#### Sample records for linear models compared

1. Comparing linear probability model coefficients across groups

Holm, Anders; Ejrnæs, Mette; Karlson, Kristian Bernt

2015-01-01

of the following three components: outcome truncation, scale parameters and distributional shape of the predictor variable. These results point to limitations in using linear probability model coefficients for group comparisons. We also provide Monte Carlo simulations and real examples to illustrate......This article offers a formal identification analysis of the problem in comparing coefficients from linear probability models between groups. We show that differences in coefficients from these models can result not only from genuine differences in effects, but also from differences in one or more...... these limitations, and we suggest a restricted approach to using linear probability model coefficients in group comparisons....

2. Linear Models

Searle, Shayle R

2012-01-01

This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.

3. Comparing Regression Coefficients between Nested Linear Models for Clustered Data with Generalized Estimating Equations

Yan, Jun; Aseltine, Robert H., Jr.; Harel, Ofer

2013-01-01

Comparing regression coefficients between models when one model is nested within another is of great practical interest when two explanations of a given phenomenon are specified as linear models. The statistical problem is whether the coefficients associated with a given set of covariates change significantly when other covariates are added into…

4. Financial impact of errors in business forecasting: a comparative study of linear models and neural networks

Claudimar Pereira da Veiga

2012-08-01

Full Text Available The importance of demand forecasting as a management tool is a well documented issue. However, it is difficult to measure costs generated by forecasting errors and to find a model that assimilate the detailed operation of each company adequately. In general, when linear models fail in the forecasting process, more complex nonlinear models are considered. Although some studies comparing traditional models and neural networks have been conducted in the literature, the conclusions are usually contradictory. In this sense, the objective was to compare the accuracy of linear methods and neural networks with the current method used by the company. The results of this analysis also served as input to evaluate influence of errors in demand forecasting on the financial performance of the company. The study was based on historical data from five groups of food products, from 2004 to 2008. In general, one can affirm that all models tested presented good results (much better than the current forecasting method used, with mean absolute percent error (MAPE around 10%. The total financial impact for the company was 6,05% on annual sales.

5. Biochemical methane potential prediction of plant biomasses: Comparing chemical composition versus near infrared methods and linear versus non-linear models.

Godin, Bruno; Mayer, Frédéric; Agneessens, Richard; Gerin, Patrick; Dardenne, Pierre; Delfosse, Philippe; Delcarte, Jérôme

2015-01-01

The reliability of different models to predict the biochemical methane potential (BMP) of various plant biomasses using a multispecies dataset was compared. The most reliable prediction models of the BMP were those based on the near infrared (NIR) spectrum compared to those based on the chemical composition. The NIR predictions of local (specific regression and non-linear) models were able to estimate quantitatively, rapidly, cheaply and easily the BMP. Such a model could be further used for biomethanation plant management and optimization. The predictions of non-linear models were more reliable compared to those of linear models. The presentation form (green-dried, silage-dried and silage-wet form) of biomasses to the NIR spectrometer did not influence the performances of the NIR prediction models. The accuracy of the BMP method should be improved to enhance further the BMP prediction models. Copyright © 2014 Elsevier Ltd. All rights reserved.

Tanwiwat Jaikuna

2017-02-01

Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

7. Comparing Multiple-Group Multinomial Log-Linear Models for Multidimensional Skill Distributions in the General Diagnostic Model. Research Report. ETS RR-08-35

Xu, Xueli; von Davier, Matthias

2008-01-01

The general diagnostic model (GDM) utilizes located latent classes for modeling a multidimensional proficiency variable. In this paper, the GDM is extended by employing a log-linear model for multiple populations that assumes constraints on parameters across multiple groups. This constrained model is compared to log-linear models that assume…

8. Comparing artificial neural networks, general linear models and support vector machines in building predictive models for small interfering RNAs.

Kyle A McQuisten

2009-10-01

Full Text Available Exogenous short interfering RNAs (siRNAs induce a gene knockdown effect in cells by interacting with naturally occurring RNA processing machinery. However not all siRNAs induce this effect equally. Several heterogeneous kinds of machine learning techniques and feature sets have been applied to modeling siRNAs and their abilities to induce knockdown. There is some growing agreement to which techniques produce maximally predictive models and yet there is little consensus for methods to compare among predictive models. Also, there are few comparative studies that address what the effect of choosing learning technique, feature set or cross validation approach has on finding and discriminating among predictive models.Three learning techniques were used to develop predictive models for effective siRNA sequences including Artificial Neural Networks (ANNs, General Linear Models (GLMs and Support Vector Machines (SVMs. Five feature mapping methods were also used to generate models of siRNA activities. The 2 factors of learning technique and feature mapping were evaluated by complete 3x5 factorial ANOVA. Overall, both learning techniques and feature mapping contributed significantly to the observed variance in predictive models, but to differing degrees for precision and accuracy as well as across different kinds and levels of model cross-validation.The methods presented here provide a robust statistical framework to compare among models developed under distinct learning techniques and feature sets for siRNAs. Further comparisons among current or future modeling approaches should apply these or other suitable statistically equivalent methods to critically evaluate the performance of proposed models. ANN and GLM techniques tend to be more sensitive to the inclusion of noisy features, but the SVM technique is more robust under large numbers of features for measures of model precision and accuracy. Features found to result in maximally predictive models are

9. Linear models with R

Faraway, Julian J

2014-01-01

A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition.New to the Second EditionReorganiz

10. A comparative analysis of Serbian phonemes: Linear and non-linear models/Uporedna analiza fonema srpskog jezika: linearni i nelinearni modeli

Danijela D. Protić

2014-10-01

Full Text Available This paper presents the results of a comparative analysis of Serbian phonemes. The characteristics of vowels are quasi-periodicity and clearly visible formants. Non-vowels are short-term quasi-periodical signals having a low power excitation signal. For the purpose of this work, speech production systems were modelled with linear AR models and the corresponding non-linear models, based feed-forward neural networks with one hidden-layer. Sum squared error minimization as well as the back-propagation algorithm were used to train models. The selection of the optimal model was based on two stopping criteria: the normalized mean squares test error and the final prediction error. The Levenberg-Marquart method was used for the Hessian matrix calculation. The Optimal Brain Surgeon method was used for pruning. The generalization properties, based on the time-domain and signal spectra of outputs at hidden-layer neurons, are presented. / U radu je prikazana analiza karakteristika vokala i nevokala srpskog jezika. Vokale karakteriše kvaziperiodičnost i spektar snage signala sa dobro uočljivim formantima. Nevokale karakteriše kratkotrajna kvaziperiodičnost i mala snaga pobudnog signala. Vokali i nevokali modelovani su linearnim AR modelima i odgovarajućim nelinearnim modelima koji su generisani kao feed-forward neuronska mreža sa jednim skrivenim slojem. U procesu modelovanja korišćena je minimizacija srednje kvadratne greške sa propagacijom unazad, a kriterijum izbora optimalnog modela jeste zaustavljanje obučavanja, kada normalizovana srednja kvadratna test greška ili finalna greška predikcije dostignu minimalnu vrednost. LM metod korišćen je za proračun inverzne Hessianove matrice, a za pruning je upotrebljen Optimal Brain Surgeon. Prikazana su generalizaciona svojstva signala u vremenskom i frekvencijskom domenu, a kroskorelacionom analizom utvrđen je odnos signala na izlazima neurona skrivenog sloja.

11. Foundations of linear and generalized linear models

Agresti, Alan

2015-01-01

A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,

12. Comparative study originated photoneutrons different energy linear accelerators, manufacturer and model

Exposito, M. R.; Terron, J. A.; Domingo, C.; Amgarou, K.; Garcia-Fuente, M. J.; Gonzalez-Soto, J.; Legares, J. I.; Gomez, F.; Sanchez-Doblado, F.

2011-01-01

Pollution neutron radiotherapy with photon beams of energy greater than 10 MV represents a major inconvenience for patients in treatment, given the increased likelihood of developing a second radiation-induced cancer. Most of these neutrons are generated in the accelerator head as a result of the interaction of photons with heavy metals. As a result, knowledge of the effect on patients in the fields of neutrons from the accelerator should lead to improvements in design and selection of components from manufacturers. For this purpose, we have performed comparative measurements of the neutron fields present in both the patient (represented by an anthropomorphic phantom) and in the treatment room, considering almost all types of machines currently operating in the world.

13. Dimension of linear models

Høskuldsson, Agnar

1996-01-01

Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....

14. Comparing a single case to a control group - Applying linear mixed effects models to repeated measures data.

Huber, Stefan; Klein, Elise; Moeller, Korbinian; Willmes, Klaus

2015-10-01

In neuropsychological research, single-cases are often compared with a small control sample. Crawford and colleagues developed inferential methods (i.e., the modified t-test) for such a research design. In the present article, we suggest an extension of the methods of Crawford and colleagues employing linear mixed models (LMM). We first show that a t-test for the significance of a dummy coded predictor variable in a linear regression is equivalent to the modified t-test of Crawford and colleagues. As an extension to this idea, we then generalized the modified t-test to repeated measures data by using LMMs to compare the performance difference in two conditions observed in a single participant to that of a small control group. The performance of LMMs regarding Type I error rates and statistical power were tested based on Monte-Carlo simulations. We found that starting with about 15-20 participants in the control sample Type I error rates were close to the nominal Type I error rate using the Satterthwaite approximation for the degrees of freedom. Moreover, statistical power was acceptable. Therefore, we conclude that LMMs can be applied successfully to statistically evaluate performance differences between a single-case and a control sample. Copyright © 2015 Elsevier Ltd. All rights reserved.

15. Innovation information seeking and innovation adoption: Facilities and plant managers' energy outlook comparing linear to nonlinear models

Jacobsen, Joseph J.

One focal point of concern, policy and a new research will involve identifying individual and organizational facilitative and obstructive factors within the context of energy innovation diffusion in the U.S. This interdisciplinary intersection of people, technology and change is one of serious consequence and has broad implications that span national security, energy infrastructure, the economy, organizational change, education and the environment. This study investigates facilities and plant managers' energy innovation information seeking and energy adoption evolution. The participants are managers who consume more electrical energy than all other groups in the world and are among the top users of natural gas and oil in the United States. The research calls upon the Theory of Planned Behavior, the Diffusion of Innovations and nonlinear dynamics in a study of adoption patterns for 13 energy-related innovations. Cusp catastrophe models and power laws were compared to linear multiple regression to examine and characterize data. Findings reveal that innovation adoption and information seeking differences are slight between private and public sector facilities and plant managers and that the group as a whole may resist change. Of the 13 innovations, some exhibit very strong cusp catastrophe distributions while support for multiple linear regression and the power law were found.

