The non-linear power spectrum of the Lyman alpha forest
International Nuclear Information System (INIS)
Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo; Cen, Renyue
2015-01-01
The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z∼ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula
Reconstruction of real-space linear matter power spectrum from multipoles of BOSS DR12 results
Lee, Seokcheon
2018-02-01
Recently, the power spectrum (PS) multipoles using the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample are analyzed [1]. The based model for the analysis is the so-called TNS quasi-linear model and the analysis provides the multipoles up to the hexadecapole [2]. Thus, one might be able to recover the real-space linear matter PS by using the combinations of multipoles to investigate the cosmology [3]. We provide the analytic form of the ratio of quadrupole (hexadecapole) to monopole moments of the quasi-linear PS including the Fingers-of-God (FoG) effect to recover the real-space PS in the linear regime. One expects that observed values of the ratios of multipoles should be consistent with those of the linear theory at large scales. Thus, we compare the ratios of multipoles of the linear theory, including the FoG effect with the measured values. From these, we recover the linear matter power spectra in real-space. These recovered power spectra are consistent with the linear matter power spectra.
International Nuclear Information System (INIS)
Sorini, D.
2017-01-01
Measuring the clustering of galaxies from surveys allows us to estimate the power spectrum of matter density fluctuations, thus constraining cosmological models. This requires careful modelling of observational effects to avoid misinterpretation of data. In particular, signals coming from different distances encode information from different epochs. This is known as ''light-cone effect'' and is going to have a higher impact as upcoming galaxy surveys probe larger redshift ranges. Generalising the method by Feldman, Kaiser and Peacock (1994) [1], I define a minimum-variance estimator of the linear power spectrum at a fixed time, properly taking into account the light-cone effect. An analytic expression for the estimator is provided, and that is consistent with the findings of previous works in the literature. I test the method within the context of the Halofit model, assuming Planck 2014 cosmological parameters [2]. I show that the estimator presented recovers the fiducial linear power spectrum at present time within 5% accuracy up to k ∼ 0.80 h Mpc −1 and within 10% up to k ∼ 0.94 h Mpc −1 , well into the non-linear regime of the growth of density perturbations. As such, the method could be useful in the analysis of the data from future large-scale surveys, like Euclid.
International Nuclear Information System (INIS)
Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y Y
2008-01-01
We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency
Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y. Y.
2008-07-01
We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency.
Cesario, Roberto; Cardinali, Alessandro; Castaldo, Carmine; Amicucci, Luca; Ceccuzzi, Silvio; Galli, Alessandro; Napoli, Francesco; Panaccione, Luigi; Santini, Franco; Schettini, Giuseppe; Tuccillo, Angelo Antonio
2017-10-01
The main research on the energy from thermonuclear fusion uses deuterium plasmas magnetically trapped in toroidal devices. To suppress the turbulent eddies that impair thermal insulation and pressure tight of the plasma, current drive (CD) is necessary, but tools envisaged so far are unable accomplishing this task while efficiently and flexibly matching the natural current profiles self-generated at large radii of the plasma column [1-5]. The lower hybrid current drive (LHCD) [6] can satisfy this important need of a reactor [1], but the LHCD system has been unexpectedly mothballed on JET. The problematic extrapolation of the LHCD tool at reactor graded high values of, respectively, density and temperatures of plasma has been now solved. The high density problem is solved by the FTU (Frascati Tokamak Upgrade) method [7], and solution of the high temperature one is presented here. Model results based on quasi-linear (QL) theory evidence the capability, w.r.t linear theory, of suitable operating parameters of reducing the wave damping in hot reactor plasmas. Namely, using higher RF power densities [8], or a narrower antenna power spectrum in refractive index [9,10], the obstacle for LHCD represented by too high temperature of reactor plasmas should be overcome. The former method cannot be used for routinely, safe antenna operations, Thus, only the latter key is really exploitable in a reactor. The proposed solutions are ultimately necessary for viability of an economic reactor.
Linear perturbation theory for tidal streams and the small-scale CDM power spectrum
Bovy, Jo; Erkal, Denis; Sanders, Jason L.
2017-04-01
Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r matter is clumpy on the smallest scales relevant for galaxy formation.
CHAM: a fast algorithm of modelling non-linear matter power spectrum in the sCreened HAlo Model
Hu, Bin; Liu, Xue-Wen; Cai, Rong-Gen
2018-05-01
We present a fast numerical screened halo model algorithm (CHAM, which stands for the sCreened HAlo Model) for modelling non-linear power spectrum for the alternative models to Λ cold dark matter. This method has three obvious advantages. First of all, it is not being restricted to a specific dark energy/modified gravity model. In principle, all of the screened scalar-tensor theories can be applied. Secondly, the least assumptions are made in the calculation. Hence, the physical picture is very easily understandable. Thirdly, it is very predictable and does not rely on the calibration from N-body simulation. As an example, we show the case of the Hu-Sawicki f(R) gravity. In this case, the typical CPU time with the current parallel PYTHON script (eight threads) is roughly within 10 min. The resulting spectra are in a good agreement with N-body data within a few percentage accuracy up to k ˜ 1 h Mpc-1.
Supernovae anisotropy power spectrum
Energy Technology Data Exchange (ETDEWEB)
Ghodsi, Hoda; Baghram, Shant [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Habibi, Farhang, E-mail: h.ghodsi@mehr.sharif.ir, E-mail: baghram@sharif.edu, E-mail: habibi@lal.in2p3.fr [LAL-IN2P3/CNRS, BP 34, 91898 Orsay Cedex (France)
2017-10-01
We contribute another anisotropy study to this field of research using Type Ia supernovae (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Using the Union2.1 data set at all redshifts, we compare the spectrum of the residuals of the observed distance moduli to that expected from an isotropic universe affected by the Union2.1 observational uncertainties at low multipoles. Through this comparison we find a dipolar anisotropy with tension of less that 2σ towards l = 171° ± 21° and b = −26° ± 28° which is mainly induced by anisotropic spatial distribution of the SNe with z > 0.2 rather than being a cosmic effect. Furthermore, we find a tension of ∼ 4σ at ℓ = 4 between the two spectra. Our simulations are constructed with the characteristics of the upcoming surveys like the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipolar anisotropy that would be detectable by future SNe Ia surveys.
Linear Algorithms for Radioelectric Spectrum Forecast
Directory of Open Access Journals (Sweden)
Luis F. Pedraza
2016-12-01
Full Text Available This paper presents the development and evaluation of two linear algorithms for forecasting reception power for different channels at an assigned spectrum band of global systems for mobile communications (GSM, in order to analyze the spatial opportunity for reuse of frequencies by secondary users (SUs in a cognitive radio (CR network. The algorithms employed correspond to seasonal autoregressive integrated moving average (SARIMA and generalized autoregressive conditional heteroskedasticity (GARCH, which allow for a forecast of channel occupancy status. Results are evaluated using the following criteria: availability and occupancy time for channels, different types of mean absolute error, and observation time. The contributions of this work include a more integral forecast as the algorithm not only forecasts reception power but also the occupancy and availability time of a channel to determine its precision percentage during the use by primary users (PUs and SUs within a CR system. Algorithm analyses demonstrate a better performance for SARIMA over GARCH algorithm in most of the evaluated variables.
Primordial power spectrum features and consequences
Goswami, G.
2014-03-01
The present Cosmic Microwave Background (CMB) temperature and polarization anisotropy data is consistent with not only a power law scalar primordial power spectrum (PPS) with a small running but also with the scalar PPS having very sharp features. This has motivated inflationary models with such sharp features. Recently, even the possibility of having nulls in the power spectrum (at certain scales) has been considered. The existence of these nulls has been shown in linear perturbation theory. What shall be the effect of higher order corrections on such nulls? Inspired by this question, we have attempted to calculate quantum radiative corrections to the Fourier transform of the 2-point function in a toy field theory and address the issue of how these corrections to the power spectrum behave in models in which the tree-level power spectrum has a sharp dip (but not a null). In particular, we have considered the possibility of the relative enhancement of radiative corrections in a model in which the tree-level spectrum goes through a dip in power at a certain scale. The mode functions of the field (whose power spectrum is to be evaluated) are chosen such that they undergo the kind of dynamics that leads to a sharp dip in the tree level power spectrum. Next, we have considered the situation in which this field has quartic self interactions, and found one loop correction in a suitably chosen renormalization scheme. Thus, we have attempted to answer the following key question in the context of this toy model (which is as important in the realistic case): In the chosen renormalization scheme, can quantum radiative corrections be enhanced relative to tree-level power spectrum at scales, at which sharp dips appear in the tree-level spectrum?
Spectrum of a linear antenna in a cold magnetized plasma
International Nuclear Information System (INIS)
Eldridge, O.; Kritz, A.H.
1975-04-01
The fields radiated by a linear antenna in a cold magnetized plasma are calculated. The principal results are expressed in the input impedance and power spectrum of the near field, expressed as a function of the wavenumber or index of refraction parallel to the field. For frequencies below the electron plasma frequency and above the lower hybrid frequency the spectrum shows a broad maximum for short parallel wavelengths. The parallel index of refraction at this maximum is approximately the ratio of free space wavelength to antenna length. A spectrum of this sort is required by the accessibility conditions for heating at the lower hybrid resonance from a wave launched in a region of lower density. The impedance of a short antenna in this region is capacitive and a few hundred ohms in magnitude. (U.S.)
Modelling the TSZ power spectrum
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Suman [Los Alamos National Laboratory; Shaw, Laurie D [YALE; Nagai, Daisuke [YALE
2010-01-01
The structure formation in university is a hierarchical process. As universe evolves, tiny density fluctuations that existed in the early universe grows under gravitational instability to form massive large scale structures. The galaxy clusters are the massive viralized objects that forms by accreting smaller clumps of mass until they collapse under their self-gravity. As such galaxy clusters are the youngest objects in the universe which makes their abundance as a function of mass and redshift, very sensitive to dark energy. Galaxy clusters can be detected by measuring the richness in optical waveband, by measuring the X-ray flux, and in the microwave sky using Sunyaev-Zel'dovich (SZ) effect. The Sunyaev-Zel'dovich (SZ) effect has long been recognized as a powerful tool for detecting clusters and probing the physics of the intra-cluster medium. Ongoing and future experiments like Atacama Cosmology Telescope, the South Pole Telescope and Planck survey are currently surveying the microwave sky to develop large catalogs of galaxy clusters that are uniformly selected by the SZ flux. However one major systematic uncertainties that cluster abundance is prone to is the connection between the cluster mass and the SZ flux. As shown by several simulation studies, the scatter and bias in the SZ flux-mass relation can be a potential source of systematic error to using clusters as a cosmology probe. In this study they take a semi-analytic approach for modeling the intra-cluster medium in order to predict the tSZ power spectrum. The advantage of this approach is, being analytic, one can vary the parameters describing gas physics and cosmology simultaneously. The model can be calibrated against X-ray observations of massive, low-z clusters, and using the SZ power spectrum which is sourced by high-z lower mass galaxy groups. This approach allows us to include the uncertainty in gas physics, as dictated by the current observational uncertainties, while measuring the
Subsampling for graph power spectrum estimation
Chepuri, Sundeep Prabhakar; Leus, Geert
2016-01-01
In this paper we focus on subsampling stationary random signals that reside on the vertices of undirected graphs. Second-order stationary graph signals are obtained by filtering white noise and they admit a well-defined power spectrum. Estimating the graph power spectrum forms a central component of stationary graph signal processing and related inference tasks. We show that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the power spectrum of the graph signal from the subsampled observations, without any spectral priors. In addition, a near-optimal greedy algorithm is developed to design the subsampling scheme.
Subsampling for graph power spectrum estimation
Chepuri, Sundeep Prabhakar
2016-10-06
In this paper we focus on subsampling stationary random signals that reside on the vertices of undirected graphs. Second-order stationary graph signals are obtained by filtering white noise and they admit a well-defined power spectrum. Estimating the graph power spectrum forms a central component of stationary graph signal processing and related inference tasks. We show that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the power spectrum of the graph signal from the subsampled observations, without any spectral priors. In addition, a near-optimal greedy algorithm is developed to design the subsampling scheme.
The Spectrum of Wind Power Fluctuations
Bandi, Mahesh
2016-11-01
Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.
Power/response spectrum transformations in equipment qualification
International Nuclear Information System (INIS)
Unruh, J.F.; Kana, D.D.
1985-01-01
Since its introduction a few years ago the use of the power/response spectrum transformation has gained considerable interest and acceptance, and a number of new applications of the transformation have been developed in the equipment qualification area. A brief review of the power/response spectrum transformation is given with a discussion of the input/output relationships for linear systems required for elevated power spectrum generation. Frequency content of earthquakelike signals is discussed with emphasis on the resolution given by the PSD. The problem of excessive ZPA due to inconsistent spectra enveloping and mechanical nonlinearities is also discussed. The PSD/RS transformation is applied to the problems of combining various dynamic load events, developing bounding spectra, and developing damping consistent test spectra. Development of elevated component spectra corrected for base overtest and generation from in-situ measurements is reviewed
Shape of power spectrum of intermittent chaos
International Nuclear Information System (INIS)
So, B.C.; Mori, H.
1984-01-01
Power spectra of intermittent chaos are calculated analytically. It is found that the power spectrum near onset point consists of a large number of Lorentzian lines with two peaks around frequencies ω = 0 and ω = ω 0 , where ω 0 is a fundamental frequency of a periodic orbit before the onset point, and furthermore the envelope of lines around ω = 0 obeys the power law 1/ + ω +2 , whereas the envelope around ω 0 obeys 1/ + ω-ω 0 +4 . The universality of these power law dependence in a certain class of intermittent chaos are clarified from a phenomenological view point. (author)
Matter power spectrum and the challenge of percent accuracy
Schneider, Aurel; Teyssier, Romain; Potter, Doug; Stadel, Joachim; Onions, Julian; Reed, Darren S.; Smith, Robert E.; Springel, Volker; Pearce, Frazer R.; Scoccimarro, Roman
2015-01-01
Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the precision of present-day $N$-body methods, identifying main potential error sources from the set-up of initial conditions to...
Constraining the primordial power spectrum from SNIa lensing dispersion
Energy Technology Data Exchange (ETDEWEB)
Ben-Dayan, Ido [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kalaydzhyan, Tigran [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics and Astronomy
2013-09-15
The (absence of detecting) lensing dispersion of Supernovae type Ia (SNIa) can be used as a novel and extremely efficient probe of cosmology. In this preliminary example we analyze its consequences for the primordial power spectrum. The main setback is the knowledge of the power spectrum in the non-linear regime, 1 Mpc{sup -1}
Orientation identification of the power spectrum
Rudnaya, M.; Mattheij, R.M.M.; Maubach, J.M.L.
2010-01-01
The image Fourier transform is widely used for defocus and astigmatism correction in electron microscopy. The shape of a power spectrum (the square of a modulus of image Fourier transform) is directly related to the three microscope’s controls, namely defocus and two-fold (two-parameter)
Multifractal signal reconstruction based on singularity power spectrum
International Nuclear Information System (INIS)
Xiong, Gang; Yu, Wenxian; Xia, Wenxiang; Zhang, Shuning
2016-01-01
Highlights: • We propose a novel multifractal reconstruction method based on singularity power spectrum analysis (MFR-SPS). • The proposed MFR-SPS method has better power characteristic than the algorithm in Fraclab. • Further, the SPS-ISE algorithm performs better than the SPS-MFS algorithm. • Based on the proposed MFR-SPS method, we can restructure singularity white fractal noise (SWFN) and linear singularity modulation (LSM) multifractal signal, in equivalent sense, similar with the linear frequency modulation(LFM) signal and WGN in the Fourier domain. - Abstract: Fractal reconstruction (FR) and multifractal reconstruction (MFR) can be considered as the inverse problem of singularity spectrum analysis, and it is challenging to reconstruct fractal signal in accord with multifractal spectrum (MFS). Due to the multiple solutions of fractal reconstruction, the traditional methods of FR/MFR, such as FBM based method, wavelet based method, random wavelet series, fail to reconstruct fractal signal deterministically, and besides, those methods neglect the power spectral distribution in the singular domain. In this paper, we propose a novel MFR method based singularity power spectrum (SPS). Supposing the consistent uniform covering of multifractal measurement, we control the traditional power law of each scale of wavelet coefficients based on the instantaneous singularity exponents (ISE) or MFS, simultaneously control the singularity power law based on the SPS, and deduce the principle and algorithm of MFR based on SPS. Reconstruction simulation and error analysis of estimated ISE, MFS and SPS show the effectiveness and the improvement of the proposed methods compared to those obtained by the Fraclab package.
REJUVENATING THE MATTER POWER SPECTRUM: RESTORING INFORMATION WITH A LOGARITHMIC DENSITY MAPPING
International Nuclear Information System (INIS)
Neyrinck, Mark C.; Szalay, Alexander S.; Szapudi, Istvan
2009-01-01
We find that nonlinearities in the dark matter power spectrum are dramatically smaller if the density field first undergoes a logarithmic mapping. In the Millennium simulation, this procedure gives a power spectrum with a shape hardly departing from the linear power spectrum for k ∼ -1 at all redshifts. Also, this procedure unveils pristine Fisher information on a range of scales reaching a factor of 2-3 smaller than in the standard power spectrum, yielding 10 times more cumulative signal to noise at z = 0.
Linearized spectrum correlation analysis for line emission measurements.
Nishizawa, T; Nornberg, M D; Den Hartog, D J; Sarff, J S
2017-08-01
A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.
A highly linear power amplifier for WLAN
International Nuclear Information System (INIS)
Jin Jie; Shi Jia; Ai Baoli; Zhang Xuguang
2016-01-01
A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P 1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus. (paper)
RF power generation for future linear colliders
International Nuclear Information System (INIS)
Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.
1990-06-01
The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper
Nonlinear evolution of f(R) cosmologies. II. Power spectrum
International Nuclear Information System (INIS)
Oyaizu, Hiroaki; Hu, Wayne; Lima, Marcos
2008-01-01
We carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the inverse mass or Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular, the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the nonlinear regime if the background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level for models even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. Simple scaling relations that take the linear power spectrum into a nonlinear spectrum fail to capture the modifications of f(R) due to the change in collapsed structures, the chameleon mechanism, and the time evolution of the modifications.
High average power linear induction accelerator development
International Nuclear Information System (INIS)
Bayless, J.R.; Adler, R.J.
1987-07-01
There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs
The power spectrum of inflationary attractors
International Nuclear Information System (INIS)
Broy, Benedict J.; Westphal, Alexander; Roest, Diederik
2014-08-01
Inflationary attractors predict the spectral index and tensor-to-scalar ratio to take specific values that are consistent with Planck. An example is the universal attractor for models with a generalised non-minimal coupling, leading to Starobinsky inflation. In this letter we demonstrate that it also predicts a specific relation between the amplitude of the power spectrum and the number of e-folds. The length and height of the inflationary plateau are related via the non-minimal coupling: in a wide variety of examples, the observed power normalisation leads to at least 55 flat e-foldings. Prior to this phase, the inflationary predictions vary and can account for the observational indications of power loss at large angular scales.
Testing Rastall's theory using matter power spectrum
International Nuclear Information System (INIS)
Batista, C.E.M.; Fabris, J.C.; Daouda, M.H.
2010-01-01
Rastall's theory is a modification of the General Relativity theory leading to a different expression for the conservation law in the matter sector compared with the usual one. It has been argued recently that such a theory may have applications to the dark energy problem, since a pressureless fluid may lead to an accelerated universe. In the present work we confront Rastall's theory with the power spectrum data. The results indicate a configuration that essentially reduces Rastall's theory to General Relativity, unless the non-usual conservation law refers to a scalar field, situation where other configurations are eventually possible.
A High Power Linear Solid State Pulser
International Nuclear Information System (INIS)
Boris Yen; Brent Davis; Rex Booth
1999-01-01
Particle Accelerators require high voltage and often high power. Typically the high voltage/power generation utilizes a topology with an extra energy store and a switching means to extract that stored energy. The switches may be active or passive devices. Active switches are hard or soft vacuum tubes, or semiconductors. When required voltages exceed tens of kilovolts, numerous semiconductors are stacked to withstand that potential. Such topologies can use large numbers of critical parts that, when in series, compromise the system reliability and performance. This paper describes a modular, linear, solid state amplifier which uses a parallel array of semiconductors, coupled with transmission line transformers. Such a design can provide output signals with voltages exceeding 10kV (into 50-ohms), and with rise and fall times (10-90 % amplitude) that are less than 1--ns. This compact solid state amplifier is modular, and has both hot-swap and soft fail capabilities
A highly linear power amplifier for WLAN
Jie, Jin; Jia, Shi; Baoli, Ai; Xuguang, Zhang
2016-02-01
A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus. Project supported by the National Natural Science Foundation of China (No. 61201244) and the Natural Science Fund of SUES (No. E1-0501-14-0168).
Power spectrum analysis for defect screening in integrated circuit devices
Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.
2011-12-01
A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.
The Atacama Cosmology Telescope: A Measurement of the Primordial Power Spectrum
Hlozek, Renee; Dunkley, Joanna; Addison, Graeme; Appel, John William; Bond, J. Richard; Carvalho, C. Sofia; Das, Sudeep; Devlin, Mark J.; Duenner, Rolando; Essinger-Hileman, Thomas;
2011-01-01
We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT). The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k approx. = 0.2 Mp/c. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from CMB measurements (which probe the power spectrum in thc linear regime) with existing probes of galaxy clustering, cluster abundances and weak lensing constraints on the primordial power. This highlights the range of scales probed by current measurement.s of the matter power spectrum.
THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE PRIMORDIAL POWER SPECTRUM
Energy Technology Data Exchange (ETDEWEB)
Hlozek, Renee; Dunkley, Joanna; Addison, Graeme [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Appel, John William; Das, Sudeep; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Carvalho, C. Sofia [IPFN, IST, Av. RoviscoPais, 1049-001Lisboa, Portugal and RCAAM, Academy of Athens, Soranou Efessiou 4, 11-527 Athens (Greece); Devlin, Mark J.; Klein, Jeff [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Duenner, Rolando; Gallardo, Patricio [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Halpern, Mark; Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hilton, Matt [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Hughes, John P. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Irwin, Kent D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); and others
2012-04-10
We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT) in combination with measurements from the Wilkinson Microwave Anisotropy Probe and a prior on the Hubble constant. The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k {approx_equal} 0.2 Mpc{sup -1}. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from cosmic microwave background measurements (which probe the power spectrum in the linear regime) with existing probes of galaxy clustering, cluster abundances, and weak-lensing constraints on the primordial power. This highlights the range of scales probed by current measurements of the matter power spectrum.
Power spectrum model of visual masking: simulations and empirical data.
Serrano-Pedraza, Ignacio; Sierra-Vázquez, Vicente; Derrington, Andrew M
2013-06-01
In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise
Positivity of linear maps under tensor powers
Energy Technology Data Exchange (ETDEWEB)
Müller-Hermes, Alexander, E-mail: muellerh@ma.tum.de; Wolf, Michael M., E-mail: m.wolf@tum.de [Zentrum Mathematik, Technische Universität München, 85748 Garching (Germany); Reeb, David, E-mail: reeb.qit@gmail.com [Zentrum Mathematik, Technische Universität München, 85748 Garching (Germany); Institute for Theoretical Physics, Leibniz Universität Hannover, 30167 Hannover (Germany)
2016-01-15
We investigate linear maps between matrix algebras that remain positive under tensor powers, i.e., under tensoring with n copies of themselves. Completely positive and completely co-positive maps are trivial examples of this kind. We show that for every n ∈ ℕ, there exist non-trivial maps with this property and that for two-dimensional Hilbert spaces there is no non-trivial map for which this holds for all n. For higher dimensions, we reduce the existence question of such non-trivial “tensor-stable positive maps” to a one-parameter family of maps and show that an affirmative answer would imply the existence of non-positive partial transpose bound entanglement. As an application, we show that any tensor-stable positive map that is not completely positive yields an upper bound on the quantum channel capacity, which for the transposition map gives the well-known cb-norm bound. We, furthermore, show that the latter is an upper bound even for the local operations and classical communications-assisted quantum capacity, and that moreover it is a strong converse rate for this task.
Positivity of linear maps under tensor powers
International Nuclear Information System (INIS)
Müller-Hermes, Alexander; Wolf, Michael M.; Reeb, David
2016-01-01
We investigate linear maps between matrix algebras that remain positive under tensor powers, i.e., under tensoring with n copies of themselves. Completely positive and completely co-positive maps are trivial examples of this kind. We show that for every n ∈ ℕ, there exist non-trivial maps with this property and that for two-dimensional Hilbert spaces there is no non-trivial map for which this holds for all n. For higher dimensions, we reduce the existence question of such non-trivial “tensor-stable positive maps” to a one-parameter family of maps and show that an affirmative answer would imply the existence of non-positive partial transpose bound entanglement. As an application, we show that any tensor-stable positive map that is not completely positive yields an upper bound on the quantum channel capacity, which for the transposition map gives the well-known cb-norm bound. We, furthermore, show that the latter is an upper bound even for the local operations and classical communications-assisted quantum capacity, and that moreover it is a strong converse rate for this task
Wind speed power spectrum analysis for Bushland, Texas
Energy Technology Data Exchange (ETDEWEB)
Eggleston, E.D. [USDA-Agricultural Research Service, Bushland, TX (United States)
1996-12-31
Numerous papers and publications on wind turbulence have referenced the wind speed spectrum presented by Isaac Van der Hoven in his article entitled Power Spectrum of Horizontal Wind Speed Spectrum in the Frequency Range from 0.0007 to 900 Cycles per Hour. Van der Hoven used data measured at different heights between 91 and 125 meters above the ground, and represented the high frequency end of the spectrum with data from the peak hour of hurricane Connie. These facts suggest we should question the use of his power spectrum in the wind industry. During the USDA - Agricultural Research Service`s investigation of wind/diesel system power storage, using the appropriate wind speed power spectrum became a significant issue. We developed a power spectrum from 13 years of hourly average data, 1 year of 5 minute average data, and 2 particularly gusty day`s 1 second average data all collected at a height of 10 meters. While the general shape is similar to the Van der Hoven spectrum, few of his peaks were found in the Bushland spectrum. While higher average wind speeds tend to suggest higher amplitudes in the high frequency end of the spectrum, this is not always true. Also, the high frequency end of the spectrum is not accurately described by simple wind statistics such as standard deviation and turbulence intensity. 2 refs., 5 figs., 1 tab.
Matter power spectrum and the challenge of percent accuracy
International Nuclear Information System (INIS)
Schneider, Aurel; Teyssier, Romain; Potter, Doug; Stadel, Joachim; Reed, Darren S.; Onions, Julian; Pearce, Frazer R.; Smith, Robert E.; Springel, Volker; Scoccimarro, Roman
2016-01-01
Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the precision of present-day N -body methods, identifying main potential error sources from the set-up of initial conditions to the measurement of the final power spectrum. We directly compare three widely used N -body codes, Ramses, Pkdgrav3, and Gadget3 which represent three main discretisation techniques: the particle-mesh method, the tree method, and a hybrid combination of the two. For standard run parameters, the codes agree to within one percent at k ≤1 h Mpc −1 and to within three percent at k ≤10 h Mpc −1 . We also consider the bispectrum and show that the reduced bispectra agree at the sub-percent level for k ≤ 2 h Mpc −1 . In a second step, we quantify potential errors due to initial conditions, box size, and resolution using an extended suite of simulations performed with our fastest code Pkdgrav3. We demonstrate that the simulation box size should not be smaller than L =0.5 h −1 Gpc to avoid systematic finite-volume effects (while much larger boxes are required to beat down the statistical sample variance). Furthermore, a maximum particle mass of M p =10 9 h −1 M ⊙ is required to conservatively obtain one percent precision of the matter power spectrum. As a consequence, numerical simulations covering large survey volumes of upcoming missions such as DES, LSST, and Euclid will need more than a trillion particles to reproduce clustering properties at the targeted accuracy.
Matter power spectrum and the challenge of percent accuracy
Energy Technology Data Exchange (ETDEWEB)
Schneider, Aurel; Teyssier, Romain; Potter, Doug; Stadel, Joachim; Reed, Darren S. [Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Onions, Julian; Pearce, Frazer R. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Smith, Robert E. [Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH (United Kingdom); Springel, Volker [Heidelberger Institut für Theoretische Studien, 69118 Heidelberg (Germany); Scoccimarro, Roman, E-mail: aurel@physik.uzh.ch, E-mail: teyssier@physik.uzh.ch, E-mail: dpotter@physik.uzh.ch, E-mail: stadel@physik.uzh.ch, E-mail: julian.onions@nottingham.ac.uk, E-mail: reed@physik.uzh.ch, E-mail: r.e.smith@sussex.ac.uk, E-mail: volker.springel@h-its.org, E-mail: Frazer.Pearce@nottingham.ac.uk, E-mail: rs123@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, NY 10003, New York (United States)
2016-04-01
Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the precision of present-day N -body methods, identifying main potential error sources from the set-up of initial conditions to the measurement of the final power spectrum. We directly compare three widely used N -body codes, Ramses, Pkdgrav3, and Gadget3 which represent three main discretisation techniques: the particle-mesh method, the tree method, and a hybrid combination of the two. For standard run parameters, the codes agree to within one percent at k ≤1 h Mpc{sup −1} and to within three percent at k ≤10 h Mpc{sup −1}. We also consider the bispectrum and show that the reduced bispectra agree at the sub-percent level for k ≤ 2 h Mpc{sup −1}. In a second step, we quantify potential errors due to initial conditions, box size, and resolution using an extended suite of simulations performed with our fastest code Pkdgrav3. We demonstrate that the simulation box size should not be smaller than L =0.5 h {sup −1}Gpc to avoid systematic finite-volume effects (while much larger boxes are required to beat down the statistical sample variance). Furthermore, a maximum particle mass of M {sub p}=10{sup 9} h {sup −1}M{sub ⊙} is required to conservatively obtain one percent precision of the matter power spectrum. As a consequence, numerical simulations covering large survey volumes of upcoming missions such as DES, LSST, and Euclid will need more than a trillion particles to reproduce clustering properties at the targeted accuracy.
Probing dark energy using convergence power spectrum and bi-spectrum
Energy Technology Data Exchange (ETDEWEB)
Dinda, Bikash R., E-mail: bikash@ctp-jamia.res.in [Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi-110025 (India)
2017-09-01
Weak lensing convergence statistics is a powerful tool to probe dark energy. Dark energy plays an important role to the structure formation and the effects can be detected through the convergence power spectrum, bi-spectrum etc. One of the most promising and simplest dark energy model is the ΛCDM . However, it is worth investigating different dark energy models with evolving equation of state of the dark energy. In this work, detectability of different dark energy models from ΛCDM model has been explored through convergence power spectrum and bi-spectrum.
Estimating the Crustal Power Spectrum From Vector Magsat Data: Crustal Power Spectrum
Lowe, David A. J.; Parker, Robert L.; Purucker, Michael E.; Constable, Catherine G.
2000-01-01
The Earth's magnetic field can be subdivided into core and crustal components and we seek to characterize the crustal part through its spatial power spectrum (R(sub l)). We process vector Magsat data to isolate the crustal field and then invert power spectral densities of flight-local components along-track for R(sub l) following O'Brien et al. [1999]. Our model (LPPC) is accurate up to approximately degree 45 (lambda=900 km) - this is the resolution limit of our data and suggests that global crustal anomaly maps constructed from vector Magsat data should not contain features with wavelengths less than 900 km. We find continental power spectra to be greater than oceanic ones and attribute this to the relative thicknesses of continental and oceanic crust.
A Linear Mixed-Effects Model of Wireless Spectrum Occupancy
Directory of Open Access Journals (Sweden)
Pagadarai Srikanth
2010-01-01
Full Text Available We provide regression analysis-based statistical models to explain the usage of wireless spectrum across four mid-size US cities in four frequency bands. Specifically, the variations in spectrum occupancy across space, time, and frequency are investigated and compared between different sites within the city as well as with other cities. By applying the mixed-effects models, several conclusions are drawn that give the occupancy percentage and the ON time duration of the licensed signal transmission as a function of several predictor variables.
The Quantitative Linear-Time–Branching-Time Spectrum
DEFF Research Database (Denmark)
Thrane, Claus; Fahrenberg, Uli; Legay, Axel
2011-01-01
We present a distance-agnostic approach to quantitative verification. Taking as input an unspecified distance on system traces, or executions, we develop a game-based framework which allows us to define a spectrum of different interesting system distances corresponding to the given trace distance...
Linearization and efficiency enhancement of power amplifiers using digital predistortion
Energy Technology Data Exchange (ETDEWEB)
Safari, Nima
2008-07-01
Today, demand of higher spectral efficiency forces wireless communication systems to employ non-constant envelope modulation schemes such as Quadrature Amplitude Modulations (QAM), Code Division Multiple Access (CDMA) and Orthogonal Frequency-Division Multiplexing (OFDM) schemes. These modulation techniques generate signals with wide range of envelope fluctuation. This property makes these schemes sensitive to nonlinear amplifications. Nonlinearities introduced by Power Amplifiers (PA) cause both a distortion of the signal and an increased out of band output spectrum, which leads to a rise in adjacent channel interference. Thus, in order to ensure a high spectral efficiency and to avoid spectral regrowth, a linearization technique is required. Among all the linearization techniques, basedband Digital Predistortion (DPD) is one of the commonly used linearization techniques, which is characterized by robust operation, low implementation cost and high accuracy. In the first chapter of this thesis, an introduction on the motivation and necessity of using PA linearization techniques is presented. Digital Predistortion as a popular linearization technique aims to improve the efficiency and linearity of RF power amplifiers. The scope of the thesis, the goals to be achieved and the contributions are also discussed in chapter one. Chapter two, mainly discusses sample-by-sample updating algorithm in Digital Predistorters to adaptively linearize the PA memoryless nonlinearities. Look-up Table (LUT) and polynomial approaches are studied and implemented in Hardware using a test-bed provided by Nera Research. The experimental results together with a discussion are then given. A new DPD algorithm based on block estimation is proposed in chapter three to avoid realtime signal processing, reduce the complexity and also avoid the bad performance during the slow adaptation of adaptive the Adjacent Channel Power Ratio (ACPR) and the Error Vector Magnitude (EVM) requirements. In
Collective behaviour of linear perturbation waves observed through the energy density spectrum
Energy Technology Data Exchange (ETDEWEB)
Scarsoglio, S [Department of Water Engineering, Politecnico di Torino (Italy); De Santi, F; Tordella, D, E-mail: stefania.scarsoglio@polito.it [Department of Aeronautics and Space Engineering, Politecnico di Torino (Italy)
2011-12-22
We consider the collective behaviour of small three-dimensional transient perturbations in sheared flows. In particular, we observe their varied life history through the temporal evolution of the amplification factor. The spectrum of wave vectors considered fills the range from the size of the external flow scale to the size of the very short dissipative waves. We observe that the amplification factor distribution is scale-invariant. In the condition we analyze, the system is subject to all the physical processes included in the linearized Navier-Stokes equations. With the exception of the nonlinear interaction, these features are the same as those characterizing the turbulent state. The linearized perturbative system offers a great variety of different transient behaviours associated to the parameter combination present in the initial conditions. For the energy spectrum computed by freezing each wave at the instant where its asymptotic condition is met, we ask whether this system is able to show a power-law scaling analogous to the Kolmogorov argument. At the moment, for at least two typical shear flows, the bluff-body wake and the plane Poiseuille flow, the answer is yes.
Libraries for spectrum identification: Method of normalized coordinates versus linear correlation
International Nuclear Information System (INIS)
Ferrero, A.; Lucena, P.; Herrera, R.G.; Dona, A.; Fernandez-Reyes, R.; Laserna, J.J.
2008-01-01
In this work it is proposed that an easy solution based directly on linear algebra in order to obtain the relation between a spectrum and a spectrum base. This solution is based on the algebraic determination of an unknown spectrum coordinates with respect to a spectral library base. The identification capacity comparison between this algebraic method and the linear correlation method has been shown using experimental spectra of polymers. Unlike the linear correlation (where the presence of impurities may decrease the discrimination capacity), this method allows to detect quantitatively the existence of a mixture of several substances in a sample and, consequently, to beer in mind impurities for improving the identification
Liang, B.; Iwnicki, S. D.; Zhao, Y.
2013-08-01
The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.
THE MURCHISON WIDEFIELD ARRAY 21 cm POWER SPECTRUM ANALYSIS METHODOLOGY
Energy Technology Data Exchange (ETDEWEB)
Jacobs, Daniel C.; Beardsley, A. P.; Bowman, Judd D. [Arizona State University, School of Earth and Space Exploration, Tempe, AZ 85287 (United States); Hazelton, B. J.; Sullivan, I. S.; Barry, N.; Carroll, P. [University of Washington, Department of Physics, Seattle, WA 98195 (United States); Trott, C. M.; Pindor, B.; Briggs, F.; Gaensler, B. M. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Dillon, Joshua S.; Oliveira-Costa, A. de; Ewall-Wice, A.; Feng, L. [MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Pober, J. C. [Brown University, Department of Physics, Providence, RI 02912 (United States); Bernardi, G. [Department of Physics and Electronics, Rhodes University, Grahamstown 6140 (South Africa); Cappallo, R. J.; Corey, B. E. [MIT Haystack Observatory, Westford, MA 01886 (United States); Emrich, D., E-mail: daniel.c.jacobs@asu.edu [International Centre for Radio Astronomy Research, Curtin University, Perth, WA 6845 (Australia); and others
2016-07-10
We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple independent data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction, and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.
Linear Optimization of Frequency Spectrum Assignments Across System
2016-03-01
selection tools, frequency allocation, transmission optimization, electromagnetic maneuver warfare, electronic protection, assignment model 15. NUMBER ...Characteristics Modeled ...............................................................29 Table 10. Antenna Systems Modeled , Number of Systems and...surveillance EW early warning GAMS general algebraic modeling system GHz gigahertz IDE integrated development environment ILP integer linear program
High density linear systems for fusion power
International Nuclear Information System (INIS)
Ellis, W.R.; Krakowski, R.A.
1975-01-01
The physics and technological limitations and uncertainties associated with the linear theta pinch are discussed in terms of a generalized energy balance, which has as its basis the ratio (Q/sub E/) of total electrical energy generated to net electrical energy consumed. Included in this total is the virtual energy of bred fissile fuel, if a hybrid blanket is used, as well as the actual of real energy deposited in the blanket by the fusion neutron. The advantages and disadvantages of the pulsed operation demanded by the linear theta pinch are also discussed
Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey
Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.
1994-01-01
We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc(exp -1). The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h(exp -1) Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h(exp -1) Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h(exp -1) Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambda(sub zero) = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h(exp -1) Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma(sub 8) (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h(exp -1) Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the pwer spectrum is approximately 40% larger for the brightest
On the spectrum of the Kadomtsev-Pogutse linearized equations
International Nuclear Information System (INIS)
Patudin, V.M.; Sagalakov, A.M.
1987-01-01
A spectrum of small Alfven perturbations of an inhomogeneous plasma cylinder with a current in a strong longitudinal magnetic field is investigated. Four groups of modes: near-the-axial, internal, boundary and surface, are separated in the spectrum of damping Alfven oscillating perturbations. Existence of near-the-axial, boundary perturbations is due to plasma and magnetic field in homogeneity. When the magnetic Reynolds number increases, the phase velocities of near-the-axial and boundary perturbations approach their limits coinciding correspondingly with the Alfven velocity at the axis and plasma boundary. Near-the axial and boundary perturbations with the azimuthal wave number m>1 is localized with the magnetic Reynolds number growth in the plasma near-the-axial and boundary region. If there is a resonance surface inside the plasma filament then new modes-internal Alfven waves, occur. The phase velocity of such waves, when the magnetic Reynolds number increases, tends to zero. There is a special group of oscillating screw modes - surface Alfven waves, in the plasma with a free boundary. These modes are responsible considerable desturbance of the plasma boundary and due to this differ essentially from boundary modes being in the plasma with a fixed boundary
Imprint of spatial curvature on inflation power spectrum
International Nuclear Information System (INIS)
Masso, Eduard; Zsembinszki, Gabriel; Mohanty, Subhendra; Nautiyal, Akhilesh
2008-01-01
If the Universe had a large curvature before inflation there is a deviation from the scale invariant perturbations of the inflaton at the beginning of inflation. This may have some effect on the cosmic microwave background anisotropy at large angular scales. We calculate the density perturbations for both open and closed universe cases using the Bunch-Davies vacuum condition on the initial state. We use our power spectrum to calculate the temperature anisotropy spectrum and compare the results with the Wilkinson microwave anisotropy map five year data. We find that our power spectrum gives a lower quadrupole anisotropy when Ω-1>0, but matches the temperature anisotropy calculated from the standard Ratra-Peebles power spectrum at large l. The determination of spatial curvature from temperature anisotropy data is not much affected by the different power spectra which arise from the choice of different boundary conditions for the inflaton perturbation.
Power laws from linear neuronal cable theory
DEFF Research Database (Denmark)
Pettersen, Klas H; Lindén, Henrik Anders; Tetzlaff, Tom
2014-01-01
suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general...... are homogeneously distributed across the neural membranes and themselves exhibit pink ([Formula: see text]) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion...
Analysis of Linear MHD Power Generators
Energy Technology Data Exchange (ETDEWEB)
Witalis, E A
1965-02-15
The finite electrode size effects on the performance of an infinitely long MHD power generation duct are calculated by means of conformal mapping. The general conformal transformation is deduced and applied in a graphic way. The analysis includes variations in the segmentation degree, the Hall parameter of the gas and the electrode/insulator length ratio as well as the influence of the external circuitry and loading. A general criterion for a minimum of the generator internal resistance is given. The same criterion gives the conditions for the occurrence of internal current leakage between adjacent electrodes. It is also shown that the highest power output at a prescribed efficiency is always obtained when the current is made to flow between exactly opposed electrodes. Curves are presented showing the power-efficiency relations and other generator properties as depending on the segmentation degree and the Hall parameter in the cases of axial and transverse power extraction. The implications of limiting the current to flow between a finite number of identical electrodes are introduced and combined with the condition for current flow between opposed electrodes. The characteristics of generators with one or a few external loads can then be determined completely and examples are given in a table. It is shown that the performance of such generators must not necessarily be inferior to that of segmented generators with many independent loads. However, the problems of channel end losses and off-design loading have not been taken into consideration.
Scaling-law for the energy dependence of anatomic power spectrum in dedicated breast CT
Energy Technology Data Exchange (ETDEWEB)
Vedantham, Srinivasan; Shi, Linxi; Glick, Stephen J.; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)
2013-01-15
Purpose: To determine the x-ray photon energy dependence of the anatomic power spectrum of the breast when imaged with dedicated breast computed tomography (CT). Methods: A theoretical framework for scaling the empirically determined anatomic power spectrum at one x-ray photon energy to that at any given x-ray photon energy when imaged with dedicated breast CT was developed. Theory predicted that when the anatomic power spectrum is fitted with a power curve of the form k f{sup -{beta}}, where k and {beta} are fit coefficients and f is spatial frequency, the exponent {beta} would be independent of x-ray photon energy (E), and the amplitude k scales with the square of the difference in energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues. Twenty mastectomy specimens based numerical phantoms that were previously imaged with a benchtop flat-panel cone-beam CT system were converted to 3D distribution of glandular weight fraction (f{sub g}) and were used to verify the theoretical findings. The 3D power spectrum was computed in terms of f{sub g} and after converting to linear attenuation coefficients at monoenergetic x-ray photon energies of 20-80 keV in 5 keV intervals. The 1D power spectra along the axes were extracted and fitted with a power curve of the form k f{sup -{beta}}. The energy dependence of k and {beta} were analyzed. Results: For the 20 mastectomy specimen based numerical phantoms used in the study, the exponent {beta} was found to be in the range of 2.34-2.42, depending on the axis of measurement. Numerical simulations agreed with the theoretical predictions that for a power-law anatomic spectrum of the form k f{sup -{beta}}, {beta} was independent of E and k(E) =k{sub 1}[{mu}{sub g}(E) -{mu}{sub a}(E)]{sup 2}, where k{sub 1} is a constant, and {mu}{sub g}(E) and {mu}{sub a}(E) represent the energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues, respectively. Conclusions: Numerical
Studying The Effect of Window type On Power Spectrum Based On MATLAB
Directory of Open Access Journals (Sweden)
Soad T. Abed
2012-06-01
Full Text Available The representation that describes signal’s frequency behavior can be divided into two categories: linear representation such as the Fourier-transform and quadratic representation such as power spectrum. Power spectrum characterizes the signal’s energy distribution in the frequency domain, and can answer whether most of the power of the signal resides at low or high frequencies. By performing spectral analysis, some important features of signals can be discovered that are not obvious in the time waveform of the signal. One problem with spectrum analysis is that the duration of the signals is finite, although adjustable. Applying the FFT method to finite duration sequences can produce inadequate results because of “spectral leakage”, to reduce the spectral leakage FFT window function is applied. Power spectrum parameters are window size, window type, window over lap and number of FFT. The aim of this work is to demonstrate the effect of varying window type on the power spectrum using Mat Lab software. Five windows have been compared to study their effect on the spectrum of a typical data.
Dynamics of the spectrum of a self-modulated powerful laser pulse in an underdense plasma
International Nuclear Information System (INIS)
Andreev, N.E.; Kirsanov, V.I.; Sakharov, A.S.
1997-01-01
The evolution of the spectrum of a powerful laser pulse during its self-modulation in an underdense plasma is studied analytically and numerically. It is shown that, in the early stages of the self-modulation instability, the linear theory gives a qualitatively correct description of the dynamics of the pulse spectrum in most cases. Depending on the parameters of the laser pulse and of the plasma, this spectrum contains either Stocks satellites (downshifted from the fundamental frequency to a value equal to the plasma frequency), or both Stocks and anti-Stocks satellites of the fundamental frequency. When the three-dimensional mechanism for the instability is dominant and the pulse power is close to the critical power for relativistic self-focusing, the numerical calculations show that the intensity of the blue satellite exceeds the intensity of the red one. This specific feature of the spectrum, which does not arise when the instability is one-dimensional, cannot be explained in terms of the linear para-axial theory, and can be used to identify the three-dimensional mechanism for the instability in experiments on the self-modulation of powerful laser pulses. It is shown that the transition to the nonlinear stage of the instability is accompanied by the occurrence of cascades (at frequencies separated from the laser carrier frequency by intervals equal to an integer number of plasma frequencies) in the spectrum of the laser pulse
A perturbative approach to the redshift space power spectrum: beyond the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Bose, Benjamin; Koyama, Kazuya, E-mail: benjamin.bose@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, Portsmouth, Hampshire, PO1 3FX (United Kingdom)
2016-08-01
We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya to find the SPT kernels. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to the third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shown to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate its application within the light of upcoming high precision RSD data.
Fast-imploding-linear fusion power
International Nuclear Information System (INIS)
Moses, R.W.; Krakowski, R.A.; MIller, R.L.
1978-01-01
A Fast-Liner Reactor (FLR) conceptual design is summarized. The FLR is a pulsed D-T fusion concept that envisages the implosion of a small, cylindrical (0.2-m radius, 0.2-m length), metallic shell onto an initially warm plasma to achieve net energy production by means of rapid but adiabatic compression to thermonuclear temperature. The primary purpose of this study is to examine by means of detailed computer models the physical processes and constraints which may limit this unique approach to high-density fusion power. On the basis of an optimized physics operating point, a conceptual reactor embodiment is described
Power spectrum of dark matter substructure in strong gravitational lenses
Diaz Rivero, Ana; Cyr-Racine, Francis-Yan; Dvorkin, Cora
2018-01-01
Studying the smallest self-bound dark matter structure in our Universe can yield important clues about the fundamental particle nature of dark matter. Galaxy-scale strong gravitational lensing provides a unique way to detect and characterize dark matter substructures at cosmological distances from the Milky Way. Within the cold dark matter (CDM) paradigm, the number of low-mass subhalos within lens galaxies is expected to be large, implying that their contribution to the lensing convergence field is approximately Gaussian and could thus be described by their power spectrum. We develop here a general formalism to compute from first principles the substructure convergence power spectrum for different populations of dark matter subhalos. As an example, we apply our framework to two distinct subhalo populations: a truncated Navarro-Frenk-White subhalo population motivated by standard CDM, and a truncated cored subhalo population motivated by self-interacting dark matter (SIDM). We study in detail how the subhalo abundance, mass function, internal density profile, and concentration affect the amplitude and shape of the substructure power spectrum. We determine that the power spectrum is mostly sensitive to a specific combination of the subhalo abundance and moments of the mass function, as well as to the average tidal truncation scale of the largest subhalos included in the analysis. Interestingly, we show that the asymptotic slope of the substructure power spectrum at large wave number reflects the internal density profile of the subhalos. In particular, the SIDM power spectrum exhibits a characteristic steepening at large wave number absent in the CDM power spectrum, opening the possibility of using this observable, if at all measurable, to discern between these two scenarios.
1/f noise in music and speech. [Power spectrum studies
Energy Technology Data Exchange (ETDEWEB)
Voss, R.F.; Clarke, J.
1975-11-27
The power spectrum, S(f), of many fluctuating physical variables, V(t), is approximately ''1/f-like.'' Loudness fluctuations in music and speech and pitch (melody) fluctuations in music were found to exhibit 1/f power spectra. This observation has implications for stochastic music composition. 3 figures. (RWR)
Decentralized linear quadratic power system stabilizers for multi ...
Indian Academy of Sciences (India)
Introduction. Modern excitation systems considerably enhance the overall transient stability of power systems ..... to the local bus rather than the angle δ measured with respect to the remote bus. ... With this in view, the linear and nonlinear per-.
Application of Nearly Linear Solvers to Electric Power System Computation
Grant, Lisa L.
To meet the future needs of the electric power system, improvements need to be made in the areas of power system algorithms, simulation, and modeling, specifically to achieve a time frame that is useful to industry. If power system time-domain simulations could run in real-time, then system operators would have situational awareness to implement online control and avoid cascading failures, significantly improving power system reliability. Several power system applications rely on the solution of a very large linear system. As the demands on power systems continue to grow, there is a greater computational complexity involved in solving these large linear systems within reasonable time. This project expands on the current work in fast linear solvers, developed for solving symmetric and diagonally dominant linear systems, in order to produce power system specific methods that can be solved in nearly-linear run times. The work explores a new theoretical method that is based on ideas in graph theory and combinatorics. The technique builds a chain of progressively smaller approximate systems with preconditioners based on the system's low stretch spanning tree. The method is compared to traditional linear solvers and shown to reduce the time and iterations required for an accurate solution, especially as the system size increases. A simulation validation is performed, comparing the solution capabilities of the chain method to LU factorization, which is the standard linear solver for power flow. The chain method was successfully demonstrated to produce accurate solutions for power flow simulation on a number of IEEE test cases, and a discussion on how to further improve the method's speed and accuracy is included.
New final doublets and power densities for the international linear ...
Indian Academy of Sciences (India)
Abstract. In this paper we use current and proposed final doublet magnet technologies to reoptimise the interaction region of the international linear collider and reduce the power losses. The result is a set of three new final doublet layouts with improved beam transport properties. The effect of localised power deposition and ...
High power linear electric machine - made possible by gas springs
Energy Technology Data Exchange (ETDEWEB)
Hoff, E.; Brennvall, J.E.; Nilssen, R.; Norum, L.
2004-07-01
In some applications, such as compressors, free piston linear machines have several advantages compared to rotating machines. The power level of linear machines has been limited, mainly due to difficulties with the spring. A solution for this has now been found and will be described in this paper. It can open up new areas of applications, where the power level exceeds the present power limit of about 2 kW. This machine needs special regulators in order to work efficiently. Two regulator algorithms for piston phase and one for position amplitude are therefore implemented for this prototype. (author)
Significance tests for the wavelet cross spectrum and wavelet linear coherence
Directory of Open Access Journals (Sweden)
Z. Ge
2008-12-01
Full Text Available This work attempts to develop significance tests for the wavelet cross spectrum and the wavelet linear coherence as a follow-up study on Ge (2007. Conventional approaches that are used by Torrence and Compo (1998 based on stationary background noise time series were used here in estimating the sampling distributions of the wavelet cross spectrum and the wavelet linear coherence. The sampling distributions are then used for establishing significance levels for these two wavelet-based quantities. In addition to these two wavelet quantities, properties of the phase angle of the wavelet cross spectrum of, or the phase difference between, two Gaussian white noise series are discussed. It is found that the tangent of the principal part of the phase angle approximately has a standard Cauchy distribution and the phase angle is uniformly distributed, which makes it impossible to establish significance levels for the phase angle. The simulated signals clearly show that, when there is no linear relation between the two analysed signals, the phase angle disperses into the entire range of [−π,π] with fairly high probabilities for values close to ±π to occur. Conversely, when linear relations are present, the phase angle of the wavelet cross spectrum settles around an associated value with considerably reduced fluctuations. When two signals are linearly coupled, their wavelet linear coherence will attain values close to one. The significance test of the wavelet linear coherence can therefore be used to complement the inspection of the phase angle of the wavelet cross spectrum. The developed significance tests are also applied to actual data sets, simultaneously recorded wind speed and wave elevation series measured from a NOAA buoy on Lake Michigan. Significance levels of the wavelet cross spectrum and the wavelet linear coherence between the winds and the waves reasonably separated meaningful peaks from those generated by randomness in the data set. As
Linear Power-Flow Models in Multiphase Distribution Networks: Preprint
Energy Technology Data Exchange (ETDEWEB)
Bernstein, Andrey; Dall' Anese, Emiliano
2017-05-26
This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.
