Ganguly, Jayanta; Ghosh, Manas
2014-01-01
Highlights: • Linear polarizability of quantum dot has been studied. • Quantum dot is doped with a repulsive impurity. • The polarizabilities are frequency-dependent. • Influence of Gaussian white noise has been monitored. • Noise exploited is of additive and multiplicative nature. - Abstract: We investigate the profiles of diagonal components of frequency-dependent linear (α xx and α yy ) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally puts emphasis on investigating the role of noise on the polarizability components. In view of this we have exploited Gaussian white noise containing additive and multiplicative characteristics (in Stratonovich sense). The frequency-dependent polarizabilities are studied by exposing the doped dot to a periodically oscillating external electric field of given intensity. The oscillation frequency, confinement potentials, dopant location, and above all, the noise characteristics tune the linear polarizability components in a subtle manner. Whereas the additive noise fails to have any impact on the polarizabilities, the multiplicative noise influences them delicately and gives rise to additional interesting features
Electro-optical parameters of bond polarizability model for aluminosilicates.
Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam
2006-04-06
Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.
Ganguly, Jayanta; Ghosh, Manas
2015-01-01
Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Dopant migrates under damped condition. • Noise-damping coupling affects polarizabilities. - Abstract: We investigate the profiles of diagonal components of static and frequency-dependent linear, first, and second nonlinear polarizabilities of repulsive impurity doped quantum dot. We have considered propagation of dopant within an environment that damps the motion. Simultaneous presence of noise inherent to the system has also been considered. The dopant has a Gaussian potential and noise considered is a Gaussian white noise. The doped system is exposed to an external electric field which could be static or time-dependent. Noise undergoes direct coupling with damping and the noise-damping coupling strength appears to be a crucial parameter that designs the profiles of polarizability components. This happens because the coupling strength modulates the dispersive and asymmetric character of the system. The frequency of external field brings about additional features in the profiles of polarizability components. The present investigation highlights some useful features in the optical properties of doped quantum dots
Zhao Xinyu; Wang Xiaoli; Lin Hai; Wang Zhiqiang
2008-01-01
On the basis of new electronegativity values, electronic polarizability and optical basicity of lanthanide oxides are calculated from the concept of average electronegativity given by Asokamani and Manjula. The estimated values are in close agreement with our previous conclusion. Particularly, we attempt to obtain new data of electronic polarizability and optical basicity of lanthanide sesquioxides for different coordination numbers (6-12). The present investigation suggests that both electronic polarizability and optical basicity increase gradually with increasing coordination number. We also looked for another double peak effect, that is, electronic polarizability and optical basicity of trivalent lanthanide oxides show a gradual decrease and then an abrupt increase at the Europia and Ytterbia. Furthermore, close correlations are investigated among average electronegativity, optical basicity, electronic polarizability and coordination number in this paper
A quantum-mechanical perspective on linear response theory within polarizable embedding
List, Nanna Holmgaard; Norman, Patrick; Kongsted, Jacob
2017-01-01
We present a derivation of linear response theory within polarizable embedding starting from a rigorous quantum-mechanical treatment of a composite system. To this aim, two different subsystem decompositions (symmetric and nonsymmetric) of the linear response function are introduced and the pole...
Linear and non-linear optics of condensed matter
McLean, T.P.
1977-01-01
Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)
List, Nanna Holmgaard; Coriani, Sonia; Kongsted, Jacob
2014-01-01
are specifically motivated by a twofold aim: (i) computation of core excitations in realistic surroundings and (ii) examination of the effect of the differential response of the environment upon excitation solely related to the CC multipliers (herein denoted the J matrix) in computations of excitation energies......We present an extension of a previously reported implementation of a Lanczos-driven coupled-cluster (CC) damped linear response approach to molecules in condensed phases, where the effects of a surrounding environment are incorporated by means of the polarizable embedding formalism. We...... and transition moments of polarizable-embedded molecules. Numerical calculations demonstrate that the differential polarization of the environment due to the first-order CC multipliers provides only minor contributions to the solvatochromic shift for all transitions considered. We thus complement previous works...
Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions
M.K. Halimah
Full Text Available Zinc borotellurite glasses doped with lanthanum oxide were successfully prepared through melt-quenching technique. The amorphous nature of the glass system was validated by the presence of a broad hump in the XRD result. The refractive index of the prepared glass samples was calculated by using the equation proposed by Dimitrov and Sakka. The theoretical value of molar refraction, electronic polarizability, oxide ion polarizability and metallization criterion were calculated by using Lorentz-Lorenz equation. Meanwhile, expression proposed by Duffy and Ingram for the theoretical value of optical basicity of multi-component glasses were applied to obtain energy band gap based optical basicity and refractive index based optical basicity. The optical basicity of prepared glasses decreased with the increasing concentration of lanthanum oxide. Metallization criterion on the basis of refractive index showed an increasing trend while energy band gap based metallization criterion showed a decreasing trend. The small metallization criterion values of the glass samples represent that the width of the conduction band becomes larger which increase the tendency for metallization of the glasses. The results obtained indicates that the fabricated glasses have high potential to be applied on optical limiting devices in photonic field. Keywords: Borotellurite glasses, Refractive index, Electronic polarizability, Oxide ion polarizability, Optical basicity, Metallization criterion
Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.
2015-01-01
The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed
Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)
2015-01-22
The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.
Dimitrov, Vesselin, E-mail: vesselin@uctm.edu [Department of Silicate Technology, University of Chemical Technology and Metallurgy, 8, Kl. Ohridski Blvd., Sofia 1756 (Bulgaria); Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)
2012-12-15
A suitable relationship between free-cation polarizability and electronegativity of elements in different valence states and with the most common coordination numbers has been searched on the basis of the similarity in physical nature of both quantities. In general, the cation polarizability increases with decreasing element electronegativity. A systematic periodic change in the polarizability against the electronegativity has been observed in the isoelectronic series. It has been found that generally the optical basicity increases and the single bond strength of simple oxides decreases with decreasing the electronegativity. The observed trends have been discussed on the basis of electron donation ability of the oxide ions and type of chemical bonding in simple oxides. - Graphical abstract: This figure shows the single bond strength of simple oxides as a function of element electronegativity. A remarkable correlation exists between these independently obtained quantities. High values of electronegativity correspond to high values of single bond strength and vice versa. It is obvious that the observed trend in this figure is closely related to the type of chemical bonding in corresponding oxide. Highlights: Black-Right-Pointing-Pointer A suitable relationship between free-cation polarizability and electronegativity of elements was searched. Black-Right-Pointing-Pointer The cation polarizability increases with decreasing element electronegativity. Black-Right-Pointing-Pointer The single bond strength of simple oxides decreases with decreasing the electronegativity. Black-Right-Pointing-Pointer The observed trends were discussed on the basis of type of chemical bonding in simple oxides.
Natural Fe3O4 nanoparticles embedded zinc–tellurite glasses: Polarizability and optical properties
Widanarto, W.; Sahar, M.R.; Ghoshal, S.K.; Arifin, R.; Rohani, M.S.; Hamzah, K.; Jandra, M.
2013-01-01
Modifying the optical behavior of zinc–tellurite glass by embedding magnetic nanoparticles has implication in nanophotonics. A series of zinc–tellurite glasses containing natural Fe 3 O 4 nanoparticles with composition (80 − x)TeO 2 ·xFe 3 O 4 ·20ZnO (0 ≤ x ≤ 2) in mol% are synthesized by melt quenching method and their optical properties are investigated using FTIR and UV–vis–NIR spectroscopies. Lorentz–Lorenz relations are exploited to determine the refractive index, molar refraction and electronic polarizability. The sharp absorption peaks of FTIR spectra show a shift from 667 cm −1 to 671 cm −1 in the presence of nanoparticles that increase the non-bridging oxygen, confirmed by the intensity change of the TeO 3 peak at 752 cm −1 . A new peak around 461 cm −1 is also observed which is attributed to the band characteristic of covalent Fe–O linkages. A decrease in the Urbach energy as much as 0.122 eV and the optical energy band gap with the increase of Fe 3 O 4 concentration (0.5–1.0 mol%) is evidenced. Electronic polarizability of the glasses increases with increasing Fe 3 O 4 nanoparticles concentration up to 1 mol%. Interestingly, the polarizability tends to decrease with the further increase of Fe 3 O 4 concentration at 2 mol%. The role of magnetic nanoparticles in influencing the structural and optical behavior are examined and understood. - Highlights: ► Incorporation of natural Fe 3 O 4 nanoparticles into the zinc–tellurite glass. ► Influence of magnetic nanoparticles in modifying structure and optical properties. ► Enhancement of refraction index and change in electronic polarizability
Saha, Surajit; Ganguly, Jayanta; Ghosh, Manas
2015-01-01
We make a rigorous exploration of the profiles of off-diagonal components of frequency-dependent linear (α xy , α yx ), first nonlinear (β xyy , β yxx ), and second nonlinear (γ xxyy , γ yyxx ) polarizabilities of quantum dots driven by Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been applied additively and multiplicatively to the system. An external oscillatory electric field has also been applied to the system. Gradual variations of external frequency, dopant location, and noise strength give rise to interesting features of polarizability components. The observations reveal intricate interplay between noise strength and dopant location which designs the polarizability profiles. Moreover, the mode of application of noise also modulates the polarizability components. Interestingly, in case of additive noise the noise strength has no role on polarizabilities whereas multiplicative noise invites greater delicacy in them. The said interplay provides a rather involved framework to attain stable, enhanced, and often maximized output of linear and nonlinear polarizabilities. - Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • The polarizability components are off-diagonal and frequency-dependent. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Mode of noise application affects polarizabilities
Transition polarizability model of induced resonance Raman optical activity
Yamamoto, S.; Bouř, Petr
2013-01-01
Roč. 34, č. 25 (2013), s. 2152-2158 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA13-03978S; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : induced resonance Raman optical activity * europium complexes * density functional computations * light scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013
Saravanan, R
2018-01-01
Non-linear optical materials have widespread and promising applications, but the efforts to understand the local structure, electron density distribution and bonding is still lacking. The present work explores the structural details, the electron density distribution and the local bond length distribution of some non-linear optical materials. It also gives estimation of the optical band gap, the particle size, crystallite size, and the elemental composition from UV-Visible analysis, SEM, XRD and EDS of some non-linear optical materials respectively.
Polarizability tensor and Kramers-Heisenberg induction
Wijers, Christianus M.J.
2004-01-01
A general expression for the semiclassical, nonrelativistic linear polarizability of an arbitrary volume element V has been derived in the long wavelength approximation. The derivation starts from the expectation value of the dipole strength, as in the original Kramers-Heisenberg paper about optical
Caricato, Marco
2018-04-01
We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.
Hedegård, Erik D.; Olsen, Jógvan Magnus Haugaard; Knecht, Stefan
2015-01-01
. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality......We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE......-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory...
Linear rotary optical delay lines
Guerboukha, Hichem; Qu, Hang; Skorobogatiy, Maksim
2016-03-01
We present a semi-analytical solution for the design of a high-speed rotary optical delay line that use a combination of two rotating curvilinear reflectors. We demonstrate that it is possible to design an infinite variety of the optical delay lines featuring linear dependence of the optical delay on the rotation angle. This is achieved via shape optimization of the rotating reflector surfaces. Moreover, a convenient spatial separation of the incoming and outgoing beams is possible. For the sake of example, we present blades that fit into a circle of 10cm diameter. Finally, a prototype of a rotary delay line is fabricated using CNC machining, and its optical properties are characterized.
Electronic polarizability of light crude oil from optical and dielectric studies
George, A. K.; Singh, R. N.
2017-07-01
In the present paper we report the temperature dependence of density, refractive indices and dielectric constant of three samples of crude oils. The API gravity number estimated from the temperature dependent density studies revealed that the three samples fall in the category of light oil. The measured data of refractive index and the density are used to evaluate the polarizability of these fluids. Molar refractive index and the molar volume are evaluated through Lorentz-Lorenz equation. The function of the refractive index, FRI , divided by the mass density ρ, is a constant approximately equal to one-third and is invariant with temperature for all the samples. The measured values of the dielectric constant decrease linearly with increasing temperature for all the samples. The dielectric constant estimated from the refractive index measurements using Lorentz-Lorentz equation agrees well with the measured values. The results are promising since all the three measured properties complement each other and offer a simple and reliable method for estimating crude oil properties, in the absence of sufficient data.
Widanarto, W. [Physics Study Program, Jenderal Soedirman University, Jl. Dr. Soeparno 61, Purwokerto 53123 (Indonesia); Sahar, M.R., E-mail: rahimsahar@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310 (Malaysia); Ghoshal, S.K.; Arifin, R.; Rohani, M.S.; Hamzah, K. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Skudai 81310 (Malaysia); Jandra, M. [FTI, University Teknologi Malaysia, Johor Bahru, Skudai 81310 (Malaysia)
2013-02-15
Modifying the optical behavior of zinc–tellurite glass by embedding magnetic nanoparticles has implication in nanophotonics. A series of zinc–tellurite glasses containing natural Fe{sub 3}O{sub 4} nanoparticles with composition (80 − x)TeO{sub 2}·xFe{sub 3}O{sub 4}·20ZnO (0 ≤ x ≤ 2) in mol% are synthesized by melt quenching method and their optical properties are investigated using FTIR and UV–vis–NIR spectroscopies. Lorentz–Lorenz relations are exploited to determine the refractive index, molar refraction and electronic polarizability. The sharp absorption peaks of FTIR spectra show a shift from 667 cm{sup −1} to 671 cm{sup −1} in the presence of nanoparticles that increase the non-bridging oxygen, confirmed by the intensity change of the TeO{sub 3} peak at 752 cm{sup −1}. A new peak around 461 cm{sup −1} is also observed which is attributed to the band characteristic of covalent Fe–O linkages. A decrease in the Urbach energy as much as 0.122 eV and the optical energy band gap with the increase of Fe{sub 3}O{sub 4} concentration (0.5–1.0 mol%) is evidenced. Electronic polarizability of the glasses increases with increasing Fe{sub 3}O{sub 4} nanoparticles concentration up to 1 mol%. Interestingly, the polarizability tends to decrease with the further increase of Fe{sub 3}O{sub 4} concentration at 2 mol%. The role of magnetic nanoparticles in influencing the structural and optical behavior are examined and understood. - Highlights: ► Incorporation of natural Fe{sub 3}O{sub 4} nanoparticles into the zinc–tellurite glass. ► Influence of magnetic nanoparticles in modifying structure and optical properties. ► Enhancement of refraction index and change in electronic polarizability.
刘孝娟; 封继康; 任爱民
2003-01-01
The equilibrium geometries and UV-visible spectra of a series of donor-C60 molecules were obtained by means of the AM1 and INDO/CI method,on the basis of accurate geometric and electronic structures.The nonlinear second-order optical polarizabilities were calculated using the method INDO/SDCI combined with the Sum-Over-States(SOS) expression.The calculatedβ(λ=1.34μm) values are 28.81,48.56,57.33,66.99,70.85,85.84,and 142.14(×10-30 esu) for the molecules A,B,C,D,E,F and G,respectively.The frontier orbitals were plot for the representative molecules in order to exhibit the intramolecular charge transfer.The results indicate the introduction of thienylethylene can enhance the NLO response and the dimethylaniline-substituted dithienyl-ethylene-C60 (molecule G) possesses the largest NLO second-order optical polarizability.The large β values can be attributed to the charge transfer between the substituents and C60,as well as within the three-dimensional conjugated sphere of C60.
Keefe, C. Dale; Pickup, Janet E.
2009-06-01
Previous studies have been done in this laboratory focusing on the optical properties of several liquid aromatic and aliphatic hydrocarbons in the infrared. The current study reports the infrared and absorption Raman spectra of liquid cyclohexane. Infrared spectra were recorded at 25 °C over a wavenumber range of 7400-490 cm -1. Infrared measurements were taken using transmission cells with pathlengths ranging from 3 to 5000 μm. Raman spectra were recorded between 3700 and 100 cm -1 at 25 °C using a 180° reflection geometry. Ab initio calculations of the vibrational wavenumbers at the B3LYP/6311G level of theory were performed and used to help assign the observed IR and Raman spectra. Extensive assignments of the fundamentals and binary combinations observed in the infrared imaginary molar polarizability spectrum are reported. The imaginary molar polarizability spectrum was curve fitted to separate the intensity from the various transitions and used to determine the transition moments and magnitudes of the derivatives of the dipole moment with respect to the normal coordinates for the fundamentals.
Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.
2017-08-01
The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.
Polarizability of a crystal with impurities
Goettig, S.
1985-09-01
The expression for the complex frequency- and wavevector-dependent longitudinal electronic polarizability due to the presence of a weak static disorder (e.g. impurities) in a crystal with an arbitrary band structure is derived. The quantum kinetic equation in the self-consistent-field approximation is solved, expanding the one-particle density operator in powers of the screened static imperfection field and a weak perturbing electric field. The polarizability is determined by the induced electronic charge density quadratic in the imperfection field and linear in the perturbing field, averaged over the statistical distribution of imperfections. The obtained expression, which accounts properly for the collective effects in the electronic plasma, takes also into account the polar coupling of the plasma with longitudinal optical phonons. The conductivity in the optical limit (q-vector→O) is calculated, and the correspondence with one-band effective-mass approximation is established. (author)
Linear optics and quantum maps
Aiello, A.; Puentes, G.; Woerdman, J. P.
2007-01-01
We present a theoretical analysis of the connection between classical polarization optics and quantum mechanics of two-level systems. First, we review the matrix formalism of classical polarization optics from a quantum information perspective. In this manner the passage from the Stokes-Jones-Mueller description of classical optical processes to the representation of one- and two-qubit quantum operations, becomes straightforward. Second, as a practical application of our classical-vs-quantum formalism, we show how two-qubit maximally entangled mixed states can be generated by using polarization and spatial modes of photons generated via spontaneous parametric down conversion
Topcu, Turker; Derevianko, Andrei
2014-05-01
Long range interactions between neutral Rydberg atoms has emerged as a potential means for implementing quantum logical gates. These experiments utilize hyperfine manifold of ground state atoms to act as a qubit basis, while exploiting the Rydberg blockade mechanism to mediate conditional quantum logic. The necessity for overcoming several sources of decoherence makes magic wavelength trapping in optical lattices an indispensable tool for gate experiments. The common wisdom is that atoms in Rydberg states see trapping potentials that are essentially that of a free electron, and can only be trapped at laser intensity minima. We show that although the polarizability of a Rydberg state is always negative, the optical potential can be both attractive or repulsive at long wavelengths (up to ~104 nm). This opens up the possibility of magic trapping Rydberg states with ground state atoms in optical lattices, thereby eliminating the necessity to turn off trapping fields during gate operations. Because the wavelengths are near the CO2 laser band, the photon scattering and the ensuing motional heating is also reduced compared to conventional traps near low lying resonances, alleviating an important source of decoherence. This work was supported by the National Science Foundation (NSF) Grant No. PHY-1212482.
Gieseking, Rebecca L.
2015-06-22
Organic π-conjugated materials have been widely used for a variety of nonlinear optical (NLO) applications. Molecules with negative real components Re(γ) of the third-order polarizability, which leads to nonlinear refraction in macroscopic systems, have important benefits for several NLO applications. However, few organic systems studied to date have negative Re(γ) in the long wavelength limit, and all inorganic materials show positive nonlinear refraction in this limit. Here, we introduce a new class of molecules of the form X(C6H5)4, where X = B-, C, N+, and P+, that have negative Re(γ). The molecular mechanism for the NLO properties in these systems is very different from those in typical linear conjugated systems: these systems have a band of excited states involving single-electron excitations within the π-system, several of which have significant coupling to the ground state. Thus, Re(γ) cannot be understood in terms of a simplified essential-state model and must be analyzed in the context of the full sum-over-states expression. Although Re(γ) is significantly smaller than that of other commonly-studied NLO chromophores, the introduction of a new molecular architecture offering the potential for a negative Re(γ) introduces new avenues of molecular design for NLO applications.
Gieseking, Rebecca L.; Ensley, Trenton R.; Hu, Honghua; Hagan, David J.; Risko, Chad; Van Stryland, Eric W.; Bredas, Jean-Luc
2015-01-01
Organic π-conjugated materials have been widely used for a variety of nonlinear optical (NLO) applications. Molecules with negative real components Re(γ) of the third-order polarizability, which leads to nonlinear refraction in macroscopic systems, have important benefits for several NLO applications. However, few organic systems studied to date have negative Re(γ) in the long wavelength limit, and all inorganic materials show positive nonlinear refraction in this limit. Here, we introduce a new class of molecules of the form X(C6H5)4, where X = B-, C, N+, and P+, that have negative Re(γ). The molecular mechanism for the NLO properties in these systems is very different from those in typical linear conjugated systems: these systems have a band of excited states involving single-electron excitations within the π-system, several of which have significant coupling to the ground state. Thus, Re(γ) cannot be understood in terms of a simplified essential-state model and must be analyzed in the context of the full sum-over-states expression. Although Re(γ) is significantly smaller than that of other commonly-studied NLO chromophores, the introduction of a new molecular architecture offering the potential for a negative Re(γ) introduces new avenues of molecular design for NLO applications.
Light propagation in linear optical media
Gillen, Glen D; Guha, Shekhar
2013-01-01
Light Propagation in Linear Optical Media describes light propagation in linear media by expanding on diffraction theories beyond what is available in classic optics books. In one volume, this book combines the treatment of light propagation through various media, interfaces, and apertures using scalar and vector diffraction theories. After covering the fundamentals of light and physical optics, the authors discuss light traveling within an anisotropic crystal and present mathematical models for light propagation across planar boundaries between different media. They describe the propagation o
Molecular Properties through Polarizable Embedding
Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob
2011-01-01
We review the theory related to the calculation of electric and magnetic molecular properties through polarizable embedding. In particular, we derive the expressions for the response functions up to the level of cubic response within the density functional theory-based polarizable embedding (PE......-DFT) formalism. In addition, we discuss some illustrative applications related to the calculation of nuclear magnetic resonance parameters, nonlinear optical properties, and electronic excited states in solution....
Progress in linear optics, non-linear optics and surface alignment of liquid crystals
Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.
We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.
Ayvaz, Muzaffer; Demiralp, Metin
2011-01-01
In this study, the optimal control equations for one dimensional quantum harmonic oscillator under the quadratic control operators together with linear dipole polarizability effects are constructed in the sense of Heisenberg equation of motion. A numerical technique based on the approximation to the non-commuting quantum mechanical operators from the fluctuation free expectation value dynamics perspective in the classical limit is also proposed for the solution of optimal control equations which are ODEs with accompanying boundary conditions. The dipole interaction of the system is considered to be linear, and the observable whose expectation value will be suppressed during the control process is considered to be quadratic in terms of position operator x. The objective term operator is also assumed to be quadratic.
Static polarizabilities of dielectric nanoclusters
Kim, Hye-Young; Sofo, Jorge O.; Cole, Milton W.; Velegol, Darrell; Mukhopadhyay, Gautam
2005-01-01
A cluster consisting of many atoms or molecules may be considered, in some circumstances, to be a single large molecule with a well-defined polarizability. Once the polarizability of such a cluster is known, one can evaluate certain properties--e.g. the cluster's van der Waals interactions, using expressions derived for atoms or molecules. In the present work, we evaluate the static polarizability of a cluster using a microscopic method that is exact within the linear and dipolar approximations. Numerical examples are presented for various shapes and sizes of clusters composed of identical atoms, where the term 'atom' actually refers to a generic constituent, which could be any polarizable entity. The results for the clusters' polarizabilities are compared with those obtained by assuming simple additivity of the constituents' atomic polarizabilities; in many cases, the difference is large, demonstrating the inadequacy of the additivity approximation. Comparison is made (for symmetrical geometries) with results obtained from continuum models of the polarizability. Also, the surface effects due to the nonuniform local field near a surface or edge are shown to be significant
Optical surfacing via linear ion source
Wu, Lixiang; Wei, Chaoyang; Shao, Jianda
2017-01-01
We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. The modified Fourier series, or sinusoidal wave surfaces, build a relationship between the fabrication process of optical surfaces and the surface characterization based on power spectral density (PSD) analysis. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of mid-spatial frequency (MSF) errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approach.
Optical surfacing via linear ion source
Wu, Lixiang, E-mail: wulx@hdu.edu.cn [Key Lab of RF Circuits and Systems of Ministry of Education, Zhejiang Provincial Key Lab of LSI Design, Microelectronics CAD Center, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou (China); Wei, Chaoyang, E-mail: siomwei@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Shao, Jianda, E-mail: jdshao@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)
2017-04-15
We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. The modified Fourier series, or sinusoidal wave surfaces, build a relationship between the fabrication process of optical surfaces and the surface characterization based on power spectral density (PSD) analysis. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of mid-spatial frequency (MSF) errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approach.
Measurement-induced nonlinearity in linear optics
Scheel, Stefan; Knight, Peter L.; Nemoto, Kae; Munro, William J.
2003-01-01
We investigate the generation of nonlinear operators with single-photon sources, linear optical elements, and appropriate measurements of auxiliary modes. We provide a framework for the construction of useful single-mode and two-mode quantum gates necessary for all-optical quantum information processing. We focus our attention generally on using minimal physical resources while providing a transparent and algorithmic way of constructing these operators
Noise limitations in optical linear algebra processors.
Batsell, S G; Jong, T L; Walkup, J F; Krile, T F
1990-05-10
A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.
Optical linear algebra processors - Architectures and algorithms
Casasent, David
1986-01-01
Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.
Linear zonal atmospheric prediction for adaptive optics
McGuire, Patrick C.; Rhoadarmer, Troy A.; Coy, Hanna A.; Angel, J. Roger P.; Lloyd-Hart, Michael
2000-07-01
We compare linear zonal predictors of atmospheric turbulence for adaptive optics. Zonal prediction has the possible advantage of being able to interpret and utilize wind-velocity information from the wavefront sensor better than modal prediction. For simulated open-loop atmospheric data for a 2- meter 16-subaperture AO telescope with 5 millisecond prediction and a lookback of 4 slope-vectors, we find that Widrow-Hoff Delta-Rule training of linear nets and Back- Propagation training of non-linear multilayer neural networks is quite slow, getting stuck on plateaus or in local minima. Recursive Least Squares training of linear predictors is two orders of magnitude faster and it also converges to the solution with global minimum error. We have successfully implemented Amari's Adaptive Natural Gradient Learning (ANGL) technique for a linear zonal predictor, which premultiplies the Delta-Rule gradients with a matrix that orthogonalizes the parameter space and speeds up the training by two orders of magnitude, like the Recursive Least Squares predictor. This shows that the simple Widrow-Hoff Delta-Rule's slow convergence is not a fluke. In the case of bright guidestars, the ANGL, RLS, and standard matrix-inversion least-squares (MILS) algorithms all converge to the same global minimum linear total phase error (approximately 0.18 rad2), which is only approximately 5% higher than the spatial phase error (approximately 0.17 rad2), and is approximately 33% lower than the total 'naive' phase error without prediction (approximately 0.27 rad2). ANGL can, in principle, also be extended to make non-linear neural network training feasible for these large networks, with the potential to lower the predictor error below the linear predictor error. We will soon scale our linear work to the approximately 108-subaperture MMT AO system, both with simulations and real wavefront sensor data from prime focus.
Topics in linear optical quantum computation
Glancy, Scott Charles
This thesis covers several topics in optical quantum computation. A quantum computer is a computational device which is able to manipulate information by performing unitary operations on some physical system whose state can be described as a vector (or mixture of vectors) in a Hilbert space. The basic unit of information, called the qubit, is considered to be a system with two orthogonal states, which are assigned logical values of 0 and 1. Photons make excellent candidates to serve as qubits. They have little interactions with the environment. Many operations can be performed using very simple linear optical devices such as beam splitters and phase shifters. Photons can easily be processed through circuit-like networks. Operations can be performed in very short times. Photons are ideally suited for the long-distance communication of quantum information. The great difficulty in constructing an optical quantum computer is that photons naturally interact weakly with one another. This thesis first gives a brief review of two early approaches to optical quantum computation. It will describe how any discrete unitary operation can be performed using a single photon and a network of beam splitters, and how the Kerr effect can be used to construct a two photon logic gate. Second, this work provides a thorough introduction to the linear optical quantum computer developed by Knill, Laflamme, and Milburn. It then presents this author's results on the reliability of this scheme when implemented using imperfect photon detectors. This author finds that quantum computers of this sort cannot be built using current technology. Third, this dissertation describes a method for constructing a linear optical quantum computer using nearly orthogonal coherent states of light as the qubits. It shows how a universal set of logic operations can be performed, including calculations of the fidelity with which these operations may be accomplished. It discusses methods for reducing and
Sakthy Priya, S.; Alexandar, A.; Surendran, P.; Lakshmanan, A.; Rameshkumar, P.; Sagayaraj, P.
2017-04-01
An efficient organic nonlinear optical single crystal of L-arginine maleate dihydrate (LAMD) has been grown by slow evaporation solution technique (SEST) and slow cooling technique (SCT). The crystalline perfection of the crystal was examined using high-resolution X-ray diffractometry (HRXRD) analysis. Photoluminescence study confirmed the optical properties and defects level in the crystal lattice. Electromechanical behaviour was observed using piezoelectric co-efficient (d33) analysis. The photoconductivity analysis confirmed the negative photoconducting nature of the material. The dielectric constant and loss were measured as a function of frequency with varying temperature and vice-versa. The laser damage threshold (LDT) measurement was carried out using Nd:YAG Laser with a wavelength of 1064 nm (Focal length is 35 cm) and the obtained results showed that LDT value of the crystal is high compared to KDP crystal. The high laser damage threshold of the grown crystal makes it a potential candidate for second and higher order nonlinear optical device application. The third order nonlinear optical parameters of LAMD crystal is determined by open-aperture and closed-aperture studies using Z-scan technique. The third order linear and nonlinear optical parameters such as the nonlinear refractive index (n2), two photon absorption coefficient (β), Real part (Reχ3) and imaginary part (Imχ3) of third-order nonlinear optical susceptibility are calculated.
Experimental quantum private queries with linear optics
De Martini, Francesco; Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Nagali, Eleonora; Sansoni, Linda; Sciarrino, Fabio
2009-01-01
The quantum private query is a quantum cryptographic protocol to recover information from a database, preserving both user and data privacy: the user can test whether someone has retained information on which query was asked and the database provider can test the amount of information released. Here we discuss a variant of the quantum private query algorithm that admits a simple linear optical implementation: it employs the photon's momentum (or time slot) as address qubits and its polarization as bus qubit. A proof-of-principle experimental realization is implemented.
Method and apparatus of highly linear optical modulation
DeRose, Christopher; Watts, Michael R.
2016-05-03
In a new optical intensity modulator, a nonlinear change in refractive index is used to balance the nonlinearities in the optical transfer function in a way that leads to highly linear optical intensity modulation.
Accuracy Limitations in Optical Linear Algebra Processors
Batsell, Stephen Gordon
1990-01-01
One of the limiting factors in applying optical linear algebra processors (OLAPs) to real-world problems has been the poor achievable accuracy of these processors. Little previous research has been done on determining noise sources from a systems perspective which would include noise generated in the multiplication and addition operations, noise from spatial variations across arrays, and from crosstalk. In this dissertation, we propose a second-order statistical model for an OLAP which incorporates all these system noise sources. We now apply this knowledge to determining upper and lower bounds on the achievable accuracy. This is accomplished by first translating the standard definition of accuracy used in electronic digital processors to analog optical processors. We then employ our second-order statistical model. Having determined a general accuracy equation, we consider limiting cases such as for ideal and noisy components. From the ideal case, we find the fundamental limitations on improving analog processor accuracy. From the noisy case, we determine the practical limitations based on both device and system noise sources. These bounds allow system trade-offs to be made both in the choice of architecture and in individual components in such a way as to maximize the accuracy of the processor. Finally, by determining the fundamental limitations, we show the system engineer when the accuracy desired can be achieved from hardware or architecture improvements and when it must come from signal pre-processing and/or post-processing techniques.
Norman, Patrick; Schimmelpfennig, Bernd; Ruud, Kenneth
2002-01-01
A systematic investigation of a hierarchy of methods for including relativistic effects in the calculation of linear and nonlinear optical properties was carried out. The simple ECP method and the more involved spin-averaged Douglas-Kroll approximation were compared to benchmark results obtained...
Algradee, M.A.; Sultan, M.; Samir, O.M.; Alwany, A.E.B. [Ibb University, Department of Physics, Faculty of Science, Ibb (Yemen)
2017-08-15
The Nd{sup 3+}-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd{sub 2}O{sub 3} content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system. (orig.)
Electromagnetic polarizabilities of hadrons
Friar, J.L.
1988-01-01
Electromagnetic polarizabilities of hadrons are reviewed, after a discussion of classical analogues. Differences between relativistic and non-relativistic approaches can lead to conflicts with conventional nuclear physics sum rules and calculational techniques. The nucleon polarizabilities are discussed in the context of the non-relativistic valence quark model, which provides a good qualitative description. The recently measured pion polarizabilities are discussed in the context of chiral symmetry and quark-loop models. 58 refs., 5 figs
Salek, Pawel; Helgaker, Trygve; Saue, Trond
2005-01-01
We report the implementation and application of linear response density-functional theory (DFT) based on the 4-component relativistic Dirac-Coulomb Hamiltonian. The theory is cast in the language of second quantization and is based on the quasienergy formalism (Floquet theory), replacing the initial state dependence of the Runge-Gross theorem by periodic boundary conditions. Contradictions in causality and symmetry of the time arguments are thereby avoided and the exchange-correlation potential and kernel can be expressed as functional derivatives of the quasienergy. We critically review the derivation of the quasienergy analogues of the Hohenberg-Kohn theorem and the Kohn-Sham formalism and discuss the nature of the quasienergy exchange-correlation functional. Structure is imposed on the response equations in terms of Hermiticity and time-reversal symmetry. It is observed that functionals of spin and current densities, corresponding to time-antisymmetric operators, contribute to frequency-dependent and not static electric properties. Physically, this follows from the fact that only a time-dependent electric field creates a magnetic field. It is furthermore observed that hybrid functionals enhance spin polarization since only exact exchange contributes to anti-Hermitian trial vectors. We apply 4-component relativistic linear response DFT to the calculation of the frequency-dependent polarizability of the isoelectronic series Hg, AuH and PtH 2 . Unlike for the molecules, the effect of electron correlation on the polarizability of the mercury atom is very large, about 25%. We observe a remarkable performance of the local-density approximation (LDA) functional in reproducing the experimental frequency-dependent polarizability of this atom, clearly superior to that of the BLYP and B3LYP functionals. This allows us to extract Cauchy moments (S(-4) = 382.82 and S(-6) = 6090.89 a.u.) that we believe are superior to experiment since we go to higher order in the Cauchy
Vector optical fields with bipolar symmetry of linear polarization.
Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Si, Yu; Tu, Chenghou; Wang, Hui-Tian
2013-09-15
We focus on a new kind of vector optical field with bipolar symmetry of linear polarization instead of cylindrical and elliptical symmetries, enriching members of family of vector optical fields. We design theoretically and generate experimentally the demanded vector optical fields and then explore some novel tightly focusing properties. The geometric configurations of states of polarization provide additional degrees of freedom assisting in engineering the field distribution at the focus to the specific applications such as lithography, optical trapping, and material processing.
Amplitudes for multiphoton quantum processes in linear optics
UrIas, Jesus
2011-01-01
The prominent role that linear optical networks have acquired in the engineering of photon states calls for physically intuitive and automatic methods to compute the probability amplitudes for the multiphoton quantum processes occurring in linear optics. A version of Wick's theorem for the expectation value, on any vector state, of products of linear operators, in general, is proved. We use it to extract the combinatorics of any multiphoton quantum processes in linear optics. The result is presented as a concise rule to write down directly explicit formulae for the probability amplitude of any multiphoton process in linear optics. The rule achieves a considerable simplification and provides an intuitive physical insight about quantum multiphoton processes. The methodology is applied to the generation of high-photon-number entangled states by interferometrically mixing coherent light with spontaneously down-converted light.
Amplitudes for multiphoton quantum processes in linear optics
Urías, Jesús
2011-07-01
The prominent role that linear optical networks have acquired in the engineering of photon states calls for physically intuitive and automatic methods to compute the probability amplitudes for the multiphoton quantum processes occurring in linear optics. A version of Wick's theorem for the expectation value, on any vector state, of products of linear operators, in general, is proved. We use it to extract the combinatorics of any multiphoton quantum processes in linear optics. The result is presented as a concise rule to write down directly explicit formulae for the probability amplitude of any multiphoton process in linear optics. The rule achieves a considerable simplification and provides an intuitive physical insight about quantum multiphoton processes. The methodology is applied to the generation of high-photon-number entangled states by interferometrically mixing coherent light with spontaneously down-converted light.
Fiber optic spectrophotometer with photodiode linear array
Blanc, F.; Vernet, P.
1988-01-01
Spectrophotometric measurements are used in a great number of industrial processes, in nuclear environment and with optical precision components. Especially the evolution of a chemical process or of an optical coating could be followed by these measurements. Spectrophotometers, using optical fibers to transport the signal out of the instrument make possible the measurement ''in-situ'' and in real time. The advantage of using a diode array to detect the signal is an instantaneous measurement all over the spectral range without moving parts. It allows an excellent reproductibility. The instrument is controlled by a micro computer. The spectrophotometer is described and technical performance presented. An extension using optical fibers on a ''classical'' spectrophotometer (a H.P. one) is also described and technical performance presented
Linear birefringence and optical ativity in a magnetized plasma
Vuolo, J.H.; Galvao, R.M.O.
1982-02-01
Linear birefringence and optical activity are considered separately to electromagnetic wave propagation in magnetized cold plasma, using frequency approximation much bigger than plasma frequency. It's showen that in some interesting cases, those phenomena could be independents. Explicit expressions are obtained for refraction indices to linear birefringency and optical activity. The correspondents indices attenuation aRe obtained in first orden of attenuation. It's showen that the characteristic states for linear dichroism coincide with the characteristic states for linear birefringence. The characteristic states for elliptic dichroism are obtained. (M.A.F.) [pt
Linear Optical Properties of Gold Colloid
Jingmin XIA
2015-11-01
Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558
Ultra-high Frequency Linear Fiber Optic Systems
Lau, Kam
2011-01-01
This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...
Ng, Albert H.; Snow, Christopher D.
2011-01-01
To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full
State-dependent linear-optical qubit amplifier
Bartkiewicz, K.; Černoch, Antonín; Lemr, K.
2013-01-01
Roč. 88, č. 6 (2013), "062304-1"-"062304-7" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : linear-optical qubit amplifier * quantum cloning * quantum cryptography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013
Covariant electrodynamics in linear media: Optical metric
Thompson, Robert T.
2018-03-01
While the postulate of covariance of Maxwell's equations for all inertial observers led Einstein to special relativity, it was the further demand of general covariance—form invariance under general coordinate transformations, including between accelerating frames—that led to general relativity. Several lines of inquiry over the past two decades, notably the development of metamaterial-based transformation optics, has spurred a greater interest in the role of geometry and space-time covariance for electrodynamics in ponderable media. I develop a generally covariant, coordinate-free framework for electrodynamics in general dielectric media residing in curved background space-times. In particular, I derive a relation for the spatial medium parameters measured by an arbitrary timelike observer. In terms of those medium parameters I derive an explicit expression for the pseudo-Finslerian optical metric of birefringent media and show how it reduces to a pseudo-Riemannian optical metric for nonbirefringent media. This formulation provides a basis for a unified approach to ray and congruence tracing through media in curved space-times that may smoothly vary among positively refracting, negatively refracting, and vacuum.
Linear-optical programmable quantum router
Lemr, K.; Černoch, Antonín
2013-01-01
Roč. 300, JUL (2013), s. 282-285 ISSN 0030-4018 R&D Projects: GA ČR GAP205/12/0382 Institutional research plan: CEZ:AV0Z10100522 Keywords : quantum router * quantum information processing * photon pairs * quantum communications * programmable phase gate Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.542, year: 2013 http://ac.els-cdn.com/S0030401813002563/1-s2.0-S0030401813002563-main.pdf?_tid=d1f7d17a-66e9-11e3-aa5e-00000aab0f6c&acdnat=1387264198_99aef4d40cf81f69
The Linearity of Optical Tomography: Sensor Model and Experimental Verification
Siti Zarina MOHD. MUJI
2011-09-01
Full Text Available The aim of this paper is to show the linearization of optical sensor. Linearity of the sensor response is a must in optical tomography application, which affects the tomogram result. Two types of testing are used namely, testing using voltage parameter and testing with time unit parameter. For the former, the testing is by measuring the voltage when the obstacle is placed between transmitter and receiver. The obstacle diameters are between 0.5 until 3 mm. The latter is also the same testing but the obstacle is bigger than the former which is 59.24 mm and the testing purpose is to measure the time unit spend for the ball when it cut the area of sensing circuit. Both results show a linear relation that proves the optical sensors is suitable for process tomography application.
Entangling efficiency of linear-optical quantum gates
Lemr, Karel; Černoch, Antonín; Soubusta, Jan; Dušek, M.
2012-01-01
Roč. 86, č. 3 (2012), "032321-1"-"032321-5" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional research plan: CEZ:AV0Z10100522 Keywords : linear-optical quantum gates * quantum physics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.042, year: 2012 http://pra.aps.org/pdf/PRA/v86/i3/e032321
Olsen, Jógvan Magnus Haugaard; Steinmann, Casper; Ruud, Kenneth
2015-01-01
We present a new QM/QM/MM-based model for calculating molecular properties and excited states of solute-solvent systems. We denote this new approach the polarizable density embedding (PDE) model and it represents an extension of our previously developed polarizable embedding (PE) strategy. The PDE...... model is a focused computational approach in which a core region of the system studied is represented by a quantum-chemical method, whereas the environment is divided into two other regions: an inner and an outer region. Molecules belonging to the inner region are described by their exact densities...
Dynamical polarizability of atoms
Mukhopadhyay, G.; Lundqvist, S.
1980-07-01
The frequency-dependent polarizability of a closed-shell atom is considered in an RPA type approximation. This is usually done using many-body perturbation theory but can also be recast into the form of equations for the density oscillations as previously shown by the authors. The latter approach is known to lead to a non-hermitian problem because of the structure of the interaction kernel. This note shows that this is also true if using the reaction matrix method. The main result is to derive the expression for the polarizability function taking into account the non-hermitian nature of the problem. (author)
From linear optical quantum computing to Heisenberg-limited interferometry
Lee, Hwang; Kok, Pieter; Williams, Colin P; Dowling, Jonathan P
2004-01-01
The working principles of linear optical quantum computing are based on photodetection, namely, projective measurements. The use of photodetection can provide efficient nonlinear interactions between photons at the single-photon level, which is technically problematic otherwise. We report an application of such a technique to prepare quantum correlations as an important resource for Heisenberg-limited optical interferometry, where the sensitivity of phase measurements can be improved beyond the usual shot-noise limit. Furthermore, using such nonlinearities, optical quantum non-demolition measurements can now be carried out easily at the single-photon level
Magnetic polarizability of pion
Luschevskaya, E.V., E-mail: luschevskaya@itep.ru [Institute for Theoretical and Experimental Physics, Bolshaia Cheremushkinskaia 25, 117218 Moscow (Russian Federation); School of Biomedicine, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Solovjeva, O.E., E-mail: olga.solovjeva@itep.ru [Institute for Theoretical and Experimental Physics, Bolshaia Cheremushkinskaia 25, 117218 Moscow (Russian Federation); Teryaev, O.V., E-mail: teryaev@theor.jinr.ru [Joint Institute for Nuclear Research, Dubna, 141980 (Russian Federation); National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), Kashirskoe highway, 31, 115409 Moscow (Russian Federation)
2016-10-10
We explore the energy dependence of π mesons off the background Abelian magnetic field on the base of quenched SU(3) lattice gauge theory and calculate the magnetic dipole polarizability of charged and neutral pions for various lattice volumes and lattice spacings. The contribution of the magnetic hyperpolarizability to the neutral pion energy has been also found.
