawashima

    2017-07-01

    Full Text Available Mind-wandering (MW, task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  18. Passive longitudinal phase space linearizer

    Directory of Open Access Journals (Sweden)

    P. Craievich

    2010-03-01

    Full Text Available We report on the possibility to passively linearize the bunch compression process in electron linacs for the next generation x-ray free electron lasers. This can be done by using the monopole wakefields in a dielectric-lined waveguide. The optimum longitudinal voltage loss over the length of the bunch is calculated in order to compensate both the second-order rf time curvature and the second-order momentum compaction terms. Thus, the longitudinal phase space after the compression process is linearized up to a fourth-order term introduced by the convolution between the bunch and the monopole wake function.

  19. Using NCAP to predict RFI effects in linear bipolar integrated circuits

    Science.gov (United States)

    Fang, T.-F.; Whalen, J. J.; Chen, G. K. C.

    1980-11-01

    Applications of the Nonlinear Circuit Analysis Program (NCAP) to calculate RFI effects in electronic circuits containing discrete semiconductor devices have been reported upon previously. The objective of this paper is to demonstrate that the computer program NCAP also can be used to calcuate RFI effects in linear bipolar integrated circuits (IC's). The IC's reported upon are the microA741 operational amplifier (op amp) which is one of the most widely used IC's, and a differential pair which is a basic building block in many linear IC's. The microA741 op amp was used as the active component in a unity-gain buffer amplifier. The differential pair was used in a broad-band cascode amplifier circuit. The computer program NCAP was used to predict how amplitude-modulated RF signals are demodulated in the IC's to cause undesired low-frequency responses. The predicted and measured results for radio frequencies in the 0.050-60-MHz range are in good agreement.

  20. Enamel dose calculation by electron paramagnetic resonance spectral simulation technique

    International Nuclear Information System (INIS)

    Dong Guofu; Cong Jianbo; Guo Linchao; Ning Jing; Xian Hong; Wang Changzhen; Wu Ke

    2011-01-01

    Objective: To optimize the enamel electron paramagnetic resonance (EPR) spectral processing by using the EPR spectral simulation method to improve the accuracy of enamel EPR dosimetry and reduce artificial error. Methods: The multi-component superimposed EPR powder spectral simulation software was developed to simulate EPR spectrum models of the background signal (BS) and the radiation- induced signal (RS) of irradiated enamel respectively. RS was extracted from the multi-component superimposed spectrum of irradiated enamel and its amplitude was calculated. The dose-response curve was then established for calculating the doses of a group of enamel samples. The result of estimated dose was compared with that calculated by traditional method. Results: BS was simulated as a powder spectrum of gaussian line shape with the following spectrum parameters: g=2.00 35 and Hpp=0.65-1.1 mT, RS signal was also simulated as a powder spectrum but with axi-symmetric spectrum characteristics. The spectrum parameters of RS were: g ⊥ =2.0018, g ‖ =1.9965, Hpp=0.335-0.4 mT. The amplitude of RS had a linear response to radiation dose with the regression equation as y=240.74x + 76 724 (R 2 =0.9947). The expectation of relative error of dose estimation was 0.13. Conclusions: EPR simulation method has improved somehow the accuracy and reliability of enamel EPR dose estimation. (authors)

  1. Heterotic non-linear sigma models with anti-de Sitter target spaces

    International Nuclear Information System (INIS)

    Michalogiorgakis, Georgios; Gubser, Steven S.

    2006-01-01

    We calculate the beta function of non-linear sigma models with S D+1 and AdS D+1 target spaces in a 1/D expansion up to order 1/D 2 and to all orders in α ' . This beta function encodes partial information about the spacetime effective action for the heterotic string to all orders in α ' . We argue that a zero of the beta function, corresponding to a worldsheet CFT with AdS D+1 target space, arises from competition between the one-loop and higher-loop terms, similarly to the bosonic and supersymmetric cases studied previously in [J.J. Friess, S.S. Gubser, Non-linear sigma models with anti-de Sitter target spaces, Nucl. Phys. B 750 (2006) 111-141]. Various critical exponents of the non-linear sigma model are calculated, and checks of the calculation are presented

  2. Comparison of Measured Dark Current Distributions with Calculated Damage Energy Distributions in HgCdTe

    Science.gov (United States)

    Marshall, C. J.; Marshall, P. W.; Howe, C. L.; Reed, R. A.; Weller, R. A.; Mendenhall, M.; Waczynski, A.; Ladbury, R.; Jordan, T. M.

    2007-01-01

    This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distributions were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [1]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Carlo code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. While the nuclear elastic component (also calculated using the MCNPX) contributes only a small fraction of the total nonionizing damage energy, its inclusion in the shape of the damage across the array is significant. The Coulombic contribution was calculated using MRED [3-5], a Geant4 [4,6] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.

  3. CLEAR (Calculates Logical Evacuation And Response): A generic transportation network model for the calculation of evacuation time estimates

    International Nuclear Information System (INIS)

    Moeller, M.P.; Desrosiers, A.E.; Urbanik, T. II

    1982-03-01

    This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuation times for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies. (author)

  4. CLEAR (Calculates Logical Evacuation And Response): A Generic Transportation Network Model for the Calculation of Evacuation Time Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, M. P.; Urbanik, II, T.; Desrosiers, A. E.

    1982-03-01

    This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuatlon tlmes for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies.

  5. Groundwater decline and tree change in floodplain landscapes: Identifying non-linear threshold responses in canopy condition

    Directory of Open Access Journals (Sweden)

    J. Kath

    2014-12-01

    Full Text Available Groundwater decline is widespread, yet its implications for natural systems are poorly understood. Previous research has revealed links between groundwater depth and tree condition; however, critical thresholds which might indicate ecological ‘tipping points’ associated with rapid and potentially irreversible change have been difficult to quantify. This study collated data for two dominant floodplain species, Eucalyptus camaldulensis (river red gum and E. populnea (poplar box from 118 sites in eastern Australia where significant groundwater decline has occurred. Boosted regression trees, quantile regression and Threshold Indicator Taxa Analysis were used to investigate the relationship between tree condition and groundwater depth. Distinct non-linear responses were found, with groundwater depth thresholds identified in the range from 12.1 m to 22.6 m for E. camaldulensis and 12.6 m to 26.6 m for E. populnea beyond which canopy condition declined abruptly. Non-linear threshold responses in canopy condition in these species may be linked to rooting depth, with chronic groundwater decline decoupling trees from deep soil moisture resources. The quantification of groundwater depth thresholds is likely to be critical for management aimed at conserving groundwater dependent biodiversity. Identifying thresholds will be important in regions where water extraction and drying climates may contribute to further groundwater decline. Keywords: Canopy condition, Dieback, Drought, Tipping point, Ecological threshold, Groundwater dependent ecosystems

  6. Predicting musically induced emotions from physiological inputs: linear and neural network models.

    Science.gov (United States)

    Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M

    2013-01-01

    Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  7. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents

    Science.gov (United States)

    Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  8. Optimal pricing of default customers in electrical distribution systems: Effect behavior performance of demand response models

    International Nuclear Information System (INIS)

    Yusta, J.M.; Khodr, H.M.; Urdaneta, A.J.