16. NTCP modelling of lung toxicity after SBRT comparing the universal survival curve and the linear quadratic model for fractionation correction

Wennberg, Berit M.; Baumann, Pia; Gagliardi, Giovanna

2011-01-01

Background. In SBRT of lung tumours no established relationship between dose-volume parameters and the incidence of lung toxicity is found. The aim of this study is to compare the LQ model and the universal survival curve (USC) to calculate biologically equivalent doses in SBRT to see if this will improve knowledge on this relationship. Material and methods. Toxicity data on radiation pneumonitis grade 2 or more (RP2+) from 57 patients were used, 10.5% were diagnosed with RP2+. The lung DVHs were corrected for fractionation (LQ and USC) and analysed with the Lyman- Kutcher-Burman (LKB) model. In the LQ-correction α/β = 3 Gy was used and the USC parameters used were: α/β = 3 Gy, D 0 = 1.0 Gy, n = 10, α 0.206 Gy-1 and d T = 5.8 Gy. In order to understand the relative contribution of different dose levels to the calculated NTCP the concept of fractional NTCP was used. This might give an insight to the questions of whether 'high doses to small volumes' or 'low doses to large volumes' are most important for lung toxicity. Results and Discussion. NTCP analysis with the LKB-model using parameters m = 0.4, D50 = 30 Gy resulted for the volume dependence parameter (n) with LQ correction n = 0.87 and with USC correction n = 0.71. Using parameters m = 0.3, D 50 = 20 Gy n = 0.93 with LQ correction and n 0.83 with USC correction. In SBRT of lung tumours, NTCP modelling of lung toxicity comparing models (LQ,USC) for fractionation correction, shows that low dose contribute less and high dose more to the NTCP when using the USC-model. Comparing NTCP modelling of SBRT data and data from breast cancer, lung cancer and whole lung irradiation implies that the response of the lung is treatment specific. More data are however needed in order to have a more reliable modelling

17. A comparative study of generalized linear mixed modelling and artificial neural network approach for the joint modelling of survival and incidence of Dengue patients in Sri Lanka

Hapugoda, J. C.; Sooriyarachchi, M. R.

2017-09-01

Survival time of patients with a disease and the incidence of that particular disease (count) is frequently observed in medical studies with the data of a clustered nature. In many cases, though, the survival times and the count can be correlated in a way that, diseases that occur rarely could have shorter survival times or vice versa. Due to this fact, joint modelling of these two variables will provide interesting and certainly improved results than modelling these separately. Authors have previously proposed a methodology using Generalized Linear Mixed Models (GLMM) by joining the Discrete Time Hazard model with the Poisson Regression model to jointly model survival and count model. As Aritificial Neural Network (ANN) has become a most powerful computational tool to model complex non-linear systems, it was proposed to develop a new joint model of survival and count of Dengue patients of Sri Lanka by using that approach. Thus, the objective of this study is to develop a model using ANN approach and compare the results with the previously developed GLMM model. As the response variables are continuous in nature, Generalized Regression Neural Network (GRNN) approach was adopted to model the data. To compare the model fit, measures such as root mean square error (RMSE), absolute mean error (AME) and correlation coefficient (R) were used. The measures indicate the GRNN model fits the data better than the GLMM model.

18. Dimension of linear models

Høskuldsson, Agnar

1996-01-01

Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....... of these criteria are widely used ones, while the remaining four are ones derived from the H-principle of mathematical modeling. Many examples from practice show that the criteria derived from the H-principle function better than the known and popular criteria for the number of components. We shall briefly review...

19. Non linear viscoelastic models

Agerkvist, Finn T.

2011-01-01

Viscoelastic eects are often present in loudspeaker suspensions, this can be seen in the displacement transfer function which often shows a frequency dependent value below the resonance frequency. In this paper nonlinear versions of the standard linear solid model (SLS) are investigated....... The simulations show that the nonlinear version of the Maxwell SLS model can result in a time dependent small signal stiness while the Kelvin Voight version does not....

20. Sparse Linear Identifiable Multivariate Modeling

Henao, Ricardo; Winther, Ole

2011-01-01

and bench-marked on artificial and real biological data sets. SLIM is closest in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian network structure learning and model comparison. Experimentally, SLIM performs equally well or better than LiNGAM with comparable......In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...

1. Reproducibility and accuracy of linear measurements on dental models derived from cone-beam computed tomography compared with digital dental casts

Waard, O. de; Rangel, F.A.; Fudalej, P.S.; Bronkhorst, E.M.; Kuijpers-Jagtman, A.M.; Breuning, K.H.

2014-01-01

INTRODUCTION: The aim of this study was to determine the reproducibility and accuracy of linear measurements on 2 types of dental models derived from cone-beam computed tomography (CBCT) scans: CBCT images, and Anatomodels (InVivoDental, San Jose, Calif); these were compared with digital models

2. A primer on linear models

Monahan, John F

2008-01-01

Preface Examples of the General Linear Model Introduction One-Sample Problem Simple Linear Regression Multiple Regression One-Way ANOVA First Discussion The Two-Way Nested Model Two-Way Crossed Model Analysis of Covariance Autoregression Discussion The Linear Least Squares Problem The Normal Equations The Geometry of Least Squares Reparameterization Gram-Schmidt Orthonormalization Estimability and Least Squares Estimators Assumptions for the Linear Mean Model Confounding, Identifiability, and Estimability Estimability and Least Squares Estimators F

3. Dynamic Linear Models with R

Campagnoli, Patrizia; Petris, Giovanni

2009-01-01

State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.

4. Multivariate generalized linear mixed models using R

Berridge, Damon Mark

2011-01-01

Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R. A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model...

5. Introduction to generalized linear models

Dobson, Annette J

2008-01-01

Introduction Background Scope Notation Distributions Related to the Normal Distribution Quadratic Forms Estimation Model Fitting Introduction Examples Some Principles of Statistical Modeling Notation and Coding for Explanatory Variables Exponential Family and Generalized Linear Models Introduction Exponential Family of Distributions Properties of Distributions in the Exponential Family Generalized Linear Models Examples Estimation Introduction Example: Failure Times for Pressure Vessels Maximum Likelihood Estimation Poisson Regression Example Inference Introduction Sampling Distribution for Score Statistics Taylor Series Approximations Sampling Distribution for MLEs Log-Likelihood Ratio Statistic Sampling Distribution for the Deviance Hypothesis Testing Normal Linear Models Introduction Basic Results Multiple Linear Regression Analysis of Variance Analysis of Covariance General Linear Models Binary Variables and Logistic Regression Probability Distributions ...

6. (Non) linear regression modelling

Cizek, P.; Gentle, J.E.; Hardle, W.K.; Mori, Y.

2012-01-01

We will study causal relationships of a known form between random variables. Given a model, we distinguish one or more dependent (endogenous) variables Y = (Y1,…,Yl), l ∈ N, which are explained by a model, and independent (exogenous, explanatory) variables X = (X1,…,Xp),p ∈ N, which explain or

7. Explorative methods in linear models

Høskuldsson, Agnar

2004-01-01

The author has developed the H-method of mathematical modeling that builds up the model by parts, where each part is optimized with respect to prediction. Besides providing with better predictions than traditional methods, these methods provide with graphic procedures for analyzing different feat...... features in data. These graphic methods extend the well-known methods and results of Principal Component Analysis to any linear model. Here the graphic procedures are applied to linear regression and Ridge Regression....

8. Linear pneumatic motors – a comparative study

Deaconescu Tudor

2017-01-01

Full Text Available The paper presents a comparative study of the performance of single-acting cylinders, diaphragm cylinders and pneumatic muscles, and offers users information that allows the selection of an optimum technical solution. Such a study was necessary, in view of the numerous papers on pneumatic muscle applications found in literature, that assert the superiority of pneumatic muscles over other pneumatic linear motors in relation to quantities like dimensions, mass, developed force or energy-to-mass ratios, however without offering concrete data.

9. Mapping the annual exceedance frequencies of the PM10 air quality standard - Comparing kriging to a generalized linear spatial model

Khuluse, S

2013-11-01

Full Text Available . Monestiez P., Dubroca L., Bonnin E., Durbec J.-P., Guinet C. (2004). Comparison of model based geostatistical methods in ecology: Application to fin whale distribution in northwestern Mediterranean sea. In proceedings of Geostatistics Banff, Leuangthong...

10. The importance of statistical modelling in clinical research : Comparing multidimensional Rasch-, structural equation and linear regression models for analyzing the depression of relatives of psychiatric patients.

Alexandrowicz, Rainer W; Jahn, Rebecca; Friedrich, Fabian; Unger, Anne

2016-06-01

Various studies have shown that caregiving relatives of schizophrenic patients are at risk of suffering from depression. These studies differ with respect to the applied statistical methods, which could influence the findings. Therefore, the present study analyzes to which extent different methods may cause differing results. The present study contrasts by means of one data set the results of three different modelling approaches, Rasch Modelling (RM), Structural Equation Modelling (SEM), and Linear Regression Modelling (LRM). The results of the three models varied considerably, reflecting the different assumptions of the respective models. Latent trait models (i. e., RM and SEM) generally provide more convincing results by correcting for measurement error and the RM specifically proves superior for it treats ordered categorical data most adequately.

11. Generalized, Linear, and Mixed Models

McCulloch, Charles E; Neuhaus, John M

2011-01-01

An accessible and self-contained introduction to statistical models-now in a modernized new editionGeneralized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed m

12. Application of Hierarchical Linear Models/Linear Mixed-Effects Models in School Effectiveness Research

Ker, H. W.

2014-01-01

Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…

13. Parameterized Linear Longitudinal Airship Model

Kulczycki, Eric; Elfes, Alberto; Bayard, David; Quadrelli, Marco; Johnson, Joseph

2010-01-01

A parameterized linear mathematical model of the longitudinal dynamics of an airship is undergoing development. This model is intended to be used in designing control systems for future airships that would operate in the atmospheres of Earth and remote planets. Heretofore, the development of linearized models of the longitudinal dynamics of airships has been costly in that it has been necessary to perform extensive flight testing and to use system-identification techniques to construct models that fit the flight-test data. The present model is a generic one that can be relatively easily specialized to approximate the dynamics of specific airships at specific operating points, without need for further system identification, and with significantly less flight testing. The approach taken in the present development is to merge the linearized dynamical equations of an airship with techniques for estimation of aircraft stability derivatives, and to thereby make it possible to construct a linearized dynamical model of the longitudinal dynamics of a specific airship from geometric and aerodynamic data pertaining to that airship. (It is also planned to develop a model of the lateral dynamics by use of the same methods.) All of the aerodynamic data needed to construct the model of a specific airship can be obtained from wind-tunnel testing and computational fluid dynamics

14. Multitemporal Modelling of Socio-Economic Wildfire Drivers in Central Spain between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning Algorithms.

Vilar, Lara; Gómez, Israel; Martínez-Vega, Javier; Echavarría, Pilar; Riaño, David; Martín, M Pilar

2016-01-01

The socio-economic factors are of key importance during all phases of wildfire management that include prevention, suppression and restoration. However, modeling these factors, at the proper spatial and temporal scale to understand fire regimes is still challenging. This study analyses socio-economic drivers of wildfire occurrence in central Spain. This site represents a good example of how human activities play a key role over wildfires in the European Mediterranean basin. Generalized Linear Models (GLM) and machine learning Maximum Entropy models (Maxent) predicted wildfire occurrence in the 1980s and also in the 2000s to identify changes between each period in the socio-economic drivers affecting wildfire occurrence. GLM base their estimation on wildfire presence-absence observations whereas Maxent on wildfire presence-only. According to indicators like sensitivity or commission error Maxent outperformed GLM in both periods. It achieved a sensitivity of 38.9% and a commission error of 43.9% for the 1980s, and 67.3% and 17.9% for the 2000s. Instead, GLM obtained 23.33, 64.97, 9.41 and 18.34%, respectively. However GLM performed steadier than Maxent in terms of the overall fit. Both models explained wildfires from predictors such as population density and Wildland Urban Interface (WUI), but differed in their relative contribution. As a result of the urban sprawl and an abandonment of rural areas, predictors like WUI and distance to roads increased their contribution to both models in the 2000s, whereas Forest-Grassland Interface (FGI) influence decreased. This study demonstrates that human component can be modelled with a spatio-temporal dimension to integrate it into wildfire risk assessment.