Reinholdt, Peter; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard
2017-01-01
We analyze the performance of the polarizable density embedding (PDE) model-a new multiscale computational approach designed for prediction and rationalization of general molecular properties of large and complex systems. We showcase how the PDE model very effectively handles the use of large...
Spin polarizability of hyperons
K B VIJAYA KUMAR. Department of Physics, Mangalore University, Mangalagangothri 574 199, India. E-mail: kbvijayakumar@yahoo.com. DOI: 10.1007/s12043-014-0869-4; ePublication: 4 November 2014. Abstract. We review the recent progress of the theoretical understanding of spin polarizabilities of the hyperon in the ...
Adaptive phase measurements in linear optical quantum computation
Ralph, T C; Lund, A P; Wiseman, H M
2005-01-01
Photon counting induces an effective non-linear optical phase shift in certain states derived by linear optics from single photons. Although this non-linearity is non-deterministic, it is sufficient in principle to allow scalable linear optics quantum computation (LOQC). The most obvious way to encode a qubit optically is as a superposition of the vacuum and a single photon in one mode-so-called 'single-rail' logic. Until now this approach was thought to be prohibitively expensive (in resources) compared to 'dual-rail' logic where a qubit is stored by a photon across two modes. Here we attack this problem with real-time feedback control, which can realize a quantum-limited phase measurement on a single mode, as has been recently demonstrated experimentally. We show that with this added measurement resource, the resource requirements for single-rail LOQC are not substantially different from those of dual-rail LOQC. In particular, with adaptive phase measurements an arbitrary qubit state α vertical bar 0>+β vertical bar 1> can be prepared deterministically
Optical linear algebra processors - Noise and error-source modeling
Casasent, D.; Ghosh, A.
1985-01-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Optical linear algebra processors: noise and error-source modeling.
Casasent, D; Ghosh, A
1985-06-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Silver Nanoparticles with Broad Multiband Linear Optical Absorption
Bakr, Osman M.
2009-07-06
A simple one-pot method produces silver nanoparticles coated with aryl thiols that show intense, broad nonplasmonic optical properties. The synthesis works with many aryl-thiol capping ligands, including water-soluble 4-mercaptobenzoic acid. The nanoparticles produced show linear absorption that is broader, stronger, and more structured than most conventional organic and inorganic dyes.
Silver Nanoparticles with Broad Multiband Linear Optical Absorption
Bakr, Osman M.; Amendola, Vincenzo; Aikens, Christine M.; Wenseleers, Wim; Li, Rui; Dal Negro, Luca; Schatz, George C.; Stellacci, Francesco
2009-01-01
A simple one-pot method produces silver nanoparticles coated with aryl thiols that show intense, broad nonplasmonic optical properties. The synthesis works with many aryl-thiol capping ligands, including water-soluble 4-mercaptobenzoic acid. The nanoparticles produced show linear absorption that is broader, stronger, and more structured than most conventional organic and inorganic dyes.
Proposal of Realization Restricted Quantum Game with Linear Optic Method
Zhao Haijun; Fang Ximing
2006-01-01
We present a quantum game with the restricted strategic space and its realization with linear optical system, which can be played by two players who are separated remotely. This game can also be realized on any other quantum computers. We find that the constraint brings some interesting properties that are useful for making game models.
Utilizing encoding in scalable linear optics quantum computing
Hayes, A J F; Gilchrist, A; Myers, C R; Ralph, T C
2004-01-01
We present a scheme which offers a significant reduction in the resources required to implement linear optics quantum computing. The scheme is a variation of the proposal of Knill, Laflamme and Milburn, and makes use of an incremental approach to the error encoding to boost probability of success
Linear and nonlinear optical spectroscopy: Spectral, temporal and spatial resolution
Hvam, Jørn Marcher
1997-01-01
Selected linear and nonlinear optical spectroscopies are being described with special emphasis on the possibility of obtaining simultaneous spectral, temporal and spatial resolution. The potential of various experimental techniques is being demonstrated by specific examples mostly taken from inve...... investigations of the electronic, and opto-electronic, properties of semiconductor nanostructures....
Instrumentation for Linear and Nonlinear Optical Device Characterization
2018-01-31
distribution is Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Pl has acquired six pieces of equipment to extend capabilities for linear and nonlinear...optical spectral analysis • Frequency comb generation in mid-infrared Accomplishments Six major pieces of equipment have been ordered and received
McDONALD OBSERVATORY ARCHIVE OF OPTICAL LINEAR POLARIZATION MEASUREMENTS
Wills, Beverley J.; Wills, D.; Breger, M.
2011-01-01
We present 990 previously unpublished optical linear polarization measurements of quasars, active galactic nuclei, and some stars observed for interstellar polarization. The observations, covering the period 1981-2000, were made with McDonald Observatory's 2.1 m Struve reflector and the Breger photopolarimeter.
Linear optical response of carbon nanotubes under axial magnetic field
Moradian, Rostam; Chegel, Raad; Behzad, Somayeh
2010-04-01
We considered single walled carbon naotubes (SWCNTs) as real three dimensional (3D) systems in a cylindrical coordinate. The optical matrix elements and linear susceptibility, χ(ω), in the tight binding approximation in terms of one-dimensional wave vector, kz and subband index, l are calculated. In an external axial magnetic field optical frequency dependence of linear susceptibility are investigated. We found that axial magnetic field has two effects on the imaginary part of the linear susceptibility spectrum, in agreement with experimental results. The first effect is broadening and the second, splitting. Also we found that for all metallic zigzag and armchair SWCNTs, the axial magnetic field leads to the creation of a peak with energy less than 1.5 eV, contrary to what is observed in the absence of a magnetic field.
Small-scale quantum information processing with linear optics
Bergou, J.A.; Steinberg, A.M.; Mohseni, M.
2005-01-01
Full text: Photons are the ideal systems for carrying quantum information. Although performing large-scale quantum computation on optical systems is extremely demanding, non scalable linear-optics quantum information processing may prove essential as part of quantum communication networks. In addition efficient (scalable) linear-optical quantum computation proposal relies on the same optical elements. Here, by constructing multirail optical networks, we experimentally study two central problems in quantum information science, namely optimal discrimination between nonorthogonal quantum states, and controlling decoherence in quantum systems. Quantum mechanics forbids deterministic discrimination between nonorthogonal states. This is one of the central features of quantum cryptography, which leads to secure communications. Quantum state discrimination is an important primitive in quantum information processing, since it determines the limitations of a potential eavesdropper, and it has applications in quantum cloning and entanglement concentration. In this work, we experimentally implement generalized measurements in an optical system and demonstrate the first optimal unambiguous discrimination between three non-orthogonal states with a success rate of 55 %, to be compared with the 25 % maximum achievable using projective measurements. Furthermore, we present the first realization of unambiguous discrimination between a pure state and a nonorthogonal mixed state. In a separate experiment, we demonstrate how decoherence-free subspaces (DFSs) may be incorporated into a prototype optical quantum algorithm. Specifically, we present an optical realization of two-qubit Deutsch-Jozsa algorithm in presence of random noise. By introduction of localized turbulent airflow we produce a collective optical dephasing, leading to large error rates and demonstrate that using DFS encoding, the error rate in the presence of decoherence can be reduced from 35 % to essentially its pre
Ultra-high Frequency Linear Fiber Optic Systems
Lau, Kam Y
2009-01-01
Designed for a one-semester course on fiber-optics systems and communication links, this book provides a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers.
Spin and diamagnetism in linear and nonlinear optics
Andersen, Torsten; Keller, Ole; Huebner, Wolfgang; Johansson, Boerje
2004-01-01
We present a local-field theory for spin and diamagnetism in linear and nonlinear optics. We examine all the processes contained in the Pauli Hamiltonian and its corresponding microscopic current density, including the terms depending on the electron spin. The resulting general real-space conductivities are presented and discussed. To quantify the implications of including the spin, we study the linear and nonlinear optical properties of free-electron metals, represented by the screened homogeneous electron gas. The real-space formalism is transformed into Fourier space, and the symmetries of the linear and nonlinear optical conductivities in a homogeneous electron gas are discussed. Numerical results are presented for the homogeneous electron gas, in which we treat ω and q as independent variables, thereby opening the theory to near-field optics and the study of evanescent waves. We show that in regions of the ω-q spectrum, the presence of diamagnetism and spin dynamics significantly alters the response in comparison to considering only the paramagnetic response. Additionally, we discuss the effects of screening, and we finish our treatment by a discussion of how to connect the present theory to existing methods in ab initio solid-state physics
Matrix preconditioning: a robust operation for optical linear algebra processors.
Ghosh, A; Paparao, P
1987-07-15
Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.
Ng, Albert H.
2011-01-24
To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol -1] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 Copyright © 2011 Wiley Periodicals, Inc.
Fault tolerance in parity-state linear optical quantum computing
Hayes, A. J. F.; Ralph, T. C.; Haselgrove, H. L.; Gilchrist, Alexei
2010-01-01
We use a combination of analytical and numerical techniques to calculate the noise threshold and resource requirements for a linear optical quantum computing scheme based on parity-state encoding. Parity-state encoding is used at the lowest level of code concatenation in order to efficiently correct errors arising from the inherent nondeterminism of two-qubit linear-optical gates. When combined with teleported error-correction (using either a Steane or Golay code) at higher levels of concatenation, the parity-state scheme is found to achieve a saving of approximately three orders of magnitude in resources when compared to the cluster state scheme, at a cost of a somewhat reduced noise threshold.
One-step deterministic multipartite entanglement purification with linear optics
Sheng, Yu-Bo [Department of Physics, Tsinghua University, Beijing 100084 (China); Long, Gui Lu, E-mail: gllong@tsinghua.edu.cn [Department of Physics, Tsinghua University, Beijing 100084 (China); Center for Atomic and Molecular NanoSciences, Tsinghua University, Beijing 100084 (China); Key Laboratory for Quantum Information and Measurements, Beijing 100084 (China); Deng, Fu-Guo [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China)
2012-01-09
We present a one-step deterministic multipartite entanglement purification scheme for an N-photon system in a Greenberger–Horne–Zeilinger state with linear optical elements. The parties in quantum communication can in principle obtain a maximally entangled state from each N-photon system with a success probability of 100%. That is, it does not consume the less-entangled photon systems largely, which is far different from other multipartite entanglement purification schemes. This feature maybe make this scheme more feasible in practical applications. -- Highlights: ► We proposed a deterministic entanglement purification scheme for GHZ states. ► The scheme uses only linear optical elements and has a success probability of 100%. ► The scheme gives a purified GHZ state in just one-step.
Unconditional quantum cloning of coherent states with linear optics
Leuchs, G.; Andersen, U.L.; Josse, V.
2005-01-01
Intense light pulses with non-classical properties are used to implement protocols for quantum communication. Most of the elements in the tool box needed to assemble the experimental set-ups for these protocols are readily described by Bogoliubov transformations corresponding to Gaussian transformations that map Gaussian states onto Gaussian states. One particularly interesting application is quantum cloning of a coherent state. A scheme for optimal Gaussian cloning of optical coherent states is proposed and experimentally demonstrated. Its optical realization is based entirely on simple linear optical elements and homodyne detection. The optimality of the presented scheme is only limited by detection inefficiencies. Experimentally we achieved a cloning fidelity of about 65%, which almost touches the optimal value of 2/3. (author)
Preserving Simplecticity in the Numerical Integration of Linear Beam Optics
Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-07-01
Presented are mathematical tools and methods for the development of numerical integration techniques that preserve the symplectic condition inherent to mechanics. The intended audience is for beam physicists with backgrounds in numerical modeling and simulation with particular attention to beam optics applications. The paper focuses on Lie methods that are inherently symplectic regardless of the integration accuracy order. Section 2 provides the mathematically tools used in the sequel and necessary for the reader to extend the covered techniques. Section 3 places those tools in the context of charged-particle beam optics; in particular linear beam optics is presented in terms of a Lie algebraic matrix representation. Section 4 presents numerical stepping techniques with particular emphasis on a third-order leapfrog method. Section 5 discusses the modeling of field imperfections with particular attention to the fringe fields of quadrupole focusing magnets. The direct computation of a third order transfer matrix for a fringe field is shown.
Polycarbonate-Based Blends for Optical Non-linear Applications
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Density Functional Studies of Molecular Polarizabilities. 7. Anthracene and Phenanthrene
Humberto J. Soscun Machado
2000-03-01
Full Text Available We report accurate Ab Initio studies of the static dipole polarizabilities of anthracene and phenanthrene. Geometries were optimized at the HF/6-311G(3d,2p level of theory. Dipole polarizabilities were calculated at the HF/6-311++G(3d,2p and BLYP/6-311++G(3d,2p levels of theory, using HF/6-311G(3d,2p geometries. The calculated dipole polarizabilities for anthracene are compared with experiment. Inclusion of electron correlation using the BLYP procedure increases the L and M components of the dipole polarizability, but not the perpendicular (N component. Examination of corresponding BLYP results for the polyacene series benzene, naphthalene and anthracene shows that the normal component of the dipole polarizability scales linearly with the number of benzene ring units, with an increment of 20.8 au. The medium component also scales linearly with an increment of 42.8 atomic units. The long component does not scale linearly. Semi-emiprical AM1 calculations are also given for comparison; the normal component of the dipole polarizability tensor is poorly represented by such calculations.
Lu, Shih-I.
2018-01-01
We use the discrete solvent reaction field model to evaluate the linear and second-order nonlinear optical susceptibilities of 3-methyl-4-nitropyridine-1-oxyde crystal. In this approach, crystal environment is created by supercell architecture. A self-consistent procedure is used to obtain charges and polarizabilities for environmental atoms. Impact of atomic polarizabilities on the properties of interest is highlighted. This approach is shown to give the second-order nonlinear optical susceptibilities within error bar of experiment as well as the linear optical susceptibilities in the same order as experiment. Similar quality of calculations are also applied to both 4-N,N-dimethylamino-3-acetamidonitrobenzene and 2-methyl-4-nitroaniline crystals.
The polarizability of diatomic helium. Ph.D. Thesis
Fortune, P. J.
1974-01-01
The calculation of the electric dipole polarizability tensor of the He 2 dimer is described, and the results are used in the computation of several dielectric and optical properties of helium gas, at both high (322 K) and low (4 K) temperatures. The properties considered are the second dielectric virial coefficient, the second Kerr virial coefficient, and the depolarization ratio of the integrated intensities for the Raman scattering experiments. The thesis consists of five parts: the polarizability and various properties are defined; the calculation of the polarizability in the long-range region in terms of a quantum mechanical multipole expansion is described; the calculation of the He2 polarizability in the overlap region via coupled Hartree-Fock perturbation theory is described; the calculation of the quantum pair distribution function for both the He-3 and He-4 isotopes at 4 K is discussed; and the calculated values of the properties of helium gas are given.
High-Dimensional Quantum Information Processing with Linear Optics
Fitzpatrick, Casey A.
Quantum information processing (QIP) is an interdisciplinary field concerned with the development of computers and information processing systems that utilize quantum mechanical properties of nature to carry out their function. QIP systems have become vastly more practical since the turn of the century. Today, QIP applications span imaging, cryptographic security, computation, and simulation (quantum systems that mimic other quantum systems). Many important strategies improve quantum versions of classical information system hardware, such as single photon detectors and quantum repeaters. Another more abstract strategy engineers high-dimensional quantum state spaces, so that each successful event carries more information than traditional two-level systems allow. Photonic states in particular bring the added advantages of weak environmental coupling and data transmission near the speed of light, allowing for simpler control and lower system design complexity. In this dissertation, numerous novel, scalable designs for practical high-dimensional linear-optical QIP systems are presented. First, a correlated photon imaging scheme using orbital angular momentum (OAM) states to detect rotational symmetries in objects using measurements, as well as building images out of those interactions is reported. Then, a statistical detection method using chains of OAM superpositions distributed according to the Fibonacci sequence is established and expanded upon. It is shown that the approach gives rise to schemes for sorting, detecting, and generating the recursively defined high-dimensional states on which some quantum cryptographic protocols depend. Finally, an ongoing study based on a generalization of the standard optical multiport for applications in quantum computation and simulation is reported upon. The architecture allows photons to reverse momentum inside the device. This in turn enables realistic implementation of controllable linear-optical scattering vertices for
Applied research of quantum information based on linear optics
Xu, Xiao-Ye
2016-01-01
This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.
Applied research of quantum information based on linear optics
Xu, Xiao-Ye
2016-08-01
This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.
Johnsen, Kristinn; Jauho, Antti-Pekka
1998-01-01
We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor structures. A general theoretical framework, based on nonequilibrium Green functions, is formulated and applied to the calculation of linear optical absorption spectrum for several...
Resource-efficient generation of linear cluster states by linear optics with postselection
Uskov, D B; Alsing, P M; Fanto, M L; Szep, A; Smith, A M; Kaplan, L; Kim, R
2015-01-01
We report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon–photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneous detection of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to (1/2) n−1 ; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of (1/4) m−1 . (paper)
A noble refractive optical scanner with linear response
Mega, Yair J.; Lai, Zhenhua; DiMarzio, Charles A.
2013-03-01
Many applications in various fields of science and engineering use steered optical beam systems. Currently, many methods utilize mirrors in order to steer the beam. However, this approach is an off-axis solution, which normally increases the total size of the system as well as its error and complexity. Other methods use a "Risely Prisms" based solution, which is on-axis solution, however it poses some difficulties from an engineering standpoint, and therefore isn't widely used. We present here a novel technique for steering a beam on its optical axis with a linear deflection response. We derived the formulation for the profile required of the refractive optical component necessary for preforming the beam steering. The functionality of the device was simulated analytically using Matlab, as well as using a ray-tracing software, Zemax, and showed agreement with the analytical model. An optical element was manufactured based on the proposed design and the device was tested. The results show agreement with our hypothesis. We also present some proposed geometries of the several other devices, all based on the same concept, which can be used for higher performance applications such as two-dimensional scanner, video rate scanner etc.
Linear Optics From Closed Orbits (LOCO): An Introduction
Safranek, James
2009-01-01
The LOCO code is used to find and correct errors in the linear optics of storage rings. The original FORTRAN code was written to correct the optics of the NSLS X-Ray ring, and was applied soon thereafter to debug problems with the ALS optics. The ideas used in the code were developed from previous work at SLAC. Several years ago, LOCO was rewritten in MATLAB. As described in this newsletter, the MATLAB version includes a user-friendly interface, with many useful fitting and analysis options. LOCO has been used at many accelerators. Presently, a search for LOCO in the text of papers on the Joint Accelerator Conferences Website yields 107 papers. A comprehensive survey of applications will not be included here. Details of recent results at a few light sources are included in this newsletter. In the past, the quality of LOCO fitting results varied significantly, depending on the storage ring. In particular, the results were mixed for colliding beam facilities, where there tend to be fewer BPMs that in light sources. Fitting rings with less BPM data to constrain the fit optics parameters often led to unreasonably large fit quadrupole gradient variations. Recently, modifications have been made to the LOCO fitting algorithm which leads to much better results when the BPM data does not tightly constrain the fit parameters. The modifications are described in this newsletter, and an example of results with this new algorithm is included.
Wavefront Sensing for WFIRST with a Linear Optical Model
Jurling, Alden S.; Content, David A.
2012-01-01
In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.
Polarizability sum rules in QED
Llanta, E.; Tarrach, R.
1978-01-01
The well founded total photoproduction and the, assumed subtraction free, longitudinal photoproduction polarizability sum rules are checked in QED at the lowest non-trivial order. The first one is shown to hold, whereas the second one turns out to need a subtraction, which makes its usefulness for determining the electromagnetic polarizabilities of the nucleons quite doubtful. (Auth.)
Negative base encoding in optical linear algebra processors
Perlee, C.; Casasent, D.
1986-01-01
In the digital multiplication by analog convolution algorithm, the bits of two encoded numbers are convolved to form the product of the two numbers in mixed binary representation; this output can be easily converted to binary. Attention is presently given to negative base encoding, treating base -2 initially, and then showing that the negative base system can be readily extended to any radix. In general, negative base encoding in optical linear algebra processors represents a more efficient technique than either sign magnitude or 2's complement encoding, when the additions of digitally encoded products are performed in parallel.
IR Optics Measurement with Linear Coupling's Action-Angle Parameterization
Luo, Yun; Pilat, Fulvia Caterina; Satogata, Todd; Trbojevic, Dejan
2005-01-01
The interaction region (IP) optics are measured with the two DX/BPMs close to the IPs at the Relativistic Heavy Ion Collider (RHIC). The beta functions at IP are measured with the two eigenmodes' phase advances between the two BPMs. And the beta waists are also determined through the beta functions at the two BPMs. The coupling parameters at the IPs are also given through the linear coupling's action-angle parameterization. All the experimental data are taken during the driving oscillations with the AC dipole. The methods to do these measurements are discussed. And the measurement results during the beta*
Structure/property relationships in non-linear optical materials
Cole, J M [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); [Durham Univ. (United Kingdom); Howard, J A.K. [Durham Univ. (United Kingdom); McIntyre, G J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.
Validation of PM6 & PM7 semiempirical methods on polarizability calculations
Praveen, P. A.; Babu, R. Ramesh; Ramamurthi, K.
2015-06-01
Modern semiempirical methods such as PM6 and PM7 are often used to explore the electronic structure dependent properties of molecules. In this work we report the evaluation of PM6 and PM7 methods towards linear and nonlinear optical polarizability calculations for different molecules and solid nanoclusters. The results are compared with reported experimental results as well as theoretical results from other high level theories for the same systems. It is found that both methods produce accurate results for small molecules and the accuracy increases with the increase in asymmetry of the medium sized organic molecules and accuracy reduces for solid nanoclusters.
Validation of PM6 & PM7 semiempirical methods on polarizability calculations
Praveen, P. A.; Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli-620024, Tamilnadu (India); Ramamurthi, K. [Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur – 603 203, Tamil Nadu (India)
2015-06-24
Modern semiempirical methods such as PM6 and PM7 are often used to explore the electronic structure dependent properties of molecules. In this work we report the evaluation of PM6 and PM7 methods towards linear and nonlinear optical polarizability calculations for different molecules and solid nanoclusters. The results are compared with reported experimental results as well as theoretical results from other high level theories for the same systems. It is found that both methods produce accurate results for small molecules and the accuracy increases with the increase in asymmetry of the medium sized organic molecules and accuracy reduces for solid nanoclusters.
Validation of PM6 & PM7 semiempirical methods on polarizability calculations
Praveen, P. A.; Babu, R. Ramesh; Ramamurthi, K.
2015-01-01
Modern semiempirical methods such as PM6 and PM7 are often used to explore the electronic structure dependent properties of molecules. In this work we report the evaluation of PM6 and PM7 methods towards linear and nonlinear optical polarizability calculations for different molecules and solid nanoclusters. The results are compared with reported experimental results as well as theoretical results from other high level theories for the same systems. It is found that both methods produce accurate results for small molecules and the accuracy increases with the increase in asymmetry of the medium sized organic molecules and accuracy reduces for solid nanoclusters
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems
Downie, John D.; Goodman, Joseph W.
1989-10-01
The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.
Kuindersma, P.I.; Leijtens, X.J.M.; Zantvoort, van J.H.C.; Waardt, de H.
2012-01-01
We characterize integrated InP circuits for high speed ‘all-optical’ signal processing. Single chip circuits act as optical transistors. Transmodulation is performed by non-linear gain sections. Integrated tunable filters give signal equalization in time domain.
Navarrete-Benlloch, Carlos; Roldán, Eugenio; Chang, Yue; Shi, Tao
2014-10-06
Nonlinear optical cavities are crucial both in classical and quantum optics; in particular, nowadays optical parametric oscillators are one of the most versatile and tunable sources of coherent light, as well as the sources of the highest quality quantum-correlated light in the continuous variable regime. Being nonlinear systems, they can be driven through critical points in which a solution ceases to exist in favour of a new one, and it is close to these points where quantum correlations are the strongest. The simplest description of such systems consists in writing the quantum fields as the classical part plus some quantum fluctuations, linearizing then the dynamical equations with respect to the latter; however, such an approach breaks down close to critical points, where it provides unphysical predictions such as infinite photon numbers. On the other hand, techniques going beyond the simple linear description become too complicated especially regarding the evaluation of two-time correlators, which are of major importance to compute observables outside the cavity. In this article we provide a regularized linear description of nonlinear cavities, that is, a linearization procedure yielding physical results, taking the degenerate optical parametric oscillator as the guiding example. The method, which we call self-consistent linearization, is shown to be equivalent to a general Gaussian ansatz for the state of the system, and we compare its predictions with those obtained with available exact (or quasi-exact) methods. Apart from its operational value, we believe that our work is valuable also from a fundamental point of view, especially in connection to the question of how far linearized or Gaussian theories can be pushed to describe nonlinear dissipative systems which have access to non-Gaussian states.
Linear and Non-Linear Optical Imaging of Cancer Cells with Silicon Nanoparticles
Tolstik, Elen; Osminkina, Liubov A.; Akimov, Denis; Gongalsky, Maksim B.; Kudryavtsev, Andrew A.; Timoshenko, Victor Yu.; Heintzmann, Rainer; Sivakov, Vladimir; Popp, Jürgen
2016-01-01
New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10–40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy. Additionally, the nonlinear optical methods of two-photon excited fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS) with infrared laser excitation were applied to study the localisation of SiNPs in cells. Advantages of the nonlinear methods, such as rapid imaging, which prevents cells from overheating and larger penetration depth compared to the single-photon excited HR-SIM, are discussed. The obtained results reveal new perspectives of the multimodal visualisation and precise detection of the uptake of biodegradable non-toxic SiNPs by cancer cells and they are discussed in view of future applications for the optical diagnostics of cancer tumours. PMID:27626408
Parity nonconservation and nuclear polarizabilities
Haxton, W.
1990-01-01
The hadronic weak interaction contributes to parity nonconserving observables in semileptonic interactions. Weak nuclear polarizabilities are frequently important in such interactions. Some of the interesting physics is illustrated by 18 F, a nucleus that provides an important constraint on the neutral weak hadronic current. One observable where the nuclear polarizability is expected to dominate is the nuclear anapole moment. The long-range pion contribution to this weak radiative correction is explored for both nucleons and nuclei. Similar polarizabilities that arise for time-reversal-odd hadronic interactions that conserve or violate parity are discussed in connection with atomic electric dipole moments. 20 refs., 4 figs
Pion electromagnetic polarizabilities and quarks
Llanta, E.; Tarrach, R.
1980-01-01
The electric and magnetic polarizabilities of the neutral and charged pion are calculated in a coloured quark field theory at the one-loop level. The theory has as free parameter the quark mass but our results do not depend on it. We have found that the electric polarizabilities are αsub(π+-) = -0.04 α/m 3 sub(π), αsub(π 0 ) = -0.4 α/m 3 sub(π). These values are compared with calculations in other models and some comments are made about the polarizability sum rules. (orig.)
Maksimenko, N V [Gomel& #x27; skij Gosudarstvennyj Univ. im. F.Skoriny, Gomel (Belarus); Kuchin, S M [Filial Bryanskogo Gosudarstvennogo Univ. im. akademika I.G.Petrovskogo, Novozybkov (Russian Federation)
2012-07-01
In the paper the calculation is performed of the generalized and static polarizability of charged pions, which are considered as a relativistic system of two point spinor quarks with the linear interaction potential. The question of the relationship between static electricity and generalized polarizabilities of pions in the framework of this approach is studied.
IR OPTICS MEASUREMENT WITH LINEAR COUPLING'S ACTION-ANGLE PARAMETERIZATION
LUO, Y.; BAI, M.; PILAT, R.; SATOGATA, T.; TRBOJEVIC, D.
2005-01-01
A parameterization of linear coupling in action-angle coordinates is convenient for analytical calculations and interpretation of turn-by-turn (TBT) beam position monitor (BPM) data. We demonstrate how to use this parameterization to extract the twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of the long IR drift region. The example of TBT BPM analysis was acquired at the Relativistic Heavy Ion Collider (RHIC), using an AC dipole to excite a single eigenmode. Besides the full treatment, a fast estimate of beta*, the beta function at the interaction point (IP), is provided, along with the phase advance between these BPMs. We also calculate and measure the waist of the beta function and the local optics
Linear optical quantum computing in a single spatial mode.
Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A
2013-10-11
We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.
Linear Optical Response of Silicon Nanotubes Under Axial Magnetic Field
Chegel, Raad; Behzad, Somayeh
2013-01-01
We investigated the optical properties of silicon nanotubes (SiNTs) in the low energy region, E < 0.5 eV, and middle energy region, 1.8 eV < E < 2 eV. The dependence of optical matrix elements and linear susceptibility on radius and magnetic field, in terms of one-dimensional (1-d) wavevector and subband index, is calculated using the tight-binding approximation. It is found that, on increasing the nanotube diameter, the low-energy peaks show red-shift and their intensities are decreased. Also, we found that in the middle energy region all tubes have two distinct peaks, where the energy position of the second peak is approximately constant and independent of the nanotube diameter. Comparing the band structure of these tubes in different magnetic fields, several differences are clearly seen, such as splitting of degenerate bands, creation of additional band-edge states, and bandgap modification. It is found that applying the magnetic field leads to a phase transition in zigzag silicon hexagonal nanotubes (Si h-NTs), unlike in zigzag silicon gear-like nanotubes (Si g-NTs), which remain semiconducting in any magnetic field. We found that the axial magnetic field has two effects on the linear susceptibility spectrum, namely broadening and splitting. The axial magnetic field leads to the creation of a peak with energy less than 0.2 eV in metallic Si h-NTs, whereas in the absence of a magnetic field such a transition is not allowed.
Smirnov, Mikhail; Mirgorodsky, Andrei; Masson, Olivier; Thomas, Philippe
2012-09-20
The effects of intermolecular interactions of TeO(2) molecules in the (TeO(2))(n) oligomers on the polarizability (α) and second hyperpolarizability (γ) are investigated by the use of a density functional method. A significant intermolecular distance dependence of both quantities is observed. The huge dissociation-induced polarizability enhancement is analyzed in terms of the molecular orbital evolution. It is shown that the obtained results can provide a new look at the microscopic origin of the extraordinary dielectric properties of TeO(2) glass.
Linear position sensitive neutron detector using fiber optic encoded scintillators
Davidson, P.L.; Wroe, H.
1983-01-01
A linear position sensitive slow neutron detector with 3 mm resolution is described. It uses the fiber optic coding principle in which the resolution elements are separate pieces of lithium loaded glass scintillator each coupled by means of flexible polymer optical fibers to a unique combination of 3 photo multipliers (PM's) out of a bank of 12. A decoder circuit repsponds to a triple coincidence between PM outputs and generates a 12 bit work which identifies the scintillator element which stopped the incident neutron. Some details of the construction and decoding electronics are given together with test results obtained using a laboratory isotope neutron source and a monochomated, collimated neutron beam from a reactor. The count rate in the absence of neutron sources is 2 to 3 c min - 1 per element; the element to element variation in response to a uniform flux is a few percent for 95% of the elements; the resolution as measured by a 1 mm wide prode neutron beam is 3 mm; the relative long term stability is about 0.1% over 3 days and the detection efficiency measured by comparison with an end windowed, high pressure gas counter is about 65% at a neutron wavelength of 0.9A 0
Pion polarizabilities measurement at COMPASS
Guskov, Alexey
2008-01-01
The electromagnetic structure of pions is probed in $\\pi^{−}+(A,Z) \\rightarrow\\pi^{−}+(A,Z)+\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric ($\\bar{\\alpha_{\\pi}}$) and the magnetic ($\\bar{\\beta_{\\pi}}$) polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of pointlike pions with the measured cross section. The pion polarizability measurement was performed with a $\\pi^{-}$ beam of 190 GeV. The high beam intensity, the good spectrometer resolution, the high rate capability, the high acceptance and the possibility to use pion and muon beams, unique to the COMPASS experiment, provide the tools to measure precisely the pion polarizabilities in the Primakoff reaction.
Superradiance Effects in the Linear and Nonlinear Optical Response of Quantum Dot Molecules
Sitek, A.; Machnikowski, P.
2008-11-01
We calculate the linear optical response from a single quantum dot molecule and the nonlinear, four-wave-mixing response from an inhomogeneously broadened ensemble of such molecules. We show that both optical signals are affected by the coupling-dependent superradiance effect and by optical interference between the two polarizations. As a result, the linear and nonlinear responses are not identical.
Model Hamiltonian Calculations of the Nonlinear Polarizabilities of Conjugated Molecules.
Risser, Steven Michael
This dissertation advances the theoretical knowledge of the nonlinear polarizabilities of conjugated molecules. The unifying feature of these molecules is an extended delocalized pi electron structure. The pi electrons dominate the electronic properties of the molecules, allowing prediction of molecular properties based on the treatment of just the pi electrons. Two separate pi electron Hamiltonians are used in the research. The principal Hamiltonian used is the non-interacting single-particle Huckel Hamiltonian, which replaces the Coulomb interaction among the pi electrons with a mean field interaction. The simplification allows for exact solution of the Hamiltonian for large molecules. The second Hamiltonian used for this research is the interacting multi-particle Pariser-Parr-Pople (PPP) Hamiltonian, which retains explicit Coulomb interactions. This limits exact solutions to molecules containing at most eight electrons. The molecular properties being investigated are the linear polarizability, and the second and third order hyperpolarizabilities. The hyperpolarizabilities determine the nonlinear optical response of materials. These molecular parameters are determined by two independent approaches. The results from the Huckel Hamiltonian are obtained through first, second and third order perturbation theory. The results from the PPP Hamiltonian are obtained by including the applied field directly in the Hamiltonian and determining the ground state energy at a series of field strengths. By fitting the energy to a polynomial in field strength, the polarizability and hyperpolarizabilities are determined. The Huckel Hamiltonian is used to calculate the third order hyperpolarizability of polyenes. These calculations were the first to show the average hyperpolarizability of the polyenes to be positive, and also to show the saturation of the hyperpolarizability. Comparison of these Huckel results to those from the PPP Hamiltonian shows the lack of explicit Coulomb
Optically stimulated luminescence from quartz measured using the linear modulation technique
Bulur, E.; Bøtter-Jensen, L.; Murray, A.S.
2000-01-01
The optically stimulated luminescence (OSL) from heated natural quartz has been investigated using the linear modulation technique (LMT), in which the excitation light intensity is increased linearly during stimulation. In contrast to conventional stimulation, which usually produces a monotonical...
Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.
Krause, Katharina; Klopper, Wim
2016-01-28
A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.
Communication: A simplified coupled-cluster Lagrangian for polarizable embedding
Krause, Katharina; Klopper, Wim
2016-01-01
A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian
Pion polarizabilities measurement at COMPASS
Guskov, Alexey
2008-01-01
The electromagnetic structure of pions is probed in $\\pi^{−} + (A,Z)\\rightarrow\\pi^{−} + (A,Z) +\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\bar{\\alpha_{\\pi}})$ and the magnetic $(\\bar{\\beta_{\\pi}})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of pointlike pions with the measured cross section. The pion polarizability measurement was performed with $a \\pi^{−}$ beam of 190 GeV. The high beam intensity, the good spectrometer resolution, the high rate capability, the high acceptance and the possibility to use pion and muon beams, unique to the COMPASS experiment, provide the tools to measure precisely the pion polarizabilities in the Primakoff reaction. The preliminary result for pion polarizabilities under the assumption of $\\bar{\\alpha_{\\pi}} + \\bar{\\beta_{\\pi}} =$ 0 is $\\ba...
Linear and nonlinear optical properties of borate crystals as ...
Unknown
crystal series, with an accuracy acceptable for materials development/design, and answer the questions often ... Optical property; nonlinear optical crystals; first principles calculation. 1. ..... system, and is not in concept suitable to excitation pro-.
Non-linear optical imaging – Introduction and pharmaceutical applications
Fussell, A.L.; Isomaki, Antti; Strachan, Clare J.
2013-01-01
Nonlinear optical imaging is an emerging technology with much potential in pharmaceutical analysis. The technique encompasses a range of optical phenomena, including coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and twophoton excited fluorescence (TPEF). The
Quantitative analysis of eyes and other optical systems in linear optics.
Harris, William F; Evans, Tanya; van Gool, Radboud D
2017-05-01
To show that 14-dimensional spaces of augmented point P and angle Q characteristics, matrices obtained from the ray transference, are suitable for quantitative analysis although only the latter define an inner-product space and only on it can one define distances and angles. The paper examines the nature of the spaces and their relationships to other spaces including symmetric dioptric power space. The paper makes use of linear optics, a three-dimensional generalization of Gaussian optics. Symmetric 2 × 2 dioptric power matrices F define a three-dimensional inner-product space which provides a sound basis for quantitative analysis (calculation of changes, arithmetic means, etc.) of refractive errors and thin systems. For general systems the optical character is defined by the dimensionally-heterogeneous 4 × 4 symplectic matrix S, the transference, or if explicit allowance is made for heterocentricity, the 5 × 5 augmented symplectic matrix T. Ordinary quantitative analysis cannot be performed on them because matrices of neither of these types constitute vector spaces. Suitable transformations have been proposed but because the transforms are dimensionally heterogeneous the spaces are not naturally inner-product spaces. The paper obtains 14-dimensional spaces of augmented point P and angle Q characteristics. The 14-dimensional space defined by the augmented angle characteristics Q is dimensionally homogenous and an inner-product space. A 10-dimensional subspace of the space of augmented point characteristics P is also an inner-product space. The spaces are suitable for quantitative analysis of the optical character of eyes and many other systems. Distances and angles can be defined in the inner-product spaces. The optical systems may have multiple separated astigmatic and decentred refracting elements. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Double-polarizating scanning radiometer
Mishev, D.N.; Nazyrski, T.G.
1986-01-01
The double-polarizating single-channel scanning radiometer comprises the following serial connected parts: a scanning double-polarizating aerial, a block for polarization separation, a radiometer receiver, an analog-to-digit converter and an information flow forming block. The low frequency input of the radiometer receiver is connected with a control block, which is also connected with a first bus of a microprocessor, the second bus of which is connected with the A-D converter. The control input of the scanning double-polarizating aerial is connected with the first microprocessor bus. The control inputs of the block for polarization separation are linked by an electronic switch with the output of the forming block, the input of which is connected to the first input of the control block. The control inputs of the block for polarization separation are connected with the second and the third input of the information flow forming block. 2 cls
Liao, Ruolin; Wu, Zhichao; Fu, Songnian; Zhu, Shengnan; Yu, Zhe; Tang, Ming; Liu, Deming
2018-02-01
Although the linear optical sampling (LOS) technique is powerful enough to characterize various advanced modulation formats with high symbol rates, the central wavelength of a pulsed local oscillator (LO) needs to be carefully set according to that of the signal under test, due to the coherent mixing operation. Here, we experimentally demonstrate wideband LOS enabled by a fiber optics frequency comb (FOFC). Meanwhile, when the broadband FOFC acts as the pulsed LO, we propose a scheme to mitigate the enhanced sampling error arising in the non-ideal response of a balanced photodetector. Finally, precise characterizations of arbitrary 128 Gbps PDM-QPSK wavelength channels from 1550 to 1570 nm are successfully achieved, when a 101.3 MHz frequency spaced comb with a 3 dB spectral power ripple of 20 nm is used.
Electronic structure, stability and non-linear optical properties of aza-fullerenes C60-2nN2n(n=1–12
K. Srinivasu
2012-12-01
Full Text Available Through ab initio based density functional theory calculations, we have investigated the electronic structure, stability and non-linear optical properties of a series of nitrogen substituted fullerenes (azafullerenes with the general formula C60-2nN2n (n=1–12. For each system, we have considered different possible isomers and the minimum energy isomer is subjected to further detailed investigations. We have calculated different properties such as HOMO-LUMO gaps, vertical ionization potentials, vertical electron affinities, etc. to verify the stability of the considered fullerenes. From the Hessian calculations, it is observed that all the fullerenes are not only associated with real vibrational frequencies, but the minimum frequencies are also found to be considerably large which further confirms the stability of the considered fullerenes. We find that the presence of unperturbed C6 rings enhances the stability of the fullerene whereas, the -N-C-N- fragments are found to destabilize the structure. At lower doping concentration, the stabilization due to C6 is more predominant and as the doping concentration is increased, the destabilization due to nitrogen-nitrogen repulsion plays a more important role. Our calculated polarizability and hyperpolarizability parameters of C60 are found to be in good agreement with the earlier reported results. On nitrogen doping, considerable variation is observed in the non-linear optical coefficients, which can be helpful in designing new photonic devices.
Polarizability of acetanilide and RDX in the crystal: effect of molecular geometry
Tsiaousis, D.; Munn, R. W.; Smith, P. J.; Popelier, P. L. A.
2004-10-01
Density-functional theory with the B3LYP functional at the 6-311++G** level is used to calculate the dipole moment and the static polarizability for acetanilide and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) in their in-crystal structures. For acetanilide the dipole moment is 2{1}/{2}% larger than for the gas-phase structure and for RDX (where there is a gross geometry change) it is 15% larger. The polarizability for the in-crystal structure is smaller than for the gas-phase structure by 3% for both species, whereas the in-crystal effective optical polarizability is larger than the gas-phase static polarizability for both crystals. Hence, effects in addition to the molecular geometry change in the crystal must be considered in order to interpret the effective polarizability completely.
Gravitational polarizability of black holes
Damour, Thibault; Lecian, Orchidea Maria
2009-01-01
The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h l of a black hole are defined and computed. They are then compared to their electromagnetic analogs h l EM . The Love numbers h l give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.
Linear electro-optical properties of tetragonal BaTiO 3
Linear optical susceptibility and clamped linear electro-optical tensor coefﬁcients of tetragonal BaTiO3 are calculated using a formalism based on bond charge theory. Calculated values are in close agreement with experimental data. The covalent Ti–O bonds constituting distorted TiO6 octahedral groups are found to be ...
A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass
Yahia, I. S.; Jilani, Asim; Abutalib, M. M.; AlFaify, S.; Shkir, M.; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; El-Naggar, A. M.
2016-06-01
The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ(1), nonlinear optical susceptibility χ(3), nonlinear refractive index (n2) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.
A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass
Yahia, I.S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); Abutalib, M.M. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); AlFaify, S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Shkir, M. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abdel-wahab, M.Sh.; Al-Ghamdi, Attieh A. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); El-Naggar, A.M. [Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia)
2016-06-01
The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ{sup (1)}, nonlinear optical susceptibility χ{sup (3)}, nonlinear refractive index (n{sub 2}) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.
Non-linear optical techniques and optical properties of condensed molecular systems
Citroni, Margherita
2013-06-01
Structure, dynamics, and optical properties of molecular systems can be largely modified by the applied pressure, with remarkable consequences on their chemical stability. Several examples of selective reactions yielding technologically attractive products can be cited, which are particularly efficient when photochemical effects are exploited in conjunction with the structural conditions attained at high density. Non-linear optical techniques are a basic tool to unveil key aspects of the chemical reactivity and dynamic properties of molecules. Their application to high-pressure samples is experimentally challenging, mainly because of the small sample dimensions and of the non-linear effects generated in the anvil materials. In this talk I will present results on the electronic spectra of several aromatic crystals obtained through two-photon induced fluorescence and two-photon excitation profiles measured as a function of pressure (typically up to about 25 GPa), and discuss the relationship between the pressure-induced modifications of the electronic structure and the chemical reactivity at high pressure. I will also present the first successful pump-probe infrared measurement performed as a function of pressure on a condensed molecular system. The system under examination is liquid water, in a sapphire anvil cell, up to 1 GPa along isotherms at 298 and 363 K. These measurements give a new enlightening insight into the dynamical properties of low- and high-density water allowing a definition of the two structures.