Satsangi, Rajiv; Bofferding, Laura
2017-01-01
A lack of numerical knowledge early on can impede a child's academic development. In past research, playing linear board games improved children's understanding of numerical relations, which the authors theorised could extend to children with autism spectrum disorder. For this pilot study, 10 children played a board game where they moved tokens…
Weak lensing of the cosmic microwave background: Power spectrum covariance
International Nuclear Information System (INIS)
Cooray, Asantha
2002-01-01
We discuss the non-Gaussian contribution to the power spectrum covariance of cosmic microwave background (CMB) anisotropies resulting through weak gravitational lensing angular deflections and the correlation of deflections with secondary sources of temperature fluctuations generated by the large scale structure, such as the integrated Sachs-Wolfe effect and the Sunyaev-Zel'dovich effect. This additional contribution to the covariance of binned angular power spectrum, beyond the well known cosmic variance and any associated instrumental noise, results from a trispectrum, or a four point correlation function, in temperature anisotropy data. With substantially wide bins in multipole space, the resulting non-Gaussian contribution from lensing to the binned power spectrum variance is insignificant out to multipoles of a few thousand and is not likely to affect the cosmological parameter estimation with acoustic peaks and the damping tail. The non-Gaussian contribution to covariance, however, should be considered when interpreting binned CMB power spectrum measurements at multipoles of a few thousand corresponding to angular scales of few arcminutes and less
COSMIC EMULATION: FAST PREDICTIONS FOR THE GALAXY POWER SPECTRUM
Energy Technology Data Exchange (ETDEWEB)
Kwan, Juliana; Heitmann, Katrin; Habib, Salman; Frontiere, Nicholas; Pope, Adrian [High Energy Physics Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Padmanabhan, Nikhil [Department of Physics, Yale University, 260 Whitney Ave., New Haven, CT 06520 (United States); Lawrence, Earl [Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Finkel, Hal [Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439 (United States)
2015-09-01
The halo occupation distribution (HOD) approach has proven to be an effective method for modeling galaxy clustering and bias. In this approach, galaxies of a given type are probabilistically assigned to individual halos in N-body simulations. In this paper, we present a fast emulator for predicting the fully nonlinear galaxy–galaxy auto and galaxy–dark matter cross power spectrum and correlation function over a range of freely specifiable HOD modeling parameters. The emulator is constructed using results from 100 HOD models run on a large ΛCDM N-body simulation, with Gaussian Process interpolation applied to a PCA-based representation of the galaxy power spectrum. The total error is currently ∼1% in the auto correlations and ∼2% in the cross correlations from z = 1 to z = 0, over the considered parameter range. We use the emulator to investigate the accuracy of various analytic prescriptions for the galaxy power spectrum, parametric dependencies in the HOD model, and the behavior of galaxy bias as a function of HOD parameters. Additionally, we obtain fully nonlinear predictions for tangential shear correlations induced by galaxy–galaxy lensing from our galaxy–dark matter cross power spectrum emulator. All emulation products are publicly available at http://www.hep.anl.gov/cosmology/CosmicEmu/emu.html.
A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems
International Nuclear Information System (INIS)
Qi Pei-Han; Li Zan; Si Jiang-Bo; Gao Rui
2014-01-01
Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds. (interdisciplinary physics and related areas of science and technology)
A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems
Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui
2014-12-01
Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.
A spectrum of power plant simulators for effective training
International Nuclear Information System (INIS)
Foulke, L.R.
1987-01-01
This paper discusses the subject of training simulator fidelity and describes a spectrum of fidelity levels of power plant simulators to optimize training effectiveness. The body of knowledge about the relationship between power plant simulator fidelity and training effectiveness is reviewed, and a number of conjectures about this relationship are made based on the perspective of over 20 simulator-years of experience in training nuclear power plant operators. Developments are described for a new class of emerging simulator which utilize high resolution graphics to emphasize the visualization step of effective training
Evaluation of the linear power of HANARO test fuel bundles
Energy Technology Data Exchange (ETDEWEB)
Lee, Choong Sung; Seo, C. G.; Lee, B. C.; Kim, H. R
2001-02-01
The HANARO fuel was developed by AECL and it is configured in a bundle of rods containing uranium silicide. AECL has conducted a variety of tests using specimen in order to achieve its qualification and licensing and the highest linear power was evaluated to be 112.8kW/m. In design stage of HANARO, the best estimated maximum linear power at hot spot was found to occur in the transition core from the initial to the equilibrium and its value was 108kW/m, which exceeds 112.8kW/m if the physics uncertainty of the HANARO nuclear design model is taken into account. Consequently, the licensing body issued the conditional permit to operate HANARO and the fuel integrity at the linear power higher than 112.8kW/m was requested to be confirmed through irradiation tests by realizing its repeatability. Hereby, KAERI designed uninstrumented and instrumented test fuel bundles and conducted their burnup tests. In parallel with the tests, the nuclear design model has been revised and updated to enable us to pursue the pin-by-pin power history. This report describes the best estimated power history of the test fuel bundles using the revised model. In conclusion, HANARO fuel keeps its integrity at power condition greater than 120kW/m.
Decentralized linear quadratic power system stabilizers for multi ...
Indian Academy of Sciences (India)
Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not ...
High current proton linear accelerators and nuclear power
International Nuclear Information System (INIS)
Tunnicliffe, P.R.; Chidley, B.G.; Fraser, J.S.
1976-01-01
This paper outlines a possible role that high-current proton linear accelerators might play as ''electrical breeders'' in the forthcoming nuclear-power economy. A high-power beam of intermediate energy protons delivered to an actinide-element target surrounded by a blanket of fertile material may produce fissile material at a competitive cost. Criteria for technical performance and, in a Canadian context, for costs are given and the major problem areas outlined not only for the accelerator and its associated rf power source but also for the target assembly. (author)
Power spectrum of an injection-locked Josephson oscillator
International Nuclear Information System (INIS)
Stancampiano, C.V.; Shapiro, S.
1975-01-01
Experiments have shown that a Josephson oscillator, exposed to a weak narrow-band input signal, exhibits behavior characteristic of an injection-locked oscillator. When in lock, Adler's theory of injection locking describes the experimental observations reasonably well. The range of applicability of the theory is extended to the out-of-lock regime where a spectrum of output frequencies is observed. Obtaining the theoretical output power spectrum requires solving a differential equation having the same form as the equation describing the resistively shunted junction model of Stewart and of McCumber. Experimental measurements of the output spectrum of a nearly locked Josephson oscillator are shown to be in reasonable agreement with the theory. Additional results discussed briefly include the observation of a frequency dependence of the locked Josephson oscillator output and experiments in which a Josephson oscillator-mixer was injection locked by a weak signal at the rf
Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields
DEFF Research Database (Denmark)
Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt
2011-01-01
The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... as the reference. A linear array transducer with 64 active elements is simulated by both Field II and Abersim. The excitation is a 2-cycle sine wave with a frequency of 5 MHz. The second harmonic field in the time domain is simulated using ASA. Pulse inversion is used in the Abersim simulation to remove...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...
Spectrum of the linearized operator for the Ginzburg-Landau equation
Directory of Open Access Journals (Sweden)
Tai-Chia Lin
2000-06-01
Full Text Available We study the spectrum of the linearized operator for the Ginzburg-Landau equation about a symmetric vortex solution with degree one. We show that the smallest eigenvalue of the linearized operator has multiplicity two, and then we describe its behavior as a small parameter approaches zero. We also find a positive lower bound for all the other eigenvalues, and find estimates of the first eigenfunction. Then using these results, we give partial results on the dynamics of vortices in the nonlinear heat and Schrodinger equations.
Normalized noise power spectrum of full field digital mammography system
International Nuclear Information System (INIS)
Norriza Mohd Isa; Wan Muhamad Saridan Wan Hassan
2009-01-01
A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through detrending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality. (Author)
Normalized Noise Power Spectrum of Full Field Digital Mammography System
International Nuclear Information System (INIS)
Isa, Norriza Mohd; Wan Hassan, Wan Muhamad Saridan
2010-01-01
A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through detrending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality.
Charting the Parameter Space of the 21-cm Power Spectrum
Cohen, Aviad; Fialkov, Anastasia; Barkana, Rennan
2018-05-01
The high-redshift 21-cm signal of neutral hydrogen is expected to be observed within the next decade and will reveal epochs of cosmic evolution that have been previously inaccessible. Due to the lack of observations, many of the astrophysical processes that took place at early times are poorly constrained. In recent work we explored the astrophysical parameter space and the resulting large variety of possible global (sky-averaged) 21-cm signals. Here we extend our analysis to the fluctuations in the 21-cm signal, accounting for those introduced by density and velocity, Lyα radiation, X-ray heating, and ionization. While the radiation sources are usually highlighted, we find that in many cases the density fluctuations play a significant role at intermediate redshifts. Using both the power spectrum and its slope, we show that properties of high-redshift sources can be extracted from the observable features of the fluctuation pattern. For instance, the peak amplitude of ionization fluctuations can be used to estimate whether heating occurred early or late and, in the early case, to also deduce the cosmic mean ionized fraction at that time. The slope of the power spectrum has a more universal redshift evolution than the power spectrum itself and can thus be used more easily as a tracer of high-redshift astrophysics. Its peaks can be used, for example, to estimate the redshift of the Lyα coupling transition and the redshift of the heating transition (and the mean gas temperature at that time). We also show that a tight correlation is predicted between features of the power spectrum and of the global signal, potentially yielding important consistency checks.
Dark Energy Constraints from the Thermal Sunyaev Zeldovich Power Spectrum
Bolliet, Boris; Comis, Barbara; Komatsu, Eiichiro; Macías-Pérez, Juan Francisco
2018-03-01
We constrain the dark energy equation of state parameter, w, using the power spectrum of the thermal Sunyaev-Zeldovich (tSZ) effect. We improve upon previous analyses by taking into account the trispectrum in the covariance matrix and marginalising over the foreground parameters, the correlated noise, the mass bias B in the Planck universal pressure profile, and all the relevant cosmological parameters (i.e., not just Ωm and σ8). We find that the amplitude of the tSZ power spectrum at ℓ ≲ 103 depends primarily on F ≡ σ8(Ωm/B)0.40h-0.21, where B is related to more commonly used variable b by B = (1 - b)-1. We measure this parameter with 2.6% precision, F = 0.460 ± 0.012 (68% CL). By fixing the bias to B = 1.25 and adding the local determination of the Hubble constant H0 and the amplitude of the primordial power spectrum constrained by the Planck Cosmic Microwave Background (CMB) data, we find w = -1.10 ± 0.12, σ8 = 0.802 ± 0.037, and Ωm = 0.265 ± 0.022 (68% CL). Our limit on w is consistent with and is as tight as that from the distance-alone constraint from the CMB and H0. Finally, by combining the tSZ power spectrum and the CMB data we find, in the Λ Cold Dark Matter (CDM) model, the mass bias of B = 1.71 ± 0.17, i.e., 1 - b = 0.58 ± 0.06 (68% CL).
Klystron switching power supplies for the Internation Linear Collider
Energy Technology Data Exchange (ETDEWEB)
Fraioli, Andrea; /Cassino U. /INFN, Pisa
2009-12-01
The International Linear Collider is a majestic High Energy Physics particle accelerator that will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. ILC will complement the Large Hadron Collider (LHC), a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, by producing electron-positron collisions at center of mass energy of about 500 GeV. In particular, the subject of this dissertation is the R&D for a solid state Marx Modulator and relative switching power supply for the International Linear Collider Main LINAC Radio Frequency stations.
Directory of Open Access Journals (Sweden)
Abdulkareem Mokif Obais
2017-05-01
Full Text Available In this paper, a double loop feedforward linearization technique is analyzed and built with a MMIC low noise amplifier “HMC753” as main amplifier and a two-stage class-A power amplifier as error amplifier. The system is operated with 5V DC supply at a center frequency of 5.8GHz and a bandwidth of 500MHz. The proposed technique, increases the linearity of the MMIC amplifier from 18dBm at 1dB compression point to more than 26dBm. In addition, the proposed system is tested with OFDM signal and it reveals good response in maximizing the linearity region and eliminating distortions. The proposed system is designed and simulated onAdvanced Wave Research-Microwave Office (AWR-MWO.
Power supply and pulsing strategies for the future linear colliders
International Nuclear Information System (INIS)
Brogna, A S; Weber, M; Göttlicher, P
2012-01-01
The concept of the power delivery systems of the future linear colliders exploits the pulsed bunch structure of the beam in order to minimize the average current in the cables and the electronics and thus to reduce the material budget and heat dissipation. Although modern integrated circuit technologies are already available to design a low-power system, the concepts on how to pulse the front-end electronics and further reduce the power are not yet well understood. We propose a possible implementation of a power pulsing system based on a DC/DC converter and we choose the Analog Hadron Calorimeter as a specific example. The model features large switching currents of electronic modules in short time intervals to stimulate the inductive components along the cables and interconnections.
EFFECTS OF THE NEUTRINO MASS SPLITTING ON THE NONLINEAR MATTER POWER SPECTRUM
International Nuclear Information System (INIS)
Wagner, Christian; Verde, Licia; Jimenez, Raul
2012-01-01
We have performed cosmological N-body simulations which include the effect of the masses of the individual neutrino species. The simulations were aimed at studying the effect of different neutrino hierarchies on the matter power spectrum. Compared to the linear theory predictions, we find that nonlinearities enhance the effect of hierarchy on the matter power spectrum at mildly nonlinear scales. The maximum difference between the different hierarchies is about 0.5% for a sum of neutrino masses of 0.1 eV. Albeit this is a small effect, it is potentially measurable from upcoming surveys. In combination with neutrinoless double-β decay experiments, this opens up the possibility of using the sky to determine if neutrinos are Majorana or Dirac fermions.
On the Soft Limit of the Large Scale Structure Power Spectrum: UV Dependence
Garny, Mathias; Porto, Rafael A; Sagunski, Laura
2015-01-01
We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agr...
Some lemma on spectrum of eigen value regarding power method
Jamali, A. R. M. Jalal Uddin; Alam, Md. Sah
2017-04-01
Eigen value problems arise in almost all science and engineering fields. There exist some smart methods in literature in which most of them are able to find only Eigen values but could not find corresponding Eigen vectors. There exist many engineering as well as scientific fields in which both largest as well as smallest Eigen pairs are required. Power method is very simple but a powerful tool for finding largest Eigen value and corresponding Eigen vector (Eigen-pair). Again Inverse Power method is applied to find out smallest Eigen-pair and/or desire Eigen-pairs. But it is known that Inverse Power method is computationally very costly. On the other hand by using shifting property, Power method can find further Eigen-pairs. But the position of this Eigen value in the set of spectrum of the Eigen values is not identified. In this regard we proposed four lemma associate with Modified Power method. Each Lemma is proved ornately. The Modified Power method is implemented and illustrates an example for the verification of the Lemma. By using lemma the modified power algorithm is able to find out both largest and smallest Eigen-pairs successfully and efficiently in some cases. Moreover by the help of the Lemma, algorithm is able to detect the nature (positive and negative) of the Eigen values.
Linear CMOS RF power amplifiers a complete design workflow
Ruiz, Hector Solar
2013-01-01
The work establishes the design flow for the optimization of linear CMOS power amplifiers from the first steps of the design to the final IC implementation and tests. The authors also focuses on design guidelines of the inductor's geometrical characteristics for power applications and covers their measurement and characterization. Additionally, a model is proposed which would facilitate designs in terms of transistor sizing, required inductor quality factors or minimum supply voltage. The model considers limitations that CMOS processes can impose on implementation. The book also provides diffe
Linear Dynamics Model for Steam Cooled Fast Power Reactors
Energy Technology Data Exchange (ETDEWEB)
Vollmer, H
1968-04-15
A linear analytical dynamic model is developed for steam cooled fast power reactors. All main components of such a plant are investigated on a general though relatively simple basis. The model is distributed in those parts concerning the core but lumped as to the external plant components. Coolant is considered as compressible and treated by the actual steam law. Combined use of analogue and digital computer seems most attractive.
Power losses in the international linear collider 20 mrad extraction ...
Indian Academy of Sciences (India)
2Stanford Linear Accelerator Center, USA. ∗E-mail: ferrari@tsl.uu.se. Abstract. We have performed a detailed study of the power losses in the post-collision extraction line of a TeV e+e− collider with a crossing angle of 20 mrad at the interaction point. Five cases were considered: four luminosity configurations for ILC and ...
Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach
DEFF Research Database (Denmark)
Du, Yigang; Jensen, Jørgen Arendt
2013-01-01
A fast non-linear pulsed ultrasound field simulation is presented. It is implemented based on an angular spectrum approach (ASA), which analytically solves the non-linear wave equation. The ASA solution to the Westervelt equation is derived in detail. The calculation speed is significantly...... increased compared to a numerical solution using an operator splitting method (OSM). The ASA has been modified and extended to pulsed non-linear ultrasound fields in combination with Field II, where any array transducer with arbitrary geometry, excitation, focusing and apodization can be simulated...... with a center frequency of 5 MHz. The speed is increased approximately by a factor of 140 and the calculation time is 12 min with a standard PC, when simulating the second harmonic pulse at the focal point. For the second harmonic point spread function the full width error is 1.5% at 6 dB and 6.4% at 12 d...
Linear MALDI-ToF simultaneous spectrum deconvolution and baseline removal.
Picaud, Vincent; Giovannelli, Jean-Francois; Truntzer, Caroline; Charrier, Jean-Philippe; Giremus, Audrey; Grangeat, Pierre; Mercier, Catherine
2018-04-05
Thanks to a reasonable cost and simple sample preparation procedure, linear MALDI-ToF spectrometry is a growing technology for clinical microbiology. With appropriate spectrum databases, this technology can be used for early identification of pathogens in body fluids. However, due to the low resolution of linear MALDI-ToF instruments, robust and accurate peak picking remains a challenging task. In this context we propose a new peak extraction algorithm from raw spectrum. With this method the spectrum baseline and spectrum peaks are processed jointly. The approach relies on an additive model constituted by a smooth baseline part plus a sparse peak list convolved with a known peak shape. The model is then fitted under a Gaussian noise model. The proposed method is well suited to process low resolution spectra with important baseline and unresolved peaks. We developed a new peak deconvolution procedure. The paper describes the method derivation and discusses some of its interpretations. The algorithm is then described in a pseudo-code form where the required optimization procedure is detailed. For synthetic data the method is compared to a more conventional approach. The new method reduces artifacts caused by the usual two-steps procedure, baseline removal then peak extraction. Finally some results on real linear MALDI-ToF spectra are provided. We introduced a new method for peak picking, where peak deconvolution and baseline computation are performed jointly. On simulated data we showed that this global approach performs better than a classical one where baseline and peaks are processed sequentially. A dedicated experiment has been conducted on real spectra. In this study a collection of spectra of spiked proteins were acquired and then analyzed. Better performances of the proposed method, in term of accuracy and reproductibility, have been observed and validated by an extended statistical analysis.
Galactic densities, substructure and the initial power spectrum
International Nuclear Information System (INIS)
Bullock, J.S.; Zentner, A.R.
2003-01-01
Although the currently favored cold dark matter plus cosmological constant model for structure formation assumes an n = 1 scale-invariant initial power spectrum, most inflation models produce at least mild deviations from n = 1. Because the lever arm from the CMB normalization to galaxy scales is long, even a small 'tilt' can have important implications for galactic observations. Here we calculate the COBS-normalized power spectra for several well-motivated models of inflation and compute implications for the substructure content and central densities of galaxy halos. Using an analytic model, normalized against N-body simulations, we show that while halos in the standard (n = 1) model are overdense by a factor of ∼ 6 compared to observations, several of our example inflation+LCDM models predict halo densities well within the range of observations, which prefer models with n ∼ 0.85. We go on to use a semi-analytic model (also normalized against N-body simulations) to follow the merger histories of galaxy-sized halos and track the orbital decay, disruption, and evolution of the merging substructure. Models with n ∼ 0.85 predict a factor of ∼ 3 fewer subhalos at a fixed circular velocity than the standard n 1 case. Although this level of reduction does not resolve the 'dwarf satellite problem', it does imply that the level of feedback required to match the observed number of dwarfs is sensitive to the initial power spectrum. Finally, the fraction of galaxy-halo mass that is bound up in substructure is consistent with limits imposed by multiply imaged quasars for all models considered: f sat > 0.01 even for an effective tilt of n ∼ 0.8. We conclude that, at their current level, lensing constraints of this kind do not provide an interesting probe of the primordial power spectrum
Feedback Linearization Controller for a Wind Energy Power System
Directory of Open Access Journals (Sweden)
Muthana Alrifai
2016-09-01
Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.
Power calculation of linear and angular incremental encoders
Prokofev, Aleksandr V.; Timofeev, Aleksandr N.; Mednikov, Sergey V.; Sycheva, Elena A.
2016-04-01
Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and transmit the measured values back to the control unit. The capabilities of these systems are undergoing continual development in terms of their resolution, accuracy and reliability, their measuring ranges, and maximum speeds. This article discusses the method of power calculation of linear and angular incremental photoelectric encoders, to find the optimum parameters for its components, such as light emitters, photo-detectors, linear and angular scales, optical components etc. It analyzes methods and devices that permit high resolutions in the order of 0.001 mm or 0.001°, as well as large measuring lengths of over 100 mm. In linear and angular incremental photoelectric encoders optical beam is usually formulated by a condenser lens passes through the measuring unit changes its value depending on the movement of a scanning head or measuring raster. Past light beam is converting into an electrical signal by the photo-detecter's block for processing in the electrical block. Therefore, for calculating the energy source is a value of the desired value of the optical signal at the input of the photo-detecter's block, which reliably recorded and processed in the electronic unit of linear and angular incremental optoelectronic encoders. Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and
Cascade Structure of Digital Predistorter for Power Amplifier Linearization
Directory of Open Access Journals (Sweden)
E. B. Solovyeva
2015-12-01
Full Text Available In this paper, a cascade structure of nonlinear digital predistorter (DPD synthesized by the direct learning adaptive algorithm is represented. DPD is used for linearization of power amplifier (PA characteristic, namely for compensation of PA nonlinear distortion. Blocks of the cascade DPD are described by different models: the functional link artificial neural network (FLANN, the polynomial perceptron network (PPN and the radially pruned Volterra model (RPVM. At synthesis of the cascade DPD there is possibility to overcome the ill conditionality problem due to reducing the dimension of DPD nonlinear operator approximation. Results of compensating nonlinear distortion in Wiener–Hammerstein model of PA at the GSM–signal with four carriers are shown. The highest accuracy of PA linearization is produced by the cascade DPD containing PPN and RPVM.
Asymptotically linear Schrodinger equation with zero on the boundary of the spectrum
Directory of Open Access Journals (Sweden)
Dongdong Qin
2015-08-01
Full Text Available This article concerns the Schr\\"odinger equation $$\\displaylines{ -\\Delta u+V(xu=f(x, u, \\quad \\text{for } x\\in\\mathbb{R}^N,\\cr u(x\\to 0, \\quad \\text{as } |x| \\to \\infty, }$$ where V and f are periodic in x, and 0 is a boundary point of the spectrum $\\sigma(-\\Delta+V$. Assuming that f(x,u is asymptotically linear as $|u|\\to\\infty$, existence of a ground state solution is established using some new techniques.
Cosmological leverage from the matter power spectrum in the presence of baryon and nonlinear effects
International Nuclear Information System (INIS)
Bielefeld, Jannis; Huterer, Dragan; Linder, Eric V.
2015-01-01
We investigate how the use of higher wavenumbers (smaller scales) in the galaxy clustering power spectrum influences cosmological constraints. We take into account uncertainties from nonlinear density fluctuations, (scale dependent) galaxy bias, and baryonic effects. Allowing for substantially model independent uncertainties through separate fit parameters in each wavenumber bin that also allow for the redshift evolution, we quantify strong gains in dark energy and neutrino mass leverage with increasing maximum wavenumber, despite marginalizing over numerous (up to 125) extra fit parameters. The leverage is due to not only an increased number of modes but, more significantly, breaking of degeneracies beyond the linear regime
Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe
Takahashi, Ryuichi
2008-01-01
We investigate the third-order density perturbation and the one-loop correction to the linear power spectrum in the dark-energy cosmological model. Our main interest is to understand the dark-energy effect on baryon acoustic oscillations in a quasi-nonlinear regime ($k \\approx 0.1h$/Mpc). Analytical solutions and simple fitting formulae are presented for the dark-energy model with the general time-varying equation of state $w(a)$. It turns out that the power spectrum coincides with the approx...
Testing for new physics: neutrinos and the primordial power spectrum
Energy Technology Data Exchange (ETDEWEB)
Canac, Nicolas; Abazajian, Kevork N. [Department of Physics, University of California at Irvine, Irvine, CA 92697 (United States); Aslanyan, Grigor [Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720 (United States); Easther, Richard [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand); Price, Layne C., E-mail: ncanac@uci.edu, E-mail: aslanyan@berkeley.edu, E-mail: kevork@uci.edu, E-mail: r.easther@auckland.ac.nz, E-mail: laynep@andrew.cmu.edu [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)
2016-09-01
We test the sensitivity of neutrino parameter constraints from combinations of CMB and LSS data sets to the assumed form of the primordial power spectrum (PPS) using Bayesian model selection. Significantly, none of the tested combinations, including recent high-precision local measurements of H{sub 0} and cluster abundances, indicate a signal for massive neutrinos or extra relativistic degrees of freedom. For PPS models with a large, but fixed number of degrees of freedom, neutrino parameter constraints do not change significantly if the location of any features in the PPS are allowed to vary, although neutrino constraints are more sensitive to PPS features if they are known a priori to exist at fixed intervals in log k . Although there is no support for a non-standard neutrino sector from constraints on both neutrino mass and relativistic energy density, we see surprisingly strong evidence for features in the PPS when it is constrained with data from Planck 2015, SZ cluster counts, and recent high-precision local measurements of H{sub 0}. Conversely combining Planck with matter power spectrum and BAO measurements yields a much weaker constraint. Given that this result is sensitive to the choice of data this tension between SZ cluster counts, Planck and H{sub 0} measurements is likely an indication of unmodeled systematic bias that mimics PPS features, rather than new physics in the PPS or neutrino sector.
Unbiased contaminant removal for 3D galaxy power spectrum measurements
Kalus, B.; Percival, W. J.; Bacon, D. J.; Samushia, L.
2016-11-01
We assess and develop techniques to remove contaminants when calculating the 3D galaxy power spectrum. We separate the process into three separate stages: (I) removing the contaminant signal, (II) estimating the uncontaminated cosmological power spectrum and (III) debiasing the resulting estimates. For (I), we show that removing the best-fitting contaminant (mode subtraction) and setting the contaminated components of the covariance to be infinite (mode deprojection) are mathematically equivalent. For (II), performing a quadratic maximum likelihood (QML) estimate after mode deprojection gives an optimal unbiased solution, although it requires the manipulation of large N_mode^2 matrices (Nmode being the total number of modes), which is unfeasible for recent 3D galaxy surveys. Measuring a binned average of the modes for (II) as proposed by Feldman, Kaiser & Peacock (FKP) is faster and simpler, but is sub-optimal and gives rise to a biased solution. We present a method to debias the resulting FKP measurements that does not require any large matrix calculations. We argue that the sub-optimality of the FKP estimator compared with the QML estimator, caused by contaminants, is less severe than that commonly ignored due to the survey window.
International Nuclear Information System (INIS)
Cui Weiguang; Zhang Pengjie; Yang Xiaohu
2010-01-01
A large fraction of cosmological information on dark energy and gravity is encoded in the nonlinear regime. Precision cosmology thus requires precision modeling of nonlinearities in general dark energy and modified gravity models. We modify the Gadget-2 code and run a series of N-body simulations on modified gravity cosmology to study the nonlinearities. The modified gravity model that we investigate in the present paper is characterized by a single parameter ζ, which determines the enhancement of particle acceleration with respect to general relativity (GR), given the identical mass distribution (ζ=1 in GR). The first nonlinear statistics we investigate is the nonlinear matter power spectrum at k < or approx. 3h/Mpc, which is the relevant range for robust weak lensing power spectrum modeling at l < or approx. 2000. In this study, we focus on the relative difference in the nonlinear power spectra at corresponding redshifts where different gravity models have the same linear power spectra. This particular statistics highlights the imprint of modified gravity in the nonlinear regime and the importance of including the nonlinear regime in testing GR. By design, it is less susceptible to the sample variance and numerical artifacts. We adopt a mass assignment method based on wavelet to improve the power spectrum measurement. We run a series of tests to determine the suitable simulation specifications (particle number, box size, and initial redshift). We find that, the nonlinear power spectra can differ by ∼30% for 10% deviation from GR (|ζ-1|=0.1) where the rms density fluctuations reach 10. This large difference, on one hand, shows the richness of information on gravity in the corresponding scales, and on the other hand, invalidates simple extrapolations of some existing fitting formulae to modified gravity cosmology.
Just enough inflation. Power spectrum modifications at large scales
International Nuclear Information System (INIS)
Cicoli, Michele; Downes, Sean
2014-07-01
We show that models of 'just enough' inflation, where the slow-roll evolution lasted only 50-60 e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic and model-independent analysis of any possible non-slow-roll background evolution prior to the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low-l, and so seem disfavoured by recent observational hints for a lack of CMB power at l< or similar 40. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.
KLYNAC: Compact linear accelerator with integrated power supply
Energy Technology Data Exchange (ETDEWEB)
Malyzhenkov, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-05-16
Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.
Observational constraints on the primordial curvature power spectrum
Emami, Razieh; Smoot, George F.
2018-01-01
CMB temperature fluctuation observations provide a precise measurement of the primordial power spectrum on large scales, corresponding to wavenumbers 10‑3 Mpc‑1 lesssim k lesssim 0.1 Mpc‑1, [1-7, 11]. Luminous red galaxies and galaxy clusters probe the matter power spectrum on overlapping scales (0.02 Mpc‑1 lesssim k lesssim 0.7 Mpc‑1 [10, 12-20]), while the Lyman-alpha forest reaches slightly smaller scales (0.3 Mpc‑1 lesssim k lesssim 3 Mpc‑1 [22]). These observations indicate that the primordial power spectrum is nearly scale-invariant with an amplitude close to 2 × 10‑9, [5, 23-28]. These observations strongly support Inflation and motivate us to obtain observations and constraints reaching to smaller scales on the primordial curvature power spectrum and by implication on Inflation. We are able to obtain limits to much higher values of k lesssim 105 Mpc‑1 and with less sensitivity even higher k lesssim 1019‑ 1023 Mpc‑1 using limits from CMB spectral distortions and other limits on ultracompact minihalo objects (UCMHs) and Primordial Black Holes (PBHs). PBHs are one of the known candidates for the Dark Matter (DM). Due to their very early formation, they could give us valuable information about the primordial curvature perturbations. These are complementary to other cosmological bounds on the amplitude of the primordial fluctuations. In this paper, we revisit and collect all the published constraints on both PBHs and UCMHs. We show that unless one uses the CMB spectral distortion, PBHs give us a very relaxed bounds on the primordial curvature perturbations. UCMHs, on the other hand, are very informative over a reasonable k range (3 lesssim k lesssim 106 Mpc‑1) and lead to significant upper-bounds on the curvature spectrum. We review the conditions under which the tighter constraints on the UCMHs could imply extremely strong bounds on the fraction of DM that could be PBHs in reasonable models. Failure to satisfy these conditions would
Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential
Huang, Qing-Guo; Pi, Shi
2018-04-01
The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(phi)~ phin. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.
Angular power spectrum in publically released ALICE events
Llanes-Estrada, Felipe J.; Muñoz Martinez, Jose L.
2018-02-01
We study the particles emitted in the fireball following a Relativistic Heavy Ion Collision with the traditional angular analysis employed in cosmology and earth sciences, producing Mollweide plots of the number and pt distribution of a few actual, publically released ALICE-collaboration events and calculating their angular power spectrum. We also examine the angular spectrum of a simple two-particle correlation. While this may not be the optimal way of analyzing heavy ion data, our intention is to provide a one to one comparison to analysis in cosmology. With the limited statistics at hand, we do not find evidence for acoustic peaks but a decrease of Cl that is reminiscent of viscous attenuation, but subject to a strong effect from the rapidity acceptance which probably dominates (so we also subtract the m = 0 component). As an exercise, we still extract a characteristic Silk damping length (proportional to the square root of the viscosity over entropy density ratio) to illustrate the method. The absence of acoustic-like peaks is also compatible with a crossover from the QGP to the hadron gas (because a surface tension at domain boundaries would effect a restoring force that could have driven acoustic oscillations). Presently we do not understand a depression of the l = 6 multipole strength; perhaps ALICE could reexamine it with full statistics.
CMB power spectrum at l=30-200 from QMASK
International Nuclear Information System (INIS)
Xu Yongzhong; Tegmark, Max; de Oliveira-Costa, Angelica
2002-01-01
We measure the cosmic microwave background power spectrum on angular scales l∼30-200 (1 deg. -6 deg.) from the QMASK map, which combines the data from the QMAP and Saskatoon experiments. Since the accuracy of recent measurements leftward of the first acoustic peak is limited by sample variance, the large area of the QMASK map (648 square degrees) allows us to place among the sharpest constraints to date in this range, in good agreement with BOOMERanG and (on the largest scales) COBE-DMR. By band-pass filtering the QMAP and Saskatoon maps, we are able to spatially compare them scale by scale to check for beam- and pointing-related systematic errors
Contribution of domain wall networks to the CMB power spectrum
International Nuclear Information System (INIS)
Lazanu, A.; Martins, C.J.A.P.; Shellard, E.P.S.
2015-01-01
We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined
Contribution of domain wall networks to the CMB power spectrum
Energy Technology Data Exchange (ETDEWEB)
Lazanu, A., E-mail: A.Lazanu@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2015-07-30
We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.
Contribution of domain wall networks to the CMB power spectrum
Directory of Open Access Journals (Sweden)
A. Lazanu
2015-07-01
Full Text Available We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.
Low power RF measurements of travelling wave type linear accelerator
International Nuclear Information System (INIS)
Reddy, Sivananda; Wanmode, Yashwant; Bhisikar, A.; Shrivastava, Purushottam
2015-01-01
RRCAT is engaged in the development of travelling wave (TW) type linear accelerator for irradiation of industrial and agricultural products. TW accelerator designed for 2π/3 mode to operate at frequency of 2856 MHz. It consists of input coupler, buncher cells, regular cells and output coupler. Low power measurement of this structure includes measurement of resonant frequency of the cells for different resonant modes and quality factor, tuning of input-output coupler and measurement of phase advance per cell and electric field in the structure. Steele's non-resonant perturbation technique has been used for measurement of phase advance per cell and electric field in the structure. Kyhl's method has been used for the tuning of input-output coupler. Computer based automated bead pull set-up has been developed for measurement of phase advance per cell and electric field profile in the structure. All the codes are written in Python for interfacing of Vector Network Analyzer (VNA) , stepper motor with computer. These codes also automate the measurement process. This paper describes the test set- up for measurement and results of measurement of travelling wave type linear accelerating structure. (author)
MIRO Observation of Comet C/2002 T7 (LINEAR) Water Line Spectrum
Lee, Seungwon; Frerking, Margaret; Hofstadter, Mark; Gulkis, Samuel; von Allmen, Paul; Crovisier, Jaques; Biver, Nicholas; Bockelee-Morvan, Dominique
2011-01-01
Comet C/2002 T7 (LINEAR) was observed with the Microwave Instrument for Rosetta Orbiter (MIRO) on April 30, 2004, between 5 hr and 16 hr UT. The comet was 0.63AU distance from the Sun and 0.68AU distance from the MIRO telescope at the time of the observations. The water line involving the two lowest rotational levels at 556.936 GHz is observed at 557.070 GHz due to a large Doppler frequency shift. The detected water line spectrum is interpreted using a non local thermal equilibrium (Non-LTE) molecular excitation and radiative transfer model. Several synthetic spectra are calculated with various coma profiles that are plausible for the comet at the time of observations. The coma profile is modeled with three characteristic parameters: outgassing rate, a constant expansion velocity, and a constant gas temperature. The model calculation result shows that for the distant line observation where contributions from a large coma space is averaged, the combination of the outgassing rate and the gas expansion velocity determines the line shape while the gas temperature has a negligible effect. The comparison between the calculated spectra and the MIRO measured spectrum suggests that the outgassing rate of the comet is about 2.0x1029 molecules/second and its gas expansion velocity about 1.2 km/s at the time of the observations.
Vibration power generator for a linear MR damper
International Nuclear Information System (INIS)
Sapiński, Bogdan
2010-01-01
The paper describes the structure and the results of numerical calculations and experimental tests of a newly developed vibration power generator for a linear magnetorheological (MR) damper. The generator consists of permanent magnets and coil with foil winding. The device produces electrical energy according to Faraday's law of electromagnetic induction. This energy is applied to vary the damping characteristics of the MR damper attached to the generator by the input current produced by the device. The objective of the numerical calculations was to determine the magnetic field distribution in the generator as well as the electric potential and current density in the generator's coil during the idle run and under the load applied to the MR damper control coil. The results of the calculations were used during the design and manufacturing stages of the device. The objective of the experimental tests carried out on a dynamic testing machine was to evaluate the generator's efficiency and to compare the experimental and predicted data. The experimental results demonstrate that the engineered device enables a change in the kinetic energy of the reciprocal motion of the MR damper which leads to variations in the damping characteristics. That is why the generator may be used to build up MR damper based vibration control systems which require no external power
Free piston linear generator for low grid power generation
Directory of Open Access Journals (Sweden)
Abdalla Izzeldin
2017-01-01
Full Text Available Generating power is of great importance nowadays across the world. However, recently, the world became aware of the climatic changes due to the greenhouse effect caused by CO2 emissions and began seeking solutions to reduce the negative impact on the environment. Besides, the exhaustion of fossil fuels and their environmental impact, make it is crucial to develop clean energy sources, and efforts are focused on developing and improving the efficiency of all energy consuming systems. The tubular permanent magnet linear generators (TPMLGs are the best candidate for energy converters. Despite being suffering problem of attraction force between permanent magnets and stator teeth, to eliminate such attraction force, ironless-stator could be considered. Thus, they could waive the presence of any magnetic attraction between the moving and stator part. This paper presents the design and analysis of ironless -cored TPMLG for low grid power generation. The main advantages of this generator are the low cogging force and high efficiency. Therefore, the magnetic field computation of the proposed generator has been performed by applying a magnetic vector potential and utilizing a 2-D finite element analysis (FEA. Moreover, the experimental results for the current profile, pressure profile and velocity profile have been presented.
High linearity 5.2-GHz power amplifier MMIC using CPW structure technology with a linearizer circuit
International Nuclear Information System (INIS)
Wu Chiasong; Lin Tah-Yeong; Wu Hsien-Ming
2010-01-01
A built-in linearizer was applied to improve the linearity in a 5.2-GHz power amplifier microwave monolithic integrated circuit (MMIC), which was undertaken with 0.15-μm AlGaAs/InGaAs D-mode PHEMT technology. The power amplifier (PA) was studied taking into account the linearizer circuit and the coplanar waveguide (CPW) structures. Based on these technologies, the power amplifier, which has a chip size of 1.44 x 1.10 mm 2 , obtained an output power of 13.3 dBm and a power gain of 14 dB in the saturation region. An input third-order intercept point (HP 3 ) of -3 dBm, an output third-order intercept point (OIP 3 ) of 21.1 dBm and a power added efficiency (PAE) of 22% were attained, respectively. Finally, the overall power characterization exhibited high gain and high linearity, which illustrates that the power amplifier has a compact circuit size and exhibits favorable RF characteristics. This power circuit demonstrated high RF characterization and could be used for microwave power circuit applications at 5.2 GHz. (semiconductor integrated circuits)
Implementation of 252Cf-source-driven power spectrum density measurement system
International Nuclear Information System (INIS)
Ren Yong; Wei Biao; Feng Peng; Li Jiansheng; Ye Cenming
2012-01-01
The principle of 252 Cf-source-driven power spectrum density measurement method is introduced. A measurement system and platform is realized accordingly, which is a combination of hardware and software, for measuring nuclear parameters. The detection method of neutron pulses based on an ultra-high-speed data acquisition card (three channels, 1 GHz sampling rate, 1 ns synchronization) is described, and the data processing process and the power spectrum density algorithm on PC are designed. This 252 Cf-source-driven power spectrum density measurement system can effectively obtain the nuclear tag parameters of nuclear random processes, such as correlation function and power spectrum density. (authors)
Angular power spectrum of galaxies in the 2MASS Redshift Survey
Ando, Shin'ichiro; Benoit-Lévy, Aurélien; Komatsu, Eiichiro
2018-02-01
We present the measurement and interpretation of the angular power spectrum of nearby galaxies in the 2MASS Redshift Survey catalogue with spectroscopic redshifts up to z ≈ 0.1. We detect the angular power spectrum up to a multipole of ℓ ≈ 1000. We find that the measured power spectrum is dominated by galaxies living inside nearby galaxy clusters and groups. We use the halo occupation distribution (HOD) formalism to model the power spectrum, obtaining a fit with reasonable parameters. These HOD parameters are in agreement with the 2MASS galaxy distribution we measure towards the known nearby galaxy clusters, confirming validity of our analysis.
Time-dependent spectrum analysis of high power gyrotrons
International Nuclear Information System (INIS)
Schlaich, Andreas
2015-01-01
In this work, an investigation of vacuum electronic oscillators capable of generating multi-megawatt continuous wave output power in the millimeter-wave range (so-called gyrotrons) through spectral measurements is presented. The centerpiece is the development of a measurement system with a high dynamic range (50-60 dB) for time-dependent spectrum analysis, covering the frequency range 100-170 GHz with instantaneous bandwidths of 6-12 GHz. Despite relying on heterodyne reception through harmonic mixers, the Pulse Spectrum Analysis (PSA) system maintains RF unambiguity in the spectrogram output through the application of a novel RF reconstruction technique. Using the new possibilities, a wide range of spectral phenomena in gyrotrons has been investigated, such as cavity mode jumps, lowfrequency modulation, frequency tuning in long pulses and the spectral behavior during the presence of an RF window arc. A dedicated investigation on parasitic RF oscillations in W7-X gyrotrons combining several analysis techniques led to the conclusion that after-cavity oscillations can be physical reality in high power gyrotrons, and are the probable cause for the undesired signals observed. Apart from systematic parameter sweeps using the PSA system, an analytical dispersion analysis in the Brillouin diagram was applied, and numerical gyrotron interaction simulations of unprecedented extent were conducted. Furthermore, the improved frequency measurement capabilities were employed to analyze the frequency tuning through thermal expansion and electrostatic neutralization caused by ionization inside the tube in long-pulse operation. By macroscopically modeling the gas dynamics and ionization processes in combination with a fitting process, the time dependences of the two processes could be investigated. In doing so, indication was found that the neutralization in W7-X gyrotrons amounts to only 60% of the electrostatic depression voltage, instead of 100% as widely believed for
Time-dependent spectrum analysis of high power gyrotrons
Energy Technology Data Exchange (ETDEWEB)
Schlaich, Andreas
2015-07-01
In this work, an investigation of vacuum electronic oscillators capable of generating multi-megawatt continuous wave output power in the millimeter-wave range (so-called gyrotrons) through spectral measurements is presented. The centerpiece is the development of a measurement system with a high dynamic range (50-60 dB) for time-dependent spectrum analysis, covering the frequency range 100-170 GHz with instantaneous bandwidths of 6-12 GHz. Despite relying on heterodyne reception through harmonic mixers, the Pulse Spectrum Analysis (PSA) system maintains RF unambiguity in the spectrogram output through the application of a novel RF reconstruction technique. Using the new possibilities, a wide range of spectral phenomena in gyrotrons has been investigated, such as cavity mode jumps, lowfrequency modulation, frequency tuning in long pulses and the spectral behavior during the presence of an RF window arc. A dedicated investigation on parasitic RF oscillations in W7-X gyrotrons combining several analysis techniques led to the conclusion that after-cavity oscillations can be physical reality in high power gyrotrons, and are the probable cause for the undesired signals observed. Apart from systematic parameter sweeps using the PSA system, an analytical dispersion analysis in the Brillouin diagram was applied, and numerical gyrotron interaction simulations of unprecedented extent were conducted. Furthermore, the improved frequency measurement capabilities were employed to analyze the frequency tuning through thermal expansion and electrostatic neutralization caused by ionization inside the tube in long-pulse operation. By macroscopically modeling the gas dynamics and ionization processes in combination with a fitting process, the time dependences of the two processes could be investigated. In doing so, indication was found that the neutralization in W7-X gyrotrons amounts to only 60% of the electrostatic depression voltage, instead of 100% as widely believed for
Directory of Open Access Journals (Sweden)
Chen Qi
2013-07-01
Full Text Available Non-linear chirp scaling (NLCS is a feasible method to deal with time-variant frequency modulation (FM rate problem in synthetic aperture radar (SAR imaging. However, approximations in derivation of NLCS spectrum lead to performance decline in some cases. Presented is the exact spectrum of the NLCS function. Simulation with a geosynchronous synthetic aperture radar (GEO-SAR configuration is implemented. The results show that using the presented spectrum can significantly improve imaging performance, and the NLCS algorithm is suitable for GEO-SAR imaging after modification.
International Nuclear Information System (INIS)
Putter, Roland de; Wagner, Christian; Verde, Licia; Mena, Olga; Percival, Will J.
2012-01-01
Accurate power spectrum (or correlation function) covariance matrices are a crucial requirement for cosmological parameter estimation from large scale structure surveys. In order to minimize reliance on computationally expensive mock catalogs, it is important to have a solid analytic understanding of the different components that make up a covariance matrix. Considering the matter power spectrum covariance matrix, it has recently been found that there is a potentially dominant effect on mildly non-linear scales due to power in modes of size equal to and larger than the survey volume. This beat coupling effect has been derived analytically in perturbation theory and while it has been tested with simulations, some questions remain unanswered. Moreover, there is an additional effect of these large modes, which has so far not been included in analytic studies, namely the effect on the estimated average density which enters the power spectrum estimate. In this article, we work out analytic, perturbation theory based expressions including both the beat coupling and this local average effect and we show that while, when isolated, beat coupling indeed causes large excess covariance in agreement with the literature, in a realistic scenario this is compensated almost entirely by the local average effect, leaving only ∼ 10% of the excess. We test our analytic expressions by comparison to a suite of large N-body simulations, using both full simulation boxes and subboxes thereof to study cases without beat coupling, with beat coupling and with both beat coupling and the local average effect. For the variances, we find excellent agreement with the analytic expressions for k −1 at z = 0.5, while the correlation coefficients agree to beyond k = 0.4 hMpc −1 . As expected, the range of agreement increases towards higher redshift and decreases slightly towards z = 0. We finish by including the large-mode effects in a full covariance matrix description for arbitrary survey
An optimal FFT-based anisotropic power spectrum estimator
Energy Technology Data Exchange (ETDEWEB)
Hand, Nick; Seljak, Uroš [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Li, Yin; Slepian, Zachary, E-mail: nhand@berkeley.edu, E-mail: yin.li@berkeley.edu, E-mail: zslepian@lbl.gov, E-mail: useljak@berkeley.edu [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2017-07-01
Measurements of line-of-sight dependent clustering via the galaxy power spectrum's multipole moments constitute a powerful tool for testing theoretical models in large-scale structure. Recent work shows that this measurement, including a moving line-of-sight, can be accelerated using Fast Fourier Transforms (FFTs) by decomposing the Legendre polynomials into products of Cartesian vectors. Here, we present a faster, optimal means of using FFTs for this measurement. We avoid redundancy present in the Cartesian decomposition by using a spherical harmonic decomposition of the Legendre polynomials. With this method, a given multipole of order ℓ requires only 2ℓ+1 FFTs rather than the (ℓ+1)(ℓ+2)/2 FFTs of the Cartesian approach. For the hexadecapole (ℓ = 4), this translates to 40% fewer FFTs, with increased savings for higher ℓ. The reduction in wall-clock time enables the calculation of finely-binned wedges in P ( k ,μ), obtained by computing multipoles up to a large ℓ{sub max} and combining them. This transformation has a number of advantages. We demonstrate that by using non-uniform bins in μ, we can isolate plane-of-sky (angular) systematics to a narrow bin at 0μ ≅ while eliminating the contamination from all other bins. We also show that the covariance matrix of clustering wedges binned uniformly in μ becomes ill-conditioned when combining multipoles up to large values of ℓ{sub max}, but that the problem can be avoided with non-uniform binning. As an example, we present results using ℓ{sub max}=16, for which our procedure requires a factor of 3.4 fewer FFTs than the Cartesian method, while removing the first μ bin leads only to a 7% increase in statistical error on f σ{sub 8}, as compared to a 54% increase with ℓ{sub max}=4.
An optimal FFT-based anisotropic power spectrum estimator
Hand, Nick; Li, Yin; Slepian, Zachary; Seljak, Uroš
2017-07-01
Measurements of line-of-sight dependent clustering via the galaxy power spectrum's multipole moments constitute a powerful tool for testing theoretical models in large-scale structure. Recent work shows that this measurement, including a moving line-of-sight, can be accelerated using Fast Fourier Transforms (FFTs) by decomposing the Legendre polynomials into products of Cartesian vectors. Here, we present a faster, optimal means of using FFTs for this measurement. We avoid redundancy present in the Cartesian decomposition by using a spherical harmonic decomposition of the Legendre polynomials. With this method, a given multipole of order l requires only 2l+1 FFTs rather than the (l+1)(l+2)/2 FFTs of the Cartesian approach. For the hexadecapole (l = 4), this translates to 40% fewer FFTs, with increased savings for higher l. The reduction in wall-clock time enables the calculation of finely-binned wedges in P(k,μ), obtained by computing multipoles up to a large lmax and combining them. This transformation has a number of advantages. We demonstrate that by using non-uniform bins in μ, we can isolate plane-of-sky (angular) systematics to a narrow bin at 0μ simeq while eliminating the contamination from all other bins. We also show that the covariance matrix of clustering wedges binned uniformly in μ becomes ill-conditioned when combining multipoles up to large values of lmax, but that the problem can be avoided with non-uniform binning. As an example, we present results using lmax=16, for which our procedure requires a factor of 3.4 fewer FFTs than the Cartesian method, while removing the first μ bin leads only to a 7% increase in statistical error on f σ8, as compared to a 54% increase with lmax=4.
On minimally parametric primordial power spectrum reconstruction and the evidence for a red tilt
International Nuclear Information System (INIS)
Verde, Licia; Peiris, Hiranya
2008-01-01
The latest cosmological data seem to indicate a significant deviation from scale invariance of the primordial power spectrum when parameterized either by a power law or by a spectral index with non-zero 'running'. This deviation, by itself, serves as a powerful tool for discriminating among theories for the origin of cosmological structures such as inflationary models. Here, we use a minimally parametric smoothing spline technique to reconstruct the shape of the primordial power spectrum. This technique is well suited to searching for smooth features in the primordial power spectrum such as deviations from scale invariance or a running spectral index, although it would recover sharp features of high statistical significance. We use the WMAP three-year results in combination with data from a suite of higher resolution cosmic microwave background experiments (including the latest ACBAR 2008 release), as well as large-scale structure data from SDSS and 2dFGRS. We employ cross-validation to assess, using the data themselves, the optimal amount of smoothness in the primordial power spectrum consistent with the data. This minimally parametric reconstruction supports the evidence for a power law primordial power spectrum with a red tilt, but not for deviations from a power law power spectrum. Smooth variations in the primordial power spectrum are not significantly degenerate with the other cosmological parameters
The Mira-Titan Universe. II. Matter Power Spectrum Emulation
Energy Technology Data Exchange (ETDEWEB)
Lawrence, Earl; Heitmann, Katrin; Kwan, Juliana; Upadhye, Amol; Bingham, Derek; Habib, Salman; Higdon, David; Pope, Adrian; Finkel, Hal; Frontiere, Nicholas
2017-09-20
We introduce a new cosmic emulator for the matter power spectrum covering eight cosmological parameters. Targeted at optical surveys, the emulator provides accurate predictions out to a wavenumber k similar to 5 Mpc(-1) and redshift z <= 2. In addition to covering the standard set of Lambda CDM parameters, massive neutrinos and a dynamical dark energy of state are included. The emulator is built on a sample set of 36 cosmological models, carefully chosen to provide accurate predictions over the wide and large parameter space. For each model, we have performed a high-resolution simulation, augmented with 16 medium-resolution simulations and TimeRG perturbation theory results to provide accurate coverage over a wide k-range; the data set generated as part of this project is more than 1.2Pbytes. With the current set of simulated models, we achieve an accuracy of approximately 4%. Because the sampling approach used here has established convergence and error-control properties, follow-up results with more than a hundred cosmological models will soon achieve similar to 1% accuracy. We compare our approach with other prediction schemes that are based on halo model ideas and remapping approaches.
