WorldWideScience

Sample records for linear particle accelerators

  1. Linear particle accelerator

    International Nuclear Information System (INIS)

    Richards, J.A.

    1977-01-01

    A linear particle accelerator which provides a pulsed beam of charged particles of uniform energy is described. The accelerator is in the form of an evacuated dielectric tube, inside of which a particle source is located at one end of the tube, with a target or window located at the other end of the dielectric tube. Along the length of the tube are externally located pairs of metal plates, each insulated from each other in an insulated housing. Each of the plates of a pair are connected to an electrical source of voltage of opposed polarity, with the polarity of the voltage of the plates oriented so that the plate of a pair, nearer to the particle source, is of the opposed polarity to the charge of the particle emitted by the source. Thus, a first plate about the tube located nearest the particle source, attracts a particle which as it passes through the tube past the first plate is then repelled by the reverse polarity of the second plate of the pair to continue moving towards the target

  2. Multiperiodic accelerator structures for linear particle accelerators

    International Nuclear Information System (INIS)

    Tran, D.T.

    1975-01-01

    High efficiency linear accelerator structures, comprised of a succession of cylindrical resonant cavities for acceleration, are described. Coupling annular cavities are located at the periphery, each being coupled to two adjacent cylindrical cavities. (auth)

  3. When is quasi-linear theory exact. [particle acceleration

    Science.gov (United States)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  4. LINEAR ACCELERATOR

    Science.gov (United States)

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  5. Linear particle accelerator with seal structure between electrodes and insulators

    Science.gov (United States)

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  6. Stable particle motion in a linear accelerator with solenoid focusing

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1979-01-01

    The equation governing stable particle motion in a linear ion accelerator containing discrete rf and either discrete or continuous solenoid focusing was derived. It was found for discrete solenoid focusing that: cos μ = (1 + dΔ) cos theta/2 + (lΔ/theta - dtheta/2l - thetaΔd 2 /4l) sin theta/2, Δ = 1/f and l + 2d = βlambda, where μ, theta, f, l, and d are the phase advance per cell, precession angle in the solenoid, focal length of the rf lens, length of the solenoid in one cell, and the drift distance between the center of the rf gap and the effective edge of the solenoid. The relation for a continuous solenoid is found by setting d equal to zero. The boundaries of the stability region for theta vs Δ with fixed l and d are obtained when cos μ =+-1

  7. Linear Accelerators

    International Nuclear Information System (INIS)

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics

  8. On measuring charged particle bunch duration in linear accelerators

    International Nuclear Information System (INIS)

    Lomize, L.G.; Malykh, N.I.; Khizhnyj, V.I.; Yampol'skij, E.S.

    1977-01-01

    The process of measuring short bunches is simulated by means of cavity resonators in which HF fields are excited by both positive and negative ion bunches flying through them. The simulation is aimed to assess optimum operation of a linear accelerator. A set of bunches of chance form and duration is simulated. Then the simulation of the process of restoring the duration and shape of a bunch according to data obtained from a limited number of resonators is realized. The use of 3-4 resonators tuned to 3, 6, 9 and 12-th harmonics of bunch repetition rate is shown to be sufficient for determining bunch duration with an accuracy of several per cent. When data on harmonic phases is available, one can obtain information on beam asymmetry

  9. Accelerator structure for a charged particle linear accelerator working in standing wave mode

    International Nuclear Information System (INIS)

    Tran, D.T.; Tronc, Dominique.

    1977-01-01

    Charged particle accelerators generally include a pre-grouping or pre-accelerating structure associated with the accelerator structure itself. But pre-grouping or pre-accelerating structures of known type (Patent application No. 70 39261 for example) present electric and dimensional characteristics that rule them out for accelerators working at high frequencies (C or X bands for example), since the distance separating the interaction spaces becomes very small in this case. The accelerator structure mentioned in this invention can be used to advantage for such accelerators [fr

  10. Linear accelerator accelerating module to suppress back-acceleration of field-emitted particles

    Science.gov (United States)

    Benson, Stephen V.; Marhauser, Frank; Douglas, David R.; Ament, Lucas J. P.

    2017-12-05

    A method for the suppression of upstream-directed field emission in RF accelerators. The method is not restricted to a certain number of cavity cells, but requires similar operating field levels in all cavities to efficiently annihilate the once accumulated energy. Such a field balance is desirable to minimize dynamic RF losses, but not necessarily achievable in reality depending on individual cavity performance, such as early Q.sub.0-drop or quench field. The method enables a significant energy reduction for upstream-directed electrons within a relatively short distance. As a result of the suppression of upstream-directed field emission, electrons will impact surfaces at rather low energies leading to reduction of dark current and less issues with heating and damage of accelerator components as well as radiation levels including neutron generation and thus radio-activation.

  11. Stability of the particle transverse motion in an electron linear accelerator with beam recirculation

    International Nuclear Information System (INIS)

    Volodin, V.A.

    1979-01-01

    Conditions, under which beam transverse instabilities appear in the electron linear accelerator (ELA) with a double particle acceleration due to excitation of asymmetric stray waves in the accelerating waveguide, and their peculiarities have been investigated. It is shown that in the ELA with beam recirculation the conditions under which the beam transverse instability appears can be determined with the help of the ''interaction function'' which depends on both the accelerating structure and the focusing in the beam transport channel. Comparison is made with characteristics of this phenomenon in conventional ELA, and possible reasons for the decrease of a starting current in ELA with recirculation are shown

  12. Effect of strong-focusing field distortions on particle motion in a linear accelerator

    International Nuclear Information System (INIS)

    Bondarev, B.I.; Durkin, A.P.; Solov'ev, L.Yu.

    1979-01-01

    The increased sensitivity of quadrupole focusing channel used in the highenergetic part of the linear accelerator makes it necessary to pay serious attention to the effect of various distortions of focusing fields on the transverse motion of the beam. The distortions may cause the inadmissible losses of particles in the accelerator. To achieve this aim the main equation of disturbed motion of particles in the linear accelerator, obtained by analogy with the cyclic accelerator theory is presented. The investigation of the solutions of this equation has permitted to obtain the analytical formulas for the estimation of the beam size increase under the effect of focusing field distortions of various types, such as structural non-linearity, gradient errors, random non-linearity, channel axis deformation. While studying the effect of structural non-linearity considered are the resonance effects and obtained are the relations describing the maximum beam size increase in the channel of the linear accelerator in the presence and in the absence of the resonance

  13. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    International Nuclear Information System (INIS)

    Batygin, Y.

    2004-01-01

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented

  14. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Y.

    2004-10-28

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented.

  15. Object-Oriented Parallel Particle-in-Cell Code for Beam Dynamics Simulation in Linear Accelerators

    International Nuclear Information System (INIS)

    Qiang, J.; Ryne, R.D.; Habib, S.; Decky, V.

    1999-01-01

    In this paper, we present an object-oriented three-dimensional parallel particle-in-cell code for beam dynamics simulation in linear accelerators. A two-dimensional parallel domain decomposition approach is employed within a message passing programming paradigm along with a dynamic load balancing. Implementing object-oriented software design provides the code with better maintainability, reusability, and extensibility compared with conventional structure based code. This also helps to encapsulate the details of communications syntax. Performance tests on SGI/Cray T3E-900 and SGI Origin 2000 machines show good scalability of the object-oriented code. Some important features of this code also include employing symplectic integration with linear maps of external focusing elements and using z as the independent variable, typical in accelerators. A successful application was done to simulate beam transport through three superconducting sections in the APT linac design

  16. Design of Linear Accelerator (LINAC) tanks for proton therapy via Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) approaches

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, T.; De Palma, L.; Laneve, D.; Strippoli, V.; Cuccovilllo, A.; Prudenzano, F. [Electrical and Information Engineering Department (DEI), Polytechnic Institute of Bari, 4 Orabona Street, CAP 70125, Bari, (Italy); Dimiccoli, V.; Losito, O.; Prisco, R. [ITEL Telecomunicazioni, 39 Labriola Street, CAP 70037, Ruvo di Puglia, Bari, (Italy)

    2015-07-01

    A homemade computer code for designing a Side- Coupled Linear Accelerator (SCL) is written. It integrates a simplified model of SCL tanks with the Particle Swarm Optimization (PSO) algorithm. The computer code main aim is to obtain useful guidelines for the design of Linear Accelerator (LINAC) resonant cavities. The design procedure, assisted via the aforesaid approach seems very promising, allowing future improvements towards the optimization of actual accelerating geometries. (authors)

  17. Design of Linear Accelerator (LINAC) tanks for proton therapy via Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) approaches

    International Nuclear Information System (INIS)

    Castellano, T.; De Palma, L.; Laneve, D.; Strippoli, V.; Cuccovilllo, A.; Prudenzano, F.; Dimiccoli, V.; Losito, O.; Prisco, R.

    2015-01-01

    A homemade computer code for designing a Side- Coupled Linear Accelerator (SCL) is written. It integrates a simplified model of SCL tanks with the Particle Swarm Optimization (PSO) algorithm. The computer code main aim is to obtain useful guidelines for the design of Linear Accelerator (LINAC) resonant cavities. The design procedure, assisted via the aforesaid approach seems very promising, allowing future improvements towards the optimization of actual accelerating geometries. (authors)

  18. HEAVY ION LINEAR ACCELERATOR

    Science.gov (United States)

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  19. Introduction to RF linear accelerators

    International Nuclear Information System (INIS)

    Weiss, M.

    1994-01-01

    The basic features of RF linear accelerators are described. The concept of the 'loaded cavity', essential for the synchronism wave-particle, is introduced, and formulae describing the action of electromagnetic fields on the beam are given. The treatment of intense beams is mentioned, and various existing linear accelerators are presented as examples. (orig.)

  20. Linear induction accelerators

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1986-06-01

    The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs

  1. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  2. The Study of Non-Linear Acceleration of Particles during Substorms Using Multi-Scale Simulations

    International Nuclear Information System (INIS)

    Ashour-Abdalla, Maha

    2011-01-01

    To understand particle acceleration during magnetospheric substorms we must consider the problem on multple scales ranging from the large scale changes in the entire magnetosphere to the microphysics of wave particle interactions. In this paper we present two examples that demonstrate the complexity of substorm particle acceleration and its multi-scale nature. The first substorm provided us with an excellent example of ion acceleration. On March 1, 2008 four THEMIS spacecraft were in a line extending from 8 R E to 23 R E in the magnetotail during a very large substorm during which ions were accelerated to >500 keV. We used a combination of a global magnetohydrodynamic and large scale kinetic simulations to model the ion acceleration and found that the ions gained energy by non-adiabatic trajectories across the substorm electric field in a narrow region extending across the magnetotail between x = -10 R E and x = -15 R E . In this strip called the 'wall region' the ions move rapidly in azimuth and gain 100s of keV. In the second example we studied the acceleration of electrons associated with a pair of dipolarization fronts during a substorm on February 15, 2008. During this substorm three THEMIS spacecraft were grouped in the near-Earth magnetotail (x ∼-10 R E ) and observed electron acceleration of >100 keV accompanied by intense plasma waves. We used the MHD simulations and analytic theory to show that adiabatic motion (betatron and Fermi acceleration) was insufficient to account for the electron acceleration and that kinetic processes associated with the plasma waves were important.

  3. Superconducting linear accelerator cryostat

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.

    1984-01-01

    A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)

  4. Racetrack linear accelerators

    International Nuclear Information System (INIS)

    Rowe, C.H.; Wilton, M.S. de.

    1979-01-01

    An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)

  5. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  6. Particle accelerator

    International Nuclear Information System (INIS)

    Ress, R.I.

    1976-01-01

    Charged particles are entrained in a predetermined direction, independent of their polarity, in a circular orbit by a magnetic field rotating at high speed about an axis in a closed cylindrical or toroidal vessel. The field may be generated by a cylindrical laser structure, whose beam is polygonally reflected from the walls of an excited cavity centered on the axis, or by high-frequency energization of a set of electromagnets perpendicular to the axis. In the latter case, a separate magnetostatic axial field limits the orbital radius of the particles. These rotating and stationary magnetic fields may be generated centrally or by individual magnets peripherally spaced along its circular orbit. Chemical or nuclear reactions can be induced by collisions between the orbiting particles and an injected reactant, or by diverting high-speed particles from one doughnut into the path of counterrotating particles in an adjoining doughnut

  7. Hospital-based proton linear accelerator for particle therapy and radioisotope production

    Science.gov (United States)

    Lennox, Arlene J.

    1991-05-01

    Taking advantage of recent advances in linear accelerator technology, it is possible for a hospital to use a 70 MeV proton linac for fast neutron therapy, boron neutron capture therapy, proton therapy for ocular melanomas, and production of radiopharmaceuticals. The linac can also inject protons into a synchrotron for proton therapy of deep-seated tumors. With 180 μA average current, a single linac can support all these applications. This paper presents a conceptual design for a medical proton linac, switchyard, treatment rooms, and isotope production rooms. Special requirements for each application are outlined and a layout for sharing beam among the applications is suggested.

  8. Accelerators of atomic particles

    International Nuclear Information System (INIS)

    Sarancev, V.

    1975-01-01

    A brief survey is presented of accelerators and methods of accelerating elementary particles. The principle of collective accelerating of elementary particles is clarified and the problems are discussed of its realization. (B.S.)

  9. An adaptive feedback controller for transverse angle and position jitter correction in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1993-01-01

    It is desired to design a position and angle jitter control system for pulsed linear accelerators that will increase the accuracy of correction over that achieved by currently used standard feedback jitter control systems. Interpulse or pulse-to-pulse correction is performed using the average value of each macropulse. The configuration of such a system resembles that of a standard feedback correction system with the addition of an adaptive controller that dynamically adjusts the gain-phase contour of the feedback electronics. The adaptive controller makes changes to the analog feedback system between macropulses. A simulation of such a system using real measured jitter data from the Stanford Linear Collider was shown to decrease the average rms jitter by over two and a half times. The system also increased and stabilized the correction at high frequencies; a typical problem with standard feedback systems

  10. An adaptive feedback controller for transverse angle and position jitter correction in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1992-01-01

    It is desired to design a position and angle jitter control system for pulsed linear accelerators that will increase the accuracy of correction over that achieved by currently used standard feedback jitter control systems. Interpulse or pulse-to-pulse correction is performed using the average value of each macropulse. The configuration of such a system resembles that of a standard feedback correction system with the addition of an adaptive controller that dynamically adjusts the gain-phase contour of the feedback electronics. The adaptive controller makes changes to the analog feedback system between macropulses. A simulation of such a system using real measured jitter data from the Stanford Linear Collider was shown to decrease the average rms jitter by over two and a half times. The system also increased and stabilized the correction at high frequencies; a typical problem with standard feedback systems

  11. PIGMI linear-accelerator technology

    International Nuclear Information System (INIS)

    Boyd, T.J.; Crandall, K.R.; Hamm, R.W.

    1981-01-01

    A new linear-accelerator technology has been developed that makes pi-meson (pion) generation possible for cancer therapy in the setting of a major hospital center. This technology uses several new major inventions in particle accelerator science-such as a new accelerator system called the radio-frequency quadrupole (RFQ), and permanent-magnet drift-tube focusing-to substantially reduce the size, cost, and complexity of a meson factory for this use. This paper describes this technology, discusses other possible uses for these new developments, and finally discusses possible costs for such installations

  12. RF linear accelerators

    CERN Document Server

    Wangler, Thomas P

    2008-01-01

    Thomas P. Wangler received his B.S. degree in physics from Michigan State University, and his Ph.D. degree in physics and astronomy from the University of Wisconsin. After postdoctoral appointments at the University of Wisconsin and Brookhaven National Laboratory, he joined the staff of Argonne National Laboratory in 1966, working in the fields of experimental high-energy physics and accelerator physics. He joined the Accelerator Technology Division at Los Alamos National Laboratory in 1979, where he specialized in high-current beam physics and linear accelerator design and technology. In 2007

  13. Dosimetry and monitoring of thin X-ray beam produced by linear particle accelerator, for application in radiography

    International Nuclear Information System (INIS)

    Campos, J.C.F. de.

    1986-01-01

    The dosimetry and monitoring characteristics of thin X-ray beams, and the application of 4MeV linear particle accelerator to radiosurgery are studied. An addition collimation system, consisted of 3 lead collimators, which allows to obtain thin beams of 6,10 and 15 mm of diameter, was fabricated. The stereo taxic system, together with modifications in dispositives, provide the accuracy required in volum-targed location. The dosimetric informations were determined with silicon detector inserted into water simulator. The isodose curves for each beam, and total isodoses simulating the treatment were established using radiographic emulsions in conditions which reproduce real circunstances of pacient irradiation. (M.C.K.) [pt

  14. Parallel beam dynamics simulation of linear accelerators

    International Nuclear Information System (INIS)

    Qiang, Ji; Ryne, Robert D.

    2002-01-01

    In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity beams and to the study of beam transport in a proposed accelerator for the development of accelerator-driven waste transmutation technologies

  15. Linear induction accelerator

    Science.gov (United States)

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  16. Dynamics and acceleration in linear structures

    International Nuclear Information System (INIS)

    Le Duff, J.

    1985-06-01

    Basic methods of linear acceleration are reviewed. Both cases of non relativistic and ultra relativistic particles are considered. Induction linac, radiofrequency quadrupole are mentioned. Fundamental parameters of accelerating structures are recalled; they are transit time factor, shunt impedance, quality factor and stored energy, phase velocity and group velocity, filling time, space harmonics in loaded waveguides. Energy gain in linear accelerating structures is considered through standing wave structures and travelling wave structures. Then particle dynamics in linear accelerators is studied: longitudinal motion, transverse motion and dynamics in RFQ

  17. Applications of particle accelerators

    International Nuclear Information System (INIS)

    Barbalat, O.

    1994-01-01

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  18. Non-Linear Transmission Line (NLTL) Microwave Source Lecture Notes the United States Particle Accelerator School

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Steven J. [Los Alamos National Laboratory; Carlsten, Bruce E. [Los Alamos National Laboratory

    2012-06-26

    We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.

  19. Equipartitioning in linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1982-01-01

    Emittance growth has long been a concern in linear accelerators, as has the idea that some kind of energy balance, or equipartitioning, between the degrees of freedom, would ameliorate the growth. M. Prome observed that the average transverse and longitudinal velocity spreads tend to equalize as current in the channel is increased, while the sum of the energy in the system stays nearly constant. However, only recently have we shown that an equipartitioning requirement on a bunched injected beam can indeed produce remarkably small emittance growth. The simple set of equations leading to this condition are outlined. At the same time, Hofmann has investigated collective instabilities in transported beams and has identified thresholds and regions in parameter space where instabilities occur. Evidence is presented that shows transport system boundaries to be quite accurate in computer simulations of accelerating systems. Discussed are preliminary results of efforts to design accelerators that avoid parameter regions where emittance is affected by the instabilities identified by Hofmann. These efforts suggest that other mechanisms are present. The complicated behavior of the RFQ linac in this framework also is shown

  20. Equipartitioning in linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1981-01-01

    Emittance growth has long been a concern in linear accelerators, as has the idea that some kind of energy balance, or equipartitioning, between the degrees of freedom, would ameliorate the growth. M. Prome observed that the average transverse and longitudinal velocity spreads tend to equalize as current in the channel is increased, while the sum of the energy in the system stays nearly constant. However, only recently have we shown that an equipartitioning requirement on a bunched injected beam can indeed produce remarkably small emittance growth. The simple set of equations leading to this condition are outlined below. At the same time, Hofmann, using powerful analytical and computational methods, has investigated collective instabilities in transported beams and has identified thresholds and regions in parameter space where instabilities occur. This is an important generalization. Work that he will present at this conference shows that the results are essentially the same in r-z coordinates for transport systems, and evidence is presented that shows transport system boundaries to be quite accurate in computer simulations of accelerating systems also. Discussed are preliminary results of efforts to design accelerators that avoid parameter regions where emittance is affected by the instabilities identified by Hofmann. These efforts suggest that other mechanisms are present. The complicated behavior of the RFQ linac in this framework also is shown

  1. Development of a relativistic Particle In Cell code PARTDYN for linear accelerator beam transport

    Energy Technology Data Exchange (ETDEWEB)

    Phadte, D., E-mail: deepraj@rrcat.gov.in [LPD, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Patidar, C.B.; Pal, M.K. [MAASD, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2017-04-11

    A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows both ease of development as well higher performance similar to a compiled language like C. The beam dynamics calculations carried out by the code are compared with analytical results and with other well developed codes like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low Energy Beam Transport (LEBT) using PARTDYN have been presented.

  2. Linear Accelerator Laboratory

    International Nuclear Information System (INIS)

    1976-01-01

    This report covers the activity of the Linear Accelerator Laboratory during the period June 1974-June 1976. The activity of the Laboratory is essentially centered on high energy physics. The main activities were: experiments performed with the colliding rings (ACO), construction of the new colliding rings and beginning of the work at higher energy (DCI), bubble chamber experiments with the CERN PS neutrino beam, counter experiments with CERN's PS and setting-up of equipment for new experiments with CERN's SPS. During this period a project has also been prepared for an experiment with the new PETRA colliding ring at Hamburg. On the other hand, intense collaboration with the LURE Laboratory, using the electron synchrotron radiation emitted by ACO and DCI, has been developed [fr

  3. Quasi-linear theory and transport theory. [particle acceleration in interplanetary medium

    Science.gov (United States)

    Smith, Charles W.

    1992-01-01

    The theory of energetic particle scattering by magnetostatic fluctuations is reviewed in so far as it fails to produce the rigidity-independent mean-free-paths observed. Basic aspects of interplanetary magnetic field fluctuations are reviewed with emphasis placed on the existence of dissipation range spectra at high wavenumbers. These spectra are then incorporated into existing theories for resonant magnetostatic scattering and are shown to yield infinite mean-free-paths. Nonresonant scattering in the form of magnetic mirroring is examined and offered as a partial solution to the magnetostatic problem. In the process, mean-free-paths are obtained in good agreement with observations in the interplanetary medium at 1 AU and upstream of planetary bow shocks.

  4. Particle accelerators in the Czech lands

    International Nuclear Information System (INIS)

    Janovsky, I.

    2007-01-01

    The paper is structured as follows: A short look into history of accelerators; Particle accelerators in the Czech lands (Accelerators at the Institute of Nuclear Physics; Accelerators at the Faculty of Mathematics and Physics, Charles University; Czechoslovak betatron, accelerators for non-destructive testing and radiotherapy; Czechoslovak high-frequency linear electron accelerator; Czechoslovak-Soviet microtron; Accelerators at the State Research Institute of Textiles; Accelerators at the Kablo Vrchlabi plant; and Cyclotrons in the medical sector. (P.A.)

  5. Particle beam accelerator

    International Nuclear Information System (INIS)

    Turner, N.L.

    1982-01-01

    A particle beam accelerator is described which has several electrodes that are selectively short circuited together synchronously with changes in the magnitude of a DC voltage applied to the accelerator. By this method a substantially constant voltage gradient is maintained along the length of the unshortened electrodes despite variations in the energy applied to the beam by the accelerator. The invention has particular application to accelerating ion beams that are implanted into semiconductor wafers. (U.K.)

  6. Plasma particle accelerators

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1988-01-01

    The Superconducting Supercollider (SSC) will require an 87-kilometer accelerator ring to boost particles to 40 TeV. The SSC's size is due in part to the fact that its operating principle is the same one that has dominated accelerator design for 50 years: it guides particles by means of magnetic fields and propels them by strong electric fields. If one were to build an equally powerful but smaller accelerator, one would need to increase the strength of the guiding and propelling fields. Actually, however, conventional technology may not be able to provide significant increases in field strength. There are two reasons. First, the forces from magnetic fields are becoming greater than the structural forces that hold a magnetic material together; the magnets that produce these fields would themselves be torn apart. Second, the energy from electric fields is reaching the energies that bind electrons to atoms; it would tear electrons from nuclei in the accelerator's support structures. It is the electric field problem that plasma accelerators can overcome. Plasma particle accelerators are based on the principle that particles can be accelerated by the electric fields generated within a plasma. Because the plasma has already been ionized, plasma particle accelerators are not susceptible to electron dissociation. They can in theory sustain accelerating fields thousands of times stronger that conventional technologies. So far two methods for creating plasma waves for accelerators have been proposed and tested: the wakefield and the beat wave. Although promising electric fields have been produced, more research is necessary to determine whether plasma particle accelerators can compete with the existing accelerators. 7 figs

  7. Compact particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo-Decanini, Juan M.

    2017-08-29

    A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes the particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.

  8. Linear accelerator: A concept

    Science.gov (United States)

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  9. Automatic frequency control system for driving a linear accelerator

    International Nuclear Information System (INIS)

    Helgesson, A.L.

    1976-01-01

    An automatic frequency control system is described for maintaining the drive frequency applied to a linear accelerator to produce maximum particle output from the accelerator. The particle output amplitude is measured and the frequency of the radio frequency source powering the linear accelerator is adjusted to maximize particle output amplitude

  10. Linear Accelerator (LINAC)

    Science.gov (United States)

    ... uses microwave technology (similar to that used for radar) to accelerate electrons in a part of the accelerator called the "wave guide," then allows ... risk of accidental exposure is extremely low. top of page This page was ... No Please type your comment or suggestion into the following text ...

  11. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  12. An active particle accelerator

    International Nuclear Information System (INIS)

    Goldman, T.

    1991-01-01

    Although a static charge is difficult to maintain on macroscopic particles, it is straightforward to construct a small object with a regularly oscillating electric dipole moment. For objects of a given size, one may then construct an accelerator by appropriately matching the frequency and separations of an external array of electrodes to this size. Physically feasible size ranges, an accelerator design, and possible applications of such systems are discussed. 8 refs., 9 figs

  13. Charged particle accelerator

    International Nuclear Information System (INIS)

    Arakawa, Kazuo.

    1969-01-01

    An accelerator is disclosed having a device which permits the electrodes of an accelerator tube to be readily conditioned in an uncomplicated manner before commencing operation. In particle accelerators, it is necessary to condition the accelerator electrodes before a stable high voltage can be applied. Large current accelerators of the cockcroft-walton type require a complicated manual operation which entails applying to the electrodes a low voltage which is gradually increased to induce a vacuum discharge and then terminated. When the discharge attains an extremely low level, the voltage is again impressed and again raised to a high value in low current type accelerators, a high voltage power supply charges the electrodes once to induce discharge followed by reapplying the voltage when the vacuum discharge reaches a low level, according to which high voltage is automatically applied. This procedure, however, requires that the high voltage power supply be provided with a large internal resistance to limit the current to within several milliamps. The present invention connects a high voltage power supply and an accelerator tube through a discharge current limiting resistor wired in parallel with a switch. Initially, the switch is opened enabling the power supply to impress a voltage limited to a prescribed value by a suitably chosen resistor. Conditioning is effected by allowing the voltage between electrodes to increase and is followed by closing the switch through which high voltage is applied directly to the accelerator for operation. (K.J. Owens)

  14. 1988 linear accelerator conference proceedings

    International Nuclear Information System (INIS)

    1989-06-01

    This report contains papers presented at the 1988 Linear Accelerator Conference. A few topics covered are beam dynamics; beam transport; superconducting components; free electron lasers; ion sources; and klystron research

  15. Determination of the 20 MeV linear accelerator, new injector for the synchrotron Saturne. Choice of the electrical and dynamical particle parameters

    International Nuclear Information System (INIS)

    Prome, M.

    1968-12-01

    This report takes place in the general determination of the 20 MeV linear accelerator which will be the new Saturne injector; it deals with particle dynamics. Starting from beam requirements at the output of the linac, cells lengths with variable synchronous phase angle, buncher and de-buncher parameters, beam emittances at the output in several phase spaces are successively determined. (author) [fr

  16. Cast dielectric composite linear accelerator

    Science.gov (United States)

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  17. A linear accelerator for simulated micrometeors.

    Science.gov (United States)

    Slattery, J. C.; Becker, D. G.; Hamermesh, B.; Roy, N. L.

    1973-01-01

    Review of the theory, design parameters, and construction details of a linear accelerator designed to impart meteoric velocities to charged microparticles in the 1- to 10-micron diameter range. The described linac is of the Sloan Lawrence type and, in a significant departure from conventional accelerator practice, is adapted to single particle operation by employing a square wave driving voltage with the frequency automatically adjusted from 12.5 to 125 kHz according to the variable velocity of each injected particle. Any output velocity up to about 30 km/sec can easily be selected, with a repetition rate of approximately two particles per minute.

  18. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  19. Radio frequency quadrupole resonator for linear accelerator

    Science.gov (United States)

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  20. Acceleration of polarized particles

    International Nuclear Information System (INIS)

    Buon, J.

    1992-05-01

    The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab

  1. Turbulence and particle acceleration

    International Nuclear Information System (INIS)

    Scott, J.S.

    1975-01-01

    A model for the production of high energy particles in the supernova remnant Cas A is considered. The ordered expansion of the fast moving knots produce turbulent cells in the ambient interstellar medium. The turbulent cells act as magnetic scattering centers and charged particles are accelerated to large energies by the second order Fermi mechanism. Model predictions are shown to be consistent with the observed shape and time dependence of the radio spectrum, and with the scale size of magnetic field irregularities. Assuming a galactic supernova rate at 1/50 yr -1 , this mechanism is capable of producing the observed galactic cosmic ray flux and spectrum below 10 16 eV/nucleon. Several observed features of galactic cosmic rays are shown to be consistent with model predictions. A model for the objects known as radio tall galaxies is also presented. Independent blobs of magnetized plasma emerging from an active radio galaxy into an intracluster medium become turbulent due to Rayleigh--Taylor and Kelvin--Helmholz instabilities. The turbulence produces both in situ betatron and 2nd order Fermi accelerations. Predictions of the dependence of spectral index and flux on distance along the tail match observations well. Fitting provides values of physical parameters in the blobs. The relevance of this method of particle acceleration for the problem of the origin of x-ray emission in clusters of galaxies is discussed

  2. Charged particle accelerator

    International Nuclear Information System (INIS)

    Ress, T.I.; Nolde, G.V.

    1974-01-01

    A charged particle accelerator is described. It is made of an enclosure arranged for channeling a stream of charged particles along a predetermined path, and propelling means juxtaposed to said enclosure for generating therein a magnetic field moving in a predetermined direction with respect to each point of said path, the magnetic flux vector of that field being transverse to that path at every point, which gives the particles, along said path, a velocity connected to that of the mobile field by a predetermined relation. This can be applied to the fast production of chemical compounds, to the emission of neutrons and of thermal energy, and to the production of mechanical energy for propelling space ships [fr

  3. Charged particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ress, T I; Nolde, G V

    1974-11-25

    A charged particle accelerator is described. It is made of an enclosure arranged for channeling a stream of charged particles along a predetermined path, and propelling means juxtaposed to the enclosure for generating a magnetic field moving in a predetermined direction with respect to each point of the path, the magnetic flux vector of that field being transverse to that path at every point, which gives the particles, along said path, a velocity connected to that of the mobile field by a predetermined relation. This can be applied to the fast production of chemical compounds, to the emission of neutrons and of thermal energy, and to the production of mechanical energy for propelling space ships.

  4. Radio frequency focused interdigital linear accelerator

    Science.gov (United States)

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  5. Test accelerator for linear collider

    International Nuclear Information System (INIS)

    Takeda, S.; Akai, K.; Akemoto, M.; Araki, S.; Hayano, H.; Hugo, T.; Ishihara, N.; Kawamoto, T.; Kimura, Y.; Kobayashi, H.; Kubo, T.; Kurokawa, S.; Matsumoto, H.; Mizuno, H.; Odagiri, J.; Otake, Y.; Sakai, H.; Shidara, T.; Shintake, T.; Suetake, M.; Takashima, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yamamoto, N.; Yokoya, K.; Yoshida, M.; Yoshioka, M.; Yamaoka, Y.

    1989-01-01

    KEK has proposed to build Test Accelerator Facility (TAF) capable of producing a 2.5 GeV electron beam for the purpose of stimulating R ampersand D for linear collider in TeV region. The TAF consists of a 1.5 GeV S-band linear accelerator, 1.5 GeV damping ring and 1.0 GeV X-band linear accelerator. The TAF project will be carried forward in three phases. Through Phase-I and Phase-II, the S-band and X-band linacs will be constructed, and in Phase-III, the damping ring will be completed. The construction of TAF Phase-I has started, and the 0.2 GeV S-band injector linac has been almost completed. The Phase-I linac is composed of a 240 keV electron gun, subharmonic bunchers, prebunchers and traveling buncher followed by high-gradient accelerating structures. The SLAC 5045 klystrons are driven at 450 kV in order to obtain the rf-power of 100 MW in a 1 μs pulse duration. The rf-power from a pair of klystrons are combined into an accelerating structure. The accelerating gradient up to 100 MeV/m will be obtained in a 0.6 m long structure. 5 refs., 3 figs., 2 tabs

  6. Linear resonance acceleration of pellets

    International Nuclear Information System (INIS)

    Mills, R.G.

    1978-01-01

    A possible requirement for the acceleration of macroscopic pellets to velocities exceeding 10 4 meters per second implies the development of new apparatus. A satisfactory approach might be the linear resonance accelerator. Such apparatus would require the charging of pellets to very high values not yet demonstrated. The incompatibility of phase stability with radial stability in these machines may require abandoning phase stability and adopting feedback control of the accelerating voltage to accommodate statistical fluctuations in the charge to mass ratio of successive pellets

  7. Particle Accelerator Focus Automation

    Science.gov (United States)

    Lopes, José; Rocha, Jorge; Redondo, Luís; Cruz, João

    2017-08-01

    The Laboratório de Aceleradores e Tecnologias de Radiação (LATR) at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST) has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+) and proton (H+) beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.

  8. Particle Accelerator Focus Automation

    Directory of Open Access Journals (Sweden)

    Lopes José

    2017-08-01

    Full Text Available The Laboratório de Aceleradores e Tecnologias de Radiação (LATR at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+ and proton (H+ beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.

  9. Laser driven particle acceleration

    International Nuclear Information System (INIS)

    Faure, J.

    2009-06-01

    This dissertation summarizes the last ten years of research at the Laboratory of Applied Optics on laser-plasma based electron acceleration. The main result consists of the development and study of a relativistic electron source with unique properties: high energy (100-300 MeV) in short distances (few millimeters), mono-energetic, ultra-short (few fs), stable and tunable. The manuscript describes the steps that led to understanding the physics, and then mastering it in order to produce this new electron source. Non linear propagation of the laser pulse in the plasma is first presented, with phenomena such as non linear wakefield excitation, relativistic and ponderomotive self-focusing in the short pulse regime, self-compression. Acceleration and injection of electrons are then reviewed from a theoretical perspective. Experimental demonstrations of self-injection in the bubble regime and then colliding pulse injection are then presented. These experiments were among the first to produce monoenergetic, high quality, stable and tunable electron beams from a laser-plasma accelerator. The last two chapters are dedicated to the characterization of the electron beam using transition radiation and to its applications to gamma radiography and radiotherapy. Finally, the perspectives of this research are presented in the conclusion. Scaling laws are used to determine the parameters that the electron beams will reach using peta-watt laser systems currently under construction. (author)

  10. Particle acceleration by pulsars

    International Nuclear Information System (INIS)

    Arons, Jonathan.

    1980-06-01

    The evidence that pulsars accelerate relativistic particles is reviewed, with emphasis on the γ-ray observations. The current state of knowledge of acceleration in strong waves is summarized, with emphasis on the inability of consistent theories to accelerate very high energy particles without converting too much energy into high energy photons. The state of viable models for pair creation by pulsars is summarized, with the conclusion that pulsars very likely lose rotational energy in winds instead of in superluminous strong waves. The relation of the pair creation models to γ-ray observations and to soft X-ray observations of pulsars is outlined, with the conclusion that energetically viable models may exist, but none have yet yielded useful agreement with the extant data. Some paths for overcoming present problems are discussed. The relation of the favored models to cosmic rays is discussed. It is pointed out that the pairs made by the models may have observable consequences for observation of positrons in the local cosmic ray flux and for observations of the 511 keV line from the interstellar medium. Another new point is that asymmetry of plasma supply from at least one of the models may qualitatively explain the gross asymmetry of the X-ray emission from the Crab nebula. It is also argued that acceleration of cosmic ray nuclei by pulsars, while energetically possible, can occur only at the boundary of the bubbles blown by the pulsars, if the cosmic ray composition is to be anything like that of the known source spectrum

  11. Linear accelerators of the future

    International Nuclear Information System (INIS)

    Loew, G.A.

    1986-07-01

    Some of the requirements imposed on future linear accelerators to be used in electron-positron colliders are reviewed, as well as some approaches presently being examined for meeting those requirements. RF sources for use in these linacs are described, as well as wakefields, single bunches, and multiple-bunch trains

  12. Linear accelerator for radioisotope production

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-μA source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-μA beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-μA beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons

  13. Chicago particle accelerator conference

    International Nuclear Information System (INIS)

    Southworth, Brian

    1989-01-01

    Naturally, emphasis at the Particle Accelerator Conference in Chicago in March was on work in the US, just as the newly instituted European Particle Accelerator Conference places emphasis on work in the 'old continent'. All will come together at the international conference in Japan in August. The proposed US Superconducting Supercollider (SSC) was highlighted in the opening talk at Chicago. Progress on this inchoate project to explore the TeV (1000 GeV) energy region by colliding 20 TeV proton beams was reported by the recently-appointed Director of the SSC Laboratory, Roy Schwitters. He reviewed the physics challenges and described progress and plans towards full authorization of construction.This year, the SSC conceptual design will be transformed into a 'site specific' report, now that the location at Waxahachie in Ellis County, Texas, has been selected. The Central Design Group, based in Berkeley for the past few years, will soon move to the Waxahachie region. The top management structure is taking shape and an International Advisory Committee is being formed

  14. Chicago particle accelerator conference

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, Brian

    1989-06-15

    Naturally, emphasis at the Particle Accelerator Conference in Chicago in March was on work in the US, just as the newly instituted European Particle Accelerator Conference places emphasis on work in the 'old continent'. All will come together at the international conference in Japan in August. The proposed US Superconducting Supercollider (SSC) was highlighted in the opening talk at Chicago. Progress on this inchoate project to explore the TeV (1000 GeV) energy region by colliding 20 TeV proton beams was reported by the recently-appointed Director of the SSC Laboratory, Roy Schwitters. He reviewed the physics challenges and described progress and plans towards full authorization of construction.This year, the SSC conceptual design will be transformed into a 'site specific' report, now that the location at Waxahachie in Ellis County, Texas, has been selected. The Central Design Group, based in Berkeley for the past few years, will soon move to the Waxahachie region. The top management structure is taking shape and an International Advisory Committee is being formed.

  15. Plasma based charged-particle accelerators

    International Nuclear Information System (INIS)

    Bingham, R; Mendonca, J T; Shukla, P K

    2004-01-01

    Studies of charged-particle acceleration processes remain one of the most important areas of research in laboratory, space and astrophysical plasmas. In this paper, we present the underlying physics and the present status of high gradient and high energy plasma accelerators. We will focus on the acceleration of charged particles to relativistic energies by plasma waves that are created by intense laser and particle beams. The generation of relativistic plasma waves by intense lasers or electron beams in plasmas is important in the quest for producing ultra-high acceleration gradients for accelerators. With the development of compact short pulse high brightness lasers and electron positron beams, new areas of studies for laser/particle beam-matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high acceleration gradients. These include the plasma beat wave accelerator mechanism, which uses conventional long pulse (∼100 ps) modest intensity lasers (I ∼ 10 14 -10 16 W cm -2 ), the laser wakefield accelerator (LWFA), which uses the new breed of compact high brightness lasers ( 10 18 W cm -2 , the self-modulated LWFA concept, which combines elements of stimulated Raman forward scattering, and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches. In the ultra-high intensity regime, laser/particle beam-plasma interactions are highly nonlinear and relativistic, leading to new phenomena such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm -1 have been generated with particles being accelerated to 200 MeV over a distance of millimetre. Plasma wakefields driven by positron beams at the Stanford Linear Accelerator Center facility have accelerated the tail of the positron beam. In the near future

  16. Resent advance in electron linear accelerators

    International Nuclear Information System (INIS)

    Takeda, Seishi; Tsumori, Kunihiko; Takamuku, Setsuo; Okada, Toichi; Hayashi, Koichiro; Kawanishi, Masaharu

    1986-01-01

    In recently constructed electron linear accelerators, there has been remarkable advance both in acceleration of a high-current single bunch electron beam for radiation research and in generation of high accelerating gradient for high energy accelerators. The ISIR single bunch electron linear accelerator has been modified an injector to increase a high-current single bunch charge up to 67 nC, which is ten times greater than the single bunch charge expected in early stage of construction. The linear collider projects require a high accelerating gradient of the order of 100 MeV/m in the linear accelerators. High-current and high-gradient linear accelerators make it possible to obtain high-energy electron beam with small-scale linear accelerators. The advance in linear accelerators stimulates the applications of linear accelerators not only to fundamental research of science but also to industrial uses. (author)

  17. Rf system specifications for a linear accelerator

    International Nuclear Information System (INIS)

    Young, A.; Eaton, L.E.

    1992-01-01

    A linear accelerator contains many systems; however, the most complex and costly is the RF system. The goal of an RF system is usually simply stated as maintaining the phase and amplitude of the RF signal within a given tolerance to accelerate the charged particle beam. An RF system that drives a linear accelerator needs a complete system specification, which should contain specifications for all the subsystems (i.e., high-power RF, low-level RF, RF generation/distribution, and automation control). This paper defines a format for the specifications of these subsystems and discusses each RF subsystem independently to provide a comprehensive understanding of the function of each subsystem. This paper concludes with an example of a specification spreadsheet allowing one to input the specifications of a subsystem. Thus, some fundamental parameters (i.e., the cost and size) of the RF system can be determined

  18. Particle acceleration by electromagnetic pulses

    International Nuclear Information System (INIS)

    Lai, H.M.

    1982-01-01

    Particle interaction with plane electromagnetic pulses is studied. It is shown that particle acceleration by a wavy pulse, depending on the shape of the pulse, may not be small. Further, a diffusive-type particle acceleration by multiple weak pulses is described and discussed. (author)

  19. Single Particle Linear and Nonlinear Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y

    2004-06-25

    I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form.