Passive linear-optics 640 Gbit/s logic NOT gate
Maram, Reza; Kong, Deming; Galili, Michael
2015-01-01
We experimentally demonstrate a 640 Gbit/s all-optical NOT gate for high-speed telecommunication on-off-keying (OOK) data signals. We employ linear optical signal processing based on spectral phase-only (all-pass) optical filtering to perform the target logic NOT operation....
A fast method for linear waves based on geometrical optics
Stolk, C.C.
2009-01-01
We develop a fast method for solving the one-dimensional wave equation based on geometrical optics. From geometrical optics (e.g., Fourier integral operator theory or WKB approximation) it is known that high-frequency waves split into forward and backward propagating parts, each propagating with the
Extreme non-linear elasticity and transformation optics
Gersborg, Allan Roulund; Sigmund, Ole
2010-01-01
realizations correspond to minimizers of elastic energy potentials for extreme values of the mechanical Poisson's ratio ν . For TE (Hz) polarized light an incompressible transformation ν = 1/2 is ideal and for TM (E z) polarized light one should use a compressible transformation with negative Poissons's ratio......Transformation optics is a powerful concept for designing novel optical components such as high transmission waveguides and cloaking devices. The selection of specific transformations is a non-unique problem. Here we reveal that transformations which allow for all dielectric and broadband optical...... ν = -1. For the TM polarization the mechanical analogy corresponds to a modified Liao functional known from the transformation optics literature. Finally, the analogy between ideal transformations and solid mechanical material models automates and broadens the concept of transformation optics...
Optical wireless links with enhanced linearity and selectivity [Invited
Green, Roger J.; Sweet, C.; Idrus, S.
2005-10-01
Optical wireless is an attractive medium as an alternative to optical fiber communications, and also to RF, because of its high bandwidth and relative ease of use, especially when it comes to deployment in new physical situations. We describe an optical wireless link approach that offers a performance that gives analog transmission with significantly reduced distortion levels and enhanced reception sensitivity by combining a novel hybrid detector-amplifier technique. Reduction of distortion by 40 dB and improvement in sensitivity of 20-30 dB is possible, using the techniques described.
Ghosh, A
1988-08-01
Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.
TITLE PAGE Linear and nonlinear optical properties of 4 ...
57
optical effects viz. reverse saturable absorption and self-defocusing of laser beam. ... Defect Analysis, Mechanical stability, UV-visible spectroscopy, Refractive index .... for geometry optimization in gas phase and in the solvent phase (ethanol).
Malykin, G. B.; Pozdnyakova, V. I.
2018-03-01
A linear transformation of orthogonal polarization modes in coiled optical spun-fibers with strong unperturbed linear birefringence, which causes the emergence of the dependences of the integrated elliptical birefringence and the ellipticity and azimuth of the major axis of the ellipse, as well as the polarization state of radiation (PSR), on the length of optical fiber has been considered. Optical spun-fibers are subjected to a strong mechanical twisting, which is frozen into the structure of the optical fiber upon cooling, in the process of being drawn out from the workpiece. Since the values of the local polarization parameters of coiled spunwaveguides vary according to a rather complex law, the calculations were carried out by numerical modeling of the parameters of the Jones matrices. Since the rotation speed of the axes of the birefringence is constant on a relatively short segment of a coiled optical spun-fiber in the accompanying torsion (helical) coordinate system, the so-called "Ginzburg helical polarization modes" (GHPMs)—two mutually orthogonal ellipses with the opposite directions of traversal, the axis of which rotate relative to the fixed coordinate system uniformly and unidirectionally—are approximately the local normal polarization modes of such optical fiber. It has been shown that, despite the fact that the unperturbed linear birefringence of the spun-fibers significantly exceeds the linear birefringence, which is caused by the winding on a coil, the integral birefringence of an extended segment of such a fiber coincides in order of magnitude with the linear birefringence, which is caused by the winding on the coil, and the integral polarization modes tend asymptotically to circular ones. It has been also shown that the values of the circular birefringence of twisted single-mode fibers, which were calculated in a nonrotating and torsion helical coordinate systems, differ significantly. It has been shown that the polarization phenomena occur
Widely Linear Equalization for IQ Imbalance and Skew Compensation in Optical Coherent Receivers
Porto da Silva, Edson; Zibar, Darko
2016-01-01
In this paper, an alternative approach to design linear equalization algorithms for optical coherent receivers is introduced. Using widely linear complex analysis, a general analytical model it is shown, where In-phase/quadrature (IQ) imbalances and IQ skew at the coherent receiver front-end are ......In this paper, an alternative approach to design linear equalization algorithms for optical coherent receivers is introduced. Using widely linear complex analysis, a general analytical model it is shown, where In-phase/quadrature (IQ) imbalances and IQ skew at the coherent receiver front...
Theory and applications of atomic and ionic polarizabilities
Mitroy, J [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Safronova, M S [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Clark, Charles W, E-mail: jxm107@rsphysse.anu.edu.a, E-mail: msafrono@udel.ed, E-mail: charles.clark@nist.go [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, MD 20899-8410 (United States)
2010-10-28
Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wavefunctions, interferometry with atom beams and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards. (topical review)
Theory and applications of atomic and ionic polarizabilities
Mitroy, J; Safronova, M S; Clark, Charles W
2010-01-01
Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wavefunctions, interferometry with atom beams and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards. (topical review)
Construction of a quantum repeater with linear optics
Kok, Pieter; Williams, Colin P.; Dowling, Jonathan P.
2003-01-01
We study the mechanism and complexity of an efficient quantum repeater, employing double-photon guns, for long-distance optical quantum communication. The guns create polarization-entangled photon pairs on demand. One such source might be a semiconducter quantum dot, which has the distinct advantage over parametric down-conversion that the probability of creating a photon pair is close to 1, while the probability of creating multiple pairs vanishes. The swapping and purifying components are implemented by polarizing beam splitters and probabilistic optical controlled-NOT gates. We also show that the bottleneck in the efficiency of this repeater is due to detector losses
Entanglement-based linear-optical qubit amplifier
Meyer-Scott, E.; Bula, M.; Bartkiewicz, K.; Černoch, Antonín; Soubusta, Jan; Jennewein, T.; Lemr, Karel
2013-01-01
Roč. 87, č. 1 (2013), "012327-1"-"012327-7" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : quantum physics * photonics qubits * qubit amplifier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013
Experimental realization of linear-optical partial SWAP gates
Černoch, Antonín; Soubusta, Jan; Bartůšková, L.; Dušek, M.; Fiurášek, J.
2008-01-01
Roč. 100, č. 18 (2008), 180501/1-180501/4 ISSN 0031-9007 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : two-qubit gates * Mach-Zehnder interferomeret * quantum information processing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.180, year: 2008
Resource-efficient linear-optical quantum router
Lemr, K.; Bartkiewicz, K.; Černoch, A.; Soubusta, Jan
2013-01-01
Roč. 87, č. 6 (2013), "062333-1"-"062333-7" ISSN 1050-2947 Institutional research plan: CEZ:AV0Z10100522 Keywords : quantum router * signal qubit * quantum communications Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013
Enhanced linear photonic nanojet generated by core-shell optical microfibers
Liu, Cheng-Yang; Yen, Tzu-Ping; Chen, Chien-Wen
2017-05-01
The generation of linear photonic nanojet using core-shell optical microfiber is demonstrated numerically and experimentally in the visible light region. The power flow patterns for the core-shell optical microfiber are calculated by using the finite-difference time-domain method. The focusing properties of linear photonic nanojet are evaluated in terms of length and width along propagation and transversal directions. In experiment, the silica optical fiber is etched chemically down to 6 μm diameter and coated with metallic thin film by using glancing angle deposition. We show that the linear photonic nanojet is enhanced clearly by metallic shell due to surface plasmon polaritons. The large-area superresolution imaging can be performed by using a core-shell optical microfiber in the far-field system. The potential applications of this core-shell optical microfiber include micro-fluidics and nano-structure measurements.
Ultrabroadband optical chirp linearization for precision metrology applications.
Roos, Peter A; Reibel, Randy R; Berg, Trenton; Kaylor, Brant; Barber, Zeb W; Babbitt, Wm Randall
2009-12-01
We demonstrate precise linearization of ultrabroadband laser frequency chirps via a fiber-based self-heterodyne technique to enable extremely high-resolution, frequency-modulated cw laser-radar (LADAR) and a wide range of other metrology applications. Our frequency chirps cover bandwidths up to nearly 5 THz with frequency errors as low as 170 kHz, relative to linearity. We show that this performance enables 31-mum transform-limited LADAR range resolution (FWHM) and 86 nm range precisions over a 1.5 m range baseline. Much longer range baselines are possible but are limited by atmospheric turbulence and fiber dispersion.
Non-linear optical studies of adsorbates: Spectroscopy and dynamics
Zhu, Xiangdong.
1989-08-01
In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs
Non-linear optical studies of adsorbates: Spectroscopy and dynamics
Zhu, Xiangdong.
1989-08-01
In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs.
Linear optical response of finite systems using multishift linear system solvers
Hübener, Hannes; Giustino, Feliciano [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)
2014-07-28
We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.
Linear and non-linear optical properties of amorphous Se and ...
of signal transmission that requires high speeds and bit rates. [1]. Optical fibres .... mean coordination number (r) of binary glasses is the bond- .... ))(2mr)3/2) and P an integer ... that, Tauc's model that is based on the electronic transitions.
Experimental implementation of optimal linear-optical controlled-unitary gates
Lemr, K.; Bartkiewicz, K.; Černoch, Antonín; Dušek, M.; Soubusta, Jan
2015-01-01
Roč. 114, č. 15 (2015), "153602-1"-"153602-5" ISSN 0031-9007 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : two-qubit gates * optimal linear-optical controlled-unitary gates * quantum computing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.645, year: 2015
Deterministic linear-optics quantum computing based on a hybrid approach
Lee, Seung-Woo; Jeong, Hyunseok
2014-01-01
We suggest a scheme for all-optical quantum computation using hybrid qubits. It enables one to efficiently perform universal linear-optical gate operations in a simple and near-deterministic way using hybrid entanglement as off-line resources
Deterministic linear-optics quantum computing based on a hybrid approach
Lee, Seung-Woo; Jeong, Hyunseok [Center for Macroscopic Quantum Control, Department of Physics and Astronomy, Seoul National University, Seoul, 151-742 (Korea, Republic of)
2014-12-04
We suggest a scheme for all-optical quantum computation using hybrid qubits. It enables one to efficiently perform universal linear-optical gate operations in a simple and near-deterministic way using hybrid entanglement as off-line resources.
Duan, Y.; Ju, C.G.; Yang, G.; Fron, E.; Coutino-Gonzalez, E.; Semin, S.V.; Fan, C.C.; Balok, R.S.; Cremers, J.; Tinnemans, P.T.; Feng, Y.Q.; Li, Y.L.; Hofkens, J.; Rowan, A.E.; Rasing, T.H.M.; Xu, J.L.
2016-01-01
The discovery of the phenomenon known as aggregation-induced emission (AIE) has opened the door to a variety of brilliant organic solid-state light-emitting materials. While AIE is well established in linear optics, the development of AIE luminogens (AIEgens) with highly efficient nonlinear optical
Optically-driven red blood cell rotor in linearly polarized laser tweezers
We have constructed a dual trap optical tweezers set-up around an inverted microscope where both the traps can be independently controlled and manipulated in all the three dimensions. Here we report our observations on rotation of red blood cells (RBCs) in a linearly polarized optical trap. Red blood cells deform and ...
Measurement of picometre non-linearity in an optical grating encoder using x-ray interferometry
Yacoot, Andrew; Cross, Nigel
2003-01-01
X-ray interferometry has been used to characterize the non-linearity in an optical encoder displacement measuring system. Traceable measurements of the non-linearity have been made and an estimation of the uncertainty associated with the measurements is given. Cyclic errors with a magnitude of up to 50 pm and periodicity of the encoder system (128 nm) have been recorded.
Communication: Symmetrical quasi-classical analysis of linear optical spectroscopy
Provazza, Justin; Coker, David F.
2018-05-01
The symmetrical quasi-classical approach for propagation of a many degree of freedom density matrix is explored in the context of computing linear spectra. Calculations on a simple two state model for which exact results are available suggest that the approach gives a qualitative description of peak positions, relative amplitudes, and line broadening. Short time details in the computed dipole autocorrelation function result in exaggerated tails in the spectrum.
Wei, Hai-Rui, E-mail: hrwei@ustb.edu.cn; Liu, Ji-Zhen
2017-02-15
It is very important to seek an efficient and robust quantum algorithm demanding less quantum resources. We propose one-photon three-qubit original and refined Deutsch–Jozsa algorithms with polarization and two linear momentums degrees of freedom (DOFs). Our schemes are constructed by solely using linear optics. Compared to the traditional ones with one DOF, our schemes are more economic and robust because the necessary photons are reduced from three to one. Our linear-optic schemes are working in a determinate way, and they are feasible with current experimental technology.
Non-linear optics of nano-scale pentacene thin film
Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.
2016-07-01
We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.
Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor
Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.
2018-01-01
Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.
Loock, Peter van; Nemoto, Kae; Munro, William J.; Raynal, Philippe; Luetkenhaus, Norbert
2006-01-01
We discuss the problem of implementing generalized measurements [positive operator-valued measures (POVMs)] with linear optics, either based upon a static linear array or including conditional dynamics. In our approach, a given POVM shall be identified as a solution to an optimization problem for a chosen cost function. We formulate a general principle: the implementation is only possible if a linear-optics circuit exists for which the quantum mechanical optimum (minimum) is still attainable after dephasing the corresponding quantum states. The general principle enables us, for instance, to derive a set of necessary conditions for the linear-optics implementation of the POVM that realizes the quantum mechanically optimal unambiguous discrimination of two pure nonorthogonal states. This extends our previous results on projection measurements and the exact discrimination of orthogonal states
Linear electro-optic effect in cubic silicon carbide
Tang, Xiao; Irvine, Kenneth G.; Zhang, Dongping; Spencer, Michael G.
1991-01-01
The first observation is reported of the electrooptic effect of cubic silicon carbide (beta-SiC) grown by a low-pressure chemical vapor deposition reactor using the hydrogen, silane, and propane gas system. At a wavelength of 633 nm, the value of the electrooptic coefficient r41 in beta-SiC is determined to be 2.7 +/- 0.5 x 10 (exp-12) m/V, which is 1.7 times larger than that in gallium arsenide measured at 10.6 microns. Also, a half-wave voltage of 6.4 kV for beta-SiC is obtained. Because of this favorable value of electrooptic coefficient, it is believed that silicon carbide may be a promising candidate in electrooptic applications for high optical intensity in the visible region.
No-go theorem for passive single-rail linear optical quantum computing.
Wu, Lian-Ao; Walther, Philip; Lidar, Daniel A
2013-01-01
Photonic quantum systems are among the most promising architectures for quantum computers. It is well known that for dual-rail photons effective non-linearities and near-deterministic non-trivial two-qubit gates can be achieved via the measurement process and by introducing ancillary photons. While in principle this opens a legitimate path to scalable linear optical quantum computing, the technical requirements are still very challenging and thus other optical encodings are being actively investigated. One of the alternatives is to use single-rail encoded photons, where entangled states can be deterministically generated. Here we prove that even for such systems universal optical quantum computing using only passive optical elements such as beam splitters and phase shifters is not possible. This no-go theorem proves that photon bunching cannot be passively suppressed even when extra ancilla modes and arbitrary number of photons are used. Our result provides useful guidance for the design of optical quantum computers.
Reibel, R.R.; Barber, Z.W.; Fischer, J.A.; Tian, M.; Babbitt, W.R.
2004-01-01
Linear sideband chirped (LSC) programming is introduced as a means of configuring spatial-spectral holographic gratings for optical coherent transient processors. Similar to linear frequency chirped programming, LSC programming allows the use of broadband integrated electro-optic phase modulators to produce chirps instead of using elaborate broadband chirped lasers. This approach has several advantages including the ability to use a stabilized laser for the optical carrier as well as stable, reproducible chirped optical signals when the modulator is driven digitally. Using LSC programming, we experimentally demonstrate broadband true-time delay as a proof of principle for the optical control of phased array radars. Here both cw phase modulated and binary phase shift keyed probe signals are true-time delayed with bandwidths of 1 GHz and delay resolutions better than 60 ps
OPTICAL I-BAND LINEAR POLARIMETRY OF THE MAGNETAR 4U 0142+61 WITH SUBARU
Wang, Zhongxiang; Tziamtzis, Anestis [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Tanaka, Yasuyuki T.; Kawabata, Koji S. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Wang, Chen [National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Beijing 100012 (China); Fukazawa, Yasushi; Itoh, Ryosuke [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)
2015-12-01
Magnetars are known to have optical and/or infrared (IR) emission, but the origin of the emission is not well understood. In order to fully study their emission properties, we have carried out for the first time optical linear polarimetry of the magnetar 4U 0142+61, which has been determined from different observations to have a complicated broadband spectrum over optical and IR wavelengths. From our I-band imaging polarimetric observation, conducted with the 8.2-m Subaru telescope, we determine the degree of linear polarization to be P = 1.0 ± 3.4%, or P ≤ 5.6% (90% confidence level). Considering models that were suggested for optical emission from magnetars, we discuss the implications of our result. The upper limit measurement indicates that, differing from radio pulsars, magnetars probably would not have strongly polarized optical emission if the emission arises from their magnetosphere as suggested.
A high-accuracy optical linear algebra processor for finite element applications
Casasent, D.; Taylor, B. K.
1984-01-01
Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.
Computational analysis of electronic polarizabilities in Thomas ...
The electric polarizability,α, of a molecule is a measure of its ability to respond to an electric field and acquire an electric dipole moment, μ. The electric polarizability, α has been calculated for several ions and atoms by obtaining the perturbation of wave functions by an external field from a numerical solution of differential ...
Microscopic evaluation of the nuclear dipole polarizability
Lipparini, E; Orlandini, G; Stringari, S; Traini, M [Trento Univ. (Italy). Dept. di Matematica e Fisica
1977-12-01
The dipole polarizability sum rule has been evaluated by means of a restricted Hartree-Fock approach. The method leads to a simple and analytical expression for the dipole polarizability. Explicit calculations have been performed in /sup 16/O and /sup 40/Ca with different types of interaction.
Excited States in Solution through Polarizable Embedding
Olsen, Jógvan Magnus; Aidas, Kestutis; Kongsted, Jacob
2010-01-01
mechanical calculation. The polarizable embedding potential is described by an atomistic representation including terms up to localized octupoles and anisotropic polarizabilities. It is generally applicable to any quantum chemical description but is here implemented for the case of Kohn−Sham density...
Characterization of the International Linear Collider damping ring optics
Shanks, J.; Rubin, D. L.; Sagan, D.
2014-10-01
A method is presented for characterizing the emittance dilution and dynamic aperture for an arbitrary closed lattice that includes guide field magnet errors, multipole errors and misalignments. This method, developed and tested at the Cornell Electron Storage Ring Test Accelerator (CesrTA), has been applied to the damping ring lattice for the International Linear Collider (ILC). The effectiveness of beam based emittance tuning is limited by beam position monitor (BPM) measurement errors, number of corrector magnets and their placement, and correction algorithm. The specifications for damping ring magnet alignment, multipole errors, number of BPMs, and precision in BPM measurements are shown to be consistent with the required emittances and dynamic aperture. The methodology is then used to determine the minimum number of position monitors that is required to achieve the emittance targets, and how that minimum depends on the location of the BPMs. Similarly, the maximum tolerable multipole errors are evaluated. Finally, the robustness of each BPM configuration with respect to random failures is explored.
Linear-Optical Generation of Eigenstates of the Two-Site XY Model
Stefanie Barz
2015-04-01
Full Text Available Much of the anticipation accompanying the development of a quantum computer relates to its application to simulating dynamics of another quantum system of interest. Here, we study the building blocks for simulating quantum spin systems with linear optics. We experimentally generate the eigenstates of the XY Hamiltonian under an external magnetic field. The implemented quantum circuit consists of two cnot gates, which are realized experimentally by harnessing entanglement from a photon source and applying a cphase gate. We tune the ratio of coupling constants and the magnetic field by changing local parameters. This implementation of the XY model using linear quantum optics might open the door to future studies of quenching dynamics using linear optics.
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems
Downie, John D.
1990-01-01
A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.
Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates
Liu Xiao-Lan; Peng Xiao-Niu; Yang Zhong-Jian; Li Min; Zhou Li
2011-01-01
Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process. The morphology, crystal structure and linear optical extinction of the gold nanoplates have been characterized. These gold nanoplates are single-crystalline with triangular, truncated triangular and hexagonal shapes, exhibiting strong surface plasmon resonance (SPR) extinction in the visible and near-infrared (NIR) region. The linear optical properties of gold nanoplates are also investigated by theoretical calculations. We further investigate the nonlinear optical properties of the gold nanoplates in solution by Z-scan technique. The nonlinear absorption (NLA) coefficient and nonlinear refraction (NLR) index are measured to be 1.18×10 2 cm/GW and −1.04×10 −3 cm 2 /GW, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Sasikala, V.; Sajan, D.; Joseph, Lynnette; Narayana, Badiadka; Sarojini, Balladka K.
2017-11-01
Two organic crystals of the isomeric forms of dichloroanilines such as 3, 4-dichloroaniline (3,4-DCA) and 3, 5-dichloroaniline (3,5-DCA) were grown by slow evaporation method and characterized by various analytical techniques. The vibrational normal modes of the samples were theoretically predicted using the scaled quantum mechanical force field procedures with the DFT level calculation and the potential energy distributions of the individual modes were estimated using the normal coordinate analysis. Fermi doublets and Evans holes were identified in the vibrational spectra of samples. The nuclear relaxation contribution to the vibrational polarizabilities and hyperpolarizabilities for the normal modes of the molecules were quantitatively estimated using the DFT method. The results of the calculated NLO responses showed that the vibrational mean contributions to the static polarizabilities and hyperpolarizabilities were smaller than the corresponding electronic contributions for the molecules. The Kurtz and Perry powder SHG efficiencies were measured and both samples have generated the second-harmonics of the fundamentals. The open-aperture Z-scan study results proposed the superior optical limiting property of 3,5-DCA with respect to 3,4-DCA.
Non linear characterisation of optical components of a high power laser chain
Santran, Stephane
2000-01-01
This work concerns the realisation of non linear properties measurement prototypes in glasses in the near infrared and in the visible range. The various devices are time resolved colinear pump probe experiments in which the non linear susceptibility is deduced by the probe beam intensity variations induced by the pump probe coupled in the material. The sensitivity of these experiments allows us to observe unexpected variations, greater than 30%, of several fused silica non linear indexes. As well, this allow us to analyse the origin of the promising oxide glasses non linearity for all optical applications and to understand an d measure non linear processes in the two photons photodiodes. Finally, an original structure for the non linear index measurement in non degenerated configuration by a probe pulse phase measurement approach with a Sagnac interferometer is demonstrated and analysed. (author) [fr
Arbitrarily complete Bell-state measurement using only linear optical elements
Grice, W. P. [Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Tennessee (United States)
2011-10-15
A complete Bell-state measurement is not possible using only linear-optic elements, and most schemes achieve a success rate of no more than 50%, distinguishing, for example, two of the four Bell states but returning degenerate results for the other two. It is shown here that the introduction of a pair of ancillary entangled photons improves the success rate to 75%. More generally, the addition of 2{sup N}-2 ancillary photons yields a linear-optic Bell-state measurement with a success rate of 1-1/2{sup N}.
Enhanced polarizability of aromatic molecules placed in the vicinity of silver clusters
Mayer, A; Schatz, G C
2009-01-01
We use a charge-dipole interaction model to study the polarizability of aromatic molecules that are placed between two silver clusters. In particular we examine the enhancement in polarizability induced by the clusters at plasmon-like resonant frequencies of the cluster-molecule-cluster system. The model used for these simulations relies on representation of the atoms by both a net electric charge and a dipole. By relating the time variation of the atomic charges to the currents that flow through the bonds of the structures considered, a least-action principle can be formulated that enables the atomic charges and dipoles to be determined. We consider benzene, naphthalene and anthracene for this study, comparing the polarizability of these aromatic molecules when placed in the middle between two Ag 120 clusters, with their polarizability as isolated molecules. We find that the polarizability of these molecules is enhanced by the clusters, and this increases the electromagnetic coupling between the two clusters. This results in significant red-shifting (by up to 0.8 eV) of the lowest energy optical transition in the cluster-molecule-cluster system compared to plasmon-like excitation in the cluster-cluster system. The resulting resonant polarizability enhancement leads to an electromagnetic enhancement in surface-enhanced Raman scattering of over 10 6 .
Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots
Vahdani, M.R.K.; Rezaei, G.
2009-01-01
Optical transitions in a Lens-Shaped Quantum Dot (LSD) are investigated in the presence of a hydrogenic impurity. The electronic wave functions are obtained analytically and the energy eigenvalues are calculated numerically. The density matrix formulation with the intersubband relaxation are used to evaluate the (linear and third order nonlinear) absorption coefficient (AC) and the change in the refractive indices (RI) analytically. The effect of the size of the LSD and optical intensity on the AC and RI are investigated. It is found that AC and RI are strongly affected by the optical intensity and the size of the LSD.
Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots
Vahdani, M.R.K. [Department of Physics, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Rezaei, G., E-mail: grezaei@mail.yu.ac.i [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914 (Iran, Islamic Republic of)
2009-08-17
Optical transitions in a Lens-Shaped Quantum Dot (LSD) are investigated in the presence of a hydrogenic impurity. The electronic wave functions are obtained analytically and the energy eigenvalues are calculated numerically. The density matrix formulation with the intersubband relaxation are used to evaluate the (linear and third order nonlinear) absorption coefficient (AC) and the change in the refractive indices (RI) analytically. The effect of the size of the LSD and optical intensity on the AC and RI are investigated. It is found that AC and RI are strongly affected by the optical intensity and the size of the LSD.
Iqbal, Javed; Yahia, I. S.; Zahran, H. Y.; AlFaify, S.; AlBassam, A. M.; El-Naggar, A. M.
2016-12-01
2‧,7‧ dichloro-Fluorescein (DCF) is a promising organic semiconductor material in different technological aspects such as solar cell, photodiode, Schottky diode. DCF thin film/conductive glass (FTO glass) was prepared by a low-cost spin coating technique. The spectrophotometric data such as the absorbance, reflectance and transmittance were cogitated in the 350-2500 nm wavelength range, at the normal incidence. The absorption (n) and linear refractive indices (k) were computed using the Fresnel's equations. The optical band gap was evaluated and it was found that there is two band gap described as follows: (1) It is related to the band gap of FTO/glass which is equal 3.4 eV and (2) the second one is related to the absorption edge of DCF equals 2.25 eV. The non-linear parameters such as the refractive index (n2) and optical susceptibility χ(3) were evaluated by the spectroscopic method based on the refractive index. Both (n2) and χ(3) increased rapidly on increasing the wavelength with redshift absorption. Our work represents a new idea about using FTO glass for a new generation of the optical device and technology.
Vibrational polarizabilities of hydrogen-bonded water
Torii, Hajime
2013-01-01
Highlights: ► Vibrational polarizabilities of hydrogen-bonded water are analyzed theoretically. ► Total vibrational polarizability is (at least) comparable to the electronic one. ► Molecular translations contribute to the vibrational polarizability below 300 cm −1 . ► Intermolecular charge fluxes along H bonds are induced by molecular translations. ► The results are discussed in relation to the observed dielectric properties. - Abstract: The vibrational polarizabilities and the related molecular properties of hydrogen-bonded water are analyzed theoretically, taking the case of (water) 30 clusters as an example case. It is shown that some off-diagonal dipole derivatives are large for the translations of incompletely hydrogen-bonded molecules, and this is reasonably explained by the scheme of intermolecular charge fluxes induced along hydrogen bonds. In total, because of these intermolecular charge fluxes, molecular translations give rise to the vibrational polarizability of 2.8–3.3 a 0 3 per molecule, which is as large as about 40% of the electronic polarizability, mainly in the frequency region below 300 cm −1 . Adding the contributions of the molecular rotations (librations) and the translation–rotation cross term, the total polarizability (electronic + vibrational) at ∼100 cm −1 is slightly larger than the double of that at >4000 cm −1 . The relation of these results to some observed time- and frequency-dependent dielectric properties of liquid water is briefly discussed
Shining light on polarizable dark particles
Fichet, Sylvain [ICTP South American Institute for Fundamental Research, Instituto de Fisica Teorica, Sao Paulo State University,Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2, Barra Funda (Brazil)
2017-04-14
We investigate the possibilities of searching for a self-conjugate polarizable particle in the self-interactions of light. We first observe that polarizability can arise either from the exchange of mediator states or as a consequence of the inner structure of the particle. To exemplify this second possibility we calculate the polarizability of a neutral bosonic open string, and find it is described only by dimension-8 operators. Focussing on the spin-0 case, we calculate the light-by-light scattering amplitudes induced by the dimension-6 and 8 polarizability operators. Performing a simulation of exclusive diphoton production with proton tagging at the LHC, we find that the imprint of the polarizable dark particle can be potentially detected at 5σ significance for mass and cutoff reaching values above the TeV scale, for √s=13 TeV and 300 fb{sup −1} of integrated luminosity. If the polarizable dark particle is stable, it can be a dark matter candidate, in which case we argue this exclusive diphoton search may complement the existing LHC searches for polarizable dark matter.
Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system
Zeng, Zaiping; Garoufalis, Christos S.; Baskoutas, Sotirios
2014-01-01
Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system have been theoretically studied. In general, we find that the structure parameters of the coupled system significantly affect the optical susceptibilities. The enhancement of the coupling effects between the dot and ring is found to increase considerably the optical susceptibilities and redshift drastically the transition energies. Comparing to the linear susceptibility, the nonlinear optical susceptibility is found to be more sensitive to the variation of the structure parameters. A comprehensive analysis of the electron probability density movement with respect to the modification of the structure parameters is provided, which offers a unique perspective of the ground-state localization. - Highlights: • Optical susceptibilities in a quantum-dot–quantum-ring system are studied. • The structure parameters significantly affect the optical susceptibilities. • The enhancement of the coupling effects increases the optical susceptibilities. • The nonlinear susceptibility is more sensitive to the change in structure parameters. • A comprehensive analysis of the electron probability density movement is provided
Non-Linear Optical Studies On Sol-Gel Derived Lead Chloride Crystals Using Z-Scan Technique
Rejeena, I; Lillibai, B; Toms, Roseleena; Nampoori, VP N; Radhakrishnan, P
2014-01-01
In this paper we report the preparation, optical characterization and non linear optical behavior of pure lead chloride crystals. Lead chloride samples subjected to UV and IR irradiation and electric and magnetic fields have also been investigated Optical nonlinearity in these lead chloride samples were determined using single beam and high sensitive Z-scan technique. Non linear optical studies of these materials in single distilled water show reverse saturable absorption which makes th...
A Linear Birefringence Measurement Method for an Optical Fiber Current Sensor.
Xu, Shaoyi; Shao, Haiming; Li, Chuansheng; Xing, Fangfang; Wang, Yuqiao; Li, Wei
2017-07-03
In this work, a linear birefringence measurement method is proposed for an optical fiber current sensor (OFCS). First, the optical configuration of the measurement system is presented. Then, the elimination method of the effect of the azimuth angles between the sensing fiber and the two polarizers is demonstrated. Moreover, the relationship of the linear birefringence, the Faraday rotation angle and the final output is determined. On these bases, the multi-valued problem on the linear birefringence is simulated and its solution is illustrated when the linear birefringence is unknown. Finally, the experiments are conducted to prove the feasibility of the proposed method. When the numbers of turns of the sensing fiber in the OFCS are about 15, 19, 23, 27, 31, 35, and 39, the measured linear birefringence obtained by the proposed method are about 1.3577, 1.8425, 2.0983, 2.5914, 2.7891, 3.2003 and 3.5198 rad. Two typical methods provide the references for the proposed method. The proposed method is proven to be suitable for the linear birefringence measurement in the full range without the limitation that the linear birefringence must be smaller than π/2.
Conditional generation of arbitrary multimode entangled states of light with linear optics
Fiurasek, J.; Massar, S.; Cerf, N. J.
2003-01-01
We propose a universal scheme for the probabilistic generation of an arbitrary multimode entangled state of light with finite expansion in Fock basis. The suggested setup involves passive linear optics, single-photon sources, strong coherent laser beams, and photodetectors with single-photon resolution. The efficiency of this setup may be greatly enhanced if, in addition, a quantum memory is available
Space and frequency-multiplexed optical linear algebra processor - Fabrication and initial tests
Casasent, D.; Jackson, J.
1986-01-01
A new optical linear algebra processor architecture is described. Space and frequency-multiplexing are used to accommodate bipolar and complex-valued data. A fabricated laboratory version of this processor is described, the electronic support system used is discussed, and initial test data obtained on it are presented.
Linear all-optical signal processing using silicon micro-ring resonators
Ding, Yunhong; Ou, Haiyan; Xu, Jing
2016-01-01
Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-optical signal processing applications using silicon MRRs as passive filters. We focus...
Ferwerda, H.A.; Hoenders, B.J.; Slump, C.H.
The fully relativistic quantum mechanical treatment of paraxial electron-optical image formation initiated in the previous paper (this issue) is worked out and leads to a rigorous foundation of the linear transfer theory. Moreover, the status of the relativistic scaling laws for mass and wavelength,
Faznny Mohd Fudzi
2017-01-01
Full Text Available Enhancing the optical properties of glasses for the sake of optical application in various fields is an ongoing challenge in materials science and technology. Thus, the optical properties of zinc borotellurite glass doped with lanthanum oxide nanoparticles (La2O3 NPs with the chemical composition of {[(TeO20.7(B2O30.3]0.7(ZnO0.3}1−x (La2O3 NPsx, where x = 0.01, 0.02, 0.03, 0.04, and 0.05 molar fraction, have been investigated. Characterization techniques such as x-ray diffraction, Fourier Transform Infrared Spectroscopy, and Ultraviolet-Visible Spectroscopy are employed to yield the structural properties and optical parameter of the glass. The amorphous nature of the fabricated glasses is confirmed with the presence of a broad hump via XRD diffraction pattern. The decreasing amount of high polarizable nonbridging oxygen as the concentration of La2O3 NPs increases has contributed to the increasing trend of energy band gap in the range of 2.70 to 3.52 eV and decreasing value of refractive index between 2.34 and 2.48. The fabricated glasses that have a higher refractive index than the widely used fiber material, pure silica glass, indicate that zinc borotellurite glass doped with lanthanum nanoparticles is a promising material to be applied as optical fibers.
Synthesis of polymeric micro- and nanostructural materials for application in non-linear optics
Kravets, Lyubov; Palistrant, Natalia; Bivol, Valerii; Robu, Stepan; Barba, Nikolai; Orelovitch, Oleg
2007-01-01
The present paper describes a new approach developed for the preparation of micro- and nanostructural materials on the basis of polymeric compositions used as a matrix in non-linear optics. This approach consists in filling the pores of poly(ethylene terephthalate) track membranes (PET TM) from polymeric compositions using an impregnation method. It is shown that depending on the concentration of polymeric compositions in the solution it is possible to form a variety of micro- and nanostructural materials (tubules and wires as well as composite membranes) with a wide spectrum of characteristics. The developed method of producing micro- and nanostructural materials provides a possible way for creating polymeric objects with non-linear optic properties which can be used to design electronic micro- and nanodevices and to obtain chemical and optical sensors
A linear ion optics model for extraction from a plasma ion source
Dietrich, J.
1987-01-01
A linear ion optics model for ion extraction from a plasma ion source is presented, based on the paraxial equations which account for lens effects, space charge and finite source ion temperature. This model is applied to three- and four-electrode extraction systems with circular apertures. The results are compared with experimental data and numerical calculations in the literature. It is shown that the improved calculations of space charge effects and lens effects allow better agreement to be obtained than in earlier linear optics models. A principal result is that the model presented here describes the dependence of the optimum perveance on the aspect ratio in a manner similar to the nonlinear optics theory. (orig.)
Lin, Chao; Shen, Xueju; Wang, Zhisong; Zhao, Cheng
2014-06-20
We demonstrate a novel optical asymmetric cryptosystem based on the principle of elliptical polarized light linear truncation and a numerical reconstruction technique. The device of an array of linear polarizers is introduced to achieve linear truncation on the spatially resolved elliptical polarization distribution during image encryption. This encoding process can be characterized as confusion-based optical cryptography that involves no Fourier lens and diffusion operation. Based on the Jones matrix formalism, the intensity transmittance for this truncation is deduced to perform elliptical polarized light reconstruction based on two intensity measurements. Use of a quick response code makes the proposed cryptosystem practical, with versatile key sensitivity and fault tolerance. Both simulation and preliminary experimental results that support theoretical analysis are presented. An analysis of the resistance of the proposed method on a known public key attack is also provided.
Orimoto, Yuuichi, E-mail: orimoto.yuuichi.888@m.kyushu-u.ac.jp [Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Aoki, Yuriko [Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Japan Science and Technology Agency, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012 (Japan)
2016-07-14
An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between “choose-maximum” (choose a base pair giving the maximum β for each step) and “choose-minimum” (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account.
Orimoto, Yuuichi; Aoki, Yuriko
2016-01-01
An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between “choose-maximum” (choose a base pair giving the maximum β for each step) and “choose-minimum” (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account.
Electric dipole polarizability from first principles calculations
Miorelli, M.; University of British Columbia, Vancouver, BC; Bacca, S.; University of Manitoba; Barnea, N.
2016-01-01
The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for the 4 He, 40 Ca, and 16 O nuclei, and predict the dipole polarizability for the rare nucleus 22 O.
Computational Approach for Studying Optical Properties of DNA Systems in Solution
Nørby, Morten Steen; Svendsen, Casper Steinmann; Olsen, Jógvan Magnus Haugaard
2016-01-01
In this paper we present a study of the methodological aspects regarding calculations of optical properties for DNA systems in solution. Our computational approach will be built upon a fully polarizable QM/MM/Continuum model within a damped linear response theory framework. In this approach...... the environment is given a highly advanced description in terms of the electrostatic potential through the polarizable embedding model. Furthermore, bulk solvent effects are included in an efficient manner through a conductor-like screening model. With the aim of reducing the computational cost we develop a set...... of averaged partial charges and distributed isotropic dipole-dipole polarizabilities for DNA suitable for describing the classical region in ground-state and excited-state calculations. Calculations of the UV-spectrum of the 2-aminopurine optical probe embedded in a DNA double helical structure are presented...
Non linear optical investigations of silver nanoparticles synthesised by curcumin reduction
Dhanya, N. P.
2017-11-01
Metal nanoparticles have considerable applications in assorted fields like medicine, biology, photonics, metallurgy etc. Optical applications of Silver nanoparticles are of significant interest among researchers nowadays. In this paper, we report a single step chemical reduction of silver nanoparticles with Curcumin both as a reducing and stabilising agent at room temperature. Structural, plasmonic and non linear optical properties of the prepared nanoparticles are explored using Scanning Electron Microscope, Transmission Electron Microscope, UV absorption spectrometry, Spectroflurometry and Z scan. UV-Vis absorption studies affirm the Surface Plasmon Resonance (SPR) absorption and spectroflurometric studies announce the emission spectrum of the prepared silvernanoparticles at 520 nm. SEM and TEM images uphold the existence of uniform sized, spherical silvernanoparticles. Nonlinear optical studies are accomplished with the open aperture z scan technique in the nanosecond regime. The nonlinearity is in virtue of saturable absorption, two-photon absorption and excited state absorption. The marked nonlinearity and optical limiting of the Curcumin reduced silvernanoparticles enhances its photonic applications.
Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices
Luz, H. L. F. da; Gammal, A.; Abdullaev, F. Kh.; Salerno, M.; Tomio, Lauro
2010-01-01
The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.
Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices
da Luz, H. L. F.; Abdullaev, F. Kh.; Gammal, A.; Salerno, M.; Tomio, Lauro
2010-10-01
The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.
S. Maktoobi
2014-10-01
Full Text Available Switching is a principle process in digital computers and signal processing systems. The growth of optical signal processing systems, draws particular attention to design of ultra-fast optical switches. In this paper, All Optical Switches in linear state Based On photonic crystal Directional coupler is analyzed and simulated. Among different methods, the finite difference time domain method (FDTD is a preferable method and is used. We have studied the application of photonic crystal lattices, the physics of optical switching and photonic crystal Directional coupler. In this paper, Electric field intensity and the power output that are two factors to improve the switching performance and the device efficiency are investigated and simulated. All simulations are performed by COMSOL software.
Ultrafast all-optical clock recovery based on phase-only linear optical filtering
Maram, Reza; Kong, Deming; Galili, Michael
2014-01-01
We report on a novel technique for all-optical clock recovery from RZ OOK data based on phase-only filtering, significantly enhancing the recovered clock quality and energy-efficiency compared to the use of a Fabry-Perot filter....
Zhu Chang-Hua; Cao Xin; Quan Dong-Xiao; Pei Chang-Xing
2014-01-01
Linear optical quantum Fredkin gate can be applied to quantum computing and quantum multi-user communication networks. In the existing linear optical scheme, two single photon detectors (SPDs) are used to herald the success of the quantum Fredkin gate while they have no photon count. But analysis results show that for non-perfect SPD, the lower the detector efficiency, the higher the heralded success rate by this scheme is. We propose an improved linear optical quantum Fredkin gate by designing a new heralding scheme with an auxiliary qubit and only one SPD, in which the higher the detection efficiency of the heralding detector, the higher the success rate of the gate is. The new heralding scheme can also work efficiently under a non-ideal single photon source. Based on this quantum Fredkin gate, large-scale quantum switching networks can be built. As an example, a quantum Beneš network is shown in which only one SPD is used. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Improvement of PEP-II Linear Optics with a MIA-Derived Virtual Accelerator
Cerio, B.; Colgate U.
2006-01-01
In several past studies, model independent analysis, in conjunction with a virtual accelerator model, has been successful in improving PEP-II linear geometric optics. In many cases, optics improvement yielded an increase in machine luminosity. In this study, an updated characterization of linear optics is presented. With the PEP-II beam position monitor (BPM) system, four independent beam centroid orbits were extracted and used to determine phase advances and linear Green's functions among BPM locations. A magnetic lattice model was then constructed with a singular value decomposition-enhanced least-square fitting of phase advances and Green's functions, which are functions of quadrupole strengths, sextupole feed-downs, as well as BPM errors, to the corresponding measured quantities. The fitting process yielded a machine model that matched the measured linear optics of the real machine and was therefore deemed the virtual accelerator. High beta beat, as well as linear coupling, was observed in both LER and HER of the virtual accelerator. Since there was higher beta beating in LER, focus was shifted to the improvement of this ring. By adjusting select quadrupoles of the virtual LER and fitting the resulting beta functions and phase advances to those of the desired lattice, the average beta beat of the virtual machine was effectively reduced. The new magnet configuration was dialed into LER on August 10, 2006, and beta beat was reduced by a factor of three. After fine tuning HER to match the improved LER for optimal collision, a record peak luminosity of 12.069 x 10 33 cm -2 s -1 was attained on August 16, 2006
One step linear reconstruction method for continuous wave diffuse optical tomography
Ukhrowiyah, N.; Yasin, M.
2017-09-01
The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.