Linear Distributed GaN MMIC Power Amplifier with Improved Power-added Efficiency
2017-03-01
QPSK LTE waveform, the ACPR1improved by ~10 dBc at average output power of 23 dBm, without digital pre-distortion. Keywords: GaN, linear amplifiers...wideband amplifier, OIP3, LTE Introduction RF communications with spectral efficiency utilizes complex modulation schemes that require amplifier...wideband amplifiers remain. In this paper, we report on the measured CW performance of a multi-octave (100 MHz ‒ 8 GHz) GaN MMIC NDPA fabricated with
Energy Technology Data Exchange (ETDEWEB)
Lindegger, M.
2008-07-01
When an oscillating piston interacts with an electrical generator or motor, it is obvious that the electrical machine should also have linear motion, eliminating the disadvantage of a crankshaft. This work has two parts: construction of an efficient linear generator for a Stirling engine with a free piston and a theoretical study of the efficiency of linear motors for driving compressors. The Stirling engine and the linear generator have a continuous power of 1.3 kW{sub el}. With thermal peak power the planned 1.5 kW{sub el} are attained. The Project 'Stirling Free Piston Generator' for cogeneration will continue. Smaller linear motors with permanent magnets function without electronic control from single-phase AC net. The theoretical study shows how linear motors can be led out by linking the electric vector diagram with the pressure-volume diagram of the compressor. At a power level exceeding a few kW, a three-phase system with power electronics is more suitable. The frequency of oscillation is variable and lower than 50 Hz. The efficiency of the simulated linear motors lies in the range of efficiency class EFF1 of standard motors. The very high efficiencies of rotating motors with permanent magnets are not attained. The combination of the linear motor with an optimised thermal process leads to advantages regarding the efficiency. If a heat pump with linear drive system can operate with hot lubricating oil the losses in the heat exchangers are reduced. The Competence Center for Thermal Machines at Lucerne University of Applied Sciences and Arts shows great interest to pursue the project of a linear heat pump for small temperature differences. (author)
On the soft limit of the large scale structure power spectrum. UV dependence
International Nuclear Information System (INIS)
Garny, Mathias
2015-08-01
We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agreement within the expected uncertainties. Our approach can in principle be used to precisely infer the relevance of the leading order EFT coefficient(s) using small volume simulations in an 'anisotropic separate universe' framework. Our results suggest that the importance of these coefficient(s) is a ∝ 10% effect, and plausibly smaller.
Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum
Rips, Ilya
2017-01-01
Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990), 10.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988), 10.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ /ωbrate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.
Kubo, N
1995-04-01
To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical "least squares filter" theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the "Butterworth" filtering method (cut-off frequency of 0.15 cycles/pixel), and "Wiener" filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99mTc filled cylinder, were used. NMSE of the "Butterworth" filter, "Wiener" filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images.
International Nuclear Information System (INIS)
Kubo, Naoki
1995-01-01
To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical 'least squares filter' theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the 'Butterworth' filtering method (cut-off frequency of 0.15 cycles/pixel), and 'Wiener' filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99m Tc filled cylinder, were used. NMSE of the 'Butterworth' filter, 'Wiener' filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images. (author)
Multiobjective Optimization of Linear Cooperative Spectrum Sensing: Pareto Solutions and Refinement.
Yuan, Wei; You, Xinge; Xu, Jing; Leung, Henry; Zhang, Tianhang; Chen, Chun Lung Philip
2016-01-01
In linear cooperative spectrum sensing, the weights of secondary users and detection threshold should be optimally chosen to minimize missed detection probability and to maximize secondary network throughput. Since these two objectives are not completely compatible, we study this problem from the viewpoint of multiple-objective optimization. We aim to obtain a set of evenly distributed Pareto solutions. To this end, here, we introduce the normal constraint (NC) method to transform the problem into a set of single-objective optimization (SOO) problems. Each SOO problem usually results in a Pareto solution. However, NC does not provide any solution method to these SOO problems, nor any indication on the optimal number of Pareto solutions. Furthermore, NC has no preference over all Pareto solutions, while a designer may be only interested in some of them. In this paper, we employ a stochastic global optimization algorithm to solve the SOO problems, and then propose a simple method to determine the optimal number of Pareto solutions under a computational complexity constraint. In addition, we extend NC to refine the Pareto solutions and select the ones of interest. Finally, we verify the effectiveness and efficiency of the proposed methods through computer simulations.
Angular Spectrum Method for the Focused Acoustic Field of a Linear Transducer
Belgroune, D.; de Belleval, J. F.; Djelouah, H.
Applications involving non-destructive testing or acoustical imaging are more and more sophisticated. In this context, a model based on the angular spectrum approach is tackled in view to calculate the focused impulse field radiated by a linear transducer through a plane fluid-solid interface. It is well known that electronic focusing, based on a cylindrical delay law, like for the classical cases (lenses, curved transducer), leads to an inaccurate focusing in the solid due to geometric aberrations errors affecting refraction. Generally, there is a significant difference between the acoustic focal distance and the geometrical focal due to refraction. In our work, an optimized delay law, based on the Fermat's principle is established, particularly at an oblique incidence where the geometrical considerations, relatively simple in normal incidence, become quickly laborious. Numerical simulations of impulse field are judiciously carried out. Subsequently, the input parameters are optimally selected in order to achieve good computation accuracy and a high focusing. The overall results, involving compression and shear waves, have highlighted the focusing improvement in the solid when compared to the currently available approaches. Indeed, the acoustic focal distance is very close to geometrical focal distance and then, allows better control of the refracted angular beam profile (refraction angle, focusing depth and focal size).
Directory of Open Access Journals (Sweden)
Zhou G Tong
2007-01-01
Full Text Available Many modern communication signal formats, such as orthogonal frequency-division multiplexing (OFDM and code-division multiple access (CDMA, have high peak-to-average power ratios (PARs. A signal with a high PAR not only is vulnerable in the presence of nonlinear components such as power amplifiers (PAs, but also leads to low transmission power efficiency. Selected mapping (SLM and clipping are well-known PAR reduction techniques. We propose to combine SLM with threshold clipping and digital baseband predistortion to improve the overall efficiency of the transmission system. Testbed experiments demonstrate the effectiveness of the proposed approach.
Feedback linearizing control of a MIMO power system
Ilyes, Laszlo
Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.
Optimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimation
Gjerløw, E.; Colombo, L. P. L.; Eriksen, H. K.; Górski, K. M.; Gruppuso, A.; Jewell, J. B.; Plaszczynski, S.; Wehus, I. K.
2015-11-01
We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at ℓ ≤ 32 and a maximum shift in the mean values of a joint distribution of an amplitude-tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ ≤ 32, rendering low-ℓ QML CMB power spectrum analysis fully tractable on a standard laptop.
Power spectrum scale invariance identifies prefrontal dysregulation in paranoid schizophrenia.
Radulescu, Anca R; Rubin, Denis; Strey, Helmut H; Mujica-Parodi, Lilianne R
2012-07-01
Theory and experimental evidence suggest that complex living systems function close to the boundary of chaos, with erroneous organization to an improper dynamical range (too stiff or chaotic) underlying system-wide dysregulation and disease. We hypothesized that erroneous organization might therefore also characterize paranoid schizophrenia, via optimization abnormalities in the prefrontal-limbic circuit regulating emotion. To test this, we acquired fMRI scans from 35 subjects (N = 9 patients with paranoid schizophrenia and N = 26 healthy controls), while they viewed affect-valent stimuli. To quantify dynamic regulation, we analyzed the power spectrum scale invariance (PSSI) of fMRI time-courses and computed the geometry of time-delay (Poincaré) maps, a measure of variability. Patients and controls showed distinct PSSI in two clusters (k(1) : Z = 4.3215, P = 0.00002 and k(2) : Z = 3.9441, P = 0.00008), localized to the orbitofrontal/medial prefrontal cortex (Brodmann Area 10), represented by β close to white noise in patients (β ≈ 0) and in the pink noise range in controls (β ≈ -1). Interpreting the meaning of PSSI differences, the Poincaré maps indicated less variability in patients than controls (Z = -1.9437, P = 0.05 for k(1) ; Z = -2.5099, P = 0.01 for k(2) ). That the dynamics identified Brodmann Area 10 is consistent with previous schizophrenia research, which implicates this area in deficits of working memory, executive functioning, emotional regulation and underlying biological abnormalities in synaptic (glutamatergic) transmission. Our results additionally cohere with a large body of work finding pink noise to be the normal range of central function at the synaptic, cellular, and small network levels, and suggest that patients show less supple responsivity of this region. Copyright © 2011 Wiley-Liss, Inc.
Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D
2017-11-01
ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi-sine disturbance. Joystick power was analysed using three models, continuous-linear-control (CC), continuous-linear-control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77-87% vs. 8-48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo-manual tracking. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
DEFF Research Database (Denmark)
Høgfeldt Hansen, Leif
2016-01-01
The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....
Free-Piston Diesel-Fueled Linear Alternator for Auxiliary Power Unit Applications
National Research Council Canada - National Science Library
Atkinson, Christopher
1999-01-01
.... Previous studies of free-piston engine designs have indicated that they would be useful where linear power delivery could be used, such as in fluid power delivery, or in electrical energy applications.
Sparse Linear Solver for Power System Analysis Using FPGA
National Research Council Canada - National Science Library
Johnson, J. R; Nagvajara, P; Nwankpa, C
2005-01-01
.... Numerical solution to load flow equations are typically computed using Newton-Raphson iteration, and the most time consuming component of the computation is the solution of a sparse linear system...
Linear and nonlinear analysis of high-power rf amplifiers
International Nuclear Information System (INIS)
Puglisi, M.
1983-01-01
After a survey of the state variable analysis method the final amplifier for the CBA is analyzed taking into account the real beam waveshape. An empirical method for checking the stability of a non-linear system is also considered
Directory of Open Access Journals (Sweden)
Kurt James Werner
2016-10-01
Full Text Available The magnitude of the Discrete Fourier Transform (DFT of a discrete-time signal has a limited frequency definition. Quadratic interpolation over the three DFT samples surrounding magnitude peaks improves the estimation of parameters (frequency and amplitude of resolved sinusoids beyond that limit. Interpolating on a rescaled magnitude spectrum using a logarithmic scale has been shown to improve those estimates. In this article, we show how to heuristically tune a power scaling parameter to outperform linear and logarithmic scaling at an equivalent computational cost. Although this power scaling factor is computed heuristically rather than analytically, it is shown to depend in a structured way on window parameters. Invariance properties of this family of estimators are studied and the existence of a bias due to noise is shown. Comparing to two state-of-the-art estimators, we show that an optimized power scaling has a lower systematic bias and lower mean-squared-error in noisy conditions for ten out of twelve common windowing functions.
A Dantzig-Wolfe Decomposition Algorithm for Linear Economic MPC of a Power Plant Portfolio
DEFF Research Database (Denmark)
Standardi, Laura; Edlund, Kristian; Poulsen, Niels Kjølstad
2012-01-01
Future power systems will consist of a large number of decentralized power producers and a large number of controllable power consumers in addition to stochastic power producers such as wind turbines and solar power plants. Control of such large scale systems requires new control algorithms....... In this paper, we formulate the control of such a system as an Economic Model Predictive Control (MPC) problem. When the power producers and controllable power consumers have linear dynamics, the Economic MPC may be expressed as a linear program and we apply Dantzig-Wolfe decomposition for solution...
International Nuclear Information System (INIS)
Chluba, Jens; Erickcek, Adrienne L.; Ben-Dayan, Ido
2012-01-01
In the early universe, energy stored in small-scale density perturbations is quickly dissipated by Silk damping, a process that inevitably generates μ- and y-type spectral distortions of the cosmic microwave background (CMB). These spectral distortions depend on the shape and amplitude of the primordial power spectrum at wavenumbers k ∼ 4 Mpc –1 . Here, we study constraints on the primordial power spectrum derived from COBE/FIRAS and forecasted for PIXIE. We show that measurements of μ and y impose strong bounds on the integrated small-scale power, and we demonstrate how to compute these constraints using k-space window functions that account for the effects of thermalization and dissipation physics. We show that COBE/FIRAS places a robust upper limit on the amplitude of the small-scale power spectrum. This limit is about three orders of magnitude stronger than the one derived from primordial black holes in the same scale range. Furthermore, this limit could be improved by another three orders of magnitude with PIXIE, potentially opening up a new window to early universe physics. To illustrate the power of these constraints, we consider several generic models for the small-scale power spectrum predicted by different inflation scenarios, including running-mass inflation models and inflation scenarios with episodes of particle production. PIXIE could place very tight constraints on these scenarios, potentially even ruling out running-mass inflation models if no distortion is detected. We also show that inflation models with sub-Planckian field excursion that generate detectable tensor perturbations should simultaneously produce a large CMB spectral distortion, a link that could potentially be established with PIXIE.
Classical and modern power spectrum estimation for tune measurement in CSNS RCS
International Nuclear Information System (INIS)
Yang Xiaoyu; Xu Taoguang; Fu Shinian; Zeng Lei; Bian Xiaojuan
2013-01-01
Precise measurement of betatron tune is required for good operating condition of CSNS RCS. The fractional part of betatron tune is important and it can be measured by analyzing the signals of beam position from the appointed BPM. Usually these signals are contaminated during the acquisition process, therefore several power spectrum methods are used to improve the frequency resolution. In this article classical and modern power spectrum methods are used. In order to compare their performance, the results of simulation data and IQT data from J-PARC RCS are discussed. It is shown that modern power spectrum estimation has better performance than the classical ones, though the calculation is more complex. (authors)
One-dimensional power spectrum and neutrino mass in the spectra of BOSS
International Nuclear Information System (INIS)
Borde, Arnaud
2014-01-01
The framework of the studies presented in this thesis is the one-dimensional power spectrum of the transmitted flux in the Lyman-alpha forests. The Lyman-alpha forest is an absorption pattern seen in the spectra of high redshift quasars corresponding to the absorption of the quasar light by the hydrogen clouds along the line of sight. It is a powerful cosmological tool as it probes relatively small scales, of the order of a few Mpc. It is also sensible to small non-linear effects such as the one induced by massive neutrinos. First, we have developed two independent methods to measure the one-dimensional power spectrum of the transmitted flux in the Lyman-alpha forest. The first method is based on a Fourier transform, and the second on a maximum likelihood estimator. The two methods are independent and have different systematic uncertainties. The determination of the noise level in the data spectra was subject to a novel treatment, because of its significant impact on the derived power spectrum. We applied the two methods to 13,821 quasar spectra from SDSS-III/BOSS DR9 selected from a larger sample of over 60,000 spectra on the basis of their high quality, large signal-to-noise ratio, and good spectral resolution. The power spectra measured using either approach are in good agreement over all twelve redshift bins from =2.2 to =4.4, and scales from 0.001 (km/s)"-"1 to 0.02 (km/s)"-"1. We carefully determined the methodological and instrumental systematic uncertainties of our measurements. Then, we present a suite of cosmological N-body simulations with cold dark matter, baryons and neutrinos aiming at modeling the low-density regions of the IGM as probed by the Lyman-alpha forests at high redshift. The simulations are designed to match the requirements imposed by the quality of BOSS and eBOSS data. They are made using either 768"3 or 192"3 particles of each type, spanning volumes ranging from (25 Mpc/h)"3 for high-resolution simulations to (100 Mpc/h)"3 for large
A brief history of high power RF proton linear accelerators
International Nuclear Information System (INIS)
Browne, J.C.
1996-01-01
The first mention of linear acceleration was in a paper by G. Ising in 1924 in which he postulated the acceleration of positive ions induced by spark discharges which produced electric fields in gaps between a series of open-quotes drift tubesclose quotes. Ising apparently was not able to demonstrate his concept, most likely due to the limited state of electronic devices. Ising's work was followed by a seminal paper by R. Wideroe in 1928 in which he demonstrated the first linear accelerator. Wideroe was able to accelerate sodium or potassium ions to 50 keV of energy using drift tubes connected alternately to high frequency waves and to ground. Nuclear physics during this period was interested in accelerating protons, deuterons, electrons and alpha particles and not heavy ions like sodium or potassium. To accelerate the light ions required much higher frequencies than available at that time. So linear accelerators were not pursued heavily at that time. Research continued during the 1930s but the development of high frequency RF tubes for radar applications in World War 2 opened the potential for RF linear accelerators after the war. The Berkeley laboratory of E. 0. Lawrence under the leadership of Luis Alvarez developed a new linear proton accelerator concept that utilized drift tubes that required a full RF period to pass through as compared to the earlier concepts. This development resulted in the historic Berkeley 32 MeV proton linear accelerator which incorporated the open-quotes Alvarez drift tubeclose quotes as the basic acceleration scheme using surplus 200 MHz radar components
Chen, Lin; Abbey, Craig K.; Boone, John M.
2013-03-01
Previous research has demonstrated that a parameter extracted from a power function fit to the anatomical noise power spectrum, β, may be predictive of breast mass lesion detectability in x-ray based medical images of the breast. In this investigation, the value of β was compared with a number of other more widely used parameters, in order to determine the relationship between β and these other parameters. This study made use of breast CT data sets, acquired on two breast CT systems developed in our laboratory. A total of 185 breast data sets in 183 women were used, and only the unaffected breast was used (where no lesion was suspected). The anatomical noise power spectrum computed from two-dimensional region of interests (ROIs), was fit to a power function (NPS(f) = α f-β), and the exponent parameter (β) was determined using log/log linear regression. Breast density for each of the volume data sets was characterized in previous work. The breast CT data sets analyzed in this study were part of a previous study which evaluated the receiver operating characteristic (ROC) curve performance using simulated spherical lesions and a pre-whitened matched filter computer observer. This ROC information was used to compute the detectability index as well as the sensitivity at 95% specificity. The fractal dimension was computed from the same ROIs which were used for the assessment of β. The value of β was compared to breast density, detectability index, sensitivity, and fractal dimension, and the slope of these relationships was investigated to assess statistical significance from zero slope. A statistically significant non-zero slope was considered to be a positive association in this investigation. All comparisons between β and breast density, detectability index, sensitivity at 95% specificity, and fractal dimension demonstrated statistically significant association with p performance. Specifically, lower values of β were associated with lower breast density
High-power non linear frequency converted laser diodes
DEFF Research Database (Denmark)
Jensen, Ole Bjarlin; Andersen, Peter E.; Hansen, Anders Kragh
2015-01-01
We present different methods of generating light in the blue-green spectral range by nonlinear frequency conversion of tapered diode lasers achieving state-of-the-art power levels. In the blue spectral range, we show results using single-pass second harmonic generation (SHG) as well as cavity enh...... enhanced sum frequency generation (SFG) with watt-level output powers. SHG and SFG are also demonstrated in the green spectral range as a viable method to generate up to 4 W output power with high efficiency using different configurations....
van Diessen, Eric; Senders, Joeky; Jansen, Floor E.; Boersma, Maria; Bruining, Hilgo
2015-01-01
Experimental studies suggest that increased resting-state power of gamma oscillations is associated with autism spectrum disorder (ASD). To extend the clinical applicability of this finding, we retrospectively investigated routine electroencephalography (EEG) recordings of 19 patients with ASD and
Spatial correlation in 3D MIMO channels using fourier coefficients of power spectrums
Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Mé rouane; Alouini, Mohamed-Slim
2015-01-01
for arbitrary angular distributions and antenna patterns. The resulting expression depends on the underlying angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty
Alinea, Allan L.; Kubota, Takahiro
2018-03-01
We perform adiabatic regularization of power spectrum in nonminimally coupled general single-field inflation with varying speed of sound. The subtraction is performed within the framework of earlier study by Urakawa and Starobinsky dealing with the canonical inflation. Inspired by Fakir and Unruh's model on nonminimally coupled chaotic inflation, we find upon imposing near scale-invariant condition, that the subtraction term exponentially decays with the number of e -folds. As in the result for the canonical inflation, the regularized power spectrum tends to the "bare" power spectrum as the Universe expands during (and even after) inflation. This work justifies the use of the "bare" power spectrum in standard calculation in the most general context of slow-roll single-field inflation involving nonminimal coupling and varying speed of sound.
Wind tunnel study of the power output spectrum in a micro wind farm
International Nuclear Information System (INIS)
Bossuyt, Juliaan; Meyers, Johan; Howland, Michael F.; Meneveau, Charles
2016-01-01
Instrumented small-scale porous disk models are used to study the spectrum of a surrogate for the power output in a micro wind farm with 100 models of wind turbines. The power spectra of individual porous disk models in the first row of the wind farm show the expected -5/3 power law at higher frequencies. Downstream models measure an increased variance due to wake effects. Conversely, the power spectrum of the sum of the power over the entire wind farm shows a peak at the turbine-to-turbine travel frequency between the model turbines, and a near -5/3 power law region at a much wider range of lower frequencies, confirming previous LES results. Comparison with the spectrum that would result when assuming that the signals are uncorrelated, highlights the strong effects of correlations and anti-correlations in the fluctuations at various frequencies. (paper)
All-sky analysis of the general relativistic galaxy power spectrum
Yoo, Jaiyul; Desjacques, Vincent
2013-07-01
We perform an all-sky analysis of the general relativistic galaxy power spectrum using the well-developed spherical Fourier decomposition. Spherical Fourier analysis expresses the observed galaxy fluctuation in terms of the spherical harmonics and spherical Bessel functions that are angular and radial eigenfunctions of the Helmholtz equation, providing a natural orthogonal basis for all-sky analysis of the large-scale mode measurements. Accounting for all the relativistic effects in galaxy clustering, we compute the spherical power spectrum and its covariance matrix and compare it to the standard three-dimensional power spectrum to establish a connection. The spherical power spectrum recovers the three-dimensional power spectrum at each wave number k with its angular dependence μk encoded in angular multipole l, and the contributions of the line-of-sight projection to galaxy clustering such as the gravitational lensing effect can be readily accommodated in the spherical Fourier analysis. A complete list of formulas for computing the relativistic spherical galaxy power spectrum is also presented.
Choi, Hojong; Woo, Park Chul; Yeom, Jung-Yeol; Yoon, Changhan
2017-04-04
A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (-1.8 and -0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (-2.95 and -3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dB m input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dB m at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dB m at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dB m input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (-48.34, -44.21, -48.34, and -46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (-45.61, -41.57, -45.01, and -45.51 dB, respectively). When five-cycle 20 dB m input
A Power Efficient Audio Amplifier Combining Switching and Linear Techniques
van der Zee, Ronan A.R.; van Tuijl, Adrianus Johannes Maria
1998-01-01
Integrated Class D audio amplifiers are very power efficient, but require an external filter which prevents further integration. Also due to this filter, large feedback factors are hard to realise, so that the load influences the distortion- and transfer characteristics. The amplifier presented in
A study on the linearity characteristics of neutron power measurement system for Hanaro
International Nuclear Information System (INIS)
Kang, Tai Ki; Kim, Young Ki; Lee, Byung Chul; Park, Sang Jun
1999-06-01
It is briefly described the general principles of neutron detection and the method of neutron measurement in the nuclear reactor which neutron flux varies widely and gamma radiation also exists. Wide-range Fission Chamber System which is excellent in electrical and mechanical performances has been selected for neutron power measurement system for Hanaro. The linearity characteristics of neutron power signals is a critical factor of the reliability in reactor power control. In particular , the linearity of the log power signal, which covers 10 decade form 10 -8 %FP to 200 %FP was a matter of primary concern during commissioning. In case of the linear power signal for reactor control at high power condition, the output signals were additionally analyzed in connection with the reactor thermal power and the delayed neutron signal from the primary pipe as well as the output signal from the compensated ion chamber as a reference signal. (author). 13 refs., 7 tabs., 33 figs
A study on the linearity characteristics of neutron power measurement system for Hanaro
Energy Technology Data Exchange (ETDEWEB)
Kang, Tai Ki; Kim, Young Ki; Lee, Byung Chul; Park, Sang Jun
1999-06-01
It is briefly described the general principles of neutron detection and the method of neutron measurement in the nuclear reactor which neutron flux varies widely and gamma radiation also exists. Wide-range Fission Chamber System which is excellent in electrical and mechanical performances has been selected for neutron power measurement system for Hanaro. The linearity characteristics of neutron power signals is a critical factor of the reliability in reactor power control. In particular , the linearity of the log power signal, which covers 10 decade form 10 {sup -8} %FP to 200 %FP was a matter of primary concern during commissioning. In case of the linear power signal for reactor control at high power condition, the output signals were additionally analyzed in connection with the reactor thermal power and the delayed neutron signal from the primary pipe as well asthe output signal from the compensated ion chamber as a reference signal. (author). 13 refs., 7 tabs., 33 figs.
The shape of the primordial power spectrum: A last stand before Planck data
International Nuclear Information System (INIS)
Peiris, Hiranya V.; Verde, Licia
2010-01-01
We present a minimally parametric reconstruction of the primordial power spectrum using the most recent cosmic microwave background and large-scale structure data sets. Our goal is to constrain the shape of the power spectrum while simultaneously avoiding strong theoretical priors and over-fitting of the data. We find no evidence for any departure from a power-law spectral index. We also find that an exact scale-invariant power spectrum is disfavored by the data, but this conclusion is weaker than the corresponding result assuming a theoretically-motivated power-law spectral index prior. The reconstruction shows that better data are crucial to justify the adoption of such a strong theoretical prior observationally. These results can be used to determine the robustness of our present knowledge when compared with forthcoming precision data from Planck.
Contribution of Strong Discontinuities to the Power Spectrum of the Solar Wind
International Nuclear Information System (INIS)
Borovsky, Joseph E.
2010-01-01
Eight and a half years of magnetic field measurements (2 22 samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the ''inertial subrange'' with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this ''inertial subrange.'' Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.
Ryuichi, TAKAHASHI; Department of Physics and Astrophysics, Nagoya University
2008-01-01
We investigate the third-order density perturbation and the one-loop correction to the linear power spectrum in the dark-energy cosmological model. Our main interest is to understand the dark-energy effect on baryon acoustic oscillations in a quasi-nonlinear regime (k≈0.1h/Mpc). Analytical solutions and simple fitting formulae are presented for the dark-energy model with the general time-varying equation of state w(a). It turns out that the power spectrum coincides with the approximate res...
An automatic method to determine cutoff frequency based on image power spectrum
International Nuclear Information System (INIS)
Beis, J.S.; Vancouver Hospital and Health Sciences Center, British Columbia; Celler, A.; Barney, J.S.
1995-01-01
The authors present an algorithm for automatically choosing filter cutoff frequency (F c ) using the power spectrum of the projections. The method is based on the assumption that the expectation of the image power spectrum is the sum of the expectation of the blurred object power spectrum (dominant at low frequencies) plus a constant value due to Poisson noise. By considering the discrete components of the noise-dominated high-frequency spectrum as a Gaussian distribution N(μ,σ), the Student t-test determines F c as the highest frequency for which the image frequency components are unlikely to be drawn from N (μ,σ). The method is general and can be applied to any filter. In this work, the authors tested the approach using the Metz restoration filter on simulated, phantom, and patient data with good results. Quantitative performance of the technique was evaluated by plotting recovery coefficient (RC) versus NMSE of reconstructed images
Features in the primordial power spectrum of double D-term inflation
International Nuclear Information System (INIS)
Lesgourgues, Julien
2000-01-01
Recently, there has been some interest for building supersymmetric models of double inflation. These models, realistic from a particle physics point of view, predict a broken-scale-invariant power spectrum of primordial cosmological perturbations, that may explain eventual nontrivial features in the present matter power spectrum. In previous works, the primordial spectrum was calculated using analytic slow-roll approximations. However, these models involve a fast second-order phase transition during inflation, with a stage of spinodal instability, and an interruption of slow-roll. For our previous model of double D-term inflation, we simulate numerically the evolution of quantum fluctuations, taking into account the spinodal modes, and we show that the semiclassical approximation can be employed even during the transition, due to the presence of a second inflaton field. The primordial power spectrum possesses a rich structure, and possibly, a non-Gaussian spike on observable scales
Siemens's spectrum of deliveries and services for nuclear power plants
International Nuclear Information System (INIS)
2011-01-01
In 2001, Siemens and Framatome merged their nuclear activities in the present Areva NP joint venture. Siemens has since focused on the construction and further development of conventional power plants and on the so-called conventional island (CI), the non-nuclear part of a nuclear power plant, i.e. the steam turbine, generator, and plant I and C systems, and also on service for the conventional part of nuclear power plants. Its role as a minority shareholder in Areva NP constrained Siemens. For this reason, the company in January 2009 decided to terminate its interest in Areva NP effective January 30, 2012. By January 2012 at the latest, Siemens will transfer to the majority shareholder Areva, holding 66 percent of the shares, its interest in the joint venture. For the time being, the joint venture still entails certain limitations to Siemens's activities in the nuclear field. Its delivery of the conventional island for the Olkiluoto 3 (OL3) nuclear power plant in Finland confirms the company's know-how in power plant construction. When commissioned, its 1,720 MW power will make OL3 the world's largest nuclear generating unit. The turbo-generator of the CI comprises a double-flow HP turbine and a 6-flow LP turbine. The driven 4-pole generator with a power of up to 2,200 MVA consists of a water-cooled stator and a hydrogen-cooled rotor. (orig.)
Liu, Zhihui; Wang, Haitao; Dong, Tao; Yin, Jie; Zhang, Tingting; Guo, Hui; Li, Dequan
2018-02-01
In this paper, the cognitive multi-beam satellite system, i.e., two satellite networks coexist through underlay spectrum sharing, is studied, and the power and spectrum allocation method is employed for interference control and throughput maximization. Specifically, the multi-beam satellite with flexible payload reuses the authorized spectrum of the primary satellite, adjusting its transmission band as well as power for each beam to limit its interference on the primary satellite below the prescribed threshold and maximize its own achievable rate. This power and spectrum allocation problem is formulated as a mixed nonconvex programming. For effective solving, we first introduce the concept of signal to leakage plus noise ratio (SLNR) to decouple multiple transmit power variables in the both objective and constraint, and then propose a heuristic algorithm to assign spectrum sub-bands. After that, a stepwise plus slice-wise algorithm is proposed to implement the discrete power allocation. Finally, simulation results show that adopting cognitive technology can improve spectrum efficiency of the satellite communication.
Adaptive discrete rate and power transmission for spectrum sharing systems
Abdallah, Mohamed M.; Salem, Ahmed H.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.
2012-01-01
channels available at the secondary transmitter. We consider the problem under the constraints of maximum average interference power levels at the primary receiver. We develop a sub-optimal computationally efficient iterative algorithm for finding
Validity of linear encoder measurement of sit-to-stand performance power in older people.
Lindemann, U; Farahmand, P; Klenk, J; Blatzonis, K; Becker, C
2015-09-01
To investigate construct validity of linear encoder measurement of sit-to-stand performance power in older people by showing associations with relevant functional performance and physiological parameters. Cross-sectional study. Movement laboratory of a geriatric rehabilitation clinic. Eighty-eight community-dwelling, cognitively unimpaired older women (mean age 78 years). Sit-to-stand performance power and leg power were assessed using a linear encoder and the Nottingham Power Rig, respectively. Gait speed was measured on an instrumented walkway. Maximum quadriceps and hand grip strength were assessed using dynamometers. Mid-thigh muscle cross-sectional area of both legs was measured using magnetic resonance imaging. Associations of sit-to-stand performance power with power assessed by the Nottingham Power Rig, maximum gait speed and muscle cross-sectional area were r=0.646, r=0.536 and r=0.514, respectively. A linear regression model explained 50% of the variance in sit-to-stand performance power including muscle cross-sectional area (p=0.001), maximum gait speed (p=0.002), and power assessed by the Nottingham Power Rig (p=0.006). Construct validity of linear encoder measurement of sit-to-stand power was shown at functional level and morphological level for older women. This measure could be used in routine clinical practice as well as in large-scale studies. DRKS00003622. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Model independent foreground power spectrum estimation using WMAP 5-year data
International Nuclear Information System (INIS)
Ghosh, Tuhin; Souradeep, Tarun; Saha, Rajib; Jain, Pankaj
2009-01-01
In this paper, we propose and implement on WMAP 5 yr data a model independent approach of foreground power spectrum estimation for multifrequency observations of the CMB experiments. Recently, a model independent approach of CMB power spectrum estimation was proposed by Saha et al. 2006. This methodology demonstrates that the CMB power spectrum can be reliably estimated solely from WMAP data without assuming any template models for the foreground components. In the current paper, we extend this work to estimate the galactic foreground power spectrum using the WMAP 5 yr maps following a self-contained analysis. We apply the model independent method in harmonic basis to estimate the foreground power spectrum and frequency dependence of combined foregrounds. We also study the behavior of synchrotron spectral index variation over different regions of the sky. We use the full sky Haslam map as an external template to increase the degrees of freedom, while computing the synchrotron spectral index over the frequency range from 408 MHz to 94 GHz. We compare our results with those obtained from maximum entropy method foreground maps, which are formed in pixel space. We find that relative to our model independent estimates maximum entropy method maps overestimate the foreground power close to galactic plane and underestimates it at high latitudes.
Energy Technology Data Exchange (ETDEWEB)
Heitmann, Katrin [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Higdon, David [Los Alamos National Laboratory; Williams, Brian J [Los Alamos National Laboratory; White, Martin [Los Alamos National Laboratory; Wagner, Christian [Los Alamos National Laboratory
2008-01-01
The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the one percent level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state 'wCDM' cosmologies. In this paper we demonstrate that a limited set of only 37 cosmological models -- the 'Coyote Universe' suite -- can be used to predict the nonlinear matter power spectrum at the required accuracy over a prior parameter range set by cosmic microwave background observations. This paper is the second in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum for wCDM cosmologies.
Energy Technology Data Exchange (ETDEWEB)
Lee, C. S.; Seo, C. K.; Lee, B. C.; Kim, H. N.; Kang, B. W. [KAERI, Taejon (Korea, Republic of)
2000-10-01
The HANARO fuel, U{sub 3}Si-Al, has been developed by AECL and tested in NRU reactor. Due to the lack of the data performed under the high power, the repetitive conduct of the irradiation test was required under the power greater than 108kW/m, which is the estimated maximum linear power in the design stage. Accordingly, the instrumented test bundle with SPND(Self Powered Neutron Detector) was fabricated and its irradiation test was performed in IR2 of HANARO. The measured thermal neutron flux with SPND is compared with calculation results by HANAFMS(HANARO Fuel Management System). The difference in the measured and calculated thermal flux values are below {+-}11% and the accuracy of the linear power predicted by HANAFMS is consequently accompanied. Therefore, it is believed that the maximum linear power above 120kW/m is achieved during the irradiation test of the test bundle.
DEFF Research Database (Denmark)
Relano-Iborra, Helia; May, Tobias; Zaar, Johannes
A powerful tool to investigate speech perception is the use of speech intelligibility prediction models. Recently, a model was presented, termed correlation-based speechbased envelope power spectrum model (sEPSMcorr) [1], based on the auditory processing of the multi-resolution speech-based Envel...
Verification of the linearity of the IPR-R1 TRIGA reactor power channels
International Nuclear Information System (INIS)
Souza, Rose Mary Gomes do Prado; Campolina, Daniel de Almeida Magalhaes
2013-01-01
The aim of this paper is to verify the linearity of the three power channels of the IPR-R1 TRIGA reactor. Located at Nuclear Technology Development Center-CDTN in Belo Horizonte, the IPR-R1 reactor is a typical 100 kW Mark I light-water reactor cooled by natural convection. When the experiments were performed, the reactor core had 59 fuel elements, containing 8% by weight of uranium enriched to 20% in 235 U. The core has cylindrical configuration with an annular graphite reflector. The responses of the detectors of the Linear, Log N and Percent Power channels were compared with the responses of detectors which only depend on the overall neutron flux within the reactor. Gold and cobalt foils were activated at low and high powers, respectively, and the specific count results were compared with measurements performed, simultaneously, with a fission chamber, and with the power registered by the three channels. The results show that the Linear channel responds linearly up to 100 kW, and the Log N channel responses are linear at low powers. In the range of high power, the Log N and the Percent Power channels exhibit linearity only from 10 kW to 50 kW. (author)
Red, Straight, no bends: primordial power spectrum reconstruction from CMB and large-scale structure
Energy Technology Data Exchange (ETDEWEB)
Ravenni, Andrea [Dipartimento di Fisica e Astronomia ' ' G. Galilei' ' , Università degli Studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Verde, Licia; Cuesta, Antonio J., E-mail: andrea.ravenni@pd.infn.it, E-mail: liciaverde@icc.ub.edu, E-mail: ajcuesta@icc.ub.edu [Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, E08028 Barcelona (Spain)
2016-08-01
We present a minimally parametric, model independent reconstruction of the shape of the primordial power spectrum. Our smoothing spline technique is well-suited to search for smooth features such as deviations from scale invariance, and deviations from a power law such as running of the spectral index or small-scale power suppression. We use a comprehensive set of the state-of the art cosmological data: Planck observations of the temperature and polarisation anisotropies of the cosmic microwave background, WiggleZ and Sloan Digital Sky Survey Data Release 7 galaxy power spectra and the Canada-France-Hawaii Lensing Survey correlation function. This reconstruction strongly supports the evidence for a power law primordial power spectrum with a red tilt and disfavours deviations from a power law power spectrum including small-scale power suppression such as that induced by significantly massive neutrinos. This offers a powerful confirmation of the inflationary paradigm, justifying the adoption of the inflationary prior in cosmological analyses.
Development of a Low Inductance Linear Alternator for Stirling Power Convertors
Geng, Steven M.; Schifer, Nicholas A.
2017-01-01
The free-piston Stirling power convertor is a promising technology for high efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper, eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations, and compares the predictions with experimental data for one of the configurations that has been built and is currently being tested.
Development of a Low-Inductance Linear Alternator for Stirling Power Convertors
Geng, Steven M.; Schifer, Nicholas A.
2017-01-01
The free-piston Stirling power convertor is a promising technology for high-efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-the-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations. Additionally, one of the configurations was built and tested at GRC, and the experimental data is compared with the predictions.
Spectrum Reorganization and Bundling for Power Efficient Mobile Networks
DEFF Research Database (Denmark)
Micallef, Gilbert; Mogensen, Preben; Scheck, Hans-Otto
2012-01-01
are still required for supporting legacy devices and providing wider network coverage. In order to facilitate and reduce the cost of rolling out a new network, mobile operators often reuse existing sites. Radio frequency modules in base station sites house power amplifiers, which are designed to operate...
Gas density fluctuations in the Perseus Cluster: clumping factor and velocity power spectrum
Energy Technology Data Exchange (ETDEWEB)
Zhuravleva, I.; Churazov, E.; Arevalo, P.; Schekochihin, A. A.; Allen, S. W.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.
2015-05-20
X-ray surface brightness fluctuations in the core of the Perseus Cluster are analysed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 7 to 12 per cent on scales of ~10–30 kpc within radii of 30–220 kpc from the cluster centre. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90–140 km s^{-1} on ~20–30 kpc scales and 70–100 km s^{-1} on smaller scales ~7–10 kpc. The velocity power spectrum (PS) is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the PS of the density fluctuations is lower than 7–8 per cent for radii ~30–220 kpc from the centre, leading to a density bias of less than 3–4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H, Athena and Smart-X observatories will directly measure the gas density–velocity perturbation relation and further reduce systematic uncertainties in this analysis.
Spatial correlation in 3D MIMO channels using fourier coefficients of power spectrums
Nadeem, Qurrat-Ul-Ain
2015-03-01
In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for the standardized three-dimensional (3D) multiple-input multiple-output (MIMO) channel. This novel SCF is developed for a uniform linear array of antennas with non-isotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials to obtain a closed-form expression for the SCF for arbitrary angular distributions and antenna patterns. The resulting expression depends on the underlying angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. Numerical results validate the proposed analytical expression and study the impact of angular spreads on the correlation. The derived SCF will help evaluate the performance of correlated 3D MIMO channels in the future. © 2015 IEEE.
Directory of Open Access Journals (Sweden)
Yao eWang
2016-01-01
Full Text Available Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with autism and enrolled in a prefrontal neurofeedback treatment course. The protocol used in this training was aimed at increasing the ability to focus attention, and the procedure represented the wide band EEG amplitude suppression training along with upregulation of the relative power of gamma activity. Quantitative EEG analysis was completed for each session of neurofeedback using wavelet transform to determine the relative power of gamma and theta/beta ratio, and further to detect the statistical changes within and between sessions. We found a linear decrease of theta/beta ratio and a liner increase of relative power of gamma activity over 18 weekly sessions of neurofeedback in 18 high functioning children with autism. The study indicates that neurofeedback is an effective method for altering EEG characteristics associated with the autism spectrum disorder. Also, it provides information about specific changes of EEG activities and details the correlation between changes of EEG and neurofeedback indexes during the course of neurofeedback. This pilot study contributes to the development of more effective approaches to EEG data analysis during prefrontal neurofeedback training in autism.Key word: Electroencephalography, Neurofeedback, Autism Spectrum Disorder, Gamma activity, EEG bands’ ratios
Adaptive discrete rate and power transmission for spectrum sharing systems
Abdallah, Mohamed M.
2012-04-01
In this paper we develop a framework for optimizing the performance of the secondary link in terms of the average spectral efficiency assuming quantized channel state information (CSI) of the secondary and the secondary-to-primary interference channels available at the secondary transmitter. We consider the problem under the constraints of maximum average interference power levels at the primary receiver. We develop a sub-optimal computationally efficient iterative algorithm for finding the optimal CSI quantizers as well as the discrete power and rate employed at the cognitive transmitter for each quantized CSI level so as to maximize the average spectral efficiency. We show via analysis and simulations that the proposed algorithm converges for Rayleigh fading channels. Our numerical results give the number of bits required to sufficiently represent the CSI to achieve almost the maximum average spectral efficiency attained using full knowledge of the CSI. © 2012 IEEE.
International Nuclear Information System (INIS)
Venancio Filho, F.; DeCarvalho Santos, S.H.; Joia, L.A.
1987-01-01
A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a NPP Reactor Building. The main results of this analysis are compared with the ones obtained by deterministic methods
International Nuclear Information System (INIS)
Venancio Filho, F.; Joia, L.A.
1987-01-01
A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a reactor building. The main results of this analysis are compared with the ones obtained by deterministic methods. (orig./HP)
Advances in high power linearly polarized fiber laser and its application
Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin
2017-10-01
Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.
Measurement and analysis of noise power spectrum of computerized tomography in images
International Nuclear Information System (INIS)
Castro Tejero, P.; Garayoa Roca, J.
2013-01-01
This paper examines the implementation of the spectrum of powers of the noise, NPS, as metric to characterize the noise, both in magnitude and in texture, for CT scans. The NPS found show that you for convolution filters that assume a greater softening in the reconstructed image, spectrum is concentrated in the low frequencies, while for filters sharp, the spectrum extends to high frequencies. In the analyzed cases, there is a low frequency component, largely due to the structure-borne noise, which can be a potential negative effect on the detectability of injuries. (Author)
On the dynamics of the power spectrum during lower hybrid current drive in Tokamaks
International Nuclear Information System (INIS)
Bizarro, J.P.
1993-01-01
An investigation is provided on the propagation and absorption of the power spectrum during lower hybrid current drive in Tokamaks. A combined ray tracing and Fokker-Planck code is utilized and stochastic effects induced by toroidicity are correctly taken into account by using a large number of rays. It is shown that when strong wave damping prevails the absorbed spectrum is very similar in shape to the launched one, although some broadening and shifting in parallel wave index generally occur, and power deposition is localized. If the wave damping is weak and stochastic effects are important, rays end up sweeping the entire plasma cross-section, power deposition turns out to be extended, and the absorbed spectrum is much broader than the launched one
Spatial power spectrum of the geomagnetic field since 1945
International Nuclear Information System (INIS)
Senanayake, W.E.
1987-04-01
The Geomagnetic field for the period 1945-1990 has been analyzed in terms of Spatial Power Spectra of the Main Field and its Secular Variation. It is observed that for the above interval, the magnetic energy density at the core-mantle boundary is almost conserved. This supports the idea that an exchange of energy between different spherical harmonic constituents could occur. The distinctive behaviour of the first two terms (Dipole and Quadrupole), as seen from the spectra of the main field and secular variation, probably indicates somewhat different feature associated with the field origin. (author). 28 refs, 3 figs, 1 tab
POWER SPECTRUM DENSITY (PSD ANALYSIS OF AUTOMOTIVE PEDAL-PAD
Directory of Open Access Journals (Sweden)
AHMED RITHAUDDEEN YUSOFF
2016-04-01
Full Text Available Vibration at the pedal-pad may contribute to discomfort of foot plantar fascia during driving. This is due to transmission of vibration to the mount, chassis, pedal, and then to the foot plantar fascia. This experimental study is conducted to determine the estimation of peak value using the power spectral density of the vertical vibration input at the foot. The power spectral density value is calculated based on the frequency range between 13 Hz to 18 Hz. This experiment was conducted using 12 subjects testing on three size of pedal-pads; small, medium and large. The result shows that peak value occurs at resonance frequency of 15 Hz. The PSD values at that resonance frequency are 0.251 (m/s2 2/Hz for small pedal-pad, followed by the medium pedal-pad is at 0.387 (m/s2 2/Hz and lastly for the large pedal-pad is at 0.483 (m/s22/Hz. The resultsindicate that during driving, the foot vibration when interact with the large pedal-pad contributed higher stimulus compared with the small and medium pedal-pad. The pedal-pad size plays an important role in the pedal element designs in terms of vibration-transfer from pedal-pads on the feet, particularly to provide comfort to the driver while driving.
Cole, Philippa S.; Byrnes, Christian T.
2018-02-01
Observational constraints on the abundance of primordial black holes (PBHs) constrain the allowed amplitude of the primordial power spectrum on both the smallest and the largest ranges of scales, covering over 20 decades from 1‑1020/ Mpc. Despite tight constraints on the allowed fraction of PBHs at their time of formation near horizon entry in the early Universe, the corresponding constraints on the primordial power spectrum are quite weak, typically Script PRlesssim 10‑2 assuming Gaussian perturbations. Motivated by recent claims that the evaporation of just one PBH would destabilise the Higgs vacuum and collapse the Universe, we calculate the constraints which follow from assuming there are zero PBHs within the observable Universe. Even if evaporating PBHs do not collapse the Universe, this scenario represents the ultimate limit of observational constraints. Constraints can be extended on to smaller scales right down to the horizon scale at the end of inflation, but where power spectrum constraints already exist they do not tighten significantly, even though the constraint on PBH abundance can decrease by up to 46 orders of magnitude. This shows that no future improvement in observational constraints can ever lead to a significant tightening in constraints on inflation (via the power spectrum amplitude). The power spectrum constraints are weak because an order unity perturbation is required in order to overcome pressure forces. We therefore consider an early matter dominated era, during which exponentially more PBHs form for the same initial conditions. We show this leads to far tighter constraints, which approach Script PRlesssim10‑9, albeit over a smaller range of scales and are very sensitive to when the early matter dominated era ends. Finally, we show that an extended early matter era is incompatible with the argument that an evaporating PBH would destroy the Universe, unless the power spectrum amplitude decreases by up to ten orders of magnitude.
The design of a linear L-band high power amplifier for mobile communication satellites
Whittaker, N.; Brassard, G.; Li, E.; Goux, P.
1990-01-01
A linear L-band solid state high power amplifier designed for the space segment of the Mobile Satellite (MSAT) mobile communication system is described. The amplifier is capable of producing 35 watts of RF power with multitone signal at an efficiency of 25 percent and with intermodulation products better than 16 dB below carrier.
Virtual instrumention-based linearity test platform for DCCT of digital power supply at SSRF
International Nuclear Information System (INIS)
Tang Junlong; Li Deming; Shen Tianjian; Liu Hong
2008-01-01
Based on virtual instrumentation, a reliable and effective test platform, performing instrument control, data acquisition and data recording, has been established to evaluate linearity of high performance DCCT (DC current transducer) for digital power supply at Shanghai Synchrotron Radiation Facility (SSRF). The software in LabVIEW language was developed to perform computer communication via serial communication (RS232) and GPIB, providing a friendly user interface to the linearity test platform. This makes it easy to test the linearity and control power on or off and current output of high-precision and high-current DC constant current output power supply. The experimental data, stored in an EXCEL file, can be processed to obtain DCCT linearity, and provide basis to further analyze DCCT performance in the future. (authors)
Energy Technology Data Exchange (ETDEWEB)
Kenne, Godpromesse [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun, Cameroun; Goma, Raphael; Lamnabhi-Lagarrigue, Francoise [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere [Departement GEII, Universite Paris XIII, IUT Villetaneuse, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Arzande, Amir; Vannier, Jean Claude [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)
2010-09-15
In this paper, a simple improved direct feedback linearization design method for transient stability and voltage regulation of power systems is discussed. Starting with the classical direct feedback linearization technique currently applied to power systems, an adaptive nonlinear excitation control of synchronous generators is proposed, which is new and effective for engineering. The power angle and mechanical power input are not assumed to be available. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of angular speed, active electric power and generator terminal voltage. Experimental results of a practical power system show that fast response, robustness, damping, steady-state and transient stability as well as voltage regulation are all achieved satisfactorily. (author)
Directory of Open Access Journals (Sweden)
Irina Khamaganova
2018-01-01
Full Text Available Similar clinical and histhopathological features in progressive hemifacial atrophy and linear scleroderma en coup de sabre are well known. Trauma may predispose to the development of both diseases. The lack of association with anti-Borrelia antibodies was shown in both cases as well. The otolaryngological and endocrine disorders may be associated findings in both diseases. However, there are certain differences in neurological and ophthalmological changes in the diseases.
Power Take-Off with Integrated Resonator for Energy Extraction from Linear Motions
DEFF Research Database (Denmark)
2014-01-01
The invention relates to a magnetic gear for converting linear motion into rotational motion and vice versa. The present invention converts slow linear irregular oscillating motion of wave energy devices into torque on a high speed shaft for powering a generator while making the wave energy device...... of sea or ocean waves into useful energy, such as electricity. The invention relates to the control and operation of a magnetic gear based motor/generator system. The invention provides a high force density electric powered linear actuator....... resonate with the waves. The invention relates to the field of energy-harvesting from energy sources, where the energy-harvesting requires the extraction of energy from slow and often irregular reciprocating motion of bodies. The present invention relates to a wave power apparatus for converting power...
Efficient high-power narrow-linewidth all-fibred linearly polarized ytterbium laser source
Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico
2012-06-01
We report on experimental results on a high power, all-fibred, linearly polarized, mode-locked laser at 1.03 μm. The laser generates pulses of 40 ps wide at a repetition rate of 52 MHz, exhibiting 12 kW peak power. Dispersion in optical fibres is controlled to obtain both high power and narrow spectral linewidth. The average output power reached is 25 W with a spectral linewidth of 380 pm and a near diffraction limit beam (M2 < 1.2). This laser is an ideal candidate for applications like IR spectroscopy, where high peak power and narrow linewidth are required for subsequent wavelength conversion.
Das, Sudeep; Louis, Thibaut; Nolta, Michael R.; Addison, Graeme E.; Battisetti, Elia S.; Bond, J. Richard; Calabrese, Erminia; Crichton, Devin; Devlin, Mark J.; Dicker, Simon;
2014-01-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ?CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6s detection significance.