  20. Single Particle Linear and Nonlinear Dynamics

    International Nuclear Information System (INIS)

    Cai, Y

    2004-01-01

    I will give a comprehensive review of existing particle tracking tools to assess long-term particle stability for small and large accelerators in the presence of realistic magnetic imperfections and machine misalignments. The emphasis will be on the tracking and analysis tools based upon the differential algebra, Lie operator, and ''polymorphism''. Using these tools, a uniform linear and non-linear analysis will be outlined as an application of the normal form

  1. Single particle dynamics in circular accelerators

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1986-10-01

    The purpose of this paper is to introduce the reader to the theory associated with the transverse dynamics of single particle, in circular accelerators. The discussion begins with a review of Hamiltonian dynamics and canonical transformations. The case of a single particle in a circular accelerator is considered with a discussion of non-linear terms and chromaticity. The canonical perturbation theory is presented and nonlinear resonances are considered. Finally, the concept of renormalization and residue criterion are examined. (FI)

  2. Particle acceleration in binaries

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Cygnus X-3 massive binary system is one of the powerful sources of radio and X-ray emission consisting of an accreting compact object, probably a black hole, with a Wolf-Rayet star companion. Based on the detections of ultra high energy gamma-rays by Kiel and Havera Park, Cygnus X-3 has been proposed to be one of the most powerful sources of charged cosmic ray particles in the Galaxy. The results of long-term observations of the Cyg X-3 binary at energies 800 GeV–85 TeV detected by SHALON in 1995 are presented with images, integral spectra and spectral energy distribution. The identification of source with Cygnus X-3 detected by SHALON was secured by the detection of its 4.8 hour orbital period in TeV gamma-rays. During the whole observation period of Cyg X-3 with SHALON significant flux increases were detected at energies above 0.8 TeV. These TeV flux increases are correlated with flaring activity at a lower energy range of X-ray and/or at observations of Fermi LAT as well as with radio emission from the relativistic jets of Cygnus X-3. The variability of very high-energy gamma-radiation and correlation of radiation activity in the wide energy range can provide essential information on particle mechanism production up to very high energies. Whereas, modulation of very high energy emission connected to the orbital motion of the binary system, provides an understanding of the emission processes, nature and location of particle acceleration.

  3. The design and performance of a water cooling system for a prototype coupled cavity linear particle accelerator for the spallation neutron source

    International Nuclear Information System (INIS)

    Bernardin, John D.; Ammerman, Curtt N.; Hopkins, Steve M.

    2002-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. The SNS will generate and employ neutrons as a research tool in a variety of disciplines including biology, material science, superconductivity, chemistry, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of, in part, a multi-cell copper structure termed a coupled cavity linac (CCL). The CCL is responsible for accelerating the protons from an energy of 87 MeV, to 185 MeV. Acceleration of the charged protons is achieved by the use of large electrical field gradients established within specially designed contoured cavities of the CCL. While a large amount of the electrical energy is used to accelerate the protons, approximately 60-80% of this electrical energy is dissipated in the CCL's copper structure. To maintain an acceptable operating temperature, as well as minimize thermal stresses and maintain desired contours of the accelerator cavities, the electrical waste heat must be removed from the CCL structure. This is done using specially designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by a complex water cooling and temperature control system. This paper discusses the design, analysis, and testing of a water cooling system for a prototype CCL. First, the design concept and method of water temperature control is discussed. Second, the layout of the prototype water cooling system, including the selection of plumbing components, instrumentation, as well as controller hardware and software is presented. Next, the development of a numerical network model used to size the pump, heat exchanger, and plumbing equipment, is discussed. Finally, empirical pressure, flow rate, and temperature data from the prototype CCL

  4. Beam-intensity limitations in linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1981-01-01

    Recent demand for high-intensity beams of various particles has renewed interest in the investigation of beam current and beam quality limits in linear RF and induction accelerators and beam-transport channels. Previous theoretical work is reviewed, and new work on beam matching and stability is outlined. There is a real need for extending the theory to handle the time evolution of beam emittance; some present work toward this goal is described. The role of physical constraints in channel intensity limitation is emphasized. Work on optimizing channel performance, particularly at low particle velocities, has resulted in major technological advances. The opportunities for combining such channels into arrays are discussed. 50 references

  5. Particle accelerator; the Universe machine

    CERN Multimedia

    Yurkewicz, Katie

    2008-01-01

    "In summer 2008, scientists will switch on one of the largest machines in the world to search for the smallest of particle. CERN's Large Hadron Collider particle accelerator has the potential to chagne our understanding of the Universe."

  6. Particle acceleration by plasma waves

    International Nuclear Information System (INIS)

    Joshi, C.

    2006-01-01

    In an advanced particle accelerator particles are driven near by light velocity through ionized gas. Such plasma devices are compact, cost efficient and usable in many fields. Examples are given in detail. (GL)

  7. Particle acceleration in modified shocks

    International Nuclear Information System (INIS)

    Drury, L.O'C.; Axford, W.I.; Summers, D.

    1982-01-01

    Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed. (author)

  8. Particle acceleration in modified shocks

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.O' C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.)); Axford, W.I. (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany, F.R.)); Summers, D. (Memorial Univ. of Newfoundland, St. John' s (Canada))

    1982-03-01

    Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed.

  9. Ultra-high vacuum photoelectron linear accelerator

    Science.gov (United States)

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  10. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's 50th anniversary celebrations. Fifty candles for CERN, an international laboratory renowned for fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting exhibitions of plastic arts and performances entitled: Accelerated Particles. Several works will be exhibited and performed in two 'salons'. Salon des matières: An exhibition of plastic arts From Tues 12 October to Wed 3 November 2004 Tuesdays to Fridays: 16:00 to 19:00 Saturdays: 14:00 to 18:00 Exhibition open late on performance nights, entrance free Salon des particules: Musical and visual performances Tues 12 and Mon 25 October from 20:00 to 23:00 Preview evening for both events: Tues 12 October from 18:...

  11. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's fiftieth anniversary celebrations. The fiftieth anniversary of a world famous organization like CERN, an international laboratory specializing in fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting two "salons" consisting of an exhibition of plastic arts and evenings of music and visual arts performances with the collective title of "Accelerated Particles". Several works will be exhibited and performed. Salon des matières: An exhibition of plastic arts Until Wednesday 3 November 2004. Tuesdays to Fridays: 4.00 p.m. to 7.00 p.m. Saturdays: 2.00 p.m. to 6.00 p.m. Doors open late on the evening of the performances. Salon des ...

  12. New techniques for particle accelerators

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1990-06-01

    A review is presented of the new techniques which have been proposed for use in particle accelerators. Attention is focused upon those areas where significant progress has been made in the last two years--in particular, upon two-beam accelerators, wakefield accelerators, and plasma focusers. 26 refs., 5 figs., 1 tab

  13. Dusty-Plasma Particle Accelerator

    Science.gov (United States)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  14. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed ...

  15. Nonlinear dynamics in particle accelerators

    CERN Document Server

    Dilão, Rui

    1996-01-01

    This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev

  16. Particle acceleration in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Baker, K.B.

    1978-10-01

    The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied, using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star

  17. Delivery of single accelerated particles

    International Nuclear Information System (INIS)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.; Schimmerling, W.; Vosburgh, K.G.; Crebbin, K.; Everette, W.; Howard, J.

    1978-01-01

    It is desirable for certain experiments involving accelerators to have the capability of delivering just a single beam particle to the target area. The essential features of such a one-at-a-time facility are discussed. Two such facilities are described which were implemented at high-energy heavy ion accelerators without having to make major structural changes in the existing beam lines or substantially interfering with other accelerator uses. Two accelerator facilities are described which had the capability of delivering a single beam particle to the target area. This feature is necessary in certain experiments investigating visual phenomena induced by charged particles, other single particle interactions in biology, and other experiments in which the low intensities of cosmic rays need to be simulated. Both facilities were implemented without having to make structural changes in the existing beam lines or substantially interfering with other accelerator uses. (Auth.)

  18. Superconducting magnets for particle large accelerators

    International Nuclear Information System (INIS)

    Kircher, F.

    1994-01-01

    The different accelerator types (linear, circular) and the advantages of using superconductivity in particle accelerator are first reviewed. Characteristics of some large superconducting accelerators (Tevatron, HERA, RHIC, LHC CERN) are presented. The design features related to accelerator magnets are reviewed: magnet reproducibility, stability, field homogeneity, etc. and the selected design characteristics are discussed: manufacturing method, winding, shielding, cryostat. CEA involvement in this domain mainly addressing quadrupoles, is presented together with the Large Hadron Collider (LHC) project at CERN. Characteristics and design of detector magnets are also described. 5 figs., 2 tabs

  19. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Bottura, Luca; Yamamoto, Akira; Zlobin, Alexander V

    2016-01-01

    In this paper we summarize the evolution and contributions of superconducting magnets to particle accelerators as chronicled over the last 50 years of Particle Accelerator Conferences (PAC, NA-PAC and IPAC). We begin with an historical overview based primarily on PAC Proceedings augmented with references to key milestones in the development of superconducting magnets for particle accelerators. We then provide some illustrative examples of applications that have occurred over the past 50 years, focusing on those that have either been realized in practice or provided technical development for other projects, with discussion of possible future applications.

  20. 28th Linear Accelerator Conference

    CERN Document Server

    Facco, Alberto; McCausey, Amy; Schaa, Volker R W

    2017-01-01

    The 28th Linear Accelerator Conference, LINAC 16, to take place at the Kellogg Hotel and Conference Center in East Lansing, Michigan, on 25-30 September 2016. This conference is the main bi-yearly gathering for the world-wide community of linac specialists. It provides a unique opportunity to hear about the latest advances of projects and developments concerning hadron and lepton linacs, and their applications. In the tradition of previous LINAC conferences, plenary sessions including invited speakers are scheduled every day. Poster sessions will be held on Monday, Tuesday and Thursday afternoons. There will also be two special events on Sunday, 25 September 2016, namely a student poster session and an evening reception for registrants and their companions at the Kellogg Hotel and Conference Center. Participants are also warmly invited to join an outing to Lake Michigan and the beautiful surroundings on Wednesday afternoon, and to visit the Facility for Rare Isotope Beams on Friday afternoon, after the formal...

  1. Beam dynamics in stripline linear induction accelerators

    International Nuclear Information System (INIS)

    Adler, R.J.

    1983-01-01

    Stripline (parallel plate transmission line) pulsed power modules have been considered for application to advanced high current linear accelerators. Some advantages of the stripline designs include compact size, easy maintenance, and most importantly, the small number of switches required (one switch per 2 MeV). The principle drawback of stripline designs is that they impart a NET transverse force to particles in the gap. This is shown to result in randomized transverse momentum, and NET, constructive transverse guiding center motion. In this paper, a semi-quantitative analysis of several facets of the problem is presented

  2. An overview of collective effects in circular and linear accelerators

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1989-04-01

    The purpose of both linear and circular accelerator is, of course, to accelerate beams of charged particles. In order to do this it is necessary not only to accelerate particles but also to confine them transversely so that they remain in the vacuum environment. Originally, as accelerators were developed, the intensity of the beams was rather low and so the external fields could be applied without regard to the effects of the space-charge forces of the beams. However, as the demand for high intensity increased, collective effects that are due to the space-charge forces became increasingly important. In order to control a beam of particles we apply external fields. These focus the beam transversely and accelerate it and focus it longitudinally. In addition to these externally applied fields a particle within the beam feels a field due to the charge and current of all the other particles in the beam. By collective effects, we mean all those modifications to the beam behavior which are due to these beam-induced forces. The first two major topics discussed are linear and circular accelerators. In the linear accelerator case, we will consider as examples only electron linacs that have relatively high energy and so particles will have ν ≅ c. For circular accelerators we'll consider both protons and electrons or their anti-particles. The next two topics are single bunches and multi-bunches. In both linear accelerators and circular accelerators the particles have a bunched character because they are accelerated by an RF system, and the RF has a natural wavelength. The next two topics arise from the natural separation of longitudinal and transverse effects. 40 refs., 30 figs., 1 tab

  3. Lasers and new methods of particle acceleration

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    There has been a great progress in development of high power laser technology. Harnessing their potential for particle accelerators is a challenge and of great interest for development of future high energy colliders. The author discusses some of the advances and new methods of acceleration including plasma-based accelerators. The exponential increase in sophistication and power of all aspects of accelerator development and operation that has been demonstrated has been remarkable. This success has been driven by the inherent interest to gain new and deeper understanding of the universe around us. With the limitations of the conventional technology it may not be possible to meet the requirements of the future accelerators with demands for higher and higher energies and luminosities. It is believed that using the existing technology one can build a linear collider with about 1 TeV center of mass energy. However, it would be very difficult (or impossible) to build linear colliders with energies much above one or two TeV without a new method of acceleration. Laser driven high gradient accelerators are becoming more realistic and is expected to provide an alternative, (more compact, and more economical), to conventional accelerators in the future. The author discusses some of the new methods of particle acceleration, including laser and particle beam driven plasma based accelerators, near and far field accelerators. He also discusses the enhanced IFEL (Inverse Free Electron Laser) and NAIBEA (Nonlinear Amplification of Inverse-Beamstrahlung Electron Acceleration) schemes, laser driven photo-injector and the high energy physics requirements

  4. Particle accelerators and scientific culture

    International Nuclear Information System (INIS)

    Amaldi, U.

    1979-01-01

    A historical review of fifty years of physics around particle accelerators, from the first nuclear reactions produced by beams of artificially accelerated particles to the large multinational projects now under discussion. The aim is to show how the description of natural phenomena has been shaped by advances in theoretical understanding, the development of new techniques, and the characters of men. Large use has been made of quotations from many of the scientists involved. (Auth.)

  5. Particle accelerators and scientific culture

    International Nuclear Information System (INIS)

    Amaldi, U.

    1979-01-01

    A historical review of fifty years of physics around particle accelerators, from the first nuclear reactions produced by beams of artificially accelerated particles to the large multinational projects now under discussion. The aim is to show how our description of natural phenomena has been shaped by advances in theoretical understanding, the development of new techniques, and the characters of men. Large use has been made of quotations from many of the scientists involved. (Auth.)

  6. On the use of iterative techniques for feedforward control of transverse angle and position jitter in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1995-01-01

    It is possible to use feedforward predictive control for transverse position and trajectory-angle jitter correction. The control procedure is straightforward, but creation of the predictive filter is not as obvious. The two process tested were the least mean squares (LMS) and Kalman filter methods. The controller parameters calculated offline are downloaded to a real-time analog correction system between macropulses. These techniques worked well for both interpulse (pulse-to-pulse) correction and intrapulse (within a pulse) correction with the Kalman filter method being the clear winner. A simulation based on interpulse data taken at the Stanford Linear Collider showed an improvement factor of almost three in the average rms jitter over standard feedback techniques for the Kalman filter. An improvement factor of over three was found for the Kalman filter on intrapulse data taken at the Los Alamos Meson Physics Facility. The feedforward systems also improved the correction bandwidth. copyright 1995 American Institute of Physics

  7. On the use of iterative techniques for feedforward control of transverse angle and position jitter in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1994-01-01

    It is possible to use feedforward predictive control for transverse position and trajectory-angle jitter correction. The control procedure is straightforward, but creation of the predictive filter is not as obvious. The two processes tested were the least mean squares (LMS) and Kalman inter methods. The controller parameters calculated offline are downloaded to a real-time analog correction system between macropulses. These techniques worked well for both interpulse (pulse-to-pulse) correction and intrapulse (within a pulse) correction with the Kalman filter method being the clear winner. A simulation based on interpulse data taken at the Stanford Linear Collider showed an improvement factor of almost three in the average rms jitter over standard feedback techniques for the Kalman filter. An improvement factor of over three was found for the Kalman filter on intrapulse data taken at the Los Alamos Meson Physics Facility. The feedforward systems also improved the correction bandwidth

  8. Development of heavy ion linear accelerators

    International Nuclear Information System (INIS)

    Bomko, V.A.; Khizhnyak, N.A.

    1981-01-01

    A review of the known heavy ion accelerators is given. It is stated that cyclic and linear accelerators are the most perspective ones in the energy range up to 10 MeV/nucleon according to universality in respect with the possibility of ion acceleration of the wide mass range. However, according to the accelerated beam intensity of the heavier ions the linear accelerators have considerable advantages over any other types of accelerators. The review of the known heavy ion linac structures permits to make the conclusion that a new modification of an accelerating structure of opposite pins excited on a H-wave is the most perspective one [ru

  9. Recent progress in particle accelerators

    International Nuclear Information System (INIS)

    Cole, F.T.; Mills, F.E.

    1988-01-01

    Many accelerators have also been built for medical radiography and therapy. Electron accelerators for this application are available commercially, using the electrons directly or bremsstrahlung photons. Neutrons produced by accelerator beams have also been used for therapy with considerable success, and several proton accelerators built for physics research have been adapted for direct therapy with protons. The first proton accelerator specifically for therapy is now being built. Separate from what might be called conventional accelerator technology, an entirely new field utilizing very highly pulsed power has been developed, and beams of short pulses of thousands or millions of amperes peak current in the MeV energy range are now available. These beams have important applications in high-energy particle acceleration, controlled fusion, industrial treatment of materials, and possibly in food preservation. All of these accelerators make use of external fields of acceleration. There is also vigorous research into new methods of acceleration, in many schemes making use of the intense accelerating fields, generated by laser beams or by plasma states of matter. This research has not as yet made traditional kinds of accelerators outmoded, but many workers hope that early in the next century there will be practical new acceleration methods making use of these very high fields. These developments are discussed in detail

  10. Linear fixed-field multipass arcs for recirculating linear accelerators

    Directory of Open Access Journals (Sweden)

    V. S. Morozov

    2012-06-01

    Full Text Available Recirculating linear accelerators (RLA’s provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dogbone RLA capable of transporting two beam passes with momenta different by a factor of 2. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dogbone RLA.

  11. LIONs at the Stanford Linear Accelerator Center

    International Nuclear Information System (INIS)

    Constant, T.N.; Zdarko, R.W.; Simmons, R.H.; Bennett, B.M.

    1998-01-01

    The term LION is an acronym for Long Ionization Chamber. This is a distributed ion chamber which is used to monitor secondary ionization along the shield walls of a beam line resulting from incorrectly steered charged particle beams in lieu of the use of many discrete ion chambers. A cone of ionizing radiation emanating from a point source as a result of incorrect steering intercepts a portion of 1-5/8 inch Heliax cable (about 100 meters in length) filled with Argon gas at 20 psi and induces a pulsed current which is proportional to the ionizing charge. This signal is transmitted via the cable to an integrator circuit whose output is directed to an electronic comparators, which in turn is used to turn off the accelerated primary beam when preset limits are exceeded. This device is used in the Stanford Linear Accelerator Center (SLAC) Beam Containment System (BCS) to prevent potentially hazardous ionizing radiation resulting from incorrectly steered beams in areas that might be occupied by people. This paper describes the design parameters and experience in use in the Final Focus Test Beam (FFTB) area of the Stanford Linear Accelerator Center

  12. Linear accelerator use in the nuclear field

    International Nuclear Information System (INIS)

    Lecomte, J.-C.

    Radiography of internal conformity is performed on weldments and thick castings using linear accelerators. The basic principles relating to linear accelerators are outlined and their advantages over Co 60 sources described. Linear accelerator operation related requirements are presented as well as the use of this apparatus as a method for volumetric inspection, during fabrication of French Nuclear Steam Supply Systems (NSSS). Finally the resources needed to use this technique as an inspection method is dealt with [fr

  13. Workshop on the accelerator for particle therapy

    International Nuclear Information System (INIS)

    Inoue, M.; Ujeno, Y.

    1991-02-01

    A two-day workshop on the accelerator for particle therapy was held on August 22-23, 1990, with the aim of mutual understanding of medical accelerators among investigators. The state-of-the-art facilities in Japan and medical proton accelerators in Japan and other countries were introduced. This is a compilation of papers presented at the workshop: (1) particle radiotherapy at the National Institute of Radiological Sciences (NIRS); (2) proton therapy; (3) treatment planning, especially for photon and electron therapies; (4) heavy ion synchrotron project at the NIRS; (5) medical proton accelerator project of Tsukuba University and recent status of Loma Linda University Medical Center Proton Beam Facility; (6) inspection report on the Loma Linda University Medical Center Proton Beam Facility; (7) accelerator project of Kyoto University; (8) actual conditions of the 7 MeV proton linear accelerator; (9) design study of superconducting compact cyclotron prototype model; (10) medical superconducting prototype cyclotron; (11) RCNP cyclotron cascade project; (12) beam extraction from synchrotron; (13) radiation safety design in high energy particle accelerator facilities. (N.K.)

  14. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  15. rf coaxial couplers for high-intensity linear accelerators

    International Nuclear Information System (INIS)

    Manca, J.J.; Knapp, E.A.

    1980-02-01

    Two rf coaxial couplers that are particularly suitable for intertank connection of the disk-and-washer accelerating structure for use in high-intensity linear accelerators have been developed. These devices have very high coupling to the accelerating structure and very low rf power loss at the operating frequency, and they can be designed for any relative particle velocity β > 0.4. Focusing and monitoring devices can be located inside these couplers

  16. Automating linear accelerator quality assurance.

    Science.gov (United States)

    Eckhause, Tobias; Al-Hallaq, Hania; Ritter, Timothy; DeMarco, John; Farrey, Karl; Pawlicki, Todd; Kim, Gwe-Ya; Popple, Richard; Sharma, Vijeshwar; Perez, Mario; Park, SungYong; Booth, Jeremy T; Thorwarth, Ryan; Moran, Jean M

    2015-10-01

    The purpose of this study was 2-fold. One purpose was to develop an automated, streamlined quality assurance (QA) program for use by multiple centers. The second purpose was to evaluate machine performance over time for multiple centers using linear accelerator (Linac) log files and electronic portal images. The authors sought to evaluate variations in Linac performance to establish as a reference for other centers. The authors developed analytical software tools for a QA program using both log files and electronic portal imaging device (EPID) measurements. The first tool is a general analysis tool which can read and visually represent data in the log file. This tool, which can be used to automatically analyze patient treatment or QA log files, examines the files for Linac deviations which exceed thresholds. The second set of tools consists of a test suite of QA fields, a standard phantom, and software to collect information from the log files on deviations from the expected values. The test suite was designed to focus on the mechanical tests of the Linac to include jaw, MLC, and collimator positions during static, IMRT, and volumetric modulated arc therapy delivery. A consortium of eight institutions delivered the test suite at monthly or weekly intervals on each Linac using a standard phantom. The behavior of various components was analyzed for eight TrueBeam Linacs. For the EPID and trajectory log file analysis, all observed deviations which exceeded established thresholds for Linac behavior resulted in a beam hold off. In the absence of an interlock-triggering event, the maximum observed log file deviations between the expected and actual component positions (such as MLC leaves) varied from less than 1% to 26% of published tolerance thresholds. The maximum and standard deviations of the variations due to gantry sag, collimator angle, jaw position, and MLC positions are presented. Gantry sag among Linacs was 0.336 ± 0.072 mm. The standard deviation in MLC

  17. Acceleration of particles in plasmas

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The accelerating fields in radio-frequency accelerators are limited to roughly 100 MV/m due to material breakdown which occurs on the walls of the structure. In contrast, a plasma, being already ionized, can support electric fields in excess of 100 GV/m. Such high accelerating gradients hold the promise of compact particle accelerators. Plasma acceleration has been an emerging and fast growing field of research in the past two decades. In this series of lectures, we will review the principles of plasma acceleration. We will see how relativistic plasma waves can be excited using an ultra-intense laser or using a particle beam. We will see how these plasma waves can be used to accelerate electrons to high energy in short distances. Throughout the lectures, we will also review recent experimental results. Current laser-plasma experiments throughout the world have shown that monoenergetic electron beams from 100 MeV to 1 GeV can be obtained in distances ranging from the millimetre to the centimetre. Experiments a...

  18. Beam dynamics simulation of a double pass proton linear accelerator

    Directory of Open Access Journals (Sweden)

    Kilean Hwang

    2017-04-01

    Full Text Available A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015NIMAER0168-900210.1016/j.nima.2015.05.056] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  19. 14. conference on accelerators of charged particles. Annotations of reports

    International Nuclear Information System (INIS)

    1994-01-01

    Annotations of reports made at the 14 Conference on accelerators of charged particles are presented. The Conference took place 25 - 27 October, 1994 in IHEP, Protvino. Modern trends of development of cyclic and linear accelerators, as well as heavy ion accelerators and colliders have been discussed. Problems of developing accelerators on superhigh energy have been considered. Considerable attention has been paid to accelerating structures, power SHF equipment, beam monitoring systems as well as magnetic and vacuum systems of accelerators. Beam dynamics in accelerators and storage has been considered and new acceleration technique have been proposed. Utilization of accelerators for medicine and other applied purposes has been discussed

  20. Food processing with linear accelerators

    International Nuclear Information System (INIS)

    Wilmer, M.E.

    1987-01-01

    The application of irradiation techniques to the preservation of foods is reviewed. The utility of the process for several important food groups is discussed in the light of work being done in a number of institutions. Recent findings in food chemistry are used to illustrate some of the potential advantages in using high power accelerators in food processing. Energy and dosage estimates are presented for several cases to illustrate the accelerator requirements and to shed light on the economics of the process

  1. Resonance Control for Future Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Schappert, Warren [Fermilab

    2017-05-01

    Many of the next generation of particle accelerators (LCLS II, PIP II) are designed for relatively low beam loading. Low beam loading requirement means the cavities can operate with narrow bandwidths, minimizing capital and base operational costs of the RF power system. With such narrow bandwidths, however, cavity detuning from microphonics or dynamic Lorentz Force Detuning becomes a significant factor, and in some cases can significantly increase both the acquisition cost and the operational cost of the machine. In addition to the efforts to passive environmental detuning reduction (microphonics) active resonance control for the SRF cavities for next generation linear machine will be required. State of the art in the field of the SRF Cavity active resonance control and the results from the recent efforts at FNAL will be presented in this talk.

  2. Linear accelerator modeling: development and application

    International Nuclear Information System (INIS)

    Jameson, R.A.; Jule, W.D.

    1977-01-01

    Most of the parameters of a modern linear accelerator can be selected by simulating the desired machine characteristics in a computer code and observing how the parameters affect the beam dynamics. The code PARMILA is used at LAMPF for the low-energy portion of linacs. Collections of particles can be traced with a free choice of input distributions in six-dimensional phase space. Random errors are often included in order to study the tolerances which should be imposed during manufacture or in operation. An outline is given of the modifications made to the model, the results of experiments which indicate the validity of the model, and the use of the model to optimize the longitudinal tuning of the Alvarez linac

  3. High-gradient compact linear accelerator

    Science.gov (United States)

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  4. Automating linear accelerator quality assurance

    International Nuclear Information System (INIS)

    Eckhause, Tobias; Thorwarth, Ryan; Moran, Jean M.; Al-Hallaq, Hania; Farrey, Karl; Ritter, Timothy; DeMarco, John; Pawlicki, Todd; Kim, Gwe-Ya; Popple, Richard; Sharma, Vijeshwar; Park, SungYong; Perez, Mario; Booth, Jeremy T.

    2015-01-01

    Purpose: The purpose of this study was 2-fold. One purpose was to develop an automated, streamlined quality assurance (QA) program for use by multiple centers. The second purpose was to evaluate machine performance over time for multiple centers using linear accelerator (Linac) log files and electronic portal images. The authors sought to evaluate variations in Linac performance to establish as a reference for other centers. Methods: The authors developed analytical software tools for a QA program using both log files and electronic portal imaging device (EPID) measurements. The first tool is a general analysis tool which can read and visually represent data in the log file. This tool, which can be used to automatically analyze patient treatment or QA log files, examines the files for Linac deviations which exceed thresholds. The second set of tools consists of a test suite of QA fields, a standard phantom, and software to collect information from the log files on deviations from the expected values. The test suite was designed to focus on the mechanical tests of the Linac to include jaw, MLC, and collimator positions during static, IMRT, and volumetric modulated arc therapy delivery. A consortium of eight institutions delivered the test suite at monthly or weekly intervals on each Linac using a standard phantom. The behavior of various components was analyzed for eight TrueBeam Linacs. Results: For the EPID and trajectory log file analysis, all observed deviations which exceeded established thresholds for Linac behavior resulted in a beam hold off. In the absence of an interlock-triggering event, the maximum observed log file deviations between the expected and actual component positions (such as MLC leaves) varied from less than 1% to 26% of published tolerance thresholds. The maximum and standard deviations of the variations due to gantry sag, collimator angle, jaw position, and MLC positions are presented. Gantry sag among Linacs was 0.336 ± 0.072 mm. The

  5. Automating linear accelerator quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Eckhause, Tobias; Thorwarth, Ryan; Moran, Jean M., E-mail: jmmoran@med.umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109-5010 (United States); Al-Hallaq, Hania; Farrey, Karl [Department of Radiation Oncology and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637 (United States); Ritter, Timothy [Ann Arbor VA Medical Center, Ann Arbor, Michigan 48109 (United States); DeMarco, John [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, 90048 (United States); Pawlicki, Todd; Kim, Gwe-Ya [UCSD Medical Center, La Jolla, California 92093 (United States); Popple, Richard [Department of Radiation Oncology, University of Alabama Birmingham, Birmingham, Alabama 35249 (United States); Sharma, Vijeshwar; Park, SungYong [Karmanos Cancer Institute, McLaren-Flint, Flint, Michigan 48532 (United States); Perez, Mario; Booth, Jeremy T. [Royal North Shore Hospital, Sydney, NSW 2065 (Australia)

    2015-10-15

    Purpose: The purpose of this study was 2-fold. One purpose was to develop an automated, streamlined quality assurance (QA) program for use by multiple centers. The second purpose was to evaluate machine performance over time for multiple centers using linear accelerator (Linac) log files and electronic portal images. The authors sought to evaluate variations in Linac performance to establish as a reference for other centers. Methods: The authors developed analytical software tools for a QA program using both log files and electronic portal imaging device (EPID) measurements. The first tool is a general analysis tool which can read and visually represent data in the log file. This tool, which can be used to automatically analyze patient treatment or QA log files, examines the files for Linac deviations which exceed thresholds. The second set of tools consists of a test suite of QA fields, a standard phantom, and software to collect information from the log files on deviations from the expected values. The test suite was designed to focus on the mechanical tests of the Linac to include jaw, MLC, and collimator positions during static, IMRT, and volumetric modulated arc therapy delivery. A consortium of eight institutions delivered the test suite at monthly or weekly intervals on each Linac using a standard phantom. The behavior of various components was analyzed for eight TrueBeam Linacs. Results: For the EPID and trajectory log file analysis, all observed deviations which exceeded established thresholds for Linac behavior resulted in a beam hold off. In the absence of an interlock-triggering event, the maximum observed log file deviations between the expected and actual component positions (such as MLC leaves) varied from less than 1% to 26% of published tolerance thresholds. The maximum and standard deviations of the variations due to gantry sag, collimator angle, jaw position, and MLC positions are presented. Gantry sag among Linacs was 0.336 ± 0.072 mm. The

  6. Single-particle dynamics - RF acceleration

    International Nuclear Information System (INIS)

    Montague, B.W.

    1977-01-01

    In this paper the rf acceleration of both synchronous and non-synchronous particles is discussed and a simple linearized equation of small amplitude synchrotron oscillations is derived. Phase stability, the hamiltonian for synchrotron oscillations, oscillation amplitudes and adiabatic damping are then briefly discussed. The final sections of the paper contain a description of the basic principles of rf beam stacking in the longitudinal phase space of intersecting Storage Rings and a description of phase displacement acceleration which inspite of certain disadvantages, remains an attractive technique for proton storage rings. (B.D.)

  7. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    International Nuclear Information System (INIS)

    Maschke, A. W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly

  8. Determination of beam characteristic parameters for a linear accelerator

    International Nuclear Information System (INIS)

    Lima, D.A. de.

    1978-01-01

    A mechanism to determine electron beam characteristic parameters of a linear accelerator was constructed. The mechanism consists in an electro-calorimeter and an accurate optical densitometer. The following parameters: mean power, mean current, mean energy/particle, pulse Width, pulse amplitude dispersion, and pulse frequency, operating the 2 MeV linear accelerator of CBPF (Brazilian Center pf Physics Researches). The optical isodensity curves of irradiated glass lamellae were obtained, providing information about focus degradation penetration direction in material and the reach of particle. The point to point dose distribution in the material from optical density curves were obtained, using a semi empirical and approached model. (M.C.K.) [pt

  9. Elementary principles of linear accelerators

    International Nuclear Information System (INIS)

    Loew, G.A.; Talman, R.

    1983-09-01

    These lectures come in five sections. The first is this introduction. The second is a short chronology of what are viewed as important milestones in the field. The third covers proton linacs. It introduces elementary concepts such as transit time, shunt impedance, and Q. Critical issues such as phase stability and transverse forces are discussed. The fourth section contains an elementary discussion of waveguide accelerating structures. It can be regarded as an introduction to some of the more advanced treatments of the subject. The final section is devoted to electron accelerators. Taking SLAC as an example, various topics are discussed such as structure design, choice of parameters, frequency optimization, beam current, emittance, bunch length and beam loading. Recent developments and future challenges are mentioned briefly. 41 figures, 4 tables

  10. Theses of XIX International Seminar on charged particle accelerators

    International Nuclear Information System (INIS)

    Anon

    2005-01-01

    Published abstracts of reports of the XIX International Seminar on charged particle accelerators have interest for specialists in the fields of linear accelerator physics and technology, VHF uses, systems of beam diagnostics and automated control, new acceleration methods, as well as for theses who use electrophysical devices in industry, medicine and research

  11. Theses of XX International Seminar on charged particle accelerators

    International Nuclear Information System (INIS)

    Papkovich, V.G.; Rakivnenko, L.M.

    2007-01-01

    Published abstracts of reports of the XX International Seminar on charged particle accelerators have interest for specialists in the fields of linear accelerator physics and technology, VHF uses systems of beam diagnostics and autometed control, new acceleration methods and for theses who use electrophysical devices in industry, medicine and research

  12. Characterisation of electron beams from laser-driven particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  13. A large superconducting accelerator project. International linear collider (ILC). Introduction

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2013-01-01

    The international linear collider (ILC) is proposed as the next-energy-frontier particle accelerator anticipated to be realized through global cooperation. The ILC accelerator is composed of a pair of electron and positron linear accelerators to realize head-on collision with a center-of-mass energy of 500 (250+250) GeV. It is based on superconducting radio-frequency (SCRF) technology, and the R and D and technical design have progressed in the technical design phase since 2007, and the technical design report (TDR) reached completion in 2012. This report reviews the ILC general design and technology. (author)

  14. New ideas for accelerating particles

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1983-01-01

    Many different schemes can be devised for accelerating particles. In recent years several concepts radically different from those in common use have been suggested. Many of these have failed to live up to the hopes of their inventors. Now that we seem near the end of the road for large conventional machines, there is a renewed interest in alternatives, especially those involving lasers. Afte After a brief historical introduction and a discussion on how to classify different types of accelerator, some of these alternative concepts will be reviewed. (author)

  15. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    59, No. 5. — journal of. November 2002 physics pp. 849–858. Superconducting linear accelerator system for NSC ... cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indige- ... Prototype resonator was.

  16. Linear accelerators for TeV colliders

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1985-05-01

    This paper summarizes four tutorial lectures on linear electron accelerators: Electron Linacs for TeV Colliders, Emittance and Damping Rings, Wake Fields: Basic Concepts, and Wake Field Effects in Linacs

  17. Compact multi-energy electron linear accelerators

    International Nuclear Information System (INIS)

    Tanabe, E.; Hamm, R.W.

    1985-01-01

    Two distinctly different concepts that have been developed for compact multi-energy, single-section, standing-wave electron linear accelerator structures are presented. These new concepts, which utilize (a) variable nearest neighbor couplings and (b) accelerating field phase switching, provide the capability of continuously varying the electron output energy from the accelerator without degrading the energy spectrum. These techniques also provide the means for continuously varying the energy spectrum while maintaining a given average electron energy, and have been tested successfully with several accelerators of length from 0.1 m to 1.9 m. Theoretical amd experimental results from these accelerators, and demonstrated applications of these techniques to medical and industrial linear accelerator technology will be described. In addition, possible new applications available to research and industry from these techniques are presented. (orig.)

  18. Proton linear accelerators: A theoretical and historical introduction

    International Nuclear Information System (INIS)

    Lapostolle, P.M.

    1989-07-01

    From the beginning, the development of linear accelerators has followed a number of different directions. This report surveys the basic ideas and general principles of such machines, pointing out the problems that have led to the various improvements, with the hope that it may also aid further progress. After a brief historical survey, the principal aspects of accelerator theory are covered in some detail: phase stability, focusing, radio-frequency accelerating structures, the detailed calculation of particle dynamics, and space-charge effects at high intensities. These developments apply essentially to proton and ion accelerators, and only the last chapter deals with a few aspects relative to electrons. 134 refs

  19. The radiofrequency quadrupole linear accelerator

    International Nuclear Information System (INIS)

    Puglisi, M.

    1986-01-01

    This seminar is aimed to give a comprehensive picture of an RFQ. After a short description of the accelerating structure the T-K expansion is treated and the fundamental formula for the potential is derived. The vane tips shaping, completed to first order is followed by the physics of the machine where the most important parameters are listed and illustrated. Since the RFQ is essentially a cavity resonator this topic has been given particular attention. Design and other technical considerations complete the picture, while in the last paragraph the new ideas are briefly outlined. (Auth.)

  20. Digital linear accelerator: The advantages for radiotherapy

    International Nuclear Information System (INIS)

    Andric, S.; Maksimovic, M.; Dekic, M.; Clark, T.

    1998-01-01

    Technical performances of Digital Linear Accelerator were presented to point out its advantages for clinical radiotherapy treatment. The accelerator installation is earned out at Military Medical Academy, Radiotherapy Department, by Medes and Elekta companies. The unit offers many technical advantages with possibility of introduction new conformal treatment techniques as stereotactic radiosurgery, total body and total skin irradiation. In the paper are underlined advantages in relation to running conventional accelerator units at Yugoslav radiotherapy departments, both from technical and medical point of view. (author)

  1. Portable radiography using linear accelerators

    International Nuclear Information System (INIS)

    Reid, D.W.

    1984-01-01

    There are numerous instances where the availability of a portable high-energy radiography machine that could be transported to the inspection site with relative ease would save time, money, and make radiography of permanent installations, such as bridges, possible. One such machine, the Minac built by Schoenberg Radiation Inc., is commercially available. It operates at 9.3 GHz, has an electron energy on target of 3.5 MeV, and an output dose rate of 100 R/min. A second portable accelerator, recently completed at the Los Alamos National Laboratory, operates at 2.998 GHz, has electron energies on target of 6, 8, and 10 MeV, and an output dose rate of 800 R/min at 8 MeV. This paper discusses the need for and applications of portable accelerators for radiography. Physical characteristics and beam parameters of both machines are examined in detail. Problems of operating at higher frequencies to further minimize size and weight are discussed

  2. Charged particle acceleration with plasmas

    International Nuclear Information System (INIS)

    Bravo O, A.

    1989-01-01

    Under certain conditions it is possible to create spatial charge waves (OCE) in a plasma (ionized gas) through some disturbance mechanism, the phenomenon produces electric fields of high intensity that are propagated at velocities near to a c. When charged particles are connected to such OCE they may be accelerated to very high energies in short distances. At present electric fields of approximately 10 7 V/cm have been observed. (Author). 4 refs

  3. Particle accelerators test cosmological theory

    International Nuclear Information System (INIS)

    Schramm, D.N.; Steigman, G.

    1988-01-01

    Over the past decade two subfields of science, cosmology and elementary-particle physics, have become married in a symbiotic relationship that has produced a number of exciting offspring. These offspring are beginning to yield insights on the creation of spacetime and matter at epochs as early as 10 to the minus 43 to 10 to the minus 35 second after the birth of the universe in the primordial explosion known as the big bang. Important clues to the nature of the big bang itself may even come from a theory currently under development, known as the ultimate theory of everything (T.E.O.). A T.E.O. would describe all the interactions among the fundamental particles in a single bold stroke. Now that cosmology ahs begun to make predictions about elementary-particle physics, it has become conceivable that those cosmological predictions could be checked with carefully controlled accelerator experiments. It has taken more than 10 years for accelerators to reach the point where they can do the appropriate experiments, but the experiments are now in fact in progress. The preliminary results confirm the predictions of cosmology. The cosmological prediction the authors have been concerned with pertains to setting limits on the number of fundamental particles of matter. It appears that there are 12 fundamental particles, as well as their corresponding antiparticles. Six of the fundamental particles are quarks. The other six are leptons. The 12 particles are grouped in three families, each family consisting of four members. Cosmology suggests there must be a finite number of families and, further limits the possible range of to small values: only three or at most four families exist. 7 figs

  4. A brief history of high power RF proton linear accelerators

    International Nuclear Information System (INIS)

    Browne, J.C.

    1996-01-01

    The first mention of linear acceleration was in a paper by G. Ising in 1924 in which he postulated the acceleration of positive ions induced by spark discharges which produced electric fields in gaps between a series of open-quotes drift tubesclose quotes. Ising apparently was not able to demonstrate his concept, most likely due to the limited state of electronic devices. Ising's work was followed by a seminal paper by R. Wideroe in 1928 in which he demonstrated the first linear accelerator. Wideroe was able to accelerate sodium or potassium ions to 50 keV of energy using drift tubes connected alternately to high frequency waves and to ground. Nuclear physics during this period was interested in accelerating protons, deuterons, electrons and alpha particles and not heavy ions like sodium or potassium. To accelerate the light ions required much higher frequencies than available at that time. So linear accelerators were not pursued heavily at that time. Research continued during the 1930s but the development of high frequency RF tubes for radar applications in World War 2 opened the potential for RF linear accelerators after the war. The Berkeley laboratory of E. 0. Lawrence under the leadership of Luis Alvarez developed a new linear proton accelerator concept that utilized drift tubes that required a full RF period to pass through as compared to the earlier concepts. This development resulted in the historic Berkeley 32 MeV proton linear accelerator which incorporated the open-quotes Alvarez drift tubeclose quotes as the basic acceleration scheme using surplus 200 MHz radar components

  5. Triplet Focusing for Recirculating Linear Muon Accelerators

    CERN Document Server

    Keil, Eberhard

    2001-01-01

    Focusing by symmetrical triplets is studied for the linear accelerator lattices in recirculating muon accelerators with several passes where the ratio of final to initial muon energy is about four. Triplet and FODO lattices are compared. At similar acceptance, triplet lattices have straight sections for the RF cavities that are about twice as long as in FODO lat-tices. For the same energy gain, the total lengths of the linear accelerators with triplet lattices are about the same as of those with FODO lattices.

  6. Machine protection: availability for particle accelerators

    International Nuclear Information System (INIS)

    Apollonio, A.