Classical and quantum non-linear optical applications using the Mach-Zehnder interferometer
Prescod, Andru
Mach Zehnder (MZ) modulators are widely employed in a variety of applications, such as optical communications, optical imaging, metrology and encryption. In this dissertation, we explore two non-linear MZ applications; one classified as classical and one as quantum, in which the Mach Zehnder interferometer is used. In the first application, a classical non-linear application, we introduce and study a new electro-optic highly linear (e.g., >130 dB) modulator configuration. This modulator makes use of a phase modulator (PM) in one arm of the MZ interferometer (MZI) and a ring resonator (RR) located on the other arm. The modulator performance is obtained through the control of a combination of internal and external parameters. These parameters include the RR-coupling ratio (internal parameter); the RF power split ratio and the RF phase bias (external parameters). Results show the unique and superior features, such as high linearity (SFDR˜133 dB), modulation bandwidth extension (as much as 70%) over the previously proposed and demonstrated Resonator-Assisted Mach Zehnder (RAMZ) design. Furthermore the proposed electro-optic modulator of this dissertation also provides an inherent SFDR compensation capability, even in cases where a significant waveguide optical loss exists. This design also shows potential for increased flexibility, practicality and ease of use. In the second application, a quantum non-linear application, we experimentally demonstrate quantum optical coherence tomography (QOCT) using a type II non-linear crystal (periodically-poled potassium titanyl phosphate (KTiOPO4) or PPKTP). There have been several publications discussing the merits and disadvantages of QOCT compared to OCT and other imaging techniques. First, we discuss the issues and solutions for increasing the efficiency of the quantum entangled photons. Second, we use a free space QOCT experiment to generate a high flux of these quantum entangled photons in two orthogonal polarizations, by
Lee, Hwang; Kok, Pieter; Dowling, Jonathan P.; Cerf, Nicolas J.
2002-01-01
We propose a method for preparing maximal path entanglement with a definite photon-number N, larger than two, using projective measurements. In contrast with the previously known schemes, our method uses only linear optics. Specifically, we exhibit a way of generating four-photon, path-entangled states of the form vertical bar 4,0>+ vertical bar 0,4>, using only four beam splitters and two detectors. These states are of major interest as a resource for quantum interferometric sensors as well as for optical quantum lithography and quantum holography
Structural, Linear, and Nonlinear Optical and Mechanical Properties of New Organic L-Serine Crystal
K. Rajesh
2014-01-01
Full Text Available Nonlinear optical single crystal of organic amino acid L-Serine (LS was grown by slow evaporation technique. Solubility study of the compound was measured and metastable zone width was found. Single crystal X-ray diffraction study was carried out for the grown crystal. The linear and nonlinear optical properties of the crystal were confirmed by UV-Vis analysis and powder SHG tester. FT-IR spectrum was recorded and functional groups were analyzed. Vickers’ microhardness studies showed the mechanical strength of the grown crystal. Laser damage threshold value of the crystal was calculated. Photoconductivity studies reveal the conductivity of the crystal.
A review of methods for experimentally determining linear optics in storage rings
Safranek, J.
1995-01-01
In order to maximize the brightness and provide sufficient dynamic aperture in synchrotron radiation storage rings, one must understand and control the linear optics. Control of the horizontal beta function and dispersion is important for minimizing the horizontal beam size. Control of the skew gradient distribution is important for minimizing the vertical size. In this paper, various methods for experimentally determining the optics in a storage ring will be reviewed. Recent work at the National Synchrotron Light Source X-Ray Ring will be presented as well as work done at laboratories worldwide
Implementation of a controller for linear positioners applicable in optical fiber stretching
Castrillo Piedra, Andres Rodolfo
2014-01-01
A low cost controller is implemented for linear positioners applicable in optic fiber stretching. The possibility of using a donated equipment is evaluated by the Escuela de Ingenieria Mecanica. The equipment is required by the non-linear photonic research laboratory (NLPR-LAB) for stretching of micro structured fiber. The process has required a slow and precise stretching, so the controllers must be precisely programmed to rotate the motors at different speeds. Donated equipment is evaluated to see if it is possible to use for fiber stretching [es
Testing the existence of optical linear polarization in young brown dwarfs
Manjavacas, E.; Miles-Páez, P. A.; Zapatero-Osorio, M. R.; Goldman, B.; Buenzli, E.; Henning, T.; Pallé, E.; Fang, M.
2017-07-01
Linear polarization can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases with the degree of oblateness, which is inversely proportional to the surface gravity. We aimed to test the existence of optical linear polarization in a sample of bright young brown dwarfs, with spectral types between M6 and L2, observable from the Calar Alto Observatory, and cataloged previously as low gravity objects using spectroscopy. Linear polarimetric images were collected in I and R band using CAFOS at the 2.2-m telescope in Calar Alto Observatory (Spain). The flux ratio method was employed to determine the linear polarization degrees. With a confidence of 3σ, our data indicate that all targets have a linear polarimetry degree in average below 0.69 per cent in the I band, and below 1.0 per cent in the R band, at the time they were observed. We detected significant (I.e. P/σ ≥ 3) linear polarization for the young M6 dwarf 2MASS J04221413+1530525 in the R band, with a degree of p* = 0.81 ± 0.17 per cent.
Pei, Soo-Chang; Ding, Jian-Jiun
2005-03-01
Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.
Causal structure and algebraic classification of non-dissipative linear optical media
Schuller, Frederic P.; Witte, Christof; Wohlfarth, Mattias N.R.
2010-01-01
In crystal optics and quantum electrodynamics in gravitational vacua, the propagation of light is not described by a metric, but an area metric geometry. In this article, this prompts us to study conditions for linear electrodynamics on area metric manifolds to be well-posed. This includes an identification of the timelike future cones and their duals associated to an area metric geometry, and thus paves the ground for a discussion of the related local and global causal structures in standard fashion. In order to provide simple algebraic criteria for an area metric manifold to present a consistent spacetime structure, we develop a complete algebraic classification of area metric tensors up to general transformations of frame. This classification, valuable in its own right, is then employed to prove a theorem excluding the majority of algebraic classes of area metrics as viable spacetimes. Physically, these results classify and drastically restrict the viable constitutive tensors of non-dissipative linear optical media.
VanMeter, N. M.; Lougovski, P.; Dowling, Jonathan P.; Uskov, D. B.; Kieling, K.; Eisert, J.
2007-01-01
We introduce schemes for linear-optical quantum state generation. A quantum state generator is a device that prepares a desired quantum state using product inputs from photon sources, linear-optical networks, and postselection using photon counters. We show that this device can be concisely described in terms of polynomial equations and unitary constraints. We illustrate the power of this language by applying the Groebner-basis technique along with the notion of vacuum extensions to solve the problem of how to construct a quantum state generator analytically for any desired state, and use methods of convex optimization to identify bounds to success probabilities. In particular, we disprove a conjecture concerning the preparation of the maximally path-entangled |n,0>+|0,n> (NOON) state by providing a counterexample using these methods, and we derive a new upper bound on the resources required for NOON-state generation
Barbieri, M.
2007-01-01
Bose-Einstein coalescence of independent photons at the surface of a beam splitter is the physical process that allows linear optical quantum gates to be built. When distinct parametric down-conversion events are used as an independent photon source, distinguishability arises form the energy correlation of each photon with its twin. We derive upper bound for the entanglement which can be generated under these conditions
Generation of Symmetric Dicke States of Remote Qubits with Linear Optics
Thiel, C.; Zanthier, J. von; Bastin, T.; Solano, E.; Agarwal, G. S.
2007-01-01
We propose a method for generating all symmetric Dicke states, either in the long-lived internal levels of N massive particles or in the polarization degrees of freedom of photonic qubits, using linear optical tools only. By means of a suitable multiphoton detection technique, erasing Welcher-Weg information, our proposed scheme allows the generation and measurement of an important class of entangled multiqubit states
Quantum teleportation of an arbitrary two-mode coherent state using only linear optics elements
Ho Ngoc Phien; Nguyen Ba An
2008-01-01
We propose a linear optics scheme to teleport an arbitrary two-mode coherent state. The devices used are beam-splitters, phase-shifters and ideal photo-detectors capable of distinguishing between even and odd photon numbers. The scheme achieves faithful teleportation with a probability of 1/4. However, with additional use of an appropriate displacement operator, the teleported state can always be made near-faithful
Non-linear optical properties of SiO2 with synthesized by implantation copper nanoparticles
Stepanov, A.L.; Olivares, J.; Requejo-Isidro, J.; Del Coso, R.; De Nalda, R.; Solis, J.; Afonso, C.N.; Hole, D.; Townsend, P.D.; Naudon, A.
2001-01-01
In recent years there has been a growing interest in composite dielectrics containing metal nanoparticles for their potential application in wave-guide integrated all-optical non-linear switching devices. In present work, low energy high current ion implantation (50 keV) in silica at a well controlled substrate temperature (20 0 C) at a dose of 8·10 16 ion/cm 2 has been used to produce novel composites containing a large concentration of spherical Cu clusters with an average diameter of 4 nm and a very narrow size distribution. A very large value for the third order optical susceptibility, χ (3) = 10 -7 esu, has been measured in the vicinity of the surface plasmon resonance by degenerate four wave mixing at 585 nm. This value is among the largest values ever reported for Cu nano composites. Additionally, the response time of the non-linearity has been found to be shorter than 2 ps. The superior non-linear optical response of these implants is discussed in terms of the implantation conditions
Time-Frequency (Wigner Analysis of Linear and Nonlinear Pulse Propagation in Optical Fibers
José Azaña
2005-06-01
Full Text Available Time-frequency analysis, and, in particular, Wigner analysis, is applied to the study of picosecond pulse propagation through optical fibers in both the linear and nonlinear regimes. The effects of first- and second-order group velocity dispersion (GVD and self-phase modulation (SPM are first analyzed separately. The phenomena resulting from the interplay between GVD and SPM in fibers (e.g., soliton formation or optical wave breaking are also investigated in detail. Wigner analysis is demonstrated to be an extremely powerful tool for investigating pulse propagation dynamics in nonlinear dispersive systems (e.g., optical fibers, providing a clearer and deeper insight into the physical phenomena that determine the behavior of these systems.
Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.
Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent
2015-11-02
Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.
Linearized Optically Phase-Modulated Fiber Optic Links for Microwave Signal Transport
2009-03-03
detectors (with internal 50- Ohm resistors) capable of 40-mA dc current per detector. With this link, the linearized SFDR would improve to 133 dB/Hz4/5...the IF) limitation on the signal. All calculations consider the 3dB power loss from the hybrid combiner and 6dB loss from parallel 50- Ohm resistors...283. [25] M. Nazarathy, J. Berger, A. Ley , I. Levi, and Y. Kagan, “Externally Modulated 80 Channel Am Catv Fiber-to-feeder Distribution System Over
Static electric dipole polarizabilities of tri- and tetravalent U, Np, and Pu ions.
Parmar, Payal; Peterson, Kirk A; Clark, Aurora E
2013-11-21
High-quality static electric dipole polarizabilities have been determined for the ground states of the hard-sphere cations of U, Np, and Pu in the III and IV oxidation states. The polarizabilities have been calculated using the numerical finite field technique in a four-component relativistic framework. Methods including Fock-space coupled cluster (FSCC) and Kramers-restricted configuration interaction (KRCI) have been performed in order to account for electron correlation effects. Comparisons between polarizabilities calculated using Dirac-Hartree-Fock (DHF), FSCC, and KRCI methods have been made using both triple- and quadruple-ζ basis sets for U(4+). In addition to the ground state, this study also reports the polarizability data for the first two excited states of U(3+/4+), Np(3+/4+), and Pu(3+/4+) ions at different levels of theory. The values reported in this work are the most accurate to date calculations for the dipole polarizabilities of the hard-sphere tri- and tetravalent actinide ions and may serve as reference values, aiding in the calculation of various electronic and response properties (for example, intermolecular forces, optical properties, etc.) relevant to the nuclear fuel cycle and material science applications.
Linear and nonlinear optical signals in probability and phase-space representations
Man'ko, Margarita A
2006-01-01
Review of different representations of signals including the phase-space representations and tomographic representations is presented. The signals under consideration are either linear or nonlinear ones. The linear signals satisfy linear quantumlike Schroedinger and von Neumann equations. Nonlinear signals satisfy nonlinear Schroedinger equations as well as Gross-Pitaevskii equation describing solitons in Bose-Einstein condensate. The Ville-Wigner distributions for solitons are considered in comparison with tomographic-probability densities describing solitons completely. different kinds of tomographies - symplectic tomography, optical tomography and Fresnel tomography are reviewed. New kind of map of the signals onto probability distributions of discrete photon number-like variable is discussed. Mutual relations between different transformations of signal functions are established in explicit form. Such characteristics of the signal-probability distribution as entropy is discussed
Transfer of optical signals around bends in two-dimensional linear photonic networks
Nikolopoulos, G M
2015-01-01
The ability to navigate light signals in two-dimensional networks of waveguide arrays is a prerequisite for the development of all-optical integrated circuits for information processing and networking. In this article, we present a theoretical analysis of bending losses in linear photonic lattices with engineered couplings, and discuss possible ways for their minimization. In contrast to previous work in the field, the lattices under consideration operate in the linear regime, in the sense that discrete solitons cannot exist. The present results suggest that the functionality of linear waveguide networks can be extended to operations that go beyond the recently demonstrated point-to-point transfer of signals, such as blocking, routing, logic functions, etc. (paper)
Adaptive matching of the iota ring linear optics for space charge compensation
Romanov, A. [Fermilab; Bruhwiler, D. L. [RadiaSoft, Boulder; Cook, N. [RadiaSoft, Boulder; Hall, C. [RadiaSoft, Boulder
2016-10-09
Many present and future accelerators must operate with high intensity beams when distortions induced by space charge forces are among major limiting factors. Betatron tune depression of above approximately 0.1 per cell leads to significant distortions of linear optics. Many aspects of machine operation depend on proper relations between lattice functions and phase advances, and can be i proved with proper treatment of space charge effects. We implement an adaptive algorithm for linear lattice re matching with full account of space charge in the linear approximation for the case of Fermilab’s IOTA ring. The method is based on a search for initial second moments that give closed solution and, at the same predefined set of goals for emittances, beta functions, dispersions and phase advances at and between points of interest. Iterative singular value decomposition based technique is used to search for optimum by varying wide array of model parameters
Marazzi, Marco; Gattuso, Hugo; Monari, Antonio; Assfeld, Xavier
2018-01-01
Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes-often drugs or pollutants-that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.
Marco Marazzi
2018-04-01
Full Text Available Bio-macromolecules as DNA, lipid membranes and (polypeptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes—often drugs or pollutants—that can (photosensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photosensitizers. Namely, absorption, emission and electronic circular dichroism (CD spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i to enhance absorption in the red and infra-red windows and (ii to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/molecular mechanics (QM/MM methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.
Marazzi, Marco; Gattuso, Hugo; Monari, Antonio; Assfeld, Xavier
2018-04-01
Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes – often drugs or pollutants – that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/ molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.
Universal squash model for optical communications using linear optics and threshold detectors
Fung, Chi-Hang Fred; Chau, H. F.; Lo, Hoi-Kwong
2011-01-01
Transmission of photons through open-air or optical fibers is an important primitive in quantum-information processing. Theoretical descriptions of this process often consider single photons as information carriers and thus fail to accurately describe experimental implementations where any number of photons may enter a detector. It has been a great challenge to bridge this big gap between theory and experiments. One powerful method for achieving this goal is by conceptually squashing the received multiphoton states to single-photon states. However, until now, only a few protocols admit a squash model; furthermore, a recently proven no-go theorem appears to rule out the existence of a universal squash model. Here we show that a necessary condition presumed by all existing squash models is in fact too stringent. By relaxing this condition, we find that, rather surprisingly, a universal squash model actually exists for many protocols, including quantum key distribution, quantum state tomography, Bell's inequality testing, and entanglement verification.
Linear and nonlinear optical properties of Sb-doped GeSe2 thin films
Zhang, Zhen-Ying; Chen, Fen; Lu, Shun-Bin; Wang, Yong-Hui; Shen, Xiang; Dai, Shi-Xun; Nie, Qiu-Hua
2015-06-01
Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb-Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB722703), the National Natural Science Foundation of China (Grant No. 61377061), the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B217), and the K. C. Wong Magna Fund in Ningbo University, China.
Charged pions polarizability measurement at COMPASS
Guskov, A
2010-01-01
The pion electromagnetic structure can be probed in $\\pi^{−}+(A,Z)\\rightarrow\\pi^{-}+(A,Z)+\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\alpha_{\\pi})$ and the magnetic $(\\beta_{\\pi})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of point-like pions with the measured cross section. The opportunity to measure pion polarizability via the Primakoff reaction at the COMPASS experiment was studied with $a$ $\\pi^{-}$ beam of 190 GeV during pilot run 2004. The obtained results were used for preparation of the new data taking which was performed in 2009.
Optically stimulated luminescence from quartz measured using the linear modulation technique
Bulur, E.; Boetter-Jensen, L.; Murray, A.S.
2000-01-01
The optically stimulated luminescence (OSL) from heated natural quartz has been investigated using the linear modulation technique (LMT), in which the excitation light intensity is increased linearly during stimulation. In contrast to conventional stimulation, which usually produces a monotonically decreasing signal, linearly increasing the stimulation power gives peaks in the signal as a function of time. In cases where the OSL signal contains more than one component, the linear increase in power of the stimulation light may result in a curve containing overlapping peaks, where the most easily stimulated component occurs at a shorter time. This allows the separation of the overlapping OSL components, which are assumed to originate from different traps. The LM-OSL curve from quartz shows an initial peak followed by a broad one. Deconvolution using curve fitting has shown that the composite OSL curve from quartz can be approximated well by using a linear combination of first-order peaks. In addition to the three known components, i.e. fast, medium and slow components from continuous-wave-OSL studies, an additional slow component is also identified for the first time. The dose responses and thermal stabilities of the various components are also studied
Full-range k-domain linearization in spectral-domain optical coherence tomography.
Jeon, Mansik; Kim, Jeehyun; Jung, Unsang; Lee, Changho; Jung, Woonggyu; Boppart, Stephen A
2011-03-10
A full-bandwidth k-domain linearization method for spectral-domain optical coherence tomography (SD-OCT) is demonstrated. The method uses information of the wavenumber-pixel-position provided by a translating-slit-based wavelength filter. For calibration purposes, the filter is placed either after a broadband source or at the end of the sample path, and the filtered spectrum with a narrowed line width (∼0.5 nm) is incident on a line-scan camera in the detection path. The wavelength-swept spectra are co-registered with the pixel positions according to their central wavelengths, which can be automatically measured with an optical spectrum analyzer. For imaging, the method does not require a filter or a software recalibration algorithm; it simply resamples the OCT signal from the detector array without employing rescaling or interpolation methods. The accuracy of k-linearization is maximized by increasing the k-linearization order, which is known to be a crucial parameter for maintaining a narrow point-spread function (PSF) width at increasing depths. The broadening effect is studied by changing the k-linearization order by undersampling to search for the optimal value. The system provides more position information, surpassing the optimum without compromising the imaging speed. The proposed full-range k-domain linearization method can be applied to SD-OCT systems to simplify their hardware/software, increase their speed, and improve the axial image resolution. The experimentally measured width of PSF in air has an FWHM of 8 μm at the edge of the axial measurement range. At an imaging depth of 2.5 mm, the sensitivity of the full-range calibration case drops less than 10 dB compared with the uncompensated case.
Hadron polarizability data analysis: GoAT
Stegen, H., E-mail: hkstegen@mta.ca; Hornidge, D. [Mount Allison University, Sackville (Canada); Collicott, C. [Dalhousie University, Halifax (Canada); Martel, P. [Mount Allison University, Sackville (Canada); Johannes Gutenberg University, Mainz (Germany); Ott, P. [Johannes Gutenberg University, Mainz (Germany)
2015-12-31
The A2 Collaboration at the Institute for Nuclear Physics in Mainz, Germany, is working towards determining the polarizabilities of hadrons from nonperturbative quantum chromodynamics through Compton scattering experiments at low energies. The asymmetry observables are directly related to the scalar and spin polarizabilities of the hadrons. Online analysis software, which will give real-time feedback on asymmetries, efficiencies, energies, and angle distributions, has been developed. The new software is a big improvement over the existing online code and will greatly develop the quality of the acquired data.
Hadron polarizability data analysis: GoAT
Stegen, H.; Collicott, C.; Hornidge, D.; Martel, P.; Ott, P.
2015-12-01
The A2 Collaboration at the Institute for Nuclear Physics in Mainz, Germany, is working towards determining the polarizabilities of hadrons from nonperturbative quantum chromodynamics through Compton scattering experiments at low energies. The asymmetry observables are directly related to the scalar and spin polarizabilities of the hadrons. Online analysis software, which will give real-time feedback on asymmetries, efficiencies, energies, and angle distributions, has been developed. The new software is a big improvement over the existing online code and will greatly develop the quality of the acquired data.
Rajagopal, Vaishnavi; Stokes, Chris; Ferzoco, Alessandra
2018-02-01
We report a custom-geometry linear ion trap designed for fluorescence spectroscopy of gas-phase ions at ambient to cryogenic temperatures. Laser-induced fluorescence from trapped ions is collected from between the trapping rods, orthogonal to the excitation laser that runs along the axis of the linear ion trap. To increase optical access to the ion cloud, the diameter of the round trapping rods is 80% of the inscribed diameter, rather than the roughly 110% used to approximate purely quadrupolar electric fields. To encompass as much of the ion cloud as possible, the first collection optic has a 25.4 mm diameter and a numerical aperture of 0.6. The choice of geometry and collection optics yields 107 detected photons/s from trapped rhodamine 6G ions. The trap is coupled to a closed-cycle helium refrigerator, which in combination with two 50 Ohm heaters enables temperature control to below 25 K on the rod electrodes. The purpose of the instrument is to broaden the applicability of fluorescence spectroscopy of gas-phase ions to cases where photon emission is a minority relaxation pathway. Such studies are important to understand how the microenvironment of a chromophore influences excited state charge transfer processes.
Growth of KNN thin films for non-linear optical applications
Sharma, Shweta; Gupta, Reema; Gupta, Vinay; Tomar, Monika
2018-01-01
Two-wave mixing is a remarkable area of research in the field of non-linear optics, finding various applications in the development of opto-electronic devices, photorefractive waveguides, real time holography, etc. Non-linear optical properties of ferroelectric potassium sodium niobate (KNN) thin films have been interrogated using two-wave mixing phenomenon. Regarding this, a-axis oriented K 0.35 Na (1-0.35) NbO 3 thin films were successfully grown on epitaxial matched (100) SrTiO 3 substrate using pulsed laser deposition (PLD) technique. The uniformly distributed Au micro-discs of 200 μm diameter were integrated with KNN/STO thin film to study the plasmonic enhancement in the optical response. Beam amplification has been observed as a result of the two-wave mixing. This is due to the alignment of ferroelectric domains in KNN films and the excitement of plasmons at the metal-dielectric (Au-KNN) interface. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Growth of KNN thin films for non-linear optical applications
Sharma, Shweta; Gupta, Reema; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi (India); Tomar, Monika [Department of Physics, Miranda House University of Delhi (India)
2018-02-15
Two-wave mixing is a remarkable area of research in the field of non-linear optics, finding various applications in the development of opto-electronic devices, photorefractive waveguides, real time holography, etc. Non-linear optical properties of ferroelectric potassium sodium niobate (KNN) thin films have been interrogated using two-wave mixing phenomenon. Regarding this, a-axis oriented K{sub 0.35}Na{sub (1-0.35)}NbO{sub 3} thin films were successfully grown on epitaxial matched (100) SrTiO{sub 3} substrate using pulsed laser deposition (PLD) technique. The uniformly distributed Au micro-discs of 200 μm diameter were integrated with KNN/STO thin film to study the plasmonic enhancement in the optical response. Beam amplification has been observed as a result of the two-wave mixing. This is due to the alignment of ferroelectric domains in KNN films and the excitement of plasmons at the metal-dielectric (Au-KNN) interface. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Quantum mechanical determination of atomic polarizabilities of ionic liquids.
Heid, Esther; Szabadi, András; Schröder, Christian
2018-04-25
The distribution of a molecule's polarizability to individual atomic sites is inevitable to develop accurate polarizable force fields. We present the direct quantum mechanical calculation of atomic polarizabilities of 27 common ionic liquids. The method is superior to previously published distribution routines based on large databases of the molecular polarizability, and enables the correct description of any ionic liquid and its peculiarities within the quantum mechanical framework.
Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)
2014-05-07
We investigate the profiles of diagonal components of frequency-dependent first nonlinear (β{sub xxx} and β{sub yyy}) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. In case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.
On the polarizability dyadics of electrically small, convex objects
Lakhtakia, Akhlesh
1993-11-01
This communication on the polarizability dyadics of electrically small objects of convex shapes has been prompted by a recent paper published by Sihvola and Lindell on the polarizability dyadic of an electrically gyrotropic sphere. A mini-review of recent work on polarizability dyadics is appended.
FINAL REPORT "Extreme non-linear optics of plasmas" Pierre Michel (16-LW-022)
Michel, Pierre [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-11-03
Large laser facilities such as the National Ignition Facility (NIF) are typically limited in performance and physical scale (and thus cost) by optics damage. In this LDRD, we investigated a radically new way to manipulate light at extreme powers and energies, where “traditional” (crystal-based) optical elements are replaced by a medium that is already “broken” and thus does not suffer from optics damage: a plasma. Our method consisted in applying multiple lasers into plasmas to imprint refractive micro-structures with optical properties designed to be similar to those of crystals or dielectric structures used in optics. In particular, we focused our efforts on two elements used to manipulate the polarization of lasers (i.e. the orientation of the light’s electric field vector): i) a polarizer, which only lets a given polarization direction pass and blocks the others, and ii) a “Pockels cell”, which can “rotate” the polarization direction or convert it from linear to elliptical or circular. These two elements are essential building blocks in almost all laser systems – for example, they can be combined to design optical gates. Here, we introduced the new concepts of a “plasma polarizer” and a “plasma Pockels cell”. Both concepts were demonstrated in proof-of-principle laboratory experiments in this LDRD. We also demonstrated that such laser-plasma systems could be used to provide full control of the refractive index of plasmas as well as their dispersion (variation of the index vs. the light wavelength), which constituted the basis for a final experiment aimed at demonstrating the feasibility of “slow light” in plasmas, i.e. the capability to slow down a light pulse almost to a full stop.
An algebraic approach to linear-optical schemes for deterministic quantum computing
Aniello, Paolo; Cagli, Ruben Coen
2005-01-01
Linear-optical passive (LOP) devices and photon counters are sufficient to implement universal quantum computation with single photons, and particular schemes have already been proposed. In this paper we discuss the link between the algebraic structure of LOP transformations and quantum computing. We first show how to decompose the Fock space of N optical modes in finite-dimensional subspaces that are suitable for encoding strings of qubits and invariant under LOP transformations (these subspaces are related to the spaces of irreducible unitary representations of U (N). Next we show how to design in algorithmic fashion LOP circuits which implement any quantum circuit deterministically. We also present some simple examples, such as the circuits implementing a cNOT gate and a Bell state generator/analyser
Linear Optical and SERS Study on Metallic Membranes with Subwavelength Complementary Patterns
Hao, Qingzhen; Zeng, Yong; Jensen, Lasse; Werner, Douglas; Crespi, Vincent; Huang, Tony Jun; Interdepartmental Collaboration
2011-03-01
An efficient technique is developed to fabricate optically thin metallic films with subwavelength patterns and their complements simultaneously. By comparing the spectra of the complementary films, we show that Babinet's principle nearly holds in the optical domain. A discrete-dipole approximation can qualitatively describe their spectral dependence on the geometry of the constituent particles and the illuminating polarization. Using pyridine as probe molecules, we studied surface-enhanced Raman spectroscopy (SERS) from the complementary structure. Although the complementary structure posses closely related linear spectra, they have quite different near-field behaviors. For hole arrays, their averaged local field gains as well as the SERS enhancements are strongly correlated to their transmission spectra. We therefore can use cos 4 θ to approximately describe the dependence of the Raman intensity on the excitation polarization angle θ , while the complementary particle arrays present maximal local field gains at wavelengths generally much bigger than their localized surface plasmonic resonant wavelengths.
Quantum Optical Realization of Arbitrary Linear Transformations Allowing for Loss and Gain
Tischler, N.; Rockstuhl, C.; Słowik, K.
2018-04-01
Unitary transformations are routinely modeled and implemented in the field of quantum optics. In contrast, nonunitary transformations, which can involve loss and gain, require a different approach. In this work, we present a universal method to deal with nonunitary networks. An input to the method is an arbitrary linear transformation matrix of optical modes that does not need to adhere to bosonic commutation relations. The method constructs a transformation that includes the network of interest and accounts for full quantum optical effects related to loss and gain. Furthermore, through a decomposition in terms of simple building blocks, it provides a step-by-step implementation recipe, in a manner similar to the decomposition by Reck et al. [Experimental Realization of Any Discrete Unitary Operator, Phys. Rev. Lett. 73, 58 (1994), 10.1103/PhysRevLett.73.58] but applicable to nonunitary transformations. Applications of the method include the implementation of positive-operator-valued measures and the design of probabilistic optical quantum information protocols.
Optical tuning in the arcs and final focus sections of the Stanford Linear Collider
Bambade, P.S.
1989-03-01
In this thesis, we present the experimental tuning procedures developed for the Arcs and for the Final Focus Section of the Stanford Linear Collider (SLC). Such tuning is necessary to maximize the luminosity, by minimizing the beam size at the interaction point, and to reduce backgrounds in the experiment. In the final Focus Section, the correction strategy must result from the principles of the optical design, which is based on cancellations between second order aberrations, and on the ability to measure micron-size beams typical of the SLC. In the Arcs, the corrections were designed after the initial commissioning, to make the system more error-tolerant, through a modification in the optical design, and to enable adjustments of the beam phase-space a the injection to the Final Focus System, through a harmonic perturbation technique inspired from circular accelerators. Although the overall optimization of the SLC is not entirely finished, an almost optimal set-up has been achieved for the optics of the Arcs and of the Final Focus Section. Beams with transverse sizes close to the nominal ones, of a few microns, have been obtained at the interaction point. We present and discuss our results and the optical limits to the present performance. 24 refs., 25 figs., 2 tabs
Optical tuning in the arcs and final focus sections of the Stanford Linear Collider
Bambade, P.S.
1989-03-01
In this thesis, we present the experimental tuning procedures developed for the Arcs and for the Final Focus Section of the Stanford Linear Collider (SLC). Such tuning is necessary to maximize the luminosity, by minimizing the beam size at the interaction point, and to reduce backgrounds in the experiment. In the final Focus Section, the correction strategy must result from the principles of the optical design, which is based on cancellations between second order aberrations, and on the ability to measure micron-size beams typical of the SLC. In the Arcs, the corrections were designed after the initial commissioning, to make the system more error-tolerant, through a modification in the optical design, and to enable adjustments of the beam phase-space a the injection to the Final Focus System, through a harmonic perturbation technique inspired from circular accelerators. Although the overall optimization of the SLC is not entirely finished, an almost optimal set-up has been achieved for the optics of the Arcs and of the Final Focus Section. Beams with transverse sizes close to the nominal ones, of a few microns, have been obtained at the interaction point. We present and discuss our results and the optical limits to the present performance. 24 refs., 25 figs., 2 tabs.
Counter-propagating dual-trap optical tweezers based on linear momentum conservation
Ribezzi-Crivellari, M.; Huguet, J. M.; Ritort, F.
2013-01-01
We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.
Optical tuning of arcs and final focus section of the Standard Linear Collider (SLC)
Bambade, P.
1989-03-01
In this thesis, we present the experimental tuning procedures developed for the Arcs and for the Final Focus Section of the Stanford Linear Collider (SLC). Such tuning is necessary to maximize the luminosity, by minimizing the beam size at the interaction point, and to reduce backgrounds in the experiment. In the final Focus Section, the correction strategy must result from the principles of the optical design, which is based on cancellations between second order aberrations, and on the ability to measure micron-size beams typical of the SLC. In the Arcs, the corrections were designed after the initial commissioning, to make the system more error-tolerant, through a modification in the optical design, and to enable adjustements of the beam phase-space at the injection to the Final Focus System, through a harmonic perturbation technique inspired from circular accelerators. Although the overall optimization of the SLC is not entirely finished, an almost optimal set-up has been achieved for the optics of the Arcs and of the Final Focus Section. Beams with transverse sizes close to the nominal ones, of a few microns, have been obtained at the interaction point. We present and discuss our results and the optical limits to the present performance [fr
Counter-propagating dual-trap optical tweezers based on linear momentum conservation
Ribezzi-Crivellari, M.; Huguet, J. M. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ritort, F. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid (Spain)
2013-04-15
We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.
Li Yong; Lu Jing; Cui Xiaobing; Xu Jiqing; Li Kechang; Sun Huaying; Li Guanghua; Pan Lingyun; Yang Qingxin
2005-01-01
Both the homometal cluster [P(ph 4 )] 2 [Mo 2 O 2 (μ-S) 2 (S 2 ) 2 ] (1) and [Mo 2 O 2 (μ-S) 2 (Et 2 dtc) 2 ] (2) (Et 2 dtc=diethyl-dithiocarbamate) were successfully synthesized by low-temperature solid-state reactions. X-ray single-crystal diffraction studies suggest that compound (1) is a dinuclear anion cluster, and compound (2) is a dinuclear neutral cluster. The two compounds were characterized by elemental analyses, IR spectra and UV-Vis spectra. The third-order non-linear optical (NLO) properties of the clusters were also investigated and all exhibited nice non-linear absorption and self-defocusing performance with moduli of the hyperpolarizabilities 5.145x10 -30 esu for (1) and 5.428x10 -30 esu for (2)
Linearly interpolated sub-symbol optical phase noise suppression in CO-OFDM system.
Hong, Xuezhi; Hong, Xiaojian; He, Sailing
2015-02-23
An optical phase noise suppression algorithm, LI-SCPEC, based on phase linear interpolation and sub-symbol processing is proposed for CO-OFDM system. By increasing the temporal resolution of carrier phase tracking through dividing one symbol into several sub-blocks, i.e., sub-symbols, inter-carrier-interference (ICI) mitigation is achieved in the proposed algorithm. Linear interpolation is employed to obtain a reliable temporal reference for sub-symbol phase estimation. The new algorithm, with only a few number of sub-symbols (N(B) = 4), can provide a considerably larger laser linewidth tolerance than several other ICI mitigation algorithms as demonstrated by Monte-Carlo simulations. Numerical analysis verifies that the best performance is achieved with an optimal and moderate number of sub-symbols. Complexity analysis shows that the required number of complex-valued multiplications is independent of the number of sub-symbols used in the proposed algorithm.
Splitting of quantum information in travelling wave fields using only linear optical elements
Cardoso, W B; De Almeida, N G; Avelar, A T; Baseia, B [Instituto de Fisica, Universidade Federal de Goias, 74.001-970, Goiania-GO (Brazil)
2011-02-28
In this paper we present a feasible post-selection scheme to split quantum information in the realm of travelling waves with success probability of 50%. Taking advantage of this scheme we have also proposed the generation of a class of W states useful for perfect teleportation and superdense coding. The scheme employs only linear optical elements as beam splitters (BS) and phase shifters, plus two photon counters and a source of two spontaneous parametric down-conversion photons. It is shown that splitting of quantum information with high fidelity is possible, even when using inefficient detectors and photoabsorption BS.
Superconducting resonators as beam splitters for linear-optics quantum computation.
Chirolli, Luca; Burkard, Guido; Kumar, Shwetank; Divincenzo, David P
2010-06-11
We propose and analyze a technique for producing a beam-splitting quantum gate between two modes of a ring-resonator superconducting cavity. The cavity has two integrated superconducting quantum interference devices (SQUIDs) that are modulated by applying an external magnetic field. The gate is accomplished by applying a radio frequency pulse to one of the SQUIDs at the difference of the two mode frequencies. Departures from perfect beam splitting only arise from corrections to the rotating wave approximation; an exact calculation gives a fidelity of >0.9992. Our construction completes the toolkit for linear-optics quantum computing in circuit quantum electrodynamics.
"Real-Time Optical Laboratory Linear Algebra Solution Of Partial Differential Equations"
Casasent, David; Jackson, James
1986-03-01
A Space Integrating (SI) Optical Linear Algebra Processor (OLAP) employing space and frequency-multiplexing, new partitioning and data flow, and achieving high accuracy performance with a non base-2 number system is described. Laboratory data on the performance of this system and the solution of parabolic Partial Differential Equations (PDEs) is provided. A multi-processor OLAP system is also described for the first time. It use in the solution of multiple banded matrices that frequently arise is then discussed. The utility and flexibility of this processor compared to digital systolic architectures should be apparent.
Deconfinement and Phase Diagram of Bosons in a Linear Optical Lattice with a Particle Reservoir
Majumdar, Kingshuk; Fertig, H.A.
2005-01-01
We investigate the zero-temperature phases of bosons in a one-dimensional optical lattice with an explicit tunnel coupling to a Bose-condensed particle reservoir. Renormalization group analysis of this system is shown to reveal three phases: one in which the linear system is fully phase locked to the reservoir; one in which Josephson vortices between the one-dimensional system and the particle reservoir deconfine due to quantum fluctuations, leading to a decoupled state in which the one-dimensional system is metallic; and one in which the one-dimensional system is in a Mott insulating state
Guo, Rui; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo
2017-03-01
The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled state approximatively. Different from previous protocols, each logic qubit is encoded in the coherent state. This protocol is based on the linear optics, which is feasible in experimental technology. This protocol may be useful in quantum information based on the C-GHZ state.
Excitations in opal photonic crystals infiltrated with polarizable media
Eradat, Nayer; Sivachenko, A. Y.; Raikh, Mikhail E.; Vardeny, Z. Valy; Zakhidov, Anvar A.; Li, S.; Baughman, Ray H.
2002-12-01
Photonic crystals (PC) are a class of artificial structures with a periodic dielectric function. PCs can be a laboratory for testing fundamental processes involving interactions of radiation with matter in novel conditions. We have studied the optical properties of opal PCs that are infiltrated with highly polarizable media such as j-aggregates of cyanine dyes. Opals are self-assembled structures of silica spheres. We report our studies on clarifying the relationship between a polaritonic gap and a photonic stop band (Bragg gap) when they resonantly coexist in the same structure. Infiltration of opal with polarizable molecules combines the polaritonic and Bragg diffractive effects. Both effects exist independently when the Bragg (at ω = ωB) and polaritonic (ω = ωT) resonances are well separated in frequency. A completely different situation occurs when ωT ~ωB. Such a condition was achieved in opals that were infiltrated with J-aggregates of cyanine dyes that have large Rabi frequency. Our measurements show some dramatic changes in the shape of the reflectivity plateaus, which are due to the interplay between the photonic band gap and the polaritonic gap. The experimental results on reflectivity and its dependence on the light propagation angle and concentration of the cyanie dyes are in agreement with the theoretical calculations.
Pion polarizability in a chiral quark model
Ebert, D.; Volkov, M.K.
1981-01-01
The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given. (orig.)
Pion polarizability in a chiral quark model
Volkov, M.K.; Ehbert, D.
1980-01-01
The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Lanta and Tarrach is given. The results of the paper give evidence to the nonlinear chiral Lagrangian favour
Pion polarizability in a chiral quark model
Volkov, M.K.; Ehbert, D.
1981-01-01
The pion polarizability is calculated in a chiral meson- quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given [ru
Pion polarizability in a chiral quark model
Volkov, M.K.; Ebert, D.
1981-01-01
It is shown that the pion polarizability calculated in a chiral model with quark loops agrees exactly with the analogous quantity found in a chiral meson-baryon model. The results of a paper by Llanta and Tarrach are discussed critically
The polarizable embedding coupled cluster method
Sneskov, Kristian; Schwabe, Tobias; Kongsted, Jacob
2011-01-01
We formulate a new combined quantum mechanics/molecular mechanics (QM/MM) method based on a self-consistent polarizable embedding (PE) scheme. For the description of the QM region, we apply the popular coupled cluster (CC) method detailing the inclusion of electrostatic and polarization effects...
Hadron electric polarizability from lattice QCD
Alexandru, Andrei
2017-09-01
Electromagnetic polarizabilities are important parameters for hadron structure, describing the response of the charge and current distributions inside the hadron to an external electromagnetic field. For most hadrons these quantities are poorly constrained experimentally since they can only be measured indirectly. Lattice QCD can be used to compute these quantities directly in terms of quark and gluons degrees of freedom, using the background field method. We present results for the neutron electric polarizability for two different quark masses, light enough to connect to chiral perturbation theory. These are currently the lightest quark masses used in polarizability studies. For each pion mass we compute the polarizability at four different volumes and perform an infinite volume extrapolation. We also discuss the effect of turning on the coupling between the background field and the sea quarks. A.A. is supported in part by the National Science Foundation CAREER Grant PHY-1151648 and by U.S. DOE Grant No. DE-FG02-95ER40907.
The axial polarizability of nucleons and nuclei
Ericson, M.; Figureau, A.
1981-02-01
The part of the static nuclear axial polarizability arising from the nucleonic excitations is derived from the low energy expansion of the πN amplitude. It is shown that the contribution of the Δ intermediate state, though dominant, does not saturate the nucleonic response. A similar effect, though more pronounced, is known to occur for the magnetic susceptibility
Polarizable Density Embedding Coupled Cluster Method
Hršak, Dalibor; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob
2018-01-01
by an embedding potential consisting of a set of fragment densities obtained from calculations on isolated fragments with a quantum-chemistry method such as Hartree-Fock (HF) or Kohn-Sham density functional theory (KS-DFT) and dressed with a set of atom-centered anisotropic dipole-dipole polarizabilities...
K$_{-}$ and K$_{-}$ polarizability from kaonic atoms
Backenstoss, Gerhard; Bergström, I; Bunaciu, T; Egger, J; Hagelberg, R; Hultberg, S; Koch, H; Lynen, Y; Ritter, H G; Schwitter, A; Tauscher, L
1973-01-01
The K/sup -/ mass was determined from kaonic atomic X-rays from Au and Ba to be 493.691+or-0.040 MeV. An upper limit for the polarizability of the K/sup -/ was found to be 0.020 fm/sup 3/ at 90% confidence. (18 refs).
Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications
Driscoll, Jeffrey B.
Silicon photonics has grown rapidly since the first Si electro-optic switch was demonstrated in 1987, and the field has never grown more quickly than it has over the past decade, fueled by milestone achievements in semiconductor processing technologies for low loss waveguides, high-speed Si modulators, Si lasers, Si detectors, and an enormous toolbox of passive and active integrated devices. Silicon photonics is now on the verge of major commercialization breakthroughs, and optical communication links remain the force driving integrated and Si photonics towards the first commercial telecom and datacom transceivers; however other potential and future applications are becoming uncovered and refined as researchers reveal the benefits of manipulating photons on the nanoscale. This thesis documents an exploration into the unique guided-wave and nonlinear properties of deeply-scaled high-index-contrast sub-wavelength Si waveguides. It is found that the tight confinement inherent to single-mode channel waveguides on the silicon-on-insulator platform lead to a rich physics, which can be leveraged for new devices extending well beyond simple passive interconnects and electro-optic devices. The following chapters will concentrate, in detail, on a number of unique physical features of Si waveguides and extend these attributes towards new and interesting devices. Linear optical properties and nonlinear optical properties are investigated, both of which are strongly affected by tight optical confinement of the guided waveguide modes. As will be shown, tight optical confinement directly results in strongly vectoral modal components, where the electric and magnetic fields of the guided modes extend into all spatial dimensions, even along the axis of propagation. In fact, the longitudinal electric and magnetic field components can be just as strong as the transverse fields, directly affecting the modal group velocity and energy transport properties since the longitudinal fields
Measurement of the proton scalar polarizabilities at MAMI
Mornacchi, Edoardo [Institut fuer Kernphysik, Universitaet Mainz (Germany); Collaboration: A2-Collaboration
2016-07-01
The electric (α{sub E{sub 1}}) and magnetic (β{sub M1}) scalar polarizabilities are fundamental properties related to the internal structure of the nucleon. They play a crucial role not only in our understanding of the nucleon, but also in other areas such as atomic physics, where they provide e.g. corrections to the Lamb Shift. In order to determine the scalar polarizabilities of the proton, the beam asymmetry Σ{sub 3} was measured, for the first time for the Compton scattering, below the pion photoproduction threshold. The measurement was performed at the MAMI accelerator facility in Mainz. The linearly polarized primary photons impinged on a liquid hydrogen target and the outgoing particles were detected in a nearly 4π detector setup, composed by Crystall Ball and TAPS calorimeters. In this talk the results on the Compton scattering beam asymmetry Σ{sub 3} and their influence on the extraction of α{sub E{sub 1}} and β{sub M1} are discussed.