The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data
International Nuclear Information System (INIS)
Das, Sudeep; Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna; Nolta, Michael R.; Bond, J Richard; Hajian, Amir; Hincks, Adam D.; Addison, Graeme E.; Halpern, Mark; Battistelli, Elia S.; Crichton, Devin; Gralla, Megan; Devlin, Mark J.; Dicker, Simon; Dünner, Rolando; Fowler, Joseph W.; Hasselfield, Matthew; Hlozek, Renée; Hilton, Matt
2014-01-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ΛCDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6σ detection significance
Energy Technology Data Exchange (ETDEWEB)
Das, Sudeep [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Nolta, Michael R.; Bond, J Richard; Hajian, Amir; Hincks, Adam D. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8 Canada (Canada); Addison, Graeme E.; Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada (Canada); Battistelli, Elia S. [Department of Physics, University of Rome ' ' La Sapienza' ' , Piazzale Aldo Moro 5, I-00185 Rome (Italy); Crichton, Devin; Gralla, Megan [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Devlin, Mark J.; Dicker, Simon [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, 19104 (United States); Dünner, Rolando [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificía Universidad Católica, Casilla 306, Santiago 22 (Chile); Fowler, Joseph W. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO, 80305 (United States); Hasselfield, Matthew; Hlozek, Renée [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Hilton, Matt, E-mail: sudeepphys@gmail.com [Centre for Astronomy and Particle Theory, School of Physics and Astronomy, University of Nottingham, NG7 2RD (United Kingdom); and others
2014-04-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ΛCDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6σ detection significance.
Signature of short distance physics on inflation power spectrum and CMB anisotropy
International Nuclear Information System (INIS)
Das, Suratna; Mohanty, Subhendra
2009-01-01
The inflaton field responsible for inflation may not be a canonical fundamental scalar. It is possible that the inflaton is a composite of fermions or it may have a decay width. In these cases the standard procedure for calculating the power spectrum is not applicable and a new formalism needs to be developed to determine the effect of short range interactions of the inflaton on the power spectrum and the CMB anisotropy. We develop a general formalism for computing the power spectrum of curvature perturbations for such non-canonical cases by using the flat space Källén-Lehmann spectral function in curved quasi-de Sitter space assuming implicitly that the Bunch-Davis boundary conditions enforces the inflaton mode functions to be plane wave in the short wavelength limit and a complete set of mode functions exists in quasi-de Sitter space. It is observed that the inflaton with a decay width suppresses the power at large scale while a composite inflaton's power spectrum oscillates at large scales. These observations may be vindicated in the WMAP data and confirmed by future observations with PLANCK
Variability of the Magnetic Field Power Spectrum in the Solar Wind at Electron Scales
Roberts, Owen Wyn; Alexandrova, O.; Kajdič, P.; Turc, L.; Perrone, D.; Escoubet, C. P.; Walsh, A.
2017-12-01
At electron scales, the power spectrum of solar-wind magnetic fluctuations can be highly variable and the dissipation mechanisms of the magnetic energy into the various particle species is under debate. In this paper, we investigate data from the Cluster mission’s STAFF Search Coil magnetometer when the level of turbulence is sufficiently high that the morphology of the power spectrum at electron scales can be investigated. The Cluster spacecraft sample a disturbed interval of plasma where two streams of solar wind interact. Meanwhile, several discontinuities (coherent structures) are seen in the large-scale magnetic field, while at small scales several intermittent bursts of wave activity (whistler waves) are present. Several different morphologies of the power spectrum can be identified: (1) two power laws separated by a break, (2) an exponential cutoff near the Taylor shifted electron scales, and (3) strong spectral knees at the Taylor shifted electron scales. These different morphologies are investigated by using wavelet coherence, showing that, in this interval, a clear break and strong spectral knees are features that are associated with sporadic quasi parallel propagating whistler waves, even for short times. On the other hand, when no signatures of whistler waves at ∼ 0.1{--}0.2{f}{ce} are present, a clear break is difficult to find and the spectrum is often more characteristic of a power law with an exponential cutoff.
A new method to cluster genomes based on cumulative Fourier power spectrum.
Dong, Rui; Zhu, Ziyue; Yin, Changchuan; He, Rong L; Yau, Stephen S-T
2018-06-20
Analyzing phylogenetic relationships using mathematical methods has always been of importance in bioinformatics. Quantitative research may interpret the raw biological data in a precise way. Multiple Sequence Alignment (MSA) is used frequently to analyze biological evolutions, but is very time-consuming. When the scale of data is large, alignment methods cannot finish calculation in reasonable time. Therefore, we present a new method using moments of cumulative Fourier power spectrum in clustering the DNA sequences. Each sequence is translated into a vector in Euclidean space. Distances between the vectors can reflect the relationships between sequences. The mapping between the spectra and moment vector is one-to-one, which means that no information is lost in the power spectra during the calculation. We cluster and classify several datasets including Influenza A, primates, and human rhinovirus (HRV) datasets to build up the phylogenetic trees. Results show that the new proposed cumulative Fourier power spectrum is much faster and more accurately than MSA and another alignment-free method known as k-mer. The research provides us new insights in the study of phylogeny, evolution, and efficient DNA comparison algorithms for large genomes. The computer programs of the cumulative Fourier power spectrum are available at GitHub (https://github.com/YaulabTsinghua/cumulative-Fourier-power-spectrum). Copyright © 2018. Published by Elsevier B.V.
How to estimate the 3D power spectrum of the Lyman-α forest
Font-Ribera, Andreu; McDonald, Patrick; Slosar, Anže
2018-01-01
We derive and numerically implement an algorithm for estimating the 3D power spectrum of the Lyman-α (Lyα) forest flux fluctuations. The algorithm exploits the unique geometry of Lyα forest data to efficiently measure the cross-spectrum between lines of sight as a function of parallel wavenumber, transverse separation and redshift. We start by approximating the global covariance matrix as block-diagonal, where only pixels from the same spectrum are correlated. We then compute the eigenvectors of the derivative of the signal covariance with respect to cross-spectrum parameters, and project the inverse-covariance-weighted spectra onto them. This acts much like a radial Fourier transform over redshift windows. The resulting cross-spectrum inference is then converted into our final product, an approximation of the likelihood for the 3D power spectrum expressed as second order Taylor expansion around a fiducial model. We demonstrate the accuracy and scalability of the algorithm and comment on possible extensions. Our algorithm will allow efficient analysis of the upcoming Dark Energy Spectroscopic Instrument dataset.
Constraints on models with a break in the primordial power spectrum
Energy Technology Data Exchange (ETDEWEB)
Li Hong, E-mail: hongli@mail.ihep.ac.c [Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China); Kavli Institute for Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Xia Junqing [Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy); Brandenberger, Robert [Department of Physics, McGill University, 3600 University Street, Montreal, QC, H3A 2T8 (Canada); Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China); Kavli Institute for Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Zhang Xinmin [Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China)
2010-07-05
One of the characteristics of the 'Matter Bounce' scenario, an alternative to cosmological inflation for producing a scale-invariant spectrum of primordial adiabatic fluctuations on large scales, is a break in the power spectrum at a characteristic scale, below which the spectral index changes from n{sub s}=1 to n{sub s}=3. We study the constraints which current cosmological data place on the location of such a break, and more generally on the position of the break and the slope at length scales smaller than the break. The observational data we use include the WMAP five-year data set (WMAP5), other CMB data from BOOMERanG, CBI, VSA, and ACBAR, large-scale structure data from the Sloan Digital Sky Survey (SDSS, their luminous red galaxies sample), Type Ia Supernovae data (the 'Union' compilation), and the Sloan Digital Sky Survey Lyman-{alpha} forest power spectrum (Ly{alpha}) data. We employ the Markov Chain Monte Carlo method to constrain the features in the primordial power spectrum which are motivated by the matter bounce model. We give an upper limit on the length scale where the break in the spectrum occurs.
Constraints on models with a break in the primordial power spectrum
International Nuclear Information System (INIS)
Li Hong; Xia Junqing; Brandenberger, Robert; Zhang Xinmin
2010-01-01
One of the characteristics of the 'Matter Bounce' scenario, an alternative to cosmological inflation for producing a scale-invariant spectrum of primordial adiabatic fluctuations on large scales, is a break in the power spectrum at a characteristic scale, below which the spectral index changes from n s =1 to n s =3. We study the constraints which current cosmological data place on the location of such a break, and more generally on the position of the break and the slope at length scales smaller than the break. The observational data we use include the WMAP five-year data set (WMAP5), other CMB data from BOOMERanG, CBI, VSA, and ACBAR, large-scale structure data from the Sloan Digital Sky Survey (SDSS, their luminous red galaxies sample), Type Ia Supernovae data (the 'Union' compilation), and the Sloan Digital Sky Survey Lyman-α forest power spectrum (Lyα) data. We employ the Markov Chain Monte Carlo method to constrain the features in the primordial power spectrum which are motivated by the matter bounce model. We give an upper limit on the length scale where the break in the spectrum occurs.
Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.
Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian
2016-11-10
An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.
Distance Dependent Model for the Delay Power Spectrum of In-room Radio Channels
DEFF Research Database (Denmark)
Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri
2013-01-01
A model based on experimental observations of the delay power spectrum in closed rooms is proposed. The model includes the distance between the transmitter and the receiver as a parameter which makes it suitable for range based radio localization. The experimental observations motivate the proposed...... model of the delay power spectrum with a primary (early) component and a reverberant component (tail). The primary component is modeled as a Dirac delta function weighted according to an inverse distance power law (d-n). The reverberant component is an exponentially decaying function with onset equal...... to the propagation time between transmitter and receiver. Its power decays exponentially with distance. The proposed model allows for the prediction of e.g. the path loss, mean delay, root mean squared (rms) delay spread, and kurtosis versus the distance. The model predictions are validated by measurements...
Spectrum estimation method based on marginal spectrum
International Nuclear Information System (INIS)
Cai Jianhua; Hu Weiwen; Wang Xianchun
2011-01-01
FFT method can not meet the basic requirements of power spectrum for non-stationary signal and short signal. A new spectrum estimation method based on marginal spectrum from Hilbert-Huang transform (HHT) was proposed. The procession of obtaining marginal spectrum in HHT method was given and the linear property of marginal spectrum was demonstrated. Compared with the FFT method, the physical meaning and the frequency resolution of marginal spectrum were further analyzed. Then the Hilbert spectrum estimation algorithm was discussed in detail, and the simulation results were given at last. The theory and simulation shows that under the condition of short data signal and non-stationary signal, the frequency resolution and estimation precision of HHT method is better than that of FFT method. (authors)
International Nuclear Information System (INIS)
Tieliewuhan, E.; Ivannikov, A.; Zhumadilov, K.; Nalapko, M.; Tikunov, D.; Skvortsov, V.; Stepanenko, V.; Toyoda, S.; Tanaka, K.; Endo, S.; Hoshi, M.
2006-01-01
Variation of the electron paramagnetic resonance (EPR) spectrum of the human tooth enamel recorded at different microwave power is investigated. The analytical models describing the native and the radiation-induced signals in the enamel are proposed, which fit the experimental spectra in wide range of microwave power. These models are designed to use for processing the spectra of irradiated enamel at determination of the absorbed dose from the intensity of the radiation-induced signal
Choudhuri, Samir; Bharadwaj, Somnath; Ghosh, Abhik; Ali, Sk. Saiyad
2014-01-01
We present two estimators to quantify the angular power spectrum of the sky signal directly from the visibilities measured in radio interferometric observations. This is relevant for both the foregrounds and the cosmological 21-cm signal buried therein. The discussion here is restricted to the
Exponential decay rate of the power spectrum for solutions of the Navier--Stokes equations
International Nuclear Information System (INIS)
Doering, C.R.; Titi, E.S.
1995-01-01
Using a method developed by Foias and Temam [J. Funct. Anal. 87, 359 (1989)], exponential decay of the spatial Fourier power spectrum for solutions of the incompressible Navier--Stokes equations is established and explicit rigorous lower bounds on a small length scale defined by the exponential decay rate are obtained
DEFF Research Database (Denmark)
Relaño-Iborra, Helia; May, Tobias; Zaar, Johannes
2016-01-01
A speech intelligibility prediction model is proposed that combines the auditory processing front end of the multi-resolution speech-based envelope power spectrum model [mr-sEPSM; Jørgensen, Ewert, and Dau (2013). J. Acoust. Soc. Am. 134(1), 436–446] with a correlation back end inspired by the sh...
The 3D Power Spectrum from Angular Clustering of Galaxies in Early SDSS Data
Dodelson, Scott; Tegmark, Max; Scranton, Ryan; Budavari, Tamas; Connolly, Andrew; Csabai, Istvan; Eisenstein, Daniel; Frieman, Joshua A.; Gunn, James E.; Hui, Lam; Jain, Bhuvnesh; Johnston, David; Kent, Stephen M.; Loveday, Jon; Nichol, Robert C.; O'Connell, Liam; Scoccimarro, Roman; Sheth, Ravi K.; Stebbins, Albert; Strauss, Michael A.; Szalay, Alexander S.; Szapudi, Istvan; Vogeley, Michael S.; Zehavi, Idit; Annis, James; Bahcall, Neta A.; Brinkman, Jon; Doi, Mamoru; Fukugita, Masataka; Hennessy, Greg; Ivezic, Zeljko; Knapp, Gillian R.; Kunszt, Peter; Lamb, Don Q.; Lee, Brian C.; Lupton, Robert H.; Munn, Jeffrey A.; Peoples, John; Pier, Jeffrey R.; Rockosi, Constance; Schlegel, David; Stoughton, Christopher; Tucker, Douglas L.; Yanny, Brian; York, Donald G.; Dodelson, Scott; Narayanan, Vijay K.; Tegmark, Max; Scranton, Ryan; Budavari, Tamas; Connolly, Andrew; Csabai, Istvan; Eisenstein, Daniel; Frieman, Joshua A.; Gunn, James E.; Hui, Lam; Jain, Bhuvnesh; Johnston, David; Kent, Stephen; Loveday, Jon; Nichol, Robert C.; Connell, Liam O'; Scoccimarro, Roman; Sheth, Ravi K.; Stebbins, Albert; Strauss, Michael A.; Szalay, Alexander S.; Szapudi, Istv\\'an; Vogeley, Michael S.; Zehavi, Idit
2001-01-01
Early photometric data from the Sloan Digital Sky Survey (SDSS) contain angular positions for 1.5 million galaxies. In companion papers, the angular correlation function $w(\\theta)$ and 2D power spectrum $C_l$ of these galaxies are presented. Here we invert Limber's equation to extract the 3D power spectrum from the angular results. We accomplish this using an estimate of $dn/dz$, the redshift distribution of galaxies in four different magnitude slices in the SDSS photometric catalog. The resulting 3D power spectrum estimates from $w(\\theta)$ and $C_l$ agree with each other and with previous estimates over a range in wavenumbers $0.03 < k/{\\rm h Mpc}^{-1} < 1$. The galaxies in the faintest magnitude bin ($21 < \\rstar < 22$, which have median redshift $z_m=0.43$) are less clustered than the galaxies in the brightest magnitude bin ($18 < \\rstar < 19$ with $z_m=0.17$), especially on scales where nonlinearities are important. The derived power spectrum agrees with that of Szalay et al. (2001) wh...
The matter power spectrum from the Ly alpha forest : an optical depth estimate
Zaroubi, S; Nusser, A; Haehnelt, M; Kim, TS; Viel, M.
2006-01-01
We measure the matter power spectrum from 31 Ly alpha spectra spanning the redshift range of 1.6-3.6. The optical depth, tau, for Ly alpha absorption of the intergalactic medium is obtained from the flux using the inversion method of Nusser & Haehnelt. The optical depth is converted to density by
Low power wide spectrum optical transmitter using avalanche mode LEDs in SOI CMOS technology
Agarwal, V.; Dutta, S; Annema, AJ; Hueting, RJE; Steeneken, P.G.; Nauta, B
2017-01-01
This paper presents a low power monolithically integrated optical transmitter with avalanche mode light emitting diodes in a 140 nm silicon-on-insulator CMOS technology. Avalanche mode LEDs in silicon exhibit wide-spectrum electroluminescence (400 nm < λ < 850 nm), which has a significant
Planck 2013 results. XXI. All-sky Compton parameter power spectrum and high-order statistics
Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Genova-Santos, R.T.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marcos-Caballero, A.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Melin, J.B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-01-01
We have constructed the first all-sky map of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 100 to 857 GHz frequency channel maps from the Planck survey. These maps show an obvious galaxy cluster tSZ signal that is well matched with blindly detected clusters in the Planck SZ catalogue. To characterize the signal in the tSZ map we have computed its angular power spectrum. At large angular scales ($\\ell 500$) the clustered Cosmic Infrared Background (CIB) and residual point sources are the major contaminants. These foregrounds are carefully modelled and subtracted. We measure the tSZ power spectrum in angular scales, $0.17^{\\circ} \\lesssim \\theta \\lesssim 3.0^{\\circ}$, that were previously unexplored. The measured tSZ power spectrum is consistent with that expected from the Planck catalogue of SZ sources, with additional clear evidence of signal from unresolved clusters and, potentially, diffuse warm baryons. We use the tSZ power spectrum to ...
Slow-roll inflation and BB-mode angular power spectrum of CMB
Energy Technology Data Exchange (ETDEWEB)
Malsawmtluangi, N.; Suresh, P.K. [University of Hyderabad, School of Physics, Hyderabad (India)
2016-05-15
The BB-mode correlation angular power spectrum of CMB is obtained by considering the primordial gravitational waves in the squeezed vacuum state for various inflationary models and results are compared with the joint analysis of the BICEP2/Keck Array and Planck 353 GHz data. The present results may constrain several models of inflation. (orig.)
H-ATLAS: THE COSMIC ABUNDANCE OF DUST FROM THE FAR-INFRARED BACKGROUND POWER SPECTRUM
Energy Technology Data Exchange (ETDEWEB)
Thacker, Cameron; Cooray, Asantha; Smidt, Joseph; De Bernardis, Francesco; Mitchell-Wynne, K. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Amblard, A. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Auld, R.; Eales, S.; Pascale, E. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA (United Kingdom); Baes, M.; Michalowski, M. J. [Sterrenkundig Observatorium, Universiteit Gent, KrijgslAAn 281 S9, B-9000 Gent (Belgium); Clements, D. L.; Dariush, A.; Hopwood, R. [Physics Department, Imperial College London, South Kensington campus, London, SW7 2AZ (United Kingdom); De Zotti, G. [INAF, Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Maddox, S. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Hoyos, C. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Ibar, E. [UK Astronomy Technology Centre, The Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Jarvis, M. [Astrophysics, Department of Physics, Keble Road, Oxford, OX1 3RH (United Kingdom); and others
2013-05-01
We present a measurement of the angular power spectrum of the cosmic far-infrared background (CFIRB) anisotropies in one of the extragalactic fields of the Herschel Astrophysical Terahertz Large Area Survey at 250, 350, and 500 {mu}m bands. Consistent with recent measurements of the CFIRB power spectrum in Herschel-SPIRE maps, we confirm the existence of a clear one-halo term of galaxy clustering on arcminute angular scales with large-scale two-halo term of clustering at 30 arcmin to angular scales of a few degrees. The power spectrum at the largest angular scales, especially at 250 {mu}m, is contaminated by the Galactic cirrus. The angular power spectrum is modeled using a conditional luminosity function approach to describe the spatial distribution of unresolved galaxies that make up the bulk of the CFIRB. Integrating over the dusty galaxy population responsible for the background anisotropies, we find that the cosmic abundance of dust, relative to the critical density, to be between {Omega}{sub dust} = 10{sup -6} and 8 Multiplication-Sign 10{sup -6} in the redshift range z {approx} 0-3. This dust abundance is consistent with estimates of the dust content in the universe using quasar reddening and magnification measurements in the Sloan Digital Sky Survey.
Wang, Yao; Sokhadze, Estate M.; El-Baz, Ayman S.; Li, Xiaoli; Sears, Lonnie; Casanova, Manuel F.; Tasman, Allan
2016-01-01
Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with autism and enrolled in a prefrontal neurofeedback treatment course. The protocol used in this training was aimed at increasing the ability to focus attention, and the procedure represented the wide band EEG amplitude suppression training along with upregulation of the relative power of gamma activity. Quantitative EEG analysis was completed for each session of neurofeedback using wavelet transform to determine the relative power of gamma and theta/beta ratio, and further to detect the statistical changes within and between sessions. We found a linear decrease of theta/beta ratio and a liner increase of relative power of gamma activity over 18 weekly sessions of neurofeedback in 18 high functioning children with autism. The study indicates that neurofeedback is an effective method for altering EEG characteristics associated with the autism spectrum disorder. Also, it provides information about specific changes of EEG activities and details the correlation between changes of EEG and neurofeedback indexes during the course of neurofeedback. This pilot study contributes to the development of more effective approaches to EEG data analysis during prefrontal neurofeedback training in autism. PMID:26834615
Non-linear adjustment to purchasing power parity: an analysis using Fourier approximations
Juan-Ángel Jiménez-Martín; M. Dolores Robles Fernández
2005-01-01
This paper estimates the dynamics of adjustment to long run purchasing power parity (PPP) using data for 18 mayor bilateral US dollar exchange rates, over the post-Bretton Woods period, in a non-linear framework. We use new unit root and cointegration tests that do not assume a specific non-linear adjustment process. Using a first-order Fourier approximation, we find evidence of non-linear mean reversion in deviations from both absolute and relative PPP. This first-order Fourier approximation...
A solution to the varying response of the linear power monitor induced by xenon poisoning
Energy Technology Data Exchange (ETDEWEB)
Godsey, T A; Randall, J D [Texas A and M University (United States)
1974-07-01
After conversion to FLIP fuel at Texas A and M, the fuel temperatures were examined very carefully. It was observed that the fuel temperature at 1 Mw varied over a wide range during the week. This variation was shown to be due to the variation in response of the linear CIC which was used to establish reactor power level. A modification of the linear power monitor was designed and installed. The response of this system was verified by using cobalt wires, fuel temperature, and a fission chamber located at 6 feet from the reactor core. The system has proven to be operationally satisfactory. (author)
Linearization and efficiency enhancement techniques for silicon power amplifiers from RF to mmW
Kerhervé, Eric
2015-01-01
This book provides an overview of current efficiency enhancement and linearization techniques for silicon power amplifier designs. It examines the latest state of the art technologies and design techniques to address challenges for RF cellular mobile, base stations, and RF and mmW WLAN applications. Coverage includes material on current silicon (CMOS, SiGe) RF and mmW power amplifier designs, focusing on advantages and disadvantages compared with traditional GaAs implementations. With this book you will learn: The principles of linearization and efficiency improvement techniquesThe arch
Feasibility of non-linear simulation for Field II using an angular spectrum approach
DEFF Research Database (Denmark)
Du, Yigang; Jensen, Jørgen Arendt
2008-01-01
this procedure is to find the accuracy of the approach for linear propagation, where the result can be validated using Field II simulations. The ASA calculations are carried out by 3D fast Fourier transform using Matlab, where lambda=2 is chosen as the spatial sampling rate to reduce aliasing errors. Zero......-padding is applied to enlarge the source plane to a (4N - 1) times (4N - 1) matrix to overcome artifacts in terms of the circular convolution. The source plane covering an area of 9 times 9 mm2 with N = 61 samples along both side, is 0.05 mm away from a 5 MHz planar piston transducer, which is simulated by Field II....... To determine the accuracy, different sampling intervals and zero-paddings are compared and the errors are calculated with Field II as a reference. It can be seen that zero-padding with 4N - 1 and lambda=2 sampling can both reduce the errors from 25.7% to 12.9% for the near-field and from 18.1% to 5...
Directory of Open Access Journals (Sweden)
Eswaran Uthirajoo
Full Text Available For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC power amplifier (PA is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR and error vector magnitude (EVM specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA's power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics.
Uthirajoo, Eswaran; Ramiah, Harikrishnan; Kanesan, Jeevan; Reza, Ahmed Wasif
2014-01-01
For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution) power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC) power amplifier (PA) is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD) is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE) of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA's power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics.
Uthirajoo, Eswaran; Ramiah, Harikrishnan; Kanesan, Jeevan; Reza, Ahmed Wasif
2014-01-01
For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution) power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC) power amplifier (PA) is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD) is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE) of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA’s power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics. PMID:25033049
Local region power spectrum-based unfocused ship detection method in synthetic aperture radar images
Wei, Xiangfei; Wang, Xiaoqing; Chong, Jinsong
2018-01-01
Ships on synthetic aperture radar (SAR) images will be severely defocused and their energy will disperse into numerous resolution cells under long SAR integration time. Therefore, the image intensity of ships is weak and sometimes even overwhelmed by sea clutter on SAR image. Consequently, it is hard to detect the ships from SAR intensity images. A ship detection method based on local region power spectrum of SAR complex image is proposed. Although the energies of the ships are dispersed on SAR intensity images, their spectral energies are rather concentrated or will cause the power spectra of local areas of SAR images to deviate from that of sea surface background. Therefore, the key idea of the proposed method is to detect ships via the power spectra distortion of local areas of SAR images. The local region power spectrum of a moving target on SAR image is analyzed and the way to obtain the detection threshold through the probability density function (pdf) of the power spectrum is illustrated. Numerical P- and L-band airborne SAR ocean data are utilized and the detection results are also illustrated. Results show that the proposed method can well detect the unfocused ships, with a detection rate of 93.6% and a false-alarm rate of 8.6%. Moreover, by comparing with some other algorithms, it indicates that the proposed method performs better under long SAR integration time. Finally, the applicability of the proposed method and the way of parameters selection are also discussed.
Power Spectrum of a Noisy System Close to a Heteroclinic Orbit
Giner-Baldó, Jordi; Thomas, Peter J.; Lindner, Benjamin
2017-07-01
We consider a two-dimensional dynamical system that possesses a heteroclinic orbit connecting four saddle points. This system is not able to show self-sustained oscillations on its own. If endowed with white Gaussian noise it displays stochastic oscillations, the frequency and quality factor of which are controlled by the noise intensity. This stochastic oscillation of a nonlinear system with noise is conveniently characterized by the power spectrum of suitable observables. In this paper we explore different analytical and semianalytical ways to compute such power spectra. Besides a number of explicit expressions for the power spectrum, we find scaling relations for the frequency, spectral width, and quality factor of the stochastic heteroclinic oscillator in the limit of weak noise. In particular, the quality factor shows a slow logarithmic increase with decreasing noise of the form Q˜ [ln (1/D)]^2. Our results are compared to numerical simulations of the respective Langevin equations.
DEFF Research Database (Denmark)
Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe
2012-01-01
The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the seed wavelength, the pump power, and the modulation instability gain...... spectrum on the seeding process. The results can be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process. We further demonstrate that seeding can be used to generate coherent and incoherent rogue waves, depending on the modulation instability gain...... spectrum. Finally, we show that the coherent pulse breakup afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power supercontinuum source....
Lasche, George; Coldwell, Robert; Metzger, Robert
2017-09-01
A new application (known as "VRF", or "Visual RobFit") for analysis of high-resolution gamma-ray spectra has been developed using non-linear fitting techniques to fit full-spectrum nuclide shapes. In contrast to conventional methods based on the results of an initial peak-search, the VRF analysis method forms, at each of many automated iterations, a spectrum-wide shape for each nuclide and, also at each iteration, it adjusts the activities of each nuclide, as well as user-enabled parameters of energy calibration, attenuation by up to three intervening or self-absorbing materials, peak width as a function of energy, full-energy peak efficiency, and coincidence summing until no better fit to the data can be obtained. This approach, which employs a new and significantly advanced underlying fitting engine especially adapted to nuclear spectra, allows identification of minor peaks that are masked by larger, overlapping peaks that would not otherwise be possible. The application and method are briefly described and two examples are presented.
Energy Technology Data Exchange (ETDEWEB)
Xu, Zhaoping; Chang, Siqin [School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)
2010-04-15
A novel four-stroke free-piston engine equipped with a linear electric generator (namely internal combustion linear generator integrated power system) is proposed in this paper to achieve efficient energy conversion from fuel to electricity. Unique features of the novel power system are presented and their effects on the continuous running are discussed, along with potential advantages and disadvantages compared to conventional engines. A single cylinder, gasoline and spark ignition prototype is fabricated with reference to the geometric and control parameters of an existing conventional four-stroke engine. Stable running of the prototype is realized, and a 2.2 kW average output power with the generating efficiency of 32% has been obtained up to now. The feasibility and performance of the proposed design are verified. Detailed testing results from the continuous running prototype are analyzed in this paper for giving insight into the performance and dynamic behaviors of the novel power system. (author)
New approach to derive linear power/burnup history input for CANDU fuel codes
International Nuclear Information System (INIS)
Lac Tang, T.; Richards, M.; Parent, G.
2003-01-01
The fuel element linear power / burnup history is a required input for the ELESTRES code in order to simulate CANDU fuel behavior during normal operating conditions and also to provide input for the accident analysis codes ELOCA and SOURCE. The purpose of this paper is to present a new approach to derive 'true', or at least more realistic linear power / burnup histories. Such an approach can be used to recreate any typical bundle power history if only a single pair of instantaneous values of bundle power and burnup, together with the position in the channel, are known. The histories obtained could be useful to perform more realistic simulations for safety analyses for cases where the reference (overpower) history is not appropriate. (author)
Robust Management of Combined Heat and Power Systems via Linear Decision Rules
DEFF Research Database (Denmark)
Zugno, Marco; Morales González, Juan Miguel; Madsen, Henrik
2014-01-01
The heat and power outputs of Combined Heat and Power (CHP) units are jointly constrained. Hence, the optimal management of systems including CHP units is a multicommodity optimization problem. Problems of this type are stochastic, owing to the uncertainty inherent both in the demand for heat and...... linear decision rules to guarantee both tractability and a correct representation of the dynamic aspects of the problem. Numerical results from an illustrative example confirm the value of the proposed approach....
International Nuclear Information System (INIS)
Yang Jinghe; Li Jinhai; Li Chunguang
2014-01-01
Disk-loaded waveguide traveling wave structure (TWS), which is widely used in scientific research and industry, is a vital accelerating structure in electron linear accelerator. The power efficiency is an important parameter for designing TWS, which greatly effects the expenses for the fabrication and commercial running. The key parameters related with power efficiency were studied for TWS optimization. The result was proved by experiment result, and it shows some help for accelerator engineering. (authors)
Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, José María
2015-01-01
Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficie...
DEFF Research Database (Denmark)
Aghanim, N.; Akrami, Y.; Ashdown, M.
2017-01-01
The six parameters of the standard ΛCDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had ...
International Nuclear Information System (INIS)
Zhang Zhuhong; Fan Diayuan
1993-01-01
The criterion for obtaining compressed chirp pulses with high signal-to-noise ratio is the shape of the power spectrum, a chirp pulse of Gaussian shaped power spectrum without modulation is needed in CPA system to get the clean compressed pulses. 4 refs., 2 figs
Energy Technology Data Exchange (ETDEWEB)
Lee, Soyoung [Department of Radiation Oncology, University Hospitals Case and Medical Center, Cleveland, Ohio 44106 (United States); Yan, Guanghua; Bassett, Philip; Samant, Sanjiv, E-mail: samant@ufl.edu [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32608 (United States); Gopal, Arun [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States)
2016-09-15
Purpose: To investigate the use of local noise power spectrum (NPS) to characterize image noise and wavelet analysis to isolate defective pixels and inter-subpanel flat-fielding artifacts for quantitative quality assurance (QA) of electronic portal imaging devices (EPIDs). Methods: A total of 93 image sets including custom-made bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Global quantitative metrics such as modulation transform function (MTF), NPS, and detective quantum efficiency (DQE) were computed for each image set. Local NPS was also calculated for individual subpanels by sampling region of interests within each subpanel of the EPID. The 1D NPS, obtained by radially averaging the 2D NPS, was fitted to a power-law function. The r-square value of the linear regression analysis was used as a singular metric to characterize the noise properties of individual subpanels of the EPID. The sensitivity of the local NPS was first compared with the global quantitative metrics using historical image sets. It was then compared with two commonly used commercial QA systems with images collected after applying two different EPID calibration methods (single-level gain and multilevel gain). To detect isolated defective pixels and inter-subpanel flat-fielding artifacts, Haar wavelet transform was applied on the images. Results: Global quantitative metrics including MTF, NPS, and DQE showed little change over the period of data collection. On the contrary, a strong correlation between the local NPS (r-square values) and the variation of the EPID noise condition was observed. The local NPS analysis indicated image quality improvement with the r-square values increased from 0.80 ± 0.03 (before calibration) to 0.85 ± 0.03 (after single-level gain calibration) and to 0.96 ± 0.03 (after multilevel gain calibration), while the commercial QA systems failed to distinguish the image quality improvement between the two
Elements of the system for RF power input into linear accelerator-injector for booster
International Nuclear Information System (INIS)
Mazurov, E.V.; Mal'tsev, I.G.; Shalashov, I.M.
1981-01-01
The elements of the original system for RF power input into 30 MeV linear accelerator-injector for the IHEP proton synchrotron booster are considered. A 3 dB coaxial directional coupler (T-bridge) is describedd. The characteristics of the bridge containing elements and the parameters of ballast matched load are given [ru
Power-optimal force decoupling in a hybrid linear reluctance motor
Overboom, T.T.; Smeets, J.P.C.; Jansen, J.W.; Lomonova, E.A.; Mavrudieva, D.
2015-01-01
This paper concerns the power-optimal decoupling of the propulsion and normal force created by a hybrid linear reluctance motor. The intrinsic limitations to the decoupling is addressed by the visualizing each force component with a quadric surface in the Euclidean space which is spanned by the
Linear Programming Approaches for Power Savings in Software-defined Networks
Moghaddam, F.A.; Grosso, P.
2016-01-01
Software-defined networks have been proposed as a viable solution to decrease the power consumption of the networking component in data center networks. Still the question remains on which scheduling algorithms are most suited to achieve this goal. We propose 4 different linear programming
Power properties of invariant tests for spatial autocorrelation in linear regression
Martellosio, F.
2006-01-01
Many popular tests for residual spatial autocorrelation in the context of the linear regression model belong to the class of invariant tests. This paper derives a number of exact properties of the power function of such tests. In particular, we extend the work of Krämer (2005, Journal of Statistical
Ltaief, Hatem; Luszczek, Piotr R.; Dongarra, Jack
2011-01-01
This paper presents the power profile of two high performance dense linear algebra libraries i.e., LAPACK and PLASMA. The former is based on block algorithms that use the fork-join paradigm to achieve parallel performance. The latter uses fine
A power spectrum approach to tally convergence in Monte Carlo criticality calculation
International Nuclear Information System (INIS)
Ueki, Taro
2017-01-01
In Monte Carlo criticality calculation, confidence interval estimation is based on the central limit theorem (CLT) for a series of tallies from generations in equilibrium. A fundamental assertion resulting from CLT is the convergence in distribution (CID) of the interpolated standardized time series (ISTS) of tallies. In this work, the spectral analysis of ISTS has been conducted in order to assess the convergence of tallies in terms of CID. Numerical results obtained indicate that the power spectrum of ISTS is equal to the theoretically predicted power spectrum of Brownian motion for tallies of effective neutron multiplication factor; on the other hand, the power spectrum of ISTS of a strongly correlated series of tallies from local powers fluctuates wildly while maintaining the spectral form of fractional Brownian motion. The latter result is the evidence of a case where a series of tallies are away from CID, while the spectral form supports normality assumption on the sample mean. It is also demonstrated that one can make the unbiased estimation of the standard deviation of sample mean well before CID occurs. (author)
Maximal compression of the redshift-space galaxy power spectrum and bispectrum
Gualdi, Davide; Manera, Marc; Joachimi, Benjamin; Lahav, Ofer
2018-05-01
We explore two methods of compressing the redshift-space galaxy power spectrum and bispectrum with respect to a chosen set of cosmological parameters. Both methods involve reducing the dimension of the original data vector (e.g. 1000 elements) to the number of cosmological parameters considered (e.g. seven ) using the Karhunen-Loève algorithm. In the first case, we run MCMC sampling on the compressed data vector in order to recover the 1D and 2D posterior distributions. The second option, approximately 2000 times faster, works by orthogonalizing the parameter space through diagonalization of the Fisher information matrix before the compression, obtaining the posterior distributions without the need of MCMC sampling. Using these methods for future spectroscopic redshift surveys like DESI, Euclid, and PFS would drastically reduce the number of simulations needed to compute accurate covariance matrices with minimal loss of constraining power. We consider a redshift bin of a DESI-like experiment. Using the power spectrum combined with the bispectrum as a data vector, both compression methods on average recover the 68 {per cent} credible regions to within 0.7 {per cent} and 2 {per cent} of those resulting from standard MCMC sampling, respectively. These confidence intervals are also smaller than the ones obtained using only the power spectrum by 81 per cent, 80 per cent, and 82 per cent respectively, for the bias parameter b1, the growth rate f, and the scalar amplitude parameter As.
Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum
Directory of Open Access Journals (Sweden)
Fedak Waldemar
2017-01-01
Full Text Available Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.
Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum
Fedak, Waldemar; Anweiler, Stanisław; Gancarski, Wojciech; Ulbrich, Roman
2017-10-01
Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.
Energy Technology Data Exchange (ETDEWEB)
Hildebrandt, Christina
2009-03-23
This work describes the development of new absorber coatings for different applications - para-bolic trough and linear Fresnel collectors - and operating conditions - absorber in vacuum or in air. The demand for higher efficiencies of solar thermal power plants using parabolic trough technology results in higher temperatures in the collectors and on the absorber tubes. As heat losses increase strongly with increasing temperatures, the need for a lower emissivity of the absorber coating at constant absorptivity arises. The linear Fresnel application envisions ab-sorber tubes stable in air at high temperatures of about 450 C, which are to date commercially not available. This work comprises the theoretical background, the modeling and the fabrication of absorber tubes including the technology transfer to a production-size inline sputter coater. In annealing tests and accompanying optical measurements, degradation processes have been observed and specified more precisely by material characterization techniques. The simulations provided the capability of different materials used as potential IR-reflector. The highest selectivity can be achieved by applying silver which consequently has been chosen for the application in absorber coatings of the parabolic trough technology. Thin silver films how-ever need to be stabilized when used at high temperatures. Appropriate barrier layers as well as process and layer parameters were identified. A high selectivity was achieved and stability of the absorber coating for 1200 h at 500 C in vacuum has been demonstrated. For the application in air, silver was also analyzed as a potential IR-reflector. Even though the stability could be increased considerably, it nevertheless proved to be insufficient. The main factors influencing stability in a positive way are the use of higher quality polishing, additional barrier layers and adequate process parameters. This knowledge was applied for developing coatings which are stable in air at
Signatures of modified gravity on the 21 cm power spectrum at reionisation
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191 Gif/Yvette Cedex (France); Clesse, Sébastien; Davis, Anne-Christine, E-mail: philippe.brax@cea.fr, E-mail: s.clesse@damtp.cam.ac.uk, E-mail: a.c.davis@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2013-01-01
Scalar modifications of gravity have an impact on the growth of structure. Baryon and Cold Dark Matter (CDM) perturbations grow anomalously for scales within the Compton wavelength of the scalar field. In the late time Universe when reionisation occurs, the spectrum of the 21 cm brightness temperature is thus affected. We study this effect for chameleon-f(R) models, dilatons and symmetrons. Although the f(R) models are more tightly constrained by solar system bounds, and effects on dilaton models are negligible, we find that symmetrons where the phase transition occurs before z{sub *} ∼ 12 could be detectable for a scalar field range as low as 5kpc. For all these models, the detection prospects of modified gravity effects are higher when considering modes parallel to the line of sight where very small scales can be probed. The study of the 21 cm spectrum thus offers a complementary approach to testing modified gravity with large scale structure surveys. Short scales, which would be highly non-linear in the very late time Universe when structure forms and where modified gravity effects are screened, appear in the linear spectrum of 21 cm physics, hence deviating from General Relativity in a maximal way.
Normalized noise power spectrum of full field digital mammography detector system
International Nuclear Information System (INIS)
Norriza Mohd Isa; Wan Muhamad Saridan Wan Hassan
2009-01-01
Full text: A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through de trending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality. (author)
arXiv Neutrino masses and cosmology with Lyman-alpha forest power spectrum
Palanque-Delabrouille, Nathalie; Baur, Julien; Magneville, Christophe; Rossi, Graziano; Lesgourgues, Julien; Borde, Arnaud; Burtin, Etienne; LeGoff, Jean-Marc; Rich, James; Viel, Matteo; Weinberg, David
2015-11-06
We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the $\\Lambda$CDM model, using the one-dimensional Ly$\\alpha$-forest power spectrum measured by Palanque-Delabrouille et al. (2013) from SDSS-III/BOSS, complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by Palanque-Delabrouille et al. (2015) by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Ly$\\alpha$ data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index ...
Das, Sudeep; Sherwin, Blake D; Aguirre, Paula; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed
2011-07-08
We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.
On the effect of renormalization group improvement on the cosmological power spectrum
Energy Technology Data Exchange (ETDEWEB)
Moti, R. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Shojai, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of)
2018-01-15
Asymptotically safe quantum gravity predicts running gravitational and cosmological constants, while it remains a meaningful quantum field theory because of the existence of a finite number of non-Gaussian ultraviolet fixed points. We have investigated the effect of such running couplings on the cosmological perturbations. We have obtained the improved Mukhanov-Sassaki equation and solved it for two models. The effect of such running of the coupling constants on the cosmological power spectrum is also studied. (orig.)
Partial Stator Overlap in a Linear Generator for Wave Power: An Experimental Study
Directory of Open Access Journals (Sweden)
Anna E. Frost
2017-11-01
Full Text Available This paper presents a study on how the power absorption and damping in a linear generator for wave energy conversion are affected by partial overlap between stator and translator. The theoretical study shows that the electrical power as well as the damping coefficient change quadratically with partial stator overlap, if inductance, friction and iron losses are assumed independent of partial stator overlap or can be neglected. Results from onshore experiments on a linear generator for wave energy conversion cannot reject the quadratic relationship. Measurements were done on the inductance of the linear generator and no dependence on partial stator overlap could be found. Simulations of the wave energy converter’s operation in high waves show that entirely neglecting partial stator overlap will overestimate the energy yield and underestimate the peak forces in the line between the buoy and the generator. The difference between assuming a linear relationship instead of a quadratic relationship is visible but small in the energy yield in the simulation. Since the theoretical deduction suggests a quadratic relationship, this is advisable to use during modeling. However, a linear assumption could be seen as an acceptable simplification when modeling since other relationships can be computationally costly.
Nonlinear evolution of the matter power spectrum in modified theories of gravity
International Nuclear Information System (INIS)
Koyama, Kazuya; Taruya, Atsushi; Hiramatsu, Takashi
2009-01-01
We present a formalism to calculate the nonlinear matter power spectrum in modified gravity models that explain the late-time acceleration of the Universe without dark energy. Any successful modified gravity models should contain a mechanism to recover general relativity (GR) on small scales in order to avoid the stringent constrains on deviations from GR at solar system scales. Based on our formalism, the quasi-nonlinear power spectrum in the Dvali-Gabadadze-Porratti braneworld models and f(R) gravity models are derived by taking into account the mechanism to recover GR properly. We also extrapolate our predictions to fully nonlinear scales using the parametrized post-Friedmann framework. In the Dvali-Gabadadze-Porratti and f(R) gravity models, the predicted nonlinear power spectrum is shown to reproduce N-body results. We find that the mechanism to recover GR suppresses the difference between the modified gravity models and dark energy models with the same expansion history, but the difference remains large at the weakly nonlinear regime in these models. Our formalism is applicable to a wide variety of modified gravity models and it is ready to use once consistent models for modified gravity are developed.
Impact of large-scale tides on cosmological distortions via redshift-space power spectrum
Akitsu, Kazuyuki; Takada, Masahiro
2018-03-01
Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.
Turbulent Cloud Structure and Power Spectrum from 23 years of HST Observations
Cosentino, Richard; Simon, Amy; Morales-Juberias, Raul
2018-01-01
Images of Jupiter’s clouds show that turbulence is a ubiquitous phenomenon over many orders of scale size. According to Kolmogorov’s theory for turbulence, the frequency/distribution of clouds at various scales can be used to produce an energy power spectrum of a passive tracer. Kolmogorov theory predicts the spectral slopes for “shallow” and “deep” fluids in motion by following how energy is injected and dissipated in the fluid. We are quantifying the turbulent nature of Jupiter’s clouds over 23 years of Hubble Space Telescope (HST) observations using an algorithm first presented in Choi and Showman (2011, Icarus 216). We applied the power spectrum fitting algorithm to a variety of filters from available HST data and tested its sensitivity to free parameters and compare our results to Choi and Showman (2011). We will comment on the evidence for a 2D turbulent regime In Jupiter’s clouds and will report on empirical values found in the spectra and their physical interpretations, such as the Rhines scale. We also will report on the behavior of the passive tracer power spectrum and trends that exist over time for different latitudinal regions, primarily the belts and zones and the north and south equatorial belts.
Measurement of Gamma Spectrum at domestic Nuclear Power Plant with CZT Semiconductor Detector
Energy Technology Data Exchange (ETDEWEB)
Kon, Kang Seo; Yoon, Kang Hwa; Lee, Byoung Il; Kim, Jeong In [KHNP, Radiation Health Research Institute, Seoul (Korea, Republic of)
2013-10-15
In this study we monitored gamma spectrum for young S/G to see difference of the detected nuclides between old and young S/G. The detected source terms were the same for all measurement points. There is not comparison of quantity among the nuclides. The program which analyzes gamma spectrum to calculate activity and dose rate is under developing. We expect it will be done by end of this year. In this study we could see the difference of detected nuclides between old and new S/G for the first time whereas last measurement has significant meaning in that the measurement was taken for the first time all over country. Monitoring sources terms at Nuclear Power Plant(NPP) is important to aggressive ALARA activities and evaluation of exposure of workers. EDF (Electricite de France) and AEP (American Electric Power) conduct monitoring source terms using by CZT semiconductor detector. CZT is different from HPGe in that it does not need any cooling system at room temperature, it has good energy resolution and it can be made portable type easily. For these reason CZT is used in various fields commercially to measure gamma ray and therefore KHNP(Korea Hydro and Nuclear Power Co., LTD) RHRI(Radiation Health Research Institute) has been measuring gamma spectrum at domestic NPP last spring. We had have presented the first result through the last Transactions of the Korean Nuclear Society Spring Meeting for old S/G(Steam Generator)
Directory of Open Access Journals (Sweden)
Claudio Roberto Fóffano Vasconcelos
2016-01-01
Full Text Available The aim of this study is to examine empirically the validity of PPP in the context of unit root tests based on linear and non-linear models of the real effective exchange rate of Argentina, Brazil, Chile, Colombia, Mexico, Peru and Venezuela. For this purpose, we apply the Harvey et al. (2008 linearity test and the non-linear unit root test (Kruse, 2011. The results show that the series with linear characteristics are Argentina, Brazil, Chile, Colombia and Peru and those with non-linear characteristics are Mexico and Venezuela. The linear unit root tests indicate that the real effective exchange rate is stationary for Chile and Peru, and the non-linear unit root tests evidence that Mexico is stationary. In the period analyzed, the results show support for the validity of PPP in only three of the seven countries.
A linear accelerator power amplification system for high gradient structure research
International Nuclear Information System (INIS)
Haimson, J.; Mecklenburg, B.
1999-01-01
The ongoing development of linear collider high power RF sources and pulse compression systems has resulted in substantial progress towards a goal of providing a peak RF power level of approximately 250 MW at the input of the accelerator structure. While the immediate development and the high power testing of specialized waveguide components required for power transmission at these high levels have proceeded expeditiously due to the availability of resonant ring systems, the testing of high gradient accelerator structures at very high power levels, and the investigation of coupler cavity RF breakdown problems have, typically, been curtailed due to the unavailability of suitable 200 to 300 MW RF test facilities. We describe herein a compact, high peak power amplification system based on a dual hybrid bridge configuration that avoids the need for power splitters at the accelerator dual feed couplers, and also provides a convenient interface for installing high gradient accelerator test structures. Design parameters are presented for a proposed power amplification system that makes use of a 75 MW, 1/2 μs flat-top RF source to produce 280 MW, 1/4 μs flat-top power for testing dual feed TW experimental accelerator sections
A high-power rf linear accelerator for FELS [free-electron lasers
International Nuclear Information System (INIS)
Sheffield, R.L.; Watson, J.M.
1987-01-01
This paper describes the design of a high average current rf linear accelerator suitable for driving short-wavelength free-electron lasers (FEL). It is concluded that the design of a room-temperature rf linear acelerator that can meet the stringent requirements of a high-power short-wavelength FEL appears possible. The accelerator requires the use of an advanced photoelectric injector that is under development; the accelerator components, however, do not require appreciable development. At these large beam currents, low-frequency, large-bore room-temperature cavities can be highly efficient and give all specified performance with minimal risk. 20 refs
International Nuclear Information System (INIS)
Song, Xizi; Xu, Yanbin; Dong, Feng
2017-01-01
Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results. (paper)
Bizon, Nicu; Mahdavi Tabatabaei, Naser
2014-01-01
This book explains and analyzes the dynamic performance of linear and nonlinear systems, particularly for Power Systems including Hybrid Power Sources. Offers a detailed description of system stability using state space energy conservation principle, and more.
Achievable rate of spectrum sharing cognitive radio systems over fading channels at low-power regime
Sboui, Lokman
2014-11-01
We study the achievable rate of cognitive radio (CR) spectrum sharing systems at the low-power regime for general fading channels and then for Nakagami fading. We formally define the low-power regime and present the corresponding closed-form expressions of the achievable rate lower bound under various types of interference and/or power constraints, depending on the available channel state information of the cross link (CL) between the secondary-user transmitter and the primary-user receiver. We explicitly characterize two regimes where either the interference constraint or the power constraint dictates the optimal power profile. Our framework also highlights the effects of different fading parameters on the secondary link (SL) ergodic achievable rate. We also study more realistic scenarios when there is either 1-bit quantized channel feedback from the CL alone or 2-bit feedback from both the CL and the SL and propose simple power control schemes and show that these schemes achieve the previously achieved rate at the low-power regime. Interestingly, we show that the low-power regime analysis provides a specific insight into the maximum achievable rate behavior of CR that has not been reported by previous studies.
Pan, Guangming; Wang, Shaochen; Zhou, Wang
2017-10-01
In this paper, we consider the asymptotic behavior of Xfn (n )≔∑i=1 nfn(xi ) , where xi,i =1 ,…,n form orthogonal polynomial ensembles and fn is a real-valued, bounded measurable function. Under the condition that Var Xfn (n )→∞ , the Berry-Esseen (BE) bound and Cramér type moderate deviation principle (MDP) for Xfn (n ) are obtained by using the method of cumulants. As two applications, we establish the BE bound and Cramér type MDP for linear spectrum statistics of Wigner matrix and sample covariance matrix in the complex cases. These results show that in the edge case (which means fn has a particular form f (x ) I (x ≥θn ) where θn is close to the right edge of equilibrium measure and f is a smooth function), Xfn (n ) behaves like the eigenvalues counting function of the corresponding Wigner matrix and sample covariance matrix, respectively.
Bi, Xia-An; Zhao, Junxia; Xu, Qian; Sun, Qi; Wang, Zhigang
2018-01-01
Some functional magnetic resonance imaging (fMRI) researches in autism spectrum disorder (ASD) patients have shown that ASD patients have significant impairment in brain response. However, few researchers have studied the functional structure changes of the eight resting state networks (RSNs) in ASD patients. Therefore, research on statistical differences of RSNs between 42 healthy controls (HC) and 50 ASD patients has been studied using linear independent component analysis (ICA) in this paper. Our researches showed that there was abnormal functional connectivity (FC) of RSNs in ASD patients. The RSNs with the decreased FC and increased FC in ASD patients included default mode network (DMN), central executive network (CEN), core network (CN), visual network (VN), self-referential network (SRN) compared to HC. The RSNs with the increased FC in ASD patients included auditory network (AN), somato-motor network (SMN). The dorsal attention network (DAN) in ASD patients showed the decreased FC. Our findings indicate that the abnormal FC in RSNs extensively exists in ASD patients. Our results have important contribution for the study of neuro-pathophysiological mechanisms in ASD patients.
Feedback Linearization Control of a Shunt Active Power Filter Using a Fuzzy Controller
Directory of Open Access Journals (Sweden)
Tianhua Li
2013-09-01
Full Text Available In this paper, a novel feedback linearization based sliding mode controlled parallel active power filter using a fuzzy controller is presented in a three-phase three-wire grid. A feedback linearization control with fuzzy parameter self-tuning is used to implement the DC side voltage regulation while a novel integral sliding mode controller is applied to reduce the total harmonic distortion of the supply current. Since traditional unit synchronous sinusoidal signal calculation methods are not applicable when the supply voltage contains harmonics, a novel unit synchronous sinusoidal signal computing method based on synchronous frame transforming theory is presented to overcome this disadvantage. The simulation results verify that the DC side voltage is very stable for the given value and responds quickly to the external disturbance. A comparison is also made to show the advantages of the novel unit sinusoidal signal calculating method and the super harmonic treatment property of the designed active power filter.