15. Decomposable log-linear models

Eriksen, Poul Svante

can be characterized by a structured set of conditional independencies between some variables given some other variables. We term the new model class decomposable log-linear models, which is illustrated to be a much richer class than decomposable graphical models.It covers a wide range of non...... The present paper considers discrete probability models with exact computational properties. In relation to contingency tables this means closed form expressions of the maksimum likelihood estimate and its distribution. The model class includes what is known as decomposable graphicalmodels, which......-hierarchical models, models with structural zeroes, models described by quasi independence and models for level merging. Also, they have a very natural interpretation as they may be formulated by a structured set of conditional independencies between two events given some other event. In relation to contingency...

16. Linear and Generalized Linear Mixed Models and Their Applications

Jiang, Jiming

2007-01-01

This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models, and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it has included recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested

17. Multicollinearity in hierarchical linear models.

Yu, Han; Jiang, Shanhe; Land, Kenneth C

2015-09-01

This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model. Copyright © 2015 Elsevier Inc. All rights reserved.

18. Modelling Loudspeaker Non-Linearities

Agerkvist, Finn T.

2007-01-01

This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...

19. Multivariate covariance generalized linear models

Bonat, W. H.; Jørgensen, Bent

2016-01-01

are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...

20. Modelling point patterns with linear structures

Møller, Jesper; Rasmussen, Jakob Gulddahl

2009-01-01

processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....

1. Modelling point patterns with linear structures

Møller, Jesper; Rasmussen, Jakob Gulddahl

processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....

2. Matrix algebra for linear models

Gruber, Marvin H J

2013-01-01

Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f

3. Non-linear Loudspeaker Unit Modelling

Pedersen, Bo Rohde; Agerkvist, Finn T.

2008-01-01

Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

4. Nonabelian Gauged Linear Sigma Model

Yongbin RUAN

2017-01-01

The gauged linear sigma model (GLSM for short) is a 2d quantum field theory introduced by Witten twenty years ago.Since then,it has been investigated extensively in physics by Hori and others.Recently,an algebro-geometric theory (for both abelian and nonabelian GLSMs) was developed by the author and his collaborators so that he can start to rigorously compute its invariants and check against physical predications.The abelian GLSM was relatively better understood and is the focus of current mathematical investigation.In this article,the author would like to look over the horizon and consider the nonabelian GLSM.The nonabelian case possesses some new features unavailable to the abelian GLSM.To aid the future mathematical development,the author surveys some of the key problems inspired by physics in the nonabelian GLSM.

5. From linear to generalized linear mixed models: A case study in repeated measures

Compared to traditional linear mixed models, generalized linear mixed models (GLMMs) can offer better correspondence between response variables and explanatory models, yielding more efficient estimates and tests in the analysis of data from designed experiments. Using proportion data from a designed...

6. From spiking neuron models to linear-nonlinear models.

Ostojic, Srdjan; Brunel, Nicolas

2011-01-20

Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.

7. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.

Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A

2017-02-01

This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r  =  0.71-0.88, RMSE: 1.11-1.61 METs; p  >  0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r  =  0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r  =  0.88, RMSE: 1.10-1.11 METs; p  >  0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r  =  0.88, RMSE: 1.12 METs. Linear models-correlations: r  =  0.86, RMSE: 1.18-1.19 METs; p  linear models for the wrist-worn accelerometers (ANN-correlations: r  =  0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r  =  0.71-0.73, RMSE: 1.55-1.61 METs; p  models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh

8. Nonlinear Modeling by Assembling Piecewise Linear Models

Yao, Weigang; Liou, Meng-Sing

2013-01-01

To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.

9. Linear Logistic Test Modeling with R

Baghaei, Purya; Kubinger, Klaus D.

2015-01-01

The present paper gives a general introduction to the linear logistic test model (Fischer, 1973), an extension of the Rasch model with linear constraints on item parameters, along with eRm (an R package to estimate different types of Rasch models; Mair, Hatzinger, & Mair, 2014) functions to estimate the model and interpret its parameters. The…

10. Experimental study of sector and linear array ultrasound accuracy and the influence of navigated 3D-reconstruction as compared to MRI in a brain tumor model.

Siekmann, Max; Lothes, Thomas; König, Ralph; Wirtz, Christian Rainer; Coburger, Jan

2018-03-01

Currently, intraoperative ultrasound in brain tumor surgery is a rapidly propagating option in imaging technology. We examined the accuracy and resolution limits of different ultrasound probes and the influence of 3D-reconstruction in a phantom and compared these results to MRI in an intraoperative setting (iMRI). An agarose gel phantom with predefined gel targets was examined with iMRI, a sector (SUS) and a linear (LUS) array probe with two-dimensional images. Additionally, 3D-reconstructed sweeps in perpendicular directions were made of every target with both probes, resulting in 392 measurements. Statistical calculations were performed, and comparative boxplots were generated. Every measurement of iMRI and LUS was more precise than SUS, while there was no apparent difference in height of iMRI and 3D-reconstructed LUS. Measurements with 3D-reconstructed LUS were always more accurate than in 2D-LUS, while 3D-reconstruction of SUS showed nearly no differences to 2D-SUS in some measurements. We found correlations of 3D-reconstructed SUS and LUS length and width measurements with 2D results in the same image orientation. LUS provides an accuracy and resolution comparable to iMRI, while SUS is less exact than LUS and iMRI. 3D-reconstruction showed the potential to distinctly improve accuracy and resolution of ultrasound images, although there is a strong correlation with the sweep direction during data acquisition.

11. Core seismic behaviour: linear and non-linear models

Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.

1981-08-01

The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here

12. Linear support vector regression and partial least squares chemometric models for determination of Hydrochlorothiazide and Benazepril hydrochloride in presence of related impurities: A comparative study

Naguib, Ibrahim A.; Abdelaleem, Eglal A.; Draz, Mohammed E.; Zaazaa, Hala E.

2014-09-01

Partial least squares regression (PLSR) and support vector regression (SVR) are two popular chemometric models that are being subjected to a comparative study in the presented work. The comparison shows their characteristics via applying them to analyze Hydrochlorothiazide (HCZ) and Benazepril hydrochloride (BZ) in presence of HCZ impurities; Chlorothiazide (CT) and Salamide (DSA) as a case study. The analysis results prove to be valid for analysis of the two active ingredients in raw materials and pharmaceutical dosage form through handling UV spectral data in range (220-350 nm). For proper analysis a 4 factor 4 level experimental design was established resulting in a training set consisting of 16 mixtures containing different ratios of interfering species. An independent test set consisting of 8 mixtures was used to validate the prediction ability of the suggested models. The results presented indicate the ability of mentioned multivariate calibration models to analyze HCZ and BZ in presence of HCZ impurities CT and DSA with high selectivity and accuracy of mean percentage recoveries of (101.01 ± 0.80) and (100.01 ± 0.87) for HCZ and BZ respectively using PLSR model and of (99.78 ± 0.80) and (99.85 ± 1.08) for HCZ and BZ respectively using SVR model. The analysis results of the dosage form were statistically compared to the reference HPLC method with no significant differences regarding accuracy and precision. SVR model gives more accurate results compared to PLSR model and show high generalization ability, however, PLSR still keeps the advantage of being fast to optimize and implement.

13. Composite Linear Models | Division of Cancer Prevention

By Stuart G. Baker The composite linear models software is a matrix approach to compute maximum likelihood estimates and asymptotic standard errors for models for incomplete multinomial data. It implements the method described in Baker SG. Composite linear models for incomplete multinomial data. Statistics in Medicine 1994;13:609-622. The software includes a library of thirty

14. Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models.

de Jesus, Karla; Ayala, Helon V H; de Jesus, Kelly; Coelho, Leandro Dos S; Medeiros, Alexandre I A; Abraldes, José A; Vaz, Mário A P; Fernandes, Ricardo J; Vilas-Boas, João Paulo

2018-03-01

Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances.

15. Actuarial statistics with generalized linear mixed models

Antonio, K.; Beirlant, J.

2007-01-01

Over the last decade the use of generalized linear models (GLMs) in actuarial statistics has received a lot of attention, starting from the actuarial illustrations in the standard text by McCullagh and Nelder [McCullagh, P., Nelder, J.A., 1989. Generalized linear models. In: Monographs on Statistics

16. Spaghetti Bridges: Modeling Linear Relationships

Kroon, Cindy D.

2016-01-01

Mathematics and science are natural partners. One of many examples of this partnership occurs when scientific observations are made, thus providing data that can be used for mathematical modeling. Developing mathematical relationships elucidates such scientific principles. This activity describes a data-collection activity in which students employ…

17. Linear accuracy and reliability of volume data sets acquired by two CBCT-devices and an MSCT using virtual models : A comparative in-vitro study

Wikner, Johannes; Hanken, Henning; Eulenburg, Christine; Heiland, Max; Groebe, Alexander; Assaf, Alexandre Thomas; Riecke, Bjoern; Friedrich, Reinhard E.

2016-01-01

Objective. To discriminate clinically relevant aberrance, the accuracy of linear measurements in three-dimensional (3D) reconstructed datasets was investigated. Materials and methods. Three partly edentulous human skulls were examined. Landmarks were defined prior to acquisition. Two CBCT-scanners

18. Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.

2016-02-01

In the current research, the muscle equivalent linear damping coefficient which is introduced as the force-velocity relation in a muscle model and the corresponding time constant are investigated. In order to reach this goal, a 1D skeletal muscle model was used. Two characterizations of this model using a linear force-stiffness relationship (Hill-type model) and a nonlinear one have been implemented. The OpenSim platform was used for verification of the model. The isometric activation has been used for the simulation. The equivalent linear damping and the time constant of each model were extracted by using the results obtained from the simulation. The results provide a better insight into the characteristics of each model. It is found that the nonlinear models had a response rate closer to the reality compared to the Hill-type models.

19. Non-linear finite element modeling

Mikkelsen, Lars Pilgaard

The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...

20. Correlations and Non-Linear Probability Models

Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

2014-01-01

the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

1. Extended Linear Models with Gaussian Priors

Quinonero, Joaquin

2002-01-01

In extended linear models the input space is projected onto a feature space by means of an arbitrary non-linear transformation. A linear model is then applied to the feature space to construct the model output. The dimension of the feature space can be very large, or even infinite, giving the model...... a very big flexibility. Support Vector Machines (SVM's) and Gaussian processes are two examples of such models. In this technical report I present a model in which the dimension of the feature space remains finite, and where a Bayesian approach is used to train the model with Gaussian priors...... on the parameters. The Relevance Vector Machine, introduced by Tipping, is a particular case of such a model. I give the detailed derivations of the expectation-maximisation (EM) algorithm used in the training. These derivations are not found in the literature, and might be helpful for newcomers....

2. Linear mixed models for longitudinal data

Molenberghs, Geert

2000-01-01

This paperback edition is a reprint of the 2000 edition. This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Several variations to the conventional linear mixed model are discussed (a heterogeity model, conditional linear mixed models). This book will be of interest to applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematically rigorous. Most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated. However, some other commerc...

3. Linear mixed models in sensometrics

Kuznetsova, Alexandra

quality of decision making in Danish as well as international food companies and other companies using the same methods. The two open-source R packages lmerTest and SensMixed implement and support the methodological developments in the research papers as well as the ANOVA modelling part of the Consumer...... an open-source software tool ConsumerCheck was developed in this project and now is available for everyone. will represent a major step forward when concerns this important problem in modern consumer driven product development. Standard statistical software packages can be used for some of the purposes......Today’s companies and researchers gather large amounts of data of different kind. In consumer studies the objective is the collection of the data to better understand consumer acceptance of products. In such studies a number of persons (generally not trained) are selected in order to score products...

4. Comparative study of growth and linear body measurements in Anak ...

The study was designed to compare the performance of two different breeds of broilers (Anak and Hubbard) using body weight and body linear measurements. Data on a total of 200 (100 each) Anak and Hubbard broiler breeds were collected weekly and the experiment lasted for 8 weeks. The parameters investigated ...