    2007-01-01

    The response of a non-linear mathematical model is analyzed for the calculation of the optimal prices for electricity assuming default customers under different scenarios and using five different mathematical functions for the consumer response: linear, hyperbolic, potential, logarithmic and exponential. The mathematical functions are defined to simulate the hourly changes in the consumer response according to the load level, the price of electricity, and also depending on the elasticity at every hour. The behavior of the optimization model is evaluated separately under two different objective functions: the profit of the electric utility and the social welfare. The optimal prices as well as the served load are calculated for two different operation schemes: in an hourly basis and also assuming a single constant price for the 24 h of the day. Results obtained by the optimization model are presented and compared for the five different consumer load functions. (author)

  9. A program to calculate pulse transmission responses through transversely isotropic media

    Science.gov (United States)

    Li, Wei; Schmitt, Douglas R.; Zou, Changchun; Chen, Xiwei

    2018-05-01

    We provide a program (AOTI2D) to model responses of ultrasonic pulse transmission measurements through arbitrarily oriented transversely isotropic rocks. The program is built with the distributed point source method that treats the transducers as a series of point sources. The response of each point source is calculated according to the ray-tracing theory of elastic plane waves. The program could offer basic wave parameters including phase and group velocities, polarization, anisotropic reflection coefficients and directivity patterns, and model the wave fields, static wave beam, and the observed signals for pulse transmission measurements considering the material's elastic stiffnesses and orientations, sample dimensions, and the size and positions of the transmitters and the receivers. The program could be applied to exhibit the ultrasonic beam behaviors in anisotropic media, such as the skew and diffraction of ultrasonic beams, and analyze its effect on pulse transmission measurements. The program would be a useful tool to help design the experimental configuration and interpret the results of ultrasonic pulse transmission measurements through either isotropic or transversely isotropic rock samples.

  10. On the stability, the periodic solutions and the resolution of certain types of non linear equations, and of non linearly coupled systems of these equations, appearing in betatronic oscillations

    International Nuclear Information System (INIS)

    Valat, J.

    1960-12-01

    Universal stability diagrams have been calculated and experimentally checked for Hill-Meissner type equations with square-wave coefficients. The study of these equations in the phase-plane has then made it possible to extend the periodic solution calculations to the case of non-linear differential equations with periodic square-wave coefficients. This theory has been checked experimentally. For non-linear coupled systems with constant coefficients, a search was first made for solutions giving an algebraic motion. The elliptical and Fuchs's functions solve such motions. The study of non-algebraic motions is more delicate, apart from the study of nonlinear Lissajous's motions. A functional analysis shows that it is possible however in certain cases to decouple the system and to find general solutions. For non-linear coupled systems with periodic square-wave coefficients it is then possible to calculate the conditions leading to periodic solutions, if the two non-linear associated systems with constant coefficients fall into one of the categories of the above paragraph. (author) [fr

  11. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    Science.gov (United States)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  12. Development of SCINFUL-CG code to calculate response functions of scintillators in various shapes used for neutron measurement

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Akira; Kim, Eunjoo; Yamaguchi, Yasuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-10-01

    A Monte Carlo code SCINFUL has been utilized for calculating response functions of organic scintillators for high-energy neutron spectroscopy. However, the applicability of SCINFUL is limited to the calculations for cylindrical NE213 and NE110 scintillators. In the present study, SCINFUL-CG was developed by introducing a geometry specifying function and high-energy neutron cross section data into SCINFUL. The geometry package MARS-CG, the extended version of the CG (Combinatorial Geometry), was programmed into SCINFUL-CG to express various geometries of detectors. Neutron spectra in the regions specified by the CG can be evaluated by the track length estimator. The cross section data of silicon, oxygen and aluminum for neutron transport calculation were incorporated up to 100 MeV using the data of LA150 library. Validity of SCINFUL-CG was examined by comparing calculated results with those by SCINFUL and MCNP and experimental data measured using high-energy neutron fields. SCINFUL-CG can be used for the calculations of the response functions and neutron spectra in the organic scintillators in various shapes. The computer code will be applicable to the designs of high-energy neutron spectrometers and neutron monitors using the organic scintillators. The present report describes the new features of SCINFUL-CG and explains how to use the code. (author)

  13. Linear ubiquitination in immunity.

    Science.gov (United States)

    Shimizu, Yutaka; Taraborrelli, Lucia; Walczak, Henning

    2015-07-01

    Linear ubiquitination is a post-translational protein modification recently discovered to be crucial for innate and adaptive immune signaling. The function of linear ubiquitin chains is regulated at multiple levels: generation, recognition, and removal. These chains are generated by the linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin E3 capable of forming the linear ubiquitin linkage de novo. LUBAC is not only relevant for activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in various signaling pathways, but importantly, it also regulates cell death downstream of immune receptors capable of inducing this response. Recognition of the linear ubiquitin linkage is specifically mediated by certain ubiquitin receptors, which is crucial for translation into the intended signaling outputs. LUBAC deficiency results in attenuated gene activation and increased cell death, causing pathologic conditions in both, mice, and humans. Removal of ubiquitin chains is mediated by deubiquitinases (DUBs). Two of them, OTULIN and CYLD, are constitutively associated with LUBAC. Here, we review the current knowledge on linear ubiquitination in immune signaling pathways and the biochemical mechanisms as to how linear polyubiquitin exerts its functions distinctly from those of other ubiquitin linkage types. © 2015 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.

  14. Precision Interval Estimation of the Response Surface by Means of an Integrated Algorithm of Neural Network and Linear Regression

    Science.gov (United States)

    Lo, Ching F.

    1999-01-01

    The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.

  15. Microscopic calculation of friction coefficients for use in heavy-ion reaction

    International Nuclear Information System (INIS)

    Iwamoto, A.; Harada, K.; Yoshida, S.

    1981-01-01

    A microscopic calculation has been done for the friction coefficient for use in the deep-inelastic collision of heavy nuclei. We adopted the formalism of the linear response theory as a basis and used the adiabatic base of the two-center shell model. Several reaction channels with the total mass numbers of 236 and 260 systems were investigated. The friction coefficients for the radial and deforming motions including the coupling term were calculated as a function of the distance between two nuclei and deformation of the two nuclei for each channel. The general feature of the friction coefficient, its strength and form factor, was clarified in this model and comparison with the results of other models were done. It was found that our model gives a physically plausible value for the friction coefficient as a whole. (orig.)

  16. Adiabatic Hamiltonian deformation, linear response theory, and nonequilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Hoover, W.G.

    1980-01-01

    Although Hamiltonians of various kinds have previously been used to derive Green-Kubo relations for the transport coefficients, the particular choice described is uniquely related to thermodynamics. This nonequilibrium Hamiltonian formulation of fluid flow provides pedagogically simple routes to nonequilibrium fluxes and distribution functions, to theoretical understanding of long-time effects, and to new numerical methods for simulating systems far from equilibrium. The same methods are now being applied to solid-phase problems. At the relatively high frequencies used in the viscous fluid calculations described, solids typically behave elastically. Lower frequencies lead to the formation of dislocations and other defects, making it possible to study plastic flow. A property of the nonequilibrium equations of motion which might be profitably explored is their effective irreversibility. Because only a few particles are necessary to generate irreversible behavior, simulations using adiabatic deformations of the kind described here could perhaps elucidate the instability in the equations of motion responsible for irreversibility

  17. Linear Generator for a Free Piston Stirling Engine

    Directory of Open Access Journals (Sweden)

    OROS (POP Teodora Susana

    2014-05-01

    Full Text Available In this paper we present some aspects about the design of a Stirling engine driven linear generator. There are summarised the main steps of the magnetic and electric calculations with application to a particular case of a cogeneration plant bassed on Stirling engine. The designed linear generator is of fixed coil and moving magnets type. There are presented and a finite element method (FEM simulation of magnetic field. The linear generator design starts with the characteristics of the rare earth permanent magnets existing on the market.