Spectrum resolving power of hearing: measurements, baselines, and influence of maskers
Directory of Open Access Journals (Sweden)
Alexander Ya. Supin
2011-06-01
Full Text Available Contemporary methods of measurement of frequency tuning in the auditory system are reviewed. Most of them are based on the frequency-selective masking paradigm and require multi-point measurements (a number of masked thresholds should be measured to obtain a single frequency-tuning estimate. Therefore, they are rarely used for practical needs. As an alternative approach, frequency-selective properties of the auditory system may be investigated using probes with complex frequency spectrum patterns, in particular, rippled noise that is characterized by a spectrum with periodically alternating maxima and minima. The maximal ripple density discriminated by the auditory system is a convenient measure of the spectrum resolving power (SRP. To find the highest resolvable ripple density, a phase-reversal test has been suggested. Using this technique, normal SRP, its dependence on probe center frequency, spectrum contrast, and probe level were measured. The results were not entirely predictable by frequency-tuning data obtained by masking methods. SRP is influenced by maskers, with on- and off-frequency maskers influencing SRP very differently. Dichotic separation of the probe and masker results in almost complete release of SRP from influence of maskers.
Benkhelifa, Fatma
2016-07-26
In this paper, we consider the simultaneous wireless information and power transfer for the spectrum sharing (SS) in cognitive radio (CR) systems with a multi-antenna energy harvesting (EH) primary receiver (PR). The PR uses the antenna switching (AS) technique that assigns a subset of the PR\\'s antennas to harvest the energy from the radio frequency (RF) signals sent by the secondary transmitter (ST), and assigns the rest of the PR\\'s antennas to decode the information data. In this context, the primary network allows the secondary network to use the spectrum as long as the interference induced by the secondary transmitter (ST)\\'s signals is beneficial for the energy harvesting process at the PR side. The objective of this work is to show that the spectrum sharing is beneficial for both the SR and PR sides and leads to a win-win situation. To illustrate the incentive of the spectrum sharing cognitive system, we evaluate the mutual outage probability (MOP) introduced in [1] which declares an outage event if the PR or the secondary receiver (SR) is in an outage. Through the simulation results, we show that the performance of our system in terms of the MOP is always better than the performance of the system in the absence of ST and improves as the ST-PR interference increases. © 2016 IEEE.
On the summability of divergent power series solutions for certain first-order linear PDEs
Directory of Open Access Journals (Sweden)
Masaki Hibino
2015-01-01
Full Text Available This article is concerned with the study of the Borel summability of divergent power series solutions for certain singular first-order linear partial differential equations of nilpotent type. Our main purpose is to obtain conditions which coefficients of equations should satisfy in order to ensure the Borel summability of divergent solutions. We will see that there is a close affinity between the Borel summability of divergent solutions and global analytic continuation properties for coefficients of equations.
Reconstruction of the primordial power spectrum of curvature perturbations using multiple data sets
DEFF Research Database (Denmark)
Hunt, Paul; Sarkar, Subir
2014-01-01
Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation') which generated it, and for estimating the cosmological parameters from observations of the cosmic microwave background and large-scale struc......Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation') which generated it, and for estimating the cosmological parameters from observations of the cosmic microwave background and large...... content of the universe. Moreover the deconvolution problem is ill-conditioned so a regularisation scheme must be employed to control error propagation. We demonstrate that `Tikhonov regularisation' can robustly reconstruct the primordial spectrum from multiple cosmological data sets, a significant...... advantage being that both its uncertainty and resolution are then quantified. Using Monte Carlo simulations we investigate several regularisation parameter selection methods and find that generalised cross-validation and Mallow's Cp method give optimal results. We apply our inversion procedure to data from...
Nonlinear and linear wave equations for propagation in media with frequency power law losses
Szabo, Thomas L.
2003-10-01
The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.
The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectrum
Dunkley, J.; Hlozek, R.; Sievers, J.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.;
2011-01-01
We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg(exp 2) with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500 cosmological parameters from the less contaminated 148 GHz spectrum, marginalizing over SZ and source power. The ACDM cosmological model is a good fit to the data (chi square/dof = 29/46), and ACDM parameters estimated from ACT+Wilkinson Microwave Anisotropy Probe (WMAP) are consistent with the seven-year WMAP limits, with scale invariant n(sub s) = 1 excluded at 99.7% confidence level (CL) (3 sigma). A model with no CMB lensing is disfavored at 2.8 sigma. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological parameters that affect the small-scale CMB power. The ACT data combined with WMAP give a 6 sigma detection of primordial helium, with Y(sub p) = 0.313 +/- 0.044, and a 4 sigma detection of relativistic species, assumed to be neutrinos, with N(sub eff) = 5.3 +/- 1.3 (4.6 +/- 0.8 with BAO+H(sub 0) data). From the CMB alone the running of the spectral index is constrained to be d(sub s) / d ln k = -0,034 +/- 0,018, the limit on the tensor-to-scalar ratio is r < 0,25 (95% CL), and the possible contribution of Nambu cosmic strings to the power spectrum is constrained to string tension G(sub mu) < 1.6 x 10(exp -7) (95% CL),
The matter power spectrum in redshift space using effective field theory
Fonseca de la Bella, Lucía; Regan, Donough; Seery, David; Hotchkiss, Shaun
2017-11-01
The use of Eulerian 'standard perturbation theory' to describe mass assembly in the early universe has traditionally been limited to modes with k lesssim 0.1 h/Mpc at z=0. At larger k the SPT power spectrum deviates from measurements made using N-body simulations. Recently, there has been progress in extending the reach of perturbation theory to larger k using ideas borrowed from effective field theory. We revisit the computation of the redshift-space matter power spectrum within this framework, including for the first time the full one-loop time dependence. We use a resummation scheme proposed by Vlah et al. to account for damping of baryonic acoustic oscillations due to large-scale random motions and show that this has a significant effect on the multipole power spectra. We renormalize by comparison to a suite of custom N-body simulations matching the MultiDark MDR1 cosmology. At z=0 and for scales k lesssim 0.4 h/Mpc we find that the EFT furnishes a description of the real-space power spectrum up to ~ 2%, for the l = 0 mode up to ~ 5%, and for the l = 2, 4 modes up to ~ 25%. We argue that, in the MDR1 cosmology, positivity of the l=0 mode gives a firm upper limit of k ≈ 0.74 h/Mpc for the validity of the one-loop EFT prediction in redshift space using only the lowest-order counterterm. We show that replacing the one-loop growth factors by their Einstein-de Sitter counterparts is a good approximation for the l=0 mode, but can induce deviations as large as 2% for the l=2, 4 modes. An accompanying software bundle, distributed under open source licenses, includes Mathematica notebooks describing the calculation, together with parallel pipelines capable of computing both the necessary one-loop SPT integrals and the effective field theory counterterms.
Directory of Open Access Journals (Sweden)
Mohammad Hosein Rezaei
2011-10-01
Full Text Available Transformers perform many functions such as voltage transformation, isolation and noise decoupling. They are indispensable components in electric power distribution system. However, at low frequencies (50 Hz, they are one of the heaviest and the most expensive equipment in an electrical distribution system. Nowadays, electronic power transformers are used instead of conventional power transformers that do voltage transformation and power delivery in power system by power electronic converter. In this paper, the structure of distribution electronic power transformer (DEPT are analized and then paid attention on the design of a linear-quadratic-regulator (LQR with integral action to improve dynamic performance of DEPT with voltage unbalance, voltage sags, voltage harmonics and voltage ﬂicker. The presentation control strategy is simulated by MATLAB/SIMULINK. In addition, the results that are in terms of dc-link reference voltage, input and output voltages clearly show that a better dynamic performance can be achieved by using the LQR method when compared to other techniques.
Netterfield, C. B.; Ade, P. A. R.; Bock, J. J.; Bond, J. R.; Borrill, J.; Boscaleri, A.; Coble, K.; Contaldi, C. R.; Crill, B. P.; Bernardis, P. de;
2001-01-01
This paper presents a measurement of the angular power spectrum of the Cosmic Microwave Background from l = 75 to l = 1025 (10' to 5 degrees) from a combined analysis of four 150 GHz channels in the BOOMERANG experiment. The spectrum contains multiple peaks and minima, as predicted by standard adiabatic-inflationary models in which the primordial plasma undergoes acoustic oscillations.
Bayesian Analysis of the Power Spectrum of the Cosmic Microwave Background
Jewell, Jeffrey B.; Eriksen, H. K.; O'Dwyer, I. J.; Wandelt, B. D.
2005-01-01
There is a wealth of cosmological information encoded in the spatial power spectrum of temperature anisotropies of the cosmic microwave background. The sky, when viewed in the microwave, is very uniform, with a nearly perfect blackbody spectrum at 2.7 degrees. Very small amplitude brightness fluctuations (to one part in a million!!) trace small density perturbations in the early universe (roughly 300,000 years after the Big Bang), which later grow through gravitational instability to the large-scale structure seen in redshift surveys... In this talk, I will discuss a Bayesian formulation of this problem; discuss a Gibbs sampling approach to numerically sampling from the Bayesian posterior, and the application of this approach to the first-year data from the Wilkinson Microwave Anisotropy Probe. I will also comment on recent algorithmic developments for this approach to be tractable for the even more massive data set to be returned from the Planck satellite.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
Using the CMB angular power spectrum to study Dark Matter-photon interactions
International Nuclear Information System (INIS)
Wilkinson, Ryan J.; Boehm, Céline; Lesgourgues, Julien
2014-01-01
In this paper, we explore the impact of Dark Matter-photon interactions on the CMB angular power spectrum. Using the one-year data release of the Planck satellite, we derive an upper bound on the Dark Matter-photon elastic scattering cross section of σ DM−γ ≤ 8 × 10 −31 (m DM /GeV) cm 2 (68% CL) if the cross section is constant and a present-day value of σ DM−γ ≤ 6 × 10 −40 (m DM /GeV) cm 2 (68% CL) if it scales as the temperature squared. For such a limiting cross section, both the B-modes and the TT angular power spectrum are suppressed with respect to ΛCDM predictions for ℓ∼>500 and ℓ∼>3000 respectively, indicating that forthcoming data from CMB polarisation experiments and Planck could help to constrain and characterise the physics of the dark sector. This essentially initiates a new type of dark matter search that is independent of whether dark matter is annihilating, decaying or asymmetric. Thus, any CMB experiment with the ability to measure the temperature and/or polarisation power spectra at high ℓ should be able to investigate the potential interactions of dark matter and contribute to our fundamental understanding of its nature
Energy Technology Data Exchange (ETDEWEB)
Takagi, Hiroyuki [Hitachi, Ltd. Power Systems Company, Ibaraki (Japan); Murata, Isao [Graduate School of Engineering, Osaka University, Osaka (Japan)
2016-06-15
Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.
Application of linear scheduling method (LSM) for nuclear power plant (NPP) construction
International Nuclear Information System (INIS)
Kim, Woojoong; Ryu, Dongsoo; Jung, Youngsoo
2014-01-01
Highlights: • Mixed use of linear scheduling method with traditional CPM is suggested for NPP. • A methodology for selecting promising areas for LSM application is proposed. • A case-study is conducted to validate the proposed LSM selection methodology. • A case-study of reducing NPP construction duration by using LSM is introduced. - Abstract: According to a forecast, global energy demand is expected to increase by 56% from 2010 to 2040 (EIA, 2013). The nuclear power plant construction market is also growing with sharper competition. In nuclear power plant construction, scheduling is one of the most important functions due to its large size and complexity. Therefore, it is crucial to incorporate the ‘distinct characteristics of construction commodities and the complex characteristics of scheduling techniques’ (Jung and Woo, 2004) when selecting appropriate schedule control methods for nuclear power plant construction. However, among various types of construction scheduling techniques, the traditional critical path method (CPM) has been used most frequently in real-world practice. In this context, the purpose of this paper is to examine the viability and effectiveness of linear scheduling method (LSM) applications for specific areas in nuclear power plant construction. In order to identify the criteria for selecting scheduling techniques, the characteristics of CPM and LSM were compared and analyzed first through a literature review. Distinct characteristics of nuclear power plant construction were then explored by using a case project in order to develop a methodology to select effective areas of LSM application to nuclear power plant construction. Finally, promising areas for actual LSM application are suggested based on the proposed evaluation criteria and the case project. Findings and practical implications are discussed for further implementation
Application of linear scheduling method (LSM) for nuclear power plant (NPP) construction
Energy Technology Data Exchange (ETDEWEB)
Kim, Woojoong, E-mail: minidung@nate.com [Central Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Daejeon 305-343 (Korea, Republic of); Ryu, Dongsoo, E-mail: energyboy@khnp.co.kr [Central Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Daejeon 305-343 (Korea, Republic of); Jung, Youngsoo, E-mail: yjung97@mju.ac.kr [College of Architecture, Myongji University, Yongin 449-728 (Korea, Republic of)
2014-04-01
Highlights: • Mixed use of linear scheduling method with traditional CPM is suggested for NPP. • A methodology for selecting promising areas for LSM application is proposed. • A case-study is conducted to validate the proposed LSM selection methodology. • A case-study of reducing NPP construction duration by using LSM is introduced. - Abstract: According to a forecast, global energy demand is expected to increase by 56% from 2010 to 2040 (EIA, 2013). The nuclear power plant construction market is also growing with sharper competition. In nuclear power plant construction, scheduling is one of the most important functions due to its large size and complexity. Therefore, it is crucial to incorporate the ‘distinct characteristics of construction commodities and the complex characteristics of scheduling techniques’ (Jung and Woo, 2004) when selecting appropriate schedule control methods for nuclear power plant construction. However, among various types of construction scheduling techniques, the traditional critical path method (CPM) has been used most frequently in real-world practice. In this context, the purpose of this paper is to examine the viability and effectiveness of linear scheduling method (LSM) applications for specific areas in nuclear power plant construction. In order to identify the criteria for selecting scheduling techniques, the characteristics of CPM and LSM were compared and analyzed first through a literature review. Distinct characteristics of nuclear power plant construction were then explored by using a case project in order to develop a methodology to select effective areas of LSM application to nuclear power plant construction. Finally, promising areas for actual LSM application are suggested based on the proposed evaluation criteria and the case project. Findings and practical implications are discussed for further implementation.
Modelling redshift space distortion in the post-reionization H I 21-cm power spectrum
Sarkar, Debanjan; Bharadwaj, Somnath
2018-05-01
The post-reionization H I 21-cm signal is an excellent candidate for precision cosmology, this however requires accurate modelling of the expected signal. Sarkar et al. have simulated the real space H I 21-cm signal and have modelled the H I power spectrum as P_{{H I}}(k)=b^2 P(k), where P(k) is the dark matter power spectrum and b(k) is a (possibly complex) scale-dependent bias for which fitting formulas have been provided. This paper extends these simulations to incorporate redshift space distortion and predicts the expected redshift space H I 21-cm power spectrum P^s_{{H I}}(k_{\\perp },k_{allel }) using two different prescriptions for the H I distributions and peculiar velocities. We model P^s_{{H I}}(k_{\\perp },k_{allel }), assuming that it is the product of P_{{H I}}(k)=b^2 P(k) with a Kaiser enhancement term and a Finger of God (FoG) damping which has σp the pair velocity dispersion as a free parameter. Considering several possibilities for the bias and the damping profile, we find that the models with a scale-dependent bias and a Lorentzian damping profile best fit the simulated P^s_{{H I}}(k_{\\perp },k_{allel }) over the entire range 1 ≤ z ≤ 6. The best-fitting value of σp falls approximately as (1 + z)-m with m = 2 and 1.2, respectively, for the two different prescriptions. The model predictions are consistent with the simulations for k models underpredict P^s_2(k) at large k, and the fit is restricted to k < 0.15 Mpc-1.
Power accounting of plasma discharges in the linear device Proto-MPEX
Showers, M.; Piotrowicz, P. A.; Beers, C. J.; Biewer, T. M.; Caneses, J.; Canik, J.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Lumsdaine, A.; Kafle, N.; Owen, L. W.; Rapp, J.; Ray, H.
2018-06-01
Plasma material interaction (PMI) studies are crucial to the successful development of future fusion reactors. Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a prototype design for the MPEX, a steady-state linear device being developed to study PMI. The primary purpose of Proto-MPEX is developing the plasma heating source concepts for MPEX. A power accounting study of Proto-MPEX works to identify machine operating parameters that could improve its performance, thereby increasing its PMI research capabilities, potentially impacting the MPEX design concept. To build a comprehensive power balance, an analysis of the helicon region has been performed implementing a diagnostic suite and software modeling to identify mechanisms and locations of heat loss from the main plasma. Of the 106.3 kW of input power, up to 90.5% of the power has been accounted for in the helicon region. When the analysis was extended to encompass the device to its end plates, 49.2% of the input power was accounted for and verified diagnostically. Areas requiring further diagnostic analysis are identified. The required improvements will be implemented in future work. The data acquisition and analysis processes will be streamlined to form a working model for future power balance studies of Proto-MPEX. ).
Computation of the power spectrum in chaotic ¼λφ4 inflation
International Nuclear Information System (INIS)
Rojas, Clara; Villalba, Víctor M.
2012-01-01
The phase-integral approximation devised by Fröman and Fröman, is used for computing cosmological perturbations in the quartic chaotic inflationary model. The phase-integral formulas for the scalar power spectrum are explicitly obtained up to fifth order of the phase-integral approximation. As in previous reports (Rojas 2007b, 2007c and 2009), we point out that the accuracy of the phase-integral approximation compares favorably with the numerical results and those obtained using the slow-roll and uniform approximation methods
Computation of the power spectrum in chaotic ¼λφ{sup 4} inflation
Energy Technology Data Exchange (ETDEWEB)
Rojas, Clara [Centro de Estudios Interdisciplinarios de la Física, Instituto Venezolano de Investigaciones Científicas (IVIC), Carretera Panamericana Km. 11, Caracas 1020A (Venezuela, Bolivarian Republic of); Villalba, Víctor M., E-mail: clararoj@gmail.com, E-mail: Victor.Villalba@monash.edu [School of Mathematical Sciences, Faculty of Science, Monash University, Clayton, Vic 3800 (Australia)
2012-01-01
The phase-integral approximation devised by Fröman and Fröman, is used for computing cosmological perturbations in the quartic chaotic inflationary model. The phase-integral formulas for the scalar power spectrum are explicitly obtained up to fifth order of the phase-integral approximation. As in previous reports (Rojas 2007b, 2007c and 2009), we point out that the accuracy of the phase-integral approximation compares favorably with the numerical results and those obtained using the slow-roll and uniform approximation methods.
Feedback-linearization and feedback-feedforward decentralized control for multimachine power system
Energy Technology Data Exchange (ETDEWEB)
De Tuglie, Enrico [Dipartimento di Ingegneria dell' Ambiente, e per lo Sviluppo Sostenibile - DIASS, Politecnico di Bari, Viale del Turismo 8, 74100 Taranto (Italy); Iannone, Silvio Marcello; Torelli, Francesco [Dipartimento di Elettrotecnica, ed Elettronica - DEE, Politecnico di Bari, Via Re David 200, 70125 Bari (Italy)
2008-03-15
In this paper a decentralized nonlinear controller for large-scale power systems is investigated. The proposed controller design is based on the input-output feedback linearization methodology. In order to overcome computational difficulties in adopting such methodology, the overall interconnected nonlinear system, given as n-order, is analyzed as a cascade connection of an n{sub 1}-order nonlinear subsystem and an n{sub 2}-order linear subsystem. The controller design is obtained by applying input-output feedback linearization to the nonlinear subsystem and adopting a tracking control scheme, based on feedback-feedforward technique, for the linear subsystem. In the assumed system model, which is characterised by an interconnected structure between generating units, a decentralised adaptive controller is implemented by decentralizing these constraints. The use of a totally decentralised controller implies a system performance decay with respect to performance when the system is equipped with a centralised controller. Fortunately, the robustness of the proposed controller, based on input-output feedback procedure, guarantees good performance in terms of disturbance even when disturbances are caused by decentralization of interconnection constraints. Test results, provided on the IEEE 30 bus test system, demonstrate the effectiveness and practical applicability of proposed methodology. (author)
Instantaneous response spectrum in seismic testing of nuclear power plant equipment
International Nuclear Information System (INIS)
Morrone, A.
1977-01-01
This paper presents the concept of instantaneous response spectrum (IRS) as the response of single degree of freedom oscillators at a particular time. It demonstrates that a shake table random motion whose standard TRS envelops the RRS does not necessarily satisfy the enveloping requirement instantaneously. That is, any one (or more) instantaneous required response spectrum (IRRS) is not enveloped by any instantaneous test response spectrum (ITRS). Response spectra from different time histories, including single frequency sine beat motion used in resonance testing, are compared for enveloping with maximum response and with the actual response at particular times. These comparisons are given for the enveloping of RRS and IRRS derived with a time history response calculated at a particular building elevation of a nuclear power plant. For the test motion, several of the most severe ITRS derived with a modified EL Centro motion and with a sine beat motion with ten cycles per beat were used. It is shown that although the TRS with the modified EL Centro motion enveloped the given RRS, the selected modified EL Centro ITRS did not envelop the corresponding IRRS. With the sine beat motion, even though the TRS did not fully envelop the given RRS, the resulting sine beat ITRS did not require a larger factor for full IRRS enveloping than those of the modified EL Centro motion
Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder.
Directory of Open Access Journals (Sweden)
Adrienne L Tierney
Full Text Available Current research suggests that autism spectrum disorder (ASD is characterized by asynchronous neural oscillations. However, it is unclear whether changes in neural oscillations represent an index of the disorder or are shared more broadly among both affected and unaffected family members. Additionally, it remains unclear how early these differences emerge in development and whether they remain constant or change over time. In this study we examined developmental trajectories in spectral power in infants at high- or low-risk for ASD. Spectral power was extracted from resting EEG recorded over frontal regions of the scalp when infants were 6, 9, 12, 18 and 24 months of age. We used multilevel modeling to assess change over time between risk groups in the delta, theta, low alpha, high alpha, beta, and gamma frequency bands. The results indicated that across all bands, spectral power was lower in high-risk infants as compared to low-risk infants at 6-months of age. Furthermore high-risk infants showed different trajectories of change in spectral power in the subsequent developmental window indicating that not only are the patterns of change different, but that group differences are dynamic within the first two years of life. These findings remained the same after removing data from a subset of participants who displayed ASD related behaviors at 24 or 36 months. These differences in the nature of the trajectories of EEG power represent important endophenotypes of ASD.
KiDS-450: the tomographic weak lensing power spectrum and constraints on cosmological parameters
Köhlinger, F.; Viola, M.; Joachimi, B.; Hoekstra, H.; van Uitert, E.; Hildebrandt, H.; Choi, A.; Erben, T.; Heymans, C.; Joudaki, S.; Klaes, D.; Kuijken, K.; Merten, J.; Miller, L.; Schneider, P.; Valentijn, E. A.
2017-11-01
We present measurements of the weak gravitational lensing shear power spectrum based on 450 ° ^2 of imaging data from the Kilo Degree Survey. We employ a quadratic estimator in two and three redshift bins and extract band powers of redshift autocorrelation and cross-correlation spectra in the multipole range 76 ≤ ℓ ≤ 1310. The cosmological interpretation of the measured shear power spectra is performed in a Bayesian framework assuming a ΛCDM model with spatially flat geometry, while accounting for small residual uncertainties in the shear calibration and redshift distributions as well as marginalizing over intrinsic alignments, baryon feedback and an excess-noise power model. Moreover, massive neutrinos are included in the modelling. The cosmological main result is expressed in terms of the parameter combination S_8 ≡ σ _8 √{Ω_m/0.3} yielding S8 = 0.651 ± 0.058 (three z-bins), confirming the recently reported tension in this parameter with constraints from Planck at 3.2σ (three z-bins). We cross-check the results of the three z-bin analysis with the weaker constraints from the two z-bin analysis and find them to be consistent. The high-level data products of this analysis, such as the band power measurements, covariance matrices, redshift distributions and likelihood evaluation chains are available at http://kids.strw.leidenuniv.nl.
A Free-Piston Linear Generator Control Strategy for Improving Output Power
Directory of Open Access Journals (Sweden)
Chi Zhang
2018-01-01
Full Text Available This paper presents a control strategy to improve the output power for a single-cylinder two-stroke free-piston linear generator (FPLG. The comprehensive simulation model of this FPLG is established and the operation principle is introduced. The factors that affect the output power are analyzed theoretically. The characteristics of the piston motion are studied. Considering the different features of the piston motion respectively in acceleration and deceleration phases, a ladder-like electromagnetic force control strategy is proposed. According to the status of the linear electric machine, the reference profile of the electromagnetic force is divided into four ladder-like stages during one motion cycle. The piston motions, especially the dead center errors, are controlled by regulating the profile of the electromagnetic force. The feasibility and advantage of the proposed control strategy are verified through comparison analyses with two conventional control strategies via MatLab/Simulink. The results state that the proposed control strategy can improve the output power by around 7–10% with the same fuel cycle mass.
Development of linear proton accelerators with the high average beam power
Bomko, V A; Egorov, A M
2001-01-01
Review of the current situation in the development of powerful linear proton accelerators carried out in many countries is given. The purpose of their creation is solving problems of safe and efficient nuclear energetics on a basis of the accelerator-reactor complex. In this case a proton beam with the energy up to 1 GeV, the average current of 30 mA is required. At the same time there is a needed in more powerful beams,for example, for production of tritium and transmutation of nuclear waste products. The creation of accelerators of such a power will be followed by the construction of linear accelerators of 1 GeV but with a more moderate beam current. They are intended for investigation of many aspects of neutron physics and neutron engineering. Problems in the creation of efficient constructions for the basic and auxiliary equipment, the reliability of the systems, and minimization of the beam losses in the process of acceleration will be solved.
Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100
Energy Technology Data Exchange (ETDEWEB)
Yèche, Christophe; Palanque-Delabrouille, Nathalie; Baur, Julien; Bourboux, Hélion du Mas des, E-mail: christophe.yeche@cea.fr, E-mail: nathalie.palanque-delabrouille@cea.fr, E-mail: julien.baur@cea.fr, E-mail: helion.du-mas-des-bourboux@cea.fr [CEA, Centre de Saclay, IRFU/SPP, F-91191 Gif-sur-Yvette (France)
2017-06-01
We present constraints on masses of active and sterile neutrinos in the context of the ΛCDMν and ΛWDM models, respectively. We use the one-dimensional Lyα-forest power spectrum from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III) measured by Palanque-Delabrouille et al. [1], and from the VLT/XSHOOTER legacy survey (XQ-100). In this paper, we present our own measurement of the publicly released XQ-100 quasar spectra, focusing in particular on an improved determination of the spectrograph resolution that allows us to push to smaller scales than the public release and reach k -modes of 0.070 s km{sup −1}. We compare the obtained 1D Lyα flux power spectrum to the one measured by Irsic et al. [2] to k -modes of 0.057 s km{sup −1}. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from Planck 2015 Cosmic Microwave Background (CMB) data. Combining BOSS and XQ-100 Lyα power spectra, we constrain the sum of neutrino masses to ∑ m {sub ν} < 0.8 eV (95% C.L.) including all identified sources of systematic uncertainties. With the addition of CMB data, this bound is tightened to ∑ m {sub ν} < 0.14 eV (95% C.L.). With their sensitivity to small scales, Lyα data are ideal to constrain ΛWDM models. Using XQ-100 alone, we issue lower bounds on pure dark matter particles: m {sub X} ∼> 2.08 : keV (95% C.L.) for early decoupled thermal relics, and m {sub s} ∼> 10.2 : keV (95% C.L.) for non-resonantly produced right-handed neutrinos. Combining the 1D Lyα-forest power spectrum measured by BOSS and XQ-100, we improve the two bounds to m {sub X} ∼> 4.17 : keV and m {sub s} ∼> 25.0 : keV (95% C.L.), slightly more constraining than what was achieved in Baur et al. 2015 [3] with BOSS data alone. The 3 σ bound shows a more significant improvement, increasing from m {sub X} ∼> 2.74 : keV for BOSS alone to m {sub X} ∼> 3.10 : keV for the combined BOSS
Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms
International Nuclear Information System (INIS)
Liu Haibin; Davidson, Rachel A.; Apanasovich, Tatiyana V.
2008-01-01
This paper presents new statistical models that predict the number of hurricane- and ice storm-related electric power outages likely to occur in each 3 kmx3 km grid cell in a region. The models are based on a large database of recent outages experienced by three major East Coast power companies in six hurricanes and eight ice storms. A spatial generalized linear mixed modeling (GLMM) approach was used in which spatial correlation is incorporated through random effects. Models were fitted using a composite likelihood approach and the covariance matrix was estimated empirically. A simulation study was conducted to test the model estimation procedure, and model training, validation, and testing were done to select the best models and assess their predictive power. The final hurricane model includes number of protective devices, maximum gust wind speed, hurricane indicator, and company indicator covariates. The final ice storm model includes number of protective devices, ice thickness, and ice storm indicator covariates. The models should be useful for power companies as they plan for future storms. The statistical modeling approach offers a new way to assess the reliability of electric power and other infrastructure systems in extreme events
RF power source for the compact linear collider test facility (CTF3)
McMonagle, G; Brown, Peter; Carron, G; Hanni, R; Mourier, J; Rossat, G; Syratchev, I V; Tanner, L; Thorndahl, L
2004-01-01
The CERN CTF3 facility will test and demonstrate many vital components of CLIC (Compact Linear Collider). This paper describes the pulsed RF power source at 2998.55 MHz for the drive-beam accelerator (DBA), which produces a beam with an energy of 150 MeV and a current of 3.5 Amps. Where possible, existing equipment from the LEP preinjector, especially the modulators and klystrons, is being used and upgraded to achieve this goal. A high power RF pulse compression system is used at the output of each klystron, which requires sophisticated RF phase programming on the low level side to achieve the required RF pulse. In addition to the 3 GHz system two pulsed RF sources operating at 1.5 GHz are being built. The first is a wide-band, low power, travelling wave tube (TWT) for the subharmonic buncher (SHB) system that produces a train of "phase coded" subpulses as part of the injector scheme. The second is a high power narrow band system to produce 20 MW RF power to the 1.5 GHz RF deflectors in the delay loop situate...
Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Magnetic Field
Voorhies, C.
1998-01-01
The magnetic field produced by magnetization in Earth's crust and lithosphere can be distinguished from the field produced by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the core field. Theoretical forms for the spectrum of the crustal field are derived by treating each magnetic domain in the crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an periodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superimposed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral forms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of MAGSAT data, are summarized in terms of amplitude, source depth, and misfit. Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic degree n due to geometric attenuation with attitude above the source layer. The source factors always vary with n and are approximately proportional to n(exp 3) for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise independent of n.
Anisotropic power spectrum and bispectrum in the f(ϕ)F2 mechanism
Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco; Ricciardone, Angelo
2013-01-01
A suitable coupling of the inflaton φ to a vector kinetic term F2 gives frozen and scale invariant vector perturbations. We compute the cosmological perturbations ζ that result from such coupling by taking into account the classical vector field that unavoidably gets generated at large scales during inflation. This generically results in a too-anisotropic power spectrum of ζ. Specifically, the anisotropy exceeds the 1% level (10% level) if inflation lasts ˜5 e-folds (˜50 e-folds) more than the minimal amount required to produce the cosmic microwave background modes. This conclusion applies, among others, to the application of this mechanism for magnetogenesis, for anisotropic inflation, and for the generation of anisotropic perturbations at the end of inflation through a waterfall field coupled to the vector (in this case, the unavoidable contribution that we obtain is effective all throughout inflation, and it is independent of the waterfall field). For a tuned duration of inflation, a 1% (10%) anisotropy in the power spectrum corresponds to an anisotropic bispectrum which is enhanced like the local one in the squeezed limit, and with an effective local fNL˜3(˜30). More in general, a significant anisotropy of the perturbations may be a natural outcome of all models that sustain higher than 0 spin fields during inflation.
Karagiannis, Dionysios; Lazanu, Andrei; Liguori, Michele; Raccanelli, Alvise; Bartolo, Nicola; Verde, Licia
2018-07-01
We forecast constraints on primordial non-Gaussianity (PNG) and bias parameters from measurements of galaxy power spectrum and bispectrum in future radio continuum and optical surveys. In the galaxy bispectrum, we consider a comprehensive list of effects, including the bias expansion for non-Gaussian initial conditions up to second order, redshift space distortions, redshift uncertainties and theoretical errors. These effects are all combined in a single PNG forecast for the first time. Moreover, we improve the bispectrum modelling over previous forecasts, by accounting for trispectrum contributions. All effects have an impact on final predicted bounds, which varies with the type of survey. We find that the bispectrum can lead to improvements up to a factor ˜5 over bounds based on the power spectrum alone, leading to significantly better constraints for local-type PNG, with respect to current limits from Planck. Future radio and photometric surveys could obtain a measurement error of σ (f_{NL}^{loc}) ≈ 0.2. In the case of equilateral PNG, galaxy bispectrum can improve upon present bounds only if significant improvements in the redshift determinations of future, large volume, photometric or radio surveys could be achieved. For orthogonal non-Gaussianity, expected constraints are generally comparable to current ones.
Balance of excitation and inhibition determines 1/f power spectrum in neuronal networks.
Lombardi, F; Herrmann, H J; de Arcangelis, L
2017-04-01
The 1/f-like decay observed in the power spectrum of electro-physiological signals, along with scale-free statistics of the so-called neuronal avalanches, constitutes evidence of criticality in neuronal systems. Recent in vitro studies have shown that avalanche dynamics at criticality corresponds to some specific balance of excitation and inhibition, thus suggesting that this is a basic feature of the critical state of neuronal networks. In particular, a lack of inhibition significantly alters the temporal structure of the spontaneous avalanche activity and leads to an anomalous abundance of large avalanches. Here, we study the relationship between network inhibition and the scaling exponent β of the power spectral density (PSD) of avalanche activity in a neuronal network model inspired in Self-Organized Criticality. We find that this scaling exponent depends on the percentage of inhibitory synapses and tends to the value β = 1 for a percentage of about 30%. More specifically, β is close to 2, namely, Brownian noise, for purely excitatory networks and decreases towards values in the interval [1, 1.4] as the percentage of inhibitory synapses ranges between 20% and 30%, in agreement with experimental findings. These results indicate that the level of inhibition affects the frequency spectrum of resting brain activity and suggest the analysis of the PSD scaling behavior as a possible tool to study pathological conditions.
Power spectrum analysis of polarized emission from the Canadian galactic plane survey
Energy Technology Data Exchange (ETDEWEB)
Stutz, R. A.; Rosolowsky, E. W. [University of British Columbia Okanagan, 3333 University Way, Kelowna BC, V1V 1V7 (Canada); Kothes, R.; Landecker, T. L. [National Research Council Canada, Dominion Radio Astrophysical Observatory, Box 248, Penticton, BC, V2A 6J9 (Canada)
2014-05-20
Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization data set at 1.4 GHz covering an area of 1060 deg{sup 2}. The data analyzed are a combination of data from the 100 m Effelsberg Telescope, the 26 m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from ℓ ≈ 60 to ℓ ≈ 10{sup 4} and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to increase away from the Galactic plane. A transition from small-scale to large-scale structure is evident at b = 9°, associated with the disk-halo transition in a 15° region around l = 108°. Localized variations in the index are found toward H II regions and supernova remnants, but the interpretation of these variations is inconclusive. The power in the polarized emission is anticorrelated with bright thermal emission (traced by Hα emission) indicating that the thermal emission depolarizes background synchrotron emission.
International Nuclear Information System (INIS)
Cheng Qifeng; Ni Jianping; Meng Cui; Cheng Cheng; Liu Yinong; Li Jin
2009-01-01
The close of high voltage switch in pulsed power system of linear induction accelerator often radiates strong transient electric field, which may influence ambient sensitive electric equipment, signals and performance of other instruments, etc. By performing gridded measurement around the Marx generator, the general distribution law and basic characters of electric field radiation are summarized. The current signal of the discharge circuit is also measured, which demonstrates that the current and the radiated electric field both have a resonance frequency about 150 kHz, and contain much higher frequency components. (authors)
Ltaief, Hatem
2011-08-31
This paper presents the power profile of two high performance dense linear algebra libraries i.e., LAPACK and PLASMA. The former is based on block algorithms that use the fork-join paradigm to achieve parallel performance. The latter uses fine-grained task parallelism that recasts the computation to operate on submatrices called tiles. In this way tile algorithms are formed. We show results from the power profiling of the most common routines, which permits us to clearly identify the different phases of the computations. This allows us to isolate the bottlenecks in terms of energy efficiency. Our results show that PLASMA surpasses LAPACK not only in terms of performance but also in terms of energy efficiency. © 2011 Springer-Verlag.
Zoschke, Theda; Seubert, Bernhard; Fluri, Thomas
2017-06-01
An existing linear Fresnel power plant with ORC process located in Ben Guerir, Morocco, is retrofitted with a thermal energy storage system and additional collector loops. Two different plant configurations are investigated in this paper. In the first configuration two separate solar fields are built and only the minor one can charge the storage. In the second configuration, there is only one large solar field which offers more flexibility. Two different control strategies are assessed by comparing simulation results. It shows that the simulations of the systems with two solar fields results in higher energy yields throughout the year, but the power production of the system with one solar field is much more flexible and demand oriented. Also it offers great potential for improvement when it comes to weather forecasting.
RF power sources for 5--15 TeV linear colliders
International Nuclear Information System (INIS)
Wilson, P.B.
1996-09-01
After outlining the design of the NLC rf system at 1 TeV, the possibility of a leap in linear collider energy into the 5--15 TeV energy range is considered. To keep the active accelerator length and ac wall-plug power within reasonable bounds, higher accelerating gradients at higher rf frequencies will be necessary. Scaling relations are developed for basic rf system parameters as a function of frequency, and some specific parameter examples are given for colliders at 34 Ghz and 91 Ghz. Concepts for rf pulse compression system design and for high power microwave sources at 34 Ghz (for example sheet-beam and multiple-beam klystrons) are briefly discussed
Directory of Open Access Journals (Sweden)
A. B. Mukhtubayev
2015-01-01
Full Text Available We have investigated the back reflections influence on the spectrum for optical radiation source of superluminescent diode type and have provided optimal operating conditions of the radiation source. The feature of the research method is the usage of a fiber polarization controller and an optical mirror coated on the end of an optical fiber. The studies were conducted with two sources of optical radiation: ThorLabs superluminescent diode series S5FC1005SXL and LED module ELED-1550-1-E-9-SM1-FA-CW. It was revealed that at the value of back reflections equal to -13 dB relative to the output power source, a negative impact on power and spectral characteristics of the source with an optical power of 2.3 µW is beginning to appear. It was also confirmed that at the increase of the radiation power by increasing the source pumping current, back reflection influence is exhibiting at a lower level of back reflections. The results obtained need to be considered when designing fiber optic sensors in order to eliminate the effect of back reflections on the sources of optical radiation having been studied in this paper.
Power noise spectrum classification in the problem of the IBR-2 reactor
International Nuclear Information System (INIS)
Bargel, M.; Kitowski, J.; Pepelyshev, Yu.N.
1988-01-01
The classification spectrum results of random fluctuations in the IBR-2 energy pulse are presented. The work is performed for the application of the obtained results to the reactor diagnostics and the study of its noise uncontrolled states. For classification of the spectra the method of pattern recognition based upon the ISODATA heuristic algorithm is used. It is shown that a set of noise uncontrolled reactor states, registered during the reactor operation period at power of 0.4-2 MVt with the first variant of moving reflector (1983-1986) is formed into 4(5) most typical states. Each of the states corresponds to the general conditions of the reactor core cooling and provides the normal work of the moving reflector. However, these states differ in coolant flow, power level and peculiarities of the moving reflector rotation regime. One type of anomal power noise, connected with some disorder in the moving reflctor work, is isolated. This work also presents the possibility of control over the state of moving reflectors according to the change in the amplitude of power oscillations at some frequences. The reactor noise classification results can be used as the data bank for the IBR-2 reactor diagnostic system
Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm
DEFF Research Database (Denmark)
Chi, Mingjun; Erbert, G.; Sumpf, B.
2010-01-01
A 668 nm tunable high-power narrow-spectrum diode laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The laser system is tunable from 659 to 675 nm. As high as 1.38 W output power is obtained at 668.35 nm. The emission spectral bandwidth is less than...
Impact of climate change on Taiwanese power market determined using linear complementarity model
International Nuclear Information System (INIS)
Tung, Ching-Pin; Tseng, Tze-Chi; Huang, An-Lei; Liu, Tzu-Ming; Hu, Ming-Che
2013-01-01
Highlights: ► Impact of climate change on average temperature is estimated. ► Temperature elasticity of demand is measured. ► Impact of climate change on Taiwanese power market determined. -- Abstract: The increase in the greenhouse gas concentration in the atmosphere causes significant changes in climate patterns. In turn, this climate change affects the environment, ecology, and human behavior. The emission of greenhouse gases from the power industry has been analyzed in many studies. However, the impact of climate change on the electricity market has received less attention. Hence, the purpose of this research is to determine the impact of climate change on the electricity market, and a case study involving the Taiwanese power market is conducted. First, the impact of climate change on temperature is estimated. Next, because electricity demand can be expressed as a function of temperature, the temperature elasticity of demand is measured. Then, a linear complementarity model is formulated to simulate the Taiwanese power market and climate change scenarios are discussed. Therefore, this paper establishes a simulation framework for calculating the impact of climate change on electricity demand change. In addition, the impact of climate change on the Taiwanese market is examined and presented.
Non-linear behaviour of power density and exposure time of argon laser on ocular tissues
Energy Technology Data Exchange (ETDEWEB)
El-Sayed, E M; Talaat, M S; Salem, E F [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt)
1997-12-31
In ophthalmology, the thermal effect of argon laser is the most widely used category of laser- tissue interaction. The rise in tissue temperature has to exceed a threshold value for photo coagulation of retinal blood vessels. This value mainly depends on the laser. The most suitable argon laser power P and exposure time (t) which would be more effective for thermal and electrical behaviour of chicken eye was studied. This was achieved by measuring the variations in ocular temperature in electroretinogram (ERG) records under the effect of argon experiment, while power density (P) and exposure time (t) were varied in four different ways for each dose (pt). Results indicated that for the same laser dose, the temperature distribution of the eye, using low power density and high exposure time was higher than that high power density and low exposure time, indicating non-linearity of the laser dose. This finding was confirmed by ERG records which showed similar variations in b-wave latency, amplitude and duration, for the laser exposure conditions. This indicates variations in retinal function due to laser-dependent temperature variations. 5 figs., 3 tabs.
Performance improvement of shunt active power filter based on non-linear least-square approach
DEFF Research Database (Denmark)
Terriche, Yacine
2018-01-01
Nowadays, the shunt active power filters (SAPFs) have become a popular solution for power quality issues. A crucial issue in controlling the SAPFs which is highly correlated with their accuracy, flexibility and dynamic behavior, is generating the reference compensating current (RCC). The synchron......Nowadays, the shunt active power filters (SAPFs) have become a popular solution for power quality issues. A crucial issue in controlling the SAPFs which is highly correlated with their accuracy, flexibility and dynamic behavior, is generating the reference compensating current (RCC......). The synchronous reference frame (SRF) approach is widely used for generating the RCC due to its simplicity and computation efficiency. However, the SRF approach needs precise information of the voltage phase which becomes a challenge under adverse grid conditions. A typical solution to answer this need....... This paper proposes an improved open loop strategy which is unconditionally stable and flexible. The proposed method which is based on non-linear least square (NLS) approach can extract the fundamental voltage and estimates its phase within only half cycle, even in the presence of odd harmonics and dc offset...
THE POWER SPECTRUM OF THE MILKY WAY: VELOCITY FLUCTUATIONS IN THE GALACTIC DISK
Energy Technology Data Exchange (ETDEWEB)
Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Bird, Jonathan C. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Pérez, Ana E. García; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48104 (United States); Zasowski, Gail, E-mail: bovy@ias.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)
2015-02-20
We investigate the kinematics of stars in the mid-plane of the Milky Way (MW) on scales between 25 pc and 10 kpc with data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the Radial Velocity Experiment (RAVE), and the Geneva-Copenhagen survey (GCS). Using red-clump (RC) stars in APOGEE, we determine the large-scale line-of-sight velocity field out to 5 kpc from the Sun in (0.75 kpc){sup 2} bins. The solar motion V{sub ☉} {sub –} {sub c} with respect to the circular velocity V{sub c} is the largest contribution to the power on large scales after subtracting an axisymmetric rotation field; we determine the solar motion by minimizing the large-scale power to be V{sub ☉} {sub –} {sub c} = 24 ± 1 (ran.) ± 2 (syst. [V{sub c} ]) ± 5 (syst.[large-scale]) km s{sup –1}, where the systematic uncertainty is due to (1) a conservative 20 km s{sup –1} uncertainty in V{sub c} and (2) the estimated power on unobserved larger scales. Combining the APOGEE peculiar-velocity field with RC stars in RAVE out to 2 kpc from the Sun and with local GCS stars, we determine the power spectrum of residual velocity fluctuations in the MW's disk on scales between 0.2 kpc{sup –1} ≤ k ≤ 40 kpc{sup –1}. Most of the power is contained in a broad peak between 0.2 kpc{sup –1} < k < 0.9 kpc{sup –1}. We investigate the expected power spectrum for various non-axisymmetric perturbations and demonstrate that the central bar with commonly used parameters but of relatively high mass can explain the bulk of velocity fluctuations in the plane of the Galactic disk near the Sun. Streaming motions ≈10 km s{sup –1} on ≳ 3 kpc scales in the MW are in good agreement with observations of external galaxies and directly explain why local determinations of the solar motion are inconsistent with global measurements.
Reconstruction of a direction-dependent primordial power spectrum from Planck CMB data
Durakovic, Amel; Hunt, Paul; Mukherjee, Suvodip; Sarkar, Subir; Souradeep, Tarun
2018-02-01
We consider the possibility that the primordial curvature perturbation is direction-dependent. To first order this is parameterised by a quadrupolar modulation of the power spectrum and results in statistical anisotropy of the CMB, which can be quantified using `bipolar spherical harmonics'. We compute these for the Planck DR2-2015 SMICA map and estimate the noise covariance from Planck Full Focal Plane 9 simulations. A constant quadrupolar modulation is detected with 2.2 σ significance, dropping to 2σ when the primordial power is assumed to scale with wave number k as a power law. Going beyond previous work we now allow the spectrum to have arbitrary scale-dependence. Our non-parametric reconstruction then suggests several spectral features, the most prominent at k ~ 0.006 Mpc‑1. When a constant quadrupolar modulation is fitted to data in the range 0.005 <= k/Mpc‑1 <= 0.008, its preferred directions are found to be related to the cosmic hemispherical asymmetry and the CMB dipole. To determine the significance we apply two test statistics to our reconstructions of the quadrupolar modulation from data, against reconstructions of realisations of noise only. With a test statistic sensitive only to the amplitude of the modulation, the reconstructions from the multipole range 30 <= l <= 1200 are unusual with 2.1σ significance. With the second test statistic, sensitive also to the direction, the significance rises to 6.9σ. Our approach is easily generalised to include other data sets such as polarisation, large-scale structure and forthcoming 21-cm line observations which will enable these anomalies to be investigated further.
The effect of blood acceleration on the ultrasound power Doppler spectrum
Matchenko, O. S.; Barannik, E. A.
2017-09-01
The purpose of the present work was to study the influence of blood acceleration and time window length on the power Doppler spectrum for Gaussian ultrasound beams. The work has been carried out on the basis of continuum model of the ultrasound scattering from inhomogeneities in fluid flow. Correlation function of fluctuations has been considered for uniformly accelerated scatterers, and the resulting power Doppler spectra have been calculated. It is shown that within the initial phase of systole uniformly accelerated slow blood flow in pulmonary artery and aorta tends to make the correlation function about 4.89 and 7.83 times wider, respectively, than the sensitivity function of typical probing system. Given peak flow velocities, the sensitivity function becomes, vice versa, about 4.34 and 3.84 times wider, respectively, then the correlation function. In these limiting cases, the resulting spectra can be considered as Gaussian. The optimal time window duration decreases with increasing acceleration of blood flow and equals to 11.62 and 7.54 ms for pulmonary artery and aorta, respectively. The width of the resulting power Doppler spectrum is shown to be defined mostly by the wave vector of the incident field, the duration of signal and the acceleration of scatterers in the case of low flow velocities. In the opposite case geometrical properties of probing field and the average velocity itself are more essential. In the sense of signal-noise ratio, the optimal duration of time window can be found. Abovementioned results may contribute to the improved techniques of Doppler ultrasound diagnostics of cardiovascular system.
Relativistic-Klystron two-beam accelerator as a power source for future linear colliders
International Nuclear Information System (INIS)
Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Vanecek, D. L.; Yu, S. S.; Houck, T. L.; Westenskow, G. A.
1999-01-01
The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented
DEFF Research Database (Denmark)
Choi, Ui-Min; Ma, Ke; Blaabjerg, Frede
2018-01-01
In this paper, the lifetime prediction of power device modules based on the linear damage accumulation is studied in conjunction with simple mission profiles of converters. Superimposed power cycling conditions, which are called simple mission profiles in this paper, are made based on a lifetime ...... prediction of IGBT modules under power converter applications.......In this paper, the lifetime prediction of power device modules based on the linear damage accumulation is studied in conjunction with simple mission profiles of converters. Superimposed power cycling conditions, which are called simple mission profiles in this paper, are made based on a lifetime...... model in respect to junction temperature swing duration. This model has been built based on 39 power cycling test results of 600-V 30-A three-phase-molded IGBT modules. Six tests are performed under three superimposed power cycling conditions using an advanced power cycling test setup. The experimental...
International Nuclear Information System (INIS)
Nusrat, H; Pang, G; Ahmad, S; Keller, B; Sarfehnia, A
2015-01-01
Purpose: This research seeks to develop a portable, clinically-suitable linear energy transfer (LET) detector. In radiotherapy, absorbed dose is commonly used to measure the amount of delivered radiation, though, it is not a good indicator of actual biological damage. LET is the energy absorbed per unit length by a medium along charged particle’s pathway; studies have shown that LET correlates well with relative biological effectiveness (RBE). Methods: According to Birks’ law, light output of plastic scintillators is stopping-power dependent. This dependency can be varied through doping by various high-Z elements. By measuring light output signals of differently doped plastic scintillators (represented by column vector S, where each row corresponds to different scintillator material), the fluence of charged particles of a given LET (represented by column vector Φ, where each row corresponds to different LET bins) can be unfolded by S=R*Φ where R is system response matrix (each row represents a different scintillator, each column corresponds to different electron LET). Monte Carlo (MC) GEANT4.10.1 was used to evaluate ideal detector response of BC408 scintillating material doped with various concentrations of several high Z dopants. Measurements were performed to validate MC. Results: Signal for 1%-lead doped BC408 and the non-doped scintillator was measured experimentally by guiding light emitted by the scintillator (via in-house made taper, fiber system) to a PMT and then an electrometer. Simulations of 1%Pb-doped scintillator to non-doped scintillator revealed 9.3% reduction in light output for 6 MeV electrons which compared well (within uncertainty) with measurements showing 10% reduction (6MeV electrons). Conclusion: Measurements were used to validate MC simulation of light output from doped scintillators. The doping of scintillators is a viable technique to induce LET dependence. Our goal is to use this effect to resolve the LET spectrum of an incident
West, Timothy; Farmer, Simon; Berthouze, Luc; Jha, Ashwani; Beudel, Martijn; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir
2016-01-01
In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN) during Parkinson's disease (PD). We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS)- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs) taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5-12 Hz) band power in response to L-DOPA treatment, whilst low beta band power (15-20 Hz) band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was evidence for its modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although, the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics.
International Nuclear Information System (INIS)
Suarez Antola, R.