    2015-01-01

    Machine availability is a key indicator for the performance of the next generation of particle accelerators. Availability requirements need to be carefully considered during the design phase to achieve challenging objectives in different fields, as e.g. particle physics and material science. For existing and future High-Power facilities, such as ESS (European Spallation Source) and HL-LHC (High-Luminosity LHC), operation with unprecedented beam power requires highly dependable Machine Protection Systems (MPS) to avoid any damage-induced downtime. Due to the high complexity of accelerator systems, finding the optimal balance between equipment safety and accelerator availability is challenging. The MPS architecture, as well as the choice of electronic components, have a large influence on the achievable level of availability. In this thesis novel methods to address the availability of accelerators and their protection systems are presented. Examples of studies related to dependable MPS architectures are given in the thesis, both for Linear accelerators (Linac4, ESS) and circular particle colliders (LHC and HL-LHC). A study of suitable architectures for interlock systems of future availability-critical facilities is presented. Different methods have been applied to assess the anticipated levels of accelerator availability. The thesis presents the prediction of the performance (integrated luminosity for a particle collider) of LHC and future LHC up- grades, based on a Monte Carlo model that allows reproducing a realistic timeline of LHC operation. This model does not only account for the contribution of MPS, but extends to all systems relevant for LHC operation. Results are extrapolated to LHC run 2, run 3 and HL-LHC to derive individual system requirements, based on the target integrated luminosity. (author)

  7. Radio-frequency quadrupole resonator for linear accelerator

    Science.gov (United States)

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  8. On the use of the autocorrelation and covariance methods for feedforward control of transverse angle and position jitter in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1994-01-01

    It is desired to design a predictive feedforward transverse jitter control system to control both angle and position jitter in pulsed linear accelerators. Such a system will increase the accuracy and bandwidth of correction over that of currently available feedback correction systems. Intrapulse correction is performed. An offline process actually ''learns'' the properties of the jitter, and uses these properties to apply correction to the beam. The correction weights calculated offline are downloaded to a real-time analog correction system between macropulses. Jitter data were taken at the Los Alamos National Laboratory (LANL) Ground Test Accelerator (GTA) telescope experiment at Argonne National Laboratory (ANL). The experiment consisted of the LANL telescope connected to the ANL ZGS proton source and linac. A simulation of the correction system using this data was shown to decrease the average rms jitter by a factor of two over that of a comparable standard feedback correction system. The system also improved the correction bandwidth

  9. On the use of the autocorrelation and covariance methods for feedforward control of transverse angle and position jitter in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1993-01-01

    It is desired to design a predictive feedforward transverse jitter control system to control both angle and position jitter in pulsed linear accelerators. Such a system will increase the accuracy and bandwidth of correction over that of currently available feedback correction systems. Intrapulse correction is performed. An offline process actually open-quotes learnsclose quotes the properties of the jitter, and uses these properties to apply correction to the beam. The correction weights calculated offline are downloaded to a real-time analog correction system between macropulses. Jitter data were taken at the Los Alamos National Laboratory (LANL) Ground Test Accelerator (GTA) telescope experiment at Argonne National Laboratory (ANL). The experiment consisted of the LANL telescope connected to the ANL ZGS proton source and linac. A simulation of the correction system using this data was shown to decrease the average rms jitter by a factor of two over that of a comparable standard feedback correction system. The system also improved the correction bandwidth

  10. Study on the limiting acceleration rate in the VLEPP linear accelerator

    International Nuclear Information System (INIS)

    Balakin, V.E.; Brezhnev, O.N.; Zakhvatkin, M.N.

    1987-01-01

    To realize the design of colliding linear electron-positron beams it is necessary to solve the radical problem of production of accelerating structure with acceleration rate of approximately 100 MeV/m which can accelerate 10 12 particles in a bunch. Results of experimental studies of the limiting acceleration rate in the VLEPP accelerating structure are presented. Accelerating sections of different length were tested. When testing sections 29 cm long the acceleration rate of 55 MeV/m was attained, and for 1 m section the value reached 40 MeV/m. The maximum rate of acceleration (90 MeV/m) was attained when electric field intensity on the structure surface constituted more than 150 MV/m

  11. Linear induction accelerator for heavy ions

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-01-01

    There is considerable recent interest in the use of high energy heavy ions to irradiate deuterium-tritium pellets in a reactor vessel to constitute a power source at the level of 1 GW or more. Various accelerator configurations involving storage rings have been suggested. This paper discusses how the technology of linear induction accelerators - well known to be matched to high current and short pulse length - may offer significant advantages for this application. (author)

  12. The Next Linear Collider Test Accelerator

    International Nuclear Information System (INIS)

    Ruth, R.D.; Adolphsen, C.; Bane, K.

    1993-04-01

    During the past several years, there has been tremendous progress the development of the RF system and accelerating structures for a Next Linear Collider (NLC). Developments include high-power klystrons, RF pulse compression systems and damped/detuned accelerator structures to reduce wakefields. In order to integrate these separate development efforts into an actual X-band accelerator capable of accelerating the electron beams necessary for an NLC, we are building an NLC Test Accelerator (NLCTA). The goal of the NLCTA is to bring together all elements of the entire accelerating system by constructing and reliably operating an engineered model of a high-gradient linac suitable for the NLC. The NLCTA will serve as a testbed as the design of the NLC evolves. In addition to testing the RF acceleration system, the NLCTA is designed to address many questions related to the dynamics of the beam during acceleration. In this paper, we will report oil the status of the design, component development, and construction of the NLC Test Accelerator

  13. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  14. Distributed coupling high efficiency linear accelerator

    Science.gov (United States)

    Tantawi, Sami G.; Neilson, Jeffrey

    2016-07-19

    A microwave circuit for a linear accelerator includes multiple monolithic metallic cell plates stacked upon each other so that the beam axis passes vertically through a central acceleration cavity of each plate. Each plate has a directional coupler with coupling arms. A first coupling slot couples the directional coupler to an adjacent directional coupler of an adjacent cell plate, and a second coupling slot couples the directional coupler to the central acceleration cavity. Each directional coupler also has an iris protrusion spaced from corners joining the arms, a convex rounded corner at a first corner joining the arms, and a corner protrusion at a second corner joining the arms.

  15. Radiation protection for particle accelerators

    International Nuclear Information System (INIS)

    Verdu, G.; Rodenas, J.; Campayo, J.M.

    1992-01-01

    It a a great number of medical installations in spain using particle accelerators for radiotherapy. It is obvious the importance of an accurate estimation of the doses produced in these installations that may be received by health workers, patients or public. The lower values of dose limits established in the new ICRP recommendations imply a recalculation of items concerning such installations. In our country, specific guidelines for radiation protection in particle accelerators facilities have not been yet developed, however two possible guides can be used, NCRP report number 51 and DIN Standard 6847. Both have been analyzed comparatively in the paper, and major remarks have been summarized. Interest has been focused on thickness estimation of shielding barriers in order to verify whether must be modified to comply with the new dose limits. Primary and secondary barriers for a Mevatron used in a Medical Center, have been calculated and the results have been compared with actual data obtained from the installation, to test the adequacy of shielding barriers and radioprotection policies. The results obtained are presented and analyzed in order to state the implications of the new ICRP recommendations. (author)

  16. Particle Accelerators for PET radionuclides

    DEFF Research Database (Denmark)

    Jensen, Mikael

    2012-01-01

    The requirements set for particle accelerators for production of radioactive isotopes for PET can easily be derived from first principles. The simple general need is for proton beams with energy in the region 10–20 MeV and current 20–100 microAmps. This is most reliably and cost-effectively achie......The requirements set for particle accelerators for production of radioactive isotopes for PET can easily be derived from first principles. The simple general need is for proton beams with energy in the region 10–20 MeV and current 20–100 microAmps. This is most reliably and cost......-effectively achieved by the well proven technology of the compact medical cyclotron, presently available from several companies. The main features of these cyclotrons are essential similar: resistive, sector focused iron magnets, internal negative ion sources and stripping extraction. The remaining differences between...... different manufacturers will be discussed the light of what is actually needed for a given PET site operation. Alternatives to the conventional cyclotron have been proposed and tested but have at present very limited use. These alternatives will be discussed, as well as the future possibilities of supplying...

  17. Phase-of-flight method for setting the accelerating fields in the ion linear accelerator

    International Nuclear Information System (INIS)

    Dvortsov, S.V.; Lomize, L.G.

    1983-01-01

    For setting amplitudes and phases of accelerating fields in multiresonator ion accelerators presently Δt-procedure is used. The determination and setting of two unknown parameters of RF-field (amplitude and phase) in n-resonator is made according to the two increments of particle time-of-flight, measured experimentally: according to the change of the particle time-of-flight Δt 1 in the n-resonator, during the field switching in the resonator, and according to the change of Δt 2 of the time-of-flight in (n+1) resonator without RF-field with the switching of accelerating field in the n-resonator. When approaching the accelerator exit the particle energy increases, relative energy increment decreases and the accuracy of setting decreases. To enchance the accuracy of accelerating fields setting in a linear ion accelerator a phase-of-flight method is developed, in which for the setting of accelerating fields the measured time-of-flight increment Δt only in one resonator is used (the one in which the change of amplitude and phase is performed). Results of simulation of point bunch motion in the IYaI AN USSR linear accelerator are presented

  18. Particle acceleration in near critical density plasma

    International Nuclear Information System (INIS)

    Gu, Y.J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Nagashima, T.

    2013-01-01

    Charged particle acceleration schemes driven by ultra intense laser and near critical density plasma interactions are presented. They include electron acceleration in a plasma channel, ion acceleration by the Coulomb explosion and high energy electron beam driven ion acceleration. It is found that under the near critical density plasma both ions and electrons are accelerated with a high acceleration gradient. The electron beam containing a large charge quantity is accelerated well with 23 GeV/cm. The collimated ion bunch reaches 1 GeV. The investigations and discussions are based on 2.5D PIC (particle-in-cell) simulations. (author)

  19. Proceedings of the 1981 linear accelerator conference

    International Nuclear Information System (INIS)

    Jameson, R.A.; Taylor, L.S.

    1982-02-01

    The 1981 Linear Accelerator Conference was held at Bishop's Lodge, Santa Fe, New Mexico, October 19-23, 1981. This publication contains the texts of the invited and contributed papers. Abstracts of individual items from the conference were prepared separately for the data base

  20. Linear collider accelerator physics issues regarding alignment

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1990-01-01

    The next generation of linear colliders will require more stringent alignment tolerances than those for the SLC with regard to the accelerating structures, quadrupoles, and beam position monitors. New techniques must be developed to achieve these tolerances. A combination of mechanical-electrical and beam-based methods will likely be needed

  1. Radiation protection in large linear accelerators

    International Nuclear Information System (INIS)

    Oliva, Jose de Jesus Rivero

    2013-01-01

    The electron linear accelerators can be used in industrial applications that require powerful sources of ionizing radiation. They have the important characteristic of not representing a radiation hazard when the accelerators remain electrically disconnected. With the plant in operation, a high reliability defense in depth reduces the risk of radiological accidents to extremely small levels. It is practically impossible that a person could enter into the radiation bunker with the accelerators connected. Aceletron Irradiacao Industrial, located in Rio de Janeiro, offers services of irradiation by means of two powerful electron linear accelerators, with 15 kW power and 10 MeV electron energy. Despite the high level of existing radiation safety, a simplified risk study is underway to identify possible sequences of radiological accidents. The study is based on the combined application of the event and fault trees techniques. Preliminary results confirm that there is a very small risk of entering into the irradiation bunker with the accelerators in operation, but the risk of an operator entering into the bunker during a process interruption and remaining there without notice after the accelerators were restarted may be considerably larger. Based on these results the Company is considering alternatives to reduce the likelihood of human error of this type that could lead to a radiological accident. The paper describes the defense in depth of the irradiation process in Aceletron Irradiacao Industrial, as well as the models and preliminary results of the ongoing risk analysis, including the additional safety measures which are being evaluated. (author)

  2. Stability and amplitude ranges of two dimensional non-linear oscillations with periodical Hamiltonian applied to betatron oscillations in circular particle accelerators: Part 1 and Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Hagedorn, R

    1957-03-07

    A mechanical system of two degrees of freedom is considered which can be described by a system of canonical differential equations. The Hamiltonian is assumed to be explicitly time-dependent with period 2. The aim is to bring this system by a sequence of canonical and periodical transformations into a form where the new Hamiltonian is constant and as simple as possible. The general theory is then brought to a stage where it becomes immediately applicable to given particular cases, particularly to circular particle accelerators. More general results are given on exciting strengths of different subresonance lines of equal order, on symmetry relations and on the one-dimensional case. An example is also given where the theory is overstressed and its predictions become wrong.

  3. Picosecond, single pulse electron linear accelerator

    International Nuclear Information System (INIS)

    Kikuchi, Riichi; Kawanishi, Masaharu

    1979-01-01

    The picosecond, single pulse electron linear accelerators, are described, which were installed in the Nuclear Engineering Laboratory of the University of Tokyo and in the Nuclear Radiation Laboratory of the Osaka University. The purpose of the picosecond, single pulse electron linear accelerators is to investigate the very short time reaction of the substances, into which gamma ray or electron beam enters. When the electrons in substances receive radiation energy, the electrons get high kinetic energy, and the energy and the electric charge shift, at last to the quasi-stable state. This transient state can be experimented with these special accelerators very accurately, during picoseconds, raising the accuracy of the time of incidence of radiation and also raising the accuracy of observation time. The outline of these picosecond, single pulse electron linear accelerators of the University of Tokyo and the Osaka University, including the history, the systems and components and the output beam characteristics, are explained. For example, the maximum energy 30 -- 35 MeV, the peak current 1 -- 8 n C, the pulse width 18 -- 40 ps, the pulse repetition rate 200 -- 720 pps, the energy spectrum 1 -- 1.8% and the output beam diameter 2 -- 5 mm are shown as the output beam characteristics of the accelerators in both universities. The investigations utilizing the picosecond single pulse electron linear accelerators, such as the investigation of short life excitation state by pulsed radiation, the dosimetry study of pulsed radiation, and the investigation of the transforming mechanism and the development of the transforming technology from picosecond, single pulse electron beam to X ray, vacuum ultraviolet ray and visual ray, are described. (Nakai, Y.)

  4. Radio-frequency quadrupole linear accelerator

    International Nuclear Information System (INIS)

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented

  5. KLYNAC: Compact linear accelerator with integrated power supply

    Energy Technology Data Exchange (ETDEWEB)

    Malyzhenkov, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-16

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.

  6. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    CERN Document Server

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  7. Focus measurement of electron linear accelerator

    International Nuclear Information System (INIS)

    Su Zhijun; Xin Jian; Jia Qinglong

    2007-01-01

    Many personal factors would influence the result of the focus measurement of linear accelerator using the conventional sandwich method. This paper presents a modified method which applies a film scanning meter to scan the X-ray image film got by sandwich method for obtaining a greyscale distribution, then the full width at half maximum value of greyscale distribution represents the focus size. The method can eliminates disadvantage influence from accelerator radiant field asymmetry by quadratic polynomial fitting and measures peak width at half height instead of stripe statistic. (authors)

  8. Stabilisation Evaluation of Medical Linear Accelerator

    International Nuclear Information System (INIS)

    Nasukha

    1996-01-01

    Medical linear accelerator are widely used for cancer treatment in radiotherapy. Radiation beam stability of accelerators, Megatron 20 and 12 were evaluated for a month with RMI daily constancy tool. Un stability less than 3 % for 7,10,12,15,18 MeV of electron beam and photon beam 15MV of Megatron 20 and photon beam 12MV of Megatron 12. Electron beam of 5 MeV of Megatron 20 should be set to get better salability, especially its radiofrequency

  9. Linear induction accelerator for heavy ions

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-09-01

    There is considerable recent interest in the use of high energy (γ = 1.1), heavy (A greater than or equal to 100) ions to irradiate deuterium--tritium pellets in a reactor vessel to constitute a power source at the level of 1 GW or more. Various accelerator configurations involving storage rings have been suggested. A discussion is given of how the technology of Linear Induction Accelerators--well known to be matched to high current and short pulse length--may offer significant advantages for this application

  10. A practical guide to modern high energy particle accelerators

    International Nuclear Information System (INIS)

    Holmes, S.D.

    1987-10-01

    The purpose of these lectures is to convey an understanding of how particle accelerators work and why they look the way they do. The approach taken is physically intuitive rather than mathematically rigorous. The emphasis is on the description of proton circular accelerators and colliders. Linear accelerators are mentioned only in passing as sources of protons for higher energy rings. Electron accelerators/storage rings and antiproton sources are discussed only by way of brief descriptions of the features which distinguish them from proton accelerators. The basics of how generic accelerators work are discussed, focusing on descriptions of what sets the overall scale, single particle dynamics and stability, and descriptions of the phase space of the particle beam, the information thus presented is then used to go through the exercise of designing a Superconducting Super Collider

  11. Wakefields and Instabilities in Linear Accelerators

    CERN Document Server

    Ferrario, M.; Palumbo, L.

    2014-12-19

    When a charged particle travels across the vacuum chamber of an accelerator, it induces electromagnetic fields, which are left mainly behind the generating particle. These electromagnetic fields act back on the beam and influence its motion. Such an interaction of the beam with its surro undings results in beam energy losses, alters the shape of the bunches, and shifts the betatron and synchrotron frequencies. At high beam current the fields can even lead to instabilities, thus limiting the performance of the accelerator in terms of beam quality and current intensity. We discuss in this lecture the general features of the electromagnetic fields, introducing the concepts of wakefields and giving a few simple examples in cylindrical geometry. We then show the effect of the wakefields on the dynamics of a beam in a linac, dealing in particular with the beam breakup instability and how to cure it.

  12. The hydrodynamics of linear accelerations in bluegill sunfish, Lepomis macrochirus

    Science.gov (United States)

    Wise, Tyler; Boden, Alex; Schwalbe, Margot; Tytell, Eric

    2015-11-01

    As fish swim, their body interacts with the fluid around them in order to generate thrust. In this study, we examined the hydrodynamics of linear acceleration by bluegill sunfish, Lepomis macrochirus, which swims using a carangiform mode. Carangiform swimmers primarily use their caudal fin and posterior body for propulsion, which is different from anguilliform swimmers, like eels, that undulate almost their whole body to swim. Most previous studies have examined steady swimming, but few have looked at linear accelerations, even though most fish do not often swim steadily. During steady swimming, thrust and drag forces are balanced, which makes it difficult to separate the two, but during acceleration, thrust exceeds drag, making it easier to measure; this may reveal insights into how thrust is produced. This study used particle image velocimetry (PIV) to compare the structure of the wake during steady swimming and acceleration and to estimate the axial force. Axial force increased during acceleration, but the orientation of the vortices did not differ between steady swimming and acceleration, which is different than anguilliform swimmers, whose wakes change structure during acceleration. This difference may point to fundamental differences between the two swimming modes. This material is based upon work supported by the U. S. Army Research Office under grant number W911NF-14-1-0494.

  13. Proceedings of the 18. international linear accelerator conference. Vol. 2

    International Nuclear Information System (INIS)

    Hill, C.; Vretenar, M.

    1996-01-01

    These proceedings cover the whole field of linear accelerators, from its original and continuing role in particle physics research to the wide range of applications found today in many other disciplines and technologies. The contributions were deliberately spread among the different conference sessions in order to maintain a broad interest. The topics covered include: the design, construction and control of linear accelerators and the associated technology; dedicated test facilities, injection, wakefields, bunching, halo, dynamics, radio-frequency (RF), electron and ion accelerators, (laser) ion sources; active alignment, beam steering and spot size; simulation, monitoring and diagnostics; a description of the performance and current status of many machines, including proposed ones such as CLIC, the NLC and TESLA; applications to medical diagnosis and radiotherapy; use in the treatment and sterilisation of materials (including food) and in the reprocessing of radioactive waste; use as potential suppliers of energy. (orig.)

  14. Proceedings of the 18. international linear accelerator conference. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Hill, C; Vretenar, M [eds.

    1996-11-15

    These proceedings cover the whole field of linear accelerators, from its original and continuing role in particle physics research to the wide range of applications found today in many other disciplines and technologies. The contributions were deliberately spread among the different conference sessions in order to maintain a broad interest. The topics covered include: the design, construction and control of linear accelerators and the associated technology; dedicated test facilities, injection, wakefields, bunching, halo, dynamics, radio-frequency (RF), electron and ion accelerators, (laser) ion sources; active alignment, beam steering and spot size; simulation, monitoring and diagnostics; a description of the performance and current status of many machines, including proposed ones such as CLIC, the NLC and TESLA; applications to medical diagnosis and radiotherapy; use in the treatment and sterilisation of materials (including food) and in the reprocessing of radioactive waste; use as potential suppliers of energy. (orig.).

  15. Proceedings of the 18. international linear accelerator conference. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Hill, C; Vretenar, M [eds.

    1996-11-15

    These proceedings cover the whole field of linear accelerators, from its original and continuing role in particle physics research to the wide range of applications found today in many other disciplines and technologies. The contributions were deliberately spread among the different conference sessions in order to maintain a broad interest. The topics covered include: the design, construction and control of linear accelerators and the associated technology; dedicated test facilities, injection, wakefields, bunching, halo, dynamics, radio-frequency (RF), electron and ion accelerators, (laser) ion sources; active alignment, beam steering and spot size; simulation, monitoring and diagnostics; a description of the performance and current status of many machines, including proposed ones such as CLIC, the NLC and TESLA; applications to medical diagnosis and radiotherapy; use in the treatment and sterilisation of materials (including food) and in the reprocessing of radioactive waste; use as potential suppliers of energy. (orig.).

  16. Computer Based Dose Control System on Linear Accelerator

    International Nuclear Information System (INIS)

    Taxwim; Djoko-SP; Widi-Setiawan; Agus-Budi Wiyatna

    2000-01-01

    The accelerator technology has been used for radio therapy. DokterKaryadi Hospital in Semarang use electron or X-ray linear accelerator (Linac)for cancer therapy. One of the control parameter of linear accelerator isdose rate. It is particle current or amount of photon rate to the target. Thecontrol of dose rate in linac have been done by adjusting repetition rate ofanode pulse train of electron source. Presently the control is stillproportional control. To enhance the quality of the control result (minimalstationer error, velocity and stability), the dose control system has beendesigned by using the PID (Proportional Integral Differential) controlalgorithm and the derivation of transfer function of control object.Implementation of PID algorithm control system is done by giving an input ofdose error (the different between output dose and dose rate set point). Theoutput of control system is used for correction of repetition rate set pointfrom pulse train of electron source anode. (author)

  17. RFQ device for accelerating particles

    Science.gov (United States)

    Shepard, K.W.; Delayen, J.R.

    1995-06-06

    A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium. 5 figs.

  18. RFQ device for accelerating particles

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, Kenneth W. (Park Ridge, IL); Delayen, Jean R. (Naperville, IL)

    1995-01-01

    A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium.

  19. Radiation load of workers on linear accelerators

    International Nuclear Information System (INIS)

    Kralik, G.; Kantova, Z.; Fribertova, M.; Kontrisova, K.

    2014-01-01

    Burden of health care personnel working on linear accelerators. New examination and treatment methods enable to reduce the number of health care personnel even in the case of increased numbers of examined patients. However, still open is the question of determining the effective dose delivered to health care personnel. The employment of several methods of evaluation of received dose at one workplace makes it possible to compare the accuracy and reliability of the respective types of measuring devices, as well as to point out the pitfalls of their use.At the St. Elizabeth Cancer Institute we compared the results of measurements of TL dosimeters, and OSL dosimeters at workplaces with linear accelerators. (authors)

  20. Enhanced dielectric-wall linear accelerator

    Science.gov (United States)

    Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  1. High average power linear induction accelerator development

    International Nuclear Information System (INIS)

    Bayless, J.R.; Adler, R.J.

    1987-07-01

    There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs

  2. Dragon-I Linear Induction Electron Accelerator

    International Nuclear Information System (INIS)

    Ding Bonan; Deng Jianjun; Wang Huacen; Cheng Nian'an; Dai Guangsen; Zhang Linwen; Liu Chengjun; Zhang Wenwei; Li Jin; Zhang Kaizhi

    2005-01-01

    Dragon-I is a linear induction electron accelerator. This facility consists of a 3.6 MeV injector, 38 meter beam transport line and 16 MeV induction accelerator powered by high voltage generators, including 8 Marx generators and 48 Blumlein lines. This paper describes the physics design, development and experimental results of Dragon-I. The key technology is analyzed in the accelerator development, and the design requirements and operation of the major subsystems are presented. The experimental results show Dragon-I generates an 18-20 MeV, 2.5 kA, 70 ns electron beam. The X-ray spot size is about 1.2 mm and dose level about 0.103 C/kg at 1 meter. (authors)

  3. High gradient accelerators for linear light sources

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1988-01-01

    Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs

  4. US PARTICLE ACCELERATOR SCHOOL: Summer schools

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-11-15

    Continuing it's educational efforts, the US Particle Accelerator School (USPAS) held two summer schools this year. The USPAS has two basic purposes — education in accelerator physics and technology, in particular to train apprentices and update experts; and to encourage US universities and Laboratories to offer programmes in accelerator physics by developing textbooks, training faculty, and organizing schools.

  5. US PARTICLE ACCELERATOR SCHOOL: Summer schools

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Continuing it's educational efforts, the US Particle Accelerator School (USPAS) held two summer schools this year. The USPAS has two basic purposes — education in accelerator physics and technology, in particular to train apprentices and update experts; and to encourage US universities and Laboratories to offer programmes in accelerator physics by developing textbooks, training faculty, and organizing schools

  6. Particle acceleration in the interplanetary space

    International Nuclear Information System (INIS)

    Tverskoj, B.A.

    1983-01-01

    A review on the problem of particle acceleration in the interplanetary space is given. The main lationship attention is paid to the problem of the re/ between the impact- and turbulent acceleration when an undisturbed magnetic field forms not too small angle THETA > 10 deg with the shock wave front. The following conclusions are drawn. Particle acceleration at the shock wave front is manifested in the explicit form, if the shock wave propagates along a homogeneous (in the 11 cm range) solar wind. The criterion of such an acceleration is the exponential distribution function F approximately vsup(-ν) (v is the particle velocity and ν is the accelerated particle spectrum index) in the low energy range and the conservation of this function at considerable distances behind the front. The presence of an additional turbulent acceleration behind the front is manifested in decreasing ν down to approximately 3.5 in the low energy range and in the spectrum evolution behind the front

  7. Particle acceleration by collective effects

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-01-01

    Successful acceleration of protons and other ions has been achieved experimentally in this decade by a number of different collective methods. The attainment of very high accelerating fields has been established although so far the acceleration distance has been confined to only a few centimeters. Efforts are in progress to understand the accelerating mechanisms in detail and, as a result, to devise ways of extending considerably the acceleration distance. This paper is intended to review the current progress, expectations, and limitations of the different approaches. (author)

  8. Particle acceleration by collective effects

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-09-01

    Successful acceleration of protons and other ions has been achieved experimentally in this decade by a number of different collective methods. The attainment of very high accelerating fields has been established although so far the acceleration distance has been confined to only a few centimeters. Efforts are in progress to understand the accelerating mechanisms in detail and, as a result, to devise ways of extending considerably the acceleration distance. A review is given of the current progress, expectations, and limitations of the different approaches

  9. Double layers are not particle accelerators

    International Nuclear Information System (INIS)

    Bryant, D.A.; Bingham, R.; Angelis, U. de.

    1991-02-01

    It is pointed out that the continuing advocacy of electrostatic double layers as particle accelerators in the aurora and other space and astrophysical plasmas is fundamentally unsound. It is suggested furthermore that there is little reason to invoke static or quasi-static electric fields as the cause of auroral electron acceleration. Stochastic acceleration by electrostatic wave turbulence appears to present a natural explanation for this and for electron acceleration in other space and astrophysical plasmas. (author)

  10. Linear accelerator for burner-reactor

    International Nuclear Information System (INIS)

    Batskikh, G.I.; Murin, B.P.; Fedotov, A.P.

    1991-01-01

    Future development of nuclear power engineering depends on the successful solution of two key problems of safety and utilization of high level radioactive wastes (HLRW) of atomic power plants (APP). Modern methods of HLRW treatment involve solidification, preliminary storing for a period of 30-50 years necessary for the decay of long-living nuclides and final burial in geological formations several hundred meters below the ground surface. The depth burial of the radioactive wastes requires complicated under ground constructions. It's very expensive and doesn't meet modern ecological requirements. Alternative modern and more reasonable methods of APP HLRW treatment are under consideration now. One of the methods involves separation of APP waste radionuclides for use in economy with subsequent transmutation of the long-living isotopes into the short-living ones by high-intensity neutron fluxes generated by proton accelerators. The installation intended for the long-living radionuclides transmutation into the short-living ones is called burner-reactor. It can be based on the continuous regime proton accelerator with 1.5 GeV energy, 0.3 A current and beam mean power of 450 MW. The preferable type of the proton accelerator with the aforementioned parameters is the linear accelerator

  11. Seventh International Accelerator School for Linear Colliders

    CERN Document Server

    Organizers of the Seventh International Accelerator School for Linear Colliders

    2012-01-01

    We are pleased to announce the Seventh International Accelerator School for Linear Colliders. This school is a continuation of the series of schools which began six years ago.  The first school was held in 2006 in Sokendai, Japan, the second in 2007 in Erice, Italy, the third in 2008 in Oakbrook Hills, USA, the fourth in 2009 in Huairou, China, the fifth in 2010 in Villars-sur-Ollon, Switzerland, and the sixth in 2011 in Pacific Grove, USA.   The school is organized by the International Linear Collider (ILC) Global Design Effort (GDE), the Compact Linear Collider (CLIC) and the International Committee for Future Accelerators (ICFA) Beam Dynamics Panel. The school this year will take place at the Radisson Blu Hotel, Indore, India from November 27 to December 8, 2012. It is hosted by the Raja Ramanna Center for Advanced Technology (RRCAT) and sponsored by a number of funding agencies and institutions around the world including the U.S. Department of Energy (DOE), the U.S. National Science...

  12. Computer codes for designing proton linear accelerators

    International Nuclear Information System (INIS)

    Kato, Takao

    1992-01-01

    Computer codes for designing proton linear accelerators are discussed from the viewpoint of not only designing but also construction and operation of the linac. The codes are divided into three categories according to their purposes: 1) design code, 2) generation and simulation code, and 3) electric and magnetic fields calculation code. The role of each category is discussed on the basis of experience at KEK (the design of the 40-MeV proton linac and its construction and operation, and the design of the 1-GeV proton linac). We introduce our recent work relevant to three-dimensional calculation and supercomputer calculation: 1) tuning of MAFIA (three-dimensional electric and magnetic fields calculation code) for supercomputer, 2) examples of three-dimensional calculation of accelerating structures by MAFIA, 3) development of a beam transport code including space charge effects. (author)

  13. An injection system for a linear accelerator

    International Nuclear Information System (INIS)

    Santos, A.C.R.

    1978-03-01

    An injection system for the Linear Accelerator is developed using the parameters of machines at the Centro Brasileiro de Pesquisas Fisicas and the Instituto Militar de Engenharia. The proposed system consists basically of a prebuncher and a chopper. The pre-buncher is used to improve the energy resolution and also to increase the accelerator target current. The chopper is used to remove from the beam the electrons that have no possibility of attaining the desired energy and that are usually lost in the walls and the cavity tube, thus producing undesirable background. Theoretical development of the chopper is performed in order to obtain its dimensions for future construction. The complete design the pre-buncher and its feed supply system and the experimental verication of its performance are also presented. It is intended to give the necessary information for the design and construction of the complete injection system proposed. (Author) [pt

  14. Space charge physics for particle accelerators

    CERN Document Server

    Hofmann, Ingo

    2017-01-01

    Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and beam loss are discussed....

  15. Particle acceleration at a reconnecting magnetic separator

    Science.gov (United States)

    Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.

    2015-02-01

    Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.

  16. CAS CERN Accelerator School superconductivity in particle accelerators

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    One of the objectives of the CERN Accelerator School is to run courses on specialised topics in the particle accelerator field. The present volume contains the proceedings of one such course, this time organized in conjunction with the Deutsches Elektronen Synchrotron (DESY) on the subject of superconductivity in particle accelerators. This course reflects the very considerable progress made over the last few years in the use of the technology for the magnet and radio-frequency systems of many large and small accelerators already in use or nearing completion, while also taking account of the development work now going on for future machines. The lectures cover the theory of superconductivity, cryogenics and accelerator magnets and cavities, while the seminars include superfluidity, superconductors, special magnets and the prospects for high-temperature superconductors. (orig.)

  17. Charged particle accelerators for practice

    International Nuclear Information System (INIS)

    Arzumanov, A.A.

    1988-01-01

    Characteristics of some accelerators operating in the world are given, capabilities of accelerator technique are demonstrated. Examples of wide application of accelerators in radiation-chemical technology as well as for defectoscopy of massive metal products and impurity ion implantation when producing semiconductor elements are presented. Works on nuclear filter production are characterized by high efficiency. Wide application of synchrotron radiation is described. Various accelerators can be applied during element analysis in geology, metallurgy, ecology. Application of accelerators ''in particular, cyclotrons for radioisotope production as well as in radiotherapy in medicine appears to be important. An isochronous cyclotron with controlled ion energy, at which applied works concerning a number of considered trends in the field of radiation physics and radiation physical metallurgy, element analysis, radiation resistance of electronic circuits and components are conducted, is in operation at the IYaPh of the Kazakh Academy of Sciences. Production of tallium-201 for cardiologic invstigations deserves a special attention. An electrostatic heavy ion accelerator which allows one to produce the beams of accelerated ions of elements from hydrogen to uranium is under commissioning

  18. Treatment planning optimization for linear accelerator radiosurgery

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Mendenhall, William M.

    1998-01-01

    Purpose: Linear accelerator radiosurgery uses multiple arcs delivered through circular collimators to produce a nominally spherical dose distribution. Production of dose distributions that conform to irregular lesions or conformally avoid critical neural structures requires a detailed understanding of the available treatment planning parameters. Methods and Materials: Treatment planning parameters that may be manipulated within a single isocenter to provide conformal avoidance and dose conformation to ellipsoidal lesions include differential arc weighting and gantry start/stop angles. More irregular lesions require the use of multiple isocenters. Iterative manipulation of treatment planning variables can be difficult and computationally expensive, especially if the effects of these manipulations are not well defined. Effects of treatment parameter manipulation are explained and illustrated. This is followed by description of the University of Florida Stereotactic Radiosurgery Treatment Planning Algorithm. This algorithm organizes the manipulations into a practical approach for radiosurgery treatment planning. Results: Iterative treatment planning parameters may be efficiently manipulated to achieve optimal treatment plans by following the University of Florida Treatment Planning Algorithm. The ability to produce conformal stereotactic treatment plans using the algorithm is demonstrated for a variety of clinical presentations. Conclusion: The standard dose distribution produced in linear accelerator radiosurgery is spherical, but manipulation of available treatment planning parameters may result in optimal dose conformation. The University of Florida Treatment Planning Algorithm organizes available treatment parameters to efficiently produce conformal radiosurgery treatment plans

  19. Development of electron linear accelerators in SAMEER

    International Nuclear Information System (INIS)

    Krishnan, R.

    2015-01-01

    LINear Accelerator (LINAC) based Radiotherapy machine is a key tool for Cancer Treatment. The number of such linac machines available is far less than the actual requirement projected, to suffice the needs of the vast number of Cancer Patients in the country. Development of indigenous state-of-art cancer therapy machine was therefore a crucial achievement under the Jai Vigyan Project of Govt. of India. With the support of Department of Electronics and Information Technology (DeitY), Govt of India, SAMEER has successfully developed 6 MV Radiation Oncology machine at par international standards and is being used to treat cancer patients in the country. SAMEER is also currently developing the dual photon energy and multiple electron energy medical linac machine for radiotherapy and also critical accessories to make a complete oncology system required for advanced state of art treatment. In this paper the work in SAMEER on electron linear accelerators for the medical applications and the related technology and facilities available will be presented. (author)

  20. Linear accelerator calibration monitor with a memory

    International Nuclear Information System (INIS)

    Dixon, R.L.; Ekstrand, K.E.

    1979-01-01

    A calibration monitor has been designed for measuring the constancy of linear accelerator or cobalt unit output between full calibrations. This monitor is battery-operated, light-weight, and slides into the shadow tray attachment on a linear accelerator or cobalt unit for easy setup. It provides a digital readout of the dose delivered, and a consistency check can be made in less than two minutes. The precision of the monitor, determined by cobalt-60 irradiations over a 2 1/2 month period, is +- 0.6% (standard deviation). The monitor also retains the dose reading in a CMOS digital counter indefinitely, hence it can be used in the same fashion as mailed thermoluminescent dosimeters (TLD) for calibration checks at remote facilities without the complicated readout procedures associated with TLD. The monitor can be mailed to a remote facility, positioned without ambiguity, and irradiated; and the reading can be verified on return to the originating center simply by pressing a switch. The monitor can easily be set up to carry out a ''blind'' check in which the reading obtained is not known to the remote facility

  1. Accelerators: the large slings of small particles

    International Nuclear Information System (INIS)

    Crozon, M.

    1987-01-01

    This paper reviews the different types of accelerators, of particles or heavy ions, which have been developed or are in project, their performance, their limits, which noting briefly the technologies used [fr

  2. Lauch of CERN particle accelerator delayed

    CERN Multimedia

    2007-01-01

    "Scientists seeking to uncover the secrets of the universe will have to wait a little longer after the CERN laboratory inSwitzerland yesterday confirmed a delay in tests of its massive new particle accelerator." (1 page)

  3. Global particle accelerator gets the big chill

    CERN Multimedia

    Sherriff, Lucy

    2004-01-01

    Scientists at an international symposium in Beijing have recommended that a new global particle accelerator should be based on "cold" or superconducting technology, bringing the construction of the multi-billion dollar facility one step closer to reality (½ page)

  4. Particle propagation and acceleration in the heliosphere

    International Nuclear Information System (INIS)

    Valdes-Galicia, J.F.; Quenby, J.J.; Mousas, X.

    1988-01-01

    A realistic model of interplanetary magnetic field perturbations has been constructed based on data taken on board spacecraft. The model has been used to study numerically pitch angle scattering suffered by energetic particles (1-100 MeV) as they propagate in the Heliosphere. These numerical experiments allow the determination of the pitch angle diffusion coefficient Dμ and the associated mean free path λ. Dμ is found to be always smaller than implied by quasi linear theory, leading to radial mean free paths (λ r ≅ 0.015 AU) that are at least 3 times larger. Inclusion of solar wind velocity measurements in the model producing V x B random electric fields permits the study of stochastic acceleration caused by these fields. Initial results show that these processes might be able to overcome the effects of adiabatic cooling caused by the expansion of the solar wind and thus be of some influence in cosmic ray acceleration when extrapolated to other astrophysical environments

  5. The linear proton accelerator for the MYRRHA-ADS

    International Nuclear Information System (INIS)

    Vandeplassche, D.; Medeiros Ramao, L.

    2013-01-01

    The article discusses the development of a linear proton accelerator for the MYRRHA Accelerator Driven System (ADS). The linear proton accelerator provides a high energy and high intensity proton beam that is directed to a spallation target, which will deliver neutrons to a subcritical nuclear reactor core. The article describes the MYRRHA linear accelerator, which mainly consists of a sequence of superconducting accelerating radiofrequent cavities that are positioned in a linear configuration. The beam requirements for MYRRHA are discussed involving, amongst others, a continuous wave beam delivery mode with a high reliability goal. The key concepts to increase the reliability of the accelerator are described.

  6. Applications of Particle Accelerators in Medical Physics

    OpenAIRE

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide f...

  7. Particle acceleration near Halley's comet

    International Nuclear Information System (INIS)

    Somogyi, Antal

    1987-01-01

    Vega and Giotto space probes observed energetic ions of cometary origin near Halley's comet. The water molecules evaporating from the cometary nucleus were ionized by the solar UV radiation. These 'standing' ions were accelerated from 1 km/s to a few 1000 km/s. Present paper analyses the possible mechanisms of acceleration based on the data of TUENDE detector (constructed by CRIP, Hungary) working on board of Vega probes. The basic mechanism is the ExB Lorentz acceleration by interplanetary magnetic field and electric field induced by magnetic field frozen into solar wind plasma. It is followed by an acceleration caused by the adiabatic compression of the plasma at shock wave front. These processes can not explain the observed velocity of ions. It is shown that the second order Fermi acceleration which dissipates the ion distribution in the velocity space can lead to the observed velocities. The circumstances required to the occurrence of this process are present at the cometary environment. (D.G.) 2 figs

  8. Linear accelerator stereotactic radiosurgery for trigeminal neuralgia.

    Science.gov (United States)

    Varela-Lema, Leonor; Lopez-Garcia, Marisa; Maceira-Rozas, Maria; Munoz-Garzon, Victor

    2015-01-01

    Stereotactic radiosurgery is accepted as an alternative for patients with refractory trigeminal neuralgia, but existing evidence is fundamentally based on the Gamma Knife, which is a specific device for intracranial neurosurgery, available in few facilities. Over the last decade it has been shown that the use of linear accelerators can achieve similar diagnostic accuracy and equivalent dose distribution. To assess the effectiveness and safety of linear-accelerator stereotactic radiosurgery for the treatment of patients with refractory trigeminal neuralgia. We carried out a systematic search of the literature in the main electronic databases (PubMed, Embase, ISI Web of Knowledge, Cochrane, Biomed Central, IBECS, IME, CRD) and reviewed grey literature. All original studies on the subject published in Spanish, French, English, and Portuguese were eligible for inclusion. The selection and critical assessment was carried out by 2 independent reviewers based on pre-defined criteria. In view of the impossibility of carrying out a pooled analysis, data were analyzed in a qualitative way. Eleven case series were included. In these, satisfactory pain relief (BIN I-IIIb or reduction in pain = 50) was achieved in 75% to 95.7% of the patients treated. The mean time to relief from pain ranged from 8.5 days to 3.8 months. The percentage of patients who presented with recurrences after one year of follow-up ranged from 5% to 28.8%. Facial swelling or hypoesthesia, mostly of a mild-moderate grade appeared in 7.5% - 51.9% of the patients. Complete anaesthesia dolorosa was registered in only study (5.3%). Cases of hearing loss (2.5%), brainstem edema (5.8%), and neurotrophic keratoplasty (3.5%) were also isolated. The results suggest that stereotactic radiosurgery with linear accelerators could constitute an effective and safe therapeutic alternative for drug-resistant trigeminal neuralgia. However, existing studies leave important doubts as to optimal treatment doses or the

  9. Geometric integration for particle accelerators

    International Nuclear Information System (INIS)

    Forest, Etienne

    2006-01-01

    This paper is a very personal view of the field of geometric integration in accelerator physics-a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling-unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction

  10. Geometric integration for particle accelerators

    Science.gov (United States)

    Forest, Étienne

    2006-05-01

    This paper is a very personal view of the field of geometric integration in accelerator physics—a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling—unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction.

  11. Infinite stochastic acceleration of charged particles from non-relativistic initial energies

    International Nuclear Information System (INIS)

    Buts, V.A.; Manujlenko, O.V.; Turkin, Yu.A.