  18. Linear response of stretch-affected premixed flames to flow oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.Y.; Law, C.K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Lieuwen, T. [School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2009-04-15

    The linear response of 2D wedge-shaped premixed flames to harmonic velocity disturbances was studied, allowing for the influence of flame stretch manifested as variations in the local flame speed along the wrinkled flame front. Results obtained from analyzing the G-equation show that the flame response is mainly characterized by a Markstein number {sigma}{sub C}, which measures the curvature effect of the wrinkles, and a Strouhal number, St{sub f}, defined as the angular frequency of the disturbance normalized by the time taken for the disturbance to propagate the flame length. Flame stretch is found to become important when the disturbance frequency satisfies {sigma}{sub C}St{sub f}{sup 2}{proportional_to} O(1), i.e. St{sub f}{proportional_to} O({sigma}{sub C}{sup -1/2}). Specifically, for disturbance frequencies below this order, stretch effects are small and the flame responds as an unstretched one. When the disturbance frequencies are of this order, the transfer function, defined as the ratio of the normalized fluctuation of the heat release rate to that of the velocity, is contributed mostly from fluctuations of the flame surface area, which is now affected by stretch. Finally, as the disturbance frequency increases to St{sub f}{proportional_to} O({sigma}{sub C}{sup -1}), i.e. {sigma}{sub C}St{sub f}{proportional_to} O(1), the direct contribution from the stretch-affected flame speed fluctuation to the transfer function becomes comparable to that of the flame surface area. The present study phenomenologically explains the experimentally observed filtering effect in which the flame wrinkles developed at the flame base decay along the flame surface for large frequency disturbances as well as for thermal-diffusively stable and weakly unstable mixtures. (author)

  19. Fast Solvers for Dense Linear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kauers, Manuel [Research Institute for Symbolic Computation (RISC), Altenbergerstrasse 69, A4040 Linz (Austria)

    2008-10-15

    It appears that large scale calculations in particle physics often require to solve systems of linear equations with rational number coefficients exactly. If classical Gaussian elimination is applied to a dense system, the time needed to solve such a system grows exponentially in the size of the system. In this tutorial paper, we present a standard technique from computer algebra that avoids this exponential growth: homomorphic images. Using this technique, big dense linear systems can be solved in a much more reasonable time than using Gaussian elimination over the rationals.

  20. Linear and nonlinear response matrix and its application to the SIS18 synchrotron

    International Nuclear Information System (INIS)

    Parfenova, Angelina

    2008-01-01

    This Thesis is dedicated to the numerical as well as the experimental study of beam dynamics in circular accelerators. The experimental part was undertaken in the SIS18 synchrotron. The detailed description of the experiments contained in this work can be considered as a starting point for future experiments and machine development. The work has the following structure. In Chapter 2 an overview of the GSI and FAIR accelerator facilities, and a general description of the SIS18 instrumentation related to the study of this work are given. The expected SIS18 performance in view of the upgrade program for FAIR project are outlined. The main beam dynamics issues connected with the purpose of this work are discussed. Chapter 3 is devoted to the study of linear beam dynamics in the SIS18. The resonance beam loss measurements were carried out with residual gas profile monitor in the SIS18 (Chapter 4). In the frame of this work a novel technique 'nonlinear tune response matrix method' to identify strengths, polarities and locations of nonlinear errors in circular accelerators is developed (Chapter 5). In the method the feed down effect of the nonlinear components at level of linear tune response to the closed-orbit change is explored. The closed-orbit change is introduced by varying correction steerers. The tune values are retrieved from the spectrum of coherent betatron oscillations excited by a fast kick. The theoretical background, the robustness of the method and numerical examples for the SIS18 using numerical library MICROMAP are presented. The technique to measure lattice nonlinearities was experimentally validated in the SIS18 where two normal as well as two skew sextupolar errors of the order of natural errors were reconstructed with a tolerant precision. It was shown how this technique can be applied to reconstruct sextupolar nonlinear errors in the complete machine. In Chapter 6 the main results and the conclusions of this work are outlined. (orig.)

  1. Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum

    Science.gov (United States)

    Rips, Ilya

    2017-01-01

    Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990), 10.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988), 10.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ /ωbrate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.

  2. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2016-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries

  3. A study of the valence shell electronic states of s-triazine by photoabsorption spectroscopy and ab initio calculations

    DEFF Research Database (Denmark)

    Holland, D.M.P.; Shaw, D.A.; Stener, Mauro

    2016-01-01

    absorption bands due to excitation from the 1e00 or 6e0 orbitals. The interpretation of the experimental spectrum has been guided by transition energies and oscillator strengths, for Rydberg and valence states, calculated with the time-dependent version of density functional theory and with the coupled...... cluster linear response approach. The theoretical studies indicate that Rydberg/Rydberg and Rydberg/valence mixing is important....

  4. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise

    Science.gov (United States)

    Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao

    2016-08-01

    The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.

  5. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise

    International Nuclear Information System (INIS)

    Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao

    2016-01-01

    The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.

  6. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongge; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Yang, Guidong; Jia, Wantao [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2016-08-15

    The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.

  7. Recent results on the linearity of the dose-response relationship for radiation-induced mutations in human cells by low dose levels

    International Nuclear Information System (INIS)

    Traut, H.

    1987-01-01

    Five studies made by various authors in the last years are discussed, which are significant in that the response of human cells to low-dose irradiation is determined directly and not by extrapolation, and which also provide information on the mutagenic effects of low radiation doses. The results of these studies do not indicate any other than a linear response for induction of mutations by low-dose irradiation, nor are there any reasons observable for assuming the existence of a threshold dose. It is very likely therefore that cancer initiation at the low dose level also is characterized by a linear relationship. Although threshold dose levels cannot generally be excluded, and maybe are only too low to be detected by experiment, there is no plausible biophysical argument for assuming the existence of such microdose threshold. (orig./MG) [de

  8. The In Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Peter W.; Hosper, Nynke A. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Ploeg, Emily M. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Goethem, Marc-Jan van [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); KVI-Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Brandenburg, Sytze [KVI-Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Chiu, Roland K. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P., E-mail: r.p.coppes@umcg.nl [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-05-01

    Purpose: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. Methods and Materials: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This response was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/μm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. Results: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. Conclusions: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro.

  9. The In Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers

    International Nuclear Information System (INIS)

    Nagle, Peter W.; Hosper, Nynke A.; Ploeg, Emily M.; Goethem, Marc-Jan van; Brandenburg, Sytze; Langendijk, Johannes A.; Chiu, Roland K.; Coppes, Robert P.

    2016-01-01

    Purpose: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. Methods and Materials: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This response was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/μm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. Results: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. Conclusions: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro.

  10. Linear dynamic coupling in geared rotor systems

    Science.gov (United States)

    David, J. W.; Mitchell, L. D.

    1986-01-01

    The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.

  11. Tight-binding approximations to time-dependent density functional theory — A fast approach for the calculation of electronically excited states

    Energy Technology Data Exchange (ETDEWEB)

    Rüger, Robert, E-mail: rueger@scm.com [Scientific Computing & Modelling NV, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig (Germany); Lenthe, Erik van [Scientific Computing & Modelling NV, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Heine, Thomas [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig (Germany); Visscher, Lucas [Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2016-05-14

    We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB.

  12. Dryland responses to global change suggest the potential for rapid non-linear responses to some changes but resilience to others

    Science.gov (United States)

    Reed, S.; Ferrenberg, S.; Tucker, C.; Rutherford, W. A.; Wertin, T. M.; McHugh, T. A.; Morrissey, E.; Kuske, C.; Belnap, J.

    2017-12-01

    Drylands represent our planet's largest terrestrial biome, making up over 35% of Earth's land surface. In the context of this vast areal extent, it is no surprise that recent research suggests dryland inter-annual variability and responses to change have the potential to drive biogeochemical cycles and climate at the global-scale. Further, the data we do have suggest drylands can respond rapidly and non-linearly to change. Nevertheless, our understanding of the cross-system consistency of and mechanisms behind dryland responses to a changed environment remains relatively poor. This poor understanding hinders not only our larger understanding of terrestrial ecosystem function, but also our capacity to forecast future global biogeochemical cycles and climate. Here we present data from a series of Colorado Plateau manipulation experiments - including climate, land use, and nitrogen deposition manipulations - to explore how vascular plants, microbial communities, and biological soil crusts (a community of mosses, lichens, and/or cyanobacteria living in the interspace among vascular plants in arid and semiarid ecosystems worldwide) respond to a host of environmental changes. These responses include not only assessments of community composition, but of their function as well. We will explore photosynthesis, net soil CO2 exchange, soil carbon stocks and chemistry, albedo, and nutrient cycling. The experiments were begun with independent questions and cover a range of environmental change drivers and scientific approaches, but together offer a relatively holistic picture of how some drylands can change their structure and function in response to change. In particular, the data show very high ecosystem vulnerability to particular drivers, but surprising resilience to others, suggesting a multi-faceted response of these diverse systems.