2005-01-01
It was proponed recently to apply an extension of Lyapunov's first method to the non-linear regime, known as non-linear modal analysis (NMA), to the study of space-time problems in nuclear reactor kinetics, nuclear power plant dynamics and nuclear power plant instrumentation and control(1). The present communication shows how to apply NMA to the study of Xenon spatial oscillations in large nuclear reactors. The set of non-linear modal equations derived by J. Lewins(2) for neutron flux, Xenon concentration and Iodine concentration are discussed, and a modified version of these equations is taken as a starting point. Using the methods of singular perturbation theory a slow manifold is constructed in the space of mode amplitudes. This allows the reduction of the original high dimensional dynamics to a low dimensional one. It is shown how the amplitudes of the first mode for neutron flux field, temperature field and concentrations of Xenon and Iodine fields can have a stable steady state value while the corresponding amplitudes of the second mode oscillates in a stable limit cycle. The extrapolated dimensions of the reactor's core are used as bifurcation parameters. Approximate analytical formulae are obtained for the critical values of this parameters( below which the onset of oscillations is produced), for the period and for the amplitudes of the above mentioned oscillations. These results are applied to the discussion of neutron flux and temperature excursions in critical locations of the reactor's core. The results of NMA can be validated from the results obtained applying suitable computer codes, using homogenization theory(3) to link the complex heterogeneous model of the codes with the simplified mathematical model used for NMA
Sechopoulos, Ioannis; Bliznakova, Kristina; Fei, Baowei
2013-10-01
To analyze the frequency domain characteristics of the signal in mammography images and breast tomosynthesis projections with patient tissue texture due to detected scattered x-rays. Acquisitions of x-ray projection images of 19 different patient breasts were simulated using previously acquired volumetric patient images. Acquisition of these images was performed with a dedicated breast CT prototype system, and the images were classified into voxels representing skin, adipose, and glandular tissue with a previously validated automated algorithm. The classified three dimensional images then underwent simulated mechanical compression representing that which is performed during acquisition of mammography and breast tomosynthesis images. The acquisition of projection images of each patient breast was simulated using Monte Carlo methods with each simulation resulting in two images: one of the primary (non-scattered) signal and one of the scatter signal. To analyze the scatter signal for both mammography and breast tomosynthesis, two projections images of each patient breast were simulated, one with the x-ray source positioned at 0° (mammography and central tomosynthesis projection) and at 30° (wide tomosynthesis projection). The noise power spectra (NPS) for both the scatter signal alone and the total signal (primary + scatter) for all images were obtained and the combined results of all patients analyzed. The total NPS was fit to the expected power-law relationship NPS(f) = k/f β and the results were compared with those previously published on the power spectrum characteristics of mammographic texture. The scatter signal alone was analyzed qualitatively and a power-law fit was also performed. The mammography and tomosynthesis projections of three patient breasts were too small to analyze, so a total of 16 patient breasts were analyzed. The values of β for the total signal of the 0° projections agreed well with previously published results. As expected, the scatter
An FEL power source for a TeV linear collider
International Nuclear Information System (INIS)
Hopkins, D.B.; Hoyer, E.H.; Halbach, K.
1988-10-01
In this paper we consider the design of a power source of a linear collider. We take a conservative approach and hence extrapolate as little as possible from present experience. Thus we establish a ''straw man''; i.e., a design which serves as an ''existence proof'' of a power source for a TeV collider. We take as the parameters to which the power source is designed those presented earlier by R. Palmer; namely: f = 17 GHz, W = 634 MW/m, L = 1.44m, W/sub T/ = 3.87 TW, R = 180 Hz, L/sub c/ = 7.41 km, T/sub p/ = 50 ns, where the quantity f is the desired frequency, W is the power needed per meter (for a gradient of 186 MeV/m), L is the length between feeds, W/sub T/ is the total power required, R is the rep-rate, L/sub c/ is the total length of the collider, and T/sub p/ is the rf pulse width. With no emittance dilution, this collider would produce a luminosity of 7.7 /times/ 10 32 cm/sup /minus/2/ sec/sup /minus/1/ for single bunch operation or 1.6 /times/ 10 34 cm/sup /minus/2/ sec/sup /minus/1/ for multi-bunch operating (i.e., 21 bunches). With realistic dilution and R = 386 Hz these luminosity values would be 5.0 /times/ 10 32 and 1.0 /times/ 10 34 cm/sup /minus/2/ sec/sup /minus/1/, respectively. 5 refs., 14 figs., 4 tabs
International Nuclear Information System (INIS)
Ma Yinzhe; Efstathiou, George; Challinor, Anthony
2011-01-01
Statistical isotropy is often assumed in cosmology and should be tested rigorously against observational data. We construct simple quadratic estimators to reconstruct asymmetry in the primordial power spectrum from CMB temperature and polarization data and verify their accuracy using simulations with quadrupole power asymmetry. We show that the Planck mission, with its millions of signal-dominated modes of the temperature anisotropy, should be able to constrain the amplitude of any spherical multipole of a scale-invariant quadrupole asymmetry at the 0.01 level (2σ). Almost independent constraints can be obtained from polarization at the 0.03 level after four full-sky surveys, providing an important consistency test. If the amplitude of the asymmetry is large enough, constraining its scale dependence should become possible. In scale-free quadrupole models with 1% asymmetry, consistent with the current limits from WMAP temperature data (after correction for beam asymmetries), Planck should constrain the spectral index q of power-law departures from asymmetry to Δq=0.3. Finally, we show how to constrain models with axisymmetry in the same framework. For scale-free quadrupole models, Planck should constrain the direction of the asymmetry to a 1σ accuracy of about 2 degrees using one year of temperature data.
Delay analysis of a point-to-multipoint spectrum sharing network with CSI based power allocation
Khan, Fahd Ahmed
2012-10-01
In this paper, we analyse the delay performance of a point-to-multipoint cognitive radio network which is sharing the spectrum with a point-to-multipoint primary network. The channel is assumed to be independent but not identically distributed and has Nakagami-m fading. A constraint on the peak transmit power of the secondary user transmitter (SU-Tx) is also considered in addition to the peak interference power constraint. Based on the constraints, a power allocation scheme which requires knowledge of the instantaneous channel state information (CSI) of the interference links is derived. The SU-Tx is assumed to be equipped with a buffer and is modelled using the M/G/1 queueing model. Closed form expressions for the probability distribution function (PDF) and cumulative distribution function (CDF) of the packet transmission time is derived. Using the PDF, the expressions for the moments of transmission time are obtained. In addition, using the moments, the expressions for the performance measures such as the total average waiting time of packets and the average number of packets waiting in the buffer of the SU-Tx are also obtained. Numerical simulations corroborate the theoretical results. © 2012 IEEE.
International Nuclear Information System (INIS)
Woo, R.; Armstrong, J.W.
1979-01-01
Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2--215 R/sub S/, and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances > or approx. =20 R/sub S/ the equivalent spacecraft-measured one-dimensional density spectrym V/sub n/e is well modeled by a single power law (f/sup -alpha/) in the frequency range 10 -4 -5 x 10 -2 Hz. The mean spectral index α is 1.65, very close to the Kolmogorov value of 5/3. Under the assumption of constant solar wind speed, V/sub n/e varies as R/sup -3.45/, where R is heliocentric distance. Within 20 R/sub S/, V/sub n/e can still be modeled by a single power law over the frequency range 10 -3 -10 1 Hz, but the spectral index becomes smaller, αapprox.1.1. The flattening of the density spectrum with 20 R/sub S/ is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind
On-chip power-combining techniques for watt-level linear power amplifiers in 0.18 μm CMOS
International Nuclear Information System (INIS)
Ren Zhixiong; Zhang Kefeng; Liu Lanqi; Li Cong; Chen Xiaofei; Liu Dongsheng; Liu Zhenglin; Zou Xuecheng
2015-01-01
Three linear CMOS power amplifiers (PAs) with high output power (more than watt-level output power) for high data-rate mobile applications are introduced. To realize watt-level output power, there are two 2.4 GHz PAs using an on-chip parallel combining transformer (PCT) and one 1.95 GHz PA using an on-chip series combining transformer (SCT) to combine output signals of multiple power stages. Furthermore, some linearization techniques including adaptive bias, diode linearizer, multi-gated transistors (MGTR) and the second harmonic control are applied in these PAs. Using the proposed power combiner, these three PAs are designed and fabricated in TSMC 0.18 μm RFCMOS process. According to the measurement results, the proposed two linear 2.4 GHz PAs achieve a gain of 33.2 dB and 34.3 dB, a maximum output power of 30.7 dBm and 29.4 dBm, with 29% and 31.3% of peak PAE, respectively. According to the simulation results, the presented linear 1.95 GHz PA achieves a gain of 37.5 dB, a maximum output power of 34.3 dBm with 36.3% of peak PAE. (paper)
Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua
2014-03-10
A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.
Price, Layne C.
2015-11-01
We consider a phenomenological model of inflation where the inflaton is the phase of a complex scalar field Φ . Planck-suppressed operators of O (f5/Mpl) modify the geometry of the vev ⟨Φ ⟩ at first order in the decay constant f , which adds a first-order periodic term to the definition of the canonically normalized inflaton ϕ . This correction to the inflaton induces a fixed number of extra oscillatory terms in the potential V ˜θp. We derive the same result in a toy scenario where the vacuum ⟨Φ ⟩ is an ellipse with an arbitrarily large eccentricity. These extra oscillations change the form of the power spectrum as a function of scale k and provide a possible mechanism for differentiating effective field theory motivated inflation from models where the angular shift symmetry is a gauge symmetry.
Constraining models of f(R) gravity with Planck and WiggleZ power spectrum data
Dossett, Jason; Hu, Bin; Parkinson, David
2014-03-01
In order to explain cosmic acceleration without invoking ``dark'' physics, we consider f(R) modified gravity models, which replace the standard Einstein-Hilbert action in General Relativity with a higher derivative theory. We use data from the WiggleZ Dark Energy survey to probe the formation of structure on large scales which can place tight constraints on these models. We combine the large-scale structure data with measurements of the cosmic microwave background from the Planck surveyor. After parameterizing the modification of the action using the Compton wavelength parameter B0, we constrain this parameter using ISiTGR, assuming an initial non-informative log prior probability distribution of this cross-over scale. We find that the addition of the WiggleZ power spectrum provides the tightest constraints to date on B0 by an order of magnitude, giving log10(B0) explanation.
DEFF Research Database (Denmark)
Jørgensen, Søren; Dau, Torsten
2011-01-01
conditions by comparing predictions to measured data from [Kjems et al. (2009). J. Acoust. Soc. Am. 126 (3), 1415-1426] where speech is mixed with four different interferers, including speech-shaped noise, bottle noise, car noise, and cafe noise. The model accounts well for the differences in intelligibility......The speech-based envelope power spectrum model (sEPSM) [Jørgensen and Dau (2011). J. Acoust. Soc. Am., 130 (3), 1475–1487] estimates the envelope signal-to-noise ratio (SNRenv) of distorted speech and accurately describes the speech recognition thresholds (SRT) for normal-hearing listeners...... observed for the different interferers. None of the standardized models successfully describe these data....
Statistical measurement of power spectrum density of large aperture optical component
International Nuclear Information System (INIS)
Xu Jiancheng; Xu Qiao; Chai Liqun
2010-01-01
According to the requirement of ICF, a method based on statistical theory has been proposed to measure the power spectrum density (PSD) of large aperture optical components. The method breaks the large-aperture wavefront into small regions, and obtains the PSD of the large-aperture wavefront by weighted averaging of the PSDs of the regions, where the weight factor is each region's area. Simulation and experiment demonstrate the effectiveness of the proposed method. They also show that, the obtained PSDs of the large-aperture wavefront by statistical method and sub-aperture stitching method fit well, when the number of small regions is no less than 8 x 8. The statistical method is not sensitive to translation stage's errors and environment instabilities, thus it is appropriate for PSD measurement during the process of optical fabrication. (authors)
A power filter for the detection of burst events based on time-frequency spectrum estimation
International Nuclear Information System (INIS)
Guidi, G M; Cuoco, E; Vicere, A
2004-01-01
We propose as a statistic for the detection of bursts in a gravitational wave interferometer the 'energy' of the events estimated with a time-dependent calculation of the spectrum. This statistic has an asymptotic Gaussian distribution with known statistical moments, which makes it possible to perform a uniformly most powerful test (McDonough R N and Whalen A D 1995 Detection of Signals in Noise (New York: Academic)) on the energy mean. We estimate the receiver operating characteristic (ROC, from the same book) of this statistic for different levels of the signal-to-noise ratio in the specific case of a simulated noise having the spectral density expected for Virgo, using test signals taken from a library of possible waveforms emitted during the collapse of the core of type II supernovae
The Inverse System Method Applied to the Derivation of Power System Non—linear Control Laws
Institute of Scientific and Technical Information of China (English)
DonghaiLI; XuezhiJIANG; 等
1997-01-01
The differential geometric method has been applied to a series of power system non-linear control problems effectively.However a set of differential equations must be solved for obtaining the required diffeomorphic transformation.Therefore the derivation of control laws is very complicated.In fact because of the specificity of power system models the required diffeomorphic transformation may be obtained directly,so it is unnecessary to solve a set of differential equations.In addition inverse system method is equivalent to differential geometric method in reality and not limited to affine nonlinear systems,Its physical meaning is able to be viewed directly and its deduction needs only algebraic operation and derivation,so control laws can be obtained easily and the application to engineering is very convenient.Authors of this paper take steam valving control of power system as a typical case to be studied.It is demonstrated that the control law deduced by inverse system method is just the same as one by differential geometric method.The conclusion will simplify the control law derivations of steam valving,excitation,converter and static var compensator by differential geometric method and may be suited to similar control problems in other areas.
The study on the non-linear soil structure interaction for nuclear power plants
International Nuclear Information System (INIS)
Tetsuya Hagiwara; Yoshio Kitada
2005-01-01
1. Introduction: JNES is planning a new project to study non-linear soil-structure interaction (SSI) effect under large earthquake ground motions equivalent to and/or over a design earthquake ground motion of S2(The extreme design earthquake). Concerning the SSI test, it is pointed out that handling of the scale effect of the specimen together with the surrounding soil on the earthquake response evaluation of the actual structure is essential issue for the scaled model test. Thus, for the test, the largest specimen possible and the biggest input motion possible are necessary. Taking into account the above issues, new test methodology, which utilizes artificial earthquake ground motion, is considered desirable if it can be performed at a realistic cost. Under this motivation, we have studied the test methodology which applying blasting power as for a big earthquake ground motion. The information from a coal mine company in the U.S.A. indicates that the works performed in the surface coal mine to blast a rock covering a coal layer generates a big artificial ground motion, which is similar to earthquake ground motion. Application of this artificial earthquake ground motion for the SSI test is considered very promising because the blasting work is carried out periodically for mining coal so that we can apply artificial motions generated by the work if we construct a building model at a closed point to the blasting work area. The major purposes of the test will be to understand (a) basic earthquake response characteristics of a Nuclear Power Plant (NPP) reactor building when a large earthquake strikes the NPP site and (b) nonlinear characteristics of SSI phenomenon during a big earthquake. In the paper, we introduce the test method and basic characteristics of measured artificial ground motions generated by the blasting works on an actual site. 2. Conclusion: It was confirmed that the artificial ground motions generated by blasting works have enough acceleration level
Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies
Energy Technology Data Exchange (ETDEWEB)
Pinol, Lucas [Département de Physique, École Normale Supérieure, Paris (France); Cahn, Robert N. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); Hand, Nick [Department of Astronomy, University of California, Berkeley, California (United States); Seljak, Uroš; White, Martin, E-mail: lucas.pinol@ens.fr, E-mail: rncahn@lbl.gov, E-mail: nhand@berkeley.edu, E-mail: useljak@berkeley.edu, E-mail: mwhite@berkeley.edu [Department of Physics, University of California, Berkeley, California (United States)
2017-04-01
The Dark Energy Spectroscopic Instrument (DESI), a multiplexed fiber-fed spectrograph, is a Stage-IV ground-based dark energy experiment aiming to measure redshifts for 29 million Emission-Line Galaxies (ELG), 4 million Luminous Red Galaxies (LRG), and 2 million Quasi-Stellar Objects (QSO). The survey design includes a pattern of tiling on the sky, the locations of the fiber positioners in the focal plane of the telescope, and an observation strategy determined by a fiber assignment algorithm that optimizes the allocation of fibers to targets. This strategy allows a given region to be covered on average five times for a five-year survey, with a typical variation of about 1.5 about the mean, which imprints a spatially-dependent pattern on the galaxy clustering. We investigate the systematic effects of the fiber assignment coverage on the anisotropic galaxy clustering of ELGs and show that, in the absence of any corrections, it leads to discrepancies of order ten percent on large scales for the power spectrum multipoles. We introduce a method where objects in a random catalog are assigned a coverage, and the mean density is separately computed for each coverage factor. We show that this method reduces, but does not eliminate the effect. We next investigate the angular dependence of the contaminated signal, arguing that it is mostly localized to purely transverse modes. We demonstrate that the cleanest way to remove the contaminating signal is to perform an analysis of the anisotropic power spectrum P ( k ,μ) and remove the lowest μ bin, leaving μ > 0 modes accurate at the few-percent level. Here, μ is the cosine of the angle between the line-of-sight and the direction of k-vector . We also investigate two alternative definitions of the random catalog and show that they are comparable but less effective than the coverage randoms method.
Noise power spectrum of the fixed pattern noise in digital radiography detectors
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong Sik, E-mail: dskim@hufs.ac.kr [Department of Electronics Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 449-791 (Korea, Republic of); Kim, Eun [R& D Center, DRTECH Co., Gyeonggi-do 13558 (Korea, Republic of)
2016-06-15
Purpose: The fixed pattern noise in radiography image detectors is caused by various sources. Multiple readout circuits with gate drivers and charge amplifiers are used to efficiently acquire the pixel voltage signals. However, the multiple circuits are not identical and thus yield nonuniform system gains. Nonuniform sensitivities are also produced from local variations in the charge collection elements. Furthermore, in phosphor-based detectors, the optical scattering at the top surface of the columnar CsI growth, the grain boundaries, and the disorder structure causes spatial sensitivity variations. These nonuniform gains or sensitivities cause fixed pattern noise and degrade the detector performance, even though the noise problem can be partially alleviated by using gain correction techniques. Hence, in order to develop good detectors, comparative analysis of the energy spectrum of the fixed pattern noise is important. Methods: In order to observe the energy spectrum of the fixed pattern noise, a normalized noise power spectrum (NNPS) of the fixed pattern noise is considered in this paper. Since the fixed pattern noise is mainly caused by the nonuniform gains, we call the spectrum the gain NNPS. We first asymptotically observe the gain NNPS and then formulate two relationships to calculate the gain NNPS based on a nonuniform-gain model. Since the gain NNPS values are quite low compared to the usual NNPS, measuring such a low NNPS value is difficult. By using the average of the uniform exposure images, a robust measuring method for the gain NNPS is proposed in this paper. Results: By using the proposed measuring method, the gain NNPS curves of several prototypes of general radiography and mammography detectors were measured to analyze their fixed pattern noise properties. We notice that a direct detector, which is based on the a-Se photoconductor, showed lower gain NNPS than the indirect-detector case, which is based on the CsI scintillator. By comparing the gain
The Power Spectrum of the Milky Way: Velocity Fluctuations in the Galactic Disk
Bovy, Jo; Bird, Jonathan C.; García Pérez, Ana E.; Majewski, Steven R.; Nidever, David L.; Zasowski, Gail
2015-02-01
We investigate the kinematics of stars in the mid-plane of the Milky Way (MW) on scales between 25 pc and 10 kpc with data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the Radial Velocity Experiment (RAVE), and the Geneva-Copenhagen survey (GCS). Using red-clump (RC) stars in APOGEE, we determine the large-scale line-of-sight velocity field out to 5 kpc from the Sun in (0.75 kpc)2 bins. The solar motion V ⊙ - c with respect to the circular velocity Vc is the largest contribution to the power on large scales after subtracting an axisymmetric rotation field; we determine the solar motion by minimizing the large-scale power to be V ⊙ - c = 24 ± 1 (ran.) ± 2 (syst. [Vc ]) ± 5 (syst.[large-scale]) km s-1, where the systematic uncertainty is due to (1) a conservative 20 km s-1 uncertainty in Vc and (2) the estimated power on unobserved larger scales. Combining the APOGEE peculiar-velocity field with RC stars in RAVE out to 2 kpc from the Sun and with local GCS stars, we determine the power spectrum of residual velocity fluctuations in the MW's disk on scales between 0.2 kpc-1 plane of the Galactic disk near the Sun. Streaming motions ≈10 km s-1 on >~ 3 kpc scales in the MW are in good agreement with observations of external galaxies and directly explain why local determinations of the solar motion are inconsistent with global measurements.
Kilbane, J.; Polzin, K. A.
2014-01-01
An annular linear induction pump (ALIP) that could be used for circulating liquid-metal coolant in a fission surface power reactor system is modeled in the present work using the computational COMSOL Multiphysics package. The pump is modeled using a two-dimensional, axisymmetric geometry and solved under conditions similar to those used during experimental pump testing. Real, nonlinear, temperature-dependent material properties can be incorporated into the model for both the electrically-conducting working fluid in the pump (NaK-78) and structural components of the pump. The intricate three-phase coil configuration of the pump is implemented in the model to produce an axially-traveling magnetic wave that is qualitatively similar to the measured magnetic wave. The model qualitatively captures the expected feature of a peak in efficiency as a function of flow rate.
Adaptive Digital Predistortion Schemes to Linearize RF Power Amplifiers with Memory Effects
Institute of Scientific and Technical Information of China (English)
ZHANG Peng; WU Si-liang; ZHANG Qin
2008-01-01
To compensate for nonlinear distortion introduced by RF power amplifiers (PAs) with memory effects, two correlated models, namely an extended memory polynomial (EMP) model and a memory lookup table (LUT) model, are proposed for predistorter design. Two adaptive digital predistortion (ADPD) schemes with indirect learning architecture are presented. One adopts the EMP model and the recursive least square (RLS) algorithm, and the other utilizes the memory LUT model and the least mean square (LMS) algorithm. Simulation results demonstrate that the EMP-based ADPD yields the best linearization performance in terms of suppressing spectral regrowth. It is also shown that the ADPD based on memory LUT makes optimum tradeoff between performance and computational complexity.
Study on the near-field non-linearity (SMILE) of high power diode laser arrays
Zhang, Hongyou; Jia, Yangtao; Li, Changxuan; Zah, Chung-en; Liu, Xingsheng
2018-02-01
High power laser diodes have been found a wide range of industrial, space, medical applications, characterized by high conversion efficiency, small size, light weight and a long lifetime. However, due to thermal induced stress, each emitter in a semiconductor laser bar or array is displaced along p-n junction, resulting of each emitter is not in a line, called Near-field Non-linearity. Near-field Non-linearity along laser bar (also known as "SMILE") determines the outcome of optical coupling and beam shaping [1]. The SMILE of a laser array is the main obstacle to obtain good optical coupling efficiency and beam shaping from a laser array. Larger SMILE value causes a larger divergence angle and a wider line after collimation and focusing, respectively. In this letter, we simulate two different package structures based on MCC (Micro Channel Cooler) with Indium and AuSn solders, including the distribution of normal stress and the SMILE value. According to the theoretical results, we found the distribution of normal stress on laser bar shows the largest in the middle and drops rapidly near both ends. At last, we did another experiment to prove that the SMILE value of a laser bar was mainly affected by the die bonding process, rather than the operating condition.
New 21 cm Power Spectrum Upper Limits From PAPER II: Constraints on IGM Properties at z = 7.7
Pober, Jonathan; Ali, Zaki; Parsons, Aaron; Paper Team
2015-01-01
Using a simulation-based framework, we interpret the power spectrum measurements from PAPER of Ali et al. in the context of IGM physics at z = 7.7. A cold IGM will result in strong 21 cm absorption relative to the CMB and leads to a 21 cm fluctuation power spectrum that can exceed 3000 mK^2. The new PAPER measurements allow us to rule out extreme cold IGM models, placing a lower limit on the physical temperature of the IGM. We also compare this limit with a calculation for the predicted heating from the currently observed galaxy population at z = 8.
Energy Technology Data Exchange (ETDEWEB)
Timmons, Nicholas; Cooray, Asantha; Feng, Chang [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Keating, Brian [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States)
2017-11-01
We measure the cosmic microwave background (CMB) skewness power spectrum in Planck , using frequency maps of the HFI instrument and the Sunyaev–Zel’dovich (SZ) component map. The two-to-one skewness power spectrum measures the cross-correlation between CMB lensing and the thermal SZ effect. We also directly measure the same cross-correlation using the Planck CMB lensing map and the SZ map and compare it to the cross-correlation derived from the skewness power spectrum. We model fit the SZ power spectrum and CMB lensing–SZ cross-power spectrum via the skewness power spectrum to constrain the gas pressure profile of dark matter halos. The gas pressure profile is compared to existing measurements in the literature including a direct estimate based on the stacking of SZ clusters in Planck .
Directory of Open Access Journals (Sweden)
Baudais Jean-Yves
2007-01-01
Full Text Available Bit-loading techniques based on orthogonal frequency division mutiplexing (OFDM are frequently used over wireline channels. In the power line context, channel state information can reasonably be obtained at both transmitter and receiver sides, and adaptive loading can advantageously be carried out. In this paper, we propose to apply loading principles to an spread spectrum OFDM (SS-OFDM waveform which is a multicarrier system using 2D spreading in the time and frequency domains. The presented algorithm handles the subcarriers, spreading codes, bits and energies assignment in order to maximize the data rate and the range of the communication system. The optimization is realized at a target symbol error rate and under spectral mask constraint as usually imposed. The analytical study shows that the merging principle realized by the spreading code improves the rate and the range of the discrete multitone (DMT system in single and multiuser contexts. Simulations have been run over measured power line communication (PLC channel responses and highlight that the proposed system is all the more interesting than the received signal-to-noise ratio (SNR is low.
Baudais, Jean-Yves; Crussière, Matthieu
2007-12-01
Bit-loading techniques based on orthogonal frequency division mutiplexing (OFDM) are frequently used over wireline channels. In the power line context, channel state information can reasonably be obtained at both transmitter and receiver sides, and adaptive loading can advantageously be carried out. In this paper, we propose to apply loading principles to an spread spectrum OFDM (SS-OFDM) waveform which is a multicarrier system using 2D spreading in the time and frequency domains. The presented algorithm handles the subcarriers, spreading codes, bits and energies assignment in order to maximize the data rate and the range of the communication system. The optimization is realized at a target symbol error rate and under spectral mask constraint as usually imposed. The analytical study shows that the merging principle realized by the spreading code improves the rate and the range of the discrete multitone (DMT) system in single and multiuser contexts. Simulations have been run over measured power line communication (PLC) channel responses and highlight that the proposed system is all the more interesting than the received signal-to-noise ratio (SNR) is low.
Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads
Energy Technology Data Exchange (ETDEWEB)
Olama, Mohammed M [ORNL; Sharma, Isha [ORNL; Kuruganti, Teja [ORNL; Fugate, David L [ORNL
2017-01-01
In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis of building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.
Galaxy power-spectrum responses and redshift-space super-sample effect
Li, Yin; Schmittfull, Marcel; Seljak, Uroš
2018-02-01
As a major source of cosmological information, galaxy clustering is susceptible to long-wavelength density and tidal fluctuations. These long modes modulate the growth and expansion rate of local structures, shifting them in both amplitude and scale. These effects are often named the growth and dilation effects, respectively. In particular the dilation shifts the baryon acoustic oscillation (BAO) peak and breaks the assumption of the Alcock-Paczynski (AP) test. This cannot be removed with reconstruction techniques because the effect originates from long modes outside the survey. In redshift space, the long modes generate a large-scale radial peculiar velocity that affects the redshift-space distortion (RSD) signal. We compute the redshift-space response functions of the galaxy power spectrum to long density and tidal modes at leading order in perturbation theory, including both the growth and dilation terms. We validate these response functions against measurements from simulated galaxy mock catalogs. As one application, long density and tidal modes beyond the scale of a survey correlate various observables leading to an excess error known as the super-sample covariance, and thus weaken their constraining power. We quantify the super-sample effect on BAO, AP, and RSD measurements, and study its impact on current and future surveys.
Tansella, Vittorio; Bonvin, Camille; Durrer, Ruth; Ghosh, Basundhara; Sellentin, Elena
2018-03-01
We derive an exact expression for the correlation function in redshift shells including all the relativistic contributions. This expression, which does not rely on the distant-observer or flat-sky approximation, is valid at all scales and includes both local relativistic corrections and integrated contributions, like gravitational lensing. We present two methods to calculate this correlation function, one which makes use of the angular power spectrum Cl(z1,z2) and a second method which evades the costly calculations of the angular power spectra. The correlation function is then used to define the power spectrum as its Fourier transform. In this work theoretical aspects of this procedure are presented, together with quantitative examples. In particular, we show that gravitational lensing modifies the multipoles of the correlation function and of the power spectrum by a few percent at redshift z=1 and by up to 30% and more at z=2. We also point out that large-scale relativistic effects and wide-angle corrections generate contributions of the same order of magnitude and have consequently to be treated in conjunction. These corrections are particularly important at small redshift, z=0.1, where they can reach 10%. This means in particular that a flat-sky treatment of relativistic effects, using for example the power spectrum, is not consistent.
Kenyon, Lisa K; Farris, John P; Aldrich, Naomi J; Rhodes, Samhita
2017-08-30
The purposes of this exploratory project were: (1) to evaluate the impact of power mobility training with a child who has multiple, severe impairments and (2) to determine if the child's spectrum of electroencephalography (EEG) activity changed during power mobility training. A single-subject A-B-A-B research design was conducted with a four-week duration for each phase. Two target behaviours were explored: (1) mastery motivation assessed via the dimensions of mastery questionnaire (DMQ) and (2) EEG data collected under various conditions. Power mobility skills were also assessed. The participant was a three-year, two-month-old girl with spastic quadriplegic cerebral palsy, gross motor function classification system level V. Each target behaviour was measured weekly. During intervention phases, power mobility training was provided. Improvements were noted in subscale scores of the DMQ. Short-term and long-term EEG changes were also noted. Improvements were noted in power mobility skills. The participant in this exploratory project demonstrated improvements in power mobility skill and function. EEG data collection procedures and variability in an individual's EEG activity make it difficult to determine if the participant's spectrum of EEG activity actually changed in response to power mobility training. Additional studies are needed to investigate the impact of power mobility training on the spectrum of EEG activity in children who have multiple, severe impairments. Implications for Rehabilitation Power mobility training appeared to be beneficial for a child with multiple, severe impairments though the child may never become an independent, community-based power wheelchair user. Electroencephalography may be a valuable addition to the study of power mobility use in children with multiple, severe impairments. Power mobility training appeared to impact mastery motivation (the internal drive to solve complex problems and master new skills) in a child who has multiple
Investigation of pile foundations of nuclear power plants with help of non linear analyses
International Nuclear Information System (INIS)
Diaz, B.E.; Schulz, M.; Costa, E.; Vaz, L.E.
1984-01-01
A few important 1300 MW PWR nuclear power plants have been built over pile foundations. The design requirements of Nuclear Power Plants prescribe accurate investigation of the as built conditions of the foundation. This study must take into account the actual concrete strength existent among and along the pile shafts of the foundation. In order to simulate the structural response of the foundation up to the failure, a non linear analysis must be performed. In this paper the required computer analysis procedures will be described. It can be verified that the redistribution of the internal forces in this highly hyperstatic soil-structure system can be of two types. The total applied forces over the foundation are redistributed among the piles and for each pile itself a local redistribution of forces takes place along the pile shaft. This type of analysis allows an accurate investigation of the actual safety margin existent in the pile foundation, based on the actual as built conditions of the construction. (Author) [pt
7.5 MeV High Average Power Linear Accelerator System for Food Irradiation Applications
International Nuclear Information System (INIS)
Eichenberger, Carl; Palmer, Dennis; Wong, Sik-Lam; Robison, Greg; Miller, Bruce; Shimer, Daniel
2005-09-01
In December 2004 the US Food and Drug Administration (FDA) approved the use of 7.5 MeV X-rays for irradiation of food products. The increased efficiency for treatment at 7.5 MeV (versus the previous maximum allowable X-ray energy of 5 MeV) will have a significant impact on processing rates and, therefore, reduce the per-package cost of irradiation using X-rays. Titan Pulse Sciences Division is developing a new food irradiation system based on this ruling. The irradiation system incorporates a 7.5 MeV electron linear accelerator (linac) that is capable of 100 kW average power. A tantalum converter is positioned close to the exit window of the scan horn. The linac is an RF standing waveguide structure based on a 5 MeV accelerator that is used for X-ray processing of food products. The linac is powered by a 1300 MHz (L-Band) klystron tube. The electrical drive for the klystron is a solid state modulator that uses inductive energy store and solid-state opening switches. The system is designed to operate 7000 hours per year. Keywords: Rf Accelerator, Solid state modulator, X-ray processing
A multiple objective mixed integer linear programming model for power generation expansion planning
Energy Technology Data Exchange (ETDEWEB)
Antunes, C. Henggeler; Martins, A. Gomes [INESC-Coimbra, Coimbra (Portugal); Universidade de Coimbra, Dept. de Engenharia Electrotecnica, Coimbra (Portugal); Brito, Isabel Sofia [Instituto Politecnico de Beja, Escola Superior de Tecnologia e Gestao, Beja (Portugal)
2004-03-01
Power generation expansion planning inherently involves multiple, conflicting and incommensurate objectives. Therefore, mathematical models become more realistic if distinct evaluation aspects, such as cost and environmental concerns, are explicitly considered as objective functions rather than being encompassed by a single economic indicator. With the aid of multiple objective models, decision makers may grasp the conflicting nature and the trade-offs among the different objectives in order to select satisfactory compromise solutions. This paper presents a multiple objective mixed integer linear programming model for power generation expansion planning that allows the consideration of modular expansion capacity values of supply-side options. This characteristic of the model avoids the well-known problem associated with continuous capacity values that usually have to be discretized in a post-processing phase without feedback on the nature and importance of the changes in the attributes of the obtained solutions. Demand-side management (DSM) is also considered an option in the planning process, assuming there is a sufficiently large portion of the market under franchise conditions. As DSM full costs are accounted in the model, including lost revenues, it is possible to perform an evaluation of the rate impact in order to further inform the decision process (Author)
Korzeniewski, Bernard; Zoladz, Jerzy A
2003-08-01
At low power output exercise (below lactate threshold), the oxygen uptake increases linearly with power output, but at high power output exercise (above lactate threshold) some additional oxygen consumption causes a non-linearity in the overall VO(2) (oxygen uptake rate)-power output relationship. The functional significance of this phenomenon for human exercise tolerance is very important, but the mechanisms underlying it remain unknown. In the present work, a computer model of oxidative phosphorylation in intact skeletal muscle developed previously is used to examine the background of this relationship in different modes of exercise. Our simulations demonstrate that the non-linearity in the VO(2)-power output relationship and the difference in the magnitude of this non-linearity between incremental exercise mode and square-wave exercise mode (constant power output exercise) can be generated by introducing into the model some hypothetical factor F (group of associated factors) that accumulate(s) in time during exercise. The performed computer simulations, based on this assumption, give proper time courses of changes in VO(2) and [PCr] after an onset of work of different intensities, including the slow component in VO(2), well matching the experimental results. Moreover, if it is assumed that the exercise terminates because of fatigue when the amount/intensity of F exceed some threshold value, the model allows the generation of a proper shape of the well-known power-duration curve. This fact suggests that the phenomenon of the non-linearity of the VO(2)-power output relationship and the magnitude of this non-linearity in different modes of exercise is determined by some factor(s) responsible for muscle fatigue.
Power spectrum of electrical discharges seen on Earth and at Saturn
International Nuclear Information System (INIS)
Warwick, J.W.
1989-01-01
The author presents a method for deriving the radio spectrum of electrical discharges from the properties of the time series of charges crossing the discharge gap. This result is applied to the observed spectra of both terrestrial lightning and Saturn electrical discharge(s) (SED). SED occurrence and power density are shown to have subtle, yet important, differences from these observables as they have been described in the last 5 years. It is demonstrated that throughout the episode of Voyager 1's (V1) closest approach to Saturn, SED probably occurred continuously in frequency upward at least from the upper limit of Saturn kilometric radiation at about 800 kHz. This is so despite the fact that in the dynamic spectra a strip in time and frequency in which SED do not occur extends in frequency from 1.3 MHz up to the oft-discussed lower limit of SED in the leading edge of the episode of closest approach. The greater power in SED that occurred after V1 closest approach is emphasized: it is shown to be consistent with the lower frequency of the maximum in their power spectra. The variable gap length factor is also invoked to explain the variable frequency cutoff in the range 5-15 MHz of the episodes before closest approach. The SED source moved along a single arc defining both preencounter and postencounter events. The discharge gap lengths were a continuous function of position along this arc, with the shortest gaps lying about 5 degree west (as seen from the spacecraft) of the noon meridian of Saturn and the longest gaps lying on the nightside of the planet
Menzel, Claudia; Hayn-Leichsenring, Gregor U; Langner, Oliver; Wiese, Holger; Redies, Christoph
2015-01-01
We investigated whether low-level processed image properties that are shared by natural scenes and artworks - but not veridical face photographs - affect the perception of facial attractiveness and age. Specifically, we considered the slope of the radially averaged Fourier power spectrum in a log-log plot. This slope is a measure of the distribution of special frequency power in an image. Images of natural scenes and artworks possess - compared to face images - a relatively shallow slope (i.e., increased high spatial frequency power). Since aesthetic perception might be based on the efficient processing of images with natural scene statistics, we assumed that the perception of facial attractiveness might also be affected by these properties. We calculated Fourier slope and other beauty-associated measurements in face images and correlated them with ratings of attractiveness and age of the depicted persons (Study 1). We found that Fourier slope - in contrast to the other tested image properties - did not predict attractiveness ratings when we controlled for age. In Study 2A, we overlaid face images with random-phase patterns with different statistics. Patterns with a slope similar to those in natural scenes and artworks resulted in lower attractiveness and higher age ratings. In Studies 2B and 2C, we directly manipulated the Fourier slope of face images and found that images with shallower slopes were rated as more attractive. Additionally, attractiveness of unaltered faces was affected by the Fourier slope of a random-phase background (Study 3). Faces in front of backgrounds with statistics similar to natural scenes and faces were rated as more attractive. We conclude that facial attractiveness ratings are affected by specific image properties. An explanation might be the efficient coding hypothesis.
International Nuclear Information System (INIS)
Al-Muhawesh, Tareq A.; Qamber, Isa S.
2008-01-01
A current trend in electric power industries is the deregulation around the world. One of the questions arise during any deregulation process is: where will be the future generation expansion? In the present paper, the study is concentrated on the wheeling computational method as a part of mega watt (MW) linear programming-based optimal power flow (LP-based OPF) method. To observe the effects of power wheeling on the power system operations, the paper uses linear interactive and discrete optimizer (LINDO) optimizer software as a powerful tool for solving linear programming problems to evaluate the influence of the power wheeling. As well, the paper uses the optimization tool to solve the economic generation dispatch and transmission management problems. The transmission line flow was taken in consideration with some constraints discussed in this paper. The complete linear model of the MW LP-based OPF, which is used to know the future generation potential areas in any utility is proposed. The paper also explains the available economic load dispatch (ELD) as the basic optimization tool to dispatch the power system. It can be concluded in the present study that accuracy is expensive in terms of money and time and in the competitive market enough accuracy is needed without paying much
Peters, Aaron; Brown, Michael L.; Kay, Scott T.; Barnes, David J.
2018-03-01
We use a combination of full hydrodynamic and dark matter only simulations to investigate the effect that supercluster environments and baryonic physics have on the matter power spectrum, by re-simulating a sample of supercluster sub-volumes. On large scales we find that the matter power spectrum measured from our supercluster sample has at least twice as much power as that measured from our random sample. Our investigation of the effect of baryonic physics on the matter power spectrum is found to be in agreement with previous studies and is weaker than the selection effect over the majority of scales. In addition, we investigate the effect of targeting a cosmologically non-representative, supercluster region of the sky on the weak lensing shear power spectrum. We do this by generating shear and convergence maps using a line-of-sight integration technique, which intercepts our random and supercluster sub-volumes. We find the convergence power spectrum measured from our supercluster sample has a larger amplitude than that measured from the random sample at all scales. We frame our results within the context of the Super-CLuster Assisted Shear Survey (Super-CLASS), which aims to measure the cosmic shear signal in the radio band by targeting a region of the sky that contains five Abell clusters. Assuming the Super-CLASS survey will have a source density of 1.5 galaxies arcmin-2, we forecast a detection significance of 2.7^{+1.5}_{-1.2}, which indicates that in the absence of systematics the Super-CLASS project could make a cosmic shear detection with radio data alone.
Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts
Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.
2016-05-01
Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,I of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,I-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,I-α anti-correlation can hardly be reconciled with the predicted Ep,I ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,I are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,I. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc
Estimating local noise power spectrum from a few FBP-reconstructed CT scans
Energy Technology Data Exchange (ETDEWEB)
Zeng, Rongping, E-mail: rongping.zeng@fda.hhs.gov; Gavrielides, Marios A.; Petrick, Nicholas; Sahiner, Berkman; Li, Qin; Myers, Kyle J. [Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, CDRH, FDA, Silver Spring, Maryland 20993 (United States)
2016-01-15
Purpose: Traditional ways to estimate 2D CT noise power spectrum (NPS) involve an ensemble average of the power spectrums of many noisy scans. When only a few scans are available, regions of interest are often extracted from different locations to obtain sufficient samples to estimate the NPS. Using image samples from different locations ignores the nonstationarity of CT noise and thus cannot accurately characterize its local properties. The purpose of this work is to develop a method to estimate local NPS using only a few fan-beam CT scans. Methods: As a result of FBP reconstruction, the CT NPS has the same radial profile shape for all projection angles, with the magnitude varying with the noise level in the raw data measurement. This allows a 2D CT NPS to be factored into products of a 1D angular and a 1D radial function in polar coordinates. The polar separability of CT NPS greatly reduces the data requirement for estimating the NPS. The authors use this property and derive a radial NPS estimation method: in brief, the radial profile shape is estimated from a traditional NPS based on image samples extracted at multiple locations. The amplitudes are estimated by fitting the traditional local NPS to the estimated radial profile shape. The estimated radial profile shape and amplitudes are then combined to form a final estimate of the local NPS. We evaluate the accuracy of the radial NPS method and compared it to traditional NPS methods in terms of normalized mean squared error (NMSE) and signal detectability index. Results: For both simulated and real CT data sets, the local NPS estimated with no more than six scans using the radial NPS method was very close to the reference NPS, according to the metrics of NMSE and detectability index. Even with only two scans, the radial NPS method was able to achieve a fairly good accuracy. Compared to those estimated using traditional NPS methods, the accuracy improvement was substantial when a few scans were available
Wiersma, R. P. C.; Ciardi, B.; Thomas, R. M.; Harker, G. J. A.; Zaroubi, S.; Bernardi, G.; Brentjens, M.; de Bruyn, A. G.; Daiboo, S.; Jelic, V.; Kazemi, S.; Koopmans, L. V. E.; Labropoulos, P.; Martinez, O.; Offringa, A.; Pandey, V. N.; Schaye, J.; Veligatla, V.; Vedantham, H.; Yatawatta, S.; Mellema, G.
2013-01-01
Using a combination of N-body simulations, semi-analytic models and radiative transfer calculations, we have estimated the theoretical cross-power spectrum between galaxies and the 21 cm emission from neutral hydrogen during the epoch of reionization. In accordance with previous studies, we find
Yang, Yuli; Aï ssa, Sonia
2012-01-01
used, provides an interference-tolerable zone. Based on this gap, a secondary user (SU) has an increased opportunity to access the licensed spectrum and to determine the transmit power it should use to keep the PU's quality-of-service (QoS) unaffected
Polzin, K. A.; Pearson, J. B.; Webster, K.; Godfoy, T. J.; Bossard, J. A.
2013-01-01
Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 • Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. • Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. • Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. • Generate the key nonnuclear products to allow Agency
2017-12-08
STATISTICAL LINEAR TIME-VARYING SYSTEM MODEL OF HIGH GRAZING ANGLE SEA CLUTTER FOR COMPUTING INTERFERENCE POWER 1. INTRODUCTION Statistical linear time...beam. We can approximate one of the sinc factors using the Dirichlet kernel to facilitate computation of the integral in (6) as follows: ∣∣∣∣sinc(WB...plotted in Figure 4. The resultant autocorrelation can then be found by substituting (18) into (28). The Python code used to generate Figures 1-4 is found
Nadeem, Qurrat-Ul-Ain
2015-05-07
Previous studies have confirmed the adverse impact of fading correlation on the mutual information (MI) of two-dimensional (2D) multiple-input multiple-output (MIMO) systems. More recently, the trend is to enhance the system performance by exploiting the channel’s degrees of freedom in the elevation, which necessitates the derivation and characterization of three-dimensional (3D) channels in the presence of spatial correlation. In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for 3D MIMO channels. This novel SCF is developed for a uniform linear array of antennas with nonisotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. The resulting expression depends on the underlying arbitrary angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. The developed SCF determines the covariance matrices at the transmitter and the receiver that form the Kronecker channel model. In order to quantify the effects of correlation on the system performance, the information-theoretic deterministic equivalents of the MI for the Kronecker model are utilized in both mono-user and multi-user cases. Numerical results validate the proposed analytical expressions and elucidate the dependence of the system performance on azimuth and elevation angular spreads and antenna patterns. Some useful insights into the behaviour of MI as a function of downtilt angles are provided. The derived model will help evaluate the performance of correlated 3D MIMO channels in the future.
Neural Spike-Train Analyses of the Speech-Based Envelope Power Spectrum Model
Rallapalli, Varsha H.
2016-01-01
Diagnosing and treating hearing impairment is challenging because people with similar degrees of sensorineural hearing loss (SNHL) often have different speech-recognition abilities. The speech-based envelope power spectrum model (sEPSM) has demonstrated that the signal-to-noise ratio (SNRENV) from a modulation filter bank provides a robust speech-intelligibility measure across a wider range of degraded conditions than many long-standing models. In the sEPSM, noise (N) is assumed to: (a) reduce S + N envelope power by filling in dips within clean speech (S) and (b) introduce an envelope noise floor from intrinsic fluctuations in the noise itself. While the promise of SNRENV has been demonstrated for normal-hearing listeners, it has not been thoroughly extended to hearing-impaired listeners because of limited physiological knowledge of how SNHL affects speech-in-noise envelope coding relative to noise alone. Here, envelope coding to speech-in-noise stimuli was quantified from auditory-nerve model spike trains using shuffled correlograms, which were analyzed in the modulation-frequency domain to compute modulation-band estimates of neural SNRENV. Preliminary spike-train analyses show strong similarities to the sEPSM, demonstrating feasibility of neural SNRENV computations. Results suggest that individual differences can occur based on differential degrees of outer- and inner-hair-cell dysfunction in listeners currently diagnosed into the single audiological SNHL category. The predicted acoustic-SNR dependence in individual differences suggests that the SNR-dependent rate of susceptibility could be an important metric in diagnosing individual differences. Future measurements of the neural SNRENV in animal studies with various forms of SNHL will provide valuable insight for understanding individual differences in speech-in-noise intelligibility.
FOREGROUND CONTAMINATION IN INTERFEROMETRIC MEASUREMENTS OF THE REDSHIFTED 21 cm POWER SPECTRUM
International Nuclear Information System (INIS)
Bowman, Judd D.; Morales, Miguel F.; Hewitt, Jacqueline N.
2009-01-01
Subtraction of astrophysical foreground contamination from 'dirty' sky maps produced by simulated measurements of the Murchison Widefield Array (MWA) has been performed by fitting a third-order polynomial along the spectral dimension of each pixel in the data cubes. The simulations are the first to include the unavoidable instrumental effects of the frequency-dependent primary antenna beams and synthesized array beams. They recover the one-dimensional spherically binned input redshifted 21 cm power spectrum within ∼1% over the scales probed most sensitively by the MWA (0.01 ∼ -1 ) and demonstrate that realistic instrumental effects will not mask the epoch of reionization signal. We find that the weighting function used to produce the dirty sky maps from the gridded visibility measurements is important to the success of the technique. Uniform weighting of the visibility measurements produces the best results, whereas natural weighting significantly worsens the foreground subtraction by coupling structure in the density of the visibility measurements to spectral structure in the dirty sky map data cube. The extremely dense uv-coverage of the MWA was found to be advantageous for this technique and produced very good results on scales corresponding to |u| ∼< 500λ in the uv-plane without any selective editing of the uv-coverage.
Directory of Open Access Journals (Sweden)
Cheng-Wei Fei
2014-01-01
Full Text Available To improve the diagnosis capacity of rotor vibration fault in stochastic process, an effective fault diagnosis method (named Process Power Spectrum Entropy (PPSE and Support Vector Machine (SVM (PPSE-SVM, for short method was proposed. The fault diagnosis model of PPSE-SVM was established by fusing PPSE method and SVM theory. Based on the simulation experiment of rotor vibration fault, process data for four typical vibration faults (rotor imbalance, shaft misalignment, rotor-stator rubbing, and pedestal looseness were collected under multipoint (multiple channels and multispeed. By using PPSE method, the PPSE values of these data were extracted as fault feature vectors to establish the SVM model of rotor vibration fault diagnosis. From rotor vibration fault diagnosis, the results demonstrate that the proposed method possesses high precision, good learning ability, good generalization ability, and strong fault-tolerant ability (robustness in four aspects of distinguishing fault types, fault severity, fault location, and noise immunity of rotor stochastic vibration. This paper presents a novel method (PPSE-SVM for rotor vibration fault diagnosis and real-time vibration monitoring. The presented effort is promising to improve the fault diagnosis precision of rotating machinery like gas turbine.
The noise power spectrum in CT with direct fan beam reconstruction
International Nuclear Information System (INIS)
Baek, Jongduk; Pelc, Norbert J.
2010-01-01
The noise power spectrum (NPS) is a useful metric for understanding the noise content in images. To examine some unique properties of the NPS of fan beam CT, the authors derived an analytical expression for the NPS of fan beam CT and validated it with computer simulations. The nonstationary noise behavior of fan beam CT was examined by analyzing local regions and the entire field-of-view (FOV). This was performed for cases with uniform as well as nonuniform noise across the detector cells and across views. The simulated NPS from the entire FOV and local regions showed good agreement with the analytically derived NPS. The analysis shows that whereas the NPS of a large FOV in parallel beam CT (using a ramp filter) is proportional to frequency, the NPS with direct fan beam FBP reconstruction shows a high frequency roll off. Even in small regions, the fan beam NPS can show a sharp transition (discontinuity) at high frequencies. These effects are due to the variable magnification and therefore are more pronounced as the fan angle increases. For cases with nonuniform noise, the NPS can show the directional dependence and additional effects.
Power spectrum constraints from spectral distortions in the cosmic microwave background
Hu, Wayne; Scott, Douglas; Silk, Joseph
1994-01-01
Using recent experimental limits on chemical potential distortions from Cosmic Background Explorer (COBE) Far Infrared Astronomy Satellite (FIRAS), and the large lever-arm spanning the damping of sub-Jeans scale fluctuations to the COBE DMR fluctuations, we set a constraint on the slope of the primordial power spectrum n. It is possible to analytically calculate the contribution over the full range of scales and redshifts, correctly taking into account fluctuation growth and damping as well as thermalization processes. Assuming conservatively that mu is less than 1.76 x 10(exp -4), we find that the 95% upper limit on n is only weakly dependent on other cosmological parameters, e.g., n is less than 1.60 (h=0.5) and n is less than 1.63 (h=1.0) for Omega(sub 0) = 1, with marginally weaker constraints for Omega(sub 0) is less than 1 in a flat model with a cosmological constant.
Nonlinear power spectrum from resummed perturbation theory: a leap beyond the BAO scale
International Nuclear Information System (INIS)
Anselmi, Stefano; Pietroni, Massimo
2012-01-01
A new computational scheme for the nonlinear cosmological matter power spectrum (PS) is presented. Our method is based on evolution equations in time, which can be cast in a form extremely convenient for fast numerical evaluations. A nonlinear PS is obtained in a time comparable to that needed for a simple 1-loop computation, and the numerical implementation is very simple. Our results agree with N-body simulations at the percent level in the BAO range of scales, and at the few-percent level up to k ≅ 1 h/Mpc at z∼>0.5, thereby opening the possibility of applying this tool to scales interesting for weak lensing. We clarify the approximations inherent to this approach as well as its relations to previous ones, such as the Time Renormalization Group, and the multi-point propagator expansion. We discuss possible lines of improvements of the method and its intrinsic limitations by multi streaming at small scales and low redshifts
Reheating effects in the matter power spectrum and implications for substructure
International Nuclear Information System (INIS)
Erickcek, Adrienne L.; Sigurdson, Kris
2011-01-01
The thermal and expansion history of the Universe before big bang nucleosynthesis is unknown. We investigate the evolution of cosmological perturbations through the transition from an early matter era to radiation domination. We treat reheating as the perturbative decay of an oscillating scalar field into relativistic plasma and cold dark matter. After reheating, we find that subhorizon perturbations in the decay-produced dark matter density are significantly enhanced, while subhorizon radiation perturbations are instead suppressed. If dark matter originates in the radiation bath after reheating, this suppression may be the primary cutoff in the matter power spectrum. Conversely, for dark matter produced nonthermally from scalar decay, enhanced perturbations can drive structure formation during the cosmic dark ages and dramatically increase the abundance of compact substructures. For low reheat temperatures, we find that as much as 50% of all dark matter is in microhalos with M > or approx. 0.1M + at z≅100, compared to a fraction of ∼10 -10 in the standard case. In this scenario, ultradense substructures may constitute a large fraction of dark matter in galaxies today.