    1997-01-01

    Stochastic charged particle acceleration by electro-magnetic field due to overlapping of non-linear cyclotron resonances is considered. It was shown that non-relativistic charged particles are involved in infinitive stochastic acceleration regime. This effect can be used for stochastic acceleration or for plasma heating by regular electro-magnetic fields

  12. Space-charge limits in linear accelerators

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1980-12-01

    This report presents equations that allow an approximate evaluation of the limiting beam current for a large class of radio-frequency linear accelerators, which use quadrupole strong focusing. Included are the Alvarez, the Wideroe, and the radio-frequency quadrupole linacs. The limiting-current formulas are presented for both the longitudinal and the transverse degrees of freedom by assuming that the average space-charge force in the beam bunch arises from a uniformly distributed charge within an azimuthally symmetric three-dimensional ellipsoid. The Mathieu equation is obtained as an approximate, but general, form for the transverse equation of motion. The smooth-approximation method is used to obtain a solution and an expression for the transverse current limit. The form of the current-limit formulas for different linac constraints is discussed

  13. Stereotactic radiosurgery using a linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kyuma, Yoshikazu; Hayashi, Akimune; Kitamura, Tatsuo; Yamashita, Koosuke; Muranishi, Hisayuki; Hioki, Minoru [Kanagawa Cancer Center, Yokohama (Japan)

    1992-07-01

    A basic and clinical study of radiosurgery using the linear accelerator (Linac) system for unremovable deep-seated brain tumors is reported. A Komai stereotactic ring was used to locate the target coordinates. The patient was laid on the Linac treatment table and held in the head fixation system. Irradiation was given in five positions. The dose profile by film dosimetry and Rando phantom was satisfactory. Seventeen tumors in 14 patients were treated. Clinical or histological diagnoses were nine metastases, one benign and two malignant gliomas, one meningioma, and one carcinopharyngioma. Tumor sizes were between 8 and 30 mm. Doses were between 12 and 30 Gy. Computed tomographic evaluation after 3 months of 12 tumors in 11 survivors showed one complete remission, three partial remission, six no change, and two partial deterioration. For progressive tumors, Linac radiosurgery results are excellent. (author).

  14. Laser and Particle Guiding Micro-Elements for Particle Accelerators

    CERN Document Server

    Plettner, Tomas; Spencer, James; Wisdom, Jeffrey

    2005-01-01

    Laser driven particle accelerators based on the current generation of lasers will require sub-micron control of the laser field as well as precise beam guiding. Hence the fabrication techniques that allow integrating both elements into an accelerator-on-chip format become critical for the success of such particle accelerators. Micromachining technology for silicon has been shown to be one such feasible technology in PAC2003 but with a variety of complications on the laser side. Fortunately, in recent years the fabrication of transparent ceramics has become an interesting technology that could be applied for laser-particle accelerators in several ways. We discuss this area, its advantages such as the range of materials it provides and various ways to implement it followed by some different test examples that have been considered. One important goal of this approach is an integrated system that could avoid the necessity of having to inject either laser or particle pulses into these structures.

  15. Introduction to electrodynamics for microwave linear accelerators

    International Nuclear Information System (INIS)

    Whittum, D.H.

    1998-04-01

    This collection of notes and exercises is intended as a workbook to introduce the principles of microwave linear accelerators, starting with the underlying foundation in electrodynamics. The author reviewed Maxwell's equations, the Lorentz force law, and the behavior of fields near a conducting boundary. The author goes on to develop the principles of microwave electronics, including waveguide modes, circuit equivalence, shunt admittance of an iris, and voltage standing-wave ratio. The author constructed an elementary example of a waveguide coupled to a cavity, and examined its behavior during transient filling of the cavity, and in steady-state. He goes on to examine a periodic line. Then he examined the problem of acceleration in detail, studying first the properties of a single cavity-waveguide-beam system and developing the notions of wall Q, external Q, /Q shunt impedance, and transformer ratio. He then examined the behavior of such a system on and off resonance, on the bench, and under conditions of transient and steady-state beam-loading. This work provides the foundation for the commonly employed circuit equivalents and the basic scalings for such systems. Following this he examined the coupling of two cavities, powered by a single feed, and goes on to consider structures constructed from multiple coupled cavities. The basic scalings for constant impedance and constant gradient traveling-wave structures are set down, including features of steady-state beam-loading, and the coupled-circuit model. Effects of uniform and random detuning are derived. These notes conclude with a brief outline of some problems of current interest in accelerator research

  16. Mass spectrometry with particle accelerator

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The heavy ion accelerator use is renewing the ultrasensitive mass spectrometry in extending the detection limits. These new devices allow the measurement of rare isotope ratio, as 10 Be, 14 C, 26 Al, 36 Cl or 41 Ca, from the earth natural reservoirs [fr

  17. Superconductivity in high energy particle accelerators

    International Nuclear Information System (INIS)

    Schmueser, P.

    2002-08-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application in magnets and radio frequency cavities for high energy particle accelerators. The special properties of superconducting accelerator magnets are described in detail: design principles, magnetic field calculations, magnetic forces, quench performance, persistent magnetization currents and eddy currents. The design principles and basic properties of superconducting cavities are explained as well as the observed performance limitations and the countermeasures. The ongoing research efforts towards maximum accelerating fields are addressed and the coupling of radio frequency power to the particle beam is treated. (orig.)

  18. Algorithms for tracking of charged particles in circular accelerators

    International Nuclear Information System (INIS)

    Iselin, F.Ch.

    1986-01-01

    An important problem in accelerator design is the determination of the largest stable betatron amplitude. This stability limit is also known as the dynamic aperture. The equations describing the particle motion are non-linear, and the Linear Lattice Functions cannot be used to compute the stability limits. The stability limits are therefore usually searched for by particle tracking. One selects a set of particles with different betatron amplitudes and tracks them for many turns around the machine. The particles which survive a sufficient number of turns are termed stable. This paper concentrates on conservative systems. For this case the particle motion can be described by a Hamiltonian, i.e. tracking particles means application of canonical transformations. Canonical transformations are equivalent to symplectic mappings, which implies that there exist invariants. These invariants should not be destroyed in tracking

  19. Particle acceleration and shock wave structure

    International Nuclear Information System (INIS)

    DRURY, L.O'C.

    1989-01-01

    A significant determinant in the large-scale structure and evolution of strong collisionless shocks under astrophysical conditions is probably the acceleration of charged particles. The reaction of these particles on the dynamical structure of the shock wave is discussed both theoretically and in the light of recent numerical calculations. Astrophysical implications for the evolution of supernova remnants, are considered. (author). 15 refs

  20. Shielding for neutrons produced by medical linear accelerators

    International Nuclear Information System (INIS)

    Rebello, Wilson F.; Silva, Ademir X.

    2007-01-01

    The shielding system called Multileaf Shielding (MLS) was designed in Brazil to be used for protection patients, who undergo radiotherapy treatment, against undesired neutrons produced in the medical linear accelerator heads. During the conceiving of the MLS it was necessary to evaluate its efficiency. For that purpose, several simulations using the Monte Carlo N-particle radiation transport code, MCNP5, were made, in order to evaluate the response of the new shielding system. The results showed a significant neutron dose reduction after the inclusion of the MLS. This work aims to presenting these simulation results. (author)

  1. Applications of laser-driven particle acceleration

    CERN Document Server

    Parodi, Katia; Schreiber, Jorg

    2018-01-01

    The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia ...

  2. Radiological protection at particle accelerators: An overview

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1991-01-01

    Radiological protection began with particle accelerators. Many of the concerns in the health physics profession today were discovered at accelerator laboratories. Since the mid-1940s, our understanding has progressed through seven stages: observation of high radiation levels; shielding; development of dosimetric techniques; studies of induced activity and environmental impact; legislative and regulatory concerns; and disposal. The technical and scientific aspects of accelerator radiation safety are well in hand. In the US, there is an urgent need to move away from a ''best available technology'' philosophy to risk-based health protection standards. The newer accelerators will present interesting radiological protection issues, including copious muon production and high LET (neutron) environments

  3. Particle acceleration by inverse-Weibel instability

    Energy Technology Data Exchange (ETDEWEB)

    Kawata, S [Nagaoka Univ. of Technology (Japan). Dept. of Electrical Engineering

    1997-12-31

    A high demagnetization rate delta B/delta t can be obtained through fast decoupling of a magnetic field from an electric circuit which generates the magnetic field. Nowadays fast decoupling is possible by present switching technologies. A high particle-acceleration gradient can be obtained in an inductive acceleration system compared with that in a conventional induction accelerator. Based on this new proposal, inductive ion and electron accelerations were investigated numerically. The mechanism presented can be considered as pseudo-inverse Weibel instability. (author). 3 figs., 7 refs.

  4. Particle acceleration by inverse-Weibel instability

    International Nuclear Information System (INIS)

    Kawata, S.

    1996-01-01

    A high demagnetization rate delta B/delta t can be obtained through fast decoupling of a magnetic field from an electric circuit which generates the magnetic field. Nowadays fast decoupling is possible by present switching technologies. A high particle-acceleration gradient can be obtained in an inductive acceleration system compared with that in a conventional induction accelerator. Based on this new proposal, inductive ion and electron accelerations were investigated numerically. The mechanism presented can be considered as pseudo-inverse Weibel instability. (author). 3 figs., 7 refs

  5. Massive particle accelerator revving up

    CERN Multimedia

    Kestenbaum, David S

    2007-01-01

    "This summer, physicists plan to throww the switch on what is arguably the largest and most complex science experiment ever conducted. An underground ring of superconducting magnets, reaching from Switzerland into France, will smash together subatomic particles at incredible force." (3 pages)

  6. A New Paradigm for Flare Particle Acceleration

    Science.gov (United States)

    Guidoni, Silvina E.; Karpen, Judith T.; DeVore, C. Richard

    2017-08-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission and its spectra in solar flares is not well understood. Here, we propose a first-principle-based model of particle acceleration that produces energy spectra that closely resemble those derived from hard X-ray observations. Our mechanism uses contracting magnetic islands formed during fast reconnection in solar flares to accelerate electrons, as first proposed by Drake et al. (2006) for kinetic-scale plasmoids. We apply these ideas to MHD-scale islands formed during fast reconnection in a simulated eruptive flare. A simple analytic model based on the particles’ adiabatic invariants is used to calculate the energy gain of particles orbiting field lines in our ultrahigh-resolution, 2.5D, MHD numerical simulation of a solar eruption (flare + coronal mass ejection). Then, we analytically model electrons visiting multiple contracting islands to account for the observed high-energy flare emission. Our acceleration mechanism inherently produces sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each macroscopic island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions. This work was supported in part by the NASA LWS and H-SR programs..

  7. International linear collider project and role of accelerator rock engineering

    International Nuclear Information System (INIS)

    Suzuki, Atsuto

    2008-01-01

    In the branch of physics called High Energy Physics, the scientists are studying the world of elementary particles. It is the research of what is taking place among these elementary particles in an ultra, ultra small scale of space and time. The knowledge we obtained there has tremendously deepened our understanding of the Nature. It is also expected to serves us as the founding stone of the sciences and technologies both at present and in the future. The High Energy Physicists around the world now have great expectations of the research programs at what is called a linear collider (LC). A linear collider is a new accelerator which provides us with a laboratory to investigate the particle interactions at energies of several hundred Giga-Electron-Volts (GeV) and beyond. The LC is currently being developed through an international collaboration where the scientists and engineers from all corners of the globe, including Asia, America and Europe, are congregated. It is called the International Linear Collider (ILC) collaboration. (author)

  8. Non-accelerator particle physics

    International Nuclear Information System (INIS)

    Steinberg, R.I.

    1990-01-01

    The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are currently engaged in construction of the MACRO detector, an Italian-American collaborative research instrument with a total particle acceptance of 10,000 m 2 sr, which will perform a sensitive search for magnetic monopoles using excitation-ionization methods. Other major objective of the MACRO experiment are to search for astrophysical high energy neutrinos expected to be emitted by such objects as Vela X-1, LMC X-4 and SN-1987A and to search for low energy neutrino bursts from gravitational stellar collapse. We are also working on BOREX, a liquid scintillation solar neutrino experiment and GRANDE, a proposed very large area surface detector for astrophysical neutrinos, and on the development of new techniques for liquid scintillation detection

  9. Canonical harmonic tracking of charged particles in circular accelerators

    International Nuclear Information System (INIS)

    Kvardakov, V.; Levichev, E.

    2006-01-01

    Harmonic tracking is a method used to study non-linear particle dynamics in a circular accelerator. The tracking algorithm is based on numerical solution of the Hamilton equations of motion. An essential feature of the method is the approximation of Hamiltonian perturbation terms by a finite number of azimuthal harmonics, which provides an effective tool for optimization of non-linear particle motion. The equations of motion are solved canonically, with the first-order prediction made using the explicit Lie transformation. The major features of harmonic tracking are presented and examples of its application are discussed

  10. Canonical harmonic tracking of charged particles in circular accelerators

    Science.gov (United States)

    Kvardakov, V.; Levichev, E.

    2006-03-01

    Harmonic tracking is a method used to study non-linear particle dynamics in a circular accelerator. The tracking algorithm is based on numerical solution of the Hamilton equations of motion. An essential feature of the method is the approximation of Hamiltonian perturbation terms by a finite number of azimuthal harmonics, which provides an effective tool for optimization of non-linear particle motion. The equations of motion are solved canonically, with the first-order prediction made using the explicit Lie transformation. The major features of harmonic tracking are presented and examples of its application are discussed.

  11. Pulsed power accelerators for particle beam fusion

    International Nuclear Information System (INIS)

    Martin, T.H.; Barr, G.W.; VanDevender, J.P.; White, R.A.; Johnson, D.L.

    1980-01-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-I (PBFA-I). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator has provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion will be discussed

  12. Machine Protection: Availability for Particle Accelerators

    CERN Document Server

    Apollonio, Andrea; Schmidt, Ruediger

    2015-03-16

    Machine availability is a key indicator for the performance of the next generation of particle accelerators. Availability requirements need to be carefully considered during the design phase to achieve challenging objectives in different fields, as e.g. particle physics and material science. For existing and future High-Power facilities, such as ESS (European Spallation Source) and HL-LHC (High-Luminosity LHC), operation with unprecedented beam power requires highly dependable Machine Protection Systems (MPS) to avoid any damage-induced downtime. Due to the high complexity of accelerator systems, finding the optimal balance between equipment safety and accelerator availability is challenging. The MPS architecture, as well as the choice of electronic components, have a large influence on the achievable level of availability. In this thesis novel methods to address the availability of accelerators and their protection systems are presented. Examples of studies related to dependable MPS architectures are given i...

  13. Applications of Particle Accelerators in Medical Physics

    CERN Document Server

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide for advanced medical imaging is strongly increasing either in conventional radiography (CT and MRI) and also in nuclear medicine for Spect an PET imaging. In this paper role of particle accelerators for medical applications will be presented together with the main solutions applied.

  14. Nonlinear dynamics aspects of particle accelerators

    International Nuclear Information System (INIS)

    Jowett, J.M.; Turner, S.; Month, M.

    1986-01-01

    These proceedings contain the lectures presented at the named winter school. They deal with the application of dynamical systems to accelerator theory. Especially considered are the statistical description of charged-beam plasmas, integrable and nonintegrable Hamiltonian systems, single particle dynamics and nonlinear resonances in circular accelerators, nonlinear dynamics aspects of modern storage rings, nonlinear beam-beam resonances, synchro-betatron resonances, observations of the beam-beam interactions, the dynamics of the beam-beam interactions, beam-beam simulations, the perturbation method in nonlinear dynamics, theories of statistical equilibrium in electron-positron storage rings, nonlinear dissipative phenomena in electron storage rings, the dynamical aperture, the transition to chaos for area-preserving maps, special processors for particle tracking, algorithms for tracking of charged particles in circular accelerators, the breakdown of stability, and a personal perspective of nonlinear dynamics. (HSI)

  15. Nested high voltage generator/particle accelerator

    International Nuclear Information System (INIS)

    Adler, R.J.

    1992-01-01

    This patent describes a modular high voltage particle accelerator having an emission axis and an emission end, the accelerator. It comprises: a plurality of high voltage generators in nested adjacency to form a nested stack, each the generator comprising a cup-like housing having a base and a tubular sleeve extending from the base, a primary transformer winding encircling the nested stack; a secondary transformer winding between each adjacent pair of housings, magnetically linked to the primary transformer winding through the gaps; a power supply respective to each of the secondary windings converting alternating voltage from its respective secondary winding to d.c. voltage, the housings at the emission end forming a hollow throat for particle acceleration, a vacuum seal at the emission end of the throat which enables the throat to be evacuated; a particle source in the thrond power means to energize the primary transformer winding

  16. Nonlinear dynamics aspects of particle accelerators. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Jowett, J M; Turner, S; Month, M

    1986-01-01

    These proceedings contain the lectures presented at the named winter school. They deal with the application of dynamical systems to accelerator theory. Especially considered are the statistical description of charged-beam plasmas, integrable and nonintegrable Hamiltonian systems, single particle dynamics and nonlinear resonances in circular accelerators, nonlinear dynamics aspects of modern storage rings, nonlinear beam-beam resonances, synchro-betatron resonances, observations of the beam-beam interactions, the dynamics of the beam-beam interactions, beam-beam simulations, the perturbation method in nonlinear dynamics, theories of statistical equilibrium in electron-positron storage rings, nonlinear dissipative phenomena in electron storage rings, the dynamical aperture, the transition to chaos for area-preserving maps, special processors for particle tracking, algorithms for tracking of charged particles in circular accelerators, the breakdown of stability, and a personal perspective of nonlinear dynamics. (HSI).

  17. VEDs for charged particle accelerators: Indian scenario

    International Nuclear Information System (INIS)

    Bhandari, R.K.

    2012-01-01

    In the initial times after their invention, the charged particle accelerators have, primarily, been used for fundamental studies on nuclei and atoms. From the first modern accelerator, the cathode ray tube, used by J.J. Thomson for the discovery of electron, very recently the gigantic 27 km circumference Large Hadron Collider (LHC) is operational in the search of Higg's boson and related physics issues. Particle accelerators have emerged as powerful microscopes for investigating the finest details of cells, genes, molecules, atoms, protons, neutrons, muons, electrons, quarks and, possibly, still undiscovered even more fundamental constituents of the universe, such as dark matter and dark energy. Several noble prize winning discoveries have been made using accelerators. Accelerators are now being used in a wide area of industrial and medical applications. They are used for the production of radioisotopes for medical imaging, cancer therapy, food sterilization, treatment of waste water, sterilization of medical equipment, material modification, mass spectroscopy, cargo scanning, fabrication of semiconductors etc. Ongoing effort towards the development of accelerators with megawatt beam power is showing hope for a cleaner source of nuclear energy and treatment of nuclear waste. Several tens of thousands of accelerators are presently operational in the world for basic research and applications. Development of new accelerators has several times been driven by new technologies and materials and sometimes they have driven the technological developments towards cutting edge. Some examples are ultra-high vacuum in large volumes, superfluid helium in cryogenics, cryocoolers, superconducting magnets and RF cavities, high power vacuum electronic devices, global control systems, superfast computing and communication networks, giant data storage/processing systems etc. India has been pursuing a fairly robust programme of accelerator development at various institutions. It

  18. Recent trends in particle accelerator radiation safety

    International Nuclear Information System (INIS)

    Ohnesorge, W.F.; Butler, H.M.

    1974-01-01

    The use of particle accelerators in applied and research activities continues to expand, bringing new machines with higher energy and current capabilities which create radiation safety problems not commonly encountered before. An overview is given of these increased ionizing radiation hazards, along with a discussion of some of the new techniques required in evaluating and controlling them. A computer search of the literature provided a relatively comprehensive list of publications describing accelerator radiation safety problems and related subjects

  19. Klystron life results in particle accelerator applications

    International Nuclear Information System (INIS)

    Bohlen, Heinz

    2002-01-01

    Based on reports contributed by various particle accelerator sites, among them DESY, CERN, and LANL, Weibull life time characteristics have been calculated for the klystrons used at these institutions. Supported by evaluations of the technologies and the operational conditions involved, the results, sometimes surprising and unexpected, present material that can be valuable for logistic considerations, the planning of future accelerators, and naturally for the design of future klystrons

  20. Plasma eigenmodes and particle acceleration

    International Nuclear Information System (INIS)

    Rowland, H.L.; Papadopoulos, K.; Tanaka, M.

    1983-01-01

    Recent simulations have revealed that for low initial ion beam velocities (νsub(d)<3νsub(ti)), the modified two stream instability leads to the formation of superthermal electron tails instead of the bulk heating seen for higher initial νsub(d). This tail formation arises from a nonadiabatic change in the normal modes of the plasma due to strong heating of the ions by the instability. In another example a change in the normal modes is shown to lead to ion heating when the low frequency normal modes of a plasma change from nonlinear eigenmodes (i.e., cavitons) to linear ion-acoustic waves. (author)

  1. Non-isochronous spiral orbit particle accelerator and fixed frequency closed orbit particle accelerator

    International Nuclear Information System (INIS)

    Fujisawa, Takashi; Hattori, Toshiyuki

    2006-01-01

    One of the present inventions provides a spiral orbit charged particle accelerator in which the magnetic field increases as the radius increases more rapidly than an isochronous magnetic field distribution, and the distribution of fixed-frequency accelerating RF voltage is formed so that a harmonic number changes in integer for every particle revolution. The other invention realizes to make the closed orbit charged particle accelerator having a fixed frequency amplitude modulator that is able to modulate amplitude of the RF voltage so that a harmonic number decreases in integer in an every particle revolution. (author)

  2. AI systems approach in particle accelerators

    International Nuclear Information System (INIS)

    Kataria, S.K.; Bhagwat, P.V.; Kori, S.A.

    1992-01-01

    The large particle accelerators machines like pelletron accelerator at Tata Institute of Fundamental Research (T.I.F.R) have several levels of controls with operators responsible for overall global control decisions and closed loop feedback controllers for relatively small subsystems of the machines. As the accelerator machines are becoming more complicated and the requirements more stringent, there is a need to provide the operators with an artificial intelligence (AI) system to aid in the tuning the machine and in failure diagnosis. There are few major areas in the pelletron operation, which can be done more efficiently using AI systems approach so that useful beam is available for much more time: 1) Accelerator Conditioning, 2) Accelerator Tuning, and 3) Maintaining the Tune beams. The feasibility study for using expert system for above areas and also for safety evaluation of the various subsystems is carried out. (author). 10 refs., 4 figs

  3. New schemes for particle accelerators

    International Nuclear Information System (INIS)

    Nishida, Y.

    1985-01-01

    In the present paper, the authors propose new schemes for realizing the v/sub p/xB accelerator, by using no plasma system for producing the strong longitudinal waves. The first method is to use a grating for obtaining extended interaction of an electron beam moving along the grating surface with light beam incident also along the surface. Here, the light beam propagates obliquely to the grating grooves for producing strong electric field, and the electron beam propagates in parallel to the light beam. The static magnetic field is applied perpendicularly to the grating surface. In the present system, the beam interacts synchronously with the p-polarized wave which has the electric field be parallel to the grating surface. Another conventional scheme is to use a delay circuit. Here, the light beam propagates obliquely between a pair of array of conductor fins or slots. The phase velocity of the spatial harmonics in the y-direction (right angle to the array of slots) is slower than the speed of light. With the aid of powerful laser light or microwave source, it should be possible to miniaturise linacs by using the v/sub p/xB effect and schemes proposed here

  4. A particle accelerator probes artifacts

    CERN Document Server

    Dran, J C; Salomon, J

    2002-01-01

    The AGLAE system is made up of a 2 mega volts electrostatic accelerator and of 3 irradiation lines: one leads to a vacuum enclosure in which targets are irradiated and the 2 others lines are designed to irradiate targets under an air or helium atmosphere. The AGLAE system is located in the premises of the Louvre museum in Paris and is devoted to the study of cultural objects through ion beam analysis (IBA). 4 techniques are used: -) proton-induced X-ray emission (PIXE) -) proton-induced gamma ray (PIGE) -) Rutherford backscattering spectrometry (NRS) and -) nuclear reaction analysis (NRA). A decisive progress has permitted the direct analysis of artifacts without sampling. The object itself is set just a few millimeters away from the exit window of the beam in an air or helium atmosphere. The exit window must be resistant enough to bear the atmospheric pressure and the damages caused by the proton beam but must be thin enough to not deteriorate the quality of the beam. By using a 10 sup - sup 7 m thick exit w...

  5. Non-accelerator particle physics

    International Nuclear Information System (INIS)

    Steinberg, R.I.; Lane, C.E.

    1991-08-01

    The goals of this research were the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We have worked on the MACRO experiment, which is employing a large area underground detector to search for grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low and high energy neutrinos; the νIMB project, which seeks to refurbish and upgrade the IMB water Cerenkov detector to perform an improved proton decay search together with a long baseline reactor neutrino oscillation experiments using a one kiloton liquid scintillator (the Perry experiment); and development of technology for improved liquid scintillators and for very low background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments

  6. Non-accelerator particle physics

    International Nuclear Information System (INIS)

    Steinberg, R.I.; Lane, C.E.

    1991-09-01

    The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are working on the MACRO experiment, which employs a large area underground detector to search for grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low and high energy neutrinos: the νIMB project, which seeks to refurbish and upgrade the IMB water Cerenkov detector to perform an improved proton decay search together with a long baseline reactor neutrino oscillation experiment using a kiloton liquid scintillator (the Perry experiment); and development of technology for improved liquid scintillators and for very low background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments. 21 refs., 19 figs., 6 tabs

  7. Health physics problems encountered in the Saclay linear accelerator

    International Nuclear Information System (INIS)

    Delsaut, R.

    1979-01-01

    The safety and health physics problems specific to the Saclay linear accelerator are presented: activation (of gases, dust, water, structural materials, targets); individual dosimetry; the safety engineering [fr

  8. Simulation of a medical linear accelerator for teaching purposes.

    Science.gov (United States)

    Anderson, Rhys; Lamey, Michael; MacPherson, Miller; Carlone, Marco

    2015-05-08

    Simulation software for medical linear accelerators that can be used in a teaching environment was developed. The components of linear accelerators were modeled to first order accuracy using analytical expressions taken from the literature. The expressions used constants that were empirically set such that realistic response could be expected. These expressions were programmed in a MATLAB environment with a graphical user interface in order to produce an environment similar to that of linear accelerator service mode. The program was evaluated in a systematic fashion, where parameters affecting the clinical properties of medical linear accelerator beams were adjusted independently, and the effects on beam energy and dose rate recorded. These results confirmed that beam tuning adjustments could be simulated in a simple environment. Further, adjustment of service parameters over a large range was possible, and this allows the demonstration of linear accelerator physics in an environment accessible to both medical physicists and linear accelerator service engineers. In conclusion, a software tool, named SIMAC, was developed to improve the teaching of linear accelerator physics in a simulated environment. SIMAC performed in a similar manner to medical linear accelerators. The authors hope that this tool will be valuable as a teaching tool for medical physicists and linear accelerator service engineers.

  9. Charged particle accelerators for inertial fusion energy

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1991-01-01

    The long history of successful commercial applications of charged-particle accelerators is largely a result of initiative by private industry. The Department of Energy views accelerators mainly as support equipment for particle physicists rather than components of an energy generation program. In FY 91, the DOE spent over 850 M$ on building and supporting accelerators for physics research versus 5 M$ on induction accelerators for fusion energy. The author believes this emphasis is skewed. One must address problems of long-term energy sources to preserve the possibility of basic research by future generations. In this paper, the author reviews the rationale for accelerators as inertial fusion drivers, emphasizing that these devices provide a viable path of fusion energy from viewpoints of both physics and engineering. In this paper, he covered the full range of accelerator fusion applications. Because of space limitations, this paper concentrates on induction linacs for ICF, an approach singled out in recent reports by the National Academy of Sciences and the Fusion Policy Advisory Committee as a promising path to long-term fusion power production. Review papers by Cook, Leung, Franzke, Hofmann and Reiser in these proceedings give details on light ion fusion and RF accelerator studies

  10. Multi-beam linear accelerator EVT

    Energy Technology Data Exchange (ETDEWEB)

    Teryaev, Vladimir E., E-mail: vladimir_teryaev@mail.ru [Omega-P, Inc., New Haven, CT 06510 (United States); Kazakov, Sergey Yu. [Fermilab, Batavia, IL 60510 (United States); Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT 06510 (United States); Yale University, New Haven, CT 06511 (United States)

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  11. Bidirectional pulser made from pulse lines for linear induction accelerators

    International Nuclear Information System (INIS)

    Hotta, E.; Mori, T.; Kobayashi, T.; Okino, A.; Haginomori, E.; Ko, K.C.

    1996-01-01

    In order to obtain high-current charged particle beams, linear induction accelerators (LIA's) of two types have been already constructed. Conventional LIA's adopt a unidirectional pulse injected from an external pulser. The other LIA's, one of which has been proposed and constructed by Pavlovskii et al., have accelerating cavities made from pulse forming lines (PFL's). In this case, no magnetic core loaded in the cavity is necessary. However, the injected pulse must be a bidirectional one. Since a part of the voltage pulse with reversed polarity is used to accelerate a beam, it is possible to make the time integral of the output voltage zero. Thus the final magnetic energy stored in the cavity can be made zero at the end of the pulse, and the pulser-accelerator system attains the energy transfer efficiency of 100%. Accelerators of this type can be divided into two kinds, one of which has cavities with internal energy storage, and the other has cavities with energy injected from external bidirectional pulsers. The accelerator of latter type has been first proposed by Smith, but it has not been realized. Several bidirectional pulsers, which consist of three individual PFL's with arbitrary impedances and a closing switch, are analyzed. Output voltages are analytically calculated by using the method proposed by Dommel for digital computations of electromagnetic transients in networks, and conditions for attaining the maximum efficiency of energy transfer from the pulser to the beam are derived. Thus, 4 bidirectional pulsers of internal energy storage type and 2 of external pulse injection type with energy transfer efficiency of 100% are obtained, including the pulsers already reported by other authors

  12. A particle accelerator probes artifacts

    International Nuclear Information System (INIS)

    Dran, J.C.; Calligaro, Th.; Salomon, J.

    2002-01-01

    The AGLAE system is made up of a 2 mega volts electrostatic accelerator and of 3 irradiation lines: one leads to a vacuum enclosure in which targets are irradiated and the 2 others lines are designed to irradiate targets under an air or helium atmosphere. The AGLAE system is located in the premises of the Louvre museum in Paris and is devoted to the study of cultural objects through ion beam analysis (IBA). 4 techniques are used: -) proton-induced X-ray emission (PIXE) -) proton-induced gamma ray (PIGE) -) Rutherford backscattering spectrometry (NRS) and -) nuclear reaction analysis (NRA). A decisive progress has permitted the direct analysis of artifacts without sampling. The object itself is set just a few millimeters away from the exit window of the beam in an air or helium atmosphere. The exit window must be resistant enough to bear the atmospheric pressure and the damages caused by the proton beam but must be thin enough to not deteriorate the quality of the beam. By using a 10 -7 m thick exit window made of Si 3 N 4 we get a beam whose diameter is 10 -5 m. This new technology presents 4 main advantages: 1) any object of any shape can be studied without sampling, 2) the analysis of very fragile artifacts that might be damaged by the vacuum setting is now possible, 3) a reduction of the thermal side-effects of the beam, and 4) the absence of accumulation of charges in isolating material allows to rid of covering the object with a conducting coating before irradiating it. (A.C.)

  13. Particle accelerators and lasers high energy sources

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1985-04-01

    Particle accelerators and lasers are to-day precious devices for physicist and engineer. Their performance and scope do not stop growing. Producing thin beams of high energy particles or photons, they are able to be very high energy sources which interact strongly with matter. Numerous applications use them: research, industry, communication, medicine, agroalimentary, defence, and soon. In this note, their operation principles are described and some examples of their use as high energy sources are given [fr

  14. Test Particles with Acceleration-Dependent Lagrangian

    OpenAIRE

    Toller, M.

    2005-01-01

    We consider a classical test particle subject to electromagnetic and gravitational fields, described by a Lagrangian depending on the acceleration and on a fundamental length. We associate to the particle a moving local reference frame and we study its trajectory in the principal fibre bundle of all the Lorentz frames. We discuss in this framework the general form of the Lagrange equations and the connection between symmetries and conservation laws (Noether theorem). We apply these results to...

  15. Production of neutrons in particle accelerators: a PNRI safety concern

    International Nuclear Information System (INIS)

    Garcia, Corazon M.; Cayabo, Lynette B.; Artificio, Thelma P.; Melendez, Johnylen V.; Piquero, Myrna E.; Parami, Vangeline K.

    2002-09-01

    In the safety assessment made for the first cyclotron facility in the Philippines, that is the cyclotron in the P.E.T. (Positron Emission Tomography) center of the St. Luke's Medical Center, the concern on the production of neutrons associated with the operation of particle accelerators has been identified. This takes into consideration the principles in the operation of particle accelerators and the associated production of neutrons resulting from their operation, the hazards and risks in their operation. The Bureau of Health Devices and Technology (BHDT) of the Department of Health in the Philippines regulates and controls the presently existing six (6) linear accelerators distributed in different hospitals in the country, being classified as x-ray producing devices. From the results of this study, it is evident that the production of neutrons from the operation of accelerators, produces neutrons and that activation due to neutrons can form radioactive materials. The PNRI (Philippine Nuclear Research Institute) being mandated by law to regulate and control any equipment or devices producing or utilizing radioactive materials should take the proper steps to subject all accelerator facilities and devices in the Philippines such as linear accelerators under its regulatory control in the same manner as it did with the first cyclotron in the country. (Author)

  16. Licensing criteria for particle accelerators categorization

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Evaldo L.C. da, E-mail: evaldo@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil). Dir. de Radioprotecao e Seguranca; Melo, Paulo F.F. Frutuoso e, E-mail: frutuoso@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    From the international experience of research centers in various parts of the world, where there are particle accelerators of various sizes and energies, it was found that operating energy of particle accelerators is one of the parameters used by categorization models in the licensing of these radiation facilities, and the facility size is an important aspect to be considered in this model. A categorization based on these two key parameters is presented, also taking into account the kinds of accelerated particles and radiation produced, the operating related technology and the possible applications concerned. The categorization models of national nuclear authorities of five countries are reviewed, emphasizing the contribution of Brazil, and the new model proposed is also based on the experience of these countries, modified by those two parameter discussed above: facility size and operating energy of particle accelerators. Later, some changes are suggested, considering risk factors and safety features related to these facilities, emphasizing some analytical tools commonly used in nuclear facilities and chemical plants, such as: risk-informing decision making, layer of protection analysis (LOPRA) and safety integrity levels (SIL), the two latter ones having its origin in the broader concept of system safety. We also discuss the problem of scarcity of reliability data (common in the analyses involving risk factors and safety), due to security concerns and other factors, being the possible alternative solutions the use of generic databases and the adoption of reference facilities that provide partial data publicly. (author).

  17. Particle accelerators: the next big step

    International Nuclear Information System (INIS)

    Lawson, J.

    1982-01-01

    Ideas which are currently under discussion for increasing the present energy range of particle accelerators but which are also economical in resources and do not demand elaborate techniques, are examined. Among the possible methods reviewed are the use of laser beams, the electron ring concept, and the use of wake fields left by electrons in storage rings. (U.K.)

  18. Licensing criteria for particle accelerators categorization

    International Nuclear Information System (INIS)

    Costa, Evaldo L.C. da

    2013-01-01

    From the international experience of research centers in various parts of the world, where there are particle accelerators of various sizes and energies, it was found that operating energy of particle accelerators is one of the parameters used by categorization models in the licensing of these radiation facilities, and the facility size is an important aspect to be considered in this model. A categorization based on these two key parameters is presented, also taking into account the kinds of accelerated particles and radiation produced, the operating related technology and the possible applications concerned. The categorization models of national nuclear authorities of five countries are reviewed, emphasizing the contribution of Brazil, and the new model proposed is also based on the experience of these countries, modified by those two parameter discussed above: facility size and operating energy of particle accelerators. Later, some changes are suggested, considering risk factors and safety features related to these facilities, emphasizing some analytical tools commonly used in nuclear facilities and chemical plants, such as: risk-informing decision making, layer of protection analysis (LOPRA) and safety integrity levels (SIL), the two latter ones having its origin in the broader concept of system safety. We also discuss the problem of scarcity of reliability data (common in the analyses involving risk factors and safety), due to security concerns and other factors, being the possible alternative solutions the use of generic databases and the adoption of reference facilities that provide partial data publicly. (author).

  19. Software tools for the particle accelerator designs

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1988-01-01

    The software tools used for the designs of the particle accelerators are going to be implemented on the small computer systems, such as the personal computers or the work stations. These are called from the interactive environment like a window application program. The environment contains the small expert system to make easy to select the design parameters. (author)

  20. AXEL-2016: Introduction to Particle Accelerators

    CERN Multimedia

    2016-01-01

    AXEL-2016 is the latest in a yearly lecture series on particle accelerators given at CERN within the framework of the 2016 Technical Training Programme. As part of the BE department's Operation group’s shutdown lecture series, this general accelerator physics module has been offered since 2003 as a joint venture between the BE department and the Technical Training team and is open to the wider CERN community.    The lecturer is Rende Steerenberg, deputy leader of the Operation group and PS section leader. Programme: basic mathematics; transverse optics; lattice calculations; resonances; longitudinal motion; transfer lines, injection and ejection; longitudinal and transverse beam instabilities; colliders. A detailed programme is available on the AXEL-2016 webpage. Target audience: designed for technicians who are operating an accelerator or whose work is closely linked to accelerators, but also open to technicians, engineers and physicists interested i...

  1. EPAC impact (European Particle Accelerator Conference report)

    International Nuclear Information System (INIS)

    Clarke, Jim

    1994-01-01

    Acurtain rose on the current world accelerator stage at the end of June when almost 750 delegates gathered in London for the fourth biennial European Particle Accelerator Conference (EPAC). As well as reports from all major Laboratories on their latest accelerator achievements and future plans, a special session featured invited contributions on high intensity issues while a seminar covered the increasing transfer of technology between Accelerator Laboratories and Industry. The first invited talk of the conference, by CERN Director General Chris Llewellyn Smith, concerned the future of high energy physics in Europe. Naturally this focused on the Large Hadron Collider project at CERN, which will open up important new physics frontiers for the 21st century

  2. Filament supply circuit for particle accelerator

    International Nuclear Information System (INIS)

    Thompson, C.C. Jr.; Malone, H.F.

    1975-01-01

    In a particle accelerator of the type employing ac primary power and a voltage multiplication apparatus to achieve the required high dc accelerating voltage, a filament supply circuit is powered by a portion of the ac primary power appearing at the last stage of the voltage multiplier. This ac power is applied across a voltage regulator circuit in the form of two zener diodes connected back to back. The threshold of the zeners is below the lowest peak-to-peak voltage of the ac voltage, so that the regulated voltage remains constant for all settings of the adjustable acceleration voltage. The regulated voltage is coupled through an adjustable resistor and an impedance-matching transformer to the accelerator filament. (auth)

  3. Power Supplies for High Energy Particle Accelerators

    Science.gov (United States)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  4. Drift tube suspension for high intensity linear accelerators

    International Nuclear Information System (INIS)

    Clark, D.C.; Frank, J.A.; Liska, D.J.; Potter, R.C.; Schamaun, R.G.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder

  5. Drift tube suspension for high intensity linear accelerators

    Science.gov (United States)

    Liska, Donald J.; Schamaun, Roger G.; Clark, Donald C.; Potter, R. Christopher; Frank, Joseph A.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  6. Variable-energy drift-tube linear accelerator

    Science.gov (United States)

    Swenson, Donald A.; Boyd, Jr., Thomas J.; Potter, James M.; Stovall, James E.

    1984-01-01

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  7. Cavity characterization for general use in linear electron accelerators

    International Nuclear Information System (INIS)

    Souza Neto, M.V. de.

    1985-01-01

    The main objective of this work is to is to develop measurement techniques for the characterization of microwave cavities used in linear electron accelerators. Methods are developed for the measurement of parameters that are essential to the design of an accelerator structure using conventional techniques of resonant cavities at low power. Disk-loaded cavities were designed and built, similar to those in most existing linear electron accelerators. As a result, the methods developed and the estimated accuracy were compared with those from other investigators. The results of this work are relevant for the design of cavities with the objective of developing linear electron accelerators. (author) [pt

  8. Tiger Team Assessment of the Stanford Linear Accelerator Center

    International Nuclear Information System (INIS)

    1991-11-01

    This report documents the Tiger Team Assessment of the buildings, facilities, and activities at the Stanford Linear Accelerator Center (SLAC) and the Stanford Synchrotron Radiation Laboratory (SSRL) near San Francisco, California. SLAC/SSRL is the twenty-eighth DOE site to be assessed by a Tiger Team. SLAC and SSRL are single-purpose laboratories. SLAC is dedicated to experimental and theoretical research in elementary particle physics and to the development of new techniques in high-energy accelerators and elementary particle detectors. SSRL is dedicated to research in atomic and solid-state physics, chemistry, biology, and medicine. The purpose of the SLAC/SSRL Tiger Team Assessment is to provide the Secretary of Energy with concise information on the following: current ES ampersand H compliance status at the site and the vulnerabilities associated with that compliance status; root causes for noncompliance; adequacy of DOE and SLAC/SSRL ES ampersand H management programs; response actions to address identified problem areas; and effectiveness of self-assessment

  9. Experimental studies of VpxB electron linear accelerator

    International Nuclear Information System (INIS)

    Taura, T.; Onihashi, H.; Otsuka, K.; Nishida, Y.; Yugami, N.

    1989-01-01

    In order to demonstrate a new electron linear accelerator an electron beam is accelerated either in the conventional linear accelerator scheme or in the V p xB scheme in a same machine and higher energy gain of about 18 % is observed in the V p xB scheme as is expected from the designed values. The experimental results are compared with the numerical simulation to show reasonable agreement. (author)

  10. Model-independent particle accelerator tuning

    Directory of Open Access Journals (Sweden)

    Alexander Scheinker

    2013-10-01

    Full Text Available We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: (1 it has the ability to handle unknown, time-varying systems, (2 it gives known bounds on parameter update rates, (3 we give an analytic proof of its convergence and its stability, and (4 it has a simple digital implementation through a control system such as the experimental physics and industrial control system (EPICS. Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme for uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multiparticle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of 22 quadrupole magnets and two rf buncher cavities in the Los Alamos Neutron Science Center (LANSCE Linear Accelerator’s transport region, while the beam properties and rf phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.