  13. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    Science.gov (United States)

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. CO2 impulse response curves for GWP calculations

    International Nuclear Information System (INIS)

    Jain, A.K.; Wuebbles, D.J.

    1993-01-01

    The primary purpose of Global Warming Potential (GWP) is to compare the effectiveness of emission strategies for various greenhouse gases to those for CO 2 , GWPs are quite sensitive to the amount of CO 2 . Unlike all other gases emitted in the atmosphere, CO 2 does not have a chemical or photochemical sink within the atmosphere. Removal of CO 2 is therefore dependent on exchanges with other carbon reservoirs, namely, ocean and terrestrial biosphere. The climatic-induced changes in ocean circulation or marine biological productivity could significantly alter the atmospheric CO 2 lifetime. Moreover, continuing forest destruction, nutrient limitations or temperature induced increases of respiration could also dramatically change the lifetime of CO 2 in the atmosphere. Determination of the current CO 2 sinks, and how these sinks are likely to change with increasing CO 2 emissions, is crucial to the calculations of GWPs. It is interesting to note that the impulse response function is sensitive to the initial state of the ocean-atmosphere system into which CO 2 is emitted. This is due to the fact that in our model the CO 2 flux from the atmosphere to the mixed layer is a nonlinear function of ocean surface total carbon

  15. Comparison of the nuclear code systems LINEAR-RECENT-NJOY and NJOY

    International Nuclear Information System (INIS)

    Seehusen, J.

    1983-07-01

    The reconstructed cross sections of the code systems LINEAR-RECENT-GROUPIE (Version 1982) and NJOY (Version 1982) have been compared for several materials. Some fuel cycle isotopes and structural materials of the ENDF/B-4 general purpose and ENDF/B-5 dosimetry files have been choosen. The reconstructed total, capture and fission cross sections calculated by LINEAR-RECENT and NJOY have been analized. The two sets of pointwise cross sections differ significantly. Another disagreement was found in the transformation of ENDF/B-4 and 5 files into data with a linear interpolation scheme. Unshielded multigroup constants at O 0 K (620 groups, SANDII) have been calculated by the three code systems LINEAR-RECENT-GROUPIE, NJOY and RESEND5-INTEND. The code system RESEND5-INTEND calculates wrong group constants and should not be used any more. The two sets of group constants obtained from ENDF/B-4 data using GROUPIE and NJOY differ for some group constants by more than 2%. Some disagreements at low energies (10 -3 -eV) of the total cross section of Na-23 and Al-27 are difficult to understand. For ENDF/B-5 dosimetry data the capture group constants differ significantly. (Author) [pt

  16. An update on modeling dose-response relationships: Accounting for correlated data structure and heterogeneous error variance in linear and nonlinear mixed models.

    Science.gov (United States)

    Gonçalves, M A D; Bello, N M; Dritz, S S; Tokach, M D; DeRouchey, J M; Woodworth, J C; Goodband, R D

    2016-05-01

    Advanced methods for dose-response assessments are used to estimate the minimum concentrations of a nutrient that maximizes a given outcome of interest, thereby determining nutritional requirements for optimal performance. Contrary to standard modeling assumptions, experimental data often present a design structure that includes correlations between observations (i.e., blocking, nesting, etc.) as well as heterogeneity of error variances; either can mislead inference if disregarded. Our objective is to demonstrate practical implementation of linear and nonlinear mixed models for dose-response relationships accounting for correlated data structure and heterogeneous error variances. To illustrate, we modeled data from a randomized complete block design study to evaluate the standardized ileal digestible (SID) Trp:Lys ratio dose-response on G:F of nursery pigs. A base linear mixed model was fitted to explore the functional form of G:F relative to Trp:Lys ratios and assess model assumptions. Next, we fitted 3 competing dose-response mixed models to G:F, namely a quadratic polynomial (QP) model, a broken-line linear (BLL) ascending model, and a broken-line quadratic (BLQ) ascending model, all of which included heteroskedastic specifications, as dictated by the base model. The GLIMMIX procedure of SAS (version 9.4) was used to fit the base and QP models and the NLMIXED procedure was used to fit the BLL and BLQ models. We further illustrated the use of a grid search of initial parameter values to facilitate convergence and parameter estimation in nonlinear mixed models. Fit between competing dose-response models was compared using a maximum likelihood-based Bayesian information criterion (BIC). The QP, BLL, and BLQ models fitted on G:F of nursery pigs yielded BIC values of 353.7, 343.4, and 345.2, respectively, thus indicating a better fit of the BLL model. The BLL breakpoint estimate of the SID Trp:Lys ratio was 16.5% (95% confidence interval [16.1, 17.0]). Problems with

  17. Vanadium NMR Chemical Shifts of (Imido)vanadium(V) Dichloride Complexes with Imidazolin-2-iminato and Imidazolidin-2-iminato Ligands: Cooperation with Quantum-Chemical Calculations and Multiple Linear Regression Analyses.

    Science.gov (United States)

    Yi, Jun; Yang, Wenhong; Sun, Wen-Hua; Nomura, Kotohiro; Hada, Masahiko

    2017-11-30

    The NMR chemical shifts of vanadium ( 51 V) in (imido)vanadium(V) dichloride complexes with imidazolin-2-iminato and imidazolidin-2-iminato ligands were calculated by the density functional theory (DFT) method with GIAO. The calculated 51 V NMR chemical shifts were analyzed by the multiple linear regression (MLR) analysis (MLRA) method with a series of calculated molecular properties. Some of calculated NMR chemical shifts were incorrect using the optimized molecular geometries of the X-ray structures. After the global minimum geometries of all of the molecules were determined, the trend of the observed chemical shifts was well reproduced by the present DFT method. The MLRA method was performed to investigate the correlation between the 51 V NMR chemical shift and the natural charge, band energy gap, and Wiberg bond index of the V═N bond. The 51 V NMR chemical shifts obtained with the present MLR model were well reproduced with a correlation coefficient of 0.97.

  18. Linear response and correlation of a self-propelled particle in the presence of external fields

    Science.gov (United States)

    Caprini, Lorenzo; Marini Bettolo Marconi, Umberto; Vulpiani, Angelo

    2018-03-01

    We study the non-equilibrium properties of non interacting active Ornstein-Uhlenbeck particles (AOUP) subject to an external nonuniform field using a Fokker-Planck approach with a focus on the linear response and time-correlation functions. In particular, we compare different methods to compute these functions including the unified colored noise approximation (UCNA). The AOUP model, described by the position of the particle and the active force acting on it, is usually mapped into a Markovian process, describing the motion of a fictitious passive particle in terms of its position and velocity, where the effect of the activity is transferred into a position-dependent friction. We show that the form of the response function of the AOUP depends on whether we put the perturbation on the position and keep unperturbed the active force in the original variables or perturb the position and maintain unperturbed the velocity in the transformed variables. Indeed, as a result of the change of variables the perturbation on the position becomes a perturbation both on the position and on the fictitious velocity. We test these predictions by considering the response for three types of convex potentials: quadratic, quartic and double-well potential. Moreover, by comparing the response of the AOUP model with the corresponding response of the UCNA model we conclude that although the stationary properties are fairly well approximated by the UCNA, the non equilibrium properties are not, an effect which is not negligible when the persistence time is large.

  19. Linearity enigmas in ecology

    Energy Technology Data Exchange (ETDEWEB)

    Patten, B.C.