Power spectrum tomography of dark matter annihilation with local galaxy distribution
Energy Technology Data Exchange (ETDEWEB)
Ando, Shin' ichiro, E-mail: s.ando@uva.nl [GRAPPA Institute, University of Amsterdam, 1098 XH Amsterdam (Netherlands)
2014-10-01
Cross-correlating the gamma-ray background with local galaxy catalogs potentially gives stringent constraints on dark matter annihilation. We provide updated theoretical estimates of sensitivities to the annihilation cross section from gamma-ray data with Fermi telescope and 2MASS galaxy catalogs, by elaborating the galaxy power spectrum and astrophysical backgrounds, and adopting the Markov-Chain Monte Carlo simulations. In particular, we show that taking tomographic approach by dividing the galaxy catalogs into more than one redshift slice will improve the sensitivity by a factor of a few to several. If dark matter halos contain lots of bright substructures, yielding a large annihilation boost (e.g., a factor of ∼100 for galaxy-size halos), then one may be able to probe the canonical annihilation cross section for thermal production mechanism up to masses of ∼700 GeV. Even with modest substructure boost (e.g., a factor of ∼10 for galaxy-size halos), on the other hand, the sensitivities could still reach a factor of three larger than the canonical cross section for dark matter masses of tens to a few hundreds of GeV.
On the performance of the noise power spectrum from the gain-corrected radiography images.
Kim, Dong Sik; Lee, Eunae
2018-01-01
Fixed pattern noise due to nonuniform amplifier gains and scintillator sensitivity should be alleviated in radiography imaging to acquire low-noise x-ray images from detectors. Here, the noise property of the detector is usually evaluated observing the noise power spectrum (NPS). A gain-correction scheme, in which uniformly illuminated images are averaged to design a gain map, can be applied to alleviate the fixed pattern noise problem. The normalized NPS (NNPS) of the gain-corrected image decreases as the number of images for the average increases and converges to an infimum, which can be achieved if the fixed pattern noise is completely removed. If we know the NNPS infimum of the detector, then we can determine the performance of the gain-corrected images compared with the achievable lower bound. We first construct an image-formation model considering the nonuniform gain and then consider two measurement methods based on subtraction and division to estimate the NNPS infimum of the detector. In order to obtain a high-precision NNPS infimum estimate, we consider a time-averaging method. For several flat-panel radiography detectors, we constructed the NNPS infimum measurements and compared them with NNPS values of the gain-corrected images. We observed that the NNPS values of the gain-corrected images approached the NNPS infimum as the number of images for the average increased.
Directory of Open Access Journals (Sweden)
Shengze Zhu
2017-01-01
Full Text Available Hydroplaning is a driving phenomenon threating vehicle’s control stability and safety. It happens when tire rolls on wet pavement with high speed that hydrodynamic force uplifts the tire. Accurate numerical simulation to reveal the mechanism of hydroplaning and evaluate the function of relevant factors in this process is significant. In order to describe the friction behaviors of tire-pavement interaction, kinetic friction coefficient curve of tire rubber and asphalt pavement was obtained by combining pavement surface power spectrum and complex modulus of tread rubber through Persson’s friction theory. Finite element model of tire-fluid-pavement was established in ABAQUS, which was composed of a 225-40-R18 radial tire and three types of asphalt pavement covered with water film. Mechanical responses and physical behaviors of tire-pavement interaction were observed and compared with NASA equation to validate the applicability and accuracy of this model. Then contact force at tire-pavement interface and critical hydroplaning speed influenced by tire inflation pressure, water film thickness, and pavement types were investigated. The results show higher tire inflation pressure, thinner water film, and more abundant macrotexture enhancing hydroplaning speed. The results could be applied to predict hydroplaning speed on different asphalt pavement and improve pavement skid resistance design.
Constraining models of f(R) gravity with Planck and WiggleZ power spectrum data
International Nuclear Information System (INIS)
Dossett, Jason; Parkinson, David; Hu, Bin
2014-01-01
In order to explain cosmic acceleration without invoking ''dark'' physics, we consider f(R) modified gravity models, which replace the standard Einstein-Hilbert action in General Relativity with a higher derivative theory. We use data from the WiggleZ Dark Energy survey to probe the formation of structure on large scales which can place tight constraints on these models. We combine the large-scale structure data with measurements of the cosmic microwave background from the Planck surveyor. After parameterizing the modification of the action using the Compton wavelength parameter B 0 , we constrain this parameter using ISiTGR, assuming an initial non-informative log prior probability distribution of this cross-over scale. We find that the addition of the WiggleZ power spectrum provides the tightest constraints to date on B 0 by an order of magnitude, giving log 10 (B 0 ) < −4.07 at 95% confidence limit. Finally, we test whether the effect of adding the lensing amplitude A Lens and the sum of the neutrino mass ∑m ν is able to reconcile current tensions present in these parameters, but find f(R) gravity an inadequate explanation
A 900 MHz, 21 dBm CMOS linear power amplifier with 35% PAE for RFID readers
International Nuclear Information System (INIS)
Han Kefeng; Cao Shengguo; Tan Xi; Yan Na; Wang Junyu; Tang Zhangwen; Min Hao
2010-01-01
A two-stage differential linear power amplifier (PA) fabricated by 0.18 μm CMOS technology is presented. An output matching and harmonic termination network is exploited to enhance the output power, efficiency and harmonic performance. Measurements show that the designed PA reaches a saturated power of 21.1 dBm and the peak power added efficiency (PAE) is 35.4%, the power gain is 23.3 dB from a power supply of 1.8 V and the harmonics are well controlled. The total area with ESD protected PAD is 1.2 x 0.55 mm 2 . System measurements also show that this power amplifier meets the design specifications and can be applied for RFID reader. (semiconductor integrated circuits)
A 900 MHz, 21 dBm CMOS linear power amplifier with 35% PAE for RFID readers
Energy Technology Data Exchange (ETDEWEB)
Han Kefeng; Cao Shengguo; Tan Xi; Yan Na; Wang Junyu; Tang Zhangwen; Min Hao, E-mail: tanxi@fudan.edu.cn [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)
2010-12-15
A two-stage differential linear power amplifier (PA) fabricated by 0.18 {mu}m CMOS technology is presented. An output matching and harmonic termination network is exploited to enhance the output power, efficiency and harmonic performance. Measurements show that the designed PA reaches a saturated power of 21.1 dBm and the peak power added efficiency (PAE) is 35.4%, the power gain is 23.3 dB from a power supply of 1.8 V and the harmonics are well controlled. The total area with ESD protected PAD is 1.2 x 0.55 mm{sup 2}. System measurements also show that this power amplifier meets the design specifications and can be applied for RFID reader. (semiconductor integrated circuits)
The influence of methylphenidate on the power spectrum of ADHD children – an MEG study
Directory of Open Access Journals (Sweden)
Bauer Susanne
2005-07-01
Full Text Available Abstract Background The present study was dedicated to investigate the influence of Methylphenidate (MPH on cortical processing of children who were diagnosed with different subtypes of Attention Deficit Hyperactivity Disorder (ADHD. As all of the previous studies investigating power differences in different frequency bands have been using EEG, mostly with a relatively small number of electrodes our aim was to obtain new aspects using high density magnetoencephalography (MEG. Methods 35 children (6 female, 29 male participated in this study. Mean age was 11.7 years (± 1.92 years. 17 children were diagnosed of having an Attention-Deficit/Hyperactivity Disorder of the combined type (ADHDcom, DSM IV code 314.01; the other 18 were diagnosed for ADHD of the predominantly inattentive type (ADHDin, DSM IV code 314.0. We measured the MEG during a 5 minute resting period with a 148-channel magnetometer system (MAGNES™ 2500 WH, 4D Neuroimaging, San Diego, USA. Power values were averaged for 5 bands: Delta (D, 1.5–3.5 Hz, Theta (T, 3.5–7.5 Hz, Alpha (A, 7.5–12.5 Hz, Beta (B, 12.5–25 Hz and Global (GL, 1.5–25 Hz.. Additionally, attention was measured behaviourally using the D2 test of attention with and without medication. Results The global power of the frequency band from 1.5 to 25 Hz increased with MPH. Relative Theta was found to be higher in the left hemisphere after administration of MPH than before. A positive correlation was found between D2 test improvement and MPH-induced power changes in the Theta band over the left frontal region. A linear regression was computed and confirmed that the larger the improvement in D2 test performance, the larger the increase in Theta after MPH application. Conclusion Main effects induced by medication were found in frontal regions. Theta band activity increased over the left hemisphere after MPH application. This finding contradicts EEG results of several groups who found lower levels of Theta power
Analyzing power of AGATA triple clusters for gamma-ray linear polarization
Energy Technology Data Exchange (ETDEWEB)
Bizzeti, P.G.; Sona, P.; Melon, B.; Bizzeti-Sona, A.M.; Perego, A. [Universita di Firenze, Dipartimento di Fisica, Firenze (Italy); INFN, Firenze (Italy); Michelagnoli, C.; Lunardi, S.; Mengoni, D.; Recchia, F. [INFN, Padova (Italy); Universita di Padova, Dipartimento di Fisica, Padova (Italy); Bazzacco, D.; Farnea, E.; Menegazzo, R.; Ur, C.A. [INFN, Padova (Italy); De Angelis, G.; Gottardo, A.; Napoli, D.R.; Sahin, E.; Valiente-Dobon, J.J. [Laboratori Nazionali di Legnaro, INFN, Padova (Italy); Gadea, A. [University of Valencia, IFIC, CSIC, Valencia (Spain); Nannini, A. [INFN, Firenze (Italy)
2015-04-01
We have investigated the ability of AGATA triple clusters to measure the linear polarization of gamma rays, exploiting the azimuthal-angle dependence of the Compton scattering differential cross section. To this aim, partially polarized gamma rays have been produced by Coulomb excitation of the first excited state of {sup 104}Pd and {sup 108}Pd, which decay to the ground state by emission of gamma rays of 555.8 keV and 433.9 keV, respectively. Pulse-shape analysis and gamma-ray tracking techniques have been used to determine the position and time sequence of the interaction points inside the germanium crystals. Anisotropies in the detection efficiency have been taken into account using 661.6 keV gammas from a {sup 137}Cs radioactive source. We obtain an average analyzing power of 0.451(34) at 433.9 keV and 0.484(24) at 555.8 keV. (orig.)
International Nuclear Information System (INIS)
Bunyamin, Muhammad Afif; Yap, Keem Siah; Aziz, Nur Liyana Afiqah Abdul; Tiong, Sheih Kiong; Wong, Shen Yuong; Kamal, Md Fauzan
2013-01-01
This paper presents a new approach of gas emission estimation in power generation plant using a hybrid Genetic Algorithm (GA) and Linear Regression (LR) (denoted as GA-LR). The LR is one of the approaches that model the relationship between an output dependant variable, y, with one or more explanatory variables or inputs which denoted as x. It is able to estimate unknown model parameters from inputs data. On the other hand, GA is used to search for the optimal solution until specific criteria is met causing termination. These results include providing good solutions as compared to one optimal solution for complex problems. Thus, GA is widely used as feature selection. By combining the LR and GA (GA-LR), this new technique is able to select the most important input features as well as giving more accurate prediction by minimizing the prediction errors. This new technique is able to produce more consistent of gas emission estimation, which may help in reducing population to the environment. In this paper, the study's interest is focused on nitrous oxides (NOx) prediction. The results of the experiment are encouraging.
International Nuclear Information System (INIS)
Kim, Kyoung Won; Kim, Tae Kyoung; Han Joon Koo; Kim, Ah Young; Lee, Hyun Ju; Park, Seong Ho; Kim, Young Hoon; Choi, Byung Ihn
2000-01-01
Because US plays a key role in the initial evaluation of hepatic hemangiomas, knowledge of the entire spectrum of US appearances of these tumors is important. Most hemangiomas have a distinctive US appearance, and even with those with atypical appearances on conventional gray-scale US, specific diagnoses can be made using pulse-inversion harmonic US with contrast agents. In this essay, we review the spectrum of US appearances of hepatic hemangiomas on conventional gray-scale, power Doppler, and pulse-inversion harmonic US with contrast agents. (author)
International Nuclear Information System (INIS)
Batskikh, G.I.; Lupandin, O.S.; Murin, B.P.; Fedotov, A.P.
1991-01-01
The concept of continuous mode high-power linear proton accelerator with 1.5 GeV energy, 0.3 A current for the long half-life nuclides transmutation into the short ones (waste of atomic power plants (APP)) is proposed. The accelerator design main principles, scheme and parameters are presented. The accent is made on the accelerator efficiency, reliability and radiation purity. (author)
Directory of Open Access Journals (Sweden)
I Ketut Wijaya
2015-12-01
Full Text Available Usage Electric power is very easy to do, because the infrastructure for connecting already available and widely sold. Consumption electric power is not accompanied by the ability to recognize electric power. The average increase of electricity power in Bali in extreme weather reaches 10% in years 2014, so that Bali suffered power shortages and PLN as the manager of electric power to perform scheduling on of electric power usage. Scheduling is done because many people use electric power as the load of fan and Air Conditioner exceeding the previous time. Load of fan, air conditioning, and computers including non-linear loads which can add heat on the conductor of electricity. Non-linear load and hot weather can lead to heat on conductor so insulation damaged and cause electrical short circuit. Data of electric power obtained through questionnaires, surveys, measurement and retrieve data from various parties. Fires that occurred in 2014, namely 109 events, 44 is event caused by an electric short circuit (approximately 40%. Decrease power factors can cause losses of electricity and hot. Heat can cause and adds heat on the conductor electric. The analysis showed understanding electric power of the average is 27,700 with value between 20 to 40. So an understanding of the electrical power away from the understand so that many errors because of the act own. Installation tool ELCB very necessary but very necessary provide counseling of electricity to the community.
International Nuclear Information System (INIS)
Lee, Sang Guk; Lee, Sun Ki; Lee, Jun Shin; Sohn, Seok Man
2004-01-01
The purpose of this study is to estimate the availability of acoustic emission method to the internal leak of the valves at nuclear power plants. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. From the comparison of the background noise data with the experimental results as to relation between leak flow and acoustic signal, the minimum leak flow rates that can be detected by acoustic signal was suggested. When the background levels are higher than the acoustic signal, the method described below was considered that the analysis the remainder among the background noise frequency spectrum and the acoustic signal spectrum become a very useful leak detection method. A few experimental examples of the spectrum analysis that varied the background noise characteristic were given
International Nuclear Information System (INIS)
Yuan Yi; Lu Cheng-Biao; Li Xiao-Li
2015-01-01
Local field potential (LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation (FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch algorithm at the delta, theta, alpha, beta, and gamma frequency bands. The experimental results demonstrate that the LFP mean absolute power at different frequency bands increases as the ultrasound power increases. (paper)
The coyote universe extended: Precision emulation of the matter power spectrum
International Nuclear Information System (INIS)
Heitmann, Katrin; Kwan, Juliana; Habib, Salman; Lawrence, Earl; Higdon, David
2014-01-01
Modern sky surveys are returning precision measurements of cosmological statistics such as weak lensing shear correlations, the distribution of galaxies, and cluster abundance. To fully exploit these observations, theorists must provide predictions that are at least as accurate as the measurements, as well as robust estimates of systematic errors that are inherent to the modeling process. In the nonlinear regime of structure formation, this challenge can only be overcome by developing a large-scale, multi-physics simulation capability covering a range of cosmological models and astrophysical processes. As a first step to achieving this goal, we have recently developed a prediction scheme for the matter power spectrum (a so-called emulator), accurate at the 1% level out to k ∼ 1 Mpc –1 and z = 1 for wCDM cosmologies based on a set of high-accuracy N-body simulations. It is highly desirable to increase the range in both redshift and wavenumber and to extend the reach in cosmological parameter space. To make progress in this direction, while minimizing computational cost, we present a strategy that maximally reuses the original simulations. We demonstrate improvement over the original spatial dynamic range by an order of magnitude, reaching k ∼ 10 h Mpc –1 , a four-fold increase in redshift coverage, to z = 4, and now include the Hubble parameter as a new independent variable. To further the range in k and z, a new set of nested simulations run at modest cost is added to the original set. The extension in h is performed by including perturbation theory results within a multi-scale procedure for building the emulator. This economical methodology still gives excellent error control, ∼5% near the edges of the domain of applicability of the emulator. A public domain code for the new emulator is released as part of the work presented in this paper.
Non linear characterisation of optical components of a high power laser chain
International Nuclear Information System (INIS)
Santran, Stephane
2000-01-01
This work concerns the realisation of non linear properties measurement prototypes in glasses in the near infrared and in the visible range. The various devices are time resolved colinear pump probe experiments in which the non linear susceptibility is deduced by the probe beam intensity variations induced by the pump probe coupled in the material. The sensitivity of these experiments allows us to observe unexpected variations, greater than 30%, of several fused silica non linear indexes. As well, this allow us to analyse the origin of the promising oxide glasses non linearity for all optical applications and to understand an d measure non linear processes in the two photons photodiodes. Finally, an original structure for the non linear index measurement in non degenerated configuration by a probe pulse phase measurement approach with a Sagnac interferometer is demonstrated and analysed. (author) [fr
Liu, Xin
2015-10-30
In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.
Directory of Open Access Journals (Sweden)
Xin Liu
2015-10-01
Full Text Available In a cognitive sensor network (CSN, the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs becomes very large. In this paper, a novel wireless power transfer (WPT-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF energy of the primary node (PN to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.
International Nuclear Information System (INIS)
Liu Chunkui
1996-01-01
The method introduced is based on different energy of γ-ray emitted from radionuclide in the uranium-radium decay series in ore. The pulse counting rates of two spectra bands, i.e. N 1 (55∼193 keV) and N 2 (260∼1500 keV), are measured by portable type HYX-3 400-channel γ-ray spectrometer. On the other side, the uranium content (Q U ) is obtained by chemical analysis of channel sampling. Then the regression coefficients (b 0 , b 1 ,b 2 ) can be determined through dual linear regression by using Q U and N 1 , N 2 . The direct determination of uranium can be made with the regression equation Q U = b 0 + b 1 N 1 + b 2 N 2
Directory of Open Access Journals (Sweden)
Catur Apriono
2015-08-01
Full Text Available A terahertz system uses dielectric lens antennas for focusing and collimating beams of terahertz wave radiation. Linearly polarized terahertz wave radiation has been widely applied in the terahertz system. Therefore, an accurate method for analyzing the power flow density in the dielectric lens antenna irradiated with the linearly polarized terahertz wave radiation is important to design the terahertz systems. In optics, ray-tracing method has been used to calculate the power flow density by a number density of rays. In this study, we propose a method of ray-tracing combined with Fresnel’s transmission, including transmittance and polarization of the terahertz wave radiation to calculate power flow density in a Silicon lens antenna. We compare power flow density calculated by the proposed method with the regular ray-tracing method. When the Silicon lens antenna is irradiated with linearly polarized terahertz wave radiation, the proposed method calculates the power flow density more accurately than the regular ray-tracing.
Jin, Tao; Chen, Yiyang; Flesch, Rodolfo C. C.
2017-11-01
Harmonics pose a great threat to safe and economical operation of power grids. Therefore, it is critical to detect harmonic parameters accurately to design harmonic compensation equipment. The fast Fourier transform (FFT) is widely used for electrical popular power harmonics analysis. However, the barrier effect produced by the algorithm itself and spectrum leakage caused by asynchronous sampling often affects the harmonic analysis accuracy. This paper examines a new approach for harmonic analysis based on deducing the modifier formulas of frequency, phase angle, and amplitude, utilizing the Nuttall-Kaiser window double spectrum line interpolation method, which overcomes the shortcomings in traditional FFT harmonic calculations. The proposed approach is verified numerically and experimentally to be accurate and reliable.
Mauskopf, P D; De Bernardis, P; Bock, J J; Borrill, J; Boscaleri, A; Crill, B P; De Gasperis, G; De Troia, G; Farese, P; Ferreira, P G; Ganga, K; Giacometti, M; Hanany, S; Hristov, V V; Iacoangeli, A; Jaffe, A H; Lange, A E; Lee, A T; Masi, S; Melchiorri, A; Melchiorri, F; Miglio, L; Montroy, T; Netterfield, C B; Pascale, E; Piacentini, F; Richards, P L; Romeo, G; Ruhl, J E; Scannapieco, E S; Scaramuzzi, F; Stompor, R; Vittorio, N
2000-01-01
We describe a measurement of the angular power spectrum of anisotropies in the Cosmic Microwave Background (CMB) from 0.3 degrees to ~10 degrees from the North American test flight of the BOOMERANG experiment. BOOMERANG is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotropies on a Long Duration Balloon flight. During a 6-hour test flight of a prototype system in 1997, we mapped > 200 square degrees at high galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26 and 16.6 arcmin FWHM respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of ~1 degree with an amplitude ~70 uK.
International Nuclear Information System (INIS)
Mauskopf, P.D.; Ade, P.A.R.; Bock, J.J.; Borrill, J.; Boscaleri, A.; Crill, B.P.; Bernardis, P. de; DeGasperis, G.; De Troia, G.; Farese, P.; Ferreira, P.G.; Ganga, K.; Giacometti, M.; Hanany, S.; Hristov, V.V.; Iacoangeli, A.; Jaffe, A.H.; Lange, A.E.; Lee, A.T.; Masi, S.; Melchiorri, A.; Melchiorri, F.; Miglio, L.; Montroy, T.; Netterfield, C.B.; Pascale, E.; Piacentini, F.; Richards, P.L.; Romeo, G.; Ruhl, J.E.; Scannapieco, E.; Scaramuzzi, F.; Stompor, R.; Vittorio, N.
1999-01-01
We describe a measurement of the angular power spectrum of anisotrophies in the Cosmic Microwave Background (CMB) from 0.2 deg to approx. 10 deg. from the test flight of the BOOMERANG experiment. BOOMERANG is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotrophies on a Long Duration Balloon flight. During a 6-hour test flight of a prototype system in 1997, we mapped > 200 square degrees at high galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26 and 16.6 arcmin FWHM respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of approx. 1 deg. with an amplitude of approx. 70-muKcmb
DEFF Research Database (Denmark)
Aghanim, N.; Akrami, Y.; Ashdown, M.
2017-01-01
never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium τ, the baryon...... density ωb, the matter density ωm, the angular size of the sound horizon θ∗, the spectral index of the primordial power spectrum, ns, and Ase- 2τ (where As is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set...
A Measurement of the Angular Power Spectrum of the CMB from l = 100 to 400
Miller, A. D.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Nolta, M. R.; Page, L. A.; Puchalla, J.; Torbet, E.; Tran, H. T.
2000-05-01
We report on a measurement of the angular spectrum of the CMB between l 100 and l 400 made at 144 GHz from Cerro Toco in the Chilean altiplano. When the new data are combined with previous data at 30 and 40 GHz, taken with the same instrument observing the same section of sky, we find: 1) a rise in the angular spectrum to a maximum with δ Tl 85 μ K at l 200 and a fall at l>300, thereby localizing the peak near l 200; and 2) that the anisotropy at l 200 has the spectrum of the CMB. Cosmological implications are discussed.
What next-generation 21 cm power spectrum measurements can teach us about the epoch of reionization
International Nuclear Information System (INIS)
Pober, Jonathan C.; Morales, Miguel F.; Liu, Adrian; McQuinn, Matthew; Parsons, Aaron R.; Dillon, Joshua S.; Hewitt, Jacqueline N.; Tegmark, Max; Aguirre, James E.; Bowman, Judd D.; Jacobs, Daniel C.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Werthimer, Dan J.
2014-01-01
A number of experiments are currently working toward a measurement of the 21 cm signal from the epoch of reionization (EoR). Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by the next generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We focus primarily on an instrument modeled after the ∼0.1 km 2 collecting area Hydrogen Epoch of Reionization Array concept design and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described 'wedge' footprint in k space. Uncertainties in the reionization history are accounted for using a series of simulations that vary the ionizing efficiency and minimum virial temperature of the galaxies responsible for reionization, as well as the mean free path of ionizing photons through the intergalactic medium. Given various combinations of models, we consider the significance of the possible power spectrum detections, the ability to trace the power spectrum evolution versus redshift, the detectability of salient power spectrum features, and the achievable level of quantitative constraints on astrophysical parameters. Ultimately, we find that 0.1 km 2 of collecting area is enough to ensure a very high significance (≳ 30σ) detection of the reionization power spectrum in even the most pessimistic scenarios. This sensitivity should allow for meaningful constraints on the reionization history and astrophysical parameters, especially if foreground subtraction techniques can be improved and successfully implemented.
Dunn, H. J.
1981-01-01
A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.
Lee, Jeffrey S; Cleaver, Gerald B
2017-10-01
In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n) random key matrix for a Vernam cipher is established.
Das, Sudeep; Marriage, Tobias A.; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia A.; Bond, J. Richard; Brown, Ben;
2010-01-01
We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results dearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the ACDM cosmological model. At l > 3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8(sigma) level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.
KL Estimation of the Power Spectrum Parameters from the Angular Distribution of Galaxies in Early SDSS Data
Szalay, Alexander S.; Matsubara, Takahiko; Scranton, Ryan; Vogeley, Michael S.; Connolly, Andrew; Dodelson, Scott; Eisenstein, Daniel; Frieman, Joshua A.; Gunn, James E.; Hui, Lam; Johnston, David; Kent, Stephen M.; Kerscher, Martin; Loveday, Jon; Meiksin, Avery; Narayanan, Vijay; Nichol, Robert C.; O'Connell, Liam; Pope, Adrian; Scoccimarro, Roman; Sheth, Ravi K.; Stebbins, Albert; Strauss, Michael A.; Szapudi, Istvan; Tegmark, Max; Zehavi, Idit; Annis, James; Bahcall, Neta A.; Brinkmann, Jon; Csabai, Istvan; Fukugita, Masataka; Hennessy, Greg; Hogg, David W.; Ivezic, Zeljko; Knapp, Gillian R.; Kunszt, Peter Z.; Lamb, Don Q.; Lee, Brian C.; Lupton, Robert H.; Munn, Jeffrey R.; Peoples, John; Pier, Jeffrey R.; Rockosi, Constance; Schlegel, David; Stoughton, Christopher; Tucker, Douglas L.; Yanny, Brian; York, Donald G.; Szalay, Alexander S.; Jain, Bhuvnesh; Matsubara, Takahiko; Scranton, Ryan; Vogeley, Michael S.; Connolly, Andrew; Dodelson, Scott; Eisenstein, Daniel; Frieman, Joshua A.; Gunn, James E.; Hui, Lam; Johnston, David; Kent, Stephen; Kerscher, Martin; Loveday, Jon; Meiksin, Avery; Narayanan, Vijay; Nichol, Robert C.; Connell, Liam O'; Pope, Adrian; Scoccimarro, Roman; Sheth, Ravi K.; Stebbins, Albert; Strauss, Michael A.; Szapudi, Istvan; Tegmark, Max; Zehavi, Idit
2002-01-01
We present measurements of parameters of the 3-dimensional power spectrum of galaxy clustering from 222 square degrees of early imaging data in the Sloan Digital Sky Survey. The projected galaxy distribution on the sky is expanded over a set of Karhunen-Loeve eigenfunctions, which optimize the signal-to-noise ratio in our analysis. A maximum likelihood analysis is used to estimate parameters that set the shape and amplitude of the 3-dimensional power spectrum. Our best estimates are Gamma=0.188 +/- 0.04 and sigma_8L = 0.915 +/- 0.06 (statistical errors only), for a flat Universe with a cosmological constant. We demonstrate that our measurements contain signal from scales at or beyond the peak of the 3D power spectrum. We discuss how the results scale with systematic uncertainties, like the radial selection function. We find that the central values satisfy the analytically estimated scaling relation. We have also explored the effects of evolutionary corrections, various truncations of the KL basis, seeing, sam...
DEFF Research Database (Denmark)
Relano-Iborra, Helia; Chabot-Leclerc, Alexandre; Scheidiger, Christoph
2017-01-01
have extended the predictive power of the original model to a broad range of conditions. This contribution presents the most recent developments within the sEPSM “family:” (i) A binaural extension, the B-sEPSM [Chabot-Leclerc et al. (2016). J. Acoust. Soc. Am. 140(1), 192-205] which combines better......Intelligibility models provide insights regarding the effects of target speech characteristics, transmission channels and/or auditory processing on the speech perception performance of listeners. In 2011, Jørgensen and Dau proposed the speech-based envelope power spectrum model [sEPSM, Jørgensen...
International Nuclear Information System (INIS)
Pelloni, Sandro
2014-01-01
Highlights: • Our data adjustment is based on a Generalized Linear Least-Squares approach. • The computed sensitivity coefficients are converged within an iterative procedure. • The corresponding multistep adjustment thus accounts for non-linearity. • It provides a more accurate simulation of fast-spectrum experiments. - Abstract: The data assimilation benchmark launched by the “Subgroup 33” on “Methods and issues for the combined use of integral experiments and covariance data” of the Working Party on Evaluation Cooperation (WPEC) of the OECD Nuclear Energy Agency Nuclear Science Committee is recalculated by means of a multistep adjustment procedure using the deterministic code system ERANOS in conjunction with a dedicated Generalized Linear Least-Squares approach based on the Bayesian parameter estimation method. Nuclear data in terms of multi-group cross-sections as well as their variances and covariances, are adjusted for 11 nuclides, namely 10 B, 16 O, 23 Na, 56 Fe, 52 Cr, 58 Ni, 235 U, 238 U, 239 Pu, 240 Pu and 241 Pu and 6 nuclear reactions which are elastic and inelastic scattering, lumped (n,2n) and (n,3n), capture, fission and ν ¯ . The adjustment is carried out by making use of experimental data for 19 integral parameters obtained in 7 different fast spectrum systems. In the determination of a posteriori values for these integral parameters including effective multiplication factors, spectral indices and void effects, along with their nuclear data uncertainty, the required adjusted data for these nuclides and reactions are generated in conjunction with pre-computed sensitivity coefficients of the analytical integral parameters to the nuclear data to adjust. The suggested multistep scheme aims at accounting for non-linear effects. Correspondingly, the sensitivity coefficients are recalculated within an iterative procedure on the basis of the a posteriori analytical values and adjusted cross-sections. The adjustment is thus repeated
International Nuclear Information System (INIS)
Juste, B.; Miro, R.; Verdu, G.; Diez, S.; Campayo, J. M.
2012-01-01
A correct dose calculation in patient under radiotherapy treatments requires and accurate description of the radiation source. The main goal of the present work is to study the effects of initial electron beam characteristics on Monte Carlo calculated absorbed dose distribution for a 6 MeV linac photon beam. To that, we propose a methodology to determine the initial electron fluence before hitting the accelerator target for an Elektra Precisa medical linear accelerator. The method used for the electron radiation source description is based on a Software for Uncertainty and Sensitivity Analysis (SUSA) and Monte Carlo simulations using the MCNP5 transport code. This electron spectrum has been validated by means of comparison of its resulting depth dose curve in a water cube with experimental data being the mean difference below the 1%. (Author)
Instantaneous response spectrum in seismic testing of nuclear power plant equipment
International Nuclear Information System (INIS)
Morrone, A.
1977-01-01
Seismic response spectra, as used in seismic analyses, give the maximum responses of single degree of freedom oscillators without consideration of the different time in the seismic time history at which each of the maximum responses occur. For response spectrum seismic analysis, the use of time-independent maximum responses is appropriate. The time dependece is considered in a statistical manner, for multi-degree of freedom systems, usually by combining the modal effects by the square root of the sum of the squares. For seismic testing of electrical equipment. IEEE Std. 344-1975 makes use of the response spectrum to define the input motion of the shake table. One of the basic requirements is that the test response spectrum (TRS) that is, the response spectrum produced by the shake table motion, should envelop the required response spectrum (RRS) calculated from the building analysis at the support point of the equipment being tested. This paper presents the concept of instantaneous response spectrum (IRS) as the response of single degree of freedom oscillators at a particular time. It demonstrates that a shake table random motion whose standard TRS envelops the RRS does not necessarily satisfy the enveloping requirement instantaneously. (Auth.)
Computing Confidence Bounds for Power and Sample Size of the General Linear Univariate Model
Taylor, Douglas J.; Muller, Keith E.
1995-01-01
The power of a test, the probability of rejecting the null hypothesis in favor of an alternative, may be computed using estimates of one or more distributional parameters. Statisticians frequently fix mean values and calculate power or sample size using a variance estimate from an existing study. Hence computed power becomes a random variable for a fixed sample size. Likewise, the sample size necessary to achieve a fixed power varies randomly. Standard statistical practice requires reporting ...
Power filtration of CMB observational data
DEFF Research Database (Denmark)
Novikov, D.I.; Naselsky, P.; Jørgensen, H.E.
2001-01-01
We propose a power filter Cp for linear reconstruction of the CMB signal from one-dimensional scans of observational maps. This Gp filter preserves the power spectrum of the CMB signal in contrast to the Wiener filter which diminishes the power spectrum of the reconstructed CMB signal. We demonst...
Knot Undulator to Generate Linearly Polarized Photons with Low on-Axis Power Density
International Nuclear Information System (INIS)
Qiao, S.
2009-01-01
Heat load on beamline optics is a serious problem to generate pure linearly polarized photons in the third generation synchrotron radiation facilities. For permanent magnet undulators, this problem can be overcome by a figure-8 operating mode. But there is still no good method to tackle this problem for electromagnetic elliptical undulators. Here, a novel operating mode is suggested, which can generate pure linearly polarized photons with very low on-axis heat load. Also the available minimum photon energy of linearly polarized photons can be extended much by this method.
A framework for noise-power spectrum analysis of multidimensional images
International Nuclear Information System (INIS)
Siewerdsen, J.H.; Cunningham, I.A.; Jaffray, D.A.
2002-01-01
A methodological framework for experimental analysis of the noise-power spectrum (NPS) of multidimensional images is presented that employs well-known properties of the n-dimensional (nD) Fourier transform. The approach is generalized to n dimensions, reducing to familiar cases for n=1 (e.g., time series) and n=2 (e.g., projection radiography) and demonstrated experimentally for two cases in which n=3 (viz., using an active matrix flat-panel imager for x-ray fluoroscopy and cone-beam CT to form three-dimensional (3D) images in spatiotemporal and volumetric domains, respectively). The relationship between fully nD NPS analysis and various techniques for analyzing a 'central slice' of the NPS is formulated in a manner that is directly applicable to measured nD data, highlights the effects of correlation, and renders issues of NPS normalization transparent. The spatiotemporal NPS of fluoroscopic images is analyzed under varying conditions of temporal correlation (image lag) to investigate the degree to which the NPS is reduced by such correlation. For first-frame image lag of ∼5-8 %, the NPS is reduced by ∼20% compared to the lag-free case. A simple model is presented that results in an approximate rule of thumb for computing the effect of image lag on NPS under conditions of spatiotemporal separability. The volumetric NPS of cone-beam CT images is analyzed under varying conditions of spatial correlation, controlled by adjustment of the reconstruction filter. The volumetric NPS is found to be highly asymmetric, exhibiting a ramp characteristic in transverse planes (typical of filtered back-projection) and a band-limited characteristic in the longitudinal direction (resulting from low-pass characteristics of the imager). Such asymmetry could have implications regarding the detectability of structures visualized in transverse versus sagittal or coronal planes. In all cases, appreciation of the full dimensionality of the image data is essential to obtaining
Zoladz, J A; Szkutnik, Z; Majerczak, J; Duda, K; Pedersen, P K
2007-06-01
For the last decade there have been considerable discussion concerning the linearity / non-linearity of the oxygen uptake (V(O2)) - power output (W) relationship with strong experimental evidence of non-linearity provided mainly by breath-by-breath measurements. In this study, we attempted to answer the question whether the V(O2) - W relationship in the Astrand nomogram, as presented in the Textbook of Work Physiology, P.-O. Astrand et al. (2003), page 281, based on the Douglas bag method, is indeed linear, as stated by the authors before, or if a change point in V(O2), described by Zoladz et al. (1998) Eur J Appl Physiol 78: 369-377, can possibly be detected in those data. The V(O2) - W data were taken from the Astrand nomogram referenced above and from the Table 9.5 on page 282 in the same reference and tested for the presence of the change point in V(O2), using our two-phase model (see the reference above). In the first phase, a linear V(O2) - W relationship was assumed, whereas in the second one (above the so-called change point) an additional increase in V(O2) above the values expected from the linear model was allowed. It was found that in the data taken from the Astrand nomogram (data for men), as well as in the data taken from the Table 9.5, statistically significant change points in V(O2) were present at the power output of 150 W. The documentation of the presence of a change point in the V(O2) - W relationship in the Astrand data provides further evidence for the existence of a non-linearity in the V(O2) - W relationship in incremental exercise tests of humans, also in V(O2) data based upon the Douglas bag method.
International Nuclear Information System (INIS)
Chen, Chung-Yuan; Tung, Wu-Hsiung; Yaur, Shung-Jung; Kuo, Weng-Sheng
2014-01-01
Highlights: • Linear reactivity model (LRM) was modified and applied to Boiling Water Reactor. • The power sharing and fuel requirement study of the last cycle and two cycles before decommissioning was implemented. • The loading pattern design concept for the cycles before decommissioning is carried out. - Abstract: A study of in-core power sharing and fuel requirement for a decommissioning BWR (Boiling Water Reactor) was carried out using the linear reactivity model (LRM). The power sharing of each fuel batch was taken as an independent variable, and the related parameters were set and modified to simulate actual cases. Optimizations of the last cycle and two cycles before decommissioning were both implemented; in the last-one-cycle optimization, a single cycle optimization was carried out with different upper limits of fuel batch power, whereas, in the two-cycle optimization, two cycles were optimized with different cycle lengths, along with two different optimization approaches which are the simultaneous optimization of two cycles (MO) and two successive single-cycle optimizations (SO). The results of the last-one-cycle optimization show that it is better to increase the fresh fuel power and decrease the thrice-burnt fuel power as much as possible. It also shows that relaxing the power limit is good to the fresh fuel requirement which will be reduced under lower power limit. On the other hand, the results of the last-two-cycle (cycle N-1 and N) optimization show that the MO is better than SO, and the power of fresh fuel batch should be decreased in cycle N-1 to save its energy for the next cycle. The results of the single-cycle optimization are found to be the same as that in cycle N of the multi-cycle optimization. Besides that, under the same total energy requirement of two cycles, a long-short distribution of cycle length design can save more fresh fuel
Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET
International Nuclear Information System (INIS)
Jia Yunpeng; Su Hongyuan; Hu Dongqing; Wu Yu; Jin Rui
2016-01-01
The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. (paper)
Utility of low-order linear nuclear-power-plant models in plant diagnostics and control
International Nuclear Information System (INIS)
Tylee, J.L.
1981-01-01
A low-order, linear model of a pressurized water reactor (PWR) plant is described and evaluated. The model consists of 23 linear, first-order difference equations and simulates all subsystems of both the primary and secondary sides of the plant. Comparisons between the calculated model response and available test data show the model to be an adequate representation of the actual plant dynamics. Suggested use for the model in an on-line digital plant diagnostics and control system are presented
McMonagle, Gerard
2006-01-01
The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses in the injector and a narrow band high power L-Band klystron powering the transverse 1.5GHz RF deflector in the Delay Loop immediately after the DBA. This paper describes these different systems and discusses their operational performance.
McMonagle, Gerard
2006-01-01
The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses in the injector and a narrow band high power L-Band klystron powering the transverse 1.5 GHz RF deflector in the Delay Loop immediately after the DBA. This paper describes these different systems and discusses their operational performance.
Kashlinsky, A.
1993-01-01
Modified cold dark matter (CDM) models were recently suggested to account for large-scale optical data, which fix the power spectrum on large scales, and the COBE results, which would then fix the bias parameter, b. We point out that all such models have deficit of small-scale power where density fluctuations are presently nonlinear, and should then lead to late epochs of collapse of scales M between 10 exp 9 - 10 exp 10 solar masses and (1-5) x 10 exp 14 solar masses. We compute the probabilities and comoving space densities of various scale objects at high redshifts according to the CDM models and compare these with observations of high-z QSOs, high-z galaxies and the protocluster-size object found recently by Uson et al. (1992) at z = 3.4. We show that the modified CDM models are inconsistent with the observational data on these objects. We thus suggest that in order to account for the high-z objects, as well as the large-scale and COBE data, one needs a power spectrum with more power on small scales than CDM models allow and an open universe.
Zoladz, J A; Rademaker, A C; Sargeant, A J
1995-01-01
1. A slow component to pulmonary oxygen uptake (VO2) is reported during prolonged high power exercise performed at constant power output at, or above, approximately 60% of the maximal oxygen uptake. The magnitude of the slow component is reported to be associated with the intensity of exercise and to be largely accounted for by an increased VO2 across the exercising legs. 2. On the assumption that the control mechanism responsible for the increased VO2 is intensity dependent we hypothesized that it should also be apparent in multi-stage incremental exercise tests with the result that the VO2-power output relationship would be curvilinear. 3. We further hypothesized that the change in the VO2-power output relationship could be related to the hierarchical recruitment of different muscle fibre types with a lower mechanical efficiency. 4. Six subjects each performed five incremental exercise tests, at pedalling rates of 40, 60, 80, 100 and 120 rev min-1, over which range we expected to vary the proportional contribution of different fibre types to the power output. Pulmonary VO2 was determined continuously and arterialized capillary blood was sampled and analysed for blood lactate concentration ([lactate]b). 5. Below the level at which a sustained increase in [lactate]b was observed pulmonary VO2 showed a linear relationship with power output; at high power outputs, however, there was an additional increase in VO2 above that expected from the extrapolation of that linear relationship, leading to a positive curvilinear VO2-power output relationship. 6. No systematic effect on the magnitude or onset of the 'extra' VO2 was found in relation to pedalling rate, which suggests that it is not related to the pattern of motor unit recruitment in any simple way. PMID:8568657
Tiunov, V. V.
2018-02-01
The report provides results of the research related to the tubular linear induction motors’ application. The motors’ design features, a calculation model, a description of test specimens for mining and electric power industry are introduced. The most attention is given to the single-phase motors for high voltage switches drives with the usage of inexpensive standard single-phase transformers for motors’ power supply. The method of the motor’s parameters determination, when the motor is being fed from the transformer, working in the overload mode, was described, and the results of it practical usage were good enough for the engineering practice.
McMonagle, Gerard
2006-01-01
The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses ...
Iyyappan, I.; Ponmurugan, M.
2018-03-01
A trade of figure of merit (\\dotΩ ) criterion accounts the best compromise between the useful input energy and the lost input energy of the heat devices. When the heat engine is working at maximum \\dotΩ criterion its efficiency increases significantly from the efficiency at maximum power. We derive the general relations between the power, efficiency at maximum \\dotΩ criterion and minimum dissipation for the linear irreversible heat engine. The efficiency at maximum \\dotΩ criterion has the lower bound \
Energy Technology Data Exchange (ETDEWEB)
Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)
1994-12-31
The non linear electrical loads can give rise to a number of disturbances in electrical power networks. Among them, the high consumption of relative power is to be noted and so is the several harmonic components which may be injected in the industry system and very often in the utility system. So, by using appropriate technical considerations, as well as measurements in typical special electrical loads, such negative effects are analyzed and ways of minimizing them are suggested. (author) 3 refs., 11 figs., 6 tabs.
Cravero, J M
1998-01-01
This paper presents an unusual use of IGBT (Insulated Gate Bipolar Transistor) modules in capacitor discharge power supplies to achieve different current pulse shapes. The new power converters are described with an emphasis on the use of the IGBT as a discharge switch or in a linear mode. The difficulties involved in implementing IGBTs in these modes are analysed. IGBT voltage and gate commands are reviewed for these different modes and the control system that is necessary to regulate the magnet current is described. Finally, the future is envisaged with the new trends in this direction.
Superhigh-power of Regotron-type generator for linear accelerator with high mean currents
International Nuclear Information System (INIS)
Murin, B.P.; Durkin, A.P.; Shlygin, O.Yu.; Shumakov, I.V.
1991-01-01
Theoretical principles and construction scheme of new-type super-power microwave relativistic electron-beam (REB) generator (Regotron) are discussed. Unlike other types of REB-generator, Regotron includes distributed power take-off system. To increase device efficiency the autophasing-principle is used. Such principles of device construction eliminate output power generator limitations. Theoretical basis of general generator construction principles is proposed; the results of mathematical simulations are presented; the different versions of construction scheme are discussed. It is shown that Regotron efficiency can reach 70-80% at output power levels up to 10 MW CW
International Nuclear Information System (INIS)
Pandolfi, Stefania; Giusarma, Elena; Lattanzi, Massimiliano; Melchiorri, Alessandro
2010-01-01
We consider cosmological models with a non-scale-invariant spectrum of primordial perturbations and assess whether they represent a viable alternative to the concordance ΛCDM model. We find that in the framework of a model selection analysis, the WMAP and 2dF data do not provide any conclusive evidence in favor of one or the other kind of model. However, when a marginalization over the entire space of nuisance parameters is performed, models with a modified primordial spectrum and Ω Λ =0 are strongly disfavored.
Probing reionization with the cross-power spectrum of 21 cm and near-infrared radiation backgrounds
Energy Technology Data Exchange (ETDEWEB)
Mao, Xiao-Chun, E-mail: xcmao@bao.ac.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)
2014-08-01
The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimated by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |Δ{sub 21,NIR}{sup 2}|∼10{sup −4} mK nW m{sup –2} sr{sup –1}, reached at ℓ ∼ 1000 when the mean fraction of ionized hydrogen is x-bar{sub i}∼0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10{sup –4} to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the 'missing' NIR background.
Achievable rate of spectrum sharing cognitive radio systems over fading channels at low-power regime
Sboui, Lokman; Rezki, Zouheir; Alouini, Mohamed-Slim
2014-01-01
the previously achieved rate at the low-power regime. Interestingly, we show that the low-power regime analysis provides a specific insight into the maximum achievable rate behavior of CR that has not been reported by previous studies.
Upper limits on the 21 cm power spectrum at z = 5.9 from quasar absorption line spectroscopy
Pober, Jonathan C.; Greig, Bradley; Mesinger, Andrei
2016-11-01
We present upper limits on the 21 cm power spectrum at z = 5.9 calculated from the model-independent limit on the neutral fraction of the intergalactic medium of x_{H I} chain Monte Carlo Epoch of Reionization analysis code, we explore the probability distribution of 21 cm power spectra consistent with this constraint on the neutral fraction. We present 99 per cent confidence upper limits of Δ2(k) limit dependent on the sampled k mode. This limit can be used as a null test for 21 cm experiments: a detection of power at z = 5.9 in excess of this value is highly suggestive of residual foreground contamination or other systematic errors affecting the analysis.
Impact of Distribution System’s Non-Linear Loads with Constant Power on Grid Voltage
Heskes, P.J.M.; Myrzik, J.M.A.; Kling, W.L.
2011-01-01
Today’s electrical appliances are more and more built with and controlled by power electronics and processors, and their number is growing. This development can bring both advantages and disadvantages for the power quality of the electricity supply system. An advantage for example is the growing
Delay analysis of a point-to-multipoint spectrum sharing network with CSI based power allocation
Khan, Fahd Ahmed; Tourki, Kamel; Alouini, Mohamed-Slim; Qaraqe, Khalid A.
2012-01-01
and has Nakagami-m fading. A constraint on the peak transmit power of the secondary user transmitter (SU-Tx) is also considered in addition to the peak interference power constraint. Based on the constraints, a power allocation scheme which requires
Harnessing the Power of Play: Opportunities for Children with Autism Spectrum Disorders
Mastrangelo, Sonia
2009-01-01
Play is a complex phenomenon that occurs naturally for most children; they move through the various stages of play development and are able to add complexity, imagination, and creativity to their thought processes and actions. However, for many children with autism spectrum disorders (ASD), the various stages of play never truly develop, or occur…
Ekas, Naomi V.; Timmons, Lisa; Pruitt, Megan; Ghilain, Christine; Alessandri, Michael
2015-01-01
The current study uses the actor-partner interdependence model to examine the predictors of relationship satisfaction for mothers and fathers of children with autism spectrum disorder. Sixty-seven couples completed measures of optimism, benefit finding, coping strategies, social support, and relationship satisfaction. Results indicated that…
A new chaotic Hopfield network with piecewise linear activation function
International Nuclear Information System (INIS)
Peng-Sheng, Zheng; Wan-Sheng, Tang; Jian-Xiong, Zhang
2010-01-01
This paper presents a new chaotic Hopfield network with a piecewise linear activation function. The dynamic of the network is studied by virtue of the bifurcation diagram, Lyapunov exponents spectrum and power spectrum. Numerical simulations show that the network displays chaotic behaviours for some well selected parameters
Le Nir, Vincent; Moonen, Marc; Verlinden, Jan; Guenach, Mamoun
2009-02-01
Recently, the duality between Multiple Input Multiple Output (MIMO) Multiple Access Channels (MAC) and MIMO Broadcast Channels (BC) has been established under a total power constraint. The same set of rates for MAC can be achieved in BC exploiting the MAC-BC duality formulas while preserving the total power constraint. In this paper, we describe the BC optimal power allo- cation applying this duality in a downstream x-Digital Subscriber Lines (xDSL) context under a total power constraint for all modems over all tones. Then, a new algorithm called BC-Optimal Spectrum Balancing (BC-OSB) is devised for a more realistic power allocation under per-modem total power constraints. The capacity region of the primal BC problem under per-modem total power constraints is found by the dual optimization problem for the BC under per-modem total power constraints which can be rewritten as a dual optimization problem in the MAC by means of a precoder matrix based on the Lagrange multipliers. We show that the duality gap between the two problems is zero. The multi-user power allocation problem has been solved for interference channels and MAC using the OSB algorithm. In this paper we solve the problem of multi-user power allocation for the BC case using the OSB algorithm as well and we derive a computational efficient algorithm that will be referred to as BC-OSB. Simulation results are provided for two VDSL2 scenarios: the first one with Differential-Mode (DM) transmission only and the second one with both DM and Phantom- Mode (PM) transmissions.
Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET
Yunpeng, Jia; Hongyuan, Su; Rui, Jin; Dongqing, Hu; Yu, Wu
2016-02-01
The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. Project supported by the National Natural Science Foundation of China (No. 61176071), the Doctoral Fund of Ministry of Education of China (No. 20111103120016), and the Science and Technology Program of State Grid Corporation of China (No. SGRI-WD-71-13-006).
Peculiarities in power type comparison results for half-linear dynamic equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2012-01-01
Roč. 42, č. 6 (2012), s. 1995-2013 ISSN 0035-7596 R&D Projects: GA AV ČR KJB100190701 Institutional support: RVO:67985840 Keywords : half-linear dynamic equation * time scale * comparison theorem Subject RIV: BA - General Mathematics Impact factor: 0.389, year: 2012 http://projecteuclid.org/euclid.rmjm/1361800616
Energy Technology Data Exchange (ETDEWEB)
Taneja, S; Bartol, L; Culberson, W; DeWerd, L [School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI (United States)
2016-06-15
Purpose: Direct measurement of the energy spectrum of a 6MV linear accelerator has not been successful due to the high fluence rate, high energy nature of these photon beams. Previous work used a Compton Scattering (CS) spectrometry setup with a shielded spectrometer for spectrum measurements. Despite substantial lead shielding, excessive pulse pile-up was seen. MCNP6 transport code was used to investigate the feasibility and effectiveness of performing measurements using a novel detector setup. Methods: Simulations were performed with a shielded high-purity germanium (HPGe) semiconductor detector placed in the accelerator vault’s maze, with a 2 cm diameter collimator through a 92 cm thick concrete wall. The detector was positioned 660 cm from a scattering rod (placed at isocenter) at an angle of 45° relative to the central axis. This setup was compared with the shielded detector positioned in the room, 200 cm from the scattering rod at the same CS angle. Simulations were used to determine fluence contributions from three sources: (1) CS photons traveling through the collimator aperture, the intended signal, (2) CS scatter photons penetrating the detector shield, and (3) room-scattered photons penetrating the detector shield. Variance reduction techniques including weight windows, DXTRAN spheres, forced collisions, and energy cutoffs were used. Results: Simulations showed that the number of pulses per starting particle from an F8 detector tally for the intended signal decreased by a factor of 10{sup 2} when moving the detector out of the vault. This reduction in signal was amplified for the unwanted scatter signal which decreased by up to a factor of 10{sup 9}. Conclusion: This work used MCNP6 to show that using a vault wall to shield unwanted scatter and increasing isocenter-to-detector distance reduces unwanted fluence to the detector. This study aimed to provide motivation for future experimental work using the proposed setup.