5. Linear causal modeling with structural equations

Mulaik, Stanley A

2009-01-01

Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal

6. Statistical Tests for Mixed Linear Models

Khuri, André I; Sinha, Bimal K

2011-01-01

An advanced discussion of linear models with mixed or random effects. In recent years a breakthrough has occurred in our ability to draw inferences from exact and optimum tests of variance component models, generating much research activity that relies on linear models with mixed and random effects. This volume covers the most important research of the past decade as well as the latest developments in hypothesis testing. It compiles all currently available results in the area of exact and optimum tests for variance component models and offers the only comprehensive treatment for these models a

7. Matrix Tricks for Linear Statistical Models

Puntanen, Simo; Styan, George PH

2011-01-01

In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple "tricks" which simplify and clarify the treatment of a problem - both for the student and

8. Linear models in the mathematics of uncertainty

Mordeson, John N; Clark, Terry D; Pham, Alex; Redmond, Michael A

2013-01-01

The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data  is difficult to measure and an assumption of randomness and/or statistical validity is questionable.  We apply our methods to real world issues in international relations such as  nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and fail...

9. Generalized Linear Models in Vehicle Insurance

Silvie Kafková

2014-01-01

Full Text Available Actuaries in insurance companies try to find the best model for an estimation of insurance premium. It depends on many risk factors, e.g. the car characteristics and the profile of the driver. In this paper, an analysis of the portfolio of vehicle insurance data using a generalized linear model (GLM is performed. The main advantage of the approach presented in this article is that the GLMs are not limited by inflexible preconditions. Our aim is to predict the relation of annual claim frequency on given risk factors. Based on a large real-world sample of data from 57 410 vehicles, the present study proposed a classification analysis approach that addresses the selection of predictor variables. The models with different predictor variables are compared by analysis of deviance and Akaike information criterion (AIC. Based on this comparison, the model for the best estimate of annual claim frequency is chosen. All statistical calculations are computed in R environment, which contains stats package with the function for the estimation of parameters of GLM and the function for analysis of deviation.

10. Modeling digital switching circuits with linear algebra

Thornton, Mitchell A

2014-01-01

Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transf

11. Updating Linear Schedules with Lowest Cost: a Linear Programming Model

Biruk, Sławomir; Jaśkowski, Piotr; Czarnigowska, Agata

2017-10-01

Many civil engineering projects involve sets of tasks repeated in a predefined sequence in a number of work areas along a particular route. A useful graphical representation of schedules of such projects is time-distance diagrams that clearly show what process is conducted at a particular point of time and in particular location. With repetitive tasks, the quality of project performance is conditioned by the ability of the planner to optimize workflow by synchronizing the works and resources, which usually means that resources are planned to be continuously utilized. However, construction processes are prone to risks, and a fully synchronized schedule may expire if a disturbance (bad weather, machine failure etc.) affects even one task. In such cases, works need to be rescheduled, and another optimal schedule should be built for the changed circumstances. This typically means that, to meet the fixed completion date, durations of operations have to be reduced. A number of measures are possible to achieve such reduction: working overtime, employing more resources or relocating resources from less to more critical tasks, but they all come at a considerable cost and affect the whole project. The paper investigates the problem of selecting the measures that reduce durations of tasks of a linear project so that the cost of these measures is kept to the minimum and proposes an algorithm that could be applied to find optimal solutions as the need to reschedule arises. Considering that civil engineering projects, such as road building, usually involve less process types than construction projects, the complexity of scheduling problems is lower, and precise optimization algorithms can be applied. Therefore, the authors put forward a linear programming model of the problem and illustrate its principle of operation with an example.

12. Applicability of linear and non-linear potential flow models on a Wavestar float

Bozonnet, Pauline; Dupin, Victor; Tona, Paolino

2017-01-01

as a model based on non-linear potential flow theory and weakscatterer hypothesis are successively considered. Simple tests, such as dip tests, decay tests and captive tests enable to highlight the improvements obtained with the introduction of nonlinearities. Float motion under wave actions and without...... control action, limited to small amplitude motion with a single float, is well predicted by the numerical models, including the linear one. Still, float velocity is better predicted by accounting for non-linear hydrostatic and Froude-Krylov forces.......Numerical models based on potential flow theory, including different types of nonlinearities are compared and validated against experimental data for the Wavestar wave energy converter technology. Exact resolution of the rotational motion, non-linear hydrostatic and Froude-Krylov forces as well...

13. A linear model of ductile plastic damage

Lemaitre, J.

1983-01-01

A three-dimensional model of isotropic ductile plastic damage based on a continuum damage variable on the effective stress concept and on thermodynamics is derived. As shown by experiments on several metals and alloys, the model, integrated in the case of proportional loading, is linear with respect to the accumulated plastic strain and shows a large influence of stress triaxiality [fr

14. Extending the linear model with R generalized linear, mixed effects and nonparametric regression models

Faraway, Julian J

2005-01-01

Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...

15. Evaluating the double Poisson generalized linear model.

Zou, Yaotian; Geedipally, Srinivas Reddy; Lord, Dominique

2013-10-01

The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been investigated and applied since its first introduction two decades ago. The hurdle for applying the DP is related to its normalizing constant (or multiplicative constant) which is not available in closed form. This study proposed a new method to approximate the normalizing constant of the DP with high accuracy and reliability. The DP GLM and COM-Poisson GLM were developed using two observed over-dispersed datasets and one observed under-dispersed dataset. The modeling results indicate that the DP GLM with its normalizing constant approximated by the new method can handle crash data characterized by over- and under-dispersion. Its performance is comparable to the COM-Poisson GLM in terms of goodness-of-fit (GOF), although COM-Poisson GLM provides a slightly better fit. For the over-dispersed data, the DP GLM performs similar to the NB GLM. Considering the fact that the DP GLM can be easily estimated with inexpensive computation and that it is simpler to interpret coefficients, it offers a flexible and efficient alternative for researchers to model count data. Copyright © 2013 Elsevier Ltd. All rights reserved.

16. Comparative analysis of linear motor geometries for Stirling coolers

R, Rajesh V.; Kuzhiveli, Biju T.

2017-12-01

Compared to rotary motor driven Stirling coolers, linear motor coolers are characterized by small volume and long life, making them more suitable for space and military applications. The motor design and operational characteristics have a direct effect on the operation of the cooler. In this perspective, ample scope exists in understanding the behavioural description of linear motor systems. In the present work, the authors compare and analyze different moving magnet linear motor geometries to finalize the most favourable one for Stirling coolers. The required axial force in the linear motors is generated by the interaction of magnetic fields of a current carrying coil and that of a permanent magnet. The compact size, commercial availability of permanent magnets and low weight requirement of the system are quite a few constraints for the design. The finite element analysis performed using Maxwell software serves as the basic tool to analyze the magnet movement, flux distribution in the air gap and the magnetic saturation levels on the core. A number of material combinations are investigated for core before finalizing the design. The effect of varying the core geometry on the flux produced in the air gap is also analyzed. The electromagnetic analysis of the motor indicates that the permanent magnet height ought to be taken in such a way that it is under the influence of electromagnetic field of current carrying coil as well as the outer core in the balanced position. This is necessary so that sufficient amount of thrust force is developed by efficient utilisation of the air gap flux density. Also, the outer core ends need to be designed to facilitate enough room for the magnet movement under the operating conditions.

17. Ground Motion Models for Future Linear Colliders

Seryi, Andrei

2000-01-01

Optimization of the parameters of a future linear collider requires comprehensive models of ground motion. Both general models of ground motion and specific models of the particular site and local conditions are essential. Existing models are not completely adequate, either because they are too general, or because they omit important peculiarities of ground motion. The model considered in this paper is based on recent ground motion measurements performed at SLAC and at other accelerator laboratories, as well as on historical data. The issues to be studied for the models to become more predictive are also discussed

18. Forecasting the EMU inflation rate: Linear econometric vs. non-linear computational models using genetic neural fuzzy systems

Kooths, Stefan; Mitze, Timo Friedel; Ringhut, Eric

2004-01-01

This paper compares the predictive power of linear econometric and non-linear computational models for forecasting the inflation rate in the European Monetary Union (EMU). Various models of both types are developed using different monetary and real activity indicators. They are compared according...

19. Modelling female fertility traits in beef cattle using linear and non-linear models.

Naya, H; Peñagaricano, F; Urioste, J I

2017-06-01

Female fertility traits are key components of the profitability of beef cattle production. However, these traits are difficult and expensive to measure, particularly under extensive pastoral conditions, and consequently, fertility records are in general scarce and somehow incomplete. Moreover, fertility traits are usually dominated by the effects of herd-year environment, and it is generally assumed that relatively small margins are kept for genetic improvement. New ways of modelling genetic variation in these traits are needed. Inspired in the methodological developments made by Prof. Daniel Gianola and co-workers, we assayed linear (Gaussian), Poisson, probit (threshold), censored Poisson and censored Gaussian models to three different kinds of endpoints, namely calving success (CS), number of days from first calving (CD) and number of failed oestrus (FE). For models involving FE and CS, non-linear models overperformed their linear counterparts. For models derived from CD, linear versions displayed better adjustment than the non-linear counterparts. Non-linear models showed consistently higher estimates of heritability and repeatability in all cases (h 2  linear models; h 2  > 0.23 and r > 0.24, for non-linear models). While additive and permanent environment effects showed highly favourable correlations between all models (>0.789), consistency in selecting the 10% best sires showed important differences, mainly amongst the considered endpoints (FE, CS and CD). In consequence, endpoints should be considered as modelling different underlying genetic effects, with linear models more appropriate to describe CD and non-linear models better for FE and CS. © 2017 Blackwell Verlag GmbH.

20. Optimal designs for linear mixture models

Mendieta, E.J.; Linssen, H.N.; Doornbos, R.

1975-01-01

In a recent paper Snee and Marquardt [8] considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of this

1. Optimal designs for linear mixture models

Mendieta, E.J.; Linssen, H.N.; Doornbos, R.

1975-01-01

In a recent paper Snee and Marquardt (1974) considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of

2. Linear factor copula models and their properties

Krupskii, Pavel; Genton, Marc G.

2018-01-01

We consider a special case of factor copula models with additive common factors and independent components. These models are flexible and parsimonious with O(d) parameters where d is the dimension. The linear structure allows one to obtain closed form expressions for some copulas and their extreme‐value limits. These copulas can be used to model data with strong tail dependencies, such as extreme data. We study the dependence properties of these linear factor copula models and derive the corresponding limiting extreme‐value copulas with a factor structure. We show how parameter estimates can be obtained for these copulas and apply one of these copulas to analyse a financial data set.

3. Linear factor copula models and their properties

Krupskii, Pavel

2018-04-25

We consider a special case of factor copula models with additive common factors and independent components. These models are flexible and parsimonious with O(d) parameters where d is the dimension. The linear structure allows one to obtain closed form expressions for some copulas and their extreme‐value limits. These copulas can be used to model data with strong tail dependencies, such as extreme data. We study the dependence properties of these linear factor copula models and derive the corresponding limiting extreme‐value copulas with a factor structure. We show how parameter estimates can be obtained for these copulas and apply one of these copulas to analyse a financial data set.

4. Diagnostics for Linear Models With Functional Responses

Xu, Hongquan; Shen, Qing

2005-01-01

Linear models where the response is a function and the predictors are vectors are useful in analyzing data from designed experiments and other situations with functional observations. Residual analysis and diagnostics are considered for such models. Studentized residuals are defined and their properties are studied. Chi-square quantile-quantile plots are proposed to check the assumption of Gaussian error process and outliers. Jackknife residuals and an associated test are proposed to det...