    1983-04-01

    Two issues concerning linearity or nonlinearity of natural systems are considered. Each is related to one of the two alternative defining properties of linear systems, superposition and decomposition. Superposition exists when a linear combination of inputs to a system results in the same linear combination of outputs that individually correspond to the original inputs. To demonstrate this property it is necessary that all initial states and inputs of the system which impinge on the output in question be included in the linear combination manipulation. As this is difficult or impossible to do with real systems of any complexity, nature appears nonlinear even though it may be linear. A linear system that displays nonlinear behavior for this reason is termed pseudononlinear. The decomposition property exists when the dynamic response of a system can be partitioned into an input-free portion due to state plus a state-free portion due to input. This is a characteristic of all linear systems, but not of nonlinear systems. Without the decomposition property, it is not possible to distinguish which portions of a system's behavior are due to innate characteristics (self) vs. outside conditions (environment), which is an important class of questions in biology and ecology. Some philosophical aspects of these findings are then considered. It is suggested that those ecologists who hold to the view that organisms and their environments are separate entities are in effect embracing a linear view of nature, even though their belief systems and mathematical models tend to be nonlinear. On the other hand, those who consider that organism-environment complex forms a single inseparable unit are implictly involved in non-linear thought, which may be in conflict with the linear modes and models that some of them use. The need to rectify these ambivalences on the part of both groups is indicated.

  20. The Use of Sparse Direct Solver in Vector Finite Element Modeling for Calculating Two Dimensional (2-D) Magnetotelluric Responses in Transverse Electric (TE) Mode

    Science.gov (United States)

    Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.

    2018-04-01

    The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.

  1. The effect of linear imperfection in [001] direction on the thermal properties of silver crystal

    Directory of Open Access Journals (Sweden)

    J Davoodi

    2013-09-01

    Full Text Available  The aim of this investigation was to calculate the thermal properties of silver crystal in the presence of linear imperfection. The simulations were performed by molecular dynamics simulation technique in NPT as well as NVT ensemble based on quantum Sutton-Chen many body potential. The thermal properties including cohesive energy, melting temperature, isobaric heat capacity and thermal expansion of imperfect silver crystal were calculated and compared to those of the perfect crystal. Moreover, the quantities such as radial distribution function, order parameter and lindemann index were calculated in order to obtain information on crystal structure and disorder in atoms. All calculations were done both with liner imperfection in [001] direction and without imperfection at different temperature. The simulation results show that cohesive energy, linear thermal expansion coefficient increase and melting temperature, latent heat of fusion decrease with increasing linear imperfection. Also, the results show that linear imperfection has no effect on the heat capacity.

  2. ASOP, Shield Calculation, 1-D, Discrete Ordinates Transport

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Nature of physical problem solved: ASOP is a shield optimization calculational system based on the one-dimensional discrete ordinates transport program ANISN. It has been used to design optimum shields for space applications of SNAP zirconium-hydride-uranium- fueled reactors and uranium-oxide fueled thermionic reactors and to design beam stops for the ORELA facility. 2 - Method of solution: ASOP generates coefficients of linear equations describing the logarithm of the dose and dose-weight derivatives as functions of position from data obtained in an automated sequence of ANISN calculations. With the dose constrained to a design value and all dose-weight derivatives required to be equal, the linear equations may be solved for a new set of shield dimensions. Since changes in the shield dimensions may cause the linear functions to change, the entire procedure is repeated until convergence is obtained. The detailed calculations of the radiation transport through shield configurations for every step in the procedure distinguish ASOP from other shield optimization computer code systems which rely on multiple component sources and attenuation coefficients to describe the transport. 3 - Restrictions on the complexity of the problem: Problem size is limited only by machine size

  3. External beam radiotherapy for painful osseous metastases: pooled data dose response analysis

    International Nuclear Information System (INIS)

    Ben-Josef, Edgar; Shamsa, Falah; Youssef, Emad; Porter, Arthur T.

    1999-01-01

    Purpose: Although the effectiveness of external beam irradiation in palliation of pain from osseous metastases is well established, the optimal fractionation schedule has not been determined. Clinical studies to date have failed to demonstrate an advantage for higher doses. To further address this issue, we conducted a pooled dose response analysis using data from published Phase III clinical trials. Methods and Materials: Complete response (CR) was used as an endpoint because it was felt to be least susceptible to inconsistencies in assessment.The biological effective dose (BED) was calculated for each schedule using the linear-quadratic model and an α/β of 10. Using SAS version 6.12, the data were fitted using a weighted linear regression, a logistic model, and the spline technique. Finally, BED was categorized, and odds ratios for each level were calculated. Results: CR was assessed early and late in 383 and 1,007 patients, respectively. Linear regression on the early-response data yielded a poor fit and a nonsignificant dose coefficient. With the late-response data, there was an excellent fit (R-square = 0.842) and a highly significant dose coefficient (p = 0.0002). Fitting early CR to a logistic model, we could not establish a significant dose response relationship. However, with the late-response data there was an excellent fit and the dose coefficient was significantly different from zero (0.017 ± 0.00524; p = 0.0012). Application of the spline technique or removal of an outlier resulted in an improved fit (p 0.048 and p = 0.0001, respectively). Using BED of < 14.4 Gy as a reference level, the odds ratios for late CR were 2.29-3.32 (BED of 19.5-51.4 Gy, respectively). Conclusion: Our results demonstrate a clear dose-response for pain relief. Further testing of high intensity regiments is warranted

  4. Neutronic characteristics of linear-assembly breed-and-burn reactors

    International Nuclear Information System (INIS)

    Petroski, Robert; Forget, Benoit; Forsberg, Charles

    2012-01-01

    Highlights: ► Simple models used to characterize general behavior of linear-assembly B and B reactors. ► Diffusion theory model developed to explain axial distributions, height vs. reactivity. ► Neutron excess concept reformulated to include linear-assembly B and B reactors. ► Designed model of B and B reactor started using melt-refined B and B reactor used fuel. ► Computed doubling time of fuel cycle requiring no chemical separations. - Abstract: Linear-assembly breed-and-burn (B and B) reactors are B and B reactors that use axially connected assemblies similar to conventional LWR or fast reactor fuel assemblies. Methods for analyzing linear-assembly B and B reactors and their fuel cycles are developed and applied. General neutronic characteristics of linear-assembly B and B reactors are analyzed, including the effects that burnup, shuffling sequence, and radial and axial size have on equilibrium-cycle k-effective. The mechanisms that give rise to a highly peaked axial burnup distribution are explained, and a method for predicting peak burnup vs. k-effective based on infinite-medium depletion calculations is developed. Next, the neutron excess concept from previous studies of B and B reactors is extended to apply to linear-assembly B and B reactors, which allows the amount of starter fuel needed to establish a given equilibrium cycle to be calculated. Several example applications of the neutron excess formulation are given. First, an example model of a linear-assembly B and B reactor is analyzed to find the neutron excess cost of an equilibrium cycle. Second, simple one-dimensional models are used to predict the neutron excess value obtainable from different starter fuel configurations. Finally, these ideas are applied to design a fuel cycle consisting of linear-assembly B and B reactors and fuel recycling via a melt refining process. The neutron excess concept is used to design an appropriate starter fuel configuration made from melt refined fuel, which

  5. Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps

    Directory of Open Access Journals (Sweden)

    Deep Parikh

    2015-08-01

    Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM.  Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for  quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.

  6. Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.

    Science.gov (United States)

    Ovesy, Marzieh; Nazari, Mohammad Ali; Mahdavian, Mohammad

    2016-02-01

    In the current research, the muscle equivalent linear damping coefficient which is introduced as the force-velocity relation in a muscle model and the corresponding time constant are investigated. In order to reach this goal, a 1D skeletal muscle model was used. Two characterizations of this model using a linear force-stiffness relationship (Hill-type model) and a nonlinear one have been implemented. The OpenSim platform was used for verification of the model. The isometric activation has been used for the simulation. The equivalent linear damping and the time constant of each model were extracted by using the results obtained from the simulation. The results provide a better insight into the characteristics of each model. It is found that the nonlinear models had a response rate closer to the reality compared to the Hill-type models.

  7. Non-Linear Back-propagation: Doing Back-Propagation withoutDerivatives of the Activation Function

    DEFF Research Database (Denmark)

    Hertz, John; Krogh, Anders Stærmose; Lautrup, Benny

    1997-01-01

    The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back...

  8. Do Quercus ilex woodlands undergo abrupt non-linear functional changes in response to human disturbance along a climatic gradient?