  11. The design and performance of Static Var Compensators for particle accelerators

    CERN Document Server

    Kahle, Karsten; Genton, Charles-Mathieu

    2015-01-01

    Particle accelerators, and in particular synchrotrons, represent large cycling non-linear loads connected to the electrical distribution network. This paper discusses the typical design and performance of Static Var Compensators (SVCs) to obtain the excellent power quality levels required for particle accelerator operation.

  12. Induction linear accelerator technology for SDIO applications

    International Nuclear Information System (INIS)

    Birx, D.; Reginato, L.; Rogers, D.; Trimble, D.

    1986-11-01

    The research effort reported concentrated primarily on three major activities. The first was aimed at improvements in the accelerator drive system of an induction linac to meet the high repetition rate requirements of SDI applications. The second activity centered on a redesign of the accelerator cells to eliminate the beam breakup instabilities, resulting in optimized beam transport. The third activity sought to improve the source of electrons to achieve a higher quality beam to satisfy the requirement of the free electron laser

  13. The acceleration of particles to high energy

    International Nuclear Information System (INIS)

    Parker, E.N.

    1976-01-01

    The common occurrence, and often spectacular consequence, of fast particles in active astrophysical bodies has attracted the attention of physicists for more than four decades. The acceleration mechanisms, whatever they may be, are remarkably efficient, converting a major fraction of the total energy into fast particles. A variety of ideas have arisen, suggesting how and why fast particles are generated in various circumstances. The principal limitation on particle acceleration theories has been the realization that the universe in not filled with a hard vacuum, but rather is pervaded everywhere by tenuous ionized gases quite able to short circuit any large-scale electric fields that occur under ordinary circumstances. A number of the early ideas on the acceleration of cosmic rays have been discarded for this reason. The basic theoretical ideas can be grouped roughly into five parts: 1. hydromagnetic fields; 2. field in reduced conductivity; 3. plasma turbulence; 4. low frequency electromagnetic waves; 5. supernova explosion. Each of these is considered in turn. (Auth.)

  14. Solving radiation problems at particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Nikolai V. Mokhov

    2001-12-11

    At high-intensity high-energy particle accelerators, consequences of a beam-induced radiation impact on machine and detector components, people, environment and complex performance can range from negligible to severe. The specifics, general approach and tools used at such machines for radiation analysis are described. In particular, the world leader Fermilab accelerator complex is considered, with its fixed target and collider experiments, as well as new challenging projects such as LHC, VLHC, muon collider and neutrino factory. The emphasis is on mitigation of deleterious beam-induced radiation effects and on the key role of effective computer simulations.

  15. Solving radiation problems at particle accelerators

    International Nuclear Information System (INIS)

    Mokhov, N.V.

    2001-01-01

    At high-intensity high-energy particle accelerators, consequences of a beam-induced radiation impact on machine and detector components, people, environment and complex performance can range from negligible to severe. The specifics, general approach and tools used at such machines for radiation analysis are described. In particular, the world leader Fermilab accelerator complex is considered, with its fixed target and collider experiments, as well as new challenging projects such as LHC, VLHC, muon collider and neutrino factory. The emphasis is on mitigation of deleterious beam-induced radiation effects and on the key role of effective computer simulations

  16. Longitudinal Jitter Analysis of a Linear Accelerator Electron Gun

    Directory of Open Access Journals (Sweden)

    MingShan Liu

    2016-11-01

    Full Text Available We present measurements and analysis of the longitudinal timing jitter of a Beijing Electron Positron Collider (BEPCII linear accelerator electron gun. We simulated the longitudinal jitter effect of the gun using PARMELA to evaluate beam performance, including: beam profile, average energy, energy spread, and XY emittances. The maximum percentage difference of the beam parameters is calculated to be 100%, 13.27%, 42.24% and 65.01%, 86.81%, respectively. Due to this, the bunching efficiency is reduced to 54%. However, the longitudinal phase difference of the reference particle was 9.89°. The simulation results are in agreement with tests and are helpful to optimize the beam parameters by tuning the trigger timing of the gun during the bunching process.

  17. Novel Approach to Linear Accelerator Superconducting Magnet System

    International Nuclear Information System (INIS)

    Kashikhin, Vladimir

    2011-01-01

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  18. Reducing the asymmetry in coupled cavity of linear accelerator

    International Nuclear Information System (INIS)

    Wei Xianlin; Wu Congfeng

    2013-01-01

    Background: With the development of high energy physics, high performance of electron linear accelerator is required for large collider, FEL and high brightness synchrotron radiation light source. Structure asymmetry of single coupler destroys the symmetry of field distribution in coupled cavity, which reduces the quality of beam. Purpose: Optimize the asymmetry of field distribution in coupled cavity and improve the quality of beam. Methods: The simulation designs are made for single offset coupler, double symmetry coupler and the new coupler loaded by dielectric rods at X band by using CST microwave studio code. Results: The results show that the distribution of field in coupled cavity is better and all particles almost locate at the center of beam hole after beam passing through the coupler loaded by dielectric rods. The energy spread has also been significantly improved. Conclusions: The coupler loaded by dielectric rods can optimize the asymmetry of field distribution in coupled cavity and improve the quality of beam. (authors)

  19. Linear Fixed-Field Multi-Pass Arcs for Recirculating Linear Accelerators

    International Nuclear Information System (INIS)

    Morozov, V.S.; Bogacz, S.A.; Roblin, Y.R.; Beard, K.B.

    2012-01-01

    Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.

  20. CAS CERN Accelerator School: Power converters for particle accelerators

    International Nuclear Information System (INIS)

    Turner, S.

    1990-01-01

    This volume presents the proceedings of the fifth specialized course organized by the CERN Accelerator School, the subject on this occasion being power converters for particle accelerators. The course started with lectures on the classification and topologies of converters and on the guidelines for achieving high performance. It then went on to cover the more detailed aspects of feedback theory, simulation, measurements, components, remote control, fault diagnosis and equipment protection as well as systems and grid-related problems. The important topics of converter specification, procurement contract management and the likely future developments in semiconductor components were also covered. Although the course was principally directed towards DC and slow-pulsed supplies, lectures were added on fast converters and resonant excitation. Finally the programme was rounded off with three seminars on the related fields of Tokamak converters, battery energy storage for electric vehicles, and the control of shaft generators in ships. (orig.)

  1. Cryogenics for Particle Accelerators and Detectors

    CERN Document Server

    Lebrun, P; Vandoni, Giovanna; Wagner, U

    2002-01-01

    Cryogenics has become a key ancillary technology of particle accelerators and detectors, contributing to their sustained development over the last fifty years. Conversely, this development has produced new challenges and markets for cryogenics, resulting in a fruitful symbiotic relation which materialized in significant technology transfer and technical progress. This began with the use of liquid hydrogen and deuterium in the targets and bubble chambers of the 1950s, 1960s and 1970s. It developed more recently with increasing amounts of liquefied noble gases - mainly argon, but also krypton and even today xenon - in calorimeters. In parallel with these applications, the availability of practical type II superconductors from the early 1960s triggered the use of superconductivity in large spectrometer magnets - mostly driven by considerations of energy savings - and the corresponding development of helium cryogenics. It is however the generalized application of superconductivity in particle accelerators - RF ac...

  2. Contributions to the 1999 particle accelerator conference

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, M. [Laboratoire de l' Accelerateur Lineaire, 91 - Orsay (France); Fartoukh, S.; Jablonka, M.; Joly, J.M.; Lalot, M.; Magne, C.; Napoly, O. [CEA/Saclay, 91 - Gif sur Yvette (France); Baboi, N.; Schreiber, S.; Simrock, S.; Weise, H. [DESY, Hamburg (Germany)

    2000-06-01

    This document puts together the 10 contributions of the laboratory to the 1999 particle accelerator conference. The titles of the papers are: 1) Evidence for a strongly coupled dipole mode with insufficient damping in the first accelerating module of the TESLA test facility (TTF); 2) An alternative scheme for stiffening superconducting RF cavities by plasma spraying; 3) A laser triggered electron source for pulsed radiolysis; 4) A cure for the energy spread increasing related bunch lengthening in electron storage rings; 5) Single bunch longitudinal instabilities in proton storage rings; 6) Analytical investigation on the halo formation in space charge dominated beams; 7) Analytical investigation on the dynamic apertures of circular accelerators; 8) The intrinsic upper limit to the beam energy of an electron-positron circular collider; 9) Coaxial disc windows for a high power superconducting cavity input coupler; and 10) RF pulsed tests on 3 GHz niobium cavities.

  3. Contributions to the 1999 particle accelerator conference

    International Nuclear Information System (INIS)

    Bernard, M.; Fartoukh, S.; Jablonka, M.; Joly, J.M.; Lalot, M.; Magne, C.; Napoly, O.; Baboi, N.; Schreiber, S.; Simrock, S.; Weise, H.

    2000-06-01

    This document puts together the 10 contributions of the laboratory to the 1999 particle accelerator conference. The titles of the papers are: 1) Evidence for a strongly coupled dipole mode with insufficient damping in the first accelerating module of the TESLA test facility (TTF); 2) An alternative scheme for stiffening superconducting RF cavities by plasma spraying; 3) A laser triggered electron source for pulsed radiolysis; 4) A cure for the energy spread increasing related bunch lengthening in electron storage rings; 5) Single bunch longitudinal instabilities in proton storage rings; 6) Analytical investigation on the halo formation in space charge dominated beams; 7) Analytical investigation on the dynamic apertures of circular accelerators; 8) The intrinsic upper limit to the beam energy of an electron-positron circular collider; 9) Coaxial disc windows for a high power superconducting cavity input coupler; and 10) RF pulsed tests on 3 GHz niobium cavities

  4. Particle Acceleration in Multiple Dissipation Regions

    OpenAIRE

    Arzner, Kaspar; Vlahos, Loukas

    2004-01-01

    The sharp magnetic discontinuities which naturally appear in solar magnetic flux tubes driven by turbulent photospheric motions are associated with intense currents. \\citet{Par83} proposed that these currents can become unstable to a variety of microscopic processes, with the net result of dramatically enhanced resistivity and heating (nanoflares). The electric fields associated with such ``hot spots'' are also expected to enhance particle acceleration. We test this hypothesis by exact relati...

  5. Interdisciplinary glossary — particle accelerators and medicine

    International Nuclear Information System (INIS)

    Dmitrieva, V V; Dyubkov, V S; Nikitaev, V G; Ulin, S E

    2016-01-01

    A general concept of a new interdisciplinary glossary, which includes particle accelerator terminology used in medicine, as well as relevant medical concepts, is presented. Its structure and usage rules are described. An example, illustrating the quickly searching technique of relevant information in this Glossary, is considered. A website address, where one can get an access to the Glossary, is specified. Glossary can be refined and supplemented. (paper)

  6. Moving foil stripper for a particle accelerator

    International Nuclear Information System (INIS)

    Gorka, A.J. Jr.

    1975-01-01

    Thin foils for stripping a particle beam are stored on the edge of a disk spinning in the accelerator vacuum. Cutting a foil at one edge releases the foil to project beyond the disk for insertion into the beam at a time determined by controlling the phase of the disk. A wiper removes a spent foil from the disk. The foil release and wiper are operable from a remote location. (U.S.)

  7. Precision siting of a particle accelerator

    International Nuclear Information System (INIS)

    Cintra, Jorge Pimentel

    1996-01-01

    Precise location is a specific survey job that involves a high skilled work to avoid unrecoverable results at the project installation. As a function of the different process stages, different specifications can be applied, invoking different instruments: theodolite, measurement tape, distanciometer, invar wire. This paper, based on experience obtained at the installation of particle accelerator equipment, deals with general principles of precise location: tolerance definitions, increasing accuracy techniques, schedule of locations, sensitivity analysis, quality control methods. (author)

  8. The charged particle accelerators subsystems modeling

    International Nuclear Information System (INIS)

    Averyanov, G P; Kobylyatskiy, A V

    2017-01-01

    Presented web-based resource for information support the engineering, science and education in Electrophysics, containing web-based tools for simulation subsystems charged particle accelerators. Formulated the development motivation of Web-Environment for Virtual Electrophysical Laboratories. Analyzes the trends of designs the dynamic web-environments for supporting of scientific research and E-learning, within the framework of Open Education concept. (paper)

  9. Discussion of high brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1987-01-01

    The fundamental aspects of high-brightness rf linacs are outlined, showing the breadth and complexity of the technology and indicating that synergism with advancements in other areas is important. Areas of technology reviewed include ion sources, injectors, rf accelerator structures, beam dynamics, rf power, and automatic control

  10. Test Stand for Linear Induction Accelerator Optimization

    International Nuclear Information System (INIS)

    Ong, M; DeHope, B; Griffin, K; Goerz, D; Kihara, R; Vogtlin, G; Zentler, J M; Scarpetti, R

    2003-01-01

    Lawrence Livermore National Laboratory has designed and constructed a test stand to improve the voltage regulation in our Flash X-Ray (FXR) accelerator cell. The goal is to create a more mono-energetic electron beam that will create an x-ray source with a smaller spot size. Studying the interaction of the beam and pulse-power system with the accelerator cell will improve the design of high-current accelerators at Livermore and elsewhere. On the test stand, a standard FXR cell is driven by a flexible pulse-power system and the beam current is simulated with a switched center conductor. The test stand is fully instrumented with high-speed digitizers to document the effect of impedance mismatches when the cell is operated under various full-voltage conditions. A time-domain reflectometry technique was also developed to characterize the beam and cell interactions by measuring the impedance of the accelerator and pulse-power component. Computer models are being developed in parallel with the testing program to validate the measurements and evaluate different design changes. Both 3D transient electromagnetic and circuit models are being used

  11. Application of normal form methods to the analysis of resonances in particle accelerators

    International Nuclear Information System (INIS)

    Davies, W.G.

    1992-01-01

    The transformation to normal form in a Lie-algebraic framework provides a very powerful method for identifying and analysing non-linear behaviour and resonances in particle accelerators. The basic ideas are presented and illustrated. (author). 4 refs

  12. AXEL–2014: Introduction to Particle Accelerators

    CERN Multimedia

    2014-01-01

    AXEL-2014 is a series of courses on particle accelerators, given at CERN within the framework of the 2014 Technical Training Program. As part of the BE Department’s Operation Group Shutdown Lecture series, the general accelerator physics module has been organised since 2003 as a joint venture between the BE Department and Technical Training, and is open to the wider CERN community.   The AXEL-2014 course series is designed for technicians who are operating an accelerator or whose work is closely linked to accelerators, but it is also open to technicians, engineers, and physicists interested in this field. The course does not require any prior knowledge of accelerators. However, some basic knowledge of trigonometry, matrices and differential equations, and some basic knowledge of magnetism would be an advantage. The series will be composed of 10 modules (Monday 24 March 2014 – Fri 28 March 2014, from 9 a.m. to 10:15 a.m. and from 10:45 a.m. to 12 noon), and will be given in En...

  13. Argonne lectures on particles accelerator magnets

    International Nuclear Information System (INIS)

    Devred, A.

    1999-09-01

    The quest for elementary particles has promoted the development of particle accelerators producing beams of increasingly higher energies. In a synchrotron, the particle energy is directly proportional to the product of the machine's radius times the bending magnets' field strength. Present proton experiments at the TeV scale require facilities with circumferences ranging from a few to tens of kilometers and relying on a large number (several hundred to several thousand) high field dipole magnets and high field gradient quadrupole magnets. These electro-magnets use high-current-density, low-critical-temperature superconducting cables and are cooled down at liquid helium temperature. They are among the most costly and the most challenging components of the machine. After explaining what are the various types of accelerator magnets and why they are needed (lecture 1), we briefly recall the origins of superconductivity and we review the parameters of existing superconducting particle accelerators (lecture 2). Then, we review the superconducting materials that are available at industrial scale (chiefly, NbTi and Nb 3 Sn) and we explain in details the manufacturing of NbTi wires and cables (lecture 3). We also present the difficulties of processing and insulating Nb 3 Sn conductors, which so far have limited the use of this material in spite of its superior performances. We continue by discussing the two dimensional current distributions which are the most appropriate for generating pure dipole and quadrupole fields and we explain how these ideal distributions can be approximated by so called cosθ and cos 2θ coil designs (lecture 4). We also present a few alternative designs which are being investigated and we describe the difficulties of realizing coil ends. Next, we present the mechanical design concepts that are used in existing accelerator magnets (lecture 5) and we describe how the magnets are assembled (lecture 6). Some of the toughest requirements on the

  14. Argonne lectures on particles accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A

    1999-09-01

    The quest for elementary particles has promoted the development of particle accelerators producing beams of increasingly higher energies. In a synchrotron, the particle energy is directly proportional to the product of the machine's radius times the bending magnets' field strength. Present proton experiments at the TeV scale require facilities with circumferences ranging from a few to tens of kilometers and relying on a large number (several hundred to several thousand) high field dipole magnets and high field gradient quadrupole magnets. These electro-magnets use high-current-density, low-critical-temperature superconducting cables and are cooled down at liquid helium temperature. They are among the most costly and the most challenging components of the machine. After explaining what are the various types of accelerator magnets and why they are needed (lecture 1), we briefly recall the origins of superconductivity and we review the parameters of existing superconducting particle accelerators (lecture 2). Then, we review the superconducting materials that are available at industrial scale (chiefly, NbTi and Nb{sub 3}Sn) and we explain in details the manufacturing of NbTi wires and cables (lecture 3). We also present the difficulties of processing and insulating Nb{sub 3}Sn conductors, which so far have limited the use of this material in spite of its superior performances. We continue by discussing the two dimensional current distributions which are the most appropriate for generating pure dipole and quadrupole fields and we explain how these ideal distributions can be approximated by so called cos{theta} and cos 2{theta} coil designs (lecture 4). We also present a few alternative designs which are being investigated and we describe the difficulties of realizing coil ends. Next, we present the mechanical design concepts that are used in existing accelerator magnets (lecture 5) and we describe how the magnets are assembled (lecture 6). Some of the toughest

  15. Innovative Digitally Controlled Particle Accelerator Magnet Power Supply

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup; Bidoggia, Benoit; Maheshwari, Ram Krishan

    2013-01-01

    Particle accelerator magnet power supplies needs to be extremely precise. A new and innovative power supply for particle accelerator magnets is proposed. The topologies for the input and the output converter are shown and the control architecture is described.......Particle accelerator magnet power supplies needs to be extremely precise. A new and innovative power supply for particle accelerator magnets is proposed. The topologies for the input and the output converter are shown and the control architecture is described....

  16. Linear induction accelerator approach for advanced radiography

    International Nuclear Information System (INIS)

    Caporaso, G.J.

    1997-05-01

    Recent advances in induction accelerator technology make it possible to envision a single accelerator that can serve as an intense, precision multiple pulse x-ray source for advanced radiography. Through the use of solid-state modulator technology repetition rates on the order of 1 MHz can be achieved with beam pulse lengths ranging from 200 ns to 2 microsecs. By using fast kickers, these pulses may be sectioned into pieces which are directed to different beam lines so as to interrogate the object under study from multiple lines of sight. The ultimate aim is to do a time dependent tomographic reconstruction of a dynamic object. The technology to accomplish these objectives along with a brief discussion of the experimental plans to verify it will be presented

  17. Portable, x-band, linear accelerator systems

    International Nuclear Information System (INIS)

    Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.

    1985-01-01

    Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for nondestructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz

  18. Multistage linear electron acceleration using pulsed transmission lines

    International Nuclear Information System (INIS)

    Miller, R.B.; Prestwich, K.R.; Poukey, J.W.; Epstein, B.G.; Freeman, J.R.; Sharpe, A.W.; Tucker, W.K.; Shope, S.L.

    1981-01-01

    A four-stage linear electron accelerator is described which uses pulsed radial transmission lines as the basic accelerating units. An annular electron beam produced by a foilless diode is guided through the accelerator by a strong axial magnetic field. Synchronous firing of the injector and the acccelerating modules is accomplished with self-breaking oil switches. The device has accelerated beam currents of 25 kA to kinetic energies of 9 MV, with 90% current transport efficiency. The average accelerating gradient is 3 MV/m

  19. CAS CERN Accelerator School: Superconductivity in particle accelerators. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1996-05-01

    These proceedings present the lectures given at the ninth specialized course organized by the CERN Accelerator School (CAS), the topic this time being ``Superconductivity in Particle Accelerators``. This course is basically a repeat of that given at the same location in 1988 whose proceedings were published as CERN 89-04. However, the opportunity was taken to improve the presentation of the various topics and to introduce the latest developments in this rapidly expanding field. First the basic theory of superconductivity is introduced. A review of the materials used for sc magnetics is followed by magnet design requirements, the influence of eddy and persistent currents, and the methods used to provide quench protection. Next follows the basic theory of sc cavities, their materials, high-gradient limitations, the problem of field emission and then their power couplers. After an introduction to cryogenics and cryoplants, the theory of superfluidity is presented followed by a review of the use of superfluid helium. Finally, two seminars detail the impact of superconductors in the design of the LHC and LEP2 accelerators. (orig.).

  20. CAS CERN Accelerator School: Superconductivity in particle accelerators. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1996-05-01

    These proceedings present the lectures given at the ninth specialized course organized by the CERN Accelerator School (CAS), the topic this time being ''Superconductivity in Particle Accelerators''. This course is basically a repeat of that given at the same location in 1988 whose proceedings were published as CERN 89-04. However, the opportunity was taken to improve the presentation of the various topics and to introduce the latest developments in this rapidly expanding field. First the basic theory of superconductivity is introduced. A review of the materials used for sc magnetics is followed by magnet design requirements, the influence of eddy and persistent currents, and the methods used to provide quench protection. Next follows the basic theory of sc cavities, their materials, high-gradient limitations, the problem of field emission and then their power couplers. After an introduction to cryogenics and cryoplants, the theory of superfluidity is presented followed by a review of the use of superfluid helium. Finally, two seminars detail the impact of superconductors in the design of the LHC and LEP2 accelerators. (orig.)

  1. Detecting chaos in particle accelerators through the frequency map analysis method.

    Science.gov (United States)

    Papaphilippou, Yannis

    2014-06-01

    The motion of beams in particle accelerators is dominated by a plethora of non-linear effects, which can enhance chaotic motion and limit their performance. The application of advanced non-linear dynamics methods for detecting and correcting these effects and thereby increasing the region of beam stability plays an essential role during the accelerator design phase but also their operation. After describing the nature of non-linear effects and their impact on performance parameters of different particle accelerator categories, the theory of non-linear particle motion is outlined. The recent developments on the methods employed for the analysis of chaotic beam motion are detailed. In particular, the ability of the frequency map analysis method to detect chaotic motion and guide the correction of non-linear effects is demonstrated in particle tracking simulations but also experimental data.

  2. Observation and analysis of oscillations in linear accelerators

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1991-11-01

    This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations

  3. The graphics software of the Saclay Linear Accelerator control system

    International Nuclear Information System (INIS)

    Gournay, J.F.

    1988-01-01

    The graphics software used for the control of the Saclay Linear Accelerator is described. The specific requirements that such a software must have in this environment are outlined and some typical applications are presented. (orig.)

  4. The First Two Electron Linear Accelerators in South Mrica

    African Journals Online (AJOL)

    gap oscillator and transmission lines to accelerate particles in a straight line. In 1928, Wideroe in Germany success- fully applied the resonance principle to accelerate potas- sium ions to 50 kV with an applied voltage of 25 kV. Technical advances resulting from the development of radar during World War II made possible ...

  5. Accelerating Dense Linear Algebra on the GPU

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    and matrix-vector operations on GPUs. Such operations form the backbone of level 1 and level 2 routines in the Basic Linear Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific applications. The target hardware is the most recent NVIDIA Tesla 20-series (Fermi...

  6. Study on radial-phase motion of a beam in the 3 cm electron linear accelerator

    International Nuclear Information System (INIS)

    Polyakov, V.A.; Shchedrin, I.S.

    1982-01-01

    Longitudinal and transverse dynamics of particles in a 3 cm electron linear accelerator (ELA) are. considered. Electron motion in the source and in the section before inlet onto the accelerating section, effect of the wave type input transformer as well as the effect of deviations of parameters of ELA supply system on oUtput characteristics of the beam have been taken into account. The results obtained permitted to explain a comparatively small value of accelerated current at the output of the LAEU-31M (38 m A). Recommendations on improvement of beam passogein the accelerating section are developed based on computerized calculations

  7. Performance review of thermionic electron gun developed for RF linear accelerators at RRCAT

    International Nuclear Information System (INIS)

    Wanmode, Yashwant; Mulchandani, J.; Reddy, T.S.; Bhisikar, A.; Singh, H.G.; Shrivastava, Purushottam

    2015-01-01

    RRCAT is engaged in development of RF electron linear accelerator for irradiation of industrial and agricultural products. Thermionic electron gun is primary source for this accelerator as beam current in the RF accelerator is modest and thermionic emission is most prevalent option for electron gun development. An electron gun has to meet high cathode emission capability, low filament power, good accessibility for cathode replacement and should provide short time for maintenance. Electron linear accelerator up to beam energy of 10 MeV require electron source of 45-50 keV beam energy and emission current of 1 A. Electron optics of gun and electron beam profile simulations were carried out using CST's particle tracking code and EGUN code. Triode type electron gun of cathode voltage 50 kV pulsed has been designed, developed and integrated with 10 MeV electron linear accelerators at RRCAT. Beam current of more than 600 mA has been measured with faraday cup in the test stand developed for characterizing the electron gun. Two accelerators one is imported and another one developed indigenously has been energized using this electron gun. Beam energy of 5-10 MeV has been achieved with beam current of 250-400 mA by integrating this electron gun with the linear accelerator. This paper reviews the performance of indigenously developed electron gun for both linear accelerators. (author)

  8. Electron gun for technological linear accelerator

    International Nuclear Information System (INIS)

    Khodak, I.V.; Kushnir, V.A.; Mirochenko, V.V.; Stepin, D.L.; Zavada, L.M.

    2000-01-01

    The work is purposed to the design of diode electron gun for powerful technologic electron linac and to experimental investigations of the beam parameters at the gun exit.The gun feature is the quick cathode replacement.This is very impotent for operating of the accelerator.The gun optics and beam parameters were calculated using the EGUN code.Beam parameters were investigated as at the special test stand so as component of the linac injector.The gun produces the beam current of 2 A at the anode voltage 25 kV.Measured beam parameters correspond to calculated results

  9. Transformations between inertial and linearly accelerated frames of reference

    International Nuclear Information System (INIS)

    Ashworth, D.G.

    1983-01-01

    Transformation equations between inertial and linearly accelerated frames of reference are derived and these transformation equations are shown to be compatible, where applicable, with those of special relativity. The physical nature of an accelerated frame of reference is unambiguously defined by means of an equation which relates the velocity of all points within the accelerated frame of reference to measurements made in an inertial frame of reference. (author)

  10. High-brightness negative-hydrogen linear accelerator

    International Nuclear Information System (INIS)

    Wadlinger, E.A.; Farrell, J.A.; Dogliani, H.O.

    1982-01-01

    We have designed a linear accelerator to accelerate negative hydrogen ions to 50 MeV with an instantaneous output current of 100 mA and a normalized rms emittance in both transverse planes of 0.02 π cm mrad. The design and results obtained to date with a 2-MeV prototype are presented

  11. A beam-matching concept for medical linear accelerators

    DEFF Research Database (Denmark)

    Sjöström, David; Bjelkengren, Ulf; Ottosson, Wiviann

    2009-01-01

    The flexibility in radiotherapy can be improved if a patient can be moved between any one of the department's medical linear accelerators without the need to change anything in the patient's treatment plan. For this to be possible, the dosimetric characteristics of the various accelerators must...

  12. Proceeding of the 11th meeting on linear accelerators

    International Nuclear Information System (INIS)

    Nakahara, Kazuo; Anami, Shozo; Takasaki, Eiichi

    1986-08-01

    The study group on linear accelerators has attained the period of 10 years. The worldwide change of social structure and economical condition during this period affected also linear accelerators. For a while, the new installation of linear accelerators was limited to Japan and China, and the state of standstill continued in Europe and America. Therefore, the large scale projects of electron-positron collision type accelerators started, and LEP of CERN and HERA of DESY in Europe and Linear Collider of SLAC in USA compete the lead together with TRISTAN in Japan. Large electron rings have become the type connecting CW linear accelerators with electromagnets in circular form unlike the conventional type. The developed type of superconducting CW linacs such as CEBAF in USA is planned. In the large accelerators hereafter of CW or pulse type, the RF system of high accuracy and large power output is the key to the success of projects, instead of individual accelerating spaces, high frequency sources, waveguides or controls. When the scale of projects exceeds a certain limit, those cannot be dealt with merely by the experience and means in the past. In this book, the gists of 62 presented papers and invited lectures are collected. (Kako, I.)

  13. The role of linear accelerators in industry

    International Nuclear Information System (INIS)

    Sivinski, J.S.; Sloan, D.P.

    1985-01-01

    The short-term demand of ionizing energy will increase rapidly due to developing irradiation markets in sludge irradiation, medical product sterilization, biological toxic waste sterilization, exhaust gas treatment, and the much larger area of food disinfestation. Incentives for the increase are due not only to inherent positive characteristics of ionizing radiation, but to the worldwide concern and increased awareness of currently used fumigants, such as methyl bromide, ethylene dibromide, and ethylene oxide. Cobalt-60 is a gamma-emitting isotope, produced primarily by the Atomic Energy of Canada Limited, which can help to satisfy these developing market demands. As an alternative to cobalt-60, the US Department of Energy is promoting cesium-137, a gamma emitter obtained from reprocessed nuclear waste. However, the supply of these two isotopes is limited and unable to meet the projected ionizing energy demands. Utilization of accelerator technology is therefore critical to the development of various product irradiation programs. It will not only meet the demand which is in excess of that covered by the isotopes, but it will also release the limited quantities of isotope for better use in roles for which they are especially suited. The accelerator and isotope roles in the irradiation markets need to be more finely focused in the future to benefit the growth of both systems. (orig.)

  14. Portable, x-band, linear accelerator systems

    International Nuclear Information System (INIS)

    Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.

    1985-01-01

    Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for non-destructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz

  15. The role of linear accelerators in industry

    Science.gov (United States)

    Sivinski, Jacek S.; Sloan, Daniel P.

    1985-05-01

    The short-term demand for ionizing energy will increase rapidly due to developing irradiation markets in sludge irradiation, medical product sterilization, biological toxic waste sterilization, exhaust gas treatment, and the much larger area of food disinfestation. Incentives for the increase are due not only to inherent positive characteristics of ionizing radiation, but to the worldwide concern and increased awareness of currently used fumigants, such as methyl bromide, ethylene dibromide, and ethylene oxide. Cobalt-60 is a gamma-emitting isotope, produced primarily by the Atomic Energy of Canada Limited, which can help satisfy these developing market demands. As an alternative to cobalt-60, the US Department of Energy is promoting cesium-137, a gamma emitter obtained from reprocessed nuclear waste. However, the supply of these two isotopes is limited and unable to meet the projected ionizing energy demands. Utilization of accelerator technology is therefore critical to the development of various product irradiation programs. It will not only meet the demand which is in excess of that covered by the isotopes, but it will also release the limited quantities of isotope for better use in roles for which they are especially suited. The accelerator and isotope roles in the irradiation markets need to be more finely focused in the future to benefit the growth of both systems.

  16. Application of local area networks to accelerator control systems at the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Fox, J.D.; Linstadt, E.; Melen, R.

    1983-03-01

    The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations

  17. Particle acceleration in the interplanetary medium

    International Nuclear Information System (INIS)

    Engelmann, J.J.

    1987-07-01

    Variations in solar wind properties are dominated by a number of high speed streams. By interacting with the quiet wind, the fast streams give rise in the first case to a travelling shock wave, in the second case to a pair of forward and backward shock waves, by which the interaction region, corotating with the sun, is bounded. Two acceleration mechanisms are invoked to account for the energetic ion flux increases: 1) The first order Fermi process, whereby particles increase their energy by compression between converging magnetic scattering centers, located upstream and downstream of the shock. 2) The shock drift mechanism. The composition and the spectrum of the accelerated ions suggest that they probably originate from the suprathermal tail of the solar wind distribution [fr

  18. Unified formulation for linear accelerator design

    International Nuclear Information System (INIS)

    Farkas, Z.D.

    1986-01-01

    Expressions for peak and average powers required to produce a given average gradient in an accelerator section are given. They are valid for both lossy and lossless (superconducting) sections, for both traveling wave and standing wave sections, and for pulsed or continuous wave rf input. The expressions are given in terms of structure parameters that are equally applicable to traveling wave or standing waves. These parameters delineate the effect of wall losses and energy required to build up the field. For both traveling wave and standing wave sections it is possible to make the rf pulse length short enough to make the wall losses negligible at the expense of increased peak power requirement. Therefore, the expressions includes the effects of pulse compression

  19. Unified formulation for linear accelerator design

    International Nuclear Information System (INIS)

    Farkas, Z.D.

    1986-05-01

    Expressions for peak and average powers required to produce a given average gradient in an accelerator section are given. They are valid for both lossy and lossless (superconducting) sections, for both traveling wave and standing wave sections, and for pulsed or continuous wave rf input. The expressions are given in terms of structure parameters that are equally applicable to traveling wave or standing wave. These parameters delineate the effect of wall losses and energy required to build up the field. For both traveling wave and standing wave sections it is possible to make the rf pulse length short enough to make the wall losses negligible at the expense of increased peak power requirement. Therefore the expressions will include the effects of pulse compression. 6 refs., 7 figs

  20. Control system technology for particle accelerators

    International Nuclear Information System (INIS)

    Tsumura, Yoshihiko; Matsuo, Keiichi; Maruyama, Takayuki.

    1995-01-01

    Control systems for particle accelerators are being designed around open-architecture systems, which allows easy upgrading, high-speed networks and high-speed processors. Mitsubishi Electric is applying realtime Unix operating systems, fiber-distributed data interface (FDDI), shared memory networks and remote I/O systems to achieve these objectives. In the area of vacuum control systems, which requires large-scale sequence control, the corporation is employing general-purpose programmable logic controllers (PLCs) to achieve cost-effective design. Software for these applications is designed around a library of application program interfaces (APIs) that give users direct access to key system functions. (author)

  1. New particle accelerations by magnetized plasma shock waves

    International Nuclear Information System (INIS)

    Takeuchi, Satoshi

    2005-01-01

    Three mechanisms concerning particle accelerations are proposed to account for the high energy of cosmic rays. A model of magnetized plasma clouds is used to simulate a shock-type wave. The attainable energies of test particles colliding with the moving magnetic clouds are investigated by analytical and numerical methods for the three mechanisms. The magnetic trapping acceleration is a new type of particle trapping and acceleration in which, in principle, the test particle is accelerated indefinitely; hence, this mechanism surpasses the Fermi-type acceleration. In the single-step acceleration, the test particle obtains a significant energy gain even though it only experiences a single collision. Lastly, there is the bouncing acceleration by which the test particle is substantially accelerated due to repeated collisions

  2. Particle acceleration in relativistic magnetic flux-merging events

    Science.gov (United States)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    Using analytical and numerical methods (fluid and particle-in-cell simulations) we study a number of model problems involving merger of magnetic flux tubes in relativistic magnetically dominated plasma. Mergers of current-carrying flux tubes (exemplified by the two-dimensional `ABC' structures) and zero-total-current magnetic flux tubes are considered. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration during flux mergers: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. During the X-point collapse, particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For plasma magnetization 2$ the spectrum power-law index is 2$ ; in this case the maximal energy depends linearly on the size of the reconnecting islands. For higher magnetization, 2$ , the spectra are hard, , yet the maximal energy \\text{max}$ can still exceed the average magnetic energy per particle, , by orders of magnitude (if is not too close to unity). The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced magnetic reconnection, further accelerating the particles, but proceeds at a slower reconnection rate.

  3. Advanced Accelerators: Particle, Photon and Plasma Wave Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ronald L. [Florida A & M University, Tallahassee, FL (United States)

    2017-06-29

    The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to study techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.

  4. Accelerator Physics Challenges for Future Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, Tor O

    1999-08-09

    At the present time, there are a number of future linear collider designs with a center-of-mass energy of 500 GeV or more with luminosities in excess of 10{sup -34}cm{sup -2}s{sup -1} . Many of these designs are at an advanced state of development. However, to attain the high luminosity, the colliders require very small beam emittances, strong focusing, and very good stability. In this paper, some of the outstanding issues related to producing and maintaining the small beam sizes are discussed. Although the different designs are based on very different rf technologies, many of these problems are common.

  5. CAS CERN Accelerator School: Applied geodesy for particle accelerators

    International Nuclear Information System (INIS)

    Turner, S.

    1987-01-01

    This specialized course addresses the many topics involved in the application of geodesy to large particle accelerators, though many of the techniques described are equally applicable to large construction projects and surveillance systems where the highest possible surveying accuracies are required. The course reflects the considerable experience gained over many years, not only at CERN but in projects all over the world. The methods described range from the latest approach using satellites to recent developments in conventional techniques. They include the global positioning system (GPS), its development, deployment and precision, the use of the Terrameter and the combination or comparison of its results with those of the GPS, the automation of instruments, the management of measurements and data, and the highly evolved treatment of the observations. (orig.)

  6. Particle acceleration by electromagnetic ion cyclotron turbulence

    International Nuclear Information System (INIS)

    Crew, G.B.; Chang, Tom

    1990-01-01

    The LF EM-turbulence which furnishes energy for the acceleration of ions in various regions of the earth's magnetosphere efficiently accomplishes its transfer of energy from waves to particles through ion cyclotron resonance (ICR) with the left-hand polarized component of the turbulence; the result of this interaction is a heating of the particle distribution. A general theoretical treatment of ICR heating in a weakly inhomogeneous magnetic geometry is presented, en route to a more detailed examination of auroral ion conics' formation. A substantial simplification of the analysis of the altitude-asymptotic form of the conic distribution is obtained via the similarity transformation introduced into the properties of the electric field spectral density and the earth's dipolar magnetic field. 60 refs

  7. Beam emittance growth caused by transverse deflecting fields in a linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A W; Richter, B; Yao, C Y [Stanford Linear Accelerator Center, CA (USA)

    1980-12-01

    The effect of the beam-generated transverse deflecting fields on the emittance of an intense bunch of particles in a high-energy linear accelerator is analyzed in this paper. The equation of motion is solved by a perturbation method for cases of a coasting beam and a uniformly accelerated beam. The results are applied to obtain some design tolerance specifications for the recently proposed SLAC Single Pass Collider.

  8. NLC. A test accelerator for the next linear collider

    International Nuclear Information System (INIS)

    Ruth, R.D.; Adolphsen, C.; Bane, K.; Boyce, R.F.; Burke, D.L.; Callin, R.; Caryotakis, G.; Cassel, R.; Clark, S.L.; Deruyter, H.; Fant, K.; Fuller, R.; Heifets, S.; Hoag, H.; Humphrey, R.; Kheifets, S.; Koontz, R.; Kroll, N.M.; Lavine, T.; Loew, G.A.; Menegat, A.; Miller, R.H.; Nantista, C.; Paterson, J.M.; Pearson, C.; Phillips, R.; Rifkin, J.; Spencer, J.; Tantawi, S.; Thompson, K.A.; Vlieks, A.; Vylet, V.; Wang, J.W.; Wilson, P.B.; Yeremian, A.; Youngman, B.

    1993-01-01

    At SLAC, we are pursuing the design of a Next Linear Collider (NLC) which would begin with a center-of-mass energy of 0.5 TeV, and be upgradable to at least 1.0 TeV. To achieve this high energy, we have been working on the development of a high-gradient 11.4-GHz (X-band) linear accelerator for the main linac of the collider. In this paper, we present the design of a 'Next Linear Collider Test Accelerator' (NLCTA). The goal of the NLCTA is to incorporate the new technologies of X-band accelerator structures, RF pulse compression systems and klystrons into a short linac which will then be a test bed for beam dynamics issues related to high-gradient acceleration. (orig.)

  9. Acceleration of superparamagnetic particles with magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Stange, R., E-mail: Robert.stange@tu-dresden.de; Lenk, F.; Bley, T.; Boschke, E.

    2017-04-01

    High magnetic capture efficiency in the context of Biomagnetic Separation (BMS) using superparamagnetic particles (SMPs) requires efficient mixing and high relative velocities between cellular and other targets and SMPs. For this purpose, batch processes or microfluidic systems are commonly used. Here, we analyze the characteristics of an in-house developed batch process experimental setup, the Electromagnetic Sample Mixer (ESM) described earlier. This device uses three electromagnets to increase the relative velocity between SMPs and targets. We carry out simulations of the magnetic field in the ESM and in a simpler paradigmatic setup, and thus were able to calculate the force field acting on the SMPs and to simulate their relative velocities and fluid dynamics due to SMP movement. In this way we were able to show that alternate charging of the magnets induces a double circular stream of SMPs in the ESM, resulting in high relative velocities of SMPs to the targets. Consequently, due to the conservation of momentum, the fluid experiences an acceleration induced by the SMPs. We validated our simulations by microscopic observation of the SMPs in the magnetic field, using a homemade apparatus designed to accommodate a long working-distance lens. By comparing the results of modeling this paradigmatic setup with the experimental observations, we determined that the velocities of the SMPs corresponded to the results of our simulations. - Highlights: • Investigation of a batch process setup for complex forming at Biomagnetic Separation. • Simulation of fluid flow characteristics in this Electro Magnetic Samplemixer. • Simulation of relative velocities between magnetic particles and fluid in the setup. • Simulation of fluid flow induced by the acceleration of magnet particles. • Validation of magnetic fields and flow characteristics in paradigmatic setups. • Reached relative velocity is higher than the sedimentation velocity of the particles • Alternating

  10. A superconducting focusing solenoid for the neutrino factory linear accelerator

    International Nuclear Information System (INIS)

    Green, Michael A.; Lebedev, V.; Strauss, B.P.