5. Performances of estimators of linear auto-correlated error model ...

The performances of five estimators of linear models with autocorrelated disturbance terms are compared when the independent variable is exponential. The results reveal that for both small and large samples, the Ordinary Least Squares (OLS) compares favourably with the Generalized least Squares (GLS) estimators in ...

6. Comparison between linear quadratic and early time dose models

Chougule, A.A.; Supe, S.J.

1993-01-01

During the 70s, much interest was focused on fractionation in radiotherapy with the aim of improving tumor control rate without producing unacceptable normal tissue damage. To compare the radiobiological effectiveness of various fractionation schedules, empirical formulae such as Nominal Standard Dose, Time Dose Factor, Cumulative Radiation Effect and Tumour Significant Dose, were introduced and were used despite many shortcomings. It has been claimed that a recent linear quadratic model is able to predict the radiobiological responses of tumours as well as normal tissues more accurately. We compared Time Dose Factor and Tumour Significant Dose models with the linear quadratic model for tumour regression in patients with carcinomas of the cervix. It was observed that the prediction of tumour regression estimated by the Tumour Significant Dose and Time Dose factor concepts varied by 1.6% from that of the linear quadratic model prediction. In view of the lack of knowledge of the precise values of the parameters of the linear quadratic model, it should be applied with caution. One can continue to use the Time Dose Factor concept which has been in use for more than a decade as its results are within ±2% as compared to that predicted by the linear quadratic model. (author). 11 refs., 3 figs., 4 tabs

7. [From clinical judgment to linear regression model.

Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O

2013-01-01

When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.

8. Testing Parametric versus Semiparametric Modelling in Generalized Linear Models

Härdle, W.K.; Mammen, E.; Müller, M.D.

1996-01-01

We consider a generalized partially linear model E(Y|X,T) = G{X'b + m(T)} where G is a known function, b is an unknown parameter vector, and m is an unknown function.The paper introduces a test statistic which allows to decide between a parametric and a semiparametric model: (i) m is linear, i.e.

9. Modeling of Volatility with Non-linear Time Series Model

Kim Song Yon; Kim Mun Chol

2013-01-01

In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.

10. Thresholding projection estimators in functional linear models

Cardot, Hervé; Johannes, Jan

2010-01-01

We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits to get easily mean squ...

11. Decomposed Implicit Models of Piecewise - Linear Networks

J. Brzobohaty

1992-05-01

Full Text Available The general matrix form of the implicit description of a piecewise-linear (PWL network and the symbolic block diagram of the corresponding circuit model are proposed. Their decomposed forms enable us to determine quite separately the existence of the individual breakpoints of the resultant PWL characteristic and their coordinates using independent network parameters. For the two-diode and three-diode cases all the attainable types of the PWL characteristic are introduced.

12. Stochastic linear programming models, theory, and computation

Kall, Peter

2011-01-01

This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...

13. A Non-linear Stochastic Model for an Office Building with Air Infiltration

2015-01-01

This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model...

14. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization

Li, Zukui; Ding, Ran; Floudas, Christodoulos A.

2011-01-01

Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263

15. Performances Of Estimators Of Linear Models With Autocorrelated ...

The performances of five estimators of linear models with Autocorrelated error terms are compared when the independent variable is autoregressive. The results reveal that the properties of the estimators when the sample size is finite is quite similar to the properties of the estimators when the sample size is infinite although ...

16. Linear accelerator modeling: development and application

Jameson, R.A.; Jule, W.D.

1977-01-01

Most of the parameters of a modern linear accelerator can be selected by simulating the desired machine characteristics in a computer code and observing how the parameters affect the beam dynamics. The code PARMILA is used at LAMPF for the low-energy portion of linacs. Collections of particles can be traced with a free choice of input distributions in six-dimensional phase space. Random errors are often included in order to study the tolerances which should be imposed during manufacture or in operation. An outline is given of the modifications made to the model, the results of experiments which indicate the validity of the model, and the use of the model to optimize the longitudinal tuning of the Alvarez linac

17. Running vacuum cosmological models: linear scalar perturbations

Perico, E.L.D. [Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP (Brazil); Tamayo, D.A., E-mail: elduartep@usp.br, E-mail: tamayo@if.usp.br [Departamento de Astronomia, Universidade de São Paulo, Rua do Matão 1226, CEP 05508-900, São Paulo, SP (Brazil)

2017-08-01

In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ( H {sup 2}) or Λ( R ). Such models assume an equation of state for the vacuum given by P-bar {sub Λ} = - ρ-bar {sub Λ}, relating its background pressure P-bar {sub Λ} with its mean energy density ρ-bar {sub Λ} ≡ Λ/8π G . This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely ρ-bar {sub Λ} = Σ {sub i} ρ-bar {sub Λ} {sub i} . Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ( H {sup 2}) scenario the vacuum is coupled with every matter component, whereas the Λ( R ) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.

18. Linear Parametric Model Checking of Timed Automata

Hune, Tohmas Seidelin; Romijn, Judi; Stoelinga, Mariëlle

2001-01-01

We present an extension of the model checker Uppaal capable of synthesize linear parameter constraints for the correctness of parametric timed automata. The symbolic representation of the (parametric) state-space is shown to be correct. A second contribution of this paper is the identication...... of a subclass of parametric timed automata (L/U automata), for which the emptiness problem is decidable, contrary to the full class where it is know to be undecidable. Also we present a number of lemmas enabling the verication eort to be reduced for L/U automata in some cases. We illustrate our approach...

19. Aspects of general linear modelling of migration.

Congdon, P

1992-01-01

"This paper investigates the application of general linear modelling principles to analysing migration flows between areas. Particular attention is paid to specifying the form of the regression and error components, and the nature of departures from Poisson randomness. Extensions to take account of spatial and temporal correlation are discussed as well as constrained estimation. The issue of specification bears on the testing of migration theories, and assessing the role migration plays in job and housing markets: the direction and significance of the effects of economic variates on migration depends on the specification of the statistical model. The application is in the context of migration in London and South East England in the 1970s and 1980s." excerpt

20. Model Selection with the Linear Mixed Model for Longitudinal Data

Ryoo, Ji Hoon

2011-01-01

Model building or model selection with linear mixed models (LMMs) is complicated by the presence of both fixed effects and random effects. The fixed effects structure and random effects structure are codependent, so selection of one influences the other. Most presentations of LMM in psychology and education are based on a multilevel or…

1. Modeling patterns in data using linear and related models

Engelhardt, M.E.

1996-06-01

This report considers the use of linear models for analyzing data related to reliability and safety issues of the type usually associated with nuclear power plants. The report discusses some of the general results of linear regression analysis, such as the model assumptions and properties of the estimators of the parameters. The results are motivated with examples of operational data. Results about the important case of a linear regression model with one covariate are covered in detail. This case includes analysis of time trends. The analysis is applied with two different sets of time trend data. Diagnostic procedures and tests for the adequacy of the model are discussed. Some related methods such as weighted regression and nonlinear models are also considered. A discussion of the general linear model is also included. Appendix A gives some basic SAS programs and outputs for some of the analyses discussed in the body of the report. Appendix B is a review of some of the matrix theoretic results which are useful in the development of linear models

2. Electron Model of Linear-Field FFAG

Koscielniak, Shane R

2005-01-01

A fixed-field alternating-gradient accelerator (FFAG) that employs only linear-field elements ushers in a new regime in accelerator design and dynamics. The linear-field machine has the ability to compact an unprecedented range in momenta within a small component aperture. With a tune variation which results from the natural chromaticity, the beam crosses many strong, uncorrec-table, betatron resonances during acceleration. Further, relativistic particles in this machine exhibit a quasi-parabolic time-of-flight that cannot be addressed with a fixed-frequency rf system. This leads to a new concept of bucketless acceleration within a rotation manifold. With a large energy jump per cell, there is possibly strong synchro-betatron coupling. A few-MeV electron model has been proposed to demonstrate the feasibility of these untested acceleration features and to investigate them at length under a wide range of operating conditions. This paper presents a lattice optimized for a 1.3 GHz rf, initial technology choices f...

3. Practical likelihood analysis for spatial generalized linear mixed models

Bonat, W. H.; Ribeiro, Paulo Justiniano

2016-01-01

We investigate an algorithm for maximum likelihood estimation of spatial generalized linear mixed models based on the Laplace approximation. We compare our algorithm with a set of alternative approaches for two datasets from the literature. The Rhizoctonia root rot and the Rongelap are......, respectively, examples of binomial and count datasets modeled by spatial generalized linear mixed models. Our results show that the Laplace approximation provides similar estimates to Markov Chain Monte Carlo likelihood, Monte Carlo expectation maximization, and modified Laplace approximation. Some advantages...... of Laplace approximation include the computation of the maximized log-likelihood value, which can be used for model selection and tests, and the possibility to obtain realistic confidence intervals for model parameters based on profile likelihoods. The Laplace approximation also avoids the tuning...

4. Modelling and measurement of a moving magnet linear compressor performance

Liang, Kun; Stone, Richard; Davies, Gareth; Dadd, Mike; Bailey, Paul

2014-01-01

A novel moving magnet linear compressor with clearance seals and flexure bearings has been designed and constructed. It is suitable for a refrigeration system with a compact heat exchanger, such as would be needed for CPU cooling. The performance of the compressor has been experimentally evaluated with nitrogen and a mathematical model has been developed to evaluate the performance of the linear compressor. The results from the compressor model and the measurements have been compared in terms of cylinder pressure, the ‘P–V’ loop, stroke, mass flow rate and shaft power. The cylinder pressure was not measured directly but was derived from the compressor dynamics and the motor magnetic force characteristics. The comparisons indicate that the compressor model is well validated and can be used to study the performance of this type of compressor, to help with design optimization and the identification of key parameters affecting the system transients. The electrical and thermodynamic losses were also investigated, particularly for the design point (stroke of 13 mm and pressure ratio of 3.0), since a full understanding of these can lead to an increase in compressor efficiency. - Highlights: • Model predictions of the performance of a novel moving magnet linear compressor. • Prototype linear compressor performance measurements using nitrogen. • Reconstruction of P–V loops using a model of the dynamics and electromagnetics. • Close agreement between the model and measurements for the P–V loops. • The design point motor efficiency was 74%, with potential improvements identified

5. Nonlinear price impact from linear models

Patzelt, Felix; Bouchaud, Jean-Philippe

2017-12-01

The impact of trades on asset prices is a crucial aspect of market dynamics for academics, regulators, and practitioners alike. Recently, universal and highly nonlinear master curves were observed for price impacts aggregated on all intra-day scales (Patzelt and Bouchaud 2017 arXiv:1706.04163). Here we investigate how well these curves, their scaling, and the underlying return dynamics are captured by linear ‘propagator’ models. We find that the classification of trades as price-changing versus non-price-changing can explain the price impact nonlinearities and short-term return dynamics to a very high degree. The explanatory power provided by the change indicator in addition to the order sign history increases with increasing tick size. To obtain these results, several long-standing technical issues for model calibration and testing are addressed. We present new spectral estimators for two- and three-point cross-correlations, removing the need for previously used approximations. We also show when calibration is unbiased and how to accurately reveal previously overlooked biases. Therefore, our results contribute significantly to understanding both recent empirical results and the properties of a popular class of impact models.

6. Linear Equating for the NEAT Design: Parameter Substitution Models and Chained Linear Relationship Models

Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.

2009-01-01

This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…

7. Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots

Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.

2013-01-01

Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…

8. Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling

Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

2014-01-01

In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...