    Science.gov (United States)

    Bochet, Esther; García-Fayos, Patricio; José Molina, Maria; Moreno de las Heras, Mariano; Espigares, Tíscar; Nicolau, Jose Manuel; Monleon, Vicente

    2017-04-01

    Theoretical models predict that drylands are particularly prone to suffer critical transitions with abrupt non-linear changes in their structure and functions as a result of the existing complex interactions between climatic fluctuations and human disturbances. However, so far, few studies provide empirical data to validate these models. We aim at determining how holm oak (Quercus ilex) woodlands undergo changes in their functions in response to human disturbance along an aridity gradient (from semi-arid to sub-humid conditions), in eastern Spain. For that purpose, we used (a) remote-sensing estimations of precipitation-use-efficiency (PUE) from enhanced vegetation index (EVI) observations performed in 231x231 m plots of the Moderate Resolution Imaging Spectroradiometer (MODIS); (b) biological and chemical soil parameter determinations (extracellular soil enzyme activity, soil respiration, nutrient cycling processes) from soil sampled in the same plots; (c) vegetation parameter determinations (ratio of functional groups) from vegetation surveys performed in the same plots. We analyzed and compared the shape of the functional change (in terms of PUE and soil and vegetation parameters) in response to human disturbance intensity for our holm oak sites along the aridity gradient. Overall, our results evidenced important differences in the shape of the functional change in response to human disturbance between climatic conditions. Semi-arid areas experienced a more accelerated non-linear decrease with an increasing disturbance intensity than sub-humid ones. The proportion of functional groups (herbaceous vs. woody cover) played a relevant role in the shape of the functional response of the holm oak sites to human disturbance.

  9. Multilevel linear modelling of the response-contingent learning of young children with significant developmental delays.

    Science.gov (United States)

    Raab, Melinda; Dunst, Carl J; Hamby, Deborah W

    2018-02-27

    The purpose of the study was to isolate the sources of variations in the rates of response-contingent learning among young children with multiple disabilities and significant developmental delays randomly assigned to contrasting types of early childhood intervention. Multilevel, hierarchical linear growth curve modelling was used to analyze four different measures of child response-contingent learning where repeated child learning measures were nested within individual children (Level-1), children were nested within practitioners (Level-2), and practitioners were nested within the contrasting types of intervention (Level-3). Findings showed that sources of variations in rates of child response-contingent learning were associated almost entirely with type of intervention after the variance associated with differences in practitioners nested within groups were accounted for. Rates of child learning were greater among children whose existing behaviour were used as the building blocks for promoting child competence (asset-based practices) compared to children for whom the focus of intervention was promoting child acquisition of missing skills (needs-based practices). The methods of analysis illustrate a practical approach to clustered data analysis and the presentation of results in ways that highlight sources of variations in the rates of response-contingent learning among young children with multiple developmental disabilities and significant developmental delays. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Non-linear actions of physiological agents: Finite disarrangements elicit fitness benefits.

    Science.gov (United States)

    Sedlic, Filip; Kovac, Zdenko

    2017-10-01

    Finite disarrangements of important (vital) physiological agents and nutrients can induce plethora of beneficial effects, exceeding mere attenuation of the specific stress. Such response to disrupted homeostasis appears to be universally conserved among species. The underlying mechanism of improved fitness and longevity, when physiological agents act outside their normal range is similar to hormesis, a phenomenon whereby toxins elicit beneficial effects at low doses. Due to similarity with such non-linear response to toxins described with J-shaped curve, we have coined a new term "mirror J-shaped curves" for non-linear response to finite disarrangement of physiological agents. Examples from the clinical trials and basic research are provided, along with the unifying mechanisms that tie classical non-linear response to toxins with the non-linear response to physiological agents (glucose, oxygen, osmolarity, thermal energy, calcium, body mass, calorie intake and exercise). Reactive oxygen species and cytosolic calcium seem to be common triggers of signaling pathways that result in these beneficial effects. Awareness of such phenomena and exploring underlying mechanisms can help physicians in their everyday practice. It can also benefit researchers when designing studies and interpreting growing number of scientific data showing non-linear responses to physiological agents. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Non-linear actions of physiological agents: Finite disarrangements elicit fitness benefits

    Directory of Open Access Journals (Sweden)

    Filip Sedlic

    2017-10-01

    Full Text Available Finite disarrangements of important (vital physiological agents and nutrients can induce plethora of beneficial effects, exceeding mere attenuation of the specific stress. Such response to disrupted homeostasis appears to be universally conserved among species. The underlying mechanism of improved fitness and longevity, when physiological agents act outside their normal range is similar to hormesis, a phenomenon whereby toxins elicit beneficial effects at low doses. Due to similarity with such non-linear response to toxins described with J-shaped curve, we have coined a new term “mirror J-shaped curves” for non-linear response to finite disarrangement of physiological agents. Examples from the clinical trials and basic research are provided, along with the unifying mechanisms that tie classical non-linear response to toxins with the non-linear response to physiological agents (glucose, oxygen, osmolarity, thermal energy, calcium, body mass, calorie intake and exercise. Reactive oxygen species and cytosolic calcium seem to be common triggers of signaling pathways that result in these beneficial effects. Awareness of such phenomena and exploring underlying mechanisms can help physicians in their everyday practice. It can also benefit researchers when designing studies and interpreting growing number of scientific data showing non-linear responses to physiological agents.

  12. LINEAR2007, Linear-Linear Interpolation of ENDF Format Cross-Sections

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: LINEAR converts evaluated cross sections in the ENDF/B format into a tabular form that is subject to linear-linear interpolation in energy and cross section. The code also thins tables of cross sections already in that form. Codes used subsequently need thus to consider only linear-linear data. IAEA1311/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: - Linear VERS. 2007-1 (JAN. 2007): checked against all ENDF/B-VII; increased page size from 60,000 to 600,000 points 2 - Method of solution: Each section of data is considered separately. Each section of File 3, 23, and 27 data consists of a table of cross section versus energy with any of five interpolation laws. LINEAR will replace each section with a new table of energy versus cross section data in which the interpolation law is always linear in energy and cross section. The histogram (constant cross section between two energies) interpolation law is converted to linear-linear by substituting two points for each initial point. The linear-linear is not altered. For the log-linear, linear-log and log- log laws, the cross section data are converted to linear by an interval halving algorithm. Each interval is divided in half until the value at the middle of the interval can be approximated by linear-linear interpolation to within a given accuracy. The LINEAR program uses a multipoint fractional error thinning algorithm to minimize the size of each cross section table

  13. Methods for calculating the speed-up characteristics of steam-water turbines

    International Nuclear Information System (INIS)

    Golovach, E.A.

    1981-01-01

    The methods of approximate and specified calculations of speed- up characteristics of steam-water turbines are considered. The specified non-linear method takes into account change of thermal efficiency, heat drop and losses in the turbine as well as vacuum break-up the condenser. Speed-up characteristics of the K-1000-60-1500 turbine are presented. The calculational results obtained by the non-linear method are compared with the calculations conducted by the approximate linearized method. Differences in the frequency speed up of the turbine rotor rotation calculated by the two methods constitute only 0.5-2.0%. That is why it is necessary to take into account in the specified calculations first of all the most important factors following the rotor speed- up in the following consequence: valve shift of the high pressure cylinder (HPC); steam volume in front of the HPC; shift of the valves behind the separator-steam superheater (SSS); steam volumes and moisture boiling in the SSS; steam consumption for regenerating heating of feed water, steam volumes at the intermediate elements of the turbine, losses in the turbine, heat drop and thermal efficiency [ru

  14. Acoustically determined linear piezoelectric response of lithium niobate up to 1100 V

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Branch, D. W.; Cular, S. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Schamiloglu, E. [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106 (United States)

    2014-04-21

    We present a method to measure high voltages using the piezoelectric crystal lithium niobate without using voltage dividers. A 36° Y-X cut lithium niobate crystal was coupled to two acoustic transducers, where direct current voltages were applied from 128–1100 V. The time-of-flight through the crystal was determined to be linearly dependent on the applied voltage. A model was developed to predict the time-delay in response to the applied voltage. The results show a sensitivity of 17 fs/V with a measurement error of 1 fs/V was achievable using this method. The sensitivity of this method can be increased by measuring the acoustic wave after multiple passes through the crystal. This method has many advantages over traditional techniques such as: favorable scalability for larger voltages, ease of use, cost effectiveness, and compactness.