Iron-dextran complex: geometrical structure and magneto-optical features.
Graczykowski, Bartłomiej; Dobek, Andrzej
2011-11-15
Molecular mass of the iron-dextran complex (M(w)=1133 kDa), diameter of its particles (∼8.3 nm) and the content of iron ions in the complex core (N(Fe)=6360) were determined by static light scattering, measurements of refractive index increment and the Cotton-Mouton effect in solution. The known number of iron ions permitted the calculation of the permanent magnetic dipole moment value to be μ(Fe)=3.17×10(-18) erg Oe(-1) and the determination of anisotropy of linear magneto-optical polarizabilities components as Δχ=9.2×10(-21) cm(3). Knowing both values and the value of the mean linear optical polarizability α=7.3×10(-20) cm(3), it was possible to show that the total measured CM effect was due to the reorientation of the permanent and the induced magnetic dipole moments of the complex. Analysis of the measured magneto-optical birefringence indicated very small optical anisotropy of linear optical polarizability components, κ(α), which suggested a homogeneous structure of particles of spherical symmetry. Copyright © 2011 Elsevier Inc. All rights reserved.
Dinamical polarizability of highly excited hydrogen-like states
Delone, N.B.; Krajnov, V.P.
1982-01-01
Analytic expressions are derived for the dynamic polarizability of highly excited hydrogen-like atomic states. It is shown that in the composite matrix element which determines the dynamic polarizability there is a strong compensation of the terms as a result of which the resulting magnitude of the dynamic polarizability is quasiclasically small compared to the individual terms of the composite matrix. It is concluded that the resonance behaviour of the dynamic polarizability of highly excited states differs significantly from the resonance behaviour of the polarizability for the ground and low-lying atomic states. The static limit and high-frequency limit of on electromagnetic field are considered
Sub-wavelength plasmonic readout for direct linear analysis of optically tagged DNA
Varsanik, Jonathan; Teynor, William; LeBlanc, John; Clark, Heather; Krogmeier, Jeffrey; Yang, Tian; Crozier, Kenneth; Bernstein, Jonathan
2010-02-01
This work describes the development and fabrication of a novel nanofluidic flow-through sensing chip that utilizes a plasmonic resonator to excite fluorescent tags with sub-wavelength resolution. We cover the design of the microfluidic chip and simulation of the plasmonic resonator using Finite Difference Time Domain (FDTD) software. The fabrication methods are presented, with testing procedures and preliminary results. This research is aimed at improving the resolution limits of the Direct Linear Analysis (DLA) technique developed by US Genomics [1]. In DLA, intercalating dyes which tag a specific 8 base-pair sequence are inserted in a DNA sample. This sample is pumped though a nano-fluidic channel, where it is stretched into a linear geometry and interrogated with light which excites the fluorescent tags. The resulting sequence of optical pulses produces a characteristic "fingerprint" of the sample which uniquely identifies any sample of DNA. Plasmonic confinement of light to a 100 nm wide metallic nano-stripe enables resolution of a higher tag density compared to free space optics. Prototype devices have been fabricated and are being tested with fluorophore solutions and tagged DNA. Preliminary results show evanescent coupling to the plasmonic resonator is occurring with 0.1 micron resolution, however light scattering limits the S/N of the detector. Two methods to reduce scattered light are presented: index matching and curved waveguides.
Liu, Ying; Song, Huadong; Zhu, Panpan; Lu, Hao; Tang, Qi
2017-08-01
The elasticity of erythrocytes is an important criterion to evaluate the quality of blood. This paper presents a novel research on erythrocytes' elasticity with the application of optical tweezers and the finite element method (FEM) during blood storage. In this work, the erythrocytes with different in vitro times were linearly stretched by trapping force using optical tweezers and the time dependent elasticity of erythrocytes was investigated. The experimental results indicate that the membrane shear moduli of erythrocytes increased with the increasing in vitro time, namely the elasticity was decreasing. Simultaneously, an erythrocyte shell model with two parameters (membrane thickness h and membrane shear modulus H) was built to simulate the linear stretching states of erythrocytes by the FEM, and the simulations conform to the results obtained in the experiment. The evolution process was found that the erythrocytes membrane thicknesses were decreasing. The analysis assumes that the partial proteins and lipid bilayer of erythrocyte membrane were decomposed during the in vitro preservation of blood, which results in thin thickness, weak bending resistance, and losing elasticity of erythrocyte membrane. This study implies that the FEM can be employed to investigate the inward mechanical property changes of erythrocyte in different environments, which also can be a guideline for studying the erythrocyte mechanical state suffered from different diseases.
Structural, electronic, linear, and nonlinear optical properties of ZnCdTe{sub 2} chalcopyrite
Ouahrani, Tarik [Laboratoire de Physique Theorique, Universite de Tlemcen, B.P. 230, Tlemcen 13000 (Algeria); Reshak, Ali H. [Institute of Physical Biology, South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Microelectronic Engineering, University of Malaysia Perlis (UniMAP), Block A, Kompleks Pusat Pengajian, 02600 Arau Jejawi, Perlis (Malaysia); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique, Universite de Mascara, Mascara 29000 (Algeria); Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Baltache, H.; Amrani, B. [Laboratoire de Physique Quantique et de Modelisation Mathematique, Universite de Mascara, Mascara 29000 (Algeria); Bouhemadou, A. [Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Faculty of Sciences, Department of Physics, University of Setif, Setif 19000 (Algeria)
2011-03-15
We report results of first-principles density functional calculations using the full-potential linearized augmented plane wave method. The generalized gradient approximation (GGA) and the Engel-Vosko-GGA (EV-GGA) formalism were used for the exchange-correlation energy to calculate the structural, electronic, linear, and nonlinear optical properties of the chalcopyrite ZnCdTe{sub 2} compound. The valence band maximum and the conduction band minimum are located at the {gamma}-point, resulting in a direct band gap of about 0.71 eV for GGA and 1.29 eV for EV-GGA. The results of bulk properties, such as lattice parameters (a, c, and u), bulk modulus B, and its pressure derivative B' are evaluated. The optical properties of this compound, namely the real and the imaginary parts of the dielectric function, reflectivity, and refractive index, show a considerable anisotropy as a consequence ZnCdTe{sub 2} posseses a strong birefringence. In addition, the extinction coefficient, the electron energy loss function, and the nonlinear susceptibility are calculated and their spectra are analyzed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Static dipole polarizabilities of Scn (n ≤ 15) clusters
Xi-Bo, Li; Jiang-Shan, Luo; Wei-Dong, Wu; Yong-Jian, Tang; Hong-Yan, Wang; Yun-Dong, Guo
2009-01-01
The static dipole polarizabilities of scandium clusters with up to 15 atoms are determined by using the numerically finite field method in the framework of density functional theory. The electronic effects on the polarizabilities are investigated for the scandium clusters. We examine a large highest occupied molecular orbital — the lowest occupied molecular orbital (HOMO–LUMO) gap of a scandium cluster usually corresponds to a large dipole moment. The static polarizability per atom decreases slowly and exhibits local minimum with increasing cluster size. The polarizability anisotropy and the ratio of mean static polarizability to the HOMO–LUMO gap can also reflect the cluster stability. The polarizability of the scandium cluster is partially related to the HOMO–LUMO gap and is also dependent on geometrical characteristics. A strong correlation between the polarizability and ionization energy is observed. (atomic and molecular physics)
Collision-induced polarizabilities of inert gas atoms
Clarke, K.L.; Madden, P.A.; Buckingham, A.D.
1978-01-01
The use of polarizability densities to calculate collision-induced polarizabilities is investigated. One method for computing polarizabilities of inert gas diatoms employs atomic polarizability densities from finite-field Hartree-Fock calculations, together with classical equations for the polarization of dielectrics. It is shown that this model gives inaccurate values for both the local fields and the local response to non-uniform fields. An alternative method incorporating the same physical effects is used to compute the pair polarizabilities to first order in the interatomic interaction. To first order the pair contribution to the trace of the polarizability is negative at short range. The calculated anisotropy does not differ significantly from the DID value, whereas the polarizability density calculation gives a substantial reduction in the anisotropy. (author)
Second-order optical effects in several pyrazolo-quinoline derivatives
Makowska-Janusik, M. [Solid State Department, Institute of Physics, WSP Czestochowa, Al. Armii Krajowej 13/15, Czestochowa PL42201 (Poland); Gondek, E. [Institute of Physics, Cracow University of Technology, ul. Podchorazych 1, 30-084 (Poland); Kityk, I.V. [Department of Biology and Biophysics, Technical University of Czestochowa, Al. Armii Krajowej 36, Czestochowa PL-42210 (Poland)]. E-mail: i.kityk@wsp.czest.pl; WisIa, J. [Departament of Chemistry, Hugon Kollataj Agricultural University, Al. Mickiewicza 24/28, 30-059 Cracow (Poland); Sanetra, J. [Institute of Physics, Cracow University of Technology, ul. Podchorazych 1, 30-084 (Poland); Danel, A. [Department of Chemistry, Hugon Kollataj Agricultural University, Al. Mickiewicza 24/28, 30-059 Cracow (Poland)
2004-11-15
Using optical poling of several pyazolo-quinoline (PAQ) derivatives we have found an existence of sufficiently high second order optical susceptibility at wavelength 1.76 {mu}m varying in the range 0.9-2.8 pm/V. The performed quantum chemical simulations of the UV-absorption for isolated, solvated and incorporated into the polymethacrylate (PMMA) polymer films have shown that the PM3 method is the best among the semi-empirical ones to simulate the optical properties. The calculations of the hyperpolarizabilites have shown a good correlation with experimentally measured susceptibilities obtained from the optical poling. We have found that experimental susceptibility depends on linear molecular polarizability and photoinducing changes of the molecular dipole moment. It is clearly seen for the PAQ4-PAQ6 molecules possessing halogen atoms with relatively large polarizabilities.
Second-order optical effects in several pyrazolo-quinoline derivatives
Makowska-Janusik, M.; Gondek, E.; Kityk, I. V.; Wisła, J.; Sanetra, J.; Danel, A.
2004-11-01
Using optical poling of several pyazolo-quinoline (PAQ) derivatives we have found an existence of sufficiently high second order optical susceptibility at wavelength 1.76 μm varying in the range 0.9-2.8 pm/V. The performed quantum chemical simulations of the UV-absorption for isolated, solvated and incorporated into the polymethacrylate (PMMA) polymer films have shown that the PM3 method is the best among the semi-empirical ones to simulate the optical properties. The calculations of the hyperpolarizabilites have shown a good correlation with experimentally measured susceptibilities obtained from the optical poling. We have found that experimental susceptibility depends on linear molecular polarizability and photoinducing changes of the molecular dipole moment. It is clearly seen for the PAQ4-PAQ6 molecules possessing halogen atoms with relatively large polarizabilities.
Second-order optical effects in several pyrazolo-quinoline derivatives
Makowska-Janusik, M.; Gondek, E.; Kityk, I.V.; WisIa, J.; Sanetra, J.; Danel, A.
2004-01-01
Using optical poling of several pyazolo-quinoline (PAQ) derivatives we have found an existence of sufficiently high second order optical susceptibility at wavelength 1.76 μm varying in the range 0.9-2.8 pm/V. The performed quantum chemical simulations of the UV-absorption for isolated, solvated and incorporated into the polymethacrylate (PMMA) polymer films have shown that the PM3 method is the best among the semi-empirical ones to simulate the optical properties. The calculations of the hyperpolarizabilites have shown a good correlation with experimentally measured susceptibilities obtained from the optical poling. We have found that experimental susceptibility depends on linear molecular polarizability and photoinducing changes of the molecular dipole moment. It is clearly seen for the PAQ4-PAQ6 molecules possessing halogen atoms with relatively large polarizabilities
Mancosu, Pietro; Fogliata, Antonella; Stravato, Antonella; Tomatis, Stefano; Cozzi, Luca; Scorsetti, Marta
2016-01-01
Frameless stereotactic radiosurgery (SRS) requires dedicated systems to monitor the patient position during the treatment to avoid target underdosage due to involuntary shift. The optical surface monitoring system (OSMS) is here evaluated in a phantom-based study. The new EDGE linear accelerator from Varian (Varian, Palo Alto, CA) integrates, for cranial lesions, the common cone beam computed tomography (CBCT) and kV-MV portal images to the optical surface monitoring system (OSMS), a device able to detect real-time patient׳s face movements in all 6 couch axes (vertical, longitudinal, lateral, rotation along the vertical axis, pitch, and roll). We have evaluated the OSMS imaging capability in checking the phantoms׳ position and monitoring its motion. With this aim, a home-made cranial phantom was developed to evaluate the OSMS accuracy in 4 different experiments: (1) comparison with CBCT in isocenter location, (2) capability to recognize predefined shifts up to 2° or 3cm, (3) evaluation at different couch angles, (4) ability to properly reconstruct the surface when the linac gantry visually block one of the cameras. The OSMS system showed, with a phantom, to be accurate for positioning in respect to the CBCT imaging system with differences of 0.6 ± 0.3mm for linear vector displacement, with a maximum rotational inaccuracy of 0.3°. OSMS presented an accuracy of 0.3mm for displacement up to 1cm and 1°, and 0.5mm for larger displacements. Different couch angles (45° and 90°) induced a mean vector uncertainty < 0.4mm. Coverage of 1 camera produced an uncertainty < 0.5mm. Translations and rotations of a phantom can be accurately detect with the optical surface detector system. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Heralded creation of photonic qudits from parametric down-conversion using linear optics
Yoshikawa, Jun-ichi; Bergmann, Marcel; van Loock, Peter; Fuwa, Maria; Okada, Masanori; Takase, Kan; Toyama, Takeshi; Makino, Kenzo; Takeda, Shuntaro; Furusawa, Akira
2018-05-01
We propose an experimental scheme to generate, in a heralded fashion, arbitrary quantum superpositions of two-mode optical states with a fixed total photon number n based on weakly squeezed two-mode squeezed state resources (obtained via weak parametric down-conversion), linear optics, and photon detection. Arbitrary d -level (qudit) states can be created this way where d =n +1 . Furthermore, we experimentally demonstrate our scheme for n =2 . The resulting qutrit states are characterized via optical homodyne tomography. We also discuss possible extensions to more than two modes concluding that, in general, our approach ceases to work in this case. For illustration and with regards to possible applications, we explicitly calculate a few examples such as NOON states and logical qubit states for quantum error correction. In particular, our approach enables one to construct bosonic qubit error-correction codes against amplitude damping (photon loss) with a typical suppression of √{n }-1 losses and spanned by two logical codewords that each correspond to an n -photon superposition for two bosonic modes.
Circularly polarized light to study linear magneto-optics for ferrofluids: θ-scan technique
Meng, Xiangshen; Huang, Yan; He, Zhenghong; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Li, Jian; Qiu, Xiaoyan
2018-06-01
Circularly polarized light can be divided into two vertically linearly polarized light beams with ±π/2 phase differences. In the presence of an external magnetic field, when circularly polarized light travels through a ferrofluid film, whose thickness is no more than that of λ/4 plate, magneto-optical, magnetic birefringence and dichroism effects cause the transmitted light to behave as elliptically polarized light. Using angular scan by a continuously rotating polarizer as analyzer, the angular (θ) distribution curve of relative intensity (T) corresponding to elliptically polarized light can be measured. From the T ‑ θ curve having ellipsometry, the parameters such as the ratio of short to long axis, and angular orientation of the long axis to the vertical field direction can be obtained. Thus, magnetic birefringence and dichroism can be probed simultaneously by measuring magneto-optical, positive or negative birefringence and dichroism features from the transmission mode. The proposed method is called θ-scan technique, and can accurately determine sample stability, magnetic field direction, and cancel intrinsic light source ellipticity. This study may be helpful to further research done to ferrofluids and other similar colloidal samples with anisotropic optics.
Analogy between optically driven injection-locked laser diodes and driven damped linear oscillators
Murakami, Atsushi; Shore, K. Alan
2006-01-01
An analytical study of optically driven laser diodes (LDs) has been undertaken to meet the requirement for a theoretical treatment for chaotic drive and synchronization occurring in the injection-locked LDs with strong injection. A small-signal analysis is performed for the sets of rate equations for the injection-locked LDs driven by a sinusoidal optical signal. In particular, as a model of chaotic driving signals from LD dynamics, an optical signal caused by direct modulation to the master LD is assumed, oscillating both in field amplitude and phase as is the case with chaotic driving signals. Consequently, we find conditions that allow reduction in the degrees of freedom of the driven LD. Under these conditions, the driven response is approximated to a simple form which is found to be equivalent to driven damped linear oscillators. The validity of the application of this theory to previous work on the synchronization of chaos and related phenomena occurring in the injection-locked LDs is demonstrated
Bertolotto, Jorge A.; Umazano, Juan P.
2016-06-01
In the present work we make a theoretical study of the steady state electric linear dichroism of DNA fragments in aqueous solution. The here developed theoretical approach considers a flexible bent rod model with a saturating induced dipole moment. The electric polarizability tensor of bent DNA fragments is calculated considering a phenomenological model which theoretical and experimental backgroung is presented here. The model has into account the electric polarizability longitudinal and transversal to the macroion. Molecular flexibility is described using an elastic potential. We consider DNA fragments originally bent with bending fluctuations around an average bending angle. The induced dipole moment is supposed constant once the electric field strength grows up at critical value. To calculate the reduced electric linear dichroism we determine the optical factor considering the basis of the bent DNA perpendicular to the molecular axis. The orientational distribution function has into account the anisotropic electric properties and the molecule flexibility. We applied the present theoretical background to fit electric dichroism experimental data of DNA fragments reported in the bibliography in a wide range of molecular weight and electric field. From these fits, values of DNA physical properties are estimated. We compare and discuss the results here obtained with the theoretical and experimental data presented by other authors. The original contributions of this work are: the inclusion of the transversal electric polarizability saturating with the electric field, the description of the electric properties with an electric polarizability tensor dependant on the bending angle and the use of an arc model originally bent.
Cappi, R; Martini, M; Métral, Elias; Métral, G; Steerenberg, R; Müller, A S
2003-01-01
The CERN Proton Synchrotron machine is built using combined function magnets. The control of the linear tune as well as the chromaticity in both planes is achieved by means of special coils added to the main magnets, namely two pole-face-windings and one figure-of-eight loop. As a result, the overall magnetic field configuration is rather complex not to mention the saturation effects induced at top-energy. For these reasons a linear model of the PS main magnet does not provide sufficient precision to model particle dynamics. On the other hand, a sophisticated optical model is the key element for the foreseen intensity upgrade and, in particular, for the novel extraction mode based on adiabatic capture of beam particles inside stable islands in transverse phase space. A solution was found by performing accurate measurement of the nonlinear tune as a function of both amplitude and momentum offset so to extract both linear and nonlinear properties of the lattice. In this paper the measurement results are present...
A linear laser-driver array for optical transmission in the LHC experiments
Cervelli, G; Moreira, P; Vasey, F
2000-01-01
A 4-way linear laser driver has been designed and implemented in a commercial 0.25 mu m CMOS technology. The full-custom IC is intended for analogue and digital data transmission as part of the 50 000 optical fibre links of the CMS particle tracking system. Intrinsic radiation tolerance and specific design methodologies enable the device to operate over 10 years in the harsh radiation environment of the innermost LHC detectors. Although optimised for analogue operation the driver is compatible with LVDS digital signalling. A combination of linearization methods achieves good analogue performance (8-bit equivalent dynamic range with a bandwidth of 100 MHz), while maintaining wide input common-mode range (+or-350 mV) and limited power dissipation. The linearly amplified signal is added to a DC current, which can be set over a wide range (-60 mA to +60 mA). The latter capability allows tracking of changes in laser threshold due to ageing or radiation damage. The driver gain and bias current are set via a serial ...
Karimi, M.J.; Rezaei, G.; Nazari, M.
2014-01-01
Based on the effective mass and parabolic one band approximations, simultaneous effects of the geometrical size, hydrogenic impurity, hydrostatic pressure, and temperature on the intersubband optical absorption coefficients and refractive index changes in multilayered spherical quantum dots are studied. Energy eigenvalues and eigenvectors are calculated using the fourth-order Runge–Kutta method and optical properties are obtained using the compact density matrix approach. The results indicate that the hydrogenic impurity, hydrostatic pressure, temperature and geometrical parameters such as the well and barrier widths have a great influence on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes. -- Highlights: • Hydrogenic impurity effects on the optical properties of a MSQD are investigated. • Hydrostatic pressure and temperature effects are also studied. • Hydrogenic impurity has a great influence on the linear and nonlinear ACs and RICs. • Hydrostatic pressure and temperature change the linear and nonlinear ACs and RICs
Yahia, I. S.; Ganesh, V.; Shkir, M.; AlFaify, S.; Zahran, H. Y.; Algarni, H.; Abutalib, M. M.; Al-Ghamdi, Attieh A.; El-Naggar, A. M.; AlBassam, A. M.
2016-09-01
In the current work, the authors present the systematic study on linear and nonlinear optical properties of Copper-phathalocyanine thin film deposited by thermal evaporation system for the first time. The thickness of the prepared thin film was measured and found to be ~300 nm. X-ray diffraction and AFM study confirms that the prepared thin film possess good quality. The orientation of the grown thin film is found to be along (100). UV-vis-NIR study shows that the deposited thin film is highly transparent (>80%) in the wavelength range of 700-2500 nm. Further, the recorded optical data was used to determine the various linear and nonlinear optical parameters. The calculated value of refractive index is found to be in the range of 0.4-1.0. The direct and indirect band gap value is found to be 2.9 and 3.25 eV, respectively. The value of linear and nonlinear susceptibilities is found to be in order of 10-12. The higher value of linear and nonlinear parameters makes it suitable for optoelectronic applications.
Yahia, I.S. [Nano-Science & Semiconductor Labs, Metallurgical Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Ganesh, V. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Shkir, M., E-mail: shkirphysics@gmail.com [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); AlFaify, S. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Zahran, H.Y. [Nano-Science & Semiconductor Labs, Metallurgical Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Algarni, H. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abutalib, M.M.; Al-Ghamdi, Attieh A. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, Jeddah (Saudi Arabia); El-Naggar, A.M.; AlBassam, A.M. [Research Chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Dept., College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)
2016-09-01
In the current work, the authors present the systematic study on linear and nonlinear optical properties of Copper-phathalocyanine thin film deposited by thermal evaporation system for the first time. The thickness of the prepared thin film was measured and found to be ~300 nm. X-ray diffraction and AFM study confirms that the prepared thin film possess good quality. The orientation of the grown thin film is found to be along (100). UV–vis-NIR study shows that the deposited thin film is highly transparent (>80%) in the wavelength range of 700–2500 nm. Further, the recorded optical data was used to determine the various linear and nonlinear optical parameters. The calculated value of refractive index is found to be in the range of 0.4–1.0. The direct and indirect band gap value is found to be 2.9 and 3.25 eV, respectively. The value of linear and nonlinear susceptibilities is found to be in order of 10{sup −12}. The higher value of linear and nonlinear parameters makes it suitable for optoelectronic applications.
Falvo, Cyril
2018-02-01
The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.
Site specific atomic polarizabilities in endohedral fullerenes and carbon onions
Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Bhusal, Shusil; Basurto, Luis [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Jackson, Koblar [Physics Department and Science of Advanced Materials Ph.D. Program, Central Michigan University, Mt. Pleasant, Michigan 48859 (United States)
2015-08-28
We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolated C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.
Site specific atomic polarizabilities in endohedral fullerenes and carbon onions
Zope, Rajendra R.; Baruah, Tunna; Bhusal, Shusil; Basurto, Luis; Jackson, Koblar
2015-01-01
We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C 60 @C 240 and C 60 @C 180 onions shows that, compared to the polarizability of isolated C 60 fullerene, the encapsulation of the C 60 in C 240 and C 180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C 60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability
Site specific atomic polarizabilities in endohedral fullerenes and carbon onions
Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar
2015-08-01
We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.
Polarizabilities of the beryllium clock transition
Mitroy, J.
2010-01-01
The polarizabilities of the three lowest states of the beryllium atom are determined from a large basis configuration interaction calculation. The polarizabilities of the 2s 2 1 S e ground state (37.73a 0 3 ) and the 2s2p 3 P 0 o metastable state (39.04a 0 3 ) are found to be very similar in size and magnitude. This leads to an anomalously small blackbody radiation shift at 300 K of -0.018(4) Hz for the 2s 2 1 S e -2s2p 3 P 0 o clock transition. Magic wavelengths for simultaneous trapping of the ground and metastable states are also computed.
Atomic polarizability in negative-ion photodetachment
Watanabe, S.; Greene, C.H.
1980-01-01
The influence of a strong atomic polarizability on photodetachment processes is isolated. In a model study of K - photodetachment near the 4p/sub 1/2/, 4p/sub 3/2/ levels of K, the polarizability (α/sub 4p/ approx. = 600a 3 0 ) is shown to cause a striking energy dependence of the parameters which determine the cross section. This study extends the effective range theory of O'Malley, Spruch, and Rosenberg to a broader energy range and to multichannel systems. An appendix provides a derivation of the polarization potential (and correction terms) starting from the electron-atom close-coupling equations, showing some new features
Phase coexistence properties of polarizable Stockmayer fluids
Kiyohara, K.; Gubbins, K.E.; Panagiotopoulos, A.Z.
1997-01-01
We report the phase coexistence properties of polarizable Stockmayer fluids of reduced permanent dipoles |m 0 * |= 1.0 and 2.0 and reduced polarizabilities α * = 0.00, 0.03, and 0.06, calculated by a series of grand canonical Monte Carlo simulations with the histogram reweighting method. In the histogram reweighting method, the distributions of density and energy calculated in Grand Canonical Monte Carlo simulations are stored in histograms and analyzed to construct the grand canonical partition function of the system. All thermodynamic properties are calculated from the grand partition function. The results are compared with Wertheim close-quote s renormalization perturbation theory. Deviations between theory and simulation results for the coexistence envelope are near 2% for the lower dipole moment and 10% for the higher dipole moment we studied. copyright 1997 American Institute of Physics
Experimental investigation of a four-qubit linear-optical quantum logic circuit.
Stárek, R; Mičuda, M; Miková, M; Straka, I; Dušek, M; Ježek, M; Fiurášek, J
2016-09-20
We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C(3)Z gate and several two-qubit and single-qubit gates. The C(3)Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.
Cosine bend-linear waveguide digital optical switch with parabolic heater
Yulianti, Ian; Supa'at, Abu Sahmah Mohd.; Idrus, Sevia M.; Al-hetar, Abdulaziz M.
2010-02-01
A new digital optical switch (DOS) with large branching angle and short device length that exhibits low crosstalk and low power consumption is demonstrated. The Y-branch shape was optimized by introducing constant effective refractive index difference between branches (Δ N eff) along the propagation direction through beam propagation method (BPM) scheme. To provide decreasing local branching angle that results in the improvement of the crosstalk, two modified cosine bend was introduced to form the Y-branch. The modified cosine branch was then connected to a linear branch. The heater electrode was optimized so that the temperature fields induce a constant Δ N eff to satisfy initial assumption in designing the Y-branch shape. With branching angle of 0.299° and device length of only 5 mm, the simulation shows that the device could exhibits crosstalk of -33 dB at calculated required power of only 26 mW.
Post-processing with linear optics for improving the quality of single-photon sources
Berry, Dominic W; Scheel, Stefan; Myers, Casey R; Sanders, Barry C; Knight, Peter L; Laflamme, Raymond
2004-01-01
Triggered single-photon sources produce the vacuum state with non-negligible probability, but produce a much smaller multiphoton component. It is therefore reasonable to approximate the output of these photon sources as a mixture of the vacuum and single-photon states. We show that it is impossible to increase the probability for a single photon using linear optics and photodetection on fewer than four modes. This impossibility is due to the incoherence of the inputs; if the inputs were pure-state superpositions, it would be possible to obtain a perfect single-photon output. In the more general case, a chain of beam splitters can be used to increase the probability for a single photon, but at the expense of adding an additional multiphoton component. This improvement is robust against detector inefficiencies, but is degraded by distinguishable photons, dark counts or multiphoton components in the input
Spatiotemporal dynamics of Bose-Einstein condensates in linear- and circular-chain optical lattices
Tsukada, N.
2002-01-01
We investigate the spatiotemporal dynamics of Bose-Einstein condensates in optical lattices that have a linear-or a circular-chain configuration with the tunneling couplings between nearest-neighbor lattice sites. A discrete nonlinear Schroedinger equation has been solved for various initial conditions and for a definite range of repulsive and attractive interatomic interactions. It is shown that the diversity of the spatiotemporal dynamics of the atomic population distribution such as a macroscopic self-trapping, bright and dark solitons, and symmetry breaking is derived from the positive and negative interatomic interactions. For the circular-chain configuration, two types of rotational modes are obtained as we introduce a definite relation for the initial phase conditions
Jiang, YuXiao; Guo, PengLiang; Gao, ChengYan; Wang, HaiBo; Alzahrani, Faris; Hobiny, Aatef; Deng, FuGuo
2017-12-01
We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple linear-optical elements, including half-wave plates, 50:50 beam splitters, and polarization beam splitters, to convert spatial-polarization modes into different time bins. By using postselection in different time bins, the success probability of obtaining the uncorrupted states approaches 1/4 for single-photon transmission, which is not influenced by the coefficients of noisy channels. Our self-error-rejecting transmission scheme can be generalized to hyperentangled n-photon systems and is useful in practical high-capacity quantum communications with photon systems in two degrees of freedom.
Wang, Hong; Ren, Bao-Cang; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo
2017-10-01
Hyperentanglement has significant applications in quantum information processing. Here we present an efficient hyperentanglement concentration protocol (hyper-ECP) for partially hyperentangled Bell states simultaneously entangled in polarization, spatial-mode and time-bin degrees of freedom (DOFs) with the parameter-splitting method, where the parameters of the partially hyperentangled Bell states are known to the remote parties. In this hyper-ECP, only one remote party is required to perform some local operations on the three DOFs of a photon, only the linear optical elements are considered, and the success probability can achieve the maximal value. Our hyper-ECP can be easily generalized to concentrate the N-photon partially hyperentangled Greenberger-Horne-Zeilinger states with known parameters, where the multiple DOFs have largely improved the channel capacity of long-distance quantum communication. All of these make our hyper-ECP more practical and useful in high-capacity long-distance quantum communication.
Optical fibres sensor based in the intensity switch of a linear laser with two Bragg gratings
Basurto P, M.A.; Kuzin, E.A.; Archundia B, C.; Marroquin, E.; May A, M.; Cerecedo N, H.H.; Sanchez M, J.J.; Tentori S, D.; Marquez B, I.; Shliagin, M.; Miridonov, S.
2000-01-01
In this work we propose a new configuration for an optical fiber temperature sensor, based on a linear type Er-doped fiber laser. The laser cavity consists of an Er-doped fiber and two identical Bragg gratings at the fiber ends (working as reflectors). Temperature changes are detected by measuring, through one of the gratings, the intensity variations at the system's output. When the temperature of one of the Bragg gratings is modified, a wavelength shift of its spectral reflectivity is observed. Hence, the laser emission intensity of the system is modified. We present experimental results of the intensity switch observed when the temperature difference between the gratings detunes their spectral reflectance. Making use of this effect it is possible to develop limit comparators to bound the temperature range for the object under supervision. This limiting work can be performed with a high sensitivity using a very simple interrogation procedure. (Author)
On the dynamic polarizability of atoms
Nuroh, K.; Zaremba, E.
1989-04-01
The positive frequency dependent polarizability of atoms is discussed in terms of the particle-hole polarization propagator. It is considered in the simplest approximation defined by the Bethe-Salpeter equation which includes a subset of particle-hole interactions to all orders in the Coulomb potential. Its solution is used to show the relationship between different formulations of atomic photoabsorption via the effective dipole matrix element (Fermi's 'golden rule'), the TDLDA and the reaction matrix. (author). 21 refs, 7 figs
Significant and variable linear polarization during the prompt optical flash of GRB 160625B.
Troja, E.; Lipunov, V. M.; Mundell, C. G.; Butler, N. R.; Watson, A. M.; Kobayashi, S.; Cenko, S. B.; Marshall, F. E.; Ricci, R.; Fruchter, A.; Wieringa, M. H.; Gorbovskoy, E. S.; Kornilov, V.; Kutyrev, A.; Lee, W. H.; Toy, V.; Tyurina, N. V.; Budnev, N. M.; Buckley, D. A. H.; González, J.; Gress, O.; Horesh, A.; Panasyuk, M. I.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rebolo Lopez, R.; Richer, M. G.; Roman-Zuniga, C.; Serra-Ricart, M.; Yurkov, V.; Gehrels, N.
2017-07-01
Newly formed black holes of stellar mass launch collimated outflows (jets) of ionized matter that approach the speed of light. These outflows power prompt, brief and intense flashes of γ-rays known as γ-ray bursts (GRBs), followed by longer-lived afterglow radiation that is detected across the electromagnetic spectrum. Measuring the polarization of the observed GRB radiation provides a direct probe of the magnetic fields in the collimated jets. Rapid-response polarimetric observations of newly discovered bursts have probed the initial afterglow phase, and show that, minutes after the prompt emission has ended, the degree of linear polarization can be as high as 30 per cent - consistent with the idea that a stable, globally ordered magnetic field permeates the jet at large distances from the central source. By contrast, optical and γ-ray observations during the prompt phase have led to discordant and often controversial results, and no definitive conclusions have been reached regarding the origin of the prompt radiation or the configuration of the magnetic field. Here we report the detection of substantial (8.3 ± 0.8 per cent from our most conservative simulation), variable linear polarization of a prompt optical flash that accompanied the extremely energetic and long-lived prompt γ-ray emission from GRB 160625B. Our measurements probe the structure of the magnetic field at an early stage of the jet, closer to its central black hole, and show that the prompt phase is produced via fast-cooling synchrotron radiation in a large-scale magnetic field that is advected from the black hole and distorted by dissipation processes within the jet.
Electrode redox reactions with polarizable molecules
Matyushov, Dmitry V.
2018-04-01
A theory of redox reactions involving electron transfer between a metal electrode and a polarizable molecule in solution is formulated. Both the existence of molecular polarizability and its ability to change due to electron transfer distinguish this problem from classical theories of interfacial electrochemistry. When the polarizability is different between the oxidized and reduced states, the statistics of thermal fluctuations driving the reactant over the activation barrier becomes non-Gaussian. The problem of electron transfer is formulated as crossing of two non-parabolic free energy surfaces. An analytical solution for these free energy surfaces is provided and the activation barrier of electrode electron transfer is given in terms of two reorganization energies corresponding to the oxidized and reduced states of the molecule in solution. The new non-Gaussian theory is, therefore, based on two theory parameters in contrast to one-parameter Marcus formulation for electrode reactions. The theory, which is consistent with the Nernst equation, predicts asymmetry between the cathodic and anodic branches of the electrode current. They show different slopes at small electrode overpotentials and become curved at larger overpotentials. However, the curvature of the Tafel plot is reduced compared to the Marcus-Hush model and approaches the empirical Butler-Volmer form with different transfer coefficients for the anodic and cathodic currents.
Demonstration of feed-forward control for linear optics quantum computation
Pittman, T.B.; Jacobs, B.C.; Franson, J.D.
2002-01-01
One of the main requirements in linear optics quantum computing is the ability to perform single-qubit operations that are controlled by classical information fed forward from the output of single-photon detectors. These operations correspond to predetermined combinations of phase corrections and bit flips that are applied to the postselected output modes of nondeterministic quantum logic devices. Corrections of this kind are required in order to obtain the correct logical output for certain detection events, and their use can increase the overall success probability of the devices. In this paper, we report on the experimental demonstration of the use of this type of feed-forward system to increase the probability of success of a simple nondeterministic quantum logic operation from approximately (1/4) to (1/2). This logic operation involves the use of one target qubit and one ancilla qubit which, in this experiment, are derived from a parametric down-conversion photon pair. Classical information describing the detection of the ancilla photon is fed forward in real time and used to alter the quantum state of the output photon. A fiber-optic delay line is used to store the output photon until a polarization-dependent phase shift can be applied using a high-speed Pockels cell
X-ray topographic studies of organic and non-linear optical materials
Halfpenny, P. J.; Sherwood, J. N.; Simpson, G. S.
1997-01-01
The flexible and non-destructive nature of X-ray topography is ideally suited to the study of large single crystals for both fundamental research and technological applications as well as the optimisation of crystal growth processes. Three examples are discussed, illustrating the application of X-ray topographic methods to non-linear optical (NLO) crystals. Synchrotron radiation section topography has been applied to the examination of large organic crystals. X-ray topography has been used to examine growth defects and the quality of crystals of m-nitroaniline (mNA) grown by the Bridgeman method. These studies allow evaluation of growth parameters together with their influence on defect density and show that in the case of mNA, remarkably low defect densities can be achieved under optimum growth conditions. Double-crystal reflection topography, with synchrotron radiation has been used to image defects intersecting the (011) faces of the inorganic NLO material potassium titanyl phosphate (KTP). X-ray images have been combined with optical microscopy and interferometry to provide valuable information on the crystal growth process
Martínez-Orozco, J.C.; Mora-Ramos, M.E.; Duque, C.A.
2014-01-01
The conduction band states of GaAs-based vertically coupled double triangular quantum dots in two dimensions are investigated within the effective mass and parabolic approximation, using a diagonalization procedure to solve the corresponding Schrödinger-like equation. The effect of an externally applied static electric field is included in the calculation, and the variation of the lowest confined energy levels as a result of the change of the field strength is reported for different geometrical setups. The linear and nonlinear optical absorptions and the relative change of the refractive index, associated with the energy transition between the ground and the first excited state in the system, are studied as a function of the incident light frequency for distinct configurations of inter-dot distance and electric field intensities. The blueshift of the resonant absorption peaks is detected as a consequence of the increment in the field intensity, whereas the opposite effect is obtained from the increase of inter-dot vertical distance. It is also shown that for large enough values of the electric field there is a quenching of the optical absorption due to field-induced change of symmetry of the first excited state wavefunction, in the case of triangular dots of equal shape and size
Structural, linear and nonlinear optical properties of co-doped ZnO thin films
Shaaban, E. R.; El-Hagary, M.; Moustafa, El Sayed; Hassan, H. Shokry; Ismail, Yasser A. M.; Emam-Ismail, M.; Ali, A. S.
2016-01-01
Different compositions of Co-doped zinc oxide [(Zn(1- x)Co x O) ( x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10)] thin films were evaporated onto highly clean glass substrates by thermal evaporation technique using a modified source. The structural properties investigated by X-ray diffraction revealed hexagonal wurtzite ZnO-type structure. The crystallite size of the films was found to decrease with increasing Co content. The optical characterization of the films has been carried out using spectral transmittance and reflectance obtained in the wavelength range from 300 to 2500 nm. The refractive index has been found to increase with increasing Co content. It was further found that optical energy gap decreases from 3.28 to 3.03 eV with increasing Co content from x = 0 to x = 0.10, respectively. The dispersion of refractive index has been analyzed in terms of Wemple-DiDomenico (WDD) single-oscillator model. The oscillator parameters, the single-oscillator energy ( E o), the dispersion energy ( E d), and the static refractive index ( n 0), were determined. The nonlinear refractive index of the Zn(1- x)Co x O thin films was calculated and revealed well correlation with the linear refractive index and WDD parameters which in turn depend on the density and molar volume of the system.
Martínez-Orozco, J.C. [Unidad Académica de Física. Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060. Zacatecas, Zac. (Mexico); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2014-11-01
The conduction band states of GaAs-based vertically coupled double triangular quantum dots in two dimensions are investigated within the effective mass and parabolic approximation, using a diagonalization procedure to solve the corresponding Schrödinger-like equation. The effect of an externally applied static electric field is included in the calculation, and the variation of the lowest confined energy levels as a result of the change of the field strength is reported for different geometrical setups. The linear and nonlinear optical absorptions and the relative change of the refractive index, associated with the energy transition between the ground and the first excited state in the system, are studied as a function of the incident light frequency for distinct configurations of inter-dot distance and electric field intensities. The blueshift of the resonant absorption peaks is detected as a consequence of the increment in the field intensity, whereas the opposite effect is obtained from the increase of inter-dot vertical distance. It is also shown that for large enough values of the electric field there is a quenching of the optical absorption due to field-induced change of symmetry of the first excited state wavefunction, in the case of triangular dots of equal shape and size.
Sukarno; Law, Cheryl Suwen; Santos, Abel
2017-06-08
We present the first realisation of linear variable bandpass filters in nanoporous anodic alumina (NAA-LVBPFs) photonic crystal structures. NAA gradient-index filters (NAA-GIFs) are produced by sinusoidal pulse anodisation and used as photonic crystal platforms to generate NAA-LVBPFs. The anodisation period of NAA-GIFs is modified from 650 to 850 s to systematically tune the characteristic photonic stopband of these photonic crystals across the UV-visible-NIR spectrum. Then, the nanoporous structure of NAA-GIFs is gradually widened along the surface under controlled conditions by wet chemical etching using a dip coating approach aiming to create NAA-LVBPFs with finely engineered optical properties. We demonstrate that the characteristic photonic stopband and the iridescent interferometric colour displayed by these photonic crystals can be tuned with precision across the surface of NAA-LVBPFs by adjusting the fabrication and etching conditions. Here, we envisage for the first time the combination of the anodisation period and etching conditions as a cost-competitive, facile, and versatile nanofabrication approach that enables the generation of a broad range of unique LVBPFs covering the spectral regions. These photonic crystal structures open new opportunities for multiple applications, including adaptive optics, hyperspectral imaging, fluorescence diagnostics, spectroscopy, and sensing.
Su, Yonggang; Tang, Chen; Li, Biyuan; Lei, Zhenkun
2018-05-01
This paper presents a novel optical colour image watermarking scheme based on phase-truncated linear canonical transform (PT-LCT) and image decomposition (ID). In this proposed scheme, a PT-LCT-based asymmetric cryptography is designed to encode the colour watermark into a noise-like pattern, and an ID-based multilevel embedding method is constructed to embed the encoded colour watermark into a colour host image. The PT-LCT-based asymmetric cryptography, which can be optically implemented by double random phase encoding with a quadratic phase system, can provide a higher security to resist various common cryptographic attacks. And the ID-based multilevel embedding method, which can be digitally implemented by a computer, can make the information of the colour watermark disperse better in the colour host image. The proposed colour image watermarking scheme possesses high security and can achieve a higher robustness while preserving the watermark’s invisibility. The good performance of the proposed scheme has been demonstrated by extensive experiments and comparison with other relevant schemes.
Giacometti, Paolo; Diamond, Solomon G.