9. Comparison of linear and non-linear models for the adsorption of fluoride onto geo-material: limonite.

2015-01-01

The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area.

10. Using Quartile-Quartile Lines as Linear Models

Gordon, Sheldon P.

2015-01-01

This article introduces the notion of the quartile-quartile line as an alternative to the regression line and the median-median line to produce a linear model based on a set of data. It is based on using the first and third quartiles of a set of (x, y) data. Dynamic spreadsheets are used as exploratory tools to compare the different approaches and…

11. Petri Nets as Models of Linear Logic

Engberg, Uffe Henrik; Winskel, Glynn

1990-01-01

The chief purpose of this paper is to appraise the feasibility of Girad's linear logic as a specification language for parallel processes. To this end we propose an interpretation of linear logic in Petri nets, with respect to which we investigate the expressive power of the logic...

12. Artificial Neural Network versus Linear Models Forecasting Doha Stock Market

2017-12-01

The purpose of this study is to determine the instability of Doha stock market and develop forecasting models. Linear time series models are used and compared with a nonlinear Artificial Neural Network (ANN) namely Multilayer Perceptron (MLP) Technique. It aims to establish the best useful model based on daily and monthly data which are collected from Qatar exchange for the period starting from January 2007 to January 2015. Proposed models are for the general index of Qatar stock exchange and also for the usages in other several sectors. With the help of these models, Doha stock market index and other various sectors were predicted. The study was conducted by using various time series techniques to study and analyze data trend in producing appropriate results. After applying several models, such as: Quadratic trend model, double exponential smoothing model, and ARIMA, it was concluded that ARIMA (2,2) was the most suitable linear model for the daily general index. However, ANN model was found to be more accurate than time series models.

13. Effective connectivity between superior temporal gyrus and Heschl's gyrus during white noise listening: linear versus non-linear models.

Hamid, Ka; Yusoff, An; Rahman, Mza; Mohamad, M; Hamid, Aia

2012-04-01

This fMRI study is about modelling the effective connectivity between Heschl's gyrus (HG) and the superior temporal gyrus (STG) in human primary auditory cortices. MATERIALS #ENTITYSTARTX00026; Ten healthy male participants were required to listen to white noise stimuli during functional magnetic resonance imaging (fMRI) scans. Statistical parametric mapping (SPM) was used to generate individual and group brain activation maps. For input region determination, two intrinsic connectivity models comprising bilateral HG and STG were constructed using dynamic causal modelling (DCM). The models were estimated and inferred using DCM while Bayesian Model Selection (BMS) for group studies was used for model comparison and selection. Based on the winning model, six linear and six non-linear causal models were derived and were again estimated, inferred, and compared to obtain a model that best represents the effective connectivity between HG and the STG, balancing accuracy and complexity. Group results indicated significant asymmetrical activation (p(uncorr) Model comparison results showed strong evidence of STG as the input centre. The winning model is preferred by 6 out of 10 participants. The results were supported by BMS results for group studies with the expected posterior probability, r = 0.7830 and exceedance probability, ϕ = 0.9823. One-sample t-tests performed on connection values obtained from the winning model indicated that the valid connections for the winning model are the unidirectional parallel connections from STG to bilateral HG (p model comparison between linear and non-linear models using BMS prefers non-linear connection (r = 0.9160, ϕ = 1.000) from which the connectivity between STG and the ipsi- and contralateral HG is gated by the activity in STG itself. We are able to demonstrate that the effective connectivity between HG and STG while listening to white noise for the respective participants can be explained by a non-linear dynamic causal model with

14. Linear approximation model network and its formation via ...

To overcome the deficiency of `local model network' (LMN) techniques, an alternative `linear approximation model' (LAM) network approach is proposed. Such a network models a nonlinear or practical system with multiple linear models fitted along operating trajectories, where individual models are simply networked ...

15. A penalized framework for distributed lag non-linear models.

Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G

2017-09-01

Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

16. Linear regression crash prediction models : issues and proposed solutions.

2010-05-01

The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...

17. Game Theory and its Relationship with Linear Programming Models ...

Game Theory and its Relationship with Linear Programming Models. ... This paper shows that game theory and linear programming problem are closely related subjects since any computing method devised for ... AJOL African Journals Online.

18. Linear Model for Optimal Distributed Generation Size Predication

Ahmed Al Ameri

2017-01-01

Full Text Available This article presents a linear model predicting optimal size of Distributed Generation (DG that addresses the minimum power loss. This method is based fundamentally on strong coupling between active power and voltage angle as well as between reactive power and voltage magnitudes. This paper proposes simplified method to calculate the total power losses in electrical grid for different distributed generation sizes and locations. The method has been implemented and tested on several IEEE bus test systems. The results show that the proposed method is capable of predicting approximate optimal size of DG when compared with precision calculations. The method that linearizes a complex model showed a good result, which can actually reduce processing time required. The acceptable accuracy with less time and memory required can help the grid operator to assess power system integrated within large-scale distribution generation.

19. NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS

Hasan YILDIZ

2004-03-01

Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.

20. Robust Linear Models for Cis-eQTL Analysis.

Rantalainen, Mattias; Lindgren, Cecilia M; Holmes, Christopher C

2015-01-01

Expression Quantitative Trait Loci (eQTL) analysis enables characterisation of functional genetic variation influencing expression levels of individual genes. In outbread populations, including humans, eQTLs are commonly analysed using the conventional linear model, adjusting for relevant covariates, assuming an allelic dosage model and a Gaussian error term. However, gene expression data generally have noise that induces heavy-tailed errors relative to the Gaussian distribution and often include atypical observations, or outliers. Such departures from modelling assumptions can lead to an increased rate of type II errors (false negatives), and to some extent also type I errors (false positives). Careful model checking can reduce the risk of type-I errors but often not type II errors, since it is generally too time-consuming to carefully check all models with a non-significant effect in large-scale and genome-wide studies. Here we propose the application of a robust linear model for eQTL analysis to reduce adverse effects of deviations from the assumption of Gaussian residuals. We present results from a simulation study as well as results from the analysis of real eQTL data sets. Our findings suggest that in many situations robust models have the potential to provide more reliable eQTL results compared to conventional linear models, particularly in respect to reducing type II errors due to non-Gaussian noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are often noisy and frequently contain atypical observations. Robust statistical models have the potential to provide more reliable results and increased statistical power under non-Gaussian conditions. The results presented here suggest that robust models should be considered routinely alongside other commonly used methodologies for eQTL analysis.

1. A Note on the Identifiability of Generalized Linear Mixed Models

Labouriau, Rodrigo

2014-01-01

I present here a simple proof that, under general regularity conditions, the standard parametrization of generalized linear mixed model is identifiable. The proof is based on the assumptions of generalized linear mixed models on the first and second order moments and some general mild regularity...... conditions, and, therefore, is extensible to quasi-likelihood based generalized linear models. In particular, binomial and Poisson mixed models with dispersion parameter are identifiable when equipped with the standard parametrization...

2. Linear models for joint association and linkage QTL mapping

Fernando Rohan L

2009-09-01

Full Text Available Abstract Background Populational linkage disequilibrium and within-family linkage are commonly used for QTL mapping and marker assisted selection. The combination of both results in more robust and accurate locations of the QTL, but models proposed so far have been either single marker, complex in practice or well fit to a particular family structure. Results We herein present linear model theory to come up with additive effects of the QTL alleles in any member of a general pedigree, conditional to observed markers and pedigree, accounting for possible linkage disequilibrium among QTLs and markers. The model is based on association analysis in the founders; further, the additive effect of the QTLs transmitted to the descendants is a weighted (by the probabilities of transmission average of the substitution effects of founders' haplotypes. The model allows for non-complete linkage disequilibrium QTL-markers in the founders. Two submodels are presented: a simple and easy to implement Haley-Knott type regression for half-sib families, and a general mixed (variance component model for general pedigrees. The model can use information from all markers. The performance of the regression method is compared by simulation with a more complex IBD method by Meuwissen and Goddard. Numerical examples are provided. Conclusion The linear model theory provides a useful framework for QTL mapping with dense marker maps. Results show similar accuracies but a bias of the IBD method towards the center of the region. Computations for the linear regression model are extremely simple, in contrast with IBD methods. Extensions of the model to genomic selection and multi-QTL mapping are straightforward.

3. Linear control theory for gene network modeling.

Shin, Yong-Jun; Bleris, Leonidas

2010-09-16

Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

4. LINEAR MODEL FOR NON ISOSCELES ABSORBERS.

BERG,J.S.

2003-05-12

Previous analyses have assumed that wedge absorbers are triangularly shaped with equal angles for the two faces. In this case, to linear order, the energy loss depends only on the position in the direction of the face tilt, and is independent of the incoming angle. One can instead construct an absorber with entrance and exit faces facing rather general directions. In this case, the energy loss can depend on both the position and the angle of the particle in question. This paper demonstrates that and computes the effect to linear order.

5. Predicting Madura cattle growth curve using non-linear model

Widyas, N.; Prastowo, S.; Widi, T. S. M.; Baliarti, E.

2018-03-01

6. An online re-linearization scheme suited for Model Predictive and Linear Quadratic Control

Henriksen, Lars Christian; Poulsen, Niels Kjølstad

This technical note documents the equations for primal-dual interior-point quadratic programming problem solver used for MPC. The algorithm exploits the special structure of the MPC problem and is able to reduce the computational burden such that the computational burden scales with prediction...... horizon length in a linear way rather than cubic, which would be the case if the structure was not exploited. It is also shown how models used for design of model-based controllers, e.g. linear quadratic and model predictive, can be linearized both at equilibrium and non-equilibrium points, making...

7. Modelling of Rotational Capacity in Reinforced Linear Elements

Hestbech, Lars; Hagsten, Lars German; Fisker, Jakob

2011-01-01

on the rotational capacity of the plastic hinges. The documentation of ductility can be a difficult task as modelling of rotational capacity in plastic hinges of frames is not fully developed. On the basis of the Theory of Plasticity a model is developed to determine rotational capacity in plastic hinges in linear......The Capacity Design Method forms the basis of several seismic design codes. This design philosophy allows plastic deformations in order to decrease seismic demands in structures. However, these plastic deformations must be localized in certain zones where ductility requirements can be documented...... reinforced concrete elements. The model is taking several important parameters into account. Empirical values is avoided which is considered an advantage compared to previous models. Furthermore, the model includes force variations in the reinforcement due to moment distributions and shear as well...

8. Tried and True: Springing into Linear Models

Darling, Gerald

2012-01-01

In eighth grade, students usually learn about forces in science class and linear relationships in math class, crucial topics that form the foundation for further study in science and engineering. An activity that links these two fundamental concepts involves measuring the distance a spring stretches as a function of how much weight is suspended…

9. Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems

Bambang Riyanto

2005-11-01

Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.

10. Ordinal Log-Linear Models for Contingency Tables

Brzezińska Justyna

2016-12-01

Full Text Available A log-linear analysis is a method providing a comprehensive scheme to describe the association for categorical variables in a contingency table. The log-linear model specifies how the expected counts depend on the levels of the categorical variables for these cells and provide detailed information on the associations. The aim of this paper is to present theoretical, as well as empirical, aspects of ordinal log-linear models used for contingency tables with ordinal variables. We introduce log-linear models for ordinal variables: linear-by-linear association, row effect model, column effect model and RC Goodman’s model. Algorithm, advantages and disadvantages will be discussed in the paper. An empirical analysis will be conducted with the use of R.