    2001-01-01

    The proposed linear Accelerator that accelerates muons from 190 MeV to 2.45 GeV will use superconducting solenoids for focusing the muon beam. The accelerator will use superconducting RF cavities. These cavities are very sensitive to stay magnetic field from the focusing magnets. Superconducting solenoids can produce large stray fields. This report describes the 201.25 MHz acceleration system for the neutrino factory. This report also describes a focusing solenoid that delivers almost no stray field to a neighboring superconducting RF cavity

  11. High-intensity deuteron linear accelerator (FMIT)

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1979-01-01

    For fusion reactors to become operational, one of the many problems to be solved is to find materials able to withstand the intense bombardment of 14-MeV neutrons released by the fusion process. The development of alloys less likely to become damaged by this neutron bombardment will require years of work, making it desirable to begin studies in parallel with other aspects of fusion power generators. The Fusion Materials Irradiation Test (FMIT) Facility, to be built at the Hanford Engineering Development Laboratory (HEDL), Richland, Washington, will provide a high neutron flux and a neutron energy spectrum representative of fusion reactor conditions in volumes adequate to screen and qualify samples of candidate fusion reactor materials. FMIT's design goal is to provide an irradiation test volume of 10 cm 3 at a neutron flux of 10 15 n/cm 2 -s, and 500 cm 3 at a flux of 10 14 n/cm 2 -s. This will not allow testing of actual components, but samples in the most intense flux region can be subjected to accelerated life testing, accumulating in one year the total number of neutrons seen by a fusion reactor in 10 to 20 years of operation

  12. Measuring Lagrangian accelerations using an instrumented particle

    International Nuclear Information System (INIS)

    Zimmermann, R; Fiabane, L; Volk, R; Pinton, J-F; Gasteuil, Y

    2013-01-01

    Accessing and characterizing a flow imposes a number of constraints on the employed measurement techniques; in particular, optical methods require transparent fluids and windows in the vessel. Whereas one can adapt the apparatus, fluid and methods in the laboratory to these constraints, this is hardly possible for industrial mixers. In this paper, we present a novel measurement technique which is suitable for opaque or granular flows: consider an instrumented particle, which continuously transmits the force/acceleration acting on it as it is advected in a flow. Its density is adjustable for a wide range of fluids and because of its small size and its wireless data transmission, the system can be used both in industrial and in scientific mixers, allowing for a better understanding of the flow within. We demonstrate the capabilities and precision of the particle by comparing its transmitted acceleration to alternative measurements, in particular in the case of a turbulent von Kármán flow. Our technique proves to be an efficient and fast tool to characterize flows. (paper)

  13. Space experiments with particle accelerators: SEPAC

    International Nuclear Information System (INIS)

    Obayashi, T.

    1978-01-01

    In this paper, the program of the space experiments with particle accelerators (SEPAC) is described. The SEPAC is to be prepared for the Space Shuttle/First Spacelab Mission. It is planned in the SEPAC to carry out the active and interactive experiments on and in the Earth's ionosphere and magnetosphere. It is also intended to make an initial performance test for the overall program of Spacelab/SEPAC experiments. The instruments to be used are electron beam accelerators, MPD arcjects, and associated diagnostic equipments. The main scientific objectives of the experiments are Vehicle Charge Neutralization, Beam Plasma Physics, and Beam Atmosphere Interactions. The SEPAC system consists of the following subsystems. Those are accelerators, monitoring and diagnostic equipments, and control and data management equipments. The SEPAC functional objectives for experiment operations are SEPAC system checkout, EBA firing test, MPD firing test, electron beam experiments, plasma beam propagation, artificial aurora excitation, equatorial aerochemistry, electron echo experiment, E parallel B experiment, passive experiments, SEPAC system deactivation, and battery charging. Most experiment procedures are carried out by the pre-set computer program. (Kato, T.)

  14. Relevance of plasma science to particle accelerators

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1998-01-01

    In following the theme of this Symposium, ''Plasma Science and Its Applications,'' the authors may be suggesting to some readers that the other applications of Plasma Science somehow justify the existence of a field traditionally devoted to fusion energy. In fact, they do not believe that plasma science can or should be justified for its spin-off contributions. Nevertheless, the unity of science would be seriously threatened by a precipitous decline in the support for plasma science. It is that unity which repeatedly has been verified as one looks for how advances in one field are crucial to several other seemingly fundamentally different fields. Thus it is in this case, as a representative of the community of Particle Accelerator Scientists, that they show four significant areas in which the methods and the results of plasma science have been applied to Accelerator Science. They have deliberately skipped plasma ion sources which are perhaps the most obvious application of plasmas to accelerators. Two of their four examples are cases in which the computational methods of plasma science have been adopted, and two are examples in which the plasmas themselves are employed. One of each category are now actively in use and the other one in each category is being used to develop or design new devices

  15. Proceedings of the 1977 linear accelerator meeting in Japan, Tsukuba, November 30 - December 1, 1977

    International Nuclear Information System (INIS)

    Tanaka, Jiro; Sato, Isamu

    1978-03-01

    Linear accelerators are now diversifying in usage, including the fields beyond nuclei and elementary particles. In the meeting, reflecting these recent developments, the following were discussed and report made are presented: beam blow-up, beam loading and bunched-beam structure, and single bunches occurrence and measurement. (Mori, K.)

  16. The Klynac: An integrated klystron and linear accelerator

    International Nuclear Information System (INIS)

    Potter, James M.; Schwellenbach, David; Meidinger, Alfred

    2013-01-01

    The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system. The klystron is essentially a conventional klystron structure with an input cavity, some number of intermediate cavities and an output cavity. The accelerator structure is, likewise, a conventional on-axis coupled structure. The uniqueness is the means of coupling the klystron output cavity to the accelerator. The coupler is a resonant coupler rather than an ordinary transmission line. The geometry of such a system need not be coaxial. However, if the klystron and accelerator are coaxial we can eliminate the need for a separate cathode for the accelerator by injecting some of the klystron beam into the accelerator. Such a device can be made cylindrical which is ideal for some applications.

  17. Production and applications of neutrons using particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  18. Charged particle acceleration in nonuniform plasmas

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Naumova, N.M.; Pegoraro, F.

    1996-11-01

    The high-gradient electron acceleration schemes that have been demonstrated using LWFA appear promising for the development of plasma-based laser accelerators into practical devices. However, a question still exists: how to avoid the wake field deterioration and the loss of the phase synchronism between the plasma wave and the electrons that prevent them from being accelerated up to the theoretical limit. In order to obtain the highest possible values of the wake electric field one must use as intense laser pulses as possible i.e., pulses with dimensionless amplitudes a much-gt 1. Pulses that have a dimensionless amplitude larger than one tend to be subject to a host of instabilities, such as relativistic self-focusing, self modulation and stimulated Raman scattering, that affect their propagation in the plasma. Such processes could be beneficial, in so far as they increase the pulse energy density, enhance the wake field generation, and provide the mechanism for transporting the laser radiation over several Rayleigh lengths without diffraction spreading. However, it is still far from certain that these processes can be exploited in a controlled form and can lead to regular, stationary wake fields. It is known that, in order to create good quality wake fields, it would be preferable to use laser pulses with steep fronts of order λ p . The present paper aims at analyzing the influence of the laser pulse shape and of the plasma nonuniformity on the charged particle acceleration. This study is based on the results obtained with one dimensional PIC simulations

  19. Superconducting materials for particle accelerator magnets

    International Nuclear Information System (INIS)

    Larbalestier, D.C.

    1983-01-01

    Present accelerator designs are clustered around a field of 5 Tesla with several future studies looking at the 8-to-10 Tesla range. There has also been some recent interest in low-field iron-dominated dipoles in which the superconductor will see a field of about 2 Tesla. The demands of this present range of interest can still be met, with the upper limit at about 10 Tesla, by the use of Nb-Ti (or Nb-Ti-Ta) or Nb 3 Sn. Both of these conductors are available in multifilamentary form from industrial sources and are suitable for accelerator magnets. The upper critical field and transition temperature of both types of composite cover the foreseeable range of demand for such magnets. There is no magical new composite on the horizon that is likely to replace Nb-Ti or Nb 3 Sn. One class of materials which has a potentially exciting prospect is that of the ternary molybdenum sulfides. These can have an upper critical field of greater than 50 T, which extends their superconductivity into field ranges unattainable with A15 compounds; the two drawbacks to such materials, however, are the amount of development needed to produce superconductors from them with useful current densities and the fact that it does not appear that they would offer any features not already possessed by Nb-Ti or Nb 3 Sn in the field range presently of interest to accelerator designers. Using this pragmatic approach, this paper addresses these and other superconducting composites in terms of their fabrication, their testing, the measurement aspects of their critical current densities, and other properties which are pertinent to their selection for particle accelerator magnet use

  20. Quality assurance procedure for an industrial radiography linear accelerator

    International Nuclear Information System (INIS)

    Vishwakarma, R.R.; Kannan, R.; Yadav, R.K.

    2001-01-01

    Any radiation generating equipment can be marketed and used in India, only after obtaining specific type approval from the Competent Authority i.e. Chairman, Atomic Energy Regulatory Board (AERB). Generally linear accelerators are allowed to be used in the country based on the type approval issued by the regulatory authority of the country of its origin. So type approval of imported linear accelerators do not involve many parameters to be tested in our country. However for an indigenous accelerator, test procedures are to be defined and the same are to be followed during type approval process. No such protocol is available for linear accelerators used in industrial radiography. Recently some Indian manufacturers have started manufacturing and supplying such accelerators. A need for developing an indigenous protocol for type approval/NOC of such accelerators has arisen and the same has been developed. Various requirements for such protocol are discussed in this paper. Measurements have been performed on one of the 4 MV indigenous unit. Results of such measurements are also presented. Need for a regular periodic quality assurance program is necessary for imported as well as indigenous accelerators. A program for such quality assurance is also listed in the paper. (author)

  1. Where does particle acceleration occur in extended extragalactic radio sources

    International Nuclear Information System (INIS)

    Hughes, P.A.

    1980-01-01

    It is suggested that particle acceleration does not occur in the extended lobes of extragalactic radio sources, but only in the compact heads. Away from these, waves capable of accelerating particles may not propagate. Although wave generation within the lobes would allow acceleration there, it is not obvious that the plasma is sufficiently disturbed for this to occur. (author)

  2. Accelerating universes driven by bulk particles

    International Nuclear Information System (INIS)

    Brito, F.A.; Cruz, F.F.; Oliveira, J.F.N.

    2005-01-01

    We consider our universe as a 3d domain wall embedded in a 5d dimensional Minkowski space-time. We address the problem of inflation and late time acceleration driven by bulk particles colliding with the 3d domain wall. The expansion of our universe is mainly related to these bulk particles. Since our universe tends to be permeated by a large number of isolated structures, as temperature diminishes with the expansion, we model our universe with a 3d domain wall with increasing internal structures. These structures could be unstable 2d domain walls evolving to fermi-balls which are candidates to cold dark matter. The momentum transfer of bulk particles colliding with the 3d domain wall is related to the reflection coefficient. We show a nontrivial dependence of the reflection coefficient with the number of internal dark matter structures inside the 3d domain wall. As the population of such structures increases the velocity of the domain wall expansion also increases. The expansion is exponential at early times and polynomial at late times. We connect this picture with string/M-theory by considering BPS 3d domain walls with structures which can appear through the bosonic sector of a five-dimensional supergravity theory

  3. A test accelerator for the next linear collider

    International Nuclear Information System (INIS)

    Ruth, R.D.; Adolphsen, C.; Bane, K.; Boyce, R.F.; Burke, D.L.; Callin, R.; Caryotakis, G.; Cassel, R.; Clark, S.L.; Deruyter, H.; Fant, K.; Fuller, R.; Heifets, S.; Hoag, H.; Humphrey, R.; Kheifets, S.; Koontz, R.; Lavine, T.; Loew, G.A.; Menegat, A.; Miller, R.H.; Paterson, J.M.; Pearson, C.; Phillips, R.; Rifkin, J.; Spencer, J.; Tantawi, S.; Thompson, K.A.; Vlieks, A.; Vylet, V.; Wang, J.W.; Wilson, P.B.; Yeremian, A.; Youngman, B.; Kroll, N.M.; Nantista, C.

    1993-07-01

    At SLAC, the authors are pursuing the design of a Next Linear Collider (NLC) which would begin with a center-of-mass energy of 0.5 TeV, and be upgradable to at least 1.0 TeV. To achieve this high energy, they have been working on the development of a high-gradient 11.4-GHz (X-band) linear accelerator for the main linac of the collider. In this paper, they present the design of a open-quotes Next Linear Collider Test Acceleratorclose quotes (NLCTA). The goal of the NLCTA is to incorporate the new technologies of X-band accelerator structures, RF pulse compression systems and klystrons into a short linac which will then be a test bed for beam dynamics issues related to high-gradient acceleration

  4. Linear induction accelerators for fusion and neutron production

    International Nuclear Information System (INIS)

    Barletta, W.A.; California Univ., Los Angeles, CA

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs

  5. Linear accelerator with x-ray absorbing insulators

    International Nuclear Information System (INIS)

    Rose, P.H.

    1975-01-01

    Annular insulators for supporting successive annular electrodes in a linear accelerator have embedded x-ray absorbing shield structures extending around the accelerating path. The shield members are disposed to intercept x-ray radiation without disrupting the insulative effect of the insulator members. In preferred forms, the structure comprises a plurality of annular members of heavy metal disposed in an x-ray blocking array, spaced from each other by the insulating substance of the insulator member. (auth)

  6. Neuromuscular Control of Rapid Linear Accelerations in Fish

    Science.gov (United States)

    2016-06-22

    sunfish, Lepomis macrochirus. Animals with flexible bodies, like fishes , face a tradeoff for rapid movements. To produce high forces, they must...2014 30-Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: Neuromuscular Control of Rapid Linear Accelerations in Fish The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 swimming, acceleration, fish , muscle, stiffness REPORT DOCUMENTATION PAGE 11. SPONSOR

  7. High intensity proton linear accelerator development for nuclear waste transmutation

    International Nuclear Information System (INIS)

    Mizumoto, M.; Hasegawa, K.; Oguri, H.; Ito, N.; Kusano, J.; Okumura, Y.; Murata, H.; Sakogawa, K.

    1997-01-01

    A high-intensity proton linear accelerator with an energy of 1.5 GeV and an average current of 10 mA has been proposed for various engineering tests for the transmutation system of nuclear waste by JAERI. The conceptual and optimization studies for this accelerator performed for a proper choice of operating frequency, high b structure, mechanical engineering considerations and RF source aspects are briefly described

  8. Cell design for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Earley, L.; Liska, D.; Mockler, C.; Ruhe, J.; Tucker, H.; Walling, L.

    1991-01-01

    The Dual-Axis Radiographic Hydrotest (DARHT) facility will employ two linear induction accelerators to produce intense, bremsstrahlung x- ray pulses for flash radiography. The accelerator cell design for a 3- kA, 16--20 MeV, 60-ns flattop, high-brightness electron beam is presented. The cell is optimized for high-voltage stand-off while also minimizing the its transverse impedance. Measurements of high- voltage and rf characteristics are summarized. 7 refs., 5 figs

  9. CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM

    Directory of Open Access Journals (Sweden)

    S.H. Nasseri

    2011-07-01

    Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.

  10. CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM

    Directory of Open Access Journals (Sweden)

    S.H. Nasseri

    2009-10-01

    Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.

  11. Calculations of beam dynamics in Sandia linear electron accelerators, 1984

    International Nuclear Information System (INIS)

    Poukey, J.W.; Coleman, P.D.

    1985-03-01

    A number of code and analytic studies were made during 1984 which pertain to the Sandia linear accelerators MABE and RADLAC. In this report the authors summarize the important results of the calculations. New results include a better understanding of gap-induced radial oscillations, leakage currents in a typical MABE gas, emittance growth in a beam passing through a series of gaps, some new diocotron results, and the latest diode simulations for both accelerators. 23 references, 30 figures, 1 table

  12. A miniature small size 3 MeV deuteron linear accelerator

    International Nuclear Information System (INIS)

    Baranov, L.N.; Bryzgalov, G.A.; Verbovskij, V.V.; Kovpak, N.E.; Onoprienko, V.T.; Papkovich, V.G.; Khizhnyak, N.A.; Shulika, N.G.; Yashin, V.P.

    1975-01-01

    Basic characteristics are presented of the small-size linear deuteron accelerator for 3 MeV, the accelerating system of which operates at H-wave. It is shown that the usage of such accelerating systems makes it possible to reduce the resonator volume by more than 30 times, whereas the capacity of the evacuating devices as well as the total HF supply power are decreased. Owing to a relatively large wave length, particle injection energy may be reduced to 100-150 keV

  13. A Magnetostrictive Tuning System for Particle Accelerators

    CERN Document Server

    Tai, Chiu-Ying; Daly, Edward; Davis, Kirk; Espinola, William; Han, Zhixiu; Joshi, Chandrashekhar; Mavanur, Anil; Racz, Livia; Shepard, Kenneth

    2005-01-01

    Energen, Inc. has designed, built, and demonstrated several fast and slow tuners based on its magnetostrictive actuators and stepper motor. These tuners are designed for Superconducting Radio Frequency (SRF) cavities, which are important structures in particle accelerators that support a wide spectrum of disciplines, including nuclear and high-energy physics and free electron lasers (FEL). In the past two years, Energen's work has focused on magnetostrictive fast tuners for microphonics and Lorentz detuning compensation on elliptical-cell and spoke-loaded cavities, including the capability for real-time closed-loop control. These tuners were custom designed to meet specific requirements, which included a few to 100 micron stroke range, hundreds to kilohertz operation frequency, and cryogenic temperature operation in vacuum or liquid helium. These tuners have been tested in house and at different laboratories, such as DESY, Argonne National Lab, and Jefferson Lab. Some recent results are presented in this pape...

  14. A Magnetorestrictive Tuning System for Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chiu-Ying Tai; Jordan Cormier; William Espinola; Zhixiu Han; Chad Joshi; Anil Mavanur; Livia Racz; Kenneth Shepard; Edward Daly; Kirk Davis

    2005-05-16

    Energen, Inc. has designed, built, and demonstrated several fast and slow tuners based on its magnetostrictive actuators and stepper motor. These tuners are designed for Superconducting Radio Frequency (SRF) cavities, which are important structures in particle accelerators that support a wide spectrum of disciplines, including nuclear and high-energy physics and free electron lasers (FEL). In the past two years, Energen's work has focused on magnetostrictive fast tuners for microphonics and Lorentz detuning compensation on elliptical-cell and spoke-loaded cavities. These tuners were custom designed to meet specific requirements, which included a few to 100 micron stroke range, hundreds to kilohertz operation frequency, and cryogenic temperature operation in vacuum or liquid helium. These tuners have been tested in house and at different laboratories, such as DESY, Argonne National Lab, and Jefferson Lab. Some recent results are presented in this paper.

  15. Radiological and economic impact of decommissioning charged particle accelerators

    International Nuclear Information System (INIS)

    Sonck, M.; Buls, N.; Hermanne, A.; Eggermont, G.

    2000-01-01

    To evaluate the real radiological and economic consequences of future dismantling of particle accelerators, only insufficient information was available in literature or even at the individual accelerator facilities themselves. DGXI of the European Commission hence launched a project with focus on gathering quantitative and scientifically sound data on the number of accelerators in the EU, on the status of activation of the different facilities, on the awareness of the possible problems at dismantling and on cost evacuations for full scale decommissioning. The project was granted to the VUB with subcontracts to NIRAS/ONDRAF, MAN and CEA-Saclay. With the replies received to an extensive questionnaire, a database was set up with the necessary data for evaluating the decommissioning problems to be expected at the different facilities. From this database three accelerators were chosen as reference cases (VUB medium energy cyclotron, IRMM 200 MeV electron linear accelerator and the 6 GeV proton synchrotron Saturne in Saclay). Extensive sampling of their concrete shieldings (more than 200 drill cores) and metal parts of accelerator and infrastructure, followed by accurate γ-spectrometric analysis and custom designed 3D interpolation, yield data on the 3D distribution of the activity in the different rooms of the installations. In addition to the γ-spectrometric analysis, an analysis of the tritium content of the concrete was performed by measuring the water liberated from heating ground concrete samples. These specific activity distributions allow evaluation of both immediate and deferred decommissioning costs using different scenarios (different clearance levels, different waste management prices, different labor costs and different decommissioning techniques) based on real situations in France, Germany and Great Britain. Several important conclusions and recommendations with respect to decommissioning both existing and future accelerator facilities will be presented

  16. US particle accelerators at age 50

    International Nuclear Information System (INIS)

    Wilson, R.R.

    1981-01-01

    Fifty years ago, a dramatic race was under way to see who would be first to accelerate protons to an energy high enough to disintegrate the atomic nucleus. This contest, coincidental with the birth of the American Institute of Physics, could be considered as the beginning of what was to become a Golden age of high-energy physics. The race might also be taken to mark the end of an Age of Innocence of nulcear physicists. Heretofore during an era to which all physicists look back with nostalgia, much of the fundamental knowledge about the nucleus had been by obtained the use of rather primitive experimental devices, followed by sophisticated analysis. Rutherford's famous α-particle scattering experiment is a case-in-point: a little string and sealing wax and not much else. Not much, that is, except great leaps of reason and imagination. In the future, in addition to make-do skills, physicists were going to have to master arcane techniques, such as those of mechanical and electrical engineers. Indeed they would have to invent a whole new technology of accelerator building in order to explore the inside of the nucleus and to identify and study its constituent parts

  17. US particle accelerators at age 50

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.R.

    1981-11-01

    Fifty years ago, a dramatic race was under way to see who would be first to accelerate protons to an energy high enough to disintegrate the atomic nucleus. This contest, coincidental with the birth of the American Institute of Physics, could be considered as the beginning of what was to become a Golden age of high-energy physics. The race might also be taken to mark the end of an Age of Innocence of nulcear physicists. Heretofore during an era to which all physicists look back with nostalgia, much of the fundamental knowledge about the nucleus had been by obtained the use of rather primitive experimental devices, followed by sophisticated analysis. Rutherford's famous ..cap alpha..-particle scattering experiment is a case-in-point: a little string and sealing wax and not much else. Not much, that is, except great leaps of reason and imagination. In the future, in addition to make-do skills, physicists were going to have to master arcane techniques, such as those of mechanical and electrical engineers. Indeed they would have to invent a whole new technology of accelerator building in order to explore the inside of the nucleus and to identify and study its constituent parts.

  18. Particle Acceleration in Two Converging Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Wang, Na; Shan, Hao [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011 (China); Giacalone, Joe [Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721 (United States); Yan, Yihua [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Ding, Mingde, E-mail: wangxin@xao.ac.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University) Ministry of Education, Nanjing 210093 (China)

    2017-06-20

    Observations by spacecraft such as ACE , STEREO , and others show that there are proton spectral “breaks” with energy E {sub br} at 1–10 MeV in some large CME-driven shocks. Generally, a single shock with the diffusive acceleration mechanism would not predict the “broken” energy spectrum. The present paper focuses on two converging shocks to identify this energy spectral feature. In this case, the converging shocks comprise one forward CME-driven shock on 2006 December 13 and another backward Earth bow shock. We simulate the detailed particle acceleration processes in the region of the converging shocks using the Monte Carlo method. As a result, we not only obtain an extended energy spectrum with an energy “tail” up to a few 10 MeV higher than that in previous single shock model, but also we find an energy spectral “break” occurring on ∼5.5 MeV. The predicted energy spectral shape is consistent with observations from multiple spacecraft. The spectral “break,” then, in this case is caused by the interaction between the CME shock and Earth’s bow shock, and otherwise would not be present if Earth were not in the path of the CME.

  19. Cryogenic systems for detectors and particle accelerators

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1988-01-01

    It's been one hundred years since the first successful experiments were carried out leading to the liquefaction of oxygen which birthed the field of cryogenics and about sixty years since cryogenics went commercial. Originally, cryogenics referred to the technology and art of producing low temperatures but today the definition adopted by the XII Congress of the International Institute of Refrigeration describes cryogenics as the study of phenomena, techniques, and concepts occurring at our pertaining to temperatures below 120 K. Modern acceptance of the importance and use of cryogenic fluids continues to grow. By far, the bulk of cryogenic products are utilized by industry for metal making, agriculture, medicine, food processing and as efficient storage of fuels. Cryogenics has found many uses in the scientific community as well, enabling the development of ultra low noise amplifiers, fast cold electronics, cryopumped ultra high vacuums, the production of intense magnetic fields and low loss power transmission through the sue of cryogenically cooled superconductors. High energy physic research has been and continues to use cryogenic hardware to produce liquids used as detector targets and to produce refrigeration necessary to cool superconducting magnets to design temperature for particle accelerator applications. In fact, today's super accelerators achieve energies that would be impossible to reach with conventional copper magnets, demonstrating that cryogenics has become an indispensable ingredient in today's scientific endeavors

  20. Monte Carlo simulation of medical linear accelerator using primo code

    International Nuclear Information System (INIS)

    Omer, Mohamed Osman Mohamed Elhasan

    2014-12-01

    The use of monte Carlo simulation has become very important in the medical field and especially in calculation in radiotherapy. Various Monte Carlo codes were developed simulating interactions of particles and photons with matter. One of these codes is PRIMO that performs simulation of radiation transport from the primary electron source of a linac to estimate the absorbed dose in a water phantom or computerized tomography (CT). PRIMO is based on Penelope Monte Carlo code. Measurements of 6 MV photon beam PDD and profile were done for Elekta precise linear accelerator at Radiation and Isotopes Center Khartoum using computerized Blue water phantom and CC13 Ionization Chamber. accept Software was used to control the phantom to measure and verify dose distribution. Elektalinac from the list of available linacs in PRIMO was tuned to model Elekta precise linear accelerator. Beam parameter of 6.0 MeV initial electron energy, 0.20 MeV FWHM, and 0.20 cm focal spot FWHM were used, and an error of 4% between calculated and measured curves was found. The buildup region Z max was 1.40 cm and homogenous profile in cross line and in line were acquired. A number of studies were done to verily the model usability one of them is the effect of the number of histories on accuracy of the simulation and the resulted profile for the same beam parameters. The effect was noticeable and inaccuracies in the profile were reduced by increasing the number of histories. Another study was the effect of Side-step errors on the calculated dose which was compared with the measured dose for the same setting.It was in range of 2% for 5 cm shift, but it was higher in the calculated dose because of the small difference between the tuned model and measured dose curves. Future developments include simulating asymmetrical fields, calculating the dose distribution in computerized tomographic (CT) volume, studying the effect of beam modifiers on beam profile for both electron and photon beams.(Author)

  1. The design of the accelerating gaps for the linear induction accelerator RADLAC II

    International Nuclear Information System (INIS)

    Shope, S.L.; Mazarakis, M.G.; Miller, R.B.; Poukey, J.W.

    1987-01-01

    In high current (50 kA) linear induction accelerators, the accelerating gaps can excite large radial oscillations. A gap was designed that minimized the radial oscillations and reduced potential depressions. The envelope equation predicted radial oscillation amplitudes of 1 mm which agreed with experimental measurements

  2. Monitoring Linear Accelerator Output Constancy Using the PTW Linacheck

    International Nuclear Information System (INIS)

    McDermott, Garry M.; Buckle, Andrew H.

    2011-01-01

    The PTW-Linacheck was assessed for its ability to monitor linear accelerator radiation output constancy. The key issues that were considered were the setup for daily output measurements, e.g., requirements for build-up and backscatter material, and the reproducibility and linearity of the device with linear accelerator output. An appropriate measurement setup includes a 10 x 10 cm field at 100 cm FSD, 5 cm backscatter, and no added build-up for 4 MeV electron beams, 1 cm added build-up for 6-16 MeV electron beams and 5 cm added build-up for 6-15 MV photon beams. Using this measurement setup, the dose linearity and short-term reproducibility were acceptable; however, the Linacheck should be recalibrated on a monthly basis to ensure acceptable long-term reproducibility.

  3. SLC status and SLAC [Stanford Linear Accelerator Center] future plans

    International Nuclear Information System (INIS)

    Richter, B.

    1989-08-01

    In this presentation, I shall discuss the linear collider program at the Stanford Linear Accelerator Center as it is now, and as we hope to see it evolve over the next few years. Of greatest interest to the high energy accelerator physics community gathered here is the development of the linear collider concept, and so I shall concentrate most of this paper on a discussion of the present status and future evolution of the SLC. I will also briefly discuss the research and development program that we are carrying out aimed at the realization of the next generation of high-energy linear colliders. SLAC had a major colliding-beam storage-ring program as well, including present rings and design studies on future high-luminosity projects, but time constraints preclude a discussion of them. 8 figs., 3 tabs

  4. Particle acceleration inside PWN: Simulation and observational constraints with INTEGRAL

    International Nuclear Information System (INIS)

    Forot, M.

    2006-12-01

    The context of this thesis is to gain new constraints on the different particle accelerators that occur in the complex environment of neutron stars: in the pulsar magnetosphere, in the striped wind or wave outside the light cylinder, in the jets and equatorial wind, and at the wind terminal shock. An important tool to constrain both the magnetic field and primary particle energies is to image the synchrotron ageing of the population, but it requires a careful modelling of the magnetic field evolution in the wind flow. The current models and understanding of these different accelerators, the acceleration processes and open questions have been reviewed in the first part of the thesis. The instrumental part of this work involves the IBIS imager, on board the INTEGRAL satellite, that provides images with 12' resolution from 17 keV to MeV where the SPI spectrometer takes over up, to 10 MeV, but with a reduced 2 degrees resolution. A new method for using the double-layer IBIS imager as a Compton telescope with coded mask aperture. Its performance has been measured. The Compton scattering information and the achieved sensitivity also open a new window for polarimetry in gamma rays. A method has been developed to extract the linear polarization properties and to check the instrument response for fake polarimetric signals in the various backgrounds and projection effects

  5. Permanent-magnet material applications in particle accelerators

    International Nuclear Information System (INIS)

    Kraus, R.H. Jr.

    1992-01-01

    The modern charged particle accelerator has found application in a wide range of scientific research, industrial, medical, and defense fields. Researchers began to use permanent-magnet materials in particle accelerators soon after the invention of the alternating gradient principle, which showed that magnetic field could be used to control the transverse envelope of charged particle beams. The history of permanent-magnet use in accelerator physics and technology is outlined, current design methods and material properties of concern for particle accelerator applications are reviewed

  6. Current Fragmentation and Particle Acceleration in Solar Flares

    Science.gov (United States)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  7. Modular compact solid-state modulators for particle accelerators

    Science.gov (United States)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.

    2017-12-01

    The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.

  8. Envelope method for determination of the ion linear accelerator acceptance

    International Nuclear Information System (INIS)

    Sharshanov, A.A.; Goncharenko, I.I.; Revutskij, E.I.

    1974-01-01

    The acceptance defined by the slit u 2 2 in space u, ν, z (u=coordinate of the accelerated particle in the direction perpendicular to the accelerator axis, ν=ratio of the transverse particle velocity component to the longitudinal component, z=accelerator axis, a=dimensions of slit) represents a convex curvilinear polygon with centre of symmetry at the origin of the co-ordinates. The sides of the polygon are sections of ellipses and straight lines, the ellipses being part of an envelope to the set of proto-types of all cross-sections of the slit in planes z=3, where 0<=xi<=z and z is the length of the accelerator, and the straight lines are tangents to the ends of the envelope. In the paper the equations of the ellipses forming the sides of the polygon are written using an elementary variable matrix of the accelerator structure, and the co-ordinates of the polygon apexes are found. A numerical value is derived for the area of the polygon for one transverse co-ordinate of the particular accelerator, the pre-stripping section of the LUMZI-10. (author)

  9. Independent checks of linear accelerators equipped with multileaf collimators

    International Nuclear Information System (INIS)

    Pavlikova, I.; Ekendahl, D.; Horakova, I.

    2005-01-01

    National Radiation Protection Institute (NRPI) provides independent checks of therapeutic equipment as a part of state supervision. In the end of 2003, the audit was broaden for linear accelerators equipped with multileaf collimators (MLC). NRPI provides TLD postal audits and on-site independent checks. This contribution describes tests for multileaf collimators and intensity modulated radiation therapy (IMRT) technique that are accomplished within the independent on-site check of linear accelerators. The character and type of tests that are necessary to pursue for multileaf collimator depends on application technique. There are three basic application of the MLC. The first we call 'static MLC' and it serves for replacing conventional blocking or for adjusting the field shape to match the beam's-eye view projection of a planning target volume during an arc rotation of the x-ray beam. This procedure is called conformal radiotherapy. The most advanced technique with MLC is intensity modulated radiation therapy. The dose can be delivered to the patient with IMRT in various different ways: dynamic MLC, segmented MLC and IMRT arc therapy. Independent audits represent an important instrument of quality assurance. Methodology for independent check of static MLC was successfully verified on two types of accelerators: Varian and Elekta. Results from pilot measurements with dynamic MLC imply that the methodology is applicable for Varian accelerators. In the future, the experience with other types of linear accelerators will contribute to renovation, modification, and broaden independent checks methodology. (authors)

  10. Calibration of an Electron Linear Accelerator using an acrylic puppet

    International Nuclear Information System (INIS)

    Guzman C, C.S.; Picon C, C.

    1998-01-01

    The finality of this work is to find the dose for electron beams using acrylic puppets and inter comparing with the measurements in water, found also its respective conversion factor. With base in this, its may be realize interesting measurements for the good performance of a linear accelerator and special clinical treatments in less time. (Author)

  11. Spin dynamics in storage rings and linear accelerators

    International Nuclear Information System (INIS)

    Irwin, J.

    1994-04-01

    The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included

  12. Annotated bibliography on high-intensity linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.; Roybal, E.U.

    1978-01-01

    A technical bibliography covering subjects important to the design of high-intensity beam transport systems and linear accelerators is presented. Space charge and emittance growth are stressed. Subject and author concordances provide cross-reference to detailed citations, which include an abstract and notes on the material. The bibliography resides in a computer database that can be searched for key words and phrases

  13. Spin dynamics in storage rings and linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J. [Stanford Univ., CA (United States)

    1994-12-01

    The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included.

  14. Annotated bibliography on high-intensity linear accelerators. [240 citations

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.; Roybal, E.U.

    1978-01-01

    A technical bibliography covering subjects important to the design of high-intensity beam transport systems and linear accelerators is presented. Space charge and emittance growth are stressed. Subject and author concordances provide cross-reference to detailed citations, which include an abstract and notes on the material. The bibliography resides in a computer database that can be searched for key words and phrases.

  15. Status of the Advanced Photon Source (APS) linear accelerator

    International Nuclear Information System (INIS)

    White, M.; Berg, W.; Fuja, R.; Grelick, A.; Mavrogenes, G.; Nassiri, A.; Russell, T.; Wesolowski, W.

    1993-01-01

    A 2856-MHz S-band, 450-MeV electron/positron linear accelerator is the first part of the injector for the Advanced Photon Source (APS) 7-GeV storage ring. Construction of the APS linac is currently nearing completion, and commissioning will begin in July 1993. The linac and its current status are discussed in this paper

  16. The First Two Electron Linear Accelerators in South Africa | Minnaar ...

    African Journals Online (AJOL)

    The electron linear accelerator is considered by many leading radiotherapy centres throughout the world as the most suitable equipment for the treatment of cancer. There are good reasons for this opinion, and some physical aspects are summarised here. S. Afr. Med. J., 48, 1004 (1974) ...

  17. Procedures manual for the Oak Ridge Electron Linear Accelerator

    International Nuclear Information System (INIS)

    Todd, H.A.

    1979-01-01

    The Procedures Manual for the Oak Ridge Electron Linear Accelerator contains specific information pertaining to operation and safety of the facility. Items such as the interlock system, radiation monitoring, emergency procedures, night shift and weekend operation, and maintenance are discussed in detail

  18. The acceleration of particles at propagating interplanetary shocks

    Science.gov (United States)

    Prinsloo, P. L.; Strauss, R. D. T.

    2017-12-01

    Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.

  19. linear accelerator simulation framework with placet and guinea-pig

    CERN Document Server

    Snuverink, Jochem; CERN. Geneva. ATS Department

    2016-01-01

    Many good tracking tools are available for simulations for linear accelerators. However, several simple tasks need to be performed repeatedly, like lattice definitions, beam setup, output storage, etc. In addition, complex simulations can become unmanageable quite easily. A high level layer would therefore be beneficial. We propose LinSim, a linear accelerator framework with the codes PLACET and GUINEA-PIG. It provides a documented well-debugged high level layer of functionality. Users only need to provide the input settings and essential code and / or use some of the many implemented imperfections and algorithms. It can be especially useful for first-time users. Currently the following accelerators are implemented: ATF2, ILC, CLIC and FACET. This note is the comprehensive manual, discusses the framework design and shows its strength in some condensed examples.

  20. Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator

    Science.gov (United States)

    Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2017-12-01

    A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.

  1. Linear accelerator-breeder (LAB): a preliminary analysis and proposal

    International Nuclear Information System (INIS)

    1976-01-01

    The development and demonstration of a Linear Accelerator-Breeder (LAB) is proposed. This would be a machine which would use a powerful linear accelerator to produce an intense beam of protons or deuterons impinging on a target of a heavy element, to produce spallation neutrons. These neutrons would in turn be absorbed in fertile 238 U or 232 Th to produce fissile 239 Pu or 233 U. Though a Linear Accelerator-Breeder is not visualized as competitive to a fast breeder such as the LMFBR, it would offer definite benefits in improved flexibility of options, and it could probably be developed more rapidly than the LMFBR if fuel cycle problems made this desirable. It is estimated that at a beam power of 300 MW a Linear Accelerator-Breeder could produce about 1100 kg/year of fissile 239 Pu or 233 U, which would be adequate to fuel from 2,650 to 15,000 MW(e) of fission reactor capacity depending on the fuel cycle used. A two-year design study is proposed, and various cost estimates are presented. The concept of the Linear Accelerator-Breeder is not new, having been the basis for a major AEC project (MTA) a number of years ago. It has also been pursued in Canada starting from the proposal for an Intense Neutron Generator (ING) several years ago. The technical basis for a reasonable design has only recently been achieved. The concept offers an opportunity to fill an important gap that may develop between the short-term and long-term energy options for energy security of the nation

  2. Technology demonstration for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Downing, J.; Moir, D.; Caporaso, G.; Chen, Y.J.

    1992-01-01

    The Dual-Axis Radiographic Hydrodynamics Test (DARHT) facility will employ two 16-MeV, 3-kA Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. Technology demonstration of the key accelerator sub-systems is underway at the DARHT Integrated Test Stand (ITS), which will produce a 6-MeV, 3-kA, 60-ns flattop electron beam. We will summarized measurements of ITS injector, pulsed-power, and accelerator cell performance. Time-resolved measurements of the electron beam parameters will also be presented. These measurements indicate that the DARHT accelerator design is sufficiently advanced to provide the high quality electron beams required for radiography with sub-millimeter spatial resolution

  3. Technology demonstration for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Downing, J.; Moir, D.; Caporaso, G.; Chen, Y.J.

    1993-01-01

    The Dual-Axis Radiographic Hydrodynamics Test (DARHT) facility will employ two 16-MeV, 3-kA Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. Technology demonstration of the key accelerator sub-systems is underway at the DARHT Integrated Test Stand (ITS), which will produce a 6-MeV, 3-kA, 60-ns flattop electron beam. The authors summarize measurements of ITS injector, pulsed-power, and accelerator cell performance. Time-resolved measurements of the electron beam parameters are also presented. These measurements indicate that the DARHT accelerator design is sufficiently advanced to provide the high quality electron beams required for radiography with sub-millimeter spatial resolution

  4. Separated-orbit bisected energy-recovered linear accelerator

    Science.gov (United States)

    Douglas, David R.

    2015-09-01

    A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.

  5. Monte Carlo simulation of a clinical linear accelerator

    International Nuclear Information System (INIS)

    Lin, S.-Y.; Chu, T.-C.; Lin, J.-P.

    2001-01-01

    The effects of the physical parameters of an electron beam from a Siemens PRIMUS clinical linear accelerator (linac) on the dose distribution in water were investigated by Monte Carlo simulation. The EGS4 user code, OMEGA/BEAM, was used in this study. Various incident electron beams, for example, with different energies, spot sizes and distances from the point source, were simulated using the detailed linac head structure in the 6 MV photon mode. Approximately 10 million particles were collected in the scored plane, which was set under the reticle to form the so-called phase space file. The phase space file served as a source for simulating the dose distribution in water using DOSXYZ. Dose profiles at D max (1.5 cm) and PDD curves were calculated following simulating about 1 billion histories for dose profiles and 500 million histories for percent depth dose (PDD) curves in a 30x30x30 cm 3 water phantom. The simulation results were compared with the data measured by a CEA film and an ion chamber. The results show that the dose profiles are influenced by the energy and the spot size, while PDD curves are primarily influenced by the energy of the incident beam. The effect of the distance from the point source on the dose profile is not significant and is recommended to be set at infinity. We also recommend adjusting the beam energy by using PDD curves and, then, adjusting the spot size by using the dose profile to maintain the consistency of the Monte Carlo results and measured data

  6. Beam transport physics issues for the recirculating linear accelerator

    International Nuclear Information System (INIS)

    Shokair, I.R.

    1992-11-01

    The Recirculating Linear Accelerator (RLA) utilizes the Ion Focused Regime (IFR) of beam transport plus a ramped bending field to guide the beam around the curved sections. Several issues of beam transport are considered. Beam transverse perturbations that could result in growth of the ion hose instability are analyzed. It is found that transverse kicks due to bending field errors, energy mismatches and fringe fields are the most important. The scaling of these perturbations with beam and channel parameters is derived. The effect of ramping of the bending field on the preformed plasma channel is then considered. For RLA experimental parameters the effect is found to be very small. For high energies however, in addition to axial heating, it is found that ramping the field causes compression of the plasma channel along the radius of curvature. This compression results in a quasi-equilibrium plasma electron temperature along the field lines which leads to collisionless transport towards the walls. The analysis of compression is done in an approximate way using a single particle picture and the channel expansion is analyzed using an envelope solution which gives a simple expression for the expansion time. This solution is then verified by Buckshot simulations. For a bending field of 2 kG ramped in 2 μ-secs and an argon channel (RLA parameters) we estimate that the channel radius doubling time (along field lines) is of the order of 0.5 μ-secs. Finally the effect of electron impact ionization due to axially heated electrons by the action of the inductive field is estimated. It is found that in Argon gas the electron avalanche time could be as low as 0.5 μ-sec which is smaller than the field ramp time

  7. The use of particle accelerators for space projects

    International Nuclear Information System (INIS)

    Virtanen, Ari

    2006-01-01

    With the introduction of CMOS technology radiation effects in components became an important issue in satellite and space mission projects. At the end of the cold war, the market of radiation hard (RadHard) components crashed and during the 90's their fabrication practically stopped. The use of 'commercial-off-the-shelf' (COTS) components became more common but required increased evaluation activities at radiation test sites. Component manufacturers and space project engineers were directed towards these test sites, in particular, towards particle accelerators. Many accelerator laboratories developed special beam lines and constructed dedicated test areas for component evaluations. The space environment was simulated at these test sites and components were tested to levels often exceeding mission requirements. In general, space projects environments were predicted in respects to particle mass and energy distributions with the expected fluxes and fluences. In order to validate this information in tests, concepts like stopping power, linear energy transfer, ion penetration ranges etc. have to be understood. The knowledge from the component structure also defines the way of irradiation. For example, the higher ion energies resulting in much deeper ion penetration ranges allow successful reverse side irradiation of thinned Integrated Circuits (ICs). So overall increased demands for radiation testing attracted the European Space Agency (ESA) to the JYFL-accelerator laboratory of the University of Jyvaeskylae, Finland. A contract was signed between ESA and JYFL for the development of a 'High Penetrating Heavy Ion Test Site'. Following one year development, this test site was commissioned in May 2005. This paper addresses the various issues around the JYFL laboratory with its accelerator and radiation effects facility as the focal point in service of component evaluations for the space community

  8. Acceleration ion focusing (IFR) and transport experiments with the recirculating linear accelerator (RLA)

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Puokey, J.W.; Bennett, L.F.; Wagner, J.S.; Olson, W.R.; George, M.; Turman, B.N.; Prestwich, K.R.; Struve, K.W.