  15. Calculating Historical Contributions To Climate Change. Discussing The 'Brazilian Proposal'

    International Nuclear Information System (INIS)

    Hoehne, N.; Blok, K.

    2005-01-01

    This paper discusses methodological issues relevant to the calculation of historical responsibility of countries for climate change ('The Brazilian Proposal'). Using a simple representation of the climate system, the paper compares contributions to climate change using different indicators: current radiative forcing, current GWP-weighted emissions, radiative forcing from increased concentrations, cumulative GWP-weighted emissions, global-average surface-air temperature increase and two new indicators: weighted concentrations (analogue to GWP-weighted emissions) and integrated temperature increase. Only the last two indicators are at the same time 'backward looking' (take into account historical emissions), 'backward discounting' (early emissions weigh less, depending on the decay in the atmosphere) and 'forward looking' (future effects of the emissions are considered) and are comparable for all gases. Cumulative GWP-weighted emissions are simple to calculate but are not 'backward discounting'. 'Radiative forcing' and 'temperature increase' are not 'forward looking'. 'Temperature increase' discounts the emissions of the last decade due to the slow response of the climate system. It therefore gives low weight to regions that have recently significantly increased emissions. Results of the five different indicators are quite similar for large groups (but possibly not for individual countries): industrialized countries contributed around 60% to today's climate change, developing countries around 40% (using the available data for fossil, industrial and forestry CO2, CH4 and N2O). The paper further argues including non-linearities of the climate system or using a simplified linear system is a political choice. The paper also notes that results of contributions to climate change need to be interpreted with care: Countries that developed early benefited economically, but have high historical emission, and countries developing at a later period can profit from developments

  16. Linear Water Waves

    Science.gov (United States)

    Kuznetsov, N.; Maz'ya, V.; Vainberg, B.

    2002-08-01

    This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'

  17. Non-linear response of electrode-electrolyte interface at high current density

    International Nuclear Information System (INIS)

    Ruiz, G.A.; Felice, C.J.; Valentinuzzi, M.E.

    2005-01-01

    A distributed parameter non-linear circuit is presented as fractal model of an electrode-electrolyte interface. It includes the charge transfer resistance and the double layer capacitance at each fractal level. The circuit explains the linear behavior of its series equivalent resistance R eq with signals of amplitudes eq Fourier spectrum. As a consequence, both the equivalent resistance and reactance drop with voltage, facts reported experimentally by other authors

  18. Localized-overlap approach to calculations of intermolecular interactions

    Science.gov (United States)

    Rob, Fazle

    Symmetry-adapted perturbation theory (SAPT) based on the density functional theory (DFT) description of the monomers [SAPT(DFT)] is one of the most robust tools for computing intermolecular interaction energies. Currently, one can use the SAPT(DFT) method to calculate interaction energies of dimers consisting of about a hundred atoms. To remove the methodological and technical limits and extend the size of the systems that can be calculated with the method, a novel approach has been proposed that redefines the electron densities and polarizabilities in a localized way. In the new method, accurate but computationally expensive quantum-chemical calculations are only applied for the regions where it is necessary and for other regions, where overlap effects of the wave functions are negligible, inexpensive asymptotic techniques are used. Unlike other hybrid methods, this new approach is mathematically rigorous. The main benefit of this method is that with the increasing size of the system the calculation scales linearly and, therefore, this approach will be denoted as local-overlap SAPT(DFT) or LSAPT(DFT). As a byproduct of developing LSAPT(DFT), some important problems concerning distributed molecular response, in particular, the unphysical charge-flow terms were eliminated. Additionally, to illustrate the capabilities of SAPT(DFT), a potential energy function has been developed for an energetic molecular crystal of 1,1-diamino-2,2-dinitroethylene (FOX-7), where an excellent agreement with the experimental data has been found.

  19. Collision cross section calculations for polyatomic ions considering rotating diatomic/linear gas molecules

    International Nuclear Information System (INIS)

    Larriba-Andaluz, Carlos; Hogan, Christopher J.

    2014-01-01

    Structural characterization of ions in the gas phase is facilitated by measurement of ion collision cross sections (CCS) using techniques such as ion mobility spectrometry. Further information is gained from CCS measurement when comparison is made between measurements and accurately predicted CCSs for model ion structures and the gas in which measurements are made. While diatomic gases, namely molecular nitrogen and air, are being used in CCS measurement with increasingly prevalency, the majority of studies in which measurements are compared to predictions use models in which gas molecules are spherical or non-rotating, which is not necessarily appropriate for diatomic gases. Here, we adapt a momentum transfer based CCS calculation approach to consider rotating, diatomic gas molecule collisions with polyatomic ions, and compare CCS predictions with a diatomic gas molecule to those made with a spherical gas molecular for model spherical ions, tetra-alkylammonium ions, and multiply charged polyethylene glycol ions. CCS calculations are performed using both specular-elastic and diffuse-inelastic collisions rules, which mimic negligible internal energy exchange and complete thermal accommodation, respectively, between gas molecule and ion. The influence of the long range ion-induced dipole potential on calculations is also examined with both gas molecule models. In large part we find that CCSs calculated with specular-elastic collision rules decrease, while they increase with diffuse-inelastic collision rules when using diatomic gas molecules. Results clearly show the structural model of both the ion and gas molecule, the potential energy field between ion and gas molecule, and finally the modeled degree of kinetic energy exchange between ion and gas molecule internal energy are coupled to one another in CCS calculations, and must be considered carefully to obtain results which agree with measurements

  20. The development and validation of a numerical integration method for non-linear viscoelastic modeling

    Science.gov (United States)

    Ramo, Nicole L.; Puttlitz, Christian M.

    2018-01-01

    Compelling evidence that many biological soft tissues display both strain- and time-dependent behavior has led to the development of fully non-linear viscoelastic modeling techniques to represent the tissue’s mechanical response under dynamic conditions. Since the current stress state of a viscoelastic material is dependent on all previous loading events, numerical analyses are complicated by the requirement of computing and storing the stress at each step throughout the load history. This requirement quickly becomes computationally expensive, and in some cases intractable, for finite element models. Therefore, we have developed a strain-dependent numerical integration approach for capturing non-linear viscoelasticity that enables calculation of the current stress from a strain-dependent history state variable stored from the preceding time step only, which improves both fitting efficiency and computational tractability. This methodology was validated based on its ability to recover non-linear viscoelastic coefficients from simulated stress-relaxation (six strain levels) and dynamic cyclic (three frequencies) experimental stress-strain data. The model successfully fit each data set with average errors in recovered coefficients of 0.3% for stress-relaxation fits and 0.1% for cyclic. The results support the use of the presented methodology to develop linear or non-linear viscoelastic models from stress-relaxation or cyclic experimental data of biological soft tissues. PMID:29293558

  1. Superconductivity in the graphene monolayer calculated using the Kubo formulalism

    Science.gov (United States)

    Lima, L. S.

    2018-03-01

    We have employed the massless Dirac's fermions formalism together with the Kubo's linear response theory to study the transport by electrons in the graphene monolayer. We have calculated the electric conductivity and verified the behavior of the AC and DC electric conductivities of the system that is known to be a relativistic electron plasma. Our results show a superconductor behavior to the electron transport and consequently the spin transport for all values of T > 0 and a behavior of the AC conductivity tending to infinity in the limit ω → 0. In T = 0 our results show an insulator behavior with a transition from a superconductor state at T > 0 to an insulator state at T = 0 .