Diffuse optical tomography (DOT) is a functional brain imaging technique that measures cerebral blood oxygenation and blood volume changes. This technique is particularly useful in human neuroimaging measurements because of the coupling between neural and hemodynamic activity in the brain. DOT is a multichannel imaging extension of near-infrared spectroscopy (NIRS). NIRS uses laser sources and light detectors on the scalp to obtain noninvasive hemodynamic measurements from spectroscopic analysis of the remitted light. This review explains how NIRS data analysis is performed using a combination of the modified Beer-Lambert law (MBLL) and the diffusion approximation to the radiative transport equation (RTE). Laser diodes, photodiode detectors, and optical terminals that contact the scalp are the main components in most NIRS systems. Placing multiple sources and detectors over the surface of the scalp allows for tomographic reconstructions that extend the individual measurements of NIRS into DOT. Mathematically arranging the DOT measurements into a linear system of equations that can be inverted provides a way to obtain tomographic reconstructions of hemodynamics in the brain.
Yonghua Qu
2014-05-01
Full Text Available The canopy foliage clumping effect is primarily caused by the non-random distribution of canopy foliage. Currently, measurements of clumping index (CI by handheld instruments is typically time- and labor-intensive. We propose a low-cost and low-power automatic measurement system called Multi-point Linear Array of Optical Sensors (MLAOS, which consists of three above-canopy and nine below-canopy optical sensors that capture plant transmittance at different times of the day. Data communication between the MLAOS node is facilitated by using a ZigBee network, and the data are transmitted from the field MLAOS to a remote data server using the Internet. The choice of the electronic element and design of the MLAOS software is aimed at reducing costs and power consumption. A power consumption test showed that, when a 4000 mAH Li-ion battery is used, a maximum of 8–10 months of work can be achieved. A field experiment on a coniferous forest revealed that the CI of MLAOS may reveal a clumping effect that occurs within the canopy. In further work, measurement of the multi-scale clumping effect can be achieved by utilizing a greater number of MLAOS devices to capture the heterogeneity of the plant canopy.
Ennaceur, Nasreddine; Jalel, Boutheina; Henchiri, Rokaya; Cordier, Marie; Ledoux-Rak, Isabelle
2018-01-01
Hybrid material: 4-Dimethylaminopyridinium nitrate gallic acid monohydrate abbreviated DNGA monohydrate has been successfully synthesized by slow evaporation method at room temperature. X-ray diffraction (XRD) on a single crystal showed that the latter was crystallized in P-1 space group. Likewise, thermal analyses demonstrated the stability of our crystal up to 80 °C. Besides, the analysis of the infrared spectrum (FTIR), allowed us to confirm the presence of the different groups present in the structure. Furthermore, by studying the UV-Visible spectrum, the transparency of our crystal was proven. Despite the fact that of having a centrosymmetric structure, the nonlinear optical properties of our single crystal, which was tested by Kurtz-Perry technique, proved that its second harmonic generation efficiency was 1.22 times more than that of KDP (potassium dihydrogen phosphate) single crystal. This nonlinear optical behavior of the studied compound was also determined through the calculations of polarizability and first hyperpolarizability values.
X-band rf driven free electron laser driver with optics linearization
Yipeng Sun (孙一鹏
2014-11-01
Full Text Available In this paper, a compact hard X-ray free electron lasers (FEL design is proposed with all X-band rf acceleration and two stage bunch compression. It eliminates the need of a harmonic rf linearization section by employing optics linearization in its first stage bunch compression. Quadrupoles and sextupoles are employed in a bunch compressor one (BC1 design, in such a way that second order longitudinal dispersion of BC1 cancels the second order energy correlation in the electron beam. Start-to-end 6-D simulations are performed with all the collective effects included. Emittance growth in the horizontal plane due to coherent synchrotron radiation is investigated and minimized, to be on a similar level with the successfully operating Linac coherent light source (LCLS. At a FEL radiation wavelength of 0.15 nm, a saturation length of 40 meters can be achieved by employing an undulator with a period of 1.5 cm. Without tapering, a FEL radiation power above 10 GW is achieved with a photon pulse length of 50 fs, which is LCLS-like performance. The overall length of the accelerator plus undulator is around 250 meters which is much shorter than the LCLS length of 1230 meters. That makes it possible to build hard X-ray FEL in a laboratory with limited size.
Bounds on achievable accuracy in analog optical linear-algebra processors
Batsell, Stephen G.; Walkup, John F.; Krile, Thomas F.
1990-07-01
Upper arid lower bounds on the number of bits of accuracy achievable are determined by applying a seconth-ortler statistical model to the linear algebra processor. The use of bounds was found necessary due to the strong signal-dependence of the noise at the output of the optical linear algebra processor (OLAP). 1 1. ACCURACY BOUNDS One of the limiting factors in applying OLAPs to real world problems has been the poor achievable accuracy of these processors. Little previous research has been done on determining noise sources from a systems perspective which would include noise generated in the multiplication ard addition operations spatial variations across arrays and crosstalk. We have previously examined these noise sources and determined a general model for the output noise mean and variance. The model demonstrates a strony signaldependency in the noise at the output of the processor which has been confirmed by our experiments. 1 We define accuracy similar to its definition for an analog signal input to an analog-to-digital (ND) converter. The number of bits of accuracy achievable is related to the log (base 2) of the number of separable levels at the P/D converter output. The number of separable levels is fouri by dividing the dynamic range by m times the standard deviation of the signal a. 2 Here m determines the error rate in the P/D conversion. The dynamic range can be expressed as the
Chen, Haixia; Zhang, Jing
2007-01-01
We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning
Measurement of molecular polarizability on Rayleigh light scattering
Nerushev, O.A.; Novopashin, S.A.
1994-01-01
The installation for measuring the polarizability of atoms and molecules on Rayleigh light scattering is described. The measurements in gases with the known polarizability are used for a calibration. Test measurements are carried out on nitrogen, argon, carbon dioxide, vapours of water and acetone. The results of measurements are compared with the table data. The technique is used for measuring the polarizability of fullerene molecules. 6 refs., 2 figs
Dielectric constant of atomic fluids with variable polarizability
Alder, B. J.; Beers, J. C.; Strauss, H. L.; Weis, J. J.
1980-01-01
The Clausius-Mossotti function for the dielectric constant is expanded in terms of single atom and pair polarizabilities, leading to contributions that depend on both the trace and the anisotropy of the pair-polarizability tensor. The short-range contribution of the anisotropic part to the pair polarizabilities has previously been obtained empirically from light scattering experiments, whereas the trace contribution is now empirically determined by comparison to dielectric experiments. For he...
Corsetti, James A; Green, William E; Ellis, Jonathan D; Schmidt, Greg R; Moore, Duncan T
2016-10-10
Characterizing the thermal properties of optical materials is necessary for understanding how to design an optical system for changing environmental conditions. A method is presented for simultaneously measuring both the linear coefficient of thermal expansion and the temperature-dependent refractive index coefficient of a sample interferometrically in air. Both the design and fabrication of the interferometer is presented as well as a discussion of the results of measuring both a steel and a CaF2 sample.
Rupnik, K.; Asaf, U.; McGlynn, S.P.
1990-01-01
A linear correlation exists between the electron scattering length, as measured by a pressure shift method, and the polarizabilities for He, Ne, Ar, Kr, and Xe gases. The correlative algorithm has excellent predictive capability for the electron scattering lengths of mixtures of rare gases, simple molecular gases such as H 2 and N 2 and even complex molecular entities such as methane, CH 4
Medeiros, Adriana S.
2009-01-01
Poly(vinylidene fluoride) [PVDF] is a semicrystalline linear homopolymer composed by the repetition of CH 2 - CF 2 monomers. The Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] is a copolymer which is obtained with the random introduction of fluorinated CHF-CF 2 monomers in the PVDF main chain. PVDF, and also its copolymers with TrFE contents ranging from 18 to 63 wt. %, have long been studied for their striking ferroelectric properties and their applications in actuators, transducers and ferroelectric memory. Recent research work around the world have demonstrated that, for TrFE contents ranging from with 30 to 50 wt. %, the copolymer can have its ferroelectric properties modified by high doses of ionizing radiation, with the appearing of radio-induced relaxor ferroelectric features. These studies have lead us to investigate the possible use of these copolymers as high dose dosemeters, once the reported amount of induced C=C conjugated bonds after X-ray, UV and gamma irradiation seems to be a function of the delivered radiation dose. In a first investigation for doses ranging from 0.1 to 100 kGy we found out a linear relation between the gamma radiation dose and the absorption peak intensities in the UV region of the spectrum, i.e., at 223 and 274 nm. The absorption peak at 223 nm is the most sensitive to gamma rays and can be used for detecting gamma doses ranging from 0.3 to 75 kGy. Simultaneously, the absorption peak at 274 nm can be used for doses ranging from 1 to 100 kGy. Now, in the present work, we extended the investigation to gamma doses up to 3 MGy. Particularly, this study is focused in the optical absorption peak at 274 nm, corresponding to the radio-induction of triplets of conjugated C=C double bonds. The investigation revealed a linear correlation between the gamma dose and peak intensity at 274 nm for gamma doses ranging from 0.1 to more than 750 KGy, with a huge extension of the original usable dose range. Calorimetric data revealed a
Pion polarizability in nonlocal quark model
Efimov, G.V.; Okhlopkova, V.A.
1978-01-01
The γγ→ππ amplitude was calculated in nonlocal quark model in the fourth order on the perturbation theory. The coefficients of electric[a) and magnetic polarizability (β) determined are equal in magnitude and opposite in sign αsub(π+-)=βsub(π+-)=+0.014α/msub(π)sup(3), αsub(πsup(0))=-βsub(πsup(0))=-0.07α/msub(π)sup(3). The results have been compared with calculations in other models
Thomas, Michael E
2006-01-01
PART I: Background Theory and Measurement. 1. Optical Electromagnetics I. 2. Optical Electromagnetics II. 3. Spectroscopy of Matter. 4. Electrodynamics I: Macroscopic Interaction of Light and Matter. 5. Electrodynamics II: Microscopic Interaction of Light and Matter. 6. Experimental Techniques. PART II: Practical Models for Various Media. 7. Optical Propagation in Gases and the Atmosphere of the Earth. 8. Optical Propagation in Solids. 9. Optical Propagation in Liquids. 10. Particle Absorption and Scatter. 11. Propagation Background and Noise
Zou, X B; Pahlke, K; Mathis, W
2005-01-01
We present a scheme to generate a multi-photon Greenberger-Horne-Zeilinger (GHZ) state by using single-photon sources, linear optical elements and photon detectors. Such a maximum entanglement has wide applications in the demonstration of quantum nonlocality and quantum information processing
Physical origin of third order non-linear optical response of porphyrin nanorods
Mongwaketsi, N.; Khamlich, S.; Pranaitis, M.; Sahraoui, B.; Khammar, F.; Garab, G.; Sparrow, R.; Maaza, M.
2012-01-01
The non-linear optical properties of porphyrin nanorods were studied using Z-scan, Second and Third harmonic generation techniques. We investigated in details the heteroaggregate behaviour formation of [H 4 TPPS 4 ] 2- and [SnTPyP] 2+ mixture by means of the UV-VIS spectroscopy and aggregates structure and morphology by transmission electron microscopy. The porphyrin nanorods under investigation were synthesized by self assembly and molecular recognition method. They have been optimized in view of future application in the construction of the light harvesting system. The focus of this study was geared towards understanding the influence of the type of solvent used on these porphyrins nanorods using spectroscopic and microscopic techniques. Highlights: ► We synthesized porphyrin nanorods by self assembly and molecular recognition method. ► TEM images confirmed solid cylindrical shapes. ► UV-VIS spectroscopy showed the decrease in the absorbance peaks of the precursors. ► The enhanced third-order nonlinearities were observed.
Linear and nonlinear optics, dynamics, and lasing in ZnO bulk and nanostructures
Klingshirn, C.; Fallert, J.; Gogolin, O.; Wissinger, M.; Hauschild, R.; Hauser, M.; Kalt, H.; Zhou, H.
2008-01-01
In linear optics, we report on measurements of the absolute external quantum efficiency of bulk ZnO and powders using an integrating sphere. At low temperature the near band edge emission efficiency can reach 0.15 in the best samples. For deep center luminescence this value may be even higher. When going to room temperature (RT) the quantum efficiency drops by about one order of magnitude. From time resolved luminescence measurements we deduce the lifetime of the free and bound excitons to be in the sub ns regime and find for the latter a systematic increase with increasing binding energy. Concerning lasing, we discuss the role of excitonic processes and the recombination in an inverted electron-hole plasma (EHP). While excitonic processes seem well justified at lower temperatures and densities, doubts arise concerning the concept of excitonic lasing at RT in ZnO. The densities at laser threshold at RT are frequently close to the Mott density or above but below the density at which population inversion in an EHP is reached. We suggest alternative processes which can explain stimulated emission in this density regime in an EHP at RT
Effect of weak nonsphericity on linear and nonlinear optical properties of small particle composites
Goncharenko, A.V.; Popelnukh, V.V.; Venger, E.F.
2002-01-01
A small particle composite in which the inclusions are slightly nonspherical and distributed in shape is considered. Within the framework of the mean-field approximation, the functions of linear and nonlinear optical responses are calculated in terms of a nonsphericity parameter specifying the width of the distribution function in shape. To estimate the effect of weak nonsphericity on the functions, their second derivatives with respect to the nonsphericity parameter are computed. The derivatives are shown to be complexly structured surfaces in the coordinates (Re(ε i /ε m ), Im(ε i /ε m )), where ε i and ε m are the inclusion and matrix permittivity, respectively. Based on the results obtained, applicability area of the classical Maxwell Garnett theory is discussed. The main conclusion is that weak nonsphericity is significant only in the close vicinity of a dipole resonance of a single ball made of inclusion material. At the same time, the role of nonsphericity increases with decreasing the imaginary part of inclusion permittivity. (author)
Active liquid/liquid interfaces: contributions of non linear optics and tensiometry
Gassin, P.M.
2013-01-01
Liquid-liquid extraction processes are widely used in the industrial fields of selective separation. Despite its numerous applications, the microscopic mechanisms which occur during a liquid-liquid extraction processes are really unknown specially at the liquid/liquid interface. Thus, this work deals on the understanding of the phenomena which drive the mass transfer across a liquid/liquid interface. Two experimental techniques were used in this work: dynamic interfacial tension measurement and non-linear optical experiments. Along with the use of this experimental approach, a numerical model describing the mass transfer dynamic has been developed. This model works under the assumption that both diffusion and a chemical step describing adsorption and desorption processes contribute to the global transfer kinetics. Model systems of surfactant molecules, chromophore molecules and complexing molecule were investigated at liquid/liquid and air/liquid interface. Interfacial phenomena like adsorption, surface aggregation and ion complexing were studied. Finally, the methodology developed in this work was applied to studied an extractant molecule with potential industrial application. (author) [fr
Two-Hierarchy Entanglement Swapping for a Linear Optical Quantum Repeater.
Xu, Ping; Yong, Hai-Lin; Chen, Luo-Kan; Liu, Chang; Xiang, Tong; Yao, Xing-Can; Lu, He; Li, Zheng-Da; Liu, Nai-Le; Li, Li; Yang, Tao; Peng, Cheng-Zhi; Zhao, Bo; Chen, Yu-Ao; Pan, Jian-Wei
2017-10-27
Quantum repeaters play a significant role in achieving long-distance quantum communication. In the past decades, tremendous effort has been devoted towards constructing a quantum repeater. As one of the crucial elements, entanglement has been created in different memory systems via entanglement swapping. The realization of j-hierarchy entanglement swapping, i.e., connecting quantum memory and further extending the communication distance, is important for implementing a practical quantum repeater. Here, we report the first demonstration of a fault-tolerant two-hierarchy entanglement swapping with linear optics using parametric down-conversion sources. In the experiment, the dominant or most probable noise terms in the one-hierarchy entanglement swapping, which is on the same order of magnitude as the desired state and prevents further entanglement connections, are automatically washed out by a proper design of the detection setting, and the communication distance can be extended. Given suitable quantum memory, our techniques can be directly applied to implementing an atomic ensemble based quantum repeater, and are of significant importance in the scalable quantum information processing.
Two-Hierarchy Entanglement Swapping for a Linear Optical Quantum Repeater
Xu, Ping; Yong, Hai-Lin; Chen, Luo-Kan; Liu, Chang; Xiang, Tong; Yao, Xing-Can; Lu, He; Li, Zheng-Da; Liu, Nai-Le; Li, Li; Yang, Tao; Peng, Cheng-Zhi; Zhao, Bo; Chen, Yu-Ao; Pan, Jian-Wei
2017-10-01
Quantum repeaters play a significant role in achieving long-distance quantum communication. In the past decades, tremendous effort has been devoted towards constructing a quantum repeater. As one of the crucial elements, entanglement has been created in different memory systems via entanglement swapping. The realization of j -hierarchy entanglement swapping, i.e., connecting quantum memory and further extending the communication distance, is important for implementing a practical quantum repeater. Here, we report the first demonstration of a fault-tolerant two-hierarchy entanglement swapping with linear optics using parametric down-conversion sources. In the experiment, the dominant or most probable noise terms in the one-hierarchy entanglement swapping, which is on the same order of magnitude as the desired state and prevents further entanglement connections, are automatically washed out by a proper design of the detection setting, and the communication distance can be extended. Given suitable quantum memory, our techniques can be directly applied to implementing an atomic ensemble based quantum repeater, and are of significant importance in the scalable quantum information processing.
Mechanism of linear and nonlinear optical properties of bis-thiourea cadmium chloride single crystal
Yang, J.T.; Luo, S.J.; Yi, L.; Laref, A.
2013-01-01
Within the generalized gradient approximation (GGA), a calculation of the electronic structure of a semiorganic crystal named bis-thiourea cadmium chloride (BTCC) was performed, then the linear and nonlinear optical responses were obtained over a wide energy range, using a scissor energy of 1.30 eV, and our results are in good agreement with the experiments. The accurate full-potential projected augmented wave (FP-PAW) method was used. The prominent spectrum of the second harmonic generation (SHG) was successfully correlated with the dielectric function in terms of single- and double-photon resonances. Both the virtual electron (VE) and virtual hole (VH) processes make contributions to the SHG of BTCC crystal, and the VH process is enhanced by the Cd-centered tetrahedron. The SHG effect of the semiorganic material is attributed to the charge transfer (CT). The CT model for the semiorganic crystal is named as “M-Π O ⋯X”. “M” is a metal atom providing electrons, “Π O ” is a π-conjugated covalent of an organic molecule, and “X” is a high electronegativity atom. The CT across the BTCC molecule is along a π-electron conjugation covalence bond, and the delocalized electrons of sulfur provide an excellent bridge. The strong “pull” effect for the CT is due to the intramolecular hydrogen bonds provided by the chlorine with the high electron affinity.
Polarizability properties of bianisotropic spheres with noncomplete magnetoelectric dyadics
Sihvola, A. H.
1994-02-01
The polarizability expressions for bianisotropic scatterers are often complicated expressions of the material parameters. The communication treats the question how the dyadic inversion operations needed in the expressions can be carried out in a well-behaving way. Also, the particular polarizabilities of biaxial chiral spheres are studied in detail.
Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide
Kjær, Hanna; Nielsen, Monia R.; Pagola, Gabriel I.
2012-01-01
In this paper we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the NMR indirect nuclear spin-spin coupling constant with respect to an external elec...
An averaged polarizable potential for multiscale modeling in phospholipid membranes
Witzke, Sarah; List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard
2017-01-01
A set of average atom-centered charges and polarizabilities has been developed for three types of phospholipids for use in polarizable embedding calculations. The lipids investigated are 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1-palmitoyl...
Coupled cluster calculations for static and dynamic polarizabilities of C60
Kowalski, Karol; Hammond, Jeff R.; de Jong, Wibe A.; Sadlej, Andrzej J.
2008-12-01
New theoretical predictions for the static and frequency dependent polarizabilities of C60 are reported. Using the linear response coupled cluster approach with singles and doubles and a basis set especially designed to treat the molecular properties in external electric field, we obtained 82.20 and 83.62 Å3 for static and dynamic (λ =1064 nm) polarizabilities. These numbers are in a good agreement with experimentally inferred data of 76.5±8 and 79±4 Å3 [R. Antoine et al., J. Chem. Phys.110, 9771 (1999); A. Ballard et al., J. Chem. Phys.113, 5732 (2000)]. The reported results were obtained with the highest wave function-based level of theory ever applied to the C60 system.
Measurement of the charged-pion polarizability.
Adolph, C; Akhunzyanov, R; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anosov, V; Austregesilo, A; Badełek, B; Balestra, F; Barth, J; Baum, G; Beck, R; Bedfer, Y; Berlin, A; Bernhard, J; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bodlak, M; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Büchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dinkelbach, A M; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Gnesi, I; Gobbo, B; Goertz, S; Gorzellik, M; Grabmüller, S; Grasso, A; Grube, B; Grussenmeyer, T; Guskov, A; Guthörl, T; Haas, F; von Harrach, D; Hahne, D; Hashimoto, R; Heinsius, F H; Herrmann, F; Hinterberger, F; Höppner, Ch; Horikawa, N; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Jörg, P; Joosten, R; Kabuss, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kroumchtein, Z V; Kuchinski, N; Kuhn, R; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Marchand, C; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Miyachi, Y; Moinester, M A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W-D; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Peshekhonov, D; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Rocco, E; Rossiyskaya, N S; Ryabchikov, D I; Rychter, A; Samoylenko, V D; Sandacz, A; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmidt, K; Schmieden, H; Schönning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; ter Wolbeek, J; Tessaro, S; Tessarotto, F; Thibaud, F; Uhl, S; Uman, I; Virius, M; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zink, A
2015-02-13
The COMPASS collaboration at CERN has investigated pion Compton scattering, π(-)γ→π(-)γ, at center-of-mass energy below 3.5 pion masses. The process is embedded in the reaction π(-)Ni→π(-)γNi, which is initiated by 190 GeV pions impinging on a nickel target. The exchange of quasireal photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, Q(2)<0.0015 (GeV/c)(2). From a sample of 63,000 events, the pion electric polarizability is determined to be α(π)=(2.0±0.6(stat)±0.7(syst))×10(-4) fm(3) under the assumption α(π)=-β(π), which relates the electric and magnetic dipole polarizabilities. It is the most precise measurement of this fundamental low-energy parameter of strong interaction that has been addressed since long by various methods with conflicting outcomes. While this result is in tension with previous dedicated measurements, it is found in agreement with the expectation from chiral perturbation theory. An additional measurement replacing pions by muons, for which the cross-section behavior is unambiguously known, was performed for an independent estimate of the systematic uncertainty.
Classical optics in generalized Maxwell Chern-Simons theory
Burgess, M.; Leinaas, J.M.; Loevvik, O.M.
1993-03-01
The authors consider the propagation of electromagnetic waves in a two-dimensional polarizable medium endowed with Chern-Simons terms. The dispersion relation (refractive index) of the waves is computed and the existence of linear birefringence and anomalous dispersion is shown. When absorption is taken into account, the classic signature of a Voigt effect is found. In the case where linearly-polarized, three-dimensional waves pass through a two-dimensional plane, it is shown that there is optical activity, and the analogue of Verdet's constant is computed. 19 refs., 2 figs
Model-independent effects of Δ excitation in nucleon polarizabilities
Pascalutsa, Vladimir; Phillips, Daniel R.
2003-01-01
Model-independent effects of Δ(1232) excitation on nucleon polarizabilities are computed in a Lorentz-invariant fashion. We find a large effect of relative order (M Δ -M)/M in some of the spin polarizabilities, with the backward spin polarizability receiving the largest contribution. Similar subleading effects are found to be important in the fourth-order spin-independent polarizabilities α Eν , α E2 , β Mν , and β M2 . Combining our results with those for the model-independent effects of pion loops we obtain predictions for spin and fourth-order polarizabilities which compare favorably with the results of a recent dispersion-relation analysis of data
Molecular Polarizability of Sc and C (Fullerene and Graphite Clusters
Francisco Torrens
2001-05-01
Full Text Available A method (POLAR for the calculation of the molecular polarizability is presented. It uses the interacting induced dipoles polarization model. As an example, the method is applied to Scn and Cn (fullerene and one-shell graphite model clusters. On varying the number of atoms, the clusters show numbers indicative of particularly polarizable structures. The are compared with reference calculations (PAPID. In general, the Scn calculated (POLAR and Cn computed (POLAR and PAPID are less polarizable than what is inferred from the bulk. However, the Scn calculated (PAPID are more polarizable than what is inferred. Moreover, previous theoretical work yielded the same trend for Sin, Gen and GanAsm small clusters. The high polarizability of the Scn clusters (PAPID is attributed to arise from dangling bonds at the surface of the cluster.
Hyperfine-mediated static polarizabilities of monovalent atoms and ions
Dzuba, V. A.; Flambaum, V. V.; Beloy, K.; Derevianko, A.
2010-01-01
We apply relativistic many-body methods to compute static differential polarizabilities for transitions inside the ground-state hyperfine manifolds of monovalent atoms and ions. Knowledge of this transition polarizability is required in a number of high-precision experiments, such as microwave atomic clocks and searches for CP-violating permanent electric dipole moments. While the traditional polarizability arises in the second order of interaction with the externally applied electric field, the differential polarizability involves an additional contribution from the hyperfine interaction of atomic electrons with nuclear moments. We derive formulas for the scalar and tensor polarizabilities including contributions from magnetic dipole and electric quadrupole hyperfine interactions. Numerical results are presented for Al, Rb, Cs, Yb + , Hg + , and Fr.
Torre, Amalia
2005-01-01
Ray, wave and quantum concepts are central to diverse and seemingly incompatible models of light. Each model particularizes a specific ''manifestation'' of light, and then corresponds to adequate physical assumptions and formal approximations, whose domains of applicability are well-established. Accordingly each model comprises its own set of geometric and dynamic postulates with the pertinent mathematical means.At a basic level, the book is a complete introduction to the Wigner optics, which bridges between ray and wave optics, offering the optical phase space as the ambience and the Wigner f
Nageshwari, M.; Jayaprakash, P.; Kumari, C. Rathika Thaya [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India); Vinitha, G. [Department of Physics, School of Advanced Sciences, VIT Chennai, 600127 Tamil Nadu (India); Caroline, M. Lydia, E-mail: lydiacaroline2006@yahoo.co.in [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India)
2017-04-15
An efficient nonlinear optical semiorganic material L-valinium L-valine chloride (LVVCl) was synthesized and grown-up by means of slow evaporation process. Single crystal XRD evince that LVVCl corresponds to monoclinic system having acentric space group P2{sub 1}. The diverse functional groups existing in LVVCl were discovered with FTIR spectral investigation. The UV-Visible and photoluminescence spectrum discloses the optical and electronic properties respectively for the grown crystal. Several optical properties specifically extinction coefficient, reflectance, linear refractive index, electrical and optical conductivity were also determined. The SEM analysis was also carried out and it portrayed the surface morphology of LVVCl. The calculated value of laser damage threshold was 2.59 GW/cm{sup 2}. The mechanical and dielectric property of LVVCl was investigated employing microhardness and dielectric studies. The second and third order nonlinear optical characteristics of LVVCl was characterized utilizing Kurtz Perry and Z scan technique respectively clearly suggest its suitability in the domain of optics and photonics. - Graphical abstract: Good quality transparent single crystals of L-valinium L-valine chloride single crystal was grown by slow evaporation technique. The grown crystals were analyzed using different instrumentation methods to check its usefulness for the device fabrication. The determination of nonlinear refractive index (n{sub 2}), absorption coefficient (β) and third order nonlinear susceptibility was determined by Z scan technique, highlighted that LVVCl can serve as a promising candidate for opto electronic and nonlinear optical applications.
Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sökmen, I.
2012-01-01
In this present work, we have investigated theoretically the effects of applied electric and magnetic fields on the linear and nonlinear optical properties in a GaAs/Al x Ga 1−x As inverse parabolic quantum well for different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The energy levels and wave functions are calculated within the effective mass approximation and the envelope function approach. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The linear, third-order nonlinear and total absorption and refractive index changes depending on the Al concentration at the well center are investigated as a function of the incident photon energy for the different values of the applied electric and magnetic fields. The results show that the applied electric and magnetic fields have a great effect on these optical quantities. - Highlights: ► The x c concentration has a great effect on the optical characteristics of these structures. ► The EM fields have a great effect on the optical properties of these structures. ► The total absorption coefficients increased as the electric and magnetic field increases. ► The RICs reduced as the electric and magnetic field increases.
Density and polarizability of liquid 4He
Kempin'ski, V.; Zhuk, T.; Stankovski, Ya.; Sitarzh, S.
1988-01-01
The temperature changes in the density of liquid helium are measured in the temperature range of 1.63 to 4.2 K.; Unlike the conventional pycnometric technique, the changes in the hydrostatic displacement of the liquid were determined. The cirrectness of the method chosen and the appropriate equipment for its realization are substantiated. The results obtained are in good agreement with those of other authors. On the basis of temperature measurements of the dependence of density ρ and permittivity ε, the dependence of polarizability A of liquid 4 He on temperature and density was calculated. The results obtained show an alternating character of the dependences A(T) and A(ρ). These dependences are found to correlate
Accelerating GW calculations with optimal polarizability basis
Umari, P.; Stenuit, G. [CNR-IOM DEMOCRITOS Theory Elettra Group, Basovizza (Trieste) (Italy); Qian, X.; Marzari, N. [Department of Materials Science and Engineering, MIT, Cambridge, MA (United States); Giacomazzi, L.; Baroni, S. [CNR-IOM DEMOCRITOS Theory Elettra Group, Basovizza (Trieste) (Italy); SISSA - Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy)
2011-03-15
We present a method for accelerating GW quasi-particle (QP) calculations. This is achieved through the introduction of optimal basis sets for representing polarizability matrices. First the real-space products of Wannier like orbitals are constructed and then optimal basis sets are obtained through singular value decomposition. Our method is validated by calculating the vertical ionization energies of the benzene molecule and the band structure of crystalline silicon. Its potentialities are illustrated by calculating the QP spectrum of a model structure of vitreous silica. Finally, we apply our method for studying the electronic structure properties of a model of quasi-stoichiometric amorphous silicon nitride and of its point defects. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Electronic Energy Transfer in Polarizable Heterogeneous Environments
Svendsen, Casper Steinmann; Kongsted, Jacob
2015-01-01
such couplings provide important insight into the strength of interaction between photo-active pigments in protein-pigment complexes. Recently, attention has been payed to how the environment modifies or even controls the electronic couplings. To enable such theoretical predictions, a fully polarizable embedding......-order multipole moments. We use this extended model to systematically examine three different ways of obtaining EET couplings in a heterogeneous medium ranging from use of the exact transition density to a point-dipole approximation. Several interesting observations are made including that explicit use...... of transition densities in the calculation of the electronic couplings - also when including the explicit environment contribution - can be replaced by a much simpler transition point charge description without comprising the quality of the model predictions....
Magneto-optic current sensor with Faraday mirror for linear birefringence compensation
Arroyo Breña, Javier; Rodriguez Horche, Paloma; Martín Minguez, Alfredo
2012-01-01
Fiber optic sensors have some advantages in subjects related with electrical current and magnetic field measurement. In spite of the optical fiber utilization advantages we have to take into account undesirable effects, which are present in real non-ideal optical fibers. In telecommunication and sensor application fields the presence of inherent and induced birefringence is crucial. The presence of birefringence may cause an undesirable change in the polarization state. In order to compensate...
Krawczyk, Stanislaw; Jazurek, Beata; Luchowski, Rafal; Wiacek, Dariusz
2006-01-01
Electroabsorption spectra of all-trans, 13-cis and 15-cis isomers of carotenoids violaxanthin and β-carotene frozen in organic solvents were analysed in terms of changes in permanent dipole moment, Δμ, and in the linear polarizability, Δα, on electronic excitation. The spectral range investigated covered the two carotenoid absorption bands in the VIS and UV, known to originate from differently oriented transition dipole moments. In contrast with the collinearity of the apparent Δμ with Δα in the lowest-energy allowed (VIS) transition 1A g - ->1B u + , the axis of the largest polarizability change in the UV transition 1A g - ->1A g + (''cis band'') was found to make a large angle with the transition moment, while the direction of Δμ appears to be much closer to it. These data support the view that Δμ's inferred from electrochromic spectra of carotenoids are apparent and are not induced by the local matrix field in the solvent cavity, but merely result from conformational modulation of molecular polarizability
Wang, Wei; Sommer, Ephraim; De Sio, Antonietta; Gross, Petra; Vogelgesang, Ralf; Lienau, Christoph; Vasa, Parinda
2014-01-01
We analyze the linear optical reflectivity spectra of a prototypical, strongly coupled metal/molecular hybrid nanostructure by means of a new experimental approach, linear two-dimensional optical spectroscopy. White-light, broadband spectral interferometry is used to measure amplitude and spectral phase of the sample reflectivity or transmission with high precision and to reconstruct the time structure of the electric field emitted by the sample upon impulsive excitation. A numerical analysis of this time-domain signal provides a two-dimensional representation of the coherent optical response of the sample as a function of excitation and detection frequency. The approach is used to study a nanostructure formed by depositing a thin J-aggregated dye layer on a gold grating. In this structure, strong coupling between excitons and surface plasmon polaritons results in the formation of hybrid polariton modes. In the strong coupling regime, Lorentzian lineshape profiles of different polariton modes are observed at room temperature. This is taken as an indication that the investigated strongly coupled polariton excitations are predominantly homogeneously broadened at room temperature. This new approach presents a versatile, simple and highly precise addition to nonlinear optical spectroscopic techniques for the analysis of line broadening phenomena. (paper)
Dielectric constant of atomic fluids with variable polarizability.
Alder, B J; Beers, J C; Strauss, H L; Weis, J J
1980-06-01
The Clausius-Mossotti function for the dielectric constant is expanded in terms of single atom and pair polarizabilities, leading to contributions that depend on both the trace and the anisotropy of the pair-polarizability tensor. The short-range contribution of the anisotropic part to the pair polarizabilities has previously been obtained empirically from light scattering experiments, whereas the trace contribution is now empirically determined by comparison to dielectric experiments. For helium, the short-range trace part agrees well with electronic structure calculations, whereas for argon qualitative agreement is achieved.
Sciancalepore, C; Agostiano, A; Cassano, T; Valentini, A; Curri, M L; Striccoli, M; Mecerreyes, D; Tommasi, R
2008-01-01
Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO 2 nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly homogeneous dispersion of the nanorods in the organic matrix. The prepared TiO 2 /PMMA-co-MA nanocomposites show high optical transparency in the visible region, even at high TiO 2 nanorod content, and tunable linear refractive index depending on the nanoparticle concentration. Finally measurements of nonlinear optical properties of TiO 2 polymer nanocomposites demonstrate a negligible two-photon absorption and a negative value of nonlinear refractive index, highlighting the potential of the nanocomposite for efficient optical devices operating in the visible region
Sciancalepore, C.; Cassano, T.; Curri, M. L.; Mecerreyes, D.; Valentini, A.; Agostiano, A.; Tommasi, R.; Striccoli, M.
2008-05-01
Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO2 nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly homogeneous dispersion of the nanorods in the organic matrix. The prepared TiO2/PMMA-co-MA nanocomposites show high optical transparency in the visible region, even at high TiO2 nanorod content, and tunable linear refractive index depending on the nanoparticle concentration. Finally measurements of nonlinear optical properties of TiO2 polymer nanocomposites demonstrate a negligible two-photon absorption and a negative value of nonlinear refractive index, highlighting the potential of the nanocomposite for efficient optical devices operating in the visible region.
Linear and nonlinear intraband optical properties of ZnO quantum dots embedded in SiO2 matrix
Deepti Maikhuri
2012-03-01
Full Text Available In this work we investigate some optical properties of semiconductor ZnO spherical quantum dot embedded in an amorphous SiO2 dielectric matrix. Using the framework of effective mass approximation, we have studied intraband S-P, and P-D transitions in a singly charged spherical ZnO quantum dot. The optical properties are investigated in terms of the linear and nonlinear photoabsorption coefficient, the change in refractive index, and the third order nonlinear susceptibility and oscillator strengths. Using the parabolic confinement potential of electron in the dot these parameters are studied with the variation of the dot size, and the energy and intensity of incident radiation. The photoionization cross sections are also obtained for the different dot radii from the initial ground state of the dot. It is found that dot size, confinement potential, and incident radiation intensity affects intraband optical properties of the dot significantly.
Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A; Chee, Kok Han; Liew, Yih Miin
2017-12-01
Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Nam Lyong Kang
2013-07-01
Full Text Available The projection-reduction method introduced by the present authors is known to give a validated theory for optical transitions in the systems of electrons interacting with phonons. In this work, using this method, we derive the linear and first order nonlinear optical conductivites for an electron-impurity system and examine whether the expressions faithfully satisfy the quantum mechanical philosophy, in the same way as for the electron-phonon systems. The result shows that the Fermi distribution function for electrons, energy denominators, and electron-impurity coupling factors are contained properly in organized manners along with absorption of photons for each electron transition process in the final expressions. Furthermore, the result is shown to be represented properly by schematic diagrams, as in the formulation of electron-phonon interaction. Therefore, in conclusion, we claim that this method can be applied in modeling optical transitions of electrons interacting with both impurities and phonons.
Zahran, H.Y. [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Alamri, F.H. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia)
2017-05-15
Pyronin Y dye (PY) is a kind of xanthene derivatives. Thin films of pyronin Y were deposited onto highly cleaned glass substrates using low-cost/spin coating technique. The structure properties of pyronin Y thin films with different thicknesses were investigated by using X-ray diffraction (XRD) and atomic force microscope (AFM). PY thin films for all the studied thicknesses have an amorphous structure supporting the short range order of the grain size. AFM supports the nanostructure with spherical/clusters morphologies of the investigated thin films. The optical constants of pyronin Y thin films for various thicknesses were studied by using UV–vis–NIR spectrophotometer in the wavelength range 350–2500 nm. The transmittance T(λ), reflectance R(λ) spectral and absorbance (abs(λ)) were obtained for all film thicknesses at room temperature and the normal light incident. These films showed a high transmittance in the wide scale wavelengths. For different thicknesses of the studied thin films, the optical band gaps were determined and their values around 2 eV. Real and imaginary dielectric constants, dissipation factor and the nonlinear optical parameters were calculated in the wavelengths to the range 300–2500 nm. The pyronin Y is a new organic semiconductor with a good optical absorption in UV–vis regions and it is suitable for nonlinear optical applications. - Highlights: • Pyronin Y (PY) nanostructured thin films were deposited by using spin coating technique. • XRD/AFM were used to study the structure of PY films. • The optical band gap was calculated on the basis of Tauc's model. • Linear/nonlinear optical parameters are calculated and interpreted via the applied optical theories. • PY thin films is a new organic semiconductor for its application in optoelectronic devices.
Lee, Hyung-Seok; Lee, Hwi Don; Kim, Hyo Jin; Cho, Jae Du; Jeong, Myung Yung; Kim, Chang-Seok
2014-01-01
A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG) sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system. PMID:25177803
New experimental method for investigation of the nucleon polarizabilities
Yevetska, O.; Watzlawik, S.; Ahrens, J.; Alkhazov, G.D.; Chizhov, V.P.; Maev, E.M.; Neumann-Cosel, P. von; Orischin, E.M.; Petrov, G.E.; Porte, J.-M.; Richter, A.; Sarantsev, V.V.; Schrieder, G.; Smirenin, Yu.V.
2010-01-01
At the continuous wave (cw) Superconducting Darmstadt Electron Linear Accelerator S-DALINAC, a new method has been developed for the determination of the electric (α-bar) and magnetic (β-bar) polarizabilities of the proton and the deuteron. For that purpose the energy and angular dependence of the differential cross-section for elastic γp and γd scattering of bremsstrahlung photons in the energy range between 20 and 100 MeV is measured by detecting the recoiling proton (deuteron) in coincidence with the scattered bremsstrahlung photon. α-bar and β-bar are then found by means of a best fit to a theoretical description of the scattering cross-section with these quantities as open parameters. The experimental setup consists of a bremsstrahlung photon facility, two specially designed high pressure hydrogen (deuterium) ionization chambers which serve as targets and detectors of the recoil proton (deuteron), NaI gamma spectrometers and several additional detectors for beam diagnostics and normalization. The whole setup was tested using bremsstrahlung photon beams with endpoint energies of 60 and 79.3 MeV. The results of the test experiments show that future high-statistics measurements are feasible.
Wu Qingjie; Guo Kangxian; Liu Guanghui; Wu Jinghe
2013-01-01
Polaron effects on the linear and the nonlinear optical absorption coefficients and refractive index changes in cylindrical quantum dots with the radial parabolic potential and the z-direction linear potential with applied magnetic field are theoretically investigated. The optical absorption coefficients and refractive index changes are presented by using the compact-density-matrix approach and iterative method. Numerical calculations are presented for GaAs/AlGaAs. It is found that taking into account the electron-LO-phonon interaction, not only are the linear, the nonlinear and the total optical absorption coefficients and refractive index changes enhanced, but also the total optical absorption coefficients are more sensitive to the incident optical intensity. It is also found that no matter whether the electron-LO-phonon interaction is considered or not, the absorption coefficients and refractive index changes above are strongly dependent on the radial frequency, the magnetic field and the linear potential coefficient.
Polarizabilities and hyperpolarizabilities of the alkali metal atoms
Fuentealba, P. (Chile Univ., Santiago (Chile). Departamento de Fisica and Centro de Mecanica Cuantica Aplicada (CMCA)); Reyes, O. (Chile Univ., Santiago (Chile). Dept. de Fisica)
1993-08-14
The electric static dipole polarizability [alpha], quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability [gamma] have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability [gamma]. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author).
Contributions of polarizabilities to four basis polarizations of electromagnetic media
Bukina, E.N.; Dubovik, V.M.
1999-01-01
All contributions to four basis polarizations of an arbitrary electromagnetic medium at the expense of mixed polarizabilities up to fourth rank tensors are presented. Some concrete examples are considered
Polarizabilities and hyperpolarizabilities of the alkali metal atoms
Fuentealba, P.; Reyes, O.
1993-01-01
The electric static dipole polarizability α, quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability γ have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability γ. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author)
Optical measurement of the weak non-linearity in the eardrum vibration response to auditory stimuli
Aerts, Johan
The mammalian hearing organ consists of the external ear (auricle and ear canal) followed by the middle ear (eardrum and ossicles) and the inner ear (cochlea). Its function is to convert the incoming sound waves and convert them into nerve pulses which are processed in the final stage by the brain. The main task of the external and middle ear is to concentrate the incoming sound waves on a smaller surface to reduce the loss that would normally occur in transmission from air to inner ear fluid. In the past it has been shown that this is a linear process, thus without serious distortions, for sound waves going up to pressures of 130 dB SPL (˜90 Pa). However, at large pressure changes up to several kPa, the middle ear movement clearly shows non-linear behaviour. Thus, it is possible that some small non-linear distortions are also present in the middle ear vibration at lower sound pressures. In this thesis a sensitive measurement set-up is presented to detect this weak non-linear behaviour. Essentially, this set-up consists of a loud-speaker which excites the middle ear, and the resulting vibration is measured with an heterodyne vibrometer. The use of specially designed acoustic excitation signals (odd random phase multisines) enables the separation of the linear and non-linear response. The application of this technique on the middle ear demonstrates that there are already non-linear distortions present in the vibration of the middle ear at a sound pressure of 93 dB SPL. This non-linear component also grows strongly with increasing sound pressure. Knowledge of this non-linear component can contribute to the improvement of modern hearing aids, which operate at higher sound pressures where the non-linearities could distort the signal considerably. It is also important to know the contribution of middle ear non-linearity to otoacoustic emissions. This are non-linearities caused by the active feedback amplifier in the inner ear, and can be detected in the external and
Anugop, B.; Prasanth, S.; Rithesh Raj, D.; Vineeshkumar, T. V.; Pranitha, S.; Mahadevan Pillai, V. P.; Sudarsanakumar, C.