    1992-01-01

    The focusing and transport of intense relativistic electron beams in the Sandia Laboratories Recirculating Linear Accelerator (RLA) is accomplished with the aid of an ion focusing channel (IFR). We report here experiments evaluating the beam generation in the injector and its subsequent acceleration and transport through the first post-accelerating cavity. Two injectors and one type of post-accelerating cavity were studied. Beams of 6-20 kA current were injected and successfully transported and accelerated through the cavity. The transport efficiencies were 90% - 100%, and the beam Gaussian profile (4 MeV injector) and radius (5 mm) remained the same through acceleration. We describe the RLA, present the experimental results and compare them with numerical simulations. (Author) 3 refs., 7 figs

  9. 9th International Accelerator School for Linear Colliders

    CERN Document Server

    2015-01-01

    This school is a continuation of the series of schools that began nine years ago: Japan 2006, Italy 2007, United States 2008, China 2009, Switzerland 2010, United States 2011, India 2012 and Turkey 2013. Based on needs from the accelerator community, the Linear Collider Collaboration (LCC) and ICFA Beam Dynamics Panel are organising the Ninth International Accelerator School for Linear Colliders. The school will present instruction in TeV-scale linear colliders including the ILC, CLIC and other advanced accelerators. An important change of this year’s school from previous LC schools is that it will also include the free electron laser (FEL), a natural extension for applications of the ILC/CLIC technology. The school is offered to graduate students, postdoctoral fellows and junior researchers from around the world. We welcome applications from physicists who are considering changing to a career in accelerator physics and technology. This school adopts an in depth approach. A selective course on the FEL has b...

  10. Spallation nucleosynthesis by accelerated charged-particles

    International Nuclear Information System (INIS)

    Goriely, S.

    2008-01-01

    Recent observations have suggested the presence of radioactive elements, such as Pm and 84≤Z≤99 elements) at the surface of the magnetic star HD101065, also known as Przybylski's star. This star is know to be a chemically peculiar star and its anomalous 38 30 heavy elements can be achieved. In this nucleosynthesis process, the secondary-neutron captures play a crucial role. The most attractive feature of the spallation process is the systematic production of Pm and Tc and the possible synthesis of actinides and sub-actinides.Based on such a parametric model, it is also shown that intense fluences of accelerated charged-particles interacting with surrounding material can efficiently produce elements heavier than iron. Different regimes are investigated and shown to be at the origin of p- and s-nuclei in the case of high-fluence low-flux events and r-nuclei for high-fluence high-flux irradiations. The possible existence of such irradiation events need to be confirmed by hydrodynamics simulations, but most of all by spectroscopic observations through the detection of short-lived radio-elements

  11. Ottawa offers funds for particle accelerator

    International Nuclear Information System (INIS)

    1991-01-01

    The federal government has offered to contribute at least $236 million toward the controversial KAON particle accelerator facility in Vancouver. Justice Minister Kim Campbell says that no deal on the project has been signed, but negotiations with British Columbia are going well. She said Ottawa is prepared to contribute a third of the operating costs. The facility is intended to investigate the basic structure of matter by smashing atoms into their tiniest components known as quarks. It's estimated that operating costs will be in the range of $90 million a year. Campbell said the United States is willing to contribute $100 million toward the project, but did not know what this would be for. Debate about the KAON facility within the scientific community has been raging for years. Many scientists fear KAON would draw money away from other areas of research, which already face chronic financial problems. Campbell insisted that KAON would not distort overall research priorities, but made no firm commitments about increases for other areas of science. She said money for KAON, assuming the project does get final approval, will not be delivered before the 1994 fiscal year and won't affect efforts to reduce the federal deficit

  12. Acceleration of low energy charged particles by gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Voyatzis, G. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece)]. E-mail: voyatzis@auth.gr; Vlahos, L. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Ichtiaroglou, S. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Papadopoulos, D. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece)

    2006-04-03

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

  13. Acceleration of low energy charged particles by gravitational waves

    International Nuclear Information System (INIS)

    Voyatzis, G.; Vlahos, L.; Ichtiaroglou, S.; Papadopoulos, D.

    2006-01-01

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state

  14. Next Linear Collider Test Accelerator conceptual design report

    International Nuclear Information System (INIS)

    1993-08-01

    This document presents the scientific justification and the conceptual design for the open-quotes Next Linear Collider Test Acceleratorclose quotes (NLCTA) at SLAC. The goals of the NLCTA are to integrate the new technologies of X-band accelerator structures and rf systems being developed for the Next Linear Collider, to measure the growth of the open-quotes dark currentclose quotes generated by rf field emission in the accelerator, to demonstrate multi-bunch beam-loading energy compensation and suppression of higher-order deflecting modes, and to measure any transverse components of the accelerating field. The NLCTA will be a 42-meter-long beam line consisting, consecutively, of a thermionic-cathode gun, an X-band buncher, a magnetic chicane, six 1.8-meter-long sections of 11.4-GHz accelerator structure, and a magnetic spectrometer. Initially, the unloaded accelerating gradient will be 50 MV/m. A higher-gradient upgrade option eventually would increase the unloaded gradient to 100 MV/m

  15. The Use of Linear Accelerator Technology for Health Purpose

    International Nuclear Information System (INIS)

    Susworo, R.

    2003-01-01

    Radiotherapy as a treatment modality has been achieved not long after the discovery of X ray at the end of 19th century, aside from other modalities such as surgery and chemotherapy. The development of this treatment modality consistent with the advanced of technology in general. External radiation which commenced with the usage of 10 KV energy, nowadays energy of 15 MV and electron beams, for health purpose, could be produced thanks to the progress of accelerator technology. In the developed world the usage of proton, neutron and heavy particles which produced by accelerator for cancer treatment has been done since several years ago. (author)

  16. Toward the popular therapeutic equipment for cancers by heavy particle beam (2). Development of a compact highly efficient injector. 1. Success of its beam test set in front of the RFQ linear accelerator

    International Nuclear Information System (INIS)

    Iwata, Yoshiyuki

    2005-01-01

    For popularization of heavy particle beams for cancer treatment, efforts have been done to reduce the size of injector, and the recently developed one is far more compact in size and more electricity-saving than the current Heavy Ion Medical Accelerator in Chiba (HIMAC) injector. This paper describes its outline. The injector has made it possible to decrease the manufacturing cost of the injector itself, the size of therapeutic equipment, and costs of facility construction and operation. Its beam has been tested and found to be satisfactory in the RFQ (radio frequency quadrupole) linac. The IH-DTL (interdigital H-mode drift tube linac) to be set backward is now under manufacturing and is to be completed within this year. Thus total beam test in combination of the RFQ linac and IH-DTL can be examined to design a more popular equipment for cancer therapy. The accelerator developed hereby is conceivably useful not only in the medical field but also for application as a physical and industrial heavy ion injector. (S.I.)

  17. 15-year-activity of Electron Linear Accelerator Laboratory

    International Nuclear Information System (INIS)

    Karolczak, S.

    1999-01-01

    The purchase of the Russian Electron Linear Accelerator ELU-6E by Institute of Radiation Technique of Lodz Technical University in 1978 started the activity of the ELA Laboratory. The accelerator itself and many additional scientific equipment designed and built during past 15 years have became the basic investigation tool for the ITR now. The most important measuring systems based on electron beam as irradiation source are: pulse radiolysis system with detection in IR, UV and visible region of the spectra, radiation induced conductometry, Faraday chamber and computerized data acquisition and processing system

  18. On the history of the ITEP Department of Linear Accelerators

    International Nuclear Information System (INIS)

    Lazarev, N.V.

    2006-01-01

    The memoirs are devoted to the institute anniversary and present the history of ITEP Department of Linear Accelerators. During more than 40 years the author has been working with the founder of the Department the world-wide known scientist I.M. Kapchinsky. Names of many active scientists are mentioned and their role is shown in the achievements of the Department which made a significant contribution to the progress of the accelerator science and engineering in our country and across the world [ru

  19. Linear accelerator for production of tritium: Physics design challenges

    Energy Technology Data Exchange (ETDEWEB)

    Wangler, T.P.; Lawrence, G.P.; Bhatia, T.S.; Billen, J.H.; Chan, K.C.D.; Garnett, R.W.; Guy, F.W.; Liska, D.; Nath, S.; Neuschaefer, G.; Shubaly, M.

    1990-01-01

    In the summer of 1989, a collaboration between Los Alamos National Laboratory and Brookhaven National Laboratory conducted a study to establish a reference design of a facility for accelerator production of tritium (APT). The APT concept is that of a neutron-spallation source, which is based on the use of high-energy protons to bombard lead nuclei, resulting in the production of large quantities of neutrons. Neutrons from the lead are captured by lithium to produce tritium. This paper describes the design of a 1.6-GeV, 250-mA proton cw linear accelerator for APT.

  20. Linear accelerators for TeV colliders. Revision

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1985-10-01

    The basic scaling relations for important linear collider design parameters are introduced. Some of the basic concepts concerning the design of accelerating structures are presented, and breakdown limitations are discussed. Rf power sources are considered. Some of the key concepts of wakefield accelerators are discussed, and some examples of wake fields for typical linac structures are presented. Some general concepts concerning emittance, and the limitations on the emittance that can be obtained from linac guns and damping rings are discussed. 49 refs., 15 figs

  1. High current proton linear accelerators and nuclear power

    International Nuclear Information System (INIS)

    Tunnicliffe, P.R.; Chidley, B.G.; Fraser, J.S.

    1976-01-01

    This paper outlines a possible role that high-current proton linear accelerators might play as ''electrical breeders'' in the forthcoming nuclear-power economy. A high-power beam of intermediate energy protons delivered to an actinide-element target surrounded by a blanket of fertile material may produce fissile material at a competitive cost. Criteria for technical performance and, in a Canadian context, for costs are given and the major problem areas outlined not only for the accelerator and its associated rf power source but also for the target assembly. (author)

  2. Bunch monitor for an S-band electron linear accelerator

    International Nuclear Information System (INIS)

    Otake, Yuji; Nakahara, Kazuo

    1991-01-01

    The measurement of bunch characteristics in an S-band electron linear accelerator is required in order to evaluate the quality of accelerated electron beams. A new-type bunch monitor has been developed which combines micro-stripline technology with an air insulator and wall-current monitoring technology. The obtained time resolution of the monitor was more than 150 ps. This result shows that the monitor can handle the bunch number of an S-band linac. The structure of the monitor is suitable for being installed in the vacuum area, since it is constructed of only metal and ceramic parts. It can therefore easily be employed in an actual machine

  3. Sources and acceleration efficiencies for energetic particles in the heliosphere

    International Nuclear Information System (INIS)

    Kucharek, H; Moebius, E

    2006-01-01

    Shocks at solar wind stream interaction regions, coronal mass ejections and magnetospheric obstacles have long been known for their intimate link with particle acceleration. Much enhanced capabilities to determine mass and charge composition at interplanetary shocks with ACE and SOHO have enabled us to identify sources and acceleration processes for the energetic particles. Both solar wind and interstellar pickup ions are substantial sources for particle acceleration in corotating interaction regions and at coronal mass ejections driven shocks and that flare particles are re-accelerated. Suprathermal distributions, such as pickup ions and pre-existing flare populations are accelerated much more efficiently than particles out of the solar wind. Recent results of the termination shock crossing by Voyager I and the scientific goals of the upcoming IBEX mission will be discussed

  4. Neural Networks for Modeling and Control of Particle Accelerators

    CERN Document Server

    Edelen, A.L.; Chase, B.E.; Edstrom, D.; Milton, S.V.; Stabile, P.

    2016-01-01

    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  5. A new approach to modeling linear accelerator systems

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Jameson, R.A.

    1994-01-01

    A novel computer code is being developed to generate system level designs of radiofrequency ion accelerators with specific applications to machines of interest to Accelerator Driven Transmutation Technologies (ADTT). The goal of the Accelerator System Model (ASM) code is to create a modeling and analysis tool that is easy to use, automates many of the initial design calculations, supports trade studies used in accessing alternate designs and yet is flexible enough to incorporate new technology concepts as they emerge. Hardware engineering parameters and beam dynamics are to be modeled at comparable levels of fidelity. Existing scaling models of accelerator subsystems were used to produce a prototype of ASM (version 1.0) working within the Shell for Particle Accelerator Related Code (SPARC) graphical user interface. A small user group has been testing and evaluating the prototype for about a year. Several enhancements and improvements are now being developed. The current version of ASM is described and examples of the modeling and analysis capabilities are illustrated. The results of an example study, for an accelerator concept typical of ADTT applications, is presented and sample displays from the computer interface are shown

  6. ELECTROMAGNETIC SIMULATIONS OF LINEAR PROTON ACCELERATOR STRUCTURES USING DIELECTRIC WALL ACCELERATORS

    International Nuclear Information System (INIS)

    Nelson, S; Poole, B; Caporaso, G

    2007-01-01

    Proton accelerator structures for medical applications using Dielectric Wall Accelerator (DWA) technology allow for the utilization of high electric field gradients on the order of 100 MV/m to accelerate the proton bunch. Medical applications involving cancer therapy treatment usually desire short bunch lengths on the order of hundreds of picoseconds in order to limit the extent of the energy deposited in the tumor site (in 3D space, time, and deposited proton charge). Electromagnetic simulations of the DWA structure, in combination with injections of proton bunches have been performed using 3D finite difference codes in combination with particle pushing codes. Electromagnetic simulations of DWA structures includes these effects and also include the details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam

  7. High current pulsed linear ion accelerators for inertial fusion applications

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Yonas, G.; Poukey, J.W.

    1978-01-01

    Pulsed ion beams have a number of advantages for use as inertial fusion drivers. Among these are classical interaction with targets and good efficiency of production. As has been pointed out by members of the accelerator community, multistage accelerators are attractive in this context because of lower current requirements, low power flow per energy conversion stage and low beam divergence at higher ion energies. On the other hand, current transport limits in conventional accelerators constrain them to the use of heavy ions at energies much higher than those needed to meet the divergence requirements, resulting in large, costly systems. We have studied methods of neutralizing ion beams with electrons within the accelerator volume to achieve higher currents. The aim is to arrive at an inexpensive accelerator that can advantageously use existing pulsed voltage technology while being conservative enough to achieve a high repetition rate. Typical output parameters for reactor applications would be an 0 + beam of 30 kA at 300 MeV. We will describe reactor scaling studies and the physics of neutralized linear accelerators using magnetic fields to control the electron dynamics. Recent results are discussed from PULSELAC, a five stage multikiloampere device being tested at Sandia Laboratories

  8. Standing Wave Linear Accelerators: An Investigation of the Fundamental Field Stability and Tuning Characteristics

    International Nuclear Information System (INIS)

    2002-01-01

    The first accelerators were designed as a tool in high-energy particle physics. Their development has given rise to numerous applications in industry, such as materials processing, sterilization, food preservation, and radiopharmaceutical product generation (Barbalat, 1994). Modern day linear accelerators for particle physics accelerate multiple bunches of electrons and positrons up to 50 GeV. Accelerators of the next generation, such as the Next Linear Collider (NLC), aim to accelerate the bunches initially to a center of mass of 500GeV and later to 1.5 TeV (Decking 2001, Miyamoto 2002, Phinney 2002). The NLC will operate under gradient fields on the order of 70 MV/m (Phinney, 2002). For all accelerators, two issues are fundamental for their construction: maximizing the efficiency of acceleration while, at the same time, preserving the luminosity of the beam. These issues are critically important in the design of the NLC. A linear accelerator operates as follows: An electron gun fires electrons into a structure that bunches the electrons and tightly focuses the beam. At the same time, a radiofrequency wave is fed into the accelerating structure. The electron bunches enter the accelerating structure in phase with the crest of the radiofrequency wave in order to achieve maximum energy. There are two principal types of accelerating structures: traveling wave (TW) and standing wave (SW). The electromagnetic wave in a TW structure travels in one direction; the electromagnetic wave in a SW structure travels in two directions. Many TW structures have been designed for the NLC, but recent experiments indicate that TW structures suffer from electrical breakdown at high gradients (Miller et. al., 2001). To address this problem, SW structures are being considered as the alternative for the NLC (Jones and Miller et. al., 2002). The input power required for an accelerating cavity increases with the length of the cavity (Miller et. al., 2001). Since SW structures can be made

  9. Superstructure for high current applications in superconducting linear accelerators

    Science.gov (United States)

    Sekutowicz, Jacek [Elbchaussee, DE; Kneisel, Peter [Williamsburg, VA

    2008-03-18

    A superstructure for accelerating charged particles at relativistic speeds. The superstructure consists of two weakly coupled multi-cell subunits equipped with HOM couplers. A beam pipe connects the subunits and an HOM damper is included at the entrance and the exit of each of the subunits. A coupling device feeds rf power into the subunits. The subunits are constructed of niobium and maintained at cryogenic temperatures. The length of the beam pipe between the subunits is selected to provide synchronism between particles and rf fields in both subunits.

  10. LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A. [Fermilab; Edstrom, D. [Fermilab; Halavanau, A. [Northern Illinois U.

    2017-07-16

    The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.

  11. Proceedings of the 18. international linear accelerator conference (Linac96). V.1

    International Nuclear Information System (INIS)

    Hill, C.; Vretenar, M.

    1996-01-01

    These Proceedings cover the whole field of linear accelerators, from its original and continuing role in particle physics research to the wide range of applications found today in many other disciplines and technologies. The contributions were deliberately spread among the different conference sessions in order to maintain a broad interest. The topics covered include: the design, construction and control of linear accelerators and the associated technology; dedicated test facilities, injection, wakefields, bunching, halo, dynamics, radio-frequency (RF), electron and ion accelerators, (laser) ion sources; active alignment, beam steering and spot size; simulation, monitoring and diagnostics; a description of the performance and current status of many machines, including proposed ones such as CLIC, the NLC and TESLA; applications to medical diagnosis and radiotherapy; use in the treatment and sterilisation of materials (including food) and in the reprocessing of radioactive waste; use as potential suppliers of energy. (author)

  12. Phase and amplitude detection system for the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Fox, J.D.; Schwarz, H.D.

    1983-01-01

    A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  13. Finite element analyses of a linear-accelerator electron gun

    Science.gov (United States)

    Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  14. Finite element analyses of a linear-accelerator electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk, E-mail: muniqbal@ihep.ac.cn [Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wasy, A. [Department of Mechanical Engineering, Changwon National University, Changwon 641773 (Korea, Republic of); Islam, G. U. [Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan); Zhou, Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-02-15

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  15. Finite element analyses of a linear-accelerator electron gun

    International Nuclear Information System (INIS)

    Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-01-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator

  16. Linear accelerator radiosurgery for trigeminal neuralgia: case report

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyong Geun [Dongguk University International Hospital, Goyang (Korea, Republic of)

    2006-06-15

    Trigeminal neuralgia is defined as an episodic electrical shock-like sensation in a dermatomal distribution of the trigeminal nerve. When medications fail to control pain, various procedures are used to attempt to control refractory pain. Of available procedures, stereotactic radiosurgery is the least invasive procedure and has been demonstrated to produce significant pain relief with minimal side effects. Recently, linear accelerators were introduced as a tool for radiosurgery of trigeminal neuralgia beneath the already accepted gamma unit. Author have experienced one case with trigeminal neuralgia treated with linear accelerator. The patient was treated with 85 Gy by means of 5 mm collimator directed to trigeminal nerve root entry zone. The patient obtained pain free without medication at 20 days after the procedure and remain pain free at 6 months after the procedure. He didn't experience facial numbness or other side effects.

  17. Induction-linear accelerators for food processing with ionizing radiation

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.

    1985-01-01

    Electron accelerators with sufficient beam power and reliability of operation will be required for applications in the large-scale radiation processing of food. Electron beams can be converted to the more penetrating bremsstrahlung radiation (X-rays), although at a great expense in useful X-ray power due to small conversion efficiencies. Recent advances in the technology of pulse-power accelerators indicates that Linear Induction Electron Accelerators (LIEA) are capable of sufficiently high-beam current and pulse repetition rate, while delivering ultra-short pulses of high voltage. The application of LIEA systems in food irradiation provides the potential for high product output and compact, modular-type systems readily adaptable to food processing facilities. (orig.)

  18. Radiation shielding technology development for proton linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ouk; Lee, Y. O.; Cho, Y. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, M. H.; Sin, M. W.; Park, B. I. [Kyunghee Univ., Seoul (Korea, Republic of)] [and others

    2005-09-01

    This report was presented as an output of 2-year project of the first phase Proton Engineering Frontier Project(PEFP) on 'Radiation Shielding Technology Development for Proton Linear Accelerator' for 20/100 MeV accelerator beam line and facility. It describes a general design concept, provision and update of basic design data, and establishment of computer code system. It also includes results of conceptual and preliminary designs of beam line, beam dump and beam facilities as well as an analysis of air-activation inside the accelerator equipment. This report will guides the detailed shielding design and production of radiation safety analysis report scheduled in the second phase project.

  19. Radionuclide production for PET with a linear electrostatic accelerator

    International Nuclear Information System (INIS)

    Shefer, R.E.; Hughey, B.J.; Klinkowstein, R.E.; Welch, M.J.

    1993-01-01

    A new type of linear electrostatic accelerator for the production of short-lived radionuclides for PET has been developed at Science Research Laboratory. The tandem cascade accelerator (TCA) is a low energy (3.7 MeV) proton and deuteron accelerator which can generate the four short-lived PET radionuclides in the quantities required for clinical use. The compact size, low weight, low power consumption and reduced radiation shielding requirements of the TCA result in a significant reduction in capital and operating costs when compared with higher energy cyclotron-based systems. Radioisotope target for the production of O-15, F-18, N-13 and C-11 have been designed specifically for use with the low energy TCA beam. A simple to use PC-based computer control system allows fully automated system operation and advanced scheduling of isotope production. Operating experience with the TCA and its PET radionuclide targets is described

  20. Occupational dose due to neutrons in medical linear accelerators

    International Nuclear Information System (INIS)

    Larcher, Ana M.; Bonet Duran, Stella M.; Lerner, Ana M.

    2000-01-01

    This paper describes a semi-empirical method to calculate the occupational dose due to neutrons and capture gamma rays in medical linear accelerators. It compares theoretical dose values with measurements performed in several 15 MeV medical accelerators installed in the country. Good agreement has been found between calculations made using the model and dose measurements, except for those accelerator rooms in which the maze length was shorter than the postulated tenth value distance. For those cases the model seems to overestimate neutron dose. The results demonstrate that the semi-empirical model is a good tool for quick and conservative shielding calculations for radiation protection purposes. Nevertheless, it is necessary to continue with the measurements in order to perform a more accurate validation of the model. (author)

  1. Particle accelerators and the progress of particle physics

    CERN Document Server

    Mangano, Michelangelo

    2016-01-01

    The following sections are included: •The Standard Model of fundamental interactions •Accelerators, and the experimental path towards the standard model •Complementarity and synergy of different accelerator facilities •The future challenges

  2. Particle Acceleration in Dissipative Pulsar Magnetospheres

    Science.gov (United States)

    Kazanas, Z.; Kalapotharakos, C.; Harding, A.; Contopoulos, I.

    2012-01-01

    Pulsar magnetospheres represent unipolar inductor-type electrical circuits at which an EM potential across the polar cap (due to the rotation of their magnetic field) drives currents that run in and out of the polar cap and close at infinity. An estimate ofthe magnitude of this current can be obtained by dividing the potential induced across the polar cap V approx = B(sub O) R(sub O)(Omega R(sub O)/c)(exp 2) by the impedance of free space Z approx eq 4 pi/c; the resulting polar cap current density is close to $n {GJ} c$ where $n_{GJ}$ is the Goldreich-Julian (GJ) charge density. This argument suggests that even at current densities close to the GJ one, pulsar magnetospheres have a significant component of electric field $E_{parallel}$, parallel to the magnetic field, a condition necessary for particle acceleration and the production of radiation. We present the magnetic and electric field structures as well as the currents, charge densities, spin down rates and potential drops along the magnetic field lines of pulsar magnetospheres which do not obey the ideal MHD condition $E cdot B = 0$. By relating the current density along the poloidal field lines to the parallel electric field via a kind of Ohm's law $J = sigma E_{parallel}$ we study the structure of these magnetospheres as a function of the conductivity $sigma$. We find that for $sigma gg OmegaS the solution tends to the (ideal) Force-Free one and to the Vacuum one for $sigma 11 OmegaS. Finally, we present dissipative magnetospheric solutions with spatially variable $sigma$ that supports various microphysical properties and are compatible with the observations.

  3. Monitoring and control system of the Saclay electron linear accelerator

    International Nuclear Information System (INIS)

    Lafontaine, Antoine

    1974-01-01

    A description is given of the automatic monitoring and control system of the 60MeV electron linear accelerator of the Centre d'Etudes Nucleaires de Saclay. The paper is mostly concerned with the programmation of the system. However, in a real time device, there is a very close association between computer and electronics, the latter are therefore described in details and make up most of the paper. [fr

  4. The graphics software of the Saclay linear accelerator control system

    International Nuclear Information System (INIS)

    Gournay, J.F.

    1987-06-01

    The Control system of the Saclay Linear Accelerator is based upon modern technology hardware. In the graphic software, pictures are created in exactly the same manner for all the graphic devices supported by the system. The informations used to draw a picture are stored in an array called a graphic segment. Three output primitives are used to add graphic material in a segment. Three coordinate systems are defined

  5. Superpower proton linear accelerators for neutron generators and electronuclear facilities

    International Nuclear Information System (INIS)

    Lazarev, N.V.; Kozodaev, A.M.

    2000-01-01

    The report is a review of projects on the superpower proton linear accelerators (SPLA) for neutron generators (NG) and electronuclear facilities, proposed in the recent years. The beam average output capacity in these projects reaches 100 MW. The basic parameters of certain operating NGs, as well as some projected NGs will the SPLA drivers are presented. The problems on application of superconducting resonators in the SPLA as well as the issues of the SPLA reliability and costs are discussed [ru

  6. "Accelerated Perceptron": A Self-Learning Linear Decision Algorithm

    OpenAIRE

    Zuev, Yu. A.

    2003-01-01

    The class of linear decision rules is studied. A new algorithm for weight correction, called an "accelerated perceptron", is proposed. In contrast to classical Rosenblatt's perceptron this algorithm modifies the weight vector at each step. The algorithm may be employed both in learning and in self-learning modes. The theoretical aspects of the behaviour of the algorithm are studied when the algorithm is used for the purpose of increasing the decision reliability by means of weighted voting. I...

  7. Operations and maintenance manual for the linear accelerator (sled)

    Science.gov (United States)

    1981-01-01

    The Linear Accelerator, a sliding chair which is pulled along a stationary platform in a horizontal axis is described. The driving force is a motor controlled by a velocity loop amplifier, and the mechanical link to the chair is a steel cable. The chair is moved in forward and reverse directions as indicated by the direction of motor rotation. The system operation is described with emphasis on the electronic control and monitoring functions. Line-by-line schematics and wire lists are included.

  8. Linear induction accelerator and pulse forming networks therefor

    Science.gov (United States)

    Buttram, Malcolm T.; Ginn, Jerry W.

    1989-01-01

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

  9. Radio-frequency quadrupole: a new linear accelerator

    International Nuclear Information System (INIS)

    Stokes, R.H.; Wangler, T.P.; Crandall, K.R.

    1981-01-01

    In many Laboratories, great emphasis now is placed on the development of linear accelerators with very large ion currents. To achieve this goal, a primary concern must be the low-velocity part of the accelerator, where the current limit is determined and where most of the emittance growth occurs. The use of magnetic focusing, the conflicting requirements in the choice of linac frequency, and the limitations of high-voltage dc injectors, have tended to produce low-velocity designs that limit overall performance. The radio-frequency quadrupole (RFQ) linear accelerator, invented in the Soviet Union and developed at Los Alamos, offers an attractive solution to many of these low-velocity problems. In the RFQ, the use of RF electric fields for radial focusing, combined with special programming of the bunching, allows high-current dc beams to be captured and accelerated with only small beam loss and low radial emittance growth. Advantages of the RFQ linac include a low injection energy (20 to 50 keV for protons) and a final energy high enough so the beam can be further accelerated with high efficiency in a Wideroee or Alvarez linac. These properties have been confirmed at Los Alamos in a highly successful experimental test performed during the past year. The success of this test and the advances in RFQ design procedures have led to the adoption of this linac for a wide range of applications. The beam-dynamics parameters of three RFQ systems are described. These are the final design for the protytype test of the Fusion Materials Irradiation Test (FMIT) accelerator, the final design for the prototype test of the Pion Generator for Medical Irradiations (PIGMI), and an improved low-velocity linac for heavy ion fusion

  10. Occupational doses due to photoneutrons in medical linear accelerators rooms

    International Nuclear Information System (INIS)

    Soares, Alessandro Facure Neves de Salles

    2006-04-01

    Medical linear accelerators, with maximum photon energies above 10 MeV, are becoming of common use in Brazil. Although desirable in the therapeutic point of view, the increase in photon energies causes the generation of undesired neutrons, which are produced through nuclear reactions between photons and the high Z target nuclei of the materials that constitute the accelerator head. In this work, MCNP simulation was undertaken to examine the neutron equivalent doses around the accelerators head and at the entrance of medical linear accelerators treatment rooms, some of them licensed in Brazil by the National Regulatory Agency (CNEN). The simulated neutron dose equivalents varied between 2 e 26 μ Sv/Gy RX , and the results were compared with calculations performed with the use of some semi-empirical equations found in literature. It was found that the semi-empirical equations underestimate the simulated neutron doses in the majority of the cases, if compared to the simulated values, suggesting that these equations must be revised, due to the increasing number of high energy machines in the country. (author)

  11. Magnetic linear accelerator (MAGLAC) for hypervelocity acceleration in impact fusion (IF)

    International Nuclear Information System (INIS)

    Chen, K.W.

    1980-01-01

    This paper presents considerations on the design of a magnetic linear accelerator suitable as driver for impact fusion. We argue that the proposed approach offers an attractive option to accelerate macroscopic matter to centiluminal velocity suitable for fusion applications. The design goal is to attain a velocity approaching 200 km/sec. Recent results in suitable target design suggest that a velocity in the range of 40-100 km/sec might be sufficient to include fusion. An accelerator in this velocity range can be constructed with current-day technology. We present both design and practical engineering considerations. Future work are outlined and recommended. (orig.)

  12. Symplectic maps and chromatic optics in particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai

    2015-10-11

    We have applied the nonlinear map method to comprehensively characterize the chromatic optics in particle accelerators. Our approach is built on the foundation of symplectic transfer maps of magnetic elements. The chromatic lattice parameters can be transported from one element to another by the maps. We introduce a Jacobian operator that provides an intrinsic linkage between the maps and the matrix with parameter dependence. The link allows us to directly apply the formulation of the linear optics to compute the chromatic lattice parameters. As an illustration, we analyze an alternating-gradient cell with nonlinear sextupoles, octupoles, and decapoles and derive analytically their settings for the local chromatic compensation. As a result, the cell becomes nearly perfect up to the third-order of the momentum deviation.

  13. High energy particle accelerators as radiation Sources

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E [National Center for Nuclear Safety and Radiation Vontrol, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Small accelerators in the energy range of few million electron volts are usually used as radiation sources for various applications, like radiotherapy, food irradiation, radiation sterilization and in other industrial applications. High energy accelerators with energies reaching billions of electron volts also find wide field of applications as radiation sources. Synchrotrons with high energy range have unique features as radiation sources. This review presents a synopsis of cyclic accelerators with description of phase stability principle of high energy accelerators with emphasis on synchrotrons. Properties of synchrotron radiation are given together with their applications in basic and applied research. 13 figs.,1 tab.

  14. Radiation protection in large linear accelerators; Seguranca radiologica de aceleradores lineares de grande porte

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Jose de Jesus Rivero, E-mail: rivero@con.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Departamento de Engenharia Nuclear; Sousa, Fernando Nuno Carneiro de, E-mail: fernandonunosousa@gmail.com [Aceletron Irradiacao lndustrial, Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The electron linear accelerators can be used in industrial applications that require powerful sources of ionizing radiation. They have the important characteristic of not representing a radiation hazard when the accelerators remain electrically disconnected. With the plant in operation, a high reliability defense in depth reduces the risk of radiological accidents to extremely small levels. It is practically impossible that a person could enter into the radiation bunker with the accelerators connected. Aceletron Irradiacao Industrial, located in Rio de Janeiro, offers services of irradiation by means of two powerful electron linear accelerators, with 15 kW power and 10 MeV electron energy. Despite the high level of existing radiation safety, a simplified risk study is underway to identify possible sequences of radiological accidents. The study is based on the combined application of the event and fault trees techniques. Preliminary results confirm that there is a very small risk of entering into the irradiation bunker with the accelerators in operation, but the risk of an operator entering into the bunker during a process interruption and remaining there without notice after the accelerators were restarted may be considerably larger. Based on these results the Company is considering alternatives to reduce the likelihood of human error of this type that could lead to a radiological accident. The paper describes the defense in depth of the irradiation process in Aceletron Irradiacao Industrial, as well as the models and preliminary results of the ongoing risk analysis, including the additional safety measures which are being evaluated. (author)

  15. An examination of medical linear accelerator ion-chamber performance

    International Nuclear Information System (INIS)

    Karolis, C.; Lee, C.; Rinks, A.

    1996-01-01

    Full text: The company ( Radiation Oncology Physics and Engineering Services Pty Ltd) provides medical physics services to four radiotherapy centres in NSW with a total of 6 high energy medical linear accelerators manufactured by three different companies. As part of the services, the stability of the accelerator ion chamber system is regularly examined for constancy and periodically for absolute calibration. Each accelerator ion chamber has exhibited undesirable behaviour from time to time, sometimes leading to its replacement. This presentation describes the performance of the ion chambers for some of the linacs over a period of 12-18 months and the steps taken by the manufacturer to address the problems encountered. As part of our commissioning procedure of new linacs, an absolute calibration of the accelerator output (photon and electron beams) is repeated several times over the period following examination of the physical properties of the radiation beams. These calibrations were undertaken in water using the groups calibrated ion chamber/electrometer system and were accompanied by constancy checks using an acrylic phantom and field instruments. Constancy checks were performed daily for a period of 8 weeks during the initial life of the accelerator and thereafter weekly. For one accelerator, the ion chamber was replaced 6 times in the first eighteen months of its life due to severe drifts in output, found to be due to pressure changes in one half of the chamber In another accelerator, erratic swings of 2% were observed for a period of nine months, particularly with the electron beams, before the manufacturer offered to change the chamber with another constructed from different materials. In yet another accelerator the ion chamber has shown consistent erratic behaviour, but this has not been addressed by the manufacturer. In another popular accelerator, the dosimetry was found to be very stable until some changes in the tuning were introduced resulting in small

  16. Multistage charged particle accelerator, with high-vacuum insulation

    International Nuclear Information System (INIS)

    Holl, P.

    1976-01-01

    A multistage charged-particle accelerator for operating with accelerating voltages higher than 150 kV is described. The device consists essentially of a high-voltage insulator, a source for producing charged particles, a Wehnelt cylinder, an anode, and a post-accelerating tube containing stack-wise positioned post-accelerating electrodes. A high vacuum is used for insulating the parts carrying the high voltages, and at least one cylindrical screen surrounding these parts is interposed between them and the vacuum vessel, which can itself also function as a cylindrical screen

  17. Control system analysis for the perturbed linear accelerator rf system

    CERN Document Server

    Sung Il Kwon

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

  18. CONTROL SYSTEM ANALYSIS FOR THE PERTURBED LINEAR ACCELERATOR RF SYSTEM

    International Nuclear Information System (INIS)

    SUNG-IL KWON; AMY H. REGAN

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller

  19. Free vibration analysis of linear particle chain impact damper

    Science.gov (United States)

    Gharib, Mohamed; Ghani, Saud

    2013-11-01

    Impact dampers have gained much research interest over the past decades that resulted in several analytical and experimental studies being conducted in that area. The main emphasis of such research was on developing and enhancing these popular passive control devices with an objective of decreasing the three parameters of contact forces, accelerations, and noise levels. To that end, the authors of this paper have developed a novel impact damper, called the Linear Particle Chain (LPC) impact damper, which mainly consists of a linear chain of spherical balls of varying sizes. The LPC impact damper was designed utilizing the kinetic energy of the primary system through placing, in the chain arrangement, a small-sized ball between each two large-sized balls. The concept of the LPC impact damper revolves around causing the small-sized ball to collide multiple times with the larger ones upon exciting the primary system. This action is believed to lead to the dissipation of part of the kinetic energy at each collision with the large balls. This paper focuses on the outcome of studying the free vibration of a single degree freedom system that is equipped with the LPC impact damper. The proposed LPC impact damper is validated by means of comparing the responses of a single unit conventional impact damper with those resulting from the LPC impact damper. The results indicated that the latter is considerably more efficient than the former impact damper. In order to further investigate the LPC impact damper effective number of balls and efficient geometry when used in a specific available space in the primary system, a parametric study was conducted and its result is also explained herein. Single unit impact damper [14-16]. Multiunit impact damper [17,18]. Bean bag impact damper [19,20]. Particle/granular impact damper [21,23,22]. Resilient impact damper [24]. Buffered impact damper [25-27]. Multiunit impact damper consists of multiple masses instead of a single mass. This

  20. Self focusing in a spatially modulated electrostatic field particle accelerator

    Science.gov (United States)

    Russman, F.; Marini, S.; Peter, E.; de Oliveira, G. I.; Rizzato, F. B.

    2018-02-01

    In the present analysis, we study the action of a three-dimensional (3D) modulated electrostatic wave over a charged particle. Meanwhile, the particle's velocity is smaller than the phase-velocity of the carrier, and the particle could be reflected by the potential or could pass through the potential with no significant change in the longitudinal velocity—and its dynamics could be described by a ponderomotive approximation. Otherwise, the particle is trapped by the potential and it is accelerated towards the speed of light, independently of the initial particle's phase—in this case, the ponderomotive approximation is no longer valid. During the acceleration process, numerical simulations show the particle is focused, simultaneously. These results suggest the accelerator proposed here is promising.

  1. Low power RF measurements of travelling wave type linear accelerator

    International Nuclear Information System (INIS)

    Reddy, Sivananda; Wanmode, Yashwant; Bhisikar, A.; Shrivastava, Purushottam

    2015-01-01

    RRCAT is engaged in the development of travelling wave (TW) type linear accelerator for irradiation of industrial and agricultural products. TW accelerator designed for 2π/3 mode to operate at frequency of 2856 MHz. It consists of input coupler, buncher cells, regular cells and output coupler. Low power measurement of this structure includes measurement of resonant frequency of the cells for different resonant modes and quality factor, tuning of input-output coupler and measurement of phase advance per cell and electric field in the structure. Steele's non-resonant perturbation technique has been used for measurement of phase advance per cell and electric field in the structure. Kyhl's method has been used for the tuning of input-output coupler. Computer based automated bead pull set-up has been developed for measurement of phase advance per cell and electric field profile in the structure. All the codes are written in Python for interfacing of Vector Network Analyzer (VNA) , stepper motor with computer. These codes also automate the measurement process. This paper describes the test set- up for measurement and results of measurement of travelling wave type linear accelerating structure. (author)

  2. Determination of the 20 MeV linear accelerator, new injector for the synchrotron Saturne. Choice of the electrical and dynamical particle parameters; Determination de l'accelerateur lineaire de 20 MeV, nouvel injecteur du synchrotron Saturne. Choix des parametres electriques, dynamique des particules

    Energy Technology Data Exchange (ETDEWEB)

    Prome, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-12-15

    This report takes place in the general determination of the 20 MeV linear accelerator which will be the new Saturne injector; it deals with particle dynamics. Starting from beam requirements at the output of the linac, cells lengths with variable synchronous phase angle, buncher and de-buncher parameters, beam emittances at the output in several phase spaces are successively determined. (author) [French] Dans le contexte general de la determination de l'accelerateur lineaire de 20 MeV, nouvel injecteur du synchrotron Saturne, ce rapport traite de la partie relative au mecanisme de l'acceleration des particules; a partir des caracteristiques souhaitees pour le faisceau a la sortie de cet accelerateur, on determine successivement les longueurs des cellules, compte tenu du choix d'un angle de phase synchrone variable, les caracteristiques du groupeur et du degroupeur et les emittances du faisceau en sortie dans les differents plans de phase. (auteur)

  3. Effect of accelerating gap geometry on the beam breakup instability in linear induction accelerators

    International Nuclear Information System (INIS)

    Miller, R.B.; Marder, B.M.; Coleman, P.D.; Clark, R.E.

    1988-01-01

    The electron beam in a linear induction accelerator is generally susceptible to growth of the transverse beam breakup instability. In this paper we analyze a new technique for reducing the transverse coupling between the beam and the accelerating cavities, thereby reducing beam breakup growth. The basic idea is that the most worrisome cavity modes can be cutoff by a short section of coaxial transmission line inserted between the cavity structure and the accelerating gap region. We have used the three-dimensional simulation code SOS to analyze this problem. In brief, we find that the technique works, provided that the lowest TE mode cutoff frequency in the coaxial line is greater than the frequency of the most worrisome TM mode of the accelerating cavity

  4. Safety managements of the linear IFMIF/EVEDA prototype accelerator

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Maebara, Sunao; Kojima, Toshiyuki; Narita, Takahiro; Tsutsumi, Kazuyoshi; Sakaki, Hironao; Suzuki, Hiromitsu; Sugimoto, Masayoshi

    2014-01-01

    Highlights: •Safety management is needed to secure the personnel safety from high dose rate. •The management of access to the accelerator vault is mainly performed by PPS. •The operation management is needed for safety during Injector and RFQ commissioning. •Pulse Duty Management system is newly developed for Injector commissioning for operation management. •PDM system is useful to reduce the radioactivation of equipment and the radiation exposure during and after beam operation. -- Abstract: On the Linear IFMIF/EVEDA Prototype Accelerator (LIPAc), the validation up to 9 MeV deuteron beam with 125 mA continuous wave is planned in Rokkasho, Aomori, Japan. Since the deuteron beam power exceeds 1 MW, safety issue related to γ-ray and neutron production is critical. To establish the safety management indispensable to reduce radiation exposure for personnel and activation of accelerator equipment, Personnel Protection System (PPS) of LIPAc control system, which works together with Radiation Monitoring System and Access Control System, was developed for LIPAc. The management of access to the accelerator vault by PPS and the beam duty management of PPS are presented in details

  5. RF source for proton linear accelerator in Kyoto University

    International Nuclear Information System (INIS)

    Iwashita, Yoshihisa

    1987-01-01

    Construction of a 433 MHz, 7 MeV proton linear accelerator is currently underway in Kyoto University under a three-year plan starting in 1986. The ion source, power source for it, RFQ main unit, WR2100 waveguide and a set of klystrons for RFQ were installed last year, or the first year of the plan, and the power source for the klystrons for RFQ, a set of klystrons for STL, DTL main unit, etc., are planned to be installed this year. Operation has not started yet because of the absence of the power source for the klystrons. Thus this report is focused on the considerations made in selecting the acceleration frequency of 433 MHz, specifications of the klystrons and the structure of the power sources for them. Based on considerations of the efficiency and cost of the accelerating tubes and RF sources to be used, the acceleration frequencies of 433.33 MHz and 1,300 MHz were adopted. The klystron selected is Litton L5773, which has a peak power output of 1.25 Mw, average power output of 75 kW, maximum pulse width of 2,000 μS and duty of 6 percent, and it consists of four cavities. The structure and characteristics of a klystron are also described. (Nogami, K.)