11. Recent Updates to the GEOS-5 Linear Model

Holdaway, Dan; Kim, Jong G.; Errico, Ron; Gelaro, Ronald; Mahajan, Rahul

2014-01-01

Global Modeling and Assimilation Office (GMAO) is close to having a working 4DVAR system and has developed a linearized version of GEOS-5.This talk outlines a series of improvements made to the linearized dynamics, physics and trajectory.Of particular interest is the development of linearized cloud microphysics, which provides the framework for 'all-sky' data assimilation.

12. Comparison of Linear Prediction Models for Audio Signals

2009-03-01

Full Text Available While linear prediction (LP has become immensely popular in speech modeling, it does not seem to provide a good approach for modeling audio signals. This is somewhat surprising, since a tonal signal consisting of a number of sinusoids can be perfectly predicted based on an (all-pole LP model with a model order that is twice the number of sinusoids. We provide an explanation why this result cannot simply be extrapolated to LP of audio signals. If noise is taken into account in the tonal signal model, a low-order all-pole model appears to be only appropriate when the tonal components are uniformly distributed in the Nyquist interval. Based on this observation, different alternatives to the conventional LP model can be suggested. Either the model should be changed to a pole-zero, a high-order all-pole, or a pitch prediction model, or the conventional LP model should be preceded by an appropriate frequency transform, such as a frequency warping or downsampling. By comparing these alternative LP models to the conventional LP model in terms of frequency estimation accuracy, residual spectral flatness, and perceptual frequency resolution, we obtain several new and promising approaches to LP-based audio modeling.

13. A quasi-linear gyrokinetic transport model for tokamak plasmas

Casati, A.

2009-10-01

After a presentation of some basics around nuclear fusion, this research thesis introduces the framework of the tokamak strategy to deal with confinement, hence the main plasma instabilities which are responsible for turbulent transport of energy and matter in such a system. The author also briefly introduces the two principal plasma representations, the fluid and the kinetic ones. He explains why the gyro-kinetic approach has been preferred. A tokamak relevant case is presented in order to highlight the relevance of a correct accounting of the kinetic wave-particle resonance. He discusses the issue of the quasi-linear response. Firstly, the derivation of the model, called QuaLiKiz, and its underlying hypotheses to get the energy and the particle turbulent flux are presented. Secondly, the validity of the quasi-linear response is verified against the nonlinear gyro-kinetic simulations. The saturation model that is assumed in QuaLiKiz, is presented and discussed. Then, the author qualifies the global outcomes of QuaLiKiz. Both the quasi-linear energy and the particle flux are compared to the expectations from the nonlinear simulations, across a wide scan of tokamak relevant parameters. Therefore, the coupling of QuaLiKiz within the integrated transport solver CRONOS is presented: this procedure allows the time-dependent transport problem to be solved, hence the direct application of the model to the experiment. The first preliminary results regarding the experimental analysis are finally discussed

14. Genomic prediction based on data from three layer lines using non-linear regression models.

Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L

2014-11-06

Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional

15. Double generalized linear compound poisson models to insurance claims data

Andersen, Daniel Arnfeldt; Bonat, Wagner Hugo

2017-01-01

This paper describes the specification, estimation and comparison of double generalized linear compound Poisson models based on the likelihood paradigm. The models are motivated by insurance applications, where the distribution of the response variable is composed by a degenerate distribution...... implementation and illustrate the application of double generalized linear compound Poisson models using a data set about car insurances....

16. Determining Predictor Importance in Hierarchical Linear Models Using Dominance Analysis

Luo, Wen; Azen, Razia

2013-01-01

Dominance analysis (DA) is a method used to evaluate the relative importance of predictors that was originally proposed for linear regression models. This article proposes an extension of DA that allows researchers to determine the relative importance of predictors in hierarchical linear models (HLM). Commonly used measures of model adequacy in…

17. Thurstonian models for sensory discrimination tests as generalized linear models

Brockhoff, Per B.; Christensen, Rune Haubo Bojesen

2010-01-01

as a so-called generalized linear model. The underlying sensory difference 6 becomes directly a parameter of the statistical model and the estimate d' and it's standard error becomes the "usual" output of the statistical analysis. The d' for the monadic A-NOT A method is shown to appear as a standard......Sensory discrimination tests such as the triangle, duo-trio, 2-AFC and 3-AFC tests produce binary data and the Thurstonian decision rule links the underlying sensory difference 6 to the observed number of correct responses. In this paper it is shown how each of these four situations can be viewed...

18. Linear control theory for gene network modeling.

Yong-Jun Shin

Full Text Available Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain and linear state-space (time domain can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

19. Forecasting Volatility of Dhaka Stock Exchange: Linear Vs Non-linear models

Masudul Islam

2012-10-01

Full Text Available Prior information about a financial market is very essential for investor to invest money on parches share from the stock market which can strengthen the economy. The study examines the relative ability of various models to forecast daily stock indexes future volatility. The forecasting models that employed from simple to relatively complex ARCH-class models. It is found that among linear models of stock indexes volatility, the moving average model ranks first using root mean square error, mean absolute percent error, Theil-U and Linex loss function  criteria. We also examine five nonlinear models. These models are ARCH, GARCH, EGARCH, TGARCH and restricted GARCH models. We find that nonlinear models failed to dominate linear models utilizing different error measurement criteria and moving average model appears to be the best. Then we forecast the next two months future stock index price volatility by the best (moving average model.

20. Generalised linear models for correlated pseudo-observations, with applications to multi-state models

Andersen, Per Kragh; Klein, John P.; Rosthøj, Susanne

2003-01-01

Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model......Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model...

1. Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.

Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J

2016-10-03

Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

2. Robust Comparison of the Linear Model Structures in Self-tuning Adaptive Control

1989-01-01

The Generalized Predictive Controller (GPC) is extended to the systems with a generalized linear model structure which contains a number of choices of linear model structures. The Recursive Prediction Error Method (RPEM) is used to estimate the unknown parameters of the linear model structures...... to constitute a GPC self-tuner. Different linear model structures commonly used are compared and evaluated by applying them to the extended GPC self-tuner as well as to the special cases of the GPC, the GMV and MV self-tuners. The simulation results show how the choice of model structure affects the input......-output behaviour of self-tuning controllers....

3. Linear and non-linear autoregressive models for short-term wind speed forecasting

Lydia, M.; Suresh Kumar, S.; Immanuel Selvakumar, A.; Edwin Prem Kumar, G.

2016-01-01

Highlights: • Models for wind speed prediction at 10-min intervals up to 1 h built on time-series wind speed data. • Four different multivariate models for wind speed built based on exogenous variables. • Non-linear models built using three data mining algorithms outperform the linear models. • Autoregressive models based on wind direction perform better than other models. - Abstract: Wind speed forecasting aids in estimating the energy produced from wind farms. The soaring energy demands of the world and minimal availability of conventional energy sources have significantly increased the role of non-conventional sources of energy like solar, wind, etc. Development of models for wind speed forecasting with higher reliability and greater accuracy is the need of the hour. In this paper, models for predicting wind speed at 10-min intervals up to 1 h have been built based on linear and non-linear autoregressive moving average models with and without external variables. The autoregressive moving average models based on wind direction and annual trends have been built using data obtained from Sotavento Galicia Plc. and autoregressive moving average models based on wind direction, wind shear and temperature have been built on data obtained from Centre for Wind Energy Technology, Chennai, India. While the parameters of the linear models are obtained using the Gauss–Newton algorithm, the non-linear autoregressive models are developed using three different data mining algorithms. The accuracy of the models has been measured using three performance metrics namely, the Mean Absolute Error, Root Mean Squared Error and Mean Absolute Percentage Error.

4. A Linear Viscoelastic Model Calibration of Sylgard 184.

Long, Kevin Nicholas; Brown, Judith Alice

2017-04-01

We calibrate a linear thermoviscoelastic model for solid Sylgard 184 (90-10 formulation), a lightly cross-linked, highly flexible isotropic elastomer for use both in Sierra / Solid Mechanics via the Universal Polymer Model as well as in Sierra / Structural Dynamics (Salinas) for use as an isotropic viscoelastic material. Material inputs for the calibration in both codes are provided. The frequency domain master curve of oscillatory shear was obtained from a report from Los Alamos National Laboratory (LANL). However, because the form of that data is different from the constitutive models in Sierra, we also present the mapping of the LANL data onto Sandia’s constitutive models. Finally, blind predictions of cyclic tension and compression out to moderate strains of 40 and 20% respectively are compared with Sandia’s legacy cure schedule material. Although the strain rate of the data is unknown, the linear thermoviscoelastic model accurately predicts the experiments out to moderate strains for the slower strain rates, which is consistent with the expectation that quasistatic test procedures were likely followed. This good agreement comes despite the different cure schedules between the Sandia and LANL data.

5. Predicting birth weight with conditionally linear transformation models.

Möst, Lisa; Schmid, Matthias; Faschingbauer, Florian; Hothorn, Torsten

2016-12-01

Low and high birth weight (BW) are important risk factors for neonatal morbidity and mortality. Gynecologists must therefore accurately predict BW before delivery. Most prediction formulas for BW are based on prenatal ultrasound measurements carried out within one week prior to birth. Although successfully used in clinical practice, these formulas focus on point predictions of BW but do not systematically quantify uncertainty of the predictions, i.e. they result in estimates of the conditional mean of BW but do not deliver prediction intervals. To overcome this problem, we introduce conditionally linear transformation models (CLTMs) to predict BW. Instead of focusing only on the conditional mean, CLTMs model the whole conditional distribution function of BW given prenatal ultrasound parameters. Consequently, the CLTM approach delivers both point predictions of BW and fetus-specific prediction intervals. Prediction intervals constitute an easy-to-interpret measure of prediction accuracy and allow identification of fetuses subject to high prediction uncertainty. Using a data set of 8712 deliveries at the Perinatal Centre at the University Clinic Erlangen (Germany), we analyzed variants of CLTMs and compared them to standard linear regression estimation techniques used in the past and to quantile regression approaches. The best-performing CLTM variant was competitive with quantile regression and linear regression approaches in terms of conditional coverage and average length of the prediction intervals. We propose that CLTMs be used because they are able to account for possible heteroscedasticity, kurtosis, and skewness of the distribution of BWs. © The Author(s) 2014.

6. A linear model of population dynamics

Lushnikov, A. A.; Kagan, A. I.

2016-08-01

The Malthus process of population growth is reformulated in terms of the probability w(n,t) to find exactly n individuals at time t assuming that both the birth and the death rates are linear functions of the population size. The master equation for w(n,t) is solved exactly. It is shown that w(n,t) strongly deviates from the Poisson distribution and is expressed in terms either of Laguerre’s polynomials or a modified Bessel function. The latter expression allows for considerable simplifications of the asymptotic analysis of w(n,t).

7. A test for the parameters of multiple linear regression models ...

A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...

8. Modeling Non-Linear Material Properties in Composite Materials

2016-06-28

Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

9. Linear mixing model applied to AVHRR LAC data

Holben, Brent N.; Shimabukuro, Yosio E.

1993-01-01

A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55 - 3.93 microns channel was extracted and used with the two reflective channels 0.58 - 0.68 microns and 0.725 - 1.1 microns to run a Constraine Least Squares model to generate vegetation, soil, and shade fraction images for an area in the Western region of Brazil. The Landsat Thematic Mapper data covering the Emas National park region was used for estimating the spectral response of the mixture components and for evaluating the mixing model results. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse resolution data for global studies.

10. Identification of an Equivalent Linear Model for a Non-Linear Time-Variant RC-Structure

Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune

are investigated and compared with ARMAX models used on a running window. The techniques are evaluated using simulated data generated by the non-linear finite element program SARCOF modeling a 10-storey 3-bay concrete structure subjected to amplitude modulated Gaussian white noise filtered through a Kanai......This paper considers estimation of the maximum softening for a RC-structure subjected to earthquake excitation. The so-called Maximum Softening damage indicator relates the global damage state of the RC-structure to the relative decrease of the fundamental eigenfrequency in an equivalent linear...