2016-12-01
Ni1-xMnxSe nanoparticles (x = 0.1, 0.3, 0.5, 0.7, 0.9) were successfully synthesized by chemical co-precipitation method and their structural and optical properties were studied using X-ray diffraction, transmission electron microscopy, UV-Visible absorption and photo luminescence spectroscopy. XRD pattern reveals the hexagonal structure of the particles and the peak positions were shifted to higher 2θ values with increase in Mn2+ concentration. The average particle size determined from XRD varies from 6 to 11 nm. The UV-Visible absorption spectrum shows absorption edge around the blue region and is red-shifted with increasing Mn2+ concentration consequently the optical bandgap energy is decreasing. The PL emission spectrum shows a broad emission around 380 nm, and the intensity of the emission decreases with increase in Mn2+ concentration. The nonlinear optical properties of the samples were analysed using Z-scan technique and the samples show optical limiting behaviour and the 2 PA coefficient increases with increasing Mn2+ concentration. Overall, manganese concentration influences the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles.
Yablonovitch, Eli
2000-01-01
.... The equipment purchased under this grant has permitted UCLA to purchase a number of broad-band optical components, including especially some unique code division multiplexing filters that permitted...
Computational Study of Chalcopyrite Semiconductors and Their Non-Linear Optical Properties
Lambrecht, Walter R
2007-01-01
... (Including cation antisites, cation and anion vacancies) and CdGeAs2; a study of the feasibility of nonciritical phase matching and associated nonlinear optical parameters in CdSiP2 and CdSIAs2...
NASA Laser Communications with Adaptive Optics and Linear Mode Photon Counting, Phase I
National Aeronautics and Space Administration — In this effort, the Optical Sciences Company (tOSC) and Raytheon Vision Systems (RVS) will team to provide NASA with a long range laser communications system for...
Linear electro-optic coefficient in multilayer self-organized InAs quantum dot structures
Akca, I.B.; Dana, A.; Aydinli, A.; Rossetti, M.; Li, L.; Dagli, N.; Fiore, A.
2007-01-01
The electro-optic coefficients of self-organized InAs quantum dot layers in molecular beam epitaxy grown laser structures in reverse bias have been investigated. Enhanced electrooptic coefficients compared to bulk GaAs were observed.
Dynamic polarizabilities for the low lying states of Ca+
Tang, Yong-Bo; Shi, Ting-Yun; Qiao, Hao-Xue; Mitroy, J
2014-01-01
The dynamic polarizabilities of the 4s, 3d and 4p states of Ca + are calculated using a relativistic structure model. The wavelengths at which the Stark shifts between different pairs of transitions are zero are calculated. Experimental determination of the magic wavelengths could prove useful in developing better atomic structure models and in particular lead to improved values of the polarizabilities for the Ca + (3d) states
Black-Body Radiation Correction to the Polarizability of Helium
Puchalski, M.; Jentschura, U. D.; Mohr, P. J.
2011-01-01
The correction to the polarizability of helium due to black-body radiation is calculated near room temperature. A precise theoretical determination of the black-body radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ord...
Effect of core polarizability on photoionization cross-section calculations.
Kirkpatrick, R. C.
1972-01-01
Demonstration of the importance of core polarizability in a case where cancellation is only moderate, with suggestion of an improvement to the scaled Thomas-Fermi (STF) wave functions of Stewart and Rotenberg (1965). The inclusion of dipole polarizability of the core for argon is shown to substantially improve the agreement between the theoretical and experimental photoionization cross sections for the ground-state configuration.
Electric dipole polarizability: from few- to many-body systems
Miorelli Mirko
2016-01-01
Full Text Available We review the Lorentz integral transform coupled-cluster method for the calculation of the electric dipole polarizability. We benchmark our results with exact hyperspherical harmonics calculations for 4He and then we move to a heavier nucleus studying 16O. We observe that the implemented chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading order underestimates the electric dipole polarizability.
Band gap and polarizability of boro-tellurite glass: Influence of erbium ions
Said Mahraz, Zahra Ashur; Sahar, M. R.; Ghoshal, S. K.
2014-08-01
Understanding the influence of rare earth ions in improving the structural and optical properties of inorganic glasses are the key issues. Er3+-doped zinc boro-tellurite glasses with composition 30B2O3-10ZnO-(60-x) TeO2-xEr2O3 are prepared (x = 0, 0.5, 1, 1.5 and 2 mol%) using melt quenching technique. The physical and optical characterizations are measured by density and UV-Vis-IR absorption spectroscopy. The color of the glass changed from light yellow to deep pink due to the introduction of Er3+ ions. The maximum density is found to be ∼4.73 g cm-3 for 1 mol% of Er3+ doping. The variations in the polarizability (6.7-6.8 cm3) and the molar volume (27.987-28.827 cm3 mol-1) with dopant concentration are ascribed to the formation of non-bridging oxygen. This observation is consistent with the alteration of number of bonds per unit volume. The direct and indirect optical band gaps are increased while the phonon cut-off wavelength and Urbach energy decreased with the increase of erbium content. A high density and wide transparency range in VIS-IR area are achieved. Our results on high refractive index (∼2.416) and polarizability suggest that these glasses are potential for photonics, solid state lasers and communications devices.
FPGA and optical-network-based LLRF distributed control system for TESLA-XFEL linear accelerator
Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Czarski, Tomasz; Giergusiewicz, Wojciech; Jalmuzna, Wojciech; Olowski, Krysztof; Perkuszewski, Karol; Zielinski, Jerzy; Simrock, Stefan
2005-02-01
The work presents a structural and functional model of a distributed low level radio frequency (LLRF) control system for the TESLA-XFEL accelerator. The design of a system basing on the FPGA chips and multi-gigabit optical network was debated. The system design approach was fully parametric. The major emphasis is put on the methods of the functional and hardware concentration to use fully both: a very big transmission capacity of the optical fiber telemetric channels and very big processing power of the latest series of the, DSP enhanced and optical I/O equipped, FPGA chips. The subject of the work is the design of a universal, laboratory module of the LLRF sub-system. Initial parameters of the system model under the design are presented.
Nielsen, Tim; Brendel, Bernhard; Ziegler, Ronny; Beek, Michiel van; Uhlemann, Falk; Bontus, Claas; Koehler, Thomas
2009-01-01
Diffuse optical tomography (DOT) is a potential new imaging modality to detect or monitor breast lesions. Recently, Philips developed a new DOT system capable of transmission and fluorescence imaging, where the investigated breast is hanging freely into the measurement cup containing scattering fluid. We present a fast and robust image reconstruction algorithm that is used for the transmission measurements. The algorithm is based on the Rytov approximation. We show that this algorithm can be used over a wide range of tissue optical properties if the reconstruction is adapted to each patient. We use estimates of the breast shape and average tissue optical properties to initialize the reconstruction, which improves the image quality significantly. We demonstrate the capability of the measurement system and reconstruction to image breast lesions by clinical examples
Optical-Path-Difference Linear Mechanism for the Panchromatic Fourier Transform Spectrometer
Blavier, Jean-Francois L.; Heverly, Matthew C.; Key, Richard W.; Sander, Stanley P.
2011-01-01
A document discusses a mechanism that uses flex-pivots in a parallelogram arrangement to provide frictionless motion with an unlimited lifetime. A voicecoil actuator drives the parallelogram over the required 5-cm travel. An optical position sensor provides feedback for a servo loop that keeps the velocity within 1 percent of expected value. Residual tip/tilt error is compensated for by a piezo actuator that drives the interferometer mirror. This mechanism builds on previous work that targeted ground-based measurements. The main novelty aspects include cryogenic and vacuum operation, high reliability for spaceflight, compactness of the design, optical layout compatible with the needs of an imaging FTS (i.e. wide overall field-of-view), and mirror optical coatings to cover very broad wavelength range (i.e., 0.26 to 15 m).
Porto da Silva, Edson
Digital signal processing (DSP) has become one of the main enabling technologies for the physical layer of coherent optical communication networks. The DSP subsystems are used to implement several functionalities in the digital domain, from synchronization to channel equalization. Flexibility...... nonlinearity compensation, (II) spectral shaping, and (III) adaptive equalization. For (I), original contributions are presented to the study of the nonlinearity compensation (NLC) with digital backpropagation (DBP). Numerical and experimental performance investigations are shown for different application...... scenarios. Concerning (II), it is demonstrated how optical and electrical (digital) pulse shaping can be allied to improve the spectral confinement of a particular class of optical time-division multiplexing (OTDM) signals that can be used as a building block for fast signaling single-carrier transceivers...
Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A.; Chee, Kok Han; Liew, Yih Miin
2017-12-01
Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame.
Baraskar, Priyanka; Chouhan, Romita; Agrawal, Arpana; Choudhary, R. J.; Sen, Pranay K.; Sen, Pratima
2018-03-01
We report the magnetic field effect on the linear and nonlinear optical properties of pulse laser ablated Ti-incorporated Cr2O3 nanostructured thin film. Optical properties have been experimentally analyzed under Voigt geometry by performing ultraviolet-visible spectroscopy and closed aperture Z-scan technique using a continuous wave He-Ne laser source. Nonlinear optical response reveals a single peak-valley feature in the far field diffraction pattern in absence of magnetic field (B = 0) confirming self-defocussing effect. This feature switches to a valley-peak configuration for B = 5000G, suggesting self-focusing effect. For B ≤ 750G, oscillations were observed revealing the occurrence of higher order nonlinearity. Origin of nonlinearity is attributed to the near resonant d-d transitions observed from the broad peak occurring around 2 eV. These transitions are of magnetic origin and get modified under the application of external magnetic field. Our results suggest that magnetic field can be used as an effective tool to monitor the sign of optical nonlinearity and hence the thermal expansion in Ti-incorporated Cr2O3 nanostructured thin film.
Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.
Hmood, Jassim K; Harun, Sulaiman W; Emami, Siamak D; Khodaei, Amin; Noordin, Kamarul A; Ahmad, Harith; Shalaby, Hossam M H
2015-02-23
The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other.
Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Mora-Ramos, M.E. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos, México (Mexico); Kasapoglu, E.; Ungan, F.; Yesilgul, U. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sakiroglu, S. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey); Sari, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sökmen, I. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey)
2013-11-15
The 1s-like and 2p-like donor impurity energy states are studied in a semiconductor quantum wire of equilateral triangular cross section as functions of the impurity position and the geometrical size of the structure. Linear and nonlinear coefficients for the optical absorption and relative refractive index change associated with 1s→2p transitions are calculated for both the x-polarization and y-polarization of the incident light. The results show a mixed effect of redshift and blueshift depending on the location of the donor atom. Also, strong nonlinear contributions to the optical absorption coefficient are obtained for both polarizations in the on-center impurity case. -- Highlights: • The 1s- and 2p-like impurity states in triangular quantum-well wires. • Optical absorption and relative refractive index changes are calculated. • Redshift and blueshift in the optical structures depend on the donor position. • Strong nonlinear contributions to the absorption coefficient have been obtained.
Experimental linear-optical implementation of a multifunctional optimal qubit cloner
Lemr, K.; Bartkiewicz, K.; Černoch, A.; Soubusta, Jan; Miranowicz, A.
2012-01-01
Roč. 85, č. 5 (2012), "050307-1"-"050307-4" ISSN 1050-2947 Institutional research plan: CEZ:AV0Z10100522 Keywords : quantum cloning * qubit cloner Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.042, year: 2012
Guanylurea(1+) hydrogen phosphite: study of linear and nonlinear optical properties
Fridrichová, M.; Kroupa, Jan; Němec, I.; Císařová, I.; Chvostová, Dagmar
2010-01-01
Roč. 83, 10-11 (2010), s. 761-767 ISSN 0141-1594 R&D Projects: GA ČR GA203/09/0878 Institutional research plan: CEZ:AV0Z10100520 Keywords : non-centrosymmetric * guanylurea * refractive indices * nonlinear optics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.006, year: 2010
Determination of linear optics functions from turn-by-turn data
Alexahin, Y; Gianfelice-Wendt, E, E-mail: alexahin@fnal.gov [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510 (United States)
2011-10-15
A method for evaluation of coupled optics functions, detection of strong perturbing elements, determination of BPM calibration errors and tilts using turn-by-turn (TBT) data is presented as well as the new version of the Hamiltonian perturbation theory of betatron oscillations the method is based upon. An example of application of the considered method to the Tevatron is given.
Linear electro-optic effect in sputtered polycrystalline LiNbO3 films
Griffel, G.; Ruschin, S.; Croitoru, N.
1989-04-01
Light guiding and modulation was demonstrated in sputtered LiNbO3 films deposited on glass substrates. We report on films' exceptionally low attenuation (<2 dB/cm) and the highest electro-optical coefficient reported so far for this kind of film (1.34×10-12 m/V).
Li, Jing; Wu, Xiaoping
2011-10-10
In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.
Bouclé, J.; Kassiba, A.; Makowska-Janusik, M.; Herlin-Boime, N.; Reynaud, C.; Desert, A.; Emery, J.; Bulou, A.; Sanetra, J.; Pud, A. A.; Kodjikian, S.
2006-11-01
An electro-optical activity has been recently reported for hybrid nanocomposite thin films where inorganic silicon carbide nanocrystals (ncSiC) are incorporated into polymer matrices. The role of the interface SiC polymer is suggested as the origin of the observed second order nonlinear optical susceptibility in the hybrid materials based on poly-(methylmethacrylate) (PMMA) or poly-( N -vinylcarbazole) matrices. In this work, we report an analysis of the electro-optical response of this hybrid system as a function of the ncSiC content and surface state in order to precise the interface effect in the observed phenomenon. Two specific ncSiC samples with similar morphology and different surface states are incorporated in the PMMA matrix. The effective Pockels parameters of the corresponding hybrid nanocomposites have been estimated up to 7.59±0.74pm/V ( 1wt.% of ncSiC in the matrix). The interfacial region ncSiC polymer is found to play the main role in the observed effect. Particularly, the electronic defects on the ncSiC nanocrystal surface modify the interfacial electrical interactions between the two components. The results are interpreted and discussed on the basis of the strong influence of these active centers in the interfacial region at the nanoscale, which are found to monitor the local hyperpolarizabilities and the macroscopic nonlinear optical susceptibilities. This approach allows us to complete the description and understanding of the electro-optical response in the hybrid SiC /polymer systems.
Jorge A. Bertolotto
2016-06-01
Full Text Available In the present work we make a theoretical study of the steady state electric linear dichroism of DNA fragments in aqueous solution. The here developed theoretical approach considers a flexible bent rod model with a saturating induced dipole moment. The electric polarizability tensor of bent DNA fragments is calculated considering a phenomenological model which theoretical and experimental backgroung is presented here. The model has into account the electric polarizability longitudinal and transversal to the macroion. Molecular flexibility is described using an elastic potential. We consider DNA fragments originally bent with bending fluctuations around an average bending angle. The induced dipole moment is supposed constant once the electric field strength grows up at critical value. To calculate the reduced electric linear dichroism we determine the optical factor considering the basis of the bent DNA perpendicular to the molecular axis. The orientational distribution function has into account the anisotropic electric properties and the molecule flexibility. We applied the present theoretical background to fit electric dichroism experimental data of DNA fragments reported in the bibliography in a wide range of molecular weight and electric field. From these fits, values of DNA physical properties are estimated. We compare and discuss the results here obtained with the theoretical and experimental data presented by other authors. The original contributions of this work are: the inclusion of the transversal electric polarizability saturating with the electric field, the description of the electric properties with an electric polarizability tensor dependant on the bending angle and the use of an arc model originally bent.
Optical and spectroscopic investigation on Calcium Borotellurite glass system
Paz, E. C.; Lodi, T. A.; Gomes, B. R. A.; Melo, G. H. A.; Pedrochi, F.; Steimacher, A.
2016-05-01
In this work, the glass formation in Calcium Borotellurite (CBTx) system and their optical properties were studied. Six glass samples were prepared by melt-quenching technique and the samples obtained are transparent, lightly yellowish, without any visible crystallites. The results showed that TeO2 addition increases the density, the electronic polarizability and, consequently, the refractive index. The increase of electronic polarizability and optical basicity suggest that TeO2 addition increases the non-bridging oxygen (NBO) concentration. The increase of TeO2 shifts the band edge to longer wavelength owing to increase in non-bridging oxygen ions, resulting in a linear decrease of optical energy gap. The addition of TeO2 increases the temperature coefficient of the optical path length (dS/dT) in room temperature, which are comparable to phosphate and lower than Low Silica Calcium Alumino Silicate (LSCAS) glasses. The values of dS/dT present an increase as a function of temperature for all the samples measured. The results suggest that CBTx is a good candidate for rare-earth doping and several optical applications.
Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach
Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-06-01
The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.
You, Chenglong; Adhikari, Sushovit; Chi, Yuxi; LaBorde, Margarite L.; Matyas, Corey T.; Zhang, Chenyu; Su, Zuen; Byrnes, Tim; Lu, Chaoyang; Dowling, Jonathan P.; Olson, Jonathan P.
2017-12-01
It was suggested in (Motes et al 2015 Phys. Rev. Lett. 114 170802) that optical networks with relatively inexpensive overheads—single photon Fock states, passive optical elements, and single photon detection—can show significant improvements over classical strategies for single-parameter estimation, when the number of modes in the network is small (ncompute the quantum Cramér-Rao bound to show these networks can have a constant-factor quantum advantage in multi-parameter estimation for even large number of modes. Additionally, we provide a simplified measurement scheme using only single-photon (on-off) detectors that is capable of approximately obtaining this sensitivity for a small number of modes.
Experimental realization of the quantum duel game using linear optical circuits
Balthazar, W F; Passos, M H M; Schmidt, A G M; Huguenin, J A O; Caetano, D P
2015-01-01
We report on the experimental realization of the quantum duel game for two players, Alice and Bob. Using an all optical approach, we have encoded Alice and Bob states in transverse modes and polarization degrees of freedom of a laser beam, respectively. By setting Alice and Bob input states and considering the possibility of Alice performing two shots, we demonstrated the quantum features of the game as well as we recovered the classical version of the game. (paper)
Passive linear nanoscale optical and molecular electronics device synthesis from nanoparticles
Yurke, Bernard; Kuang Wan
2010-01-01
Arrays of nanoparticles whose interactions can be characterized by hopping Hamiltonians can serve as excitation transmission lines. Here we show, that in addition suitable arrangements of nanoparticles can form beam splitters, phase shifters, and crossover splitters. With these elements, any discrete unitary transformation can be implemented on input modes via a network of nanoparticles in which all the components lie in the same plane. These nanoparticle networks can produce optical functionalities at a length scale much smaller than 1 μm.
Linear and nonlinear optical characteristics of Te nanoparticles-doped germanate glasses
Xu, Zhousu; Guo, Qiangbing; Liu, Chang; Ma, Zhijun; Liu, Xiaofeng; Qiu, Jianrong
2016-10-01
Te nanoparticles (NPs)-doped GeO2-MgO-B2O3-Al2O3-TeO2 glasses were prepared by the conventional melt-quenching method. Based on X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscope observation, the coloration of the glass at high TeO2 concentration is ascribed to the precipitation of elemental Te NPs with a size of 5-10 nm in the germanate glass. Optical absorption spectra and nonlinear optical (NLO) properties of the glass samples were analyzed by UV-3600 spectrophotometry and Z-scan technique, respectively. The nonlinear absorption coefficient ( β) and the imaginary part of the third-order NLO susceptibility (Im χ (3)) were estimated to be 1.74 cm/GW and 1.142 × 10-12 esu for laser power of 95 μW, respectively. Due to the excellent NLO properties, the Te NPs-doped germanate glasses may have potential applications for ultrafast optical switch and photonics.
Healy, John J.
2018-01-01
The linear canonical transforms (LCTs) are a parameterised group of linear integral transforms. The LCTs encompass a number of well-known transformations as special cases, including the Fourier transform, fractional Fourier transform, and the Fresnel integral. They relate the scalar wave fields at the input and output of systems composed of thin lenses and free space, along with other quadratic phase systems. In this paper, we perform a systematic search of all algorithms based on up to five stages of magnification, chirp multiplication and Fourier transforms. Based on that search, we propose a novel algorithm, for which we present numerical results. We compare the sampling requirements of three algorithms. Finally, we discuss some issues surrounding the composition of discrete LCTs.
Tyagi, Chetna; Yadav, Preeti; Sharma, Ambika
2018-05-01
The present work reveals the optical study of Se82Te15Bi1.0Sn2.0/polyvinylpyrrolidone (PVP) nanocomposites. Bulk glasses of chalcogenide was prepared by well-known melt quenching technique. Wet chemical technique is proposed for making the composite of Se82Te15Bi1.0Sn2.0 and PVP polymer as it is easy to handle and cost effective. The composites films were made on glass slide from the solution of Se-Te-Bi-Sn and PVP polymer using spin coating technique. The transmission as well as absorbance is recorded by using UV-Vis-NIR spectrophotometer in the spectral range 350-700 nm. The linear refractive index (n) of polymer nanocomposites are calculated by Swanepoel approach. The linear refractive index (n) PVP doped Se82Te15Bi1.0Sn2.0 chalcogenide is found to be 1.7. The optical band gap has been evaluated by means of Tauc extrapolation method. Tichy and Ticha model was utilized for the characterization of nonlinear refractive index (n2).
Optics Design and Performance of an Ultra-Low Emittance Damping Ring for the Compact Linear Collider
Korostelev, M S
2006-01-01
A high-energy (0.5-3.0 TeV centre of mass) electron-positron Compact Linear Collider (CLIC) is being studied at CERN as a new physics facility. The design study has been optimized for 3 TeV centre-of-mass energy. Intense bunches injected into the main linac must have unprecedentedly small emittances to achieve the design luminosity 1035cm-2s-1 required for the physics experiments. The positron and electron bunch trains will be provided by the CLIC injection complex. This thesis describes an optics design and performance of a positron damping ring developed for producing such ultra-low emittance beam. The linear optics of the CLIC damping ring is optimized by taking into account the combined action of radiation damping, quantum excitation and intrabeam scattering. The required beam emittance is obtained by using a TME (Theoretical Minimum Emittance) lattice with compact arcs and short period wiggler magnets located in dispersionfree regions. The damping ring beam energy is chosen as 2.42 GeV. The lattice featu...
Hijas, K. M.; Madan Kumar, S.; Byrappa, K.; Geethakrishnan, T.; Jeyaram, S.; Nagalakshmi, R.
2018-03-01
Single crystals of 2-methoxy-4(phenyliminomethyl)phenol were grown from ethanol by slow evaporation solution growth technique. Single crystal X-ray diffraction experiment reveals the crystallization in orthorhombic system having non-centrosymmetric space group C2221. Geometrical optimization by density functional theory method was carried out using Gaussian program and compared with experimental results. Detailed experimental and theoretical vibrational analyses were carried out and the results were correlated to find close agreement. Thermal analyses show the material is thermally stable with a melting point of 159 °C. Natural bond orbital analysis was carried out to explain charge transfer interactions through hydrogen bonding. Relatively smaller HOMO-LUMO band gap favors the non linear optical activity of the molecule. Natural population analysis and molecular electrostatic potential calculations visualize the charge distribution in an isolated molecule. Calculated first-order molecular hyperpolarizability and preliminary second harmonic generation test carried out using Kurtz-Perry technique establish 2-methoxy-4(phenyliminomethyl)phenol crystal as a good non linear optical material. Z-scan proposes the material for reverse saturable absorption.
Ouahrani, T.; Reshak, A. H.; de La Roza, A. Otero; Mebrouki, M.; Luaña, V.; Khenata, R.; Amrani, B.
2009-12-01
We report results from first-principles density functional calculations using the full-potential linear augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) and the Engel-Vosko-generalized gradient approximation (EV-GGA) were used for the exchange-correlation energy of the structural, electronic, linear and nonlinear optical properties of the chalcopyrite Ga2PSb compound. The valence band maximum (VBM) is located at the Γv point, and the conduction band minimum (CBM) is located at the Γc point, resulting in a direct band gap of about 0.365 eV for GGA and 0.83 eV for EV-GGA. In comparison with the experimental one (1.2 eV) we found that EV-GGA calculation gives energy gap in reasonable agreement with the experiment. The spin orbit coupling has marginal influence on the optical properties. The ground state quantities such as lattice parameters (a, c and u), bulk modules B and its pressure derivative B^primeare evaluated.
Quantum criticality of geometric phase in coupled optical cavity arrays under linear quench
Sarkar, Sujit
2013-01-01
The atoms trapped in microcavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We study the dynamics of the geometric phase of this system under the linear quenching process of laser field detuning which shows the XX criticality of the geometric phase in presence of single Rabi frequency oscillation. We also study the quantum criticality for different quenching rate in the presence of single or two Rabi frequencies osci...
Horiuchi, Toshiyuki; Watanabe, Jun; Suzuki, Yuta; Iwasaki, Jun-ya
2017-05-01
Two dimensional code marks are often used for the production management. In particular, in the production lines of liquid-crystal-display panels and others, data on fabrication processes such as production number and process conditions are written on each substrate or device in detail, and they are used for quality managements. For this reason, lithography system specialized in code mark printing is developed. However, conventional systems using lamp projection exposure or laser scan exposure are very expensive. Therefore, development of a low-cost exposure system using light emitting diodes (LEDs) and optical fibers with squared ends arrayed in a matrix is strongly expected. In the past research, feasibility of such a new exposure system was demonstrated using a handmade system equipped with 100 LEDs with a central wavelength of 405 nm, a 10×10 matrix of optical fibers with 1 mm square ends, and a 10X projection lens. Based on these progresses, a new method for fabricating large-scale arrays of finer fibers with squared ends was developed in this paper. At most 40 plastic optical fibers were arranged in a linear gap of an arraying instrument, and simultaneously squared by heating them on a hotplate at 120°C for 7 min. Fiber sizes were homogeneous within 496+/-4 μm. In addition, average light leak was improved from 34.4 to 21.3% by adopting the new method in place of conventional one by one squaring method. Square matrix arrays necessary for printing code marks will be obtained by piling the newly fabricated linear arrays up.
Application of quasi-optical approach to construct RF power supply for TeV linear colliders
Saldin, E.L.; Sarantsev, V.P.; Schneidmiller, E.A.; Ulyanov, Yu.N.; Yurkov, M.V.
1995-01-01
An idea to use a quasi-optical approach for constructing an RF power supply for TeV linear e + e - colliders is developed. The RF source of the proposed scheme is composed of a large number of low-power RF amplifiers commutated by quasi-optical elements. The RF power of this source is transmitted to the accelerating structure of the collider by means of quasi-optical waveguides and mirrors. Such an approach enables one not only to decrease the required peak RF power by several orders of magnitude with respect to the traditional approach based on standard klystron technique, but also to achieve the required level of reliability, as it is based on well-developed technology of serial microwave devices. To illustrate the proposed scheme, a conceptual project of 2x500 GeV X-band collider is considered. Accelerating structure of the collider is of the standard travelling wave type and the RF source is assumed to be composed of 0.7 MW klystrons. All equipment of such a collider is placed in a tunnel of 12x6 m 2 cross section. It is shown that such a collider may be constructed at the present level of accelerator technique. ((orig.))
The optical design of the spin manipulation system for the SLAC Linear Collider
Fieguth, T.H.
1989-03-01
The optical design of the beam transport lines between the SLAC Linac and the electron damping ring and the design of part of the Linac lattice itself will be modified to accommodate three superconducting solenoids for the purpose of manipulating the polarization of the electron beam. In order to allow arbitrary orientation of the polarization vector, this design will be capable of compensating the fields of two independent solenoids for arbitrary strengths ranging to 7.0 T-m. The method of dealing with the coupling of the betatron functions and the method of handling both the electron and positron beams in the common region are discussed. 8 refs., 5 figs
Compact optical system for measuring linear and angular displacement of solid structures
Jakobsen, M.L.; Larsen, H.E.; Hanson, Steen Grüner
2004-01-01
and rotation of the target. The presented free space propagation design can provide a sensor with no direct sensitivity on the working distance. The electrical signals from the sensor are processed with a digital algorithm, based on zero-crossings detection to provide real-time displacement measurements....... The spatial filter of the sensor is characterized here, and the precision of the sensor, integrated with a processor, which applies zero-crossing detection to the signal, is considered. © 2004 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted...
Synthesis, characterization and non-linear optical response of organophilic carbon dots
Bourlinos, Athanasios B.; Karakassides, Michael A.; Kouloumpis, Antonios; Gournis, Dimitrios; Bakandritsos, Aristides; Papagiannouli, Irene; Aloukos, Panagiotis; Couris, Stelios; Hola, Katerina; Zboril, Radek; Krysmann, Marta; Giannelis, Emmanuel P.
2013-01-01
For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.
Synthesis, characterization and non-linear optical response of organophilic carbon dots
Bourlinos, Athanasios B.
2013-09-01
For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.
A non-linear optical ''photograph'' of picosecond pulses
Sukhorukova, A.K.; Sukhorukov, A.P.; Telegin, L.S.; Yankina, I.B.
1981-01-01
Results are given of experimental and theoretical studies on the conversion of the temporary structure of picosecond pulses into a spatial diagram with noncollinated lasing of the sum frequency. Correlations are found for the crystal parameters, the pumping emission and the interaction geometry, which are needed in measuring durations in a range from 10 /sup -10/ all the way up to 10 /sup -13/ seconds. The proposed optical recording circuit in the relatively simple experiment makes it possible to measure the duration of the super short pulses of weak signals.
Magneto-optics for linear electron accelerator with beam recirculation for radiotherapy
Nagaenko, M.G.; Severgin, Yu.P.; Fedorov, A.S.
1985-01-01
Magneto-optical devices of the 40 MeV LUEhR-40M accelrator designed for radiotherapy, are described. A magnetic mirrow and bending-shaping device are reffered to magnetooptical systems. The both devices do not contain quadrupole lenses and have only dipole magnets with radial-homogeneous field. Axial focusing of particles is carried out by magnetic field boundary skew. The both devices have internal mirror symmetry. Results of optimization of devices parameters with the help of BETRAMF program are presented
Moencke, Doris; Mountrichas, Grigoris; Pispas, Stergios; Kamitsos, Efstratios I.
2011-01-01
The effectiveness of chromophore alignment in polymer films following corona poling can be assessed by the generated second harmonic signal. Optimization of the stability and strength of this nonlinear optical response may improve with a better understanding of the underlying principal order phenomena. Structural analysis by vibrational, optical, and 1 H NMR spectroscopy reveals side chain tacticity, aggregation effects, and changes in orientation as a function of temperature. Co-polymers with the functionalized chromophore Disperse Red 1 methacrylate (MDR1) were prepared for three different methacrylate types. High side chain polarity and short side chain length increase generally chromophore aggregation in films, whereas the very long poly-ether side chains in PMEO based co-polymers are wrapped separately around the DR1 entities. Side chain tacticity depends on space requirements, but also on the capacity of side groups to form OH-bridges. Side chain tacticity might present an additional parameter for the assessment of chromophore aggregation and poling induced alignments. Stepwise heating of co-polymer films causes an increase in the number of random over ordered side chain arrangements. Cross-linking by anhydride formation is observed after heating the methacrylic acid based co-polymer.
Passive quantum error correction of linear optics networks through error averaging
Marshman, Ryan J.; Lund, Austin P.; Rohde, Peter P.; Ralph, Timothy C.
2018-02-01
We propose and investigate a method of error detection and noise correction for bosonic linear networks using a method of unitary averaging. The proposed error averaging does not rely on ancillary photons or control and feedforward correction circuits, remaining entirely passive in its operation. We construct a general mathematical framework for this technique and then give a series of proof of principle examples including numerical analysis. Two methods for the construction of averaging are then compared to determine the most effective manner of implementation and probe the related error thresholds. Finally we discuss some of the potential uses of this scheme.
Optical Measurement of Radiocarbon below Unity Fraction Modern by Linear Absorption Spectroscopy.
Fleisher, Adam J; Long, David A; Liu, Qingnan; Gameson, Lyn; Hodges, Joseph T
2017-09-21
High-precision measurements of radiocarbon ( 14 C) near or below a fraction modern 14 C of 1 (F 14 C ≤ 1) are challenging and costly. An accurate, ultrasensitive linear absorption approach to detecting 14 C would provide a simple and robust benchtop alternative to off-site accelerator mass spectrometry facilities. Here we report the quantitative measurement of 14 C in gas-phase samples of CO 2 with F 14 C radiocarbon measurement science including the study of biofuels and bioplastics, illicitly traded specimens, bomb dating, and atmospheric transport.
Measurement of IR optics with linear coupling's action-angle parametrization
Luo, Y.; Bai, M.; Pilat, F.; Satogata, T.; Trbojevic, D.
2005-08-01
Linear coupling’s action-angle parametrization is convenient for interpretation of turn-by-turn beam position monitor (BPM) data. We demonstrate how to apply this parametrization to extract Twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of a long IR drift region. Example data were acquired at the Relativistic Heavy Ion Collider, using an ac dipole to excite a single transverse eigenmode. We have measured the waist of the β function and its Twiss and coupling parameters.
Measurement of IR optics with linear coupling’s action-angle parametrization
Y. Luo
2005-08-01
Full Text Available Linear coupling’s action-angle parametrization is convenient for interpretation of turn-by-turn beam position monitor (BPM data. We demonstrate how to apply this parametrization to extract Twiss and coupling parameters in interaction regions (IRs, using BPMs on each side of a long IR drift region. Example data were acquired at the Relativistic Heavy Ion Collider, using an ac dipole to excite a single transverse eigenmode. We have measured the waist of the β function and its Twiss and coupling parameters.
Analytic behavior of the QED polarizability function at finite temperature
Bernal, A.; Perez, A.
2012-01-01
We revisit the analytical properties of the static quasi-photon polarizability function for an electron gas at finite temperature, in connection with the existence of Friedel oscillations in the potential created by an impurity. In contrast with the zero temperature case, where the polarizability is an analytical function, except for the two branch cuts which are responsible for Friedel oscillations, at finite temperature the corresponding function is non analytical, in spite of becoming continuous everywhere on the complex plane. This effect produces, as a result, the survival of the oscillatory behavior of the potential. We calculate the potential at large distances, and relate the calculation to the non-analytical properties of the polarizability.
Polarizability tensor invariants of H2, HD, and D2
Raj, Ankit; Hamaguchi, Hiro-o.; Witek, Henryk A.
2018-03-01
We report an exhaustive compilation of wavelength-dependent matrix elements over the mean polarizability (α ¯ ) and polarizability anisotropy (γ) operators for the rovibrational states of the H2, HD, and D2 molecules together with an accompanying computer program for their evaluation. The matrix elements can be readily evaluated using the provided codes for rovibrational states with J = 0-15 and v = 0-4 and for any laser wavelengths in the interval 182.25-1320.6 nm corresponding to popular, commercially available lasers. The presented results substantially extend the scope of the data available in the literature, both in respect of the rovibrational transitions analyzed and the range of covered laser frequencies. The presented detailed tabulation of accurate polarizability tensor invariants is essential for successful realization of our main long-term goal: developing a universal standard for determining absolute Raman cross sections and absolute Raman intensities in experimental Rayleigh and Raman scattering studies of molecules.
The possibility for a pion polarizability measurement at COMPASS
Guskov, A
2010-01-01
The pion electromagnetic structure can be probed in $\\pi^{−}+(A,Z)\\rightarrow\\pi^{-}+(A,Z) + \\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\alpha_{\\pi})$ and the magnetic $(\\beta_{\\pi})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of point-like pions with the measured cross section. The opportunity to measure pion polarizability via the Primakoff reaction at the COMPASS experiment was studied with a $\\pi^{−}$ beam of 190 GeV. The obtained results are used for preparation of the new measurement.
Yumura, Takashi; Yamamoto, Wataru
2017-09-20
We employed density functional theory (DFT) calculations with dispersion corrections to investigate energetically preferred alignments of certain p,p'-dimethylaminonitrostilbene (DANS) molecules inside an armchair (m,m) carbon nanotube (n × DANS@(m,m)), where the number of inner molecules (n) is no greater than 3. Here, three types of alignments of DANS are considered: a linear alignment in a parallel fashion and stacking alignments in parallel and antiparallel fashions. According to DFT calculations, a threshold tube diameter for containing DANS molecules in linear or stacking alignments was found to be approximately 1.0 nm. Nanotubes with diameters smaller than 1.0 nm result in the selective formation of linearly aligned DANS molecules due to strong confinement effects within the nanotubes. By contrast, larger diameter nanotubes allow DANS molecules to align in a stacking and linear fashion. The type of alignment adopted by the DANS molecules inside a nanotube is responsible for their second-order non-linear optical properties represented by their static hyperpolarizability (β 0 values). In fact, we computed β 0 values of DANS assemblies taken from optimized n × DANS@(m,m) structures, and their values were compared with those of a single DANS molecule. DFT calculations showed that β 0 values of DANS molecules depend on their alignment, which decrease in the following order: linear alignment > parallel stacking alignment > antiparallel stacking alignment. In particular, a linear alignment has a β 0 value more significant than that of the same number of isolated molecules. Therefore, the linear alignment of DANS molecules, which is only allowed inside smaller diameter nanotubes, can strongly enhance their second-order non-linear optical properties. Since the nanotube confinement determines the alignment of DANS molecules, a restricted nanospace can be utilized to control their second-order non-linear optical properties. These DFT findings can assist in the
Polarizability of Fluid Droplets and the Kerr Effect on Microemulsions
Lisy, V
2001-01-01
Spheroidal fluid droplets immersed in another fluid and thermally fluctuating in the shape are considered. The polarizability of the droplet is evaluated up to the second order in the fluctuation amplitudes. The correlation functions of the polarizability tensor components are found and used to describe the polarized and depolarized scattering of light, and the Kerr effect on microemulsions. By comparison of the theoretical results with the Kerr constant measurements from the literature, we estimate the bending rigidity of the surfactant monolayer that separates the oil and water phases in droplet microemulsions.
Open-ended response theory with polarizable embedding
Steindal, Arnfinn Hykkerud; Beerepoot, Maarten T P; Ringholm, Magnus
2016-01-01
We present the theory and implementation of an open-ended framework for electric response properties at the level of Hartree-Fock and Kohn-Sham density functional theory that includes effects from the molecular environment modeled by the polarizable embedding (PE) model. With this new state......-of-the-art multiscale functionality, electric response properties to any order can be calculated for molecules embedded in polarizable atomistic molecular environments ranging from solvents to complex heterogeneous macromolecules such as proteins. In addition, environmental effects on multiphoton absorption (MPA...
Compton scattering, meson exchange, and the polarizabilities of bound nucleons
Feldman, G.; Mellendorf, K.E.; Eisenstein, R.A.; Federspiel, F.J.; Garino, G.; Igarashi, R.; Kolb, N.R.; Lucas, M.A.; MacGibbon, B.E.; Mize, W.K.; Nathan, A.M.; Pywell, R.E.; Wells, D.P.
1996-01-01
Elastic photon scattering cross sections on 16 O have been measured in the energy range 27 endash 108 MeV. These data are inconsistent with a conventional interpretation in which the electric and magnetic polarizabilities of the bound nucleon are unchanged from the free values and the meson-exchange seagull amplitude is taken in the zero-energy limit. Agreement with the data can be achieved by invoking either strongly modified polarizabilities or a substantial energy dependence to the meson-exchange seagull amplitude. It is argued that these seemingly different explanations are experimentally indistinguishable and probably physically equivalent. copyright 1996 The American Physical Society
Blackbody-radiation correction to the polarizability of helium
Puchalski, M.; Jentschura, U. D.; Mohr, P. J.
2011-01-01
The correction to the polarizability of helium due to blackbody radiation is calculated near room temperature. A precise theoretical determination of the blackbody radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ordinary hyperpolarizability of helium. Our explicit calculations provide a definite numerical result for the effect and indicate that the effect of blackbody radiation can be excluded as a limiting factor for dielectric gas thermometry using helium or argon.
Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.
2015-01-01
It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta–Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5–3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners. - Highlights: • We solve the multiple-right-hand-side problem in DOT with a block BiCGStab method. • We examine the CPU times of the block solver and the traditional sequential solver. • The block solver is faster than the sequential solver by a factor of 1.5–3.0. • Multi-threading block solvers give additional speedup under limited threads situation.
Choi, D H
2002-01-01
Photocrosslinkable soluble polyimide and polymethacrylate compound were synthesized for studying the optically induced anisotropy of the thin films. Chalcone group was introduced into the side chain unit of two polymers. We observed a photodimerization behavior between the double bonds in the chalcone group and an optical anisotropy of these materials by irradiation of a linearly polarized UV light (LPL). Optical anisotropy of the thin film was also investigated by using polarized UV absorption spectroscopy.The dynamic property of optical anisotropy in photoreactive polyimide was compared to that in polymethacrylate containing chalcone group in the side chain.
Non-linear optics for the final focus of the single-pass-collider
Brown, K.L.; Spencer, J.E.
1981-02-01
The purpose of the final focus system (FFS) is to demagnify the beam envelope in the Collider arc lattice to a size suitable for beam collisions at the interaction region. The final spot size is determined by the beam emittance, the beta function β* at the IR, the momentum spread in the beam, and the quality of the FFS optics. In particular, if the focusing system is not chromatically corrected, the momentum dispersion in the beam can lead to a substantial degradation in the quality of the final focus. The objective is to design a FFS for 50 GeV/c within approx. 100 meters having an IR spot size sigma/sub xy/ of approximately 2 μm for a beam emittance of epsilon = 3 x 10 -10 m-rad and a momentum spread of delta = +-0.5%. This requires a β/sub x,y/ equal to or less than 1 cm. This report considers the problems encountered in the design of a final focus system that will reliably provide the desired beam size for collisions
High-speed linear optics quantum computing using active feed-forward.
Prevedel, Robert; Walther, Philip; Tiefenbacher, Felix; Böhi, Pascal; Kaltenbaek, Rainer; Jennewein, Thomas; Zeilinger, Anton
2007-01-04
As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.
Hršak, Dalibor; Nørby, Morten Steen; Coriani, Sonia
2018-01-01
We present a formulation of the polarizable density embedding (PDE) method in combination with the complex polarization propagator (CPP) method for the calculation of absorption spectra of molecules in solutions. The method is particularly useful for the calculation of near-edge X-ray absorption...... fine structure (NEXAFS) spectra. We compare the performance of PDE-CPP with the previously formulated polarizable embedding (PE)-CPP model for the calculation of the NEXAFS spectra of adenine, formamide, glycine, and adenosine triphosphate (ATP) in water at the carbon and nitrogen K-edges, as well...
Hosseini, K.; Ayati, Z.; Ansari, R.
2018-04-01
One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.
Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A.; Restrepo, R.L.; Duque, C.A.
2013-01-01
The linear and nonlinear intra-band optical absorption coefficients in GaAs/Ga 1−x Al x As two-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and aluminum concentration the energies of the ground (n=1,l=0) and the first excited state (n=2,l=1) have been found using the effective mass approximation and the transfer matrix formalism. The energies of these states and the corresponding threshold energy of the intra-band optical transitions are examined as a function of hydrostatic pressure and aluminum concentration for different sizes of the structure. We also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as functions of the incident photon energy for different values of hydrostatic pressure, aluminum concentration, sizes of the structure, and incident optical intensity. Its is found that the effects of the hydrostatic pressure and the aluminum concentration lead to a shifting of the resonant peaks of the intra-band optical spectrum. - Highlights: ► Linear and nonlinear intra-band absorption in quantum rings. ► Threshold energy strongly depends on the hydrostatic pressure. ► Threshold energy strongly depends on the stoichiometry and sizes of structure. ► Optical absorption is affected by the incident optical intensity.