  2. Effect of the nanowire diameter on the linearity of the response of GaN-based heterostructured nanowire photodetectors

    Science.gov (United States)

    Spies, Maria; Polaczyński, Jakub; Ajay, Akhil; Kalita, Dipankar; Luong, Minh Anh; Lähnemann, Jonas; Gayral, Bruno; den Hertog, Martien I.; Monroy, Eva

    2018-06-01

    Nanowire photodetectors are investigated because of their compatibility with flexible electronics, or for the implementation of on-chip optical interconnects. Such devices are characterized by ultrahigh photocurrent gain, but their photoresponse scales sublinearly with the optical power. Here, we present a study of single-nanowire photodetectors displaying a linear response to ultraviolet illumination. Their structure consists of a GaN nanowire incorporating an AlN/GaN/AlN heterostructure, which generates an internal electric field. The activity of the heterostructure is confirmed by the rectifying behavior of the current–voltage characteristics in the dark, as well as by the asymmetry of the photoresponse in magnitude and linearity. Under reverse bias (negative bias on the GaN cap segment), the detectors behave linearly with the impinging optical power when the nanowire diameter is below a certain threshold (≈80 nm), which corresponds to the total depletion of the nanowire stem due to the Fermi level pinning at the sidewalls. In the case of nanowires that are only partially depleted, their nonlinearity is explained by a nonlinear variation of the diameter of their central conducting channel under illumination.

  3. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    Science.gov (United States)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-07-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.

  4. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    International Nuclear Information System (INIS)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-01-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable. (paper)

  5. Soil-structure interaction - a general method to calculate soil impedance

    International Nuclear Information System (INIS)

    Farvacque, M.; Gantenbein, F.

    1983-01-01

    A correct analysis of the seismic response of nuclear power plant buildings needs to take into account the soil structure interaction. The most classical and simple method consists in characterizing the soil by a stiffness and a damping function for each component of the translation and rotation of the foundation. In a more exact way an impedance function of the frequency may be introduced. Literature provides data to estimate these coefficients for simple soil and foundation configurations and using linear hypothesis. This paper presents a general method to calculate soil impedances which is based on the computation of the impulsive response of the soil using an axisymmetric 2D finite element Code (INCA). The Fourier transform of this response is made in the time interval before the return of the reflected waves on the boundaries of the F.E. domain. This procedure which limits the perturbing effects of the reflections is improved by introducing absorbing boundary elements. A parametric study for homogeneous and layered soils has been carried out using this method. (orig.)

  6. Local hyperspectral data multisharpening based on linear/linear-quadratic nonnegative matrix factorization by integrating lidar data

    Science.gov (United States)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2015-10-01

    In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.

  7. Stability and response bounds of non-conservative linear systems

    DEFF Research Database (Denmark)

    Pommer, Christian

    2003-01-01

    For a linear system of second order differential equations the stability is studied by Lyapunov's direct method. The Lyapunov matrix equation is solved and a sufficient condition for stability is expressed by the system matrices. For a system which satisfies the condition for stability the Lyapunov...

  8. Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2014-07-17

    Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.

  9. DETERMINING THE RESPONSE IN CASE OF VIBRATIONS OF STRAIGHT BARS WITH RANDOM EXCITATIONS

    Directory of Open Access Journals (Sweden)

    Monica BALDEA

    2012-05-01

    Full Text Available By applying the finite element calculus to the study of bar vibrations, one obtains a system of linear diferential equations. One carries out the determination of the response to random stimulations by calculating the statistical terms as a function of the statistical terms of the stimulation

  10. Biophysical interpretation of the response of Chinese hamster cells to 24 keV neutrons

    International Nuclear Information System (INIS)

    Holt, P.D.

    1988-01-01

    The response of V79 Chinese hamster cells to a 24 keV neutron spectrum has been compared with data for the response of V79 cells to a range of higher neutron energies (up to 15 MeV). The linear energy transfer (LET) distributions of the neutron spectra were calculated and the expected responses of the cells to the different spectra were calculated using published track-segment data on the response of V79 cells to charged particles with various LET values. The response of the cells to 24 keV neutrons was predicted satisfactorily by the LET distribution, in spite of the fact that the maximum range of the recoil protons is only 0.5 μm. The response was not correctly predicted by the microdosimetric parameter y-bar D * evaluated in a 1 μm diameter sphere. (author)

  11. Reactor calculation in coarse mesh by finite element method applied to matrix response method

    International Nuclear Information System (INIS)

    Nakata, H.

    1982-01-01

    The finite element method is applied to the solution of the modified formulation of the matrix-response method aiming to do reactor calculations in coarse mesh. Good results are obtained with a short running time. The method is applicable to problems where the heterogeneity is predominant and to problems of evolution in coarse meshes where the burnup is variable in one same coarse mesh, making the cross section vary spatially with the evolution. (E.G.) [pt

  12. Implementation of structural response sensitivity calculations in a large-scale finite-element analysis system

    Science.gov (United States)

    Giles, G. L.; Rogers, J. L., Jr.

    1982-01-01

    The implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calclating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of the system are also discussed.

  13. Application of linearized model to the stability analysis of the pressurized water reactor

    International Nuclear Information System (INIS)

    Li Haipeng; Huang Xiaojin; Zhang Liangju

    2008-01-01

    A Linear Time-Invariant model of the Pressurized Water Reactor is formulated through the linearization of the nonlinear model. The model simulation results show that the linearized model agrees well with the nonlinear model under small perturbation. Based upon the Lyapunov's First Method, the linearized model is applied to the stability analysis of the Pressurized Water Reactor. The calculation results show that the methodology of linearization to stability analysis is conveniently feasible. (authors)

  14. Two linearization methods for atmospheric remote sensing

    International Nuclear Information System (INIS)

    Doicu, A.; Trautmann, T.

    2009-01-01

    We present two linearization methods for a pseudo-spherical atmosphere and general viewing geometries. The first approach is based on an analytical linearization of the discrete ordinate method with matrix exponential and incorporates two models for matrix exponential calculation: the matrix eigenvalue method and the Pade approximation. The second method referred to as the forward-adjoint approach is based on the adjoint radiative transfer for a pseudo-spherical atmosphere. We provide a compact description of the proposed methods as well as a numerical analysis of their accuracy and efficiency.

  15. Non-Linear Dynamics of Saturn’s Rings

    Science.gov (United States)

    Esposito, Larry W.

    2015-11-01

    Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects

  16. Calculation of cell face velocity of non-staggered grid system

    KAUST Repository

    Li, Wang

    2012-07-28

    In this paper, the cell face velocities in the discretization of the continuity equation, the momentum equation, and the scalar equation of a non-staggered grid system are calculated and discussed. Both the momentum interpolation and the linear interpolation are adopted to evaluate the coefficients in the discretized momentum and scalar equations. Their performances are compared. When the linear interpolation is used to calculate the coefficients, the mass residual term in the coefficients must be dropped to maintain the accuracy and convergence rate of the solution. © Shanghai University and Springer-Verlag Berlin Heidelberg 2012.

  17. Non-linear Behavior of Curved Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Jolma, P.; Karjalainen, J. P.

    2003-01-01

    In this paper the non-linear behavior of curved sandwich panels is investigated both numerically and experimentally. Focus is on various aspects of finite element modeling and calculation procedures. A simply supported, singly curved, CFRP/PVC sandwich panel is analyzed under uniform pressure loa...

  18. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

    Science.gov (United States)

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

    2017-02-01

    To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  19. Interior point decoding for linear vector channels

    International Nuclear Information System (INIS)

    Wadayama, T

    2008-01-01

    In this paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, called interior point decoding, is designed for linear vector channels. The linear vector channels include many practically important channels such as inter-symbol interference channels and partial response channels. It is shown that the maximum likelihood decoding (MLD) rule for a linear vector channel can be relaxed to a convex optimization problem, which is called a relaxed MLD problem

  20. Interior point decoding for linear vector channels

    Energy Technology Data Exchange (ETDEWEB)

    Wadayama, T [Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi, 466-8555 (Japan)], E-mail: wadayama@nitech.ac.jp

    2008-01-15

    In this paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, called interior point decoding, is designed for linear vector channels. The linear vector channels include many practically important channels such as inter-symbol interference channels and partial response channels. It is shown that the maximum likelihood decoding (MLD) rule for a linear vector channel can be relaxed to a convex optimization problem, which is called a relaxed MLD problem.