11. Reliability modelling and simulation of switched linear system ...

Reliability modelling and simulation of switched linear system control using temporal databases. ... design of fault-tolerant real-time switching systems control and modelling embedded micro-schedulers for complex systems maintenance.

12. Multivariate statistical modelling based on generalized linear models

Fahrmeir, Ludwig

1994-01-01

This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...

13. Approximating chiral quark models with linear σ-models

Broniowski, Wojciech; Golli, Bojan

2003-01-01

We study the approximation of chiral quark models with simpler models, obtained via gradient expansion. The resulting Lagrangian of the type of the linear σ-model contains, at the lowest level of the gradient-expanded meson action, an additional term of the form ((1)/(2))A(σ∂ μ σ+π∂ μ π) 2 . We investigate the dynamical consequences of this term and its relevance to the phenomenology of the soliton models of the nucleon. It is found that the inclusion of the new term allows for a more efficient approximation of the underlying quark theory, especially in those cases where dynamics allows for a large deviation of the chiral fields from the chiral circle, such as in quark models with non-local regulators. This is of practical importance, since the σ-models with valence quarks only are technically much easier to treat and simpler to solve than the quark models with the full-fledged Dirac sea

14. Latent log-linear models for handwritten digit classification.

Deselaers, Thomas; Gass, Tobias; Heigold, Georg; Ney, Hermann

2012-06-01

We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional flexibility within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers image deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating optimization. For certain variants, convergence to a stationary point is guaranteed and, in practice, even variants without this guarantee converge and find models that perform well. We tune the methods on the USPS data set and evaluate on the MNIST data set, demonstrating the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters, are able to obtain competitive results with models proposed in the literature.

15. Comparison of linear, skewed-linear, and proportional hazard models for the analysis of lambing interval in Ripollesa ewes.

Casellas, J; Bach, R

2012-06-01

Lambing interval is a relevant reproductive indicator for sheep populations under continuous mating systems, although there is a shortage of selection programs accounting for this trait in the sheep industry. Both the historical assumption of small genetic background and its unorthodox distribution pattern have limited its implementation as a breeding objective. In this manuscript, statistical performances of 3 alternative parametrizations [i.e., symmetric Gaussian mixed linear (GML) model, skew-Gaussian mixed linear (SGML) model, and piecewise Weibull proportional hazard (PWPH) model] have been compared to elucidate the preferred methodology to handle lambing interval data. More specifically, flock-by-flock analyses were performed on 31,986 lambing interval records (257.3 ± 0.2 d) from 6 purebred Ripollesa flocks. Model performances were compared in terms of deviance information criterion (DIC) and Bayes factor (BF). For all flocks, PWPH models were clearly preferred; they generated a reduction of 1,900 or more DIC units and provided BF estimates larger than 100 (i.e., PWPH models against linear models). These differences were reduced when comparing PWPH models with different number of change points for the baseline hazard function. In 4 flocks, only 2 change points were required to minimize the DIC, whereas 4 and 6 change points were needed for the 2 remaining flocks. These differences demonstrated a remarkable degree of heterogeneity across sheep flocks that must be properly accounted for in genetic evaluation models to avoid statistical biases and suboptimal genetic trends. Within this context, all 6 Ripollesa flocks revealed substantial genetic background for lambing interval with heritabilities ranging between 0.13 and 0.19. This study provides the first evidence of the suitability of PWPH models for lambing interval analysis, clearly discarding previous parametrizations focused on mixed linear models.

16. Linear Regression Models for Estimating True Subsurface ...

47

The objective is to minimize the processing time and computer memory required. 10 to carry out inversion .... to the mainland by two long bridges. .... term. In this approach, the model converges when the squared sum of the differences. 143.

17. Numerical modelling in non linear fracture mechanics

Viggo Tvergaard

2007-07-01

Full Text Available Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence, and a model for intergranular creep failure with diffusive growth of grain boundary cavities leading to micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damage mechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesive zone models to represent the fracture process is discussed.

18. Modelling non-linear effects of dark energy

Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis

2018-04-01

We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.

19. Non Linear Modelling and Control of Hydraulic Actuators

B. Šulc

2002-01-01

Full Text Available This paper deals with non-linear modelling and control of a differential hydraulic actuator. The nonlinear state space equations are derived from basic physical laws. They are more powerful than the transfer function in the case of linear models, and they allow the application of an object oriented approach in simulation programs. The effects of all friction forces (static, Coulomb and viscous have been modelled, and many phenomena that are usually neglected are taken into account, e.g., the static term of friction, the leakage between the two chambers and external space. Proportional Differential (PD and Fuzzy Logic Controllers (FLC have been applied in order to make a comparison by means of simulation. Simulation is performed using Matlab/Simulink, and some of the results are compared graphically. FLC is tuned in a such way that it produces a constant control signal close to its maximum (or minimum, where possible. In the case of PD control the occurrence of peaks cannot be avoided. These peaks produce a very high velocity that oversteps the allowed values.

20. Linear mixing model applied to coarse resolution satellite data

Holben, Brent N.; Shimabukuro, Yosio E.

1992-01-01

A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.

1. Random effect selection in generalised linear models

Denwood, Matt; Houe, Hans; Forkman, Björn

We analysed abattoir recordings of meat inspection codes with possible relevance to onfarm animal welfare in cattle. Random effects logistic regression models were used to describe individual-level data obtained from 461,406 cattle slaughtered in Denmark. Our results demonstrate that the largest...

2. Model Order Reduction for Non Linear Mechanics

Pinillo, Rubén

2017-01-01

Context: Automotive industry is moving towards a new generation of cars. Main idea: Cars are furnished with radars, cameras, sensors, etc… providing useful information about the environment surrounding the car. Goals: Provide an efficient model for the radar input/output. Reducing computational costs by means of big data techniques.

3. Identification of Influential Points in a Linear Regression Model

Jan Grosz

2011-03-01

Full Text Available The article deals with the detection and identification of influential points in the linear regression model. Three methods of detection of outliers and leverage points are described. These procedures can also be used for one-sample (independentdatasets. This paper briefly describes theoretical aspects of several robust methods as well. Robust statistics is a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. A simulation model of the simple linear regression is presented.

4. Heterotic sigma models and non-linear strings

Hull, C.M.

1986-01-01

The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)

5. Linear latent variable models: the lava-package

Holst, Klaus Kähler; Budtz-Jørgensen, Esben

2013-01-01

are implemented including robust standard errors for clustered correlated data, multigroup analyses, non-linear parameter constraints, inference with incomplete data, maximum likelihood estimation with censored and binary observations, and instrumental variable estimators. In addition an extensive simulation......An R package for specifying and estimating linear latent variable models is presented. The philosophy of the implementation is to separate the model specification from the actual data, which leads to a dynamic and easy way of modeling complex hierarchical structures. Several advanced features...

6. On-line control models for the Stanford Linear Collider

Sheppard, J.C.; Helm, R.H.; Lee, M.J.; Woodley, M.D.

1983-03-01

Models for computer control of the SLAC three-kilometer linear accelerator and damping rings have been developed as part of the control system for the Stanford Linear Collider. Some of these models have been tested experimentally and implemented in the control program for routine linac operations. This paper will describe the development and implementation of these models, as well as some of the operational results

7. Smooth generalized linear models for aggregated data

Ayma Anza, Diego Armando

2016-01-01

Mención Internacional en el título de doctor Aggregated data commonly appear in areas such as epidemiology, demography, and public health. Generally, the aggregation process is done to protect the privacy of patients, to facilitate compact presentation, or to make it comparable with other coarser datasets. However, this process may hinder the visualization of the underlying distribution that follows the data. Also, it prohibits the direct analysis of relationships between ag...

8. Bayesian Subset Modeling for High-Dimensional Generalized Linear Models

Liang, Faming

2013-06-01

This article presents a new prior setting for high-dimensional generalized linear models, which leads to a Bayesian subset regression (BSR) with the maximum a posteriori model approximately equivalent to the minimum extended Bayesian information criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening and consistency with the existing sure independence screening (SIS) and iterative sure independence screening (ISIS) procedures. However, since the proposed procedure makes use of joint information from all predictors, it generally outperforms SIS and ISIS in real applications. This article also makes extensive comparisons of BSR with the popular penalized likelihood methods, including Lasso, elastic net, SIS, and ISIS. The numerical results indicate that BSR can generally outperform the penalized likelihood methods. The models selected by BSR tend to be sparser and, more importantly, of higher prediction ability. In addition, the performance of the penalized likelihood methods tends to deteriorate as the number of predictors increases, while this is not significant for BSR. Supplementary materials for this article are available online. © 2013 American Statistical Association.

9. Generalized Linear Models with Applications in Engineering and the Sciences

Myers, Raymond H; Vining, G Geoffrey; Robinson, Timothy J

2012-01-01

Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities."-Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Ma

10. Modelling a linear PM motor including magnetic saturation

Polinder, H.; Slootweg, J.G.; Compter, J.C.; Hoeijmakers, M.J.

2002-01-01

The use of linear permanent-magnet (PM) actuators increases in a wide variety of applications because of the high force density, robustness and accuracy. The paper describes the modelling of a linear PM motor applied in, for example, wafer steppers, including magnetic saturation. This is important

11. Application of the simplex method of linear programming model to ...

This work discussed how the simplex method of linear programming could be used to maximize the profit of any business firm using Saclux Paint Company as a case study. It equally elucidated the effect variation in the optimal result obtained from linear programming model, will have on any given firm. It was demonstrated ...

12. Genetic parameters for racing records in trotters using linear and generalized linear models.

Suontama, M; van der Werf, J H J; Juga, J; Ojala, M

2012-09-01

Heritability and repeatability and genetic and phenotypic correlations were estimated for trotting race records with linear and generalized linear models using 510,519 records on 17,792 Finnhorses and 513,161 records on 25,536 Standardbred trotters. Heritability and repeatability were estimated for single racing time and earnings traits with linear models, and logarithmic scale was used for racing time and fourth-root scale for earnings to correct for nonnormality. Generalized linear models with a gamma distribution were applied for single racing time and with a multinomial distribution for single earnings traits. In addition, genetic parameters for annual earnings were estimated with linear models on the observed and fourth-root scales. Racing success traits of single placings, winnings, breaking stride, and disqualifications were analyzed using generalized linear models with a binomial distribution. Estimates of heritability were greatest for racing time, which ranged from 0.32 to 0.34. Estimates of heritability were low for single earnings with all distributions, ranging from 0.01 to 0.09. Annual earnings were closer to normal distribution than single earnings. Heritability estimates were moderate for annual earnings on the fourth-root scale, 0.19 for Finnhorses and 0.27 for Standardbred trotters. Heritability estimates for binomial racing success variables ranged from 0.04 to 0.12, being greatest for winnings and least for breaking stride. Genetic correlations among racing traits were high, whereas phenotypic correlations were mainly low to moderate, except correlations between racing time and earnings were high. On the basis of a moderate heritability and moderate to high repeatability for racing time and annual earnings, selection of horses for these traits is effective when based on a few repeated records. Because of high genetic correlations, direct selection for racing time and annual earnings would also result in good genetic response in racing success.

13. Linear versus quadratic portfolio optimization model with transaction cost

Razak, Norhidayah Bt Ab; Kamil, Karmila Hanim; Elias, Siti Masitah

2014-06-01

Optimization model is introduced to become one of the decision making tools in investment