  6. Radiological safety aspects of the operation of electron linear accelerators

    International Nuclear Information System (INIS)

    Swanson, W.P.

    1979-01-01

    This manual is intended as a guide for the planning and implementation of radiation protection programmes for all types of electron linear accelerators. Material is provided for guidance in the planning and installation stages, as well as for the implementation of radiation protection for continuing operations. Because of their rapidly growing importance, the problems of installation and radiation safety of standard medical and industrial accelerators are discussed in separate sections. Special discussions are devoted to the radiation protection problems unique to electron accelerators: thick-target bremsstrahlung, the electromagnetic cascade, the estimation of secondary-radiation yields from thick targets, and instrumental corrections for accelerator duty factor. In addition, an extensive review of neutron production is given which includes new calculations of neutron production in various materials. A recalculation of activation in a variety of materials has been done for this manual, and specific gamma-ray constants have been recalculated for a number of nuclides to take into account the contribution of K X-rays. The subjects of air and water activation, as well as toxic gas production in air have been specially reviewed. Betatrons and electron microtrons operating at the same energy produce essentially the same kind of secondary radiation as electron linacs and the material given in this manual is directly applicable to them

  7. Neural computation and particle accelerators research, technology and applications

    CERN Document Server

    D'Arras, Horace

    2010-01-01

    This book discusses neural computation, a network or circuit of biological neurons and relatedly, particle accelerators, a scientific instrument which accelerates charged particles such as protons, electrons and deuterons. Accelerators have a very broad range of applications in many industrial fields, from high energy physics to medical isotope production. Nuclear technology is one of the fields discussed in this book. The development that has been reached by particle accelerators in energy and particle intensity has opened the possibility to a wide number of new applications in nuclear technology. This book reviews the applications in the nuclear energy field and the design features of high power neutron sources are explained. Surface treatments of niobium flat samples and superconducting radio frequency cavities by a new technique called gas cluster ion beam are also studied in detail, as well as the process of electropolishing. Furthermore, magnetic devises such as solenoids, dipoles and undulators, which ...

  8. Scientists confirm delay in testing new CERN particle accelerator

    CERN Multimedia

    2007-01-01

    "Scientists seeking to uncover the secrets of the universe will have to wait a little longer after the CERN laboratory inswitzerland on Monday confirmed a delay in tests of a massive new particle accelerator." (1 page)

  9. High gradient tests of SLAC Linear Collider Accelerator Structures

    International Nuclear Information System (INIS)

    Wang, J.W.; Deruyter, H.; Eichner, J.; Fant, K.H.; Hoag, H.A.; Koontz, R.F.; Lavine, T.; Loew, G.A.; Loewen, R.; Menegat, L.

    1994-08-01

    This paper describes the current SLAC R ampersand D program to develop room temperature accelerator structures for the Next Linear Collider (NLC). The structures are designed to operate at 11.4 GHz at an accelerating gradient in the range of 50 to 100 MV/m. In the past year a 26 cm constant-impedance traveling-wave section, a 75 cm constant-impedance traveling-wave section, and a 1.8 m traveling-wave section with detuned deflecting modes have been high-power tested. The paper presents a brief description of the RF test setup, the design and manufacturing details of the structures, and a discussion of test results including field emission, RF processing, dark current spectrum and RF breakdown

  10. Analysis of linear head accelerations from collegiate football impacts.

    Science.gov (United States)

    Brolinson, P Gunnar; Manoogian, Sarah; McNeely, David; Goforth, Mike; Greenwald, Richard; Duma, Stefan

    2006-02-01

    Sports-related concussions result in 300,000 brain injuries in the United States each year. We conducted a study utilizing an in-helmet system that measures and records linear head accelerations to analyze head impacts in collegiate football. The Head Impact Telemetry (HIT) System is an in-helmet system with six spring-mounted accelerometers and an antenna that transmits data via radio frequency to a sideline receiver and laptop computer system. A total of 11,604 head impacts were recorded from the Virginia Tech football team throughout the 2003 and 2004 football seasons during 22 games and 62 practices from a total of 52 players. Although the incidence of injury data are limited, this study presents an extremely large data set from human head impacts that provides valuable insight into the lower limits of head acceleration that cause mild traumatic brain injuries.

  11. RF emittance in a low energy electron linear accelerator

    Science.gov (United States)

    Sanaye Hajari, Sh.; Haghtalab, S.; Shaker, H.; Kelisani, M. Dayyani

    2018-04-01

    Transverse beam dynamics of an 8 MeV low current (10 mA) S-band traveling wave electron linear accelerator has been studied and optimized. The main issue is to limit the beam emittance, mainly induced by the transverse RF forces. The linac is being constructed at Institute for Research in Fundamental Science (IPM), Tehran Iran Labeled as Iran's First Linac, nearly all components of this accelerator are designed and constructed within the country. This paper discusses the RF coupler induced field asymmetry and the corresponding emittance at different focusing levels, introduces a detailed beam dynamics design of a solenoid focusing channel aiming to reduce the emittance growth and studies the solenoid misalignment tolerances. In addition it has been demonstrated that a prebuncher cavity with appropriate parameters can help improving the beam quality in the transverse plane.

  12. Core reset system design for linear induction accelerator

    International Nuclear Information System (INIS)

    Durga Praveen Kumar, D.; Mitra, S.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    A repetitive pulsed power system based Linear Induction Accelerator (LIA-200) is being developed at BARC to get an electron beam of 200keV, 5kA, 50ns, 10-100 Hz. Amorphous core is the heart of these accelerators. It serves various functions in different subsystems viz. pulse power modulator, pulse transformer, magnetic switches and induction cavities. One of the factors that make the magnetic components compact is utilization of the total flux swing available in the core. In the present system, magnetic switches, pulse transformers, and induction cavity are designed to avail the full flux swing available in the core. For achieving this objective, flux density in the core has to be kept at the reverse saturation, before the main pulse is applied. The electrical circuit which makes it possible is called the core reset system. In this paper the details of core reset system designed for LIA-200 are described. (author)

  13. GALACTIC AND EXTRAGALACTIC SUPERNOVA REMNANTS AS SITES OF PARTICLE ACCELERATION

    Directory of Open Access Journals (Sweden)

    Manami Sasaki

    2013-12-01

    Full Text Available Supernova remnants, owing to their strong shock waves, are likely sources of Galactic cosmic rays. Studies of supernova remnants in X-rays and gamma rays provide us with new insights into the acceleration of particles to high energies. This paper reviews the basic physics of supernova remnant shocks and associated particle acceleration and radiation processes. In addition, the study of supernova remnant populations in nearby galaxies and the implications for Galactic cosmic ray distribution are discussed.

  14. Particle acceleration by Alfven wave turbulence in radio galaxies

    International Nuclear Information System (INIS)

    Eilek, J.A.

    1986-01-01

    Radio galaxies show evidence for acceleration of relativistic electrons locally within the diffuse radio luminous plasma. One likely candidate for the reacceleration mechanism is acceleration by magnetohydrodynamic turbulence which exists within the plasma. If Alfven waves are generated by a fluid turbulent cascade described by a power law energy-wavenumber spectrum, the particle spectrum in the presence of synchrotron losses will evolve towards an asymptotic power law which agrees with the particle spectra observed in these sources

  15. Magazine for handling stripping foils in a particle accelerator

    International Nuclear Information System (INIS)

    Gorka, A.J. Jr.

    1975-01-01

    Thin foils for stripping a particle beam are stored in a magazine that is operable remotely to display an individual foil, release it when it is spent, and repeat this process. The magazine is operable in the high-vacuum, high-radiation environment in the interior of a particle accelerator, and it uses the magnetic field of the accelerator to operate the display and dropping mechanism. (U.S.)

  16. Particle acceleration at shocks in the inner heliosphere

    Science.gov (United States)

    Parker, Linda Neergaard

    This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A

  17. Smartphone application for mechanical quality assurance of medical linear accelerators.

    Science.gov (United States)

    Kim, Hwiyoung; Lee, Hyunseok; Park, Jong In; Choi, Chang Heon; Park, So-Yeon; Kim, Hee Jung; Kim, Young Suk; Ye, Sung-Joon

    2017-06-07

    Mechanical quality assurance (QA) of medical linear accelerators consists of time-consuming and human-error-prone procedures. We developed a smartphone application system for mechanical QA. The system consists of two smartphones: one attached to a gantry for obtaining real-time information on the mechanical parameters of the medical linear accelerator, and another displaying real-time information via a Bluetooth connection with the former. Motion sensors embedded in the smartphone were used to measure gantry and collimator rotations. Images taken by the smartphone's high-resolution camera were processed to evaluate accuracies of jaw-positioning, crosshair centering and source-to-surface distance (SSD). The application was developed using Android software development kit and OpenCV library. The accuracy and precision of the system was validated against an optical rotation stage and digital calipers, prior to routine QA measurements of five medical linear accelerators. The system accuracy and precision in measuring angles and lengths were determined to be 0.05  ±  0.05° and 0.25  ±  0.14 mm, respectively. The mean absolute errors (MAEs) in QA measurements of gantry and collimator rotation were 0.05  ±  0.04° and 0.05  ±  0.04°, respectively. The MAE in QA measurements of light field was 0.39  ±  0.36 mm. The MAEs in QA measurements of crosshair centering and SSD were 0.40  ±  0.35 mm and 0.41  ±  0.32 mm, respectively. In conclusion, most routine mechanical QA procedures could be performed using the smartphone application system with improved precision and within a shorter time-frame, while eliminating potential human errors.

  18. Mechanisms of force production during linear accelerations in bluegill sunfish Lepomis macrochirus

    Science.gov (United States)

    Tytell, Eric D.; Wise, Tyler N.; Boden, Alexandra L.; Sanders, Erin K.; Schwalbe, Margot A. B.

    2016-11-01

    In nature, fish rarely swim steadily. Although unsteady behaviors are common, we know little about how fish change their swimming kinematics for routine accelerations, and how these changes affect the fluid dynamic forces and the wake produced. To study force production during acceleration, particle image velocimetry was used to quantify the wake of bluegill sunfish Lepomis macrochirus and to estimate the pressure field during linear accelerations and steady swimming. We separated "steady" and "unsteady" trials and quantified the forward acceleration using inertial measurement units. Compared to steady sequences, unsteady sequences had larger accelerations and higher body amplitudes. The wake consisted of single vortices shed during each tail movement (a '2S' wake). The structure did not change during acceleration, but the circulation of the vortices increased, resulting in larger forces. A fish swimming unsteadily produced significantly more force than the same fish swimming steadily, even when the accelerations were the same. This increase is likely due to increased added mass during unsteady swimming, as a result of the larger body amplitude. Pressure estimates suggest that the increase in force is correlated with more low pressure regions on the anterior body. This work was supported by ARO W911NF-14-1-0494 and NSF RCN-PLS 1062052.

  19. Nonlinear theory of diffusive acceleration of particles by shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Malkov, M.A. [University of California at San Diego, La Jolla, CA (United States)]. E-mail: mmalkov@ucsd.edu; Drury, L. O' C. [Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2 (Ireland)

    2001-04-01

    Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data. (author)

  20. Safety guidance and inspection program for particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Do Whey [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Lee, Hee Seock; Yeo, In Whan [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)] (and others)

    2001-03-15

    The inspection program and the safety guidance were developed to enhance the radiation protection for the use of particle accelerators. First the classification of particle accelerators was conducted to develop the safety inspection protocol efficiently. The status of particle accelerators which were operated at the inside and outside of the country, and their safety programs were surveyed. The characteristics of radiation production was researched for each type of particle accelerators. Two research teams were launched for industrial and research accelerators and for medical accelerators, respectively. In each stages of a design, a fabrication, an installation, a commissioning, and normal operation of accelerators, those safety inspection protocols were developed. Because all protocols resulted from employing safety experts, doing the questionnaire, and direct facility surveys, it can be applicable to present safety problem directly. The detail improvement concepts were proposed to revise the domestic safety rule. This results might also be useful as a practical guidance for the radiation safety officer of an accelerator facility, and as the detail standard for the governmental inspection authorities.

  1. Reliability Models Applied to a System of Power Converters in Particle Accelerators

    OpenAIRE

    Siemaszko, D; Speiser, M; Pittet, S

    2012-01-01

    Several reliability models are studied when applied to a power system containing a large number of power converters. A methodology is proposed and illustrated in the case study of a novel linear particle accelerator designed for reaching high energies. The proposed methods result in the prediction of both reliability and availability of the considered system for optimisation purposes.

  2. Accelerating research into the Higgs boson particle

    CERN Multimedia

    Nikolaidou, Rosy

    "The only Standard Model particle yet to be observed, the search for the Higgs Boson - the so-called 'God Particle' - demands advanced facilities and physics expertise. At the Cern laboratory in Switzerland, the ARTEMIS project is well-placed to pursue research in this area" (2 pages)

  3. Linear accelerator radiosurgery in treatment of central neurocytomas

    International Nuclear Information System (INIS)

    Martin, J.M.; Katati, M.; Arjona, V.; Lopez, E.; Olivares, G.; Hernandez, V.; Bullejos, J.A.; Arregui, G.; Busquier, H.; Minguez, A.

    2003-01-01

    The purpose of this report was to review our experience with stereotactic radiosurgery in the management of patients with residual neurocytomas after initial surgery. Between October 1996 and December 2001, four patients with central neurocytoma were treated by surgery and subsequently underwent linear accelerator (LINAC) radiosurgery. Two of the patients were cured, one exhibited a significant reduction in tumour size and the fourth remains stable. All four patients are alive and well. In cases of small residual tumours or recurrences radio-surgery allows open surgery to be avoided and is a safe and potentially effective approach. (author)

  4. The new control system of the Saclay linear accelerator

    International Nuclear Information System (INIS)

    Gournay, J.F.; Gourcy, G.; Garreau, F.; Giraud, A.; Rouault, J.

    1985-05-01

    A new control system for the Safety Linear Accelerator is now being designed. The computer control architecture is based on 3 dedicated VME crates with MC68000 micro-processors: one crate with a disk-based operating system will run the high level application programs and the data base management facilities, another one will manage the man-machine communications and the third one will interface the system to the linac equipments. Communications between the VME microcomputers will be done through 16 bit parallel links. The software is modular and organized in specific layers, the data base is fully distributed. About 90% of the code is written in Fortran

  5. Induction linear accelerators for commercial photon irradiation processing

    International Nuclear Information System (INIS)

    Matthews, S.M.

    1989-01-01

    A number of proposed irradiation processes requires bulk rather than surface exposure with intense applications of ionizing radiation. Typical examples are irradiation of food packaged into pallet size containers, processing of sewer sludge for recycling as landfill and fertilizer, sterilization of prepackaged medical disposals, treatment of municipal water supplies for pathogen reduction, etc. Volumetric processing of dense, bulky products with ionizing radiation requires high energy photon sources because electrons are not penetrating enough to provide uniform bulk dose deposition in thick, dense samples. Induction Linear Accelerator (ILA) technology developed at the Lawrence Livermore National Laboratory promises to play a key role in providing solutions to this problem. This is discussed in this paper

  6. Approach to assurance of reliability of linear accelerator operation observations

    International Nuclear Information System (INIS)

    Bakov, S.M.; Borovikov, A.A.; Kavkun, S.L.

    1994-01-01

    The system approach to solving the task of assuring reliability of observations over the linear accelerator operation is proposed. The basic principles of this method consist in application of dependences between the facility parameters, decrease in the number of the system apparatus channels for data acquisition without replacement of failed channel by reserve one. The signal commutation unit, the introduction whereof into the data acquisition system essentially increases the reliability of the measurement system on the account of active reserve, is considered detail. 8 refs. 6 figs

  7. Controller for control of pulsed electron linear accelerator

    International Nuclear Information System (INIS)

    Bryazgin, A.A.; Faktorovich, B.L.

    1995-01-01

    The controller is based on the K1816VE31 microprocessor and contains 22-channel integrating 10-digital two-wire analog-to-digital converter, 8-channel 12-digit digital-to-analog converter, 24-digit output register, 16-digit input register pulse generator in the range of 0.5 - 50 Hz with the regulation step of 0.05 Hz and delayed pulse generator. The controller is used for pulsed electron linear accelerator control and is reduced to regulation of the electron beam pulse repetition rate and beam energy. 1 ref., 1 fig

  8. Parametrisation of linear accelerator electron beam for computerised dosimetry calculations

    International Nuclear Information System (INIS)

    Millan, P.E.; Millan, S.; Hernandez, A.; Andreo, P.

    1979-01-01

    A previously published age-diffusion model has been adapted to obtain parameters for the Saggittaire linear accelerator electron beams. The calculations are shown and the results discussed. A comparison is presented between measured and predicted percentage depth doses for electron beams at various energies between 10 and 32 MeV. Theoretical isodose curves are compared, for an energy of 10 MeV, with experimental curves. The parameters obtained are used for computer electron isodose curve calculation in a program called FIJOE adapted from a previously published program. This program makes it possible to correct for irregular body contours, but not for internal inhomogeneities. (UK)

  9. EB dose calibration for 10 MeV linear accelerator

    International Nuclear Information System (INIS)

    Owczarczyk, H.B.; Migdal, W.; Stachowicz, W.

    2002-01-01

    The National Institute of Standards and Technology Gaitherburg USA has done in co-operation with INCT Warsaw the EPR dose measurements for two INCT 60 Co irradiators using l-alanine standard pellets as dosimeter medium. In the study the comparative EPR measurements of doses up to 40 kGy have been done using l-alanine powder with 60 Co source (reference to NIST standard) and EB linear accelerator, respectively. On the basis of this comparative study 5% correction factor for EB dose measurements has been adapted in the INCT Experimental Plant for Food Irradiation traceable to the dose estimations done with the Risoe calorimetric system

  10. Photon beam commissioning of an Elekta Synergy linear accelerator

    Science.gov (United States)

    Al Mashud, Md Abdullah; Tariquzzaman, M.; Jahangir Alam, M.; Zakaria, GA

    2017-12-01

    The aim of this study is to present the results of commissioning of Elekta Synergy linear accelerator (linac). The acceptance test and commissioning were performed for three photon beams energies 4 MV, 6 MV and 15 MV and for the multileaf collimator (MLC). The percent depth doses (PDDs), in-plane and cross-plane beam profiles, head scatter factors (Sc), relative photon output factors (Scp), universal wedge transmission factor and MLC transmission factors were measured. The size of gantry, collimator, and couch isocenter were also measured.

  11. The activity on linear accelerators at the ENEA Frascati center

    International Nuclear Information System (INIS)

    Picardi, L.; Messina, G.; Ronsivalle, C.; Vignati, A.

    1992-01-01

    In the last ten years four small linear accelerators have been built at the ENEA Frascati Center, used for a 100 MeV racetrack microtron and for electron beam processing tests of materials. ENEA is also involved in infrared free electron laser (FEL) research. After good results from a 2 mm wavelength FEL driven by a 2.5 MeV linac, design has been started on a linac for a far infrared FEL facility devoted to an experiment in muonic hydrogen spectroscopy. 3 figs., 3 tabs., ref

  12. Design of a self-focusing linear electron accelerator

    International Nuclear Information System (INIS)

    Hddab, S.

    1983-06-01

    In this report we tackle the principal physical and technical problems related to the design of a self-focusing linear electron accelerator. The study of the dynamic phenomena occurring at the entrance to the first resonant cell allows us, by an adequate choice of the longitudinal height of this cell, to avoid the use of an external magnetic focusing coil. Optimization of the ultra high frequency properties of the resonant structure has been achieved by polishing the internal surfaces of the cavities, by adapting a new brazing technique and optimizing the geometry of the cells. A simulation code has been adapted to an interactive use on microcomputer [fr

  13. Particle acceleration and injection problem in relativistic and nonrelativistic shocks

    International Nuclear Information System (INIS)

    Hoshino, M.

    2008-01-01

    Acceleration of charged particles at the collisionless shock is believed to be responsible for production of cosmic rays in a variety of astrophysical objects such as supernova, AGN jet, and GRB etc., and the diffusive shock acceleration model is widely accepted as a key process for generating cosmic rays with non-thermal, power-law energy spectrum. Yet it is not well understood how the collisionless shock can produce such high energy particles. Among several unresolved issues, two major problems are the so-called '' injection '' problem of the supra-thermal particles and the generation of plasma waves and turbulence in and around the shock front. With recent advance of computer simulations, however, it is now possible to discuss those issues together with dynamical evolution of the kinetic shock structure. A wealth of modern astrophysical observations also inspires the dynamical shock structure and acceleration processes along with the theoretical and computational studies on shock. In this presentation, we focus on the plasma wave generation and the associated particle energization that directly links to the injection problem by taking into account the kinetic plasma processes of both non-relativistic and relativistic shocks by using a particle-in-cell simulation. We will also discuss some new particle acceleration mechanisms such as stochastic surfing acceleration and wakefield acceleration by the action of nonlinear electrostatic fields. (author)

  14. The JHP 200-MeV proton linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takao [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-11-01

    A 200-MeV proton linear accelerator for the Japanese Hadron Project (JHP) has been designed. It consists of a 3-MeV radio-frequency quadrupole linac (RFQ), a 50-MeV drift tube linac (DTL) and a 200-MeV separated-type drift tube linac (SDTL). A frequency of 324 MHz has been chosen for all of the rf structures. A peak current of 30 mA (H{sup -} ions) of 400 {mu}sec pulse duration will be accelerated at a repetition rate of 25 Hz. A future upgrade plan up to 400 MeV is also presented, in which annular-coupled structures (ACS) of 972 MHz are used in an energy range of above 150 or 200 MeV. One of the design features is its high performance for a beam-loss problem during acceleration. It can be achieved by separating the transition point in the transverse motion from that of the longitudinal motion. The transverse transition at a rather low-energy range decreases the effects of space-charge, while the longitudinal transition at a rather high-energy range decreases the effects of nonlinear problems related to acceleration in the ACS. Coupled envelope equations and equipartitioning theory are used for the focusing design. The adoption of the SDTL structure improves both the effective shunt impedance and difficulties in fabricating drift tubes with focusing magnets. An accurate beam-simulation code on a parallel supercomputer was used for confirming any beam-loss problem during acceleration. (author)

  15. Partially linearized algorithms in gyrokinetic particle simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dimits, A.M.; Lee, W.W.

    1990-10-01

    In this paper, particle simulation algorithms with time-varying weights for the gyrokinetic Vlasov-Poisson system have been developed. The primary purpose is to use them for the removal of the selected nonlinearities in the simulation of gradient-driven microturbulence so that the relative importance of the various nonlinear effects can be assessed. It is hoped that the use of these procedures will result in a better understanding of the transport mechanisms and scaling in tokamaks. Another application of these algorithms is for the improvement of the numerical properties of the simulation plasma. For instance, implementations of such algorithms (1) enable us to suppress the intrinsic numerical noise in the simulation, and (2) also make it possible to regulate the weights of the fast-moving particles and, in turn, to eliminate the associated high frequency oscillations. Examples of their application to drift-type instabilities in slab geometry are given. We note that the work reported here represents the first successful use of the weighted algorithms in particle codes for the nonlinear simulation of plasmas.

  16. Partially linearized algorithms in gyrokinetic particle simulation

    International Nuclear Information System (INIS)

    Dimits, A.M.; Lee, W.W.

    1990-10-01

    In this paper, particle simulation algorithms with time-varying weights for the gyrokinetic Vlasov-Poisson system have been developed. The primary purpose is to use them for the removal of the selected nonlinearities in the simulation of gradient-driven microturbulence so that the relative importance of the various nonlinear effects can be assessed. It is hoped that the use of these procedures will result in a better understanding of the transport mechanisms and scaling in tokamaks. Another application of these algorithms is for the improvement of the numerical properties of the simulation plasma. For instance, implementations of such algorithms (1) enable us to suppress the intrinsic numerical noise in the simulation, and (2) also make it possible to regulate the weights of the fast-moving particles and, in turn, to eliminate the associated high frequency oscillations. Examples of their application to drift-type instabilities in slab geometry are given. We note that the work reported here represents the first successful use of the weighted algorithms in particle codes for the nonlinear simulation of plasmas

  17. Neural Networks for Modeling and Control of Particle Accelerators

    Science.gov (United States)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  18. Electron linear accelerator system for natural rubber vulcanization

    Science.gov (United States)

    Rimjaem, S.; Kongmon, E.; Rhodes, M. W.; Saisut, J.; Thongbai, C.

    2017-09-01

    Development of an electron accelerator system, beam diagnostic instruments, an irradiation apparatus and electron beam processing methodology for natural rubber vulcanization is underway at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The project is carried out with the aims to improve the qualities of natural rubber products. The system consists of a DC thermionic electron gun, 5-cell standing-wave radio-frequency (RF) linear accelerator (linac) with side-coupling cavities and an electron beam irradiation apparatus. This system is used to produce electron beams with an adjustable energy between 0.5 and 4 MeV and a pulse current of 10-100 mA at a pulse repetition rate of 20-400 Hz. An average absorbed dose between 160 and 640 Gy is expected to be archived for 4 MeV electron beam when the accelerator is operated at 400 Hz. The research activities focus firstly on assembling of the accelerator system, study on accelerator properties and electron beam dynamic simulations. The resonant frequency of the RF linac in π/2 operating mode is 2996.82 MHz for the operating temperature of 35 °C. The beam dynamic simulations were conducted by using the code ASTRA. Simulation results suggest that electron beams with an average energy of 4.002 MeV can be obtained when the linac accelerating gradient is 41.7 MV/m. The rms transverse beam size and normalized rms transverse emittance at the linac exit are 0.91 mm and 10.48 π mm·mrad, respectively. This information can then be used as the input data for Monte Carlo simulations to estimate the electron beam penetration depth and dose distribution in the natural rubber latex. The study results from this research will be used to define optimal conditions for natural rubber vulcanization with different electron beam energies and doses. This is very useful for development of future practical industrial accelerator units.

  19. The sense of balance in humans: Structural features of otoconia and their response to linear acceleration.

    Directory of Open Access Journals (Sweden)

    Rüdiger Kniep

    Full Text Available We explored the functional role of individual otoconia within the otolith system of mammalians responsible for the detection of linear accelerations and head tilts in relation to the gravity vector. Details of the inner structure and the shape of intact human and artificial otoconia were studied using environmental scanning electron microscopy (ESEM, including decalcification by ethylenediaminetetraacetic acid (EDTA to discriminate local calcium carbonate density. Considerable differences between the rhombohedral faces of human and artificial otoconia already indicate that the inner architecture of otoconia is not consistent with the point group -3m. This is clearly confirmed by decalcified otoconia specimen which are characterized by a non-centrosymmetric volume distribution of the compact 3+3 branches. This structural evidence for asymmetric mass distribution was further supported by light microscopy in combination with a high speed camera showing the movement of single otoconia specimen (artificial specimen under gravitational influence within a viscous medium (artificial endolymph. Moreover, the response of otoconia to linear acceleration forces was investigated by particle dynamics simulations. Both, time-resolved microscopy and computer simulations of otoconia acceleration show that the dislocation of otoconia include significant rotational movement stemming from density asymmetry. Based on these findings, we suggest an otolith membrane expansion/stiffening mechanism for enhanced response to linear acceleration transmitted to the vestibular hair cells.

  20. Optimum design for 12 MeV linear induction accelerator diode

    International Nuclear Information System (INIS)

    Yu Haijun; Shi Jinshui; Li Qin; He Guorong; Ma Bing; Wang Jingsheng; Wang Liping

    2001-01-01

    A series of optimization designs of electron diode in 12 Mev linear induction accelerator are studied by using numerical simulation code MAGIC and experiment method in order to improve the electron beam quality. MAGIC code solves the Maxwell equations in the presence of charged particle, electron field distribution on cathode surface which influences electron emission is given, the optimum diode is obtained by comparing the results of experiment in 12 MeV linear induction accelerator. The author also gives SEM analysis and experiment comparison of velvet emission. Finally, emitted current I e = 8.52 kA, beam current I 8 ≥ 3.0 kA, targeted current I 0 ≥ 2.30 kA with optimum diode are obtained

  1. Wakefield damping in a pair of X-band accelerators for linear colliders

    Directory of Open Access Journals (Sweden)

    Roger M. Jones

    2006-10-01

    Full Text Available We consider the means to damp the wakefield left behind ultrarelativistic charges. In particular, we focus on a pair of traveling wave accelerators operating at an X-band frequency of 11.424 GHz. In order to maximize the efficiency of acceleration, in the context of a linear collider, multiple bunches of charged particles are accelerated within a given pulse of the electromagnetic field. The wakefield left behind successive bunches, if left unchecked, can seriously disturb the progress of trailing bunches and can lead to an appreciable dilution in the emittance of the beam. We report on a method to minimize the influence of the wakefield on trailing bunches. This method entails detuning the characteristic mode frequencies which make up the electromagnetic field, damping the wakefield, and interleaving the frequencies of adjacent accelerating structures. Theoretical predictions of the wakefield and modes, based on a circuit model, are compared with experimental measurements of the wakefield conducted within the ASSET facility at SLAC. Very good agreement is obtained between theory and experiment and this allows us to have some confidence in designing the damping of wakefields in a future linear collider consisting of several thousand of these accelerating structures.

  2. Wakefield Damping in a Pair of X-Band Accelerators for Linear Colliders

    International Nuclear Information System (INIS)

    Jones, R.M.; Adolphsen, C.E.; Wang, J.W.; Li, Z.; SLAC

    2006-01-01

    We consider means to damp the wake-field left behind ultra-relativistic charges. In particular, we focus on a pair of travelling wave accelerators operating at an X-band frequency of 11.424 GHz. In order to maximize the efficiency of acceleration, in the context of a linear collider, multiple bunches of charged particles are accelerated within a given pulse of the electromagnetic field. The wake-field left behind successive bunches, if left unchecked, can seriously disturb the progress of trailing bunches and can lead to an appreciable dilution in the emittance of the beam. We report on a method to minimize the influence of the wake-field on trailing bunches. This method entails detuning the characteristic mode frequencies which make-up the electromagnetic field, damping the wake-field, and interleaving the frequencies of adjacent accelerating structures. Theoretical predictions of the wake-field and modes, based on a circuit model, are compared with experimental measurements of the wake-field conducted within the ASSET facility at SLAC. Very good agreement is obtained between theory and experiment and this allows us to have some confidence in designing the damping of wake-fields in a future linear collider consisting of several thousand of these accelerating structures

  3. Feasibility study on the construction and utilization of charged particle accelerators

    International Nuclear Information System (INIS)

    Cho, S.W.; Chung, M.K.; Choe, B.H.; Lee, K.W.; In, S.Y.; Park, I.S.; Kang, S.S.

    1981-01-01

    This is a report on the thorough studies of feasible accelerator to be constructed in Korea from various aspects. By following the brief descriptions on the operational principles and applications of various types of particle accelerators, estimations of required budgeting for construction and operation of those accelerators are given in detail. From the forecasted availability of government investment to accelerator project and also from the expected great role of accelerators to be played for nuclear power developments, we draw three steps' development program of accelerator technology in Korea. The first step is mainly aimed to user development and accumulation of accelerator technology through the construction and utilization of 50-100MeV electron linear accelerator. The second step to be recommended is the construction of 20-30MeV proton linear accelerator which can be used as an injector for future proton synchrotron. The third step is construction and utilization of several GeV proton synchrotron. However, development of accelerator technology in advanced countries is so fast that above-mentioned second and third step may not be regarded to be definite plans

  4. Beam dynamics simulation of the Spallation Neutron Source linear accelerator

    International Nuclear Information System (INIS)

    Takeda, H.; Billen, J.H.; Bhatia, T.S.

    1998-01-01

    The accelerating structure for Spallation Neutron Source (SNS) consists of a radio-frequency-quadrupole-linac (RFQ), a drift-tube-linac (DTL), a coupled-cavity-drift-tube-linac (CCDTL), and a coupled-cavity-linac (CCL). The linac is operated at room temperature. The authors discuss the detailed design of linac which accelerates an H - pulsed beam coming out from RFQ at 2.5 MeV to 1000 MeV. They show a detailed transition from 402.5 MHz DTL with a 4 βλ structure to a CCDTL operated at 805 MHz with a 12 βλ structure. After a discussion of overall feature of the linac, they present an end-to-end particle simulation using the new version of the PARMILA code for a beam starting from the RFQ entrance through the rest of the linac. At 1000 MeV, the beam is transported to a storage ring. The storage ring requires a large (±500-keV) energy spread. This is accomplished by operating the rf-phase in the last section of the linac so the particles are at the unstable fixed point of the separatrix. They present zero-current phase advance, beam size, and beam emittance along the entire linac

  5. Novel applications of particle accelerators to radiotherapy

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Burlon, A.A.; Universidad Nacional de San Martin, Villa Ballester

    2002-01-01

    Charged hadrons (protons and heavier ions) have very definite advantages over photons as far as radiotherapy applications are concerned. They allow for much better spatial dose localization due to their charge, relatively high mass and nature of the energy deposition process. In the frame of an attempt to promote the introduction of hadrontherapy in Argentina an external beam facility has been installed at our tandem accelerator TANDAR. The advantages of heavy ions can only be fully exploited for tumors of well defined localization. In certain types of malignancies, however, the region infiltrated by tumor cells is diffuse, with no sharp boundaries and with microscopic ramifications. In such cases (particularly in certain brain cancers) a more sophisticated scheme has been suggested called boron neutron capture therapy (BNCT). In this work, the use of the Tandar accelerator to produce neutrons for feasibility studies for BNCT through low-energy proton beams on a thick LiF target is being briefly described. Studies on the 13 C(d,n) reaction and a comparison with other neutron-producing reactions are also mentioned. Simulation work to optimize an accelerator-based neutron production target is discussed. A project is being prepared to develop a small proton accelerator in Argentina. Technical specifications of this machine are briefly discussed. (author)

  6. Criteria of classification applied to licensing of particle accelerators

    International Nuclear Information System (INIS)

    Costa, Evaldo L.C.; Melo, Paulo F.F.

    2013-01-01

    This work aims to bring to discussion the proposal of a new classification model toward to generating ionizing radiation, specifically particle accelerators, considering two parameters: the size of these facilities and the level of energy they operate, emphasizing large accelerators, which typically operate at higher levels of energy. Also motivated by the fact that the Brazilian rules do not provide an adequate standard of licensing for this size of installation, this work will seek to revise the existing classification, where generators of ionizing radiation (including particle accelerators) are considered up to the level of energy of 50 MeV

  7. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field

    Science.gov (United States)

    Joshi, C.

    2012-12-01

    The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.

  8. Particle Acceleration and Heating by Turbulent Reconnection

    Science.gov (United States)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios

    2016-08-01

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (I.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker-Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.

  9. PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION

    International Nuclear Information System (INIS)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios

    2016-01-01

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.

  10. PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis [Department of Physics, Aristotle University of Thessaloniki, GR-52124 Thessaloniki (Greece); Anastasiadis, Anastasios [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece)

    2016-08-10

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.

  11. Design of the buncher of travelling-wave linear accelerator

    International Nuclear Information System (INIS)

    Ghasemi, F.; Abbasi Davani, F.; Lamehi Rashti, M.; Shaker, H.

    2011-01-01

    The project of design and construction of linear electron accelerator is being performed by the Ministry of Science, Research and Technology and Institute for Research in Fundamental Sciences (IPM). The aim of the current research is to achieve the knowledge and the technology of manufacturing the components of linear accelerator; one of these components is buncher. In this paper, two types of bunchers are introduced, while the disk-loaded type has been selected to be fabricated. Studying the electrons motion in the field through the aperture of the disks and using the equations of disk-loaded waveguide theory, the dimensions of the desired buncher for this project were obtained. MATLAB software and SUPERFISH code were used in calculations and simulations. The design led to the initial and final phase ranges of 348 degrees and 50 degrees, respectively. The mentioned values for the initial and final phase ranges resulted in a bunching factor of about 7 that is appropriate for this type of the bunchers.

  12. Rotational total skin electron irradiation with a linear accelerator

    Science.gov (United States)

    Evans, Michael D.C.; Devic, Slobodan; Parker, William; Freeman, Carolyn R.; Roberge, David; Podgorsak, Ervin B.

    2008-01-01

    The rotational total skin electron irradiation (RTSEI) technique at our institution has undergone several developments over the past few years. Replacement of the formerly used linear accelerator has prompted many modifications to the previous technique. With the current technique, the patient is treated with a single large field while standing on a rotating platform, at a source‐to‐surface distance of 380 cm. The electron field is produced by a Varian 21EX linear accelerator using the commercially available 6 MeV high dose rate total skin electron mode, along with a custom‐built flattening filter. Ionization chambers, radiochromic film, and MOSFET (metal oxide semiconductor field effect transistor) detectors have been used to determine the dosimetric properties of this technique. Measurements investigating the stationary beam properties, the effects of full rotation, and the dose distributions to a humanoid phantom are reported. The current treatment technique and dose regimen are also described. PACS numbers: 87.55.ne, 87.53.Hv, 87.53.Mr

  13. Linear Accelerator Development for Cancer Treatment at SLRI

    International Nuclear Information System (INIS)

    Juntong, N.

    2014-01-01

    Linear accelerator (linac) technology has been widely utilised for cancer treatment in hospital. This linac utilised an accelerated electron beam to create x-ray beam for radiotherapy. At Synchrotron Light Research Institute (SLRI), the idea to fabricate the prototype of medical linac with low cost for domestic use in Thailand was proposed and the budget has been granted. There are three objectives of this proposal: 1) to develop prototype of medical linac by the ability of domestic people for reducing the machine import and maintenance costs,2) to encourage researching in science and technology concerning medical application for the practical use products, and 3) to develop knowledge and expertise in accelerator and concerning technologies of medical linac. In the first phase, the electron beam energy of the prototype machine will be 6 MeV or equivalent to x-ray energy of 6 MV based on discussions with several hospitals in the country. This energy level is considered suitable for the Thais due to shapes and sizes of the bodies. A brief introduction of background, objectives, and scope of the project will be presented together with the project timeline. Progression of project activities will also be discussed.

  14. RF phase focusing in portable x-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.M.; Schonberg, R.G.; Weaver, J.N.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp = c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  15. RF phase focusing in portable X-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.W.; Schonberg, R.G.; Weaver, J.W.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp=c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  16. A virtual linear accelerator for verification of treatment planning systems

    International Nuclear Information System (INIS)

    Wieslander, Elinore

    2000-01-01

    A virtual linear accelerator is implemented into a commercial pencil-beam-based treatment planning system (TPS) with the purpose of investigating the possibility of verifying the system using a Monte Carlo method. The characterization set for the TPS includes depth doses, profiles and output factors, which is generated by Monte Carlo simulations. The advantage of this method over conventional measurements is that variations in accelerator output are eliminated and more complicated geometries can be used to study the performance of a TPS. The difference between Monte Carlo simulated and TPS calculated profiles and depth doses in the characterization geometry is less than ±2% except for the build-up region. This is of the same order as previously reported results based on measurements. In an inhomogeneous, mediastinum-like case, the deviations between TPS and simulations are small in the unit-density regions. In low-density regions, the TPS overestimates the dose, and the overestimation increases with increasing energy from 3.5% for 6 MV to 9.5% for 18 MV. This result points out the widely known fact that the pencil beam concept does not handle changes in lateral electron transport, nor changes in scatter due to lateral inhomogeneities. It is concluded that verification of a pencil-beam-based TPS with a Monte Carlo based virtual accelerator is possible, which facilitates the verification procedure. (author)

  17. High Precision Survey and Alignment of Large Linear Accelerators

    CERN Document Server

    Prenting, J

    2004-01-01

    For the future linear accelerator TESLA the demanded accuracy for the alignment of the components is 0.5 mm horizontal and 0.2 mm vertical, both on each 600 m section. Other accelerators require similar accuracies. These demands can not be fulfilled with open-air geodetic methods, mainly because of refraction. Therefore the RTRS (Rapid Tunnel Reference Surveyor), a measurement train performing overlapping multipoint alignment on a reference network is being developed. Two refraction-free realizations of this concept are being developed at the moment: the first one (GeLiS) measures the horizontal co-ordinates using stretched wires, combined with photogrammetric split-image sensors in a distance measurement configuration. In areas of the tunnel where the accelerator is following the earth curvature GeLiS measures the height using a new hydrostatic leveling system. The second concept (LiCAS) is based on laser straightness monitors (LSM) combined with frequency scanning interferometry (FSI) in an evacuated system...

  18. Cavitation inception on microparticles: a self-propelled particle accelerator

    NARCIS (Netherlands)

    Arora, M.; Ohl, C.D.; Morch, Knud Aage

    2004-01-01

    Corrugated, hydrophilic particles with diameters between 30 and 150   μm are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growing cavity accelerates the particle into translatory motion until the tensile stress decreases,

  19. Cavitation Inception on Microparticles: A Self-Propelled Particle Accelerator

    DEFF Research Database (Denmark)

    Arora, M.; Ohl, C.-D.; Mørch, Knud Aage

    2004-01-01

    Corrugated, hydrophilic particles with diameters between 30 and 150 mum are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growing cavity accelerates the particle into translatory motion until the tensile stress decreases...

  20. Primer on theory and operation of linear accelerators in radiation therapy

    International Nuclear Information System (INIS)

    Karzmark, C.J.; Morton, R.J.

    1981-12-01

    This primer is part of an educational package that also includes a series of 3 videotapes entitled Theory and Operation of Linear Accelerators in Radiation Therapy, Parts I, II, and III. This publication provides an overview of the components of the linear accelerator and how they function and interrelate. The auxiliary systems necessary to maintain the operation of the linear accelerator are also described