Solaimani, M.; Morteza, Izadifard; Arabshahi, H.; Reza, Sarkardehi Mohammad
2013-01-01
In this work, we have studied the effect of the number of the wells, in a multiple quantum wells structure with constant total effective length, on the optical properties of multiple quantum wells like the absorption coefficient and the refractive index by means of compact density matrix approach. GaAs/Al x Ga (1−x) As multiple quantum wells systems was selected as an example. Besides, the effect of varying number of wells on the subband energies, wave functions, number of bound states, and the Fermi energy have been also investigated. Our calculation revealed that the number of wells in a multiple quantum well is a criterion with which we can control the amount of nonlinearity. This study showed that for the third order refractive index change there is two regimes of variations and the critical well number was six. In our calculations, we have used the same wells and barrier thicknesses to construct the multiple quantum wells system. - Highlights: ► OptiOptical Non-Linear. ► Total Effective Length. ► Multiple Quantum Wells System - genetic algorithm ► Schrödinger equation solution. ► Nanostructure.
Liu, Pudong; Shi, Runhe; Wang, Hong; Bai, Kaixu; Gao, Wei
2014-10-01
Leaf pigments are key elements for plant photosynthesis and growth. Traditional manual sampling of these pigments is labor-intensive and costly, which also has the difficulty in capturing their temporal and spatial characteristics. The aim of this work is to estimate photosynthetic pigments at large scale by remote sensing. For this purpose, inverse model were proposed with the aid of stepwise multiple linear regression (SMLR) analysis. Furthermore, a leaf radiative transfer model (i.e. PROSPECT model) was employed to simulate the leaf reflectance where wavelength varies from 400 to 780 nm at 1 nm interval, and then these values were treated as the data from remote sensing observations. Meanwhile, simulated chlorophyll concentration (Cab), carotenoid concentration (Car) and their ratio (Cab/Car) were taken as target to build the regression model respectively. In this study, a total of 4000 samples were simulated via PROSPECT with different Cab, Car and leaf mesophyll structures as 70% of these samples were applied for training while the last 30% for model validation. Reflectance (r) and its mathematic transformations (1/r and log (1/r)) were all employed to build regression model respectively. Results showed fair agreements between pigments and simulated reflectance with all adjusted coefficients of determination (R2) larger than 0.8 as 6 wavebands were selected to build the SMLR model. The largest value of R2 for Cab, Car and Cab/Car are 0.8845, 0.876 and 0.8765, respectively. Meanwhile, mathematic transformations of reflectance showed little influence on regression accuracy. We concluded that it was feasible to estimate the chlorophyll and carotenoids and their ratio based on statistical model with leaf reflectance data.
Partial Molar Volume of Methanol in Water: Effect of Polarizability
Moučka, F.; Nezbeda, Ivo
2009-01-01
Roč. 74, č. 4 (2009), s. 559-563 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400720802 Institutional research plan: CEZ:AV0Z40720504 Keywords : water–methanol mixtures * partial molar volume * polarizability Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.856, year: 2009
Hyperon polarizabilities in the bound-state soliton model
Gobbi, C.; Scoccola, N.N.
1996-01-01
A detailed calculation of electric and magnetic static polarizabilities of octet hyperons is presented in the framework of the bound-state soliton model. Both seagull and dispersive contributions are considered, and the results are compared with different model predictions. (orig.)
Molecular polarizabilities and susceptibilities from Frost-model wavefunctions
Amos, A.T.; Yoffe, J.A.
1975-01-01
Average polarizabilities and susceptibilities of a number of molecules are computed from Frost-model wavefunctions using a form of symmetry-adapted double perturbation theory. The anisotropy of α and chi is found for a few molecules using the elliptical Gaussian form of the Frost model. The results obtained are in reasonable agreement with experiment and other calculated values
Polarizability and Aqueous Solvation of the Sulfate Dianion
Jungwirth, Pavel; Curtis, J. E.; Tobias, D. J.
2003-01-01
Roč. 367, - (2003), s. 704-710 ISSN 0009-2614 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : polarizability * aqueous solvation * dianion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.438, year: 2003
Polarizability effects on the structure and dynamics of ionic liquids
Cavalcante, Ary de Oliveira, E-mail: arycavalcante@ufam.edu.br [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil); Departamento de Química, Universidade Federal do Amazonas, Av. Rodrigo Octávio, 6200, Coroado, Manaus, AM (Brazil); Ribeiro, Mauro C. C. [Laboratório de Espectroscopia Molecular, Instituto de Química, Universidade de São Paulo, São Paulo, SP C.P. 26077, 05513 970 São Paulo, SP (Brazil); Skaf, Munir S. [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil)
2014-04-14
Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup −} and PF{sub 6}{sup −}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (χ) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibrium structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.
Substituent effects of the alkyl groups: Polarity vs. polarizability
Exner, Otto; Böhm, S.
-, č. 17 (2007), s. 2870-2876 ISSN 1434-193X Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional calculations * hyperconjugation * inductive effect * polarizability Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.914, year: 2007
Radu, I.E.
2006-03-15
This thesis presents the femtosecond laser-induced electron, lattice and spin dynamics on two representative rare-earth systems: The ferromagnetic gadolinium Gd(0001) and the paramagnetic yttrium Y(0001) metals. The employed investigation tools are the time-resolved linear reflectivity and second-harmonic generation, which provide complementary information about the bulk and surface/interface dynamics, respectively. The femtosecond laser excitation of the exchange-split surface state of Gd(0001) triggers simultaneously the coherent vibrational dynamics of the lattice and spin subsystems in the surface region at a frequency of 3 THz. The coherent optical phonon corresponds to the vibration of the topmost atomic layer against the underlying bulk along the normal direction to the surface. The coupling mechanism between phonons and magnons is attributed to the modulation of the exchange interaction J between neighbour atoms due to the coherent lattice vibration. This leads to an oscillatory motion of the magnetic moments having the same frequency as the lattice vibration. Thus these results reveal a new type of phonon-magnon coupling mediated by the modulation of the exchange interaction and not by the conventional spin-orbit interaction. Moreover, we show that coherent spin dynamics in the THz frequency domain is achievable, which is at least one order of magnitude faster than previously reported. The laser-induced (de)magnetization dynamics of the ferromagnetic Gd(0001) thin films have been studied. Upon photo-excitation, the nonlinear magneto-optics measurements performed in this work show a sudden drop in the spin polarization of the surface state by more than 50% in a <100 fs time interval. Under comparable experimental conditions, the time-resolved photoemission studies reveal a constant exchange splitting of the surface state. The ultrafast decrease of spin polarization can be explained by the quasi-elastic spin-flip scattering of the hot electrons among spin
Gaudry, Jean-Baptiste
2000-01-01
This research thesis reports the study of two mechanisms of non linear interaction of a laser wave with matter. More particularly, it reports the experimental investigation of non linear optical properties of organometallic molecules in solution, as well as the damage of perfect silica under laser irradiation by using simulation codes. As far as optical properties are concerned, the author highlights the influence of the electronic configuration of the metal present in the organometallic compound, and the influence of the ligand on the second-order non-linear response. As far as the simulation is concerned, some experimental results have been reproduced. This work can be useful for the investigation of the extrinsic damage of imperfect materials, and for the design of experiments of transient measurements of excited silica [fr
Cuppo, F L S; Gómez, S L; Figueiredo Neto, A M
2004-04-01
In this paper is reported a systematic experimental study of the linear-optical-absorption coefficient of ferrofluid-doped isotropic lyotropic mixtures as a function of the magnetic-grains concentration. The linear optical absorption of ferrolyomesophases increases in a nonlinear manner with the concentration of magnetic grains, deviating from the usual Beer-Lambert law. This behavior is associated to the presence of correlated micelles in the mixture which favors the formation of small-scale aggregates of magnetic grains (dimers), which have a higher absorption coefficient with respect to that of isolated grains. We propose that the indirect heating of the micelles via the ferrofluid grains (hyperthermia) could account for this nonlinear increase of the linear-optical-absorption coefficient as a function of the grains concentration.
Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities
Hirata, So; Ivanov, Stanislav; Bartlett, Rodney J.; Grabowski, Ireneusz
2005-01-01
Time-dependent density-functional theory (TDDFT) employing the exact-exchange functional has been formulated on the basis of the optimized-effective-potential (OEP) method of Talman and Shadwick for second-order molecular properties and implemented into a Gaussian-basis-set, trial-vector algorithm. The only approximation involved, apart from the lack of correlation effects and the use of Gaussian-type basis functions, was the consistent use of the adiabatic approximation in the exchange kernel and in the linear response function. The static and dynamic polarizabilities and their anisotropy predicted by the TDDFT with exact exchange (TDOEP) agree accurately with the corresponding values from time-dependent Hartree-Fock theory, the exact-exchange counterpart in the wave function theory. The TDOEP is free from the nonphysical asymptotic decay of the exchange potential of most conventional density functionals or from any other manifestations of the incomplete cancellation of the self-interaction energy. The systematic overestimation of the absolute values and dispersion of polarizabilities that plagues most conventional TDDFT cannot be seen in the TDOEP
Zeman, Johannes; Uhlig, Frank; Smiatek, Jens; Holm, Christian
2017-12-01
We present a coarse-grained polarizable molecular dynamics force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]). For the treatment of electronic polarizability, we employ the Drude model. Our results show that the new explicitly polarizable force field reproduces important static and dynamic properties such as mass density, enthalpy of vaporization, diffusion coefficients, or electrical conductivity in the relevant temperature range. In situations where an explicit treatment of electronic polarizability might be crucial, we expect the force field to be an improvement over non-polarizable models, while still profiting from the reduction of computational cost due to the coarse-grained representation.
Liu Guanghui [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Guo Kangxian, E-mail: axguo@sohu.com [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Chao [Institute of Public Administration, Guangzhou University, Guangzhou 510006 (China)
2012-06-15
The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.
Liu Guanghui; Guo Kangxian; Wang Chao
2012-01-01
The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.
Bhattacharya, S.; Maiti, R.; Saha, S.; Das, A. C.; Mondal, S.; Ray, S. K.; Bhaktha, S. B. N.; Datta, P. K.
2016-04-01
Graphene Oxide (GO) has been prepared by modified Hummers method and it has been reduced using an IR bulb (800-2000 nm). Both as grown GO and reduced graphene oxide (RGO) have been characterized using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Raman spectra shows well documented Dband and G-band for both the samples while blue shift of G-band confirms chemical functionalization of graphene with different oxygen functional group. The XPS result shows that the as-prepared GO contains 52% of sp2 hybridized carbon due to the C=C bonds and 33% of carbon atoms due to the C-O bonds. As for RGO, increment of the atomic % of the sp2 hybridized carbon atom to 83% and rapid decrease in atomic % of C=O bonds confirm an efficient reduction with infrared radiation. UV-Visible absorption spectrum also confirms increment of conjugation with increased reduction. Non-linear optical properties of both GO and RGO are measured using single beam open aperture Z-Scan technique in femtosecond regime. Intensity dependent nonlinear phenomena are observed. Depending upon the intensity, both saturable absorption and two photon absorption contribute to the non-linearity of both the samples. Saturation dominates at low intensity (~ 127 GW/cm2) while two photon absorption become prominent at higher intensities (from 217 GW/cm2 to 302 GW/cm2). We have calculated the two-photon absorption co-efficient and saturation intensity for both the samples. The value of two photon absorption co-efficient (for GO~ 0.0022-0.0037 cm/GW and for RGO~ 0.0128-0.0143 cm/GW) and the saturation intensity (for GO~57 GW/cm2 and for RGO~ 194GW/cm2) is increased with reduction. Increase in two photon absorption coefficient with increasing intensity can also suggest that there may be multi-photon absorption is taking place.
Khan, Wilayat, E-mail: wkhan@ntc.zcu.cz [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic); Murtaza, G., E-mail: murtaza@icp.edu.pk [Department of Physics, Islamia College Peshawar, KPK (Pakistan); Ouahrani, T. [Laboratoire de Physique Théorique, B.P. 230, Université de Tlemcen, Tlemcen 13000 (Algeria); École Préparatoire en Sciences et Techniques, BP 165 R.P., 13000 Tlemcen (Algeria); Mahmood, Asif [College of Engineering, Chemical Engineering Department, King Saud University Riyadh (Saudi Arabia); Khenata, R.; El Amine Monir, Mohammed; Baltache, H. [Laboratoire de Physique Quantique, de la Matière et de la Modélisation Mathématique (LPQ3M), Université de Mascara, Mascara 29000 (Algeria)
2016-07-25
Recently a new sulphide compound Li{sub 2}Ga{sub 2}GeS{sub 6} was synthesized. It has attracted great attention due to its nonlinear optical properties. Quite surprisingly no theoretical study yet been reported on the physical properties of this important material. We have paid attention to study the electronic and optical properties of Li{sub 2}Ga{sub 2}GeS{sub 6} using first principles techniques of density functional theory. Different exchange-correlation techniques have been applied to study these properties. From local density and generalized gradient approximations the compound is predicted to be direct bandgap. However the band gap is indirect when calculated through the Engle–Vosko and modified Becke–Johnson potentials. Therefore the bandgap of the compound is pseudo direct (direct and indirect band gaps are very close). In optical properties dielectric function, refractive index, reflectivity and absorption coefficient were studied. Furthermore, the second harmonic generation properties of the compound are predicted. - Highlights: • Li{sub 2}Ga{sub 2}GeS{sub 6} studied for the first time using first principles calculations. • Different exchange correlation potentials have been adopted for the calculations. • Bandgap of the compound is pseudo direct. • Optical structures are prominent in the low frequency ultraviolet region. • The lone pair basins seem to have a non-negligible role in the optical properties.
Kityk, I.V.; Makowska-Janusik, M.; Ebothe, J.; El Hichou, A.; El Idrissi, B.; Addou, M.
2002-01-01
The effective nanometer-sized thin layer (about 1-2 nm) located between a crystalline ZnS film and glass substrate is studied here using photoinduced optical and second-order non-linear optical (second harmonic generation (SHG) and electrooptics effects) techniques. A photoinduced shift of the effective energy gap is found for the first time in ZnS films doped with the same amount (4 at.%) of different elements, namely, In, Al and Sn. The photoinduced second-order non-linear optical properties (linear electrooptics (LEO) and SHG) of the specimens show a good correlation with the corresponding features of the linear optical susceptibilities, particularly, the imaginary part of dielectric susceptibility near the absorption edge. The maximal response of the photoinduced signal is observed for the pump-probe delaying time of about 20 ps. The performed experimental measurements indicate that the observed effects are stimulated by two factors: the first one is connected with the interface potential gradients at the glass-ZnS film boarder; the second one is a consequence of the additional polarization due to the insertion of Al, In and Sn atoms. The observed phenomenon may be proposed as a sensitive tool for investigation of thin semiconducting-glass interface layer. Moreover, such nanolayers may be applied in quantum electronic devices
Maram, Reza; Kong, Deming; Galili, Michael
2016-01-01
We propose a novel approach for all-optical return-to-zero (RZ) to non-return-to-zero (NRZ) telecommunication data format conversion based on linear spectral phase manipulation of an RZ data signal. The operation principle is numerically analyzed and experimentally validated through successful fo...
Kimiagar, Salimeh; Abrinaei, Fahimeh
2018-01-01
Magnesium oxide (MgO)-graphene oxide (GO) nanocomposites were prepared by the hydrothermal method at different temperatures. The effect of growth temperature on the structural, linear, and nonlinear optical (NLO) parameters was investigated. The decoration of MgO on GO sheets was confirmed by X-ray diffraction, scanning electron microscopy, Fourier transform infrared, and UV-visible (UV-vis) spectroscopy analyses. The energy band-gaps of MgO-GO nanocomposites were calculated from UV-vis spectrum using Tauc plot. The NLO parameters of MgO-GO nanocomposites were calculated for the first time by the simple Z-scan technique with nanosecond Nd:YAG laser at 532 nm. The nonlinear absorption coefficient β and nonlinear refractive index n2 for MgO-GO nanocomposites at the laser intensity of 1.1×108 W/cm2 were measured to be in the order of 10-7 cm/W and 10-12 cm2/W, respectively. The third-order NLO susceptibility of MgO-GO nanocomposites was measured in the order of 10-9 esu. The results showed that MgO-GO structures have negative nonlinearity as well as good nonlinear two-photon absorption at 532 nm. Furthermore, the NLO parameters increased by the enhancement of the growth temperature. As the investigation of new materials plays an important role in the advancement of optoelectronics, MgO-GO nanocomposites possess potential applications in NLO devices.
Roche, J. [CEA Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette Cedex, (France); Friedrich, J. M. [Institut fuer Kernphysik, Universitaet Mainz, 55099 Mainz, (Germany); Lhuillier, D. [CEA Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette Cedex, (France); Bartsch, P. [Institut fuer Kernphysik, Universitaet Mainz, 55099 Mainz, (Germany); Baumann, D. [Institut fuer Kernphysik, Universitaet Mainz, 55099 Mainz, (Germany); Berthot, J. [LPC de Clermont-Fd, IN2P3-CNRS, Universite Blaise Pascal, 63177 Aubiere Cedex, (France); Bertin, P. Y. [LPC de Clermont-Fd, IN2P3-CNRS, Universite Blaise Pascal, 63177 Aubiere Cedex, (France); Breton, V. [LPC de Clermont-Fd, IN2P3-CNRS, Universite Blaise Pascal, 63177 Aubiere Cedex, (France); Boeglin, W. U. [Institut fuer Kernphysik, Universitaet Mainz, 55099 Mainz, (Germany); Boehm, R. [Institut fuer Kernphysik, Universitaet Mainz, 55099 Mainz, (Germany)] (and others)
2000-07-24
Absolute differential cross sections for the reaction ep{yields}ep{gamma} have been measured at a four-momentum transfer with virtuality Q{sup 2}=0.33 GeV{sup 2} and polarization {epsilon}=0.62 in the range 33.6 to 111.5 MeV/c for the momentum of the outgoing photon in the photon-proton center of mass frame. The experiment has been performed with the high-resolution spectrometers at the Mainz Microtron MAMI. From the photon angular distributions, two structure functions which are a linear combination of the generalized polarizabilities have been determined for the first time. (c) 2000 The American Physical Society.
Measurement of the charged pion polarizability at COMPASS
Nagel, Thiemo Christian Ingo
2012-01-01
The reaction π - +Z→π - +γ+Z in which a photon is produced by a beam pion scattering off a quasi-real photon of the Coulomb field of the target nucleus is identified experimentally by the tiny magnitude of the momentum transfer to the nucleus. This process gives access to the charged pion polarizabilities α π and β π whose experimental determination constitutes an important test of Chiral Perturbation Theory. In this work, the pion polarizability is obtained as α π =(1.9±0.7 stat. ±0.8 syst. ) x 10 -4 fm 3 from data taken with 190 GeV/c hadron beam provided by SPS to the COMPASS experiment at CERN in November 2009 and under the assumption of α π +β π =0.
Dynamic polarizability of a complex atom in strong laser fields
Rapoport, L.P.; Klinskikh, A.F.; Mordvinov, V.V.
1997-01-01
An asymptotic expansion of the dynamic polarizability of a complex atom in a strong circularly polarized light field is found for the case of high frequencies. The self-consistent approximation of the Hartree-Fock type for the ''atom+field'' system is developed, within the framework of which a numerical calculation of the dynamic polarizability of Ne, Kr, and Ar atoms in a strong radiation field is performed. The strong field effect is shown to manifest itself not only in a change of the energy spectrum and the character of behavior of the wave functions of atomic electrons, but also in a modification of the one-electron self-consistent potential for the atom in the field
Measurement of the charged pion polarizability at COMPASS
Nagel, Thiemo Christian Ingo
2012-09-26
The reaction {pi}{sup -}+Z{yields}{pi}{sup -}+{gamma}+Z in which a photon is produced by a beam pion scattering off a quasi-real photon of the Coulomb field of the target nucleus is identified experimentally by the tiny magnitude of the momentum transfer to the nucleus. This process gives access to the charged pion polarizabilities {alpha}{sub {pi}} and {beta}{sub {pi}} whose experimental determination constitutes an important test of Chiral Perturbation Theory. In this work, the pion polarizability is obtained as {alpha}{sub {pi}}=(1.9{+-}0.7{sub stat.}{+-}0.8{sub syst.}) x 10{sup -4} fm{sup 3} from data taken with 190 GeV/c hadron beam provided by SPS to the COMPASS experiment at CERN in November 2009 and under the assumption of {alpha}{sub {pi}}+{beta}{sub {pi}}=0.
Jbara, Ahmed S; Othaman, Zulkafli; Saeed, M A
2016-01-01
Based on the Schrödinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients. (paper)
Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability.
Appelquist, T; Berkowitz, E; Brower, R C; Buchoff, M I; Fleming, G T; Jin, X-Y; Kiskis, J; Kribs, G D; Neil, E T; Osborn, J C; Rebbi, C; Rinaldi, E; Schaich, D; Schroeder, C; Syritsyn, S; Vranas, P; Weinberg, E; Witzel, O
2015-10-23
We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar "stealth baryon" dark matter candidate, arising from a dark SU(4) confining gauge theory-"stealth dark matter." In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest "baryon" states in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m(B)(6), suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.
Electric field enhanced hydrogen storage on polarizable materials substrates
Zhou, J.; Wang, Q.; Sun, Q.; Jena, P.; Chen, X. S.
2010-01-01
Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H2 molecules is adsorbed on a BN sheet, the binding energy per H2 molecule increases from 0.03 eV/H2 in the field-free case to 0.14 eV/H2 in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H2 can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H2 molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials. PMID:20133647
Experimental Constraints on Polarizability Corrections to Hydrogen Hyperfine Structure
Nazaryan, Vahagn; Carlson, Carl E.; Griffioen, Keith A.
2006-01-01
We present a state-of-the-art evaluation of the polarizability corrections--the inelastic nucleon corrections--to the hydrogen ground-state hyperfine splitting using analytic fits to the most recent data. We find a value Δ pol =1.3±0.3 ppm. This is 1-2 ppm smaller than the value of Δ pol deduced using hyperfine splitting data and elastic nucleon corrections obtained from modern form factor fits
Physical, optical and structural studies of copper-doped lead ...
2018-05-23
May 23, 2018 ... Physical, optical and structural studies of copper-doped lead oxychloro ... to the borate glass system increases the Raman scattering cross-section by ..... equations (6) and (7), molar refraction and electronic polariz- ability are ...
Time reversal violating nuclear polarizability and atomic electric dipole moment
Ginges, J.S.M.; Flambaum, V.V.; Mititelu, G.
2000-01-01
Full text: We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). The interaction of external electric E and magnetic H fields with nuclear electric and magnetic dipole moments, d and ,u, gives rise to an energy shift, U= -β ik E i H k , where β ik is the nuclear polarizability. Parity and time invariance violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability, whereψ 0 and ψ n are P,T-odd perturbed ground and excited nuclear states, respectively. In the case of a heavy spherical nucleus with a single unpaired nucleon, the perturbed wavefunctions are U = -β ik E i H k , where ξis a constant proportional to the strength of the nuclear P,T-odd interaction, σ is the nuclear spin operator, and ψ n is an unperturbed wavefunction. There are both scalar and tensor contributions to the nuclear P,T-odd polarizability. An atomic EDM is induced by the interaction of the fields of an unpaired electron in an atom with the P,T-odd perturbed atomic nucleus. An estimate for the value of this EDM has been made. The measurements of atomic EDMs can provide information about P,T-odd nuclear forces and test models of CP-violation
Chen, R; Hahn, C E W; Farmery, A D
2012-08-15
The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.
Freeman, Jason L; Zhao, Qun; Zhang, Yuanli; Wang, Jianwei; Lawson, Christopher M; Gray, Gary M
2013-10-21
Two new series of phosphonato-substituted bithiophenes, BpP(X)(C4H2S)2H and BpP(X)(C4H2S)2P(X)Bp (Bp = 2,2'-C12H8O2, X = O, S, Se), have been synthesized and characterized using linear absorption and emission spectra, and third-order nonlinear absorption measurements at 430 nm with 27 ps laser pulses. The compounds were synthesized in three steps: (1) reacting lithiated bithiophene with (Et2N)2PCl; (2) reacting the product from the first step with biphenol; and (3) reacting the product from the second step with the appropriate chalcogen. The X-ray crystal structures of two of the compounds, BpP(O)(C4H2S)2P(O)Bp and BpP(Se)(C4H2S)2P(Se)Bp, are reported and show a number of intermolecular π-π interactions. The linear absorption spectra, emission spectra, and emission quantum yields show distinct trends with respect to the chalcogen and the number of phosphorus substituents attached to the 2,2'-bithiophene ring. The compounds show emission maxima at wavelengths ranging from 380-400 nm and, BpP(S)(C4H2S)2H shows a 23-fold increase in fluorescence quantum yield relative to that of 2,2'-bithiophene. Fluorescence lifetimes and radiative and non-radiative decay rate constants for the first singlet excited state have been extracted from the quantum yields using time-dependent DFT calculations. Nonlinear transmission measurements indicate that all of the compounds show nonlinear absorption at 430 nm with 27 ps laser pulses in spite of their low solubilities. Notably, the nonlinear absorption threshold of a 0.16 mol L(-1) CH2Cl2 solution of BpP(Se)(C4H2S)2H is 0.9 J cm(-2). The excellent emission quantum yields and good nonlinear absorptions make these compounds promising candidates for optical power limiting applications and as host materials for violet-blue organic light emitting diodes.
Kimiagar Salimeh
2018-01-01
Full Text Available Magnesium oxide (MgO-graphene oxide (GO nanocomposites were prepared by the hydrothermal method at different temperatures. The effect of growth temperature on the structural, linear, and nonlinear optical (NLO parameters was investigated. The decoration of MgO on GO sheets was confirmed by X-ray diffraction, scanning electron microscopy, Fourier transform infrared, and UV-visible (UV-vis spectroscopy analyses. The energy band-gaps of MgO-GO nanocomposites were calculated from UV-vis spectrum using Tauc plot. The NLO parameters of MgO-GO nanocomposites were calculated for the first time by the simple Z-scan technique with nanosecond Nd:YAG laser at 532 nm. The nonlinear absorption coefficient β and nonlinear refractive index n2 for MgO-GO nanocomposites at the laser intensity of 1.1×108 W/cm2 were measured to be in the order of 10−7 cm/W and 10−12 cm2/W, respectively. The third-order NLO susceptibility of MgO-GO nanocomposites was measured in the order of 10−9 esu. The results showed that MgO-GO structures have negative nonlinearity as well as good nonlinear two-photon absorption at 532 nm. Furthermore, the NLO parameters increased by the enhancement of the growth temperature. As the investigation of new materials plays an important role in the advancement of optoelectronics, MgO-GO nanocomposites possess potential applications in NLO devices.
Dynamic dipole polarizabilities of the Li atom and the Be+ ion
Tang Liyan; Yan Zongchao; Shi Tingyun; Mitroy, J.
2010-01-01
The dynamic dipole polarizabilities for Li atoms and Be + ions in the 2 2 S and 2 2 P states are calculated using the variational method with a Hylleraas basis. The present polarizabilities represent the definitive values in the nonrelativistic limit. Corrections due to relativistic effects are also estimated. Analytic representations of the polarizabilities for frequency ranges encompassing the n=3 excitations are presented. The recommended polarizabilities for 7 Li and 9 Be + are 164.11±0.03 a 0 3 and 24.489±0.004 a 0 3 , respectively.
Physical Principles of Development of the State Standard of Biological Cell Polarizability
Shuvalov, G. V.; Generalov, K. V.; Generalov, V. M.; Kruchinina, M. V.; Koptev, E. S.; Minin, O. V.; Minin, I. V.
2018-03-01
A new state standard of biological cell polarizability based on micron-size latex particles has been developed. As a standard material, it is suggested to use polystyrene. Values of the polarizability calculated for erythrocytes and values of the polarizability of micron-size spherical latex particles measured with measuring-computing complexes agree within the limits of satisfactory relative error. The Standard allows one the unit of polarizability measurements [m3] to be assigned to cells and erythrocytes for the needs of medicine.
Chiral model predictions for electromagnetic polarizabilities of the nucleon: A 'consumer report'
Broniowski, W.
1992-01-01
This contribution has two parts: (1) The author critically discusses predictions for the electromagnetic polarizabilities of the nucleon obtained in two different approaches: (a) hedgehog models (HM), such as Skyrmions, chiral quark models, hybrid bags, NJL etc., and (b) chiral perturbation theory (χPT). (2) The author shows new results obtained in HM: N c -counting of polarizabilities, splitting of the neutron and proton polarizabilities (he argues that α n > α p in models with pionic clouds), relevance of dispersive terms in the magnetic polarizability β, important role of the Δ resonance in pionic loops, and the effects of non-minimal substitution terms in the effective lagrangian. 3 refs
Tailored long range forces on polarizable particles by collective scattering of broadband radiation
Holzmann, D; Ritsch, H
2016-01-01
Collective coherent light scattering by polarizable particles creates surprisingly strong, long range inter-particle forces originating from interference of the light scattered by different particles. While for monochromatic laser beams this interaction decays with the inverse distance, we show here that in general the effective interaction range and geometry can be controlled by the illumination bandwidth and geometry. As generic example we study the modifications inter-particle forces within a 1D chain of atoms trapped in the field of a confined optical nanofiber mode. For two particles we find short range attraction as well as optical binding at multiple distances. The range of stable distances shrinks with increasing light bandwidth and for a very large bandwidth field as e.g. blackbody radiation. We find a strongly attractive potential up to a critical distance beyond which the force gets repulsive. Including multiple scattering can even lead to the appearance of a stable configuration at a large distance. Such broadband scattering forces should be observable contributions in ultra-cold atom interferometers or atomic clocks setups. They could be studied in detail in 1D geometries with ultra-cold atoms trapped along or within an optical nanofiber. Broadband radiation force interactions might also contribute in astrophysical scenarios as illuminated cold dust clouds. (paper)
Sokolov, Sergei; Lian, Jin; Combrié, Sylvain; Rossi, Alfredo De; Mosk, Allard. P.
2017-01-01
Ga0.51In0.49PGa0.51In0.49P is a promising candidate for thermally tunable nanophotonic devices due to its low thermal conductivity. In this work we study its thermo-optical response. We obtain the linear thermo-optical coefficient 푑푛/푑푇=2.0±0.3·10−4 K−1dn/dT=2.0±0.3·10−4 K−1 by investigating the
Yang, Xi [Brookhaven National Laboratory, Upton, Long Island, NY 11973 (United States); Huang, Xiaobiao, E-mail: xiahuang@slac.stanford.edu [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)
2016-08-21
We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.
Yang, Xi [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2016-08-01
We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.
Masatoshi Hasegawa
2017-10-01
Full Text Available This paper reviews the development of new high-temperature polymeric materials applicable to plastic substrates in image display devices with a focus on our previous results. Novel solution-processable colorless polyimides (PIs with ultra-low linear coefficients of thermal expansion (CTE are proposed in this paper. First, the principles of the coloration of PI films are briefly discussed, including the influence of the processing conditions on the film coloration, as well as the chemical and physical factors dominating the low CTE characteristics of the resultant PI films to clarify the challenges in simultaneously achieving excellent optical transparency, a very high Tg, a very low CTE, and excellent film toughness. A possible approach of achieving these target properties is to use semi-cycloaliphatic PI systems consisting of linear chain structures. However, semi-cycloaliphatic PIs obtained using cycloaliphatic diamines suffer various problems during precursor polymerization, cyclodehydration (imidization, and film preparation. In particular, when using trans-1,4-cyclohexanediamine (t-CHDA as the cycloaliphatic diamine, a serious problem emerges: salt formation in the initial stages of the precursor polymerization, which terminates the polymerization in some cases or significantly extends the reaction period. The system derived from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA and t-CHDA can be polymerized by a controlled heating method and leads to a PI film with relatively good properties, i.e., excellent light transmittance at 400 nm (T400 = ~80%, a high Tg (>300 °C, and a very low CTE (10 ppm·K−1. However, this PI film is somewhat brittle (the maximum elongation at break, εb max is about 10%. On the other hand, the combination of cycloaliphatic tetracarboxylic dianhydrides and aromatic diamines does not result in salt formation. The steric structures of cycloaliphatic tetracarboxylic dianhydrides significantly influence
Lucchetti, Liana; Fraccia, Tommaso P.; Ciciulla, Fabrizio; Bellini, Tommaso
2017-01-01
Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced bi...
Bit-rate-transparent optical RZ-to-NRZ format conversion based on linear spectral phase filtering
Maram, Reza; Da Ros, Francesco; Guan, Pengyu
2017-01-01
We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal.......We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal....
Sigaev, V. N.; Sukhov, S.S.; Sarkisov, P. D.; Stefanovich, S. Yu.; Pernice, P.; Aronne, A.; Gregora, Ivan
2005-01-01
Roč. 318, - (2005), s. 95-104 ISSN 0015-0193 Grant - others:Russian Fondation of Basic Research(RU) 02-03-32105; NATO SfP program(XX) SfP-977980; Italien Ministry of Education , Univerity and Research, FIRB(IT) RBNE0155X7 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric * glass composites * optical non-linearity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.459, year: 2005
Calculations of polarizabilities and hyperpolarizabilities for the Be+ ion
Tang Liyan; Zhang Junyi; Mitroy, J.; Yan Zongchao; Shi Tingyun; Babb, James F.
2009-01-01
The polarizabilities and hyperpolarizabilities of the Be + ion in the 2 2 S state and the 2 2 P state are determined. Calculations are performed using two independent methods: (i) variationally determined wave functions using Hylleraas basis set expansions and (ii) single electron calculations utilizing a frozen-core Hamiltonian. The first few parameters in the long-range interaction potential between a Be + ion and a H, He, or Li atom, and the leading parameters of the effective potential for the high-L Rydberg states of beryllium were also computed. All the values reported are the results of calculations close to convergence. Comparisons are made with published results where available.
Schneider, B.I.; Collins, L.A.
1983-01-01
We propose a method for constructing an effective optical potential through which correlation effects can be introduced into the electron-molecule scattering formulation. The optical potential is based on a nonperturbative, Feshbach projection-operator procedure and is evaluated on an L 2 basis. The optical potential is incorporated into the scattering equations by means of a separable expansion, and the resulting scattering equations are solved by a linear-algebraic method based on the integral-equation formulation. We report the results of scattering calculations, which include polarization effects, for low-energy e-H 2 and e-N 2 collisions. The agreement with other theoretical and with experimental results is quite good
Christopher M. Bentz
2014-03-01
Full Text Available We compare optical time domain reflectometry (OTDR techniques based on conventional single impulse, coding and linear frequency chirps concerning their signal to noise ratio (SNR enhancements by measurements in a passive optical network (PON with a maximum one-way attenuation of 36.6 dB. A total of six subscribers, each represented by a unique mirror pair with narrow reflection bandwidths, are installed within a distance of 14 m. The spatial resolution of the OTDR set-up is 3.0 m.
Tangarife, E.; Duque, C.A.
2011-01-01
This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. Calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a non-linear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum-well wires. -- Research highlights: → Binding energy for donor impurity in coupled wires strongly depends on the confinement potential. → Polarizability for donor impurity in coupled wires strongly depends on the confinement potential. → Binding energy strongly depends on the direction of the applied electric field. → Polarizability strongly depends on the direction of the applied electric field. → The coupling between the two parallel wires increases with the hydrostatic pressure.
Electric and magnetic polarizabilities of hadrons via elastic Compton scattering at KAON
Moinester, M.A.; Blecher, M.
1990-08-01
The study of dynamic properties of hadrons presents a challenge. Among the most basic of these are the electric and magnetic polarizabilities describing the electromagnetic structure of hadrons. They characterize the induced transient dipole moments of hadrons in an external electromagnetic field. During gamma-hadron Compton scattering the lowest order scattering is determined by the charge and magnetic moment. The next order scattering is determined by the induced dipole moments. The dipole polarizabilities probe the rigidity of the internal structure of baryons and mesons, the dipole moments being induced by the rearrangement of the hadron constituents driven by the presence of the electric and magnetic fields of the photon during scattering. A sophisticated understanding of hadrons within the framework of QCD will be tested, in part, by the prediction of these quantities. For the light charged pion, chiral symmetry leads to a precise prediction for the polarizabilities. For the heavier charged kaon, chiral perturbation theory can be applied to predict the polarizabilities. For these cases, the experimental polarizabilities subject the underlying chiral symmetry and chiral perturbation techniques of QCD to new and serious tests. Here the physics of electromagnetic polarizabilities is first described, followed by a review of previous experimental and theoretical polarizability results for the proton, neutron, pion, and kaon. A brief description is then given of how polarizabilities for these hadrons can be studied at the proposed TRIUMF KAON facility. (36 refs., 4 figs.)
Do the seagull terms really survive for the electric polarizability of the nucleon?
Saito, S.
1998-01-01
The seagull terms for the electric polarizability of the nucleon are shown indeed to vanish, if one introduces fluctuations around the Skyrmion configuration, and the origin of the electric polarizability cannot after all be attributed to the seagull terms in the Skyrme model. (orig.)
The electric double layer at high surface potentials: The influence of excess ion polarizability
Hatlo, M. M.; van Roij, R.H.H.G.; Lue, L.
2012-01-01
By including the excess ion polarizability into the Poisson-Boltzmann theory, we show that the decrease in differential capacitance with voltage, observed for metal electrodes above a threshold potential, can be understood in terms of thickening of the double layer due to ion-induced polarizability
Effective electric and magnetic polarizabilities of pointlike spin-1/2 particles
Silenko, A. J.
2014-01-01
Effective electric and magnetic polarizabilities of pointlike spin-1/2 particles possesing an anomalous magnetic moment are calculated with the transformation of an initial Hamiltonian to the Foldy-Wouthuysen representation. Polarizabilities of spin-1/2 and spin-1 particles are compared.
Hollauer, E.; Nascimento, M.A.C.
1985-01-01
The photoionization cross-section and dynamic polarizability for lithium atom are calculated using a discrete basis set to represent both the bound and the continuum-states of the atom, to construct an approximation to the dynamic polarizability. From the imaginary part of the complex dynamic polarizability one extracts the photoionization cross-section and from its real part the dynamic polarizability. The results are in good agreement with the experiments and other more elaborate calculations (Author) [pt
Transferability of polarizable models for ion-water electrostatic interaction
Masia, Marco
2009-01-01
Studies of ion-water systems at condensed phase and at interfaces have pointed out that molecular and ionic polarization plays an important role for many phenomena ranging from hydrogen bond dynamics to water interfaces' structure. Classical and ab initio Molecular Dynamics simulations reveal that induced dipole moments at interfaces (e.g. air-water and water-protein) are usually high, hinting that polarizable models to be implemented in classical force fields should be very accurate in reproducing the electrostatic properties of the system. In this paper the electrostatic properties of three classical polarizable models for ion-water interaction are compared with ab initio results both at gas and condensed phase. For Li + - water and Cl - -water dimers the reproducibility of total dipole moments obtained with high level quantum chemical calculations is studied; for the same ions in liquid water, Car-Parrinello Molecular Dynamics simulations are used to compute the time evolution of ionic and molecular dipole moments, which are compared with the classical models. The PD2-H2O model developed by the author and coworkers [Masia et al. J. Chem. Phys. 2004, 121, 7362] together with the gaussian intermolecular damping for ion-water interaction [Masia et al. J. Chem. Phys. 2005, 123, 164505] showed to be the fittest in reproducing the ab initio results from gas to condensed phase, allowing for force field transferability.
Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model
Pande, Vijay S.; Head-Gordon, Teresa; Ponder, Jay W.
2016-01-01
A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. The protocol uses an automated procedure, ForceBalance, to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimentally obtained data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The new AMOEBA14 water model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures ranging from 249 K to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to a variety of experimental properties as a function of temperature, including the 2nd virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient and dielectric constant. The viscosity, self-diffusion constant and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2 to 20 water molecules, the AMOEBA14 model yields results similar to the AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model. PMID:25683601
Polarizability of KC60: Evidence for Potassium Skating on the C60 Surface
Rayane, D.; Antoine, R.; Dugourd, Ph.; Benichou, E.; Allouche, A. R.; Aubert-Frécon, M.; Broyer, M.
2000-02-01
We present the first measurement of the polarizability and the permanent dipole moment of isolated KC60 molecules by molecular beam deflection technique. We have obtained a value of 2506+/-250 Å3 for the polarizability at room temperature. The addition of a potassium atom enhances by more than a factor of 20 the polarizability of a pure C60 molecule. This very high polarizability and the lack of observed permanent dipole show that the apparent polarizability of KC60 is induced by the free skating of the potassium atom on the C60 surface, resulting in a statistical orientation of the dipole. The results are interpreted with a simple model similar to the Langevin theory for paramagnetic systems.
Mahadevan, M.; Sankar, P. K.; Vinitha, G.; Arivanandhan, M.; Ramachandran, K.; Anandan, P.
2017-07-01
L-arginine 4-nitrophenalate 4-nitrophenol dihydrate (LAPP) has been synthesized and grown by solution growth at room temperature using deionized water as a solvent. The various functional groups of the sample were identified by Fourier transform infra-red and Fourier transforms - Raman spectroscopic analyses. The Laser damage threshold of LAPP has been studied. Refractive index of LAPP single crystal was measured using Metricon prism coupler Instrument. The etching studies were carried out to study the quality of the grown crystals. The third order nonlinear optical properties of LAPP sample was analyzed by the Z-scan technique using 532 nm diode pumped CW Nd: YAG laser. The LAPP material exhibits negative optical nonlinearity. The results show that LAPP sample has potential applications in nonlinear optics and it can be exploited for optical limiting or switching.
Mathieu, Jean Paul
1975-01-01
Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p
Divya, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.
2014-08-01
TiN nanoparticles of average size 55 nm were investigated for their optical non-linear properties. During the experiment the irradiated laser wavelength coincided with the surface plasmon resonance (SPR) peak of the nanoparticle. The large non-linearity of the nanoparticle was attributed to the plasmon resonance, which largely enhanced the local field within the nanoparticle. Both open and closed aperture Z-scan experiments were performed and the corresponding optical constants were explored. The post-excitation absorption spectra revealed the interesting phenomenon of photo fragmentation leading to the blue shift in band gap and red shift in the SPR. The results are discussed in terms of enhanced interparticle interaction simultaneous with size reduction. Here, the optical constants being intrinsic constants for a particular sample change unusually with laser power intensity. The dependence of χ(3) is discussed in terms of the size variation caused by photo fragmentation. The studies proved that the TiN nanoparticles are potential candidates in photonics technology offering huge scope to study unexplored research for various expedient applications.
Linearity and Non-linearity of Photorefractive effect in Materials ...
In this paper we have studied the Linearity and Non-linearity of Photorefractive effect in materials using the band transport model. For low light beam intensities the change in the refractive index is proportional to the electric field for linear optics while for non- linear optics the change in refractive index is directly proportional ...
Meera, M. R.; Joselin Beaula, T.; Rayar, S. L.; Bena Jothy, V.
2017-09-01
NLO materials are gaining importance in technologies such as optical communication, optical computing and dynamic image processing. Many NLO crystals grown by mixing amino acids with various organic and inorganic acids have been reported in the literature. Hence, glycine mixed semi-organic material will be of special interest as a fundamental building block to develop many complex crystals with improved NLO properties. A semi organic Single crystal of Triglycine Phosphate (TGP) which was grown and spectral analysis have been using FTIR and Raman spectral analysis. Natural Bond Orbital Analysis and the atomic natural charges are also predicted. HOMO LUMO energy gap value suggests the possibility of charge transfer within the molecule.