Directory of Open Access Journals (Sweden)
Yan Zhang
2011-01-01
Full Text Available The problem of steady, laminar, thermal Marangoni convection flow of non-Newtonian power law fluid along a horizontal surface with variable surface temperature is studied. The partial differential equations are transformed into ordinary differential equations by using a suitable similarity transformation and analytical approximate solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximants technique. The effects of power law index and Marangoni number on velocity and temperature profiles are examined and discussed.
Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.; Colas, L.
2013-01-01
To achieve steady-state operation on future fusion devices, in particular on ITER, the coupling of the lower hybrid wave must be optimized on a wide range of edge conditions. However, under some specific conditions, deleterious effects on the lower hybrid current drive (LHCD) coupling are sometimes observed on Tore Supra. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the fully active multi-junction (FAM) and the new passive active multi-junction (PAM) antennas. A non-linear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient (RC) with the LHCD power is not predicted by the standard linear theory of the LH wave coupling. A theoretical model is suggested to describe the non-linear wave-plasma interaction induced by the ponderomotive effect and implemented in a new full wave LHCD code, PICCOLO-2D (ponderomotive effect in a coupling code of lower hybrid wave-2D). The code self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density. The simulation reproduces very well the occurrence of a non-linear behaviour in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modelling for the first time on the FAM and PAM antennas on Tore Supra.
International Nuclear Information System (INIS)
Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.; Colas, L.
2013-01-01
To achieve steady-state operation on future fusion devices, in particular on ITER, the coupling of the lower hybrid wave must be optimized on a wide range of edge conditions. However, under some specific conditions, deleterious effects on the lower hybrid current drive (LHCD) coupling are sometimes observed on Tore Supra. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the fully active multi-junction (FAM) and the new passive active multi-junction (PAM) antennas. A non-linear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient (RC) with the LHCD power is not predicted by the standard linear theory of the LH wave coupling. A theoretical model is suggested to describe the non-linear wave–plasma interaction induced by the ponderomotive effect and implemented in a new full wave LHCD code, PICCOLO-2D (ponderomotive effect in a coupling code of lower hybrid wave-2D). The code self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density. The simulation reproduces very well the occurrence of a non-linear behaviour in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modelling for the first time on the FAM and PAM antennas on Tore Supra. (paper)
Pozo, Carlos; Marín-Sanguino, Alberto; Alves, Rui; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Sorribas, Albert
2011-08-25
Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Directory of Open Access Journals (Sweden)
Sorribas Albert
2011-08-01
Full Text Available Abstract Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
DEFF Research Database (Denmark)
Zurkinden, Andrew Stephen; Kramer, Morten; Sichani, Mahdi Teimouri
2012-01-01
and the response of the device for regular and irregular waves were measured. Good correspondence is found between the numerical and the physical model for relatively mild wave conditions. For higher waves the numerical model seems to underestimate the response of the device due to its linear fluidstructure......Currently, a number of wave energy converters are being analyzed by means of numerical models in order to predict the electrical power generation under given wave conditions. A common characteristic of this procedure is to integrate the loadings from the hydrodynamics, power take-off and mooring...... systems into a central wave to wire model. The power production then depends on the control strategy which is applied to the device. The objective of this paper is to develop numerical methods for motion analysis of marine structures with a special emphasis on wave energy converters. Two different time...
Xia, Minghua
2012-06-01
Since the electromagnetic spectrum resource becomes more and more scarce, improving spectral efficiency is extremely important for the sustainable development of wireless communication systems and services. Integrating cooperative relaying techniques into spectrum-sharing cognitive radio systems sheds new light on higher spectral efficiency. In this paper, we analyze the end-to-end performance of cooperative amplify-and-forward (AF) relaying in spectrum-sharing systems. In order to achieve the optimal end-to-end performance, the transmit powers of the secondary source and the relays are optimized with respect to average interference power constraints at primary users and Nakagami-$m$ fading parameters of interference channels (for mathematical tractability, the desired channels from secondary source to relay and from relay to secondary destination are assumed to be subject to Rayleigh fading). Also, both partial and opportunistic relay-selection strategies are exploited to further enhance system performance. Based on the exact distribution functions of the end-to-end signal-to-noise ratio (SNR) obtained herein, the outage probability, average symbol error probability, diversity order, and ergodic capacity of the system under study are analytically investigated. Our results show that system performance is dominated by the resource constraints and it improves slowly with increasing average SNR. Furthermore, larger Nakagami-m fading parameter on interference channels deteriorates system performance slightly. On the other hand, when interference power constraints are stringent, opportunistic relay selection can be exploited to improve system performance significantly. All analytical results are corroborated by simulation results and they are shown to be efficient tools for exact evaluation of system performance.
Sharma, Shrushrita; Zhang, Yunyan
2017-01-01
Loss of tissue coherency in brain white matter is found in many neurological diseases such as multiple sclerosis (MS). While several approaches have been proposed to evaluate white matter coherency including fractional anisotropy and fiber tracking in diffusion-weighted imaging, few are available for standard magnetic resonance imaging (MRI). Here we present an image post-processing method for this purpose based on Fourier transform (FT) power spectrum. T2-weighted images were collected from 19 patients (10 relapsing-remitting and 9 secondary progressive MS) and 19 age- and gender-matched controls. Image processing steps included: computation, normalization, and thresholding of FT power spectrum; determination of tissue alignment profile and dominant alignment direction; and calculation of alignment complexity using a new measure named angular entropy. To test the validity of this method, we used a highly organized brain white matter structure, corpus callosum. Six regions of interest were examined from the left, central and right aspects of both genu and splenium. We found that the dominant orientation of each ROI derived from our method was significantly correlated with the predicted directions based on anatomy. There was greater angular entropy in patients than controls, and a trend to be greater in secondary progressive MS patients. These findings suggest that it is possible to detect tissue alignment and anisotropy using traditional MRI, which are routinely acquired in clinical practice. Analysis of FT power spectrum may become a new approach for advancing the evaluation and management of patients with MS and similar disorders. Further confirmation is warranted.
Directory of Open Access Journals (Sweden)
Shrushrita Sharma
Full Text Available Loss of tissue coherency in brain white matter is found in many neurological diseases such as multiple sclerosis (MS. While several approaches have been proposed to evaluate white matter coherency including fractional anisotropy and fiber tracking in diffusion-weighted imaging, few are available for standard magnetic resonance imaging (MRI. Here we present an image post-processing method for this purpose based on Fourier transform (FT power spectrum. T2-weighted images were collected from 19 patients (10 relapsing-remitting and 9 secondary progressive MS and 19 age- and gender-matched controls. Image processing steps included: computation, normalization, and thresholding of FT power spectrum; determination of tissue alignment profile and dominant alignment direction; and calculation of alignment complexity using a new measure named angular entropy. To test the validity of this method, we used a highly organized brain white matter structure, corpus callosum. Six regions of interest were examined from the left, central and right aspects of both genu and splenium. We found that the dominant orientation of each ROI derived from our method was significantly correlated with the predicted directions based on anatomy. There was greater angular entropy in patients than controls, and a trend to be greater in secondary progressive MS patients. These findings suggest that it is possible to detect tissue alignment and anisotropy using traditional MRI, which are routinely acquired in clinical practice. Analysis of FT power spectrum may become a new approach for advancing the evaluation and management of patients with MS and similar disorders. Further confirmation is warranted.
Adaptive estimation of a time-varying phase with a power-law spectrum via continuous squeezed states
Dinani, Hossein T.; Berry, Dominic W.
2016-01-01
When measuring a time-varying phase, the standard quantum limit and Heisenberg limit as usually defined, for a constant phase, do not apply. If the phase has Gaussian statistics and a power-law spectrum $1/|\\omega|^p$ with $p>1$, then the generalized standard quantum limit and Heisenberg limit have recently been found to have scalings of $1/{\\cal N}^{(p-1)/p}$ and $1/{\\cal N}^{2(p-1)/(p+1)}$, respectively, where ${\\cal N}$ is the mean photon flux. We show that this Heisenberg scaling can be a...
Directory of Open Access Journals (Sweden)
Jeffrey S. Lee
2017-10-01
Full Text Available In this note, the Cosmic Microwave Background (CMB Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n random key matrix for a Vernam cipher is established. Keywords: Particle physics, Computer science, Mathematics, Astrophysics
Studer, P. A. (Inventor)
1982-01-01
A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.
Multi-Threaded Dense Linear Algebra Libraries for Low-Power Asymmetric Multicore Processors
Catalán, Sandra; Herrero, José R.; Igual, Francisco D.; Rodríguez-Sánchez, Rafael; Quintana-Ortí, Enrique S.
2015-01-01
Dense linear algebra libraries, such as BLAS and LAPACK, provide a relevant collection of numerical tools for many scientific and engineering applications. While there exist high performance implementations of the BLAS (and LAPACK) functionality for many current multi-threaded architectures,the adaption of these libraries for asymmetric multicore processors (AMPs)is still pending. In this paper we address this challenge by developing an asymmetry-aware implementation of the BLAS, based on the...
Optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant
International Nuclear Information System (INIS)
Dabwan, Yousef N.; Mokheimer, Esmail M.A.
2017-01-01
Highlights: • A LFR integrated solar gas turbine cogeneration plant (ISGCPP) has been simulated. • The optimally integrated LFR with gas turbine cogeneration plant can achieve an annual solar share of 23%. • Optimal integration of LFR with gas turbine cogeneration system can reduce CO 2 emission by 18%. • Compared to a fully-solar-powered LFR plant, the optimal ISGCPP reduces the LEC by 83%. • ISGCPP reduces the LEC by 50% compared to plants integrated with carbon capture technology. - Abstract: Solar energy is an abundant resource in many countries in the Sunbelt, especially in the middle east, countries, where recent expansion in the utilization of natural gas for electricity generation has created a significant base for introducing integrated solar‐natural gas power plants (ISGPP) as an optimal solution for electricity generation in these countries. ISGPP reduces the need for thermal energy storage in traditional concentrated solar thermal plants and results in dispatchable power on demand at lower cost than stand-alone concentrated thermal power and much cheaper than photovoltaic plants. Moreover, integrating concentrated solar power (CSP) with conventional fossil fuel based thermal power plants is quite suitable for large-scale central electric power generation plants and it can be implemented in the design of new installed plants or during retrofitting of existing plants. The main objective of the present work is to investigate the possible modifications of an existing gas turbine cogeneration plant, which has a gas turbine of 150 MWe electricity generation capacity and produces steam at a rate of 81.4 at 394 °C and 45.88 bars for an industrial process, via integrating it with concentrated solar power system. In this regard, many simulations have been carried out using Thermoflow software to explore the thermo-economic performance of the gas turbine cogeneration plant integrated with LFR concentrated solar power field. Different electricity
Uniformity measure for power-law mass spectrum in nuclear fragmentation
International Nuclear Information System (INIS)
Wislicki, W.
1992-11-01
Description is given in terms of the Renyi entropy and the uniformity for the canonical ensemble, the grand canonical ensemble and the power-law probability measures. The study is presented of the power-law spectra of cluster masses observed in nuclear interactions in the vicinity of the liquid-gas transition point. 6 figs., 1 tab., 15 refs. (author)
International Nuclear Information System (INIS)
García-González, M A; Fernández-Chimeno, M; Benítez, A; Ramos-Castro, J; Ferrer, J; Escorihuela, R M; Parrado, E; Capdevila, L; Angulo, R; Rodríguez, F A; Iglesias, X; Bescós, R; Marina, M; Padullés, J M
2011-01-01
This paper presents a new family of indices for the frequency domain analysis of heart rate variability time series that do not need any frequency band definition. After proper detrending of the time series, a cumulated power spectrum is obtained and frequencies that contain a certain percentage of the power below them are identified, so median frequency, bandwidth and a measure of the power spectrum asymmetry are proposed to complement or improve the classical spectral indices as the ratio of the powers of LF and HF bands (LF/HF). In normal conditions the median frequency provides similar information as the classical indices, while the bandwidth and asymmetry can be complementary measures of the physiological state of the tested subject. The proposed indices seem to be a good choice for tracking changes in the power spectrum in exercise stress, and they can guide in the determination of frequency band limits in other animal species
Nakajima, Kohei; Haruna, Taichi
2011-09-01
In this paper, we propose a new class of cellular automata based on the modification of its state space. It is introduced to model a computation which is exposed to an environment. We formalized the computation as extension and projection processes of its state space and resulting misidentifications of the state. This is motivated to embed the role of an environment into the system itself, which naturally induces self-organized internal perturbations rather than the usual external perturbations. Implementing this structure into the elementary cellular automata, we characterized its effect by means of input entropy and power spectral analysis. As a result, the cellular automata with this structure showed robust class IV behavior and a 1/f power spectrum in a wide range of rule space comparative to the notion of the edge of chaos. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Metzger Robert
2017-01-01
Full Text Available A new method for analysis of uranium and radium in soils by gamma spectroscopy has been developed using VRF (“Visual RobFit” which, unlike traditional peak-search techniques, fits full-spectrum nuclide shapes with non-linear least-squares minimization of the chi-squared statistic. Gamma efficiency curves were developed for a 500 mL Marinelli beaker geometry as a function of soil density using MCNP. Collected spectra were then analyzed using the MCNP-generated efficiency curves and VRF to deconvolute the 90 keV peak complex of uranium and obtain 238U and 235U activities. 226Ra activity was determined either from the radon daughters if the equilibrium status is known, or directly from the deconvoluted 186 keV line. 228Ra values were determined from the 228Ac daughter activity. The method was validated by analysis of radium, thorium and uranium soil standards and by inter-comparison with other methods for radium in soils. The method allows for a rapid determination of whether a sample has been impacted by a man-made activity by comparison of the uranium and radium concentrations to those that would be expected from a natural equilibrium state.
Metzger, Robert; Riper, Kenneth Van; Lasche, George
2017-09-01
A new method for analysis of uranium and radium in soils by gamma spectroscopy has been developed using VRF ("Visual RobFit") which, unlike traditional peak-search techniques, fits full-spectrum nuclide shapes with non-linear least-squares minimization of the chi-squared statistic. Gamma efficiency curves were developed for a 500 mL Marinelli beaker geometry as a function of soil density using MCNP. Collected spectra were then analyzed using the MCNP-generated efficiency curves and VRF to deconvolute the 90 keV peak complex of uranium and obtain 238U and 235U activities. 226Ra activity was determined either from the radon daughters if the equilibrium status is known, or directly from the deconvoluted 186 keV line. 228Ra values were determined from the 228Ac daughter activity. The method was validated by analysis of radium, thorium and uranium soil standards and by inter-comparison with other methods for radium in soils. The method allows for a rapid determination of whether a sample has been impacted by a man-made activity by comparison of the uranium and radium concentrations to those that would be expected from a natural equilibrium state.
Zhao, Yayu; Lai, Xuan; Deng, Ping; Nie, Yuxin; Zhang, Yan; Xing, Lili; Xue, Xinyu
2014-03-21
A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.
A power-efficient audio amplifier combining switching and linear techniques
van der Zee, Ronan A.R.; van Tuijl, Adrianus Johannes Maria
1999-01-01
Integrated class-D audio amplifiers are very power efficient but require an external LC reconstruction filter, which prevents further integration. Also due to this filter, large feedback factors are hard to realize, so that the load influences the distortion and transfer characteristics. The 30 W
New series active power filter for computers loads and small non-linear loads
Energy Technology Data Exchange (ETDEWEB)
Tarnini, M.Y. [Hariri Canadian Univ., Meshref (Lebanon)
2009-07-01
This paper proposed the use of a single-phase series active power filter to reduce voltage total harmonic distortion and provide improved power quality. Control schemes were developed using simple control algorithms and a reduced number of current transducers. The circuit was comprised of a power supply and zero crossing detector; a hall-effect current sensor and signal conditioning circuit; a microcontroller circuit; a driving circuit; and an inverter bridge. The filter corrected fundamental and sinusoidal voltage amplitudes. The amplitude of the fundamental current in the series filter was controlled using a microcontroller placed between the load voltage and a pre-established reference point. Experiments were conducted to test the source voltage and source current after compensation using a prototype of the filter. The control system provided effective correction of the power factor and harmonic distortion, and reached steady state in approximately 2 cycles. It was concluded that the compensator can also be adapted for use in 3-phase systems. 13 refs., 1 tab., 14 figs.
Survey on neutron production by electron beam from high power CW electron linear accelerator
International Nuclear Information System (INIS)
Toyama, S.
1999-04-01
In Japan Nuclear Cycle Development Institute, the development of high current CW electron linear accelerator is in progress. It is possible for an accelerator to produce neutrons by means of a spallation and photo nuclear reactions. Application of neutron beam produced by bremsstrahlung is one of ways of the utilization for high current electron accelerator. It is actual that many electron linear accelerators which maximum energy is higher than a few hundreds MeV are used as neutron sources. In this report, an estimate of neutron production is evaluated for high current CW electron linear accelerator. The estimate is carried out by 10 MeV beam which is maximum energy limited from the regulation and rather low for neutron production. Therefore, the estimate is also done by 17 and 35 MeV beam which is possible to be accelerated. Beryllium is considered as a target for lower electron energy in addition to Lead target for higher energy, because Beryllium has low threshold energy for neutron production. The evaluation is carried out in account of the target thickness optimized by the radiation length and neutron cross section reducing the energy loss for both of electron and neutron, so as to get the maximum number of neutrons. The result of the calculations shows neutron numbers 1.9 x 10 10 , 6.1 x 10 13 and 4.8 x 10 13 (n/s), respectively, for 10, 17, and 35 MeV with low duty. The thermal removal from the target is one of critical points. The additional shielding and cooling system is necessary in order to endure radiation. A comparison with other facilities are also carried out. The estimate of neutron numbers suggests the possibility to be applied for neutron radiography and measurement of nuclear data by means of Lead spectrometer, for example. (author)
Performance improvement of shunt active power filter based on non-linear least-square approach
DEFF Research Database (Denmark)
Terriche, Yacine
2018-01-01
. This paper proposes an improved open loop strategy which is unconditionally stable and flexible. The proposed method which is based on non-linear least square (NLS) approach can extract the fundamental voltage and estimates its phase within only half cycle, even in the presence of odd harmonics and dc offset......). The synchronous reference frame (SRF) approach is widely used for generating the RCC due to its simplicity and computation efficiency. However, the SRF approach needs precise information of the voltage phase which becomes a challenge under adverse grid conditions. A typical solution to answer this need...
Directory of Open Access Journals (Sweden)
Prasenjit D. Wakode
2016-07-01
Full Text Available This paper presents the complete analysis of Linear Induction Motor (LIM under VVVF. The complete variation of LIM air gap flux under ‘blocked Linor’ condition and starting force is analyzed and presented when LIM is given VVVF supply. The analysis of this data is important in further understanding of the equivalent circuit parameters of LIM and to study the magnetic circuit of LIM. The variation of these parameters is important to know the LIM response at different frequencies. The simulation and application of different control strategies such as vector control thus becomes quite easy to apply and understand motor’s response under such strategy of control.
Characterizing the Peak in the Cosmic Microwave Background Angular Power Spectrum
Knox, Lloyd; Page, Lyman
2000-08-01
A peak has been unambiguously detected in the cosmic microwave background angular spectrum. Here we characterize its properties with fits to phenomenological models. We find that the TOCO and BOOM/NA data determine the peak location to be in the range 175-243 and 151-259, respectively (at 95% confidence) and determine the peak amplitude to be between ~70 and 90 μK. The peak shape is consistent with inflation-inspired flat, cold dark matter plus cosmological constant models of structure formation with adiabatic, nearly scale invariant initial conditions. It is inconsistent with open models and presents a great challenge to defect models.
Choudhuri, Samir; Bharadwaj, Somnath; Roy, Nirupam; Ghosh, Abhik; Ali, Sk Saiyad
2016-06-11
It is important to correctly subtract point sources from radio-interferometric data in order to measure the power spectrum of diffuse radiation like the Galactic synchrotron or the Epoch of Reionization 21-cm signal. It is computationally very expensive and challenging to image a very large area and accurately subtract all the point sources from the image. The problem is particularly severe at the sidelobes and the outer parts of the main lobe where the antenna response is highly frequency dependent and the calibration also differs from that of the phase centre. Here, we show that it is possible to overcome this problem by tapering the sky response. Using simulated 150 MHz observations, we demonstrate that it is possible to suppress the contribution due to point sources from the outer parts by using the Tapered Gridded Estimator to measure the angular power spectrum C ℓ of the sky signal. We also show from the simulation that this method can self-consistently compute the noise bias and accurately subtract it to provide an unbiased estimation of C ℓ .
Power Allocation Optimization: Linear Precoding Adapted to NB-LDPC Coded MIMO Transmission
Directory of Open Access Journals (Sweden)
Tarek Chehade
2015-01-01
Full Text Available In multiple-input multiple-output (MIMO transmission systems, the channel state information (CSI at the transmitter can be used to add linear precoding to the transmitted signals in order to improve the performance and the reliability of the transmission system. This paper investigates how to properly join precoded closed-loop MIMO systems and nonbinary low density parity check (NB-LDPC. The q elements in the Galois field, GF(q, are directly mapped to q transmit symbol vectors. This allows NB-LDPC codes to perfectly fit with a MIMO precoding scheme, unlike binary LDPC codes. The new transmission model is detailed and studied for several linear precoders and various designed LDPC codes. We show that NB-LDPC codes are particularly well suited to be jointly used with precoding schemes based on the maximization of the minimum Euclidean distance (max-dmin criterion. These results are theoretically supported by extrinsic information transfer (EXIT analysis and are confirmed by numerical simulations.
Traveling wave linear accelerator with RF power flow outside of accelerating cavities
Dolgashev, Valery A.
2016-06-28
A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities has a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.
A 1–2 GHz high linearity transformer-feedback power-to-current LNA
Li, X.; Serdijn, W.A.; Woestenburg, B.E.M.; Bij de Vaate, J.G.
2009-01-01
This paper demonstrates that a double-loop transformer-feedback power-to-current low noise amplifier, to be implemented in a 0.2 lm GaAs p-HEMT IC process, is able to obtain a noise figure less than 0.8 dB, an input return loss less than -12 dB, a flat voltage-to-current signal transfer of 180 mS,
Reactivity and Power Distribution Management in LEU-loaded Linear B and BR
International Nuclear Information System (INIS)
Hartanto, Donny; Kim, Yonghee
2013-01-01
In this paper, the relatively high excess reactivity issue during the initial transitional period was addressed. The design target is to achieve a maximum excess reactivity of about 1.0 dollar to prevent the possibility of the prompt jump critical accident. The initial core is divided into 2 radial Zr-zones in order to reduce the excess reactivity. By doing this, the power profile at the BOC can also be flattened. After the optimum initial core configuration has been found, the blanket region is also divided into 2 radial Zr-zones in order to flatten the power distribution at EOC. The neutronic analyses were all performed using the Monte Carlo code McCARD with ENDF-B/VII.0 library. It was found that by using the concave Zr-zoning in the initial core of B and BR, the maximum excess reactivity can be effectively lowered. The radial power profile can also be successfully flattened by using the Zr-zoning and concave initial core. The concave concept deserves more investigations for better performances of the B and BR core
International Nuclear Information System (INIS)
Battaglia, N.; Bond, J. R.; Pfrommer, C.; Sievers, J. L.
2012-01-01
Secondary anisotropies in the cosmic microwave background are a treasure-trove of cosmological information. Interpreting current experiments probing them are limited by theoretical uncertainties rather than by measurement errors. Here we focus on the secondary anisotropies resulting from the thermal Sunyaev-Zel'dovich (tSZ) effect; the amplitude of which depends critically on the average thermal pressure profile of galaxy groups and clusters. To this end, we use a suite of hydrodynamical TreePM-SPH simulations that include radiative cooling, star formation, supernova feedback, and energetic feedback from active galactic nuclei. We examine in detail how the pressure profile depends on cluster radius, mass, and redshift and provide an empirical fitting function. We employ three different approaches for calculating the tSZ power spectrum: an analytical approach that uses our pressure profile fit, a semianalytical method of pasting our pressure fit onto simulated clusters, and a direct numerical integration of our simulated volumes. We demonstrate that the detailed structure of the intracluster medium and cosmic web affect the tSZ power spectrum. In particular, the substructure and asphericity of clusters increase the tSZ power spectrum by 10%-20% at l ∼ 2000-8000, with most of the additional power being contributed by substructures. The contributions to the power spectrum from radii larger than R 500 is ∼20% at l = 3000, thus clusters interiors (r 500 ) dominate the power spectrum amplitude at these angular scales.
Energy Technology Data Exchange (ETDEWEB)
Battaglia, N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St George, Toronto, ON M5S 3H4 (Canada); Bond, J. R.; Pfrommer, C.; Sievers, J. L. [Canadian Institute for Theoretical Astrophysics, 60 St George, Toronto, ON M5S 3H8 (Canada)
2012-10-20
Secondary anisotropies in the cosmic microwave background are a treasure-trove of cosmological information. Interpreting current experiments probing them are limited by theoretical uncertainties rather than by measurement errors. Here we focus on the secondary anisotropies resulting from the thermal Sunyaev-Zel'dovich (tSZ) effect; the amplitude of which depends critically on the average thermal pressure profile of galaxy groups and clusters. To this end, we use a suite of hydrodynamical TreePM-SPH simulations that include radiative cooling, star formation, supernova feedback, and energetic feedback from active galactic nuclei. We examine in detail how the pressure profile depends on cluster radius, mass, and redshift and provide an empirical fitting function. We employ three different approaches for calculating the tSZ power spectrum: an analytical approach that uses our pressure profile fit, a semianalytical method of pasting our pressure fit onto simulated clusters, and a direct numerical integration of our simulated volumes. We demonstrate that the detailed structure of the intracluster medium and cosmic web affect the tSZ power spectrum. In particular, the substructure and asphericity of clusters increase the tSZ power spectrum by 10%-20% at l {approx} 2000-8000, with most of the additional power being contributed by substructures. The contributions to the power spectrum from radii larger than R {sub 500} is {approx}20% at l = 3000, thus clusters interiors (r < R {sub 500}) dominate the power spectrum amplitude at these angular scales.
Energy Technology Data Exchange (ETDEWEB)
Ramos, Alexandre F.; Vasconcelos, Miguel F.; Vergueiro, Sophia M. C.; Lima, Suzylaine S., E-mail: alex.ramos@usp.br [Universidade de São Paulo (USP), SP (Brazil). Núcleo Interdisciplinar de Modelagem de Sistemas Complexos
2017-07-01
Recently, a new variable has been introduced on nuclear power expansion policy: public opinion. That variable challenges the nuclear community to develop new programs aiming to educate society sectors interested on energy generation and not necessarily familiarized with concepts of the nuclear eld. Here we approach this challenge by discussing how a misconception about the use of theories in science has misled the interpretation of the Chernobyl's accident consequences. That discussion have been presented for students from fields related with Environmental Sciences and Humanities and have helped to elucidate that an extrapolation such as the Linear Non-Threshold model is a hypothesis to be tested experimentally instead of a theoretical tool with predictive power. (author)
International Nuclear Information System (INIS)
Grelick, A. E.
1998-01-01
An S-band linear accelerator is the source of particles and front end of the Advanced Photon Source [1] injector. Additionally, it will be used to support a low-energy undulator test line (LEUTL) and to drive a free-electron laser (FEL). To provide maximum linac availability for all uses, an additional modulator-klystron subsystem has been built,and a waveguide-switching and distribution subsystem is now under construction. The combined subsystems provide a hot spare for any of the five S-band transmitters that power the lina cand have been given the additional function of powering an rf gun test stand whenever they are not otherwise needed. Design considerations for the waveguide-switching subsystem, topology selection, timing, control, and system protection provisions are described
International Nuclear Information System (INIS)
Ramos, Alexandre F.; Vasconcelos, Miguel F.; Vergueiro, Sophia M. C.; Lima, Suzylaine S.
2017-01-01
Recently, a new variable has been introduced on nuclear power expansion policy: public opinion. That variable challenges the nuclear community to develop new programs aiming to educate society sectors interested on energy generation and not necessarily familiarized with concepts of the nuclear eld. Here we approach this challenge by discussing how a misconception about the use of theories in science has misled the interpretation of the Chernobyl's accident consequences. That discussion have been presented for students from fields related with Environmental Sciences and Humanities and have helped to elucidate that an extrapolation such as the Linear Non-Threshold model is a hypothesis to be tested experimentally instead of a theoretical tool with predictive power. (author)
Non-linear multi-objective model for planning water-energy modes of Novosibirsk Hydro Power Plant
Alsova, O. K.; Artamonova, A. V.
2018-05-01
This paper presents a non-linear multi-objective model for planning and optimizing of water-energy modes for the Novosibirsk Hydro Power Plant (HPP) operation. There is a very important problem of developing a strategy to improve the scheme of water-power modes and ensure the effective operation of hydropower plants. It is necessary to determine the methods and criteria for the optimal distribution of water resources, to develop a set of models and to apply them to the software implementation of a DSS (decision-support system) for managing Novosibirsk HPP modes. One of the possible versions of the model is presented and investigated in this paper. Experimental study of the model has been carried out with 2017 data and the task of ten-day period planning from April to July (only 12 ten-day periods) was solved.
International Nuclear Information System (INIS)
Paris, R.B.; Wood, A.D.
1984-11-01
The asymptotic expansions of solutions of a class of linear ordinary differential equations of arbitrary order n, containing a factor zsup(m) multiplying the lower order derivatives, are investigated for large values of z in the complex plane. Four classes of solutions are considered which exhibit the following behaviour as /z/ → infinity in certain sectors: (i) solutions whose behaviour is either exponentially large or algebraic (involving p ( < n) algebraic expansions), (ii) solutions which are exponentially small (iii) solutions with a single algebraic expansion and (iv) solutions which are even and odd functions of z whenever n+m is even. The asymptotic expansions of these solutions in a full neigbourhood of the point at infinity are obtained by means of the theory of the solutions in the case m=O developed in a previous paper
Krasilnikov, D. D.; Knurenko, S. P.; Krasilnikov, A. D.; Pavlov, V. N.; Sleptsov, I. Y.; Yegorova, V. P.
1985-01-01
The extensive air showers spectrum on scintillation desity Rko in primary energy region E sub approx. 10 to the 15th power - 10 to the 20th power eV on the Yakutsk array data and recent results of the Akeno is given.
International Nuclear Information System (INIS)
Block, David L.; Puerari, Ivanio; Elmegreen, Bruce G.; Bournaud, Frederic
2010-01-01
Power spectra of Large Magellanic Cloud (LMC) emission at 24, 70, and 160 μm observed with the Spitzer Space Telescope have a two-component power-law structure with a shallow slope of -1.6 at low wavenumber, k, and a steep slope of -2.9 at high k. The break occurs at k -1 ∼ 100-200 pc, which is interpreted as the line-of-sight thickness of the LMC disk. The slopes are slightly steeper for longer wavelengths, suggesting the cooler dust emission is smoother than the hot emission. The power spectrum (PS) covers ∼3.5 orders of magnitude, and the break in the slope is in the middle of this range on a logarithmic scale. Large-scale driving from galactic and extragalactic processes, including disk self-gravity, spiral waves, and bars, presumably causes the low-k structure in what is effectively a two-dimensional geometry. Small-scale driving from stellar processes and shocks causes the high-k structure in a three-dimensional geometry. This transition in dimensionality corresponds to the observed change in PS slope. A companion paper models the observed power law with a self-gravitating hydrodynamics simulation of a galaxy like the LMC.
Haduch-Sendecka, Aleksandra; Pietruszka, Mariusz; Zajdel, Paweł
2014-08-01
We report on our results concerning growth rate and oscillation modes of the individual pollen tube apex. The observed volumetric growth and growth rate periodicity in the longitudinal (axial) direction are accompanied by transverse oscillations with similar frequencies but higher energies than the axial modes. Examination of the time-domain coherence between oscillations in mutually perpendicular directions revealed minimal energy dissipation in the unperturbed (isotonic) case, opposite to the two remaining cases (hypertonic, hypotonic) with notable correlations. We conjecture that the minimal energy loss is therefore optimal in the natural growth conditions. The longitudinal growth velocity is also found to be the fastest in the unperturbed case. As a result, the isolated system (pollen tube tip) is conserving energy by transforming it from elastic potential energy of extending apical wall to the kinetic energy of periodical motion. The energy dissipation is found to be about 20 % smaller in axial direction than in lateral one, indicating that the main energy consumption is dedicated to the elongation. We further observe that the hypertonic spectrum is shifted towards lower and the hypotonic towards higher frequencies with respect to the isotonic spectrum. In consequence, the turgor pressure inside the growing cell influences monotonically the frequency of both modes of oscillations. The calculated power spectrum seen as a measure of the overall energy efficiency of tip growth under hypertonic, hypotonic and isotonic conditions implies that the biochemistry has been fine tuned to be optimal under normal growth conditions, which is the developmental implication of this work. A simple theoretical extension of the Ortega equation is derived and analysed with respect to its contribution to power spectrum. We show that the plastic term, related to the effective turgor pressure, with maximum contribution at frequency f = 0 is responsible for the steady growth. In turn
Characterizing the Peak in the Cosmic Microwave Background Angular Power Spectrum
International Nuclear Information System (INIS)
Knox, Lloyd; Page, Lyman
2000-01-01
A peak has been unambiguously detected in the cosmic microwave background angular spectrum. Here we characterize its properties with fits to phenomenological models. We find that the TOCO and BOOM/NA data determine the peak location to be in the range 175-243 and 151-259, respectively (at 95% confidence) and determine the peak amplitude to be between ≅70 and 90 μK . The peak shape is consistent with inflation-inspired flat, cold dark matter plus cosmological constant models of structure formation with adiabatic, nearly scale invariant initial conditions. It is inconsistent with open models and presents a great challenge to defect models. (c) 2000 The American Physical Society
Measurements of the power spectrum and dispersion relation of self-excited dust acoustic waves
Nosenko, V.; Zhdanov, S. K.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.; Morfill, G. E.
2009-12-01
The spectrum of spontaneously excited dust acoustic waves was measured. The waves were observed with high temporal resolution using a fast video camera operating at 1000 frames per second. The experimental system was a suspension of micron-size kaolin particles in the anode region of a dc discharge in argon. Wave activity was found at frequencies as high as 450 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency instead. The cutoff value declined with distance from the anode. We ascribe the observed cutoff to the particle confinement in this region.
Application of quasi-optical approach to construct RF power supply for TeV linear colliders
International Nuclear Information System (INIS)
Saldin, E.L.; Sarantsev, V.P.; Schneidmiller, E.A.; Ulyanov, Yu.N.; Yurkov, M.V.
1995-01-01
An idea to use a quasi-optical approach for constructing an RF power supply for TeV linear e + e - colliders is developed. The RF source of the proposed scheme is composed of a large number of low-power RF amplifiers commutated by quasi-optical elements. The RF power of this source is transmitted to the accelerating structure of the collider by means of quasi-optical waveguides and mirrors. Such an approach enables one not only to decrease the required peak RF power by several orders of magnitude with respect to the traditional approach based on standard klystron technique, but also to achieve the required level of reliability, as it is based on well-developed technology of serial microwave devices. To illustrate the proposed scheme, a conceptual project of 2x500 GeV X-band collider is considered. Accelerating structure of the collider is of the standard travelling wave type and the RF source is assumed to be composed of 0.7 MW klystrons. All equipment of such a collider is placed in a tunnel of 12x6 m 2 cross section. It is shown that such a collider may be constructed at the present level of accelerator technique. ((orig.))
Directory of Open Access Journals (Sweden)
Zeyu Shi
2017-01-01
Full Text Available Active power filter (APF is the most popular device in regulating power quality issues. Currently, most literatures ignored the impact of grid impedance and assumed the load voltage is ideal, which had not described the system accurately. In addition, the controllers applied PI control; thus it is hard to improve the compensation quality. This paper establishes a precise model which consists of APF, load, and grid impedance. The Bode diagram of traditional simplified model is obviously different with complete model, which means the descriptions of the system based on the traditional simplified model are inaccurate and incomplete. And then design exact feedback linearization and quasi-sliding mode control (FBL-QSMC is based on precise model in inner current loop. The system performances in different parameters are analyzed and dynamic performance of proposed algorithm is compared with traditional PI control algorithm. At last, simulations are taken in three cases to verify the performance of proposed control algorithm. The results proved that the proposed feedback linearization and quasi-sliding mode control algorithm has fast response and robustness; the compensation performance is superior to PI control obviously, which also means the complete modeling and proposed control algorithm are correct.
Mauro, Nicolò; Ferruti, Paolo; Ranucci, Elisabetta; Manfredi, Amedea; Berzi, Angela; Clerici, Mario; Cagno, Valeria; Lembo, David; Palmioli, Alessandro; Sattin, Sara
2016-09-01
The initial steps of viral infections are mediated by interactions between viral proteins and cellular receptors. Blocking the latter with high-affinity ligands may inhibit infection. DC-SIGN, a C-type lectin receptor expressed by immature dendritic cells and macrophages, mediates human immunodeficiency virus (HIV) infection by recognizing mannose clusters on the HIV-1 gp120 envelope glycoprotein. Mannosylated glycodendrimers act as HIV entry inhibitors thanks to their ability to block this receptor. Previously, an amphoteric, but prevailingly cationic polyamidoamine named AGMA1 proved effective as infection inhibitor for several heparan sulfate proteoglycan-dependent viruses, such as human papilloma virus HPV-16 and herpes simplex virus HSV-2. An amphoteric, but prevailingly anionic PAA named ISA23 proved inactive. It was speculated that the substitution of mannosylated units for a limited percentage of AGMA1 repeating units, while imparting anti-HIV activity, would preserve the fundamentals of its HPV-16 and HSV-2 infection inhibitory activity. In this work, four biocompatible linear PAAs carrying different amounts of mannosyl-triazolyl pendants, Man-ISA7, Man-ISA14, Man-AGMA6.5 and Man-AGMA14.5, were prepared by reaction of 2-(azidoethyl)-α-D-mannopyranoside and differently propargyl-substituted AGMA1 and ISA23. All mannosylated PAAs inhibited HIV infection. Both Man-AGMA6.5 and Man-AGMA14.5 maintained the HPV-16 and HSV-2 activity of the parent polymer, proving broad-spectrum, dual action mode virus infection inhibitors.
International Nuclear Information System (INIS)
Ghaffari, A.; Nikkhah Bahrami, M.; Mohammadzaheri, M.
2005-01-01
In this paper a new method for linear modeling of nonlinear systems is presented. The method is based on the design of an artificial neural network with two layers. The network is trained only according to the input-output data of the system. The weights of connections in this network, represents the coefficients of the transfer function. For systems with linear behavior the method of least square error represents the best linear model of the system. However, for nonlinear systems, such as some subsystems in power plants boilers LSE does not represent the best linear approximation of the system, necessarily. In this paper a new linear modeling method is presented and applied to some subsystems in a power plant boiler. Comparison between the transfer function obtained in this way and by least square error method,shows that the neural network method gives better linear models for these nonlinear systems
Merkel, Philipp M.; Schäfer, Björn Malte
2017-10-01
Cross-correlating the lensing signals of galaxies and comic microwave background (CMB) fluctuations is expected to provide valuable cosmological information. In particular, it may help tighten constraints on parameters describing the properties of intrinsically aligned galaxies at high redshift. To access the information conveyed by the cross-correlation signal, its accurate theoretical description is required. We compute the bias to CMB lensing-galaxy shape cross-correlation measurements induced by non-linear structure growth. Using tree-level perturbation theory for the large-scale structure bispectrum, we find that the bias is negative on most angular scales, therefore mimicking the signal of intrinsic alignments. Combining Euclid-like galaxy lensing data with a CMB experiment comparable to the Planck satellite mission, the bias becomes significant only on smallest scales (ℓ ≳ 2500). For improved CMB observations, however, the corrections amount to 10-15 per cent of the CMB lensing-intrinsic alignment signal over a wide multipole range (10 ≲ ℓ ≲ 2000). Accordingly, the power spectrum bias, if uncorrected, translates into 2σ and 3σ errors in the determination of the intrinsic alignment amplitude in the case of CMB stage III and stage IV experiments, respectively.
High-power fiber-coupled 100W visible spectrum diode lasers for display applications
Unger, Andreas; Küster, Matthias; Köhler, Bernd; Biesenbach, Jens
2013-02-01
Diode lasers in the blue and red spectral range are the most promising light sources for upcoming high-brightness digital projectors in cinemas and large venue displays. They combine improved efficiency, longer lifetime and a greatly improved color space compared to traditional xenon light sources. In this paper we report on high-power visible diode laser sources to serve the demands of this emerging market. A unique electro-optical platform enables scalable fiber coupled sources at 638 nm with an output power of up to 100 W from a 400 μm NA0.22 fiber. For the blue diode laser we demonstrate scalable sources from 5 W to 100 W from a 400 μm NA0.22 fiber.
Energy Technology Data Exchange (ETDEWEB)
Chiang, Chi-Ting [C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794 (United States); Cieplak, Agnieszka M.; Slosar, Anže [Brookhaven National Laboratory, Blgd 510, Upton, NY 11375 (United States); Schmidt, Fabian, E-mail: chi-ting.chiang@stonybrook.edu, E-mail: acieplak@bnl.gov, E-mail: fabians@mpa-garching.mpg.de, E-mail: anze@bnl.gov [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)
2017-06-01
The squeezed-limit bispectrum, which is generated by nonlinear gravitational evolution as well as inflationary physics, measures the correlation of three wavenumbers, in the configuration where one wavenumber is much smaller than the other two. Since the squeezed-limit bispectrum encodes the impact of a large-scale fluctuation on the small-scale power spectrum, it can be understood as how the small-scale power spectrum ''responds'' to the large-scale fluctuation. Viewed in this way, the squeezed-limit bispectrum can be calculated using the response approach even in the cases which do not submit to perturbative treatment. To illustrate this point, we apply this approach to the cross-correlation between the large-scale quasar density field and small-scale Lyman-α forest flux power spectrum. In particular, using separate universe simulations which implement changes in the large-scale density, velocity gradient, and primordial power spectrum amplitude, we measure how the Lyman-α forest flux power spectrum responds to the local, long-wavelength quasar overdensity, and equivalently their squeezed-limit bispectrum. We perform a Fisher forecast for the ability of future experiments to constrain local non-Gaussianity using the bispectrum of quasars and the Lyman-α forest. Combining with quasar and Lyman-α forest power spectra to constrain the biases, we find that for DESI the expected 1−σ constraint is err[ f {sub NL}]∼60. Ability for DESI to measure f {sub NL} through this channel is limited primarily by the aliasing and instrumental noise of the Lyman-α forest flux power spectrum. The combination of response approach and separate universe simulations provides a novel technique to explore the constraints from the squeezed-limit bispectrum between different observables.
Szabo, Adam; Koval, A.
2011-01-01
The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the similar observations made by the MESSENGER spacecraft in the inner heliosphere affords an opportunity to compare magnetic field power spectral density variations as a function of radial distance from the Sun under different solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the approx.2 Hz limit above which digitization noise becomes apparent. The powe'r spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions. Wind and MESSENGER magnetic fluctuations are compared for times when the two spacecraft are close to radial and Parker field alignment. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed.
A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane
Yu, Aifang; Zhao, Yong; Jiang, Peng; Wang, Zhong Lin
2013-02-01
A nanogenerator (NG) is a device that converts vibration energy into electricity. Here, a flexible, small size and lightweight NG is successfully demonstrated as an active sensor for detecting the vibration spectrum of a drum membrane without the use of an external power source. The output current/voltage signal of the NG is a direct measure of the strain of the local vibrating drum membrane that contains rich informational content, such as, notably, the vibration frequency, vibration speed and vibration amplitude. In comparison to the laser vibrometer, which is excessively complex and expensive, this kind of small and low cost sensor based on an NG is also capable of detecting the local vibration frequency of a drum membrane accurately. A spatial arrangement of the NGs on the membrane can provide position-dependent vibration information on the surface. The measured frequency spectrum can be understood on the basis of the theoretically calculated vibration modes. This work expands the application of NGs and reveals the potential for developing sound wave detection, environmental/infrastructure monitoring and many more applications.
Kanai, Hiroshi; Jang, Yun-Seok; Chubachi, Noriyoshi; Tanahashi, Yoshikatsu
1994-05-01
This paper investigates the difference in the spectrum of sound radiated before and after the break of a phantom at a focal point of the piezoelectric extracorporeal shock wave lithotriptor (ESWL) in order to identify the break time or to examine whether a calculus exists exactly at the focal point or not. From the preliminary experiments using a piece of chalk as a phantom of a calculus to measure the sound radiated when impact is applied to the chalk by an impact hammer, it is found that the bending vibration component of the vibration is exhibited in the spectrum of sound. However, for small-sized chalk shorter than 3 cm, the peak frequency of the bending vibration is higher than 20 kHz. From the experiments using a piezoeletric ESWL, it is found that there is clear difference in the power spectra among the sound radiated before the break, that radiated just after the break in the breaking process, and that radiated when the chalk does not exist at the focal point of the ESWL. These characteristics will be effective for the examination of the existence of the calculus at the focal point.
International Nuclear Information System (INIS)
Lell, R.M.; Hanan, N.A.
1987-01-01
Effects of multigroup neutron cross section generation procedures on core physics parameters for compact fast spectrum reactors have been examined. Homogeneous and space-dependent multigroup cross section sets were generated in 11 and 27 groups for a representative fast reactor core. These cross sections were used to compute various reactor physics parameters for the reference core. Coarse group structure and neglect of space-dependence in the generation procedure resulted in inaccurate computations of reactor flux and power distributions and in significant errors regarding estimates of core reactivity and control system worth. Delayed neutron fraction was insensitive to cross section treatment, and computed reactivity coefficients were only slightly sensitive. However, neutron lifetime was found to be very sensitive to cross section treatment. Deficiencies in multigroup cross sections are reflected in core nuclear design and, consequently, in system mechanical design
Adaptive estimation of a time-varying phase with a power-law spectrum via continuous squeezed states
Dinani, Hossein T.; Berry, Dominic W.
2017-06-01
When measuring a time-varying phase, the standard quantum limit and Heisenberg limit as usually defined, for a constant phase, do not apply. If the phase has Gaussian statistics and a power-law spectrum 1 /|ω| p with p >1 , then the generalized standard quantum limit and Heisenberg limit have recently been found to have scalings of 1 /N(p -1 )/p and 1 /N2 (p -1 )/(p +1 ) , respectively, where N is the mean photon flux. We show that this Heisenberg scaling can be achieved via adaptive measurements on squeezed states. We predict the experimental parameters analytically, and test them with numerical simulations. Previous work had considered the special case of p =2 .
Afdala, Adfal; Nuryani, Nuryani; Satrio Nugroho, Anto
2017-01-01
Atrial fibrillation (AF) is a disorder of the heart with fairly high mortality in adults. AF is a common heart arrythmia which is characterized by a missing or irregular contraction of atria. Therefore, finding a method to detect atrial fibrillation is necessary. In this article a system to detect atrial fibrillation has been proposed. Detection system utilized backpropagation artifical neural network. Data input in this method includes power spectrum density of R-peaks interval of electrocardiogram which is selected by wrapping method. This research uses parameter learning rate, momentum, epoch and hidden layer. System produces good performance with accuracy, sensitivity, and specificity of 83.55%, 86.72 % and 81.47 %, respectively.
Constraining Reionization with the z ˜ 5-6 Lyα Forest Power Spectrum: The Outlook after Planck
Oñorbe, J.; Hennawi, J. F.; Lukić, Z.; Walther, M.
2017-09-01
The latest measurements of cosmic microwave background electron-scattering optical depth reported by Planck significantly reduces the allowed space of {{H}} {{I}} reionization models, pointing toward a later ending and/or less extended phase transition than previously believed. Reionization impulsively heats the intergalactic medium (IGM) to ˜ {10}4 {{K}}, and owing to long cooling and dynamical times in the diffuse gas that are comparable to the Hubble time, memory of reionization heating is retained. Therefore, a late-ending reionization has significant implications for the structure of the z˜ 5{--}6 Lyα forest. Using state-of-the-art hydrodynamical simulations that allow us to vary the timing of reionization and its associated heat injection, we argue that extant thermal signatures from reionization can be detected via the Lyα forest power spectrum at 5noise ratio will allow distinguishing between different reionization scenarios.
Padgett, R; Kotre, C J
2005-01-01
This project aimed to produce programs to calculate the modulation transfer function (MTF), noise power spectrum (NPS) and detective quantum efficiency (DQE) of digital X-ray systems, given a suitable digital image. The MTF was calculated using the edge technique and the NPS was calculated from a flat field image. Both programs require a suitably edited DICOM image as input. The DQE was then calculated from the output of MTF and NPS programs. This required data external to the DQE program to estimate the number of quanta per mm2 in the beam which formed the NPS image. All three programs run independent of each other on a PC and require no special software to be installed. Results for MTF, NPS and DQE for a Philips AC3 CR system are presented. In addition, the results for MTF from a Siemens Duo CT scanner with a specially designed PTFE edge are also shown.
Energy Technology Data Exchange (ETDEWEB)
Castro Tejero, P.; Garayoa Roca, J.
2013-07-01
This paper examines the implementation of the spectrum of powers of the noise, NPS, as metric to characterize the noise, both in magnitude and in texture, for CT scans. The NPS found show that you for convolution filters that assume a greater softening in the reconstructed image, spectrum is concentrated in the low frequencies, while for filters sharp, the spectrum extends to high frequencies. In the analyzed cases, there is a low frequency component, largely due to the structure-borne noise, which can be a potential negative effect on the detectability of injuries. (Author)
Lower-power, high-linearity class-AB current-mode programmable gain amplifier
International Nuclear Information System (INIS)
Wu Yiqiang; Wang Zhigong; Wang Junliang; Ma Li; Xu Jian; Tang Lu
2014-01-01
A novel class-AB implementation of a current-mode programmable gain amplifier (CPGA) including a current-mode DC offset cancellation loop is presented. The proposed CPGA is based on a current amplifier and provides a current gain in a range of 40 dB with a 1 dB step. The CPGA is characterized by a wide range of current gain variation, a lower power dissipation, and a small chip size. The proposed circuit is fabricated using a 0.18 μm CMOS technology. The CPGA draws a current of less than 2.52 mA from a 1.8 V supply while occupying an active area of 0.099 μm 2 . The measured results show an overall gain variation from 10 to 50 dB with a gain error of less than 0.40 dB. The OP 1dB varies from 11.80 to 13.71 dBm, and the 3 dB bandwidth varies from 22.2 to 34.7 MHz over the whole gain range. (semiconductor integrated circuits)
Balaguera-Antolínez, A.; Bilicki, M.; Branchini, E.; Postiglione, A.
2018-05-01
Using the almost all-sky 2MASS Photometric Redshift catalogue (2MPZ) we perform for the first time a tomographic analysis of galaxy angular clustering in the local Universe (z baryon fraction fb=0.14^{+0.09}_{-0.06}, the total matter density parameter Ωm = 0.30 ± 0.06, and the effective linear bias of 2MPZ galaxies beff, which grows from 1.1^{+0.3}_{-0.4} at = 0.05 up to 2.1^{+0.3}_{-0.5} at = 0.2, largely because of the flux-limited nature of the data set. The results obtained here for the local Universe agree with those derived with the same methodology at higher redshifts, and confirm the importance of the tomographic technique for next-generation photometric surveys such as Euclid or Large Synoptic Survey Telescope.
δ M formalism and anisotropic chaotic inflation power spectrum
Talebian-Ashkezari, A.; Ahmadi, N.
2018-05-01
A new analytical approach to linear perturbations in anisotropic inflation has been introduced in [A. Talebian-Ashkezari, N. Ahmadi and A.A. Abolhasani, JCAP 03 (2018) 001] under the name of δ M formalism. In this paper we apply the mentioned approach to a model of anisotropic inflation driven by a scalar field, coupled to the kinetic term of a vector field with a U(1) symmetry. The δ M formalism provides an efficient way of computing tensor-tensor, tensor-scalar as well as scalar-scalar 2-point correlations that are needed for the analysis of the observational features of an anisotropic model on the CMB. A comparison between δ M results and the tedious calculations using in-in formalism shows the aptitude of the δ M formalism in calculating accurate two point correlation functions between physical modes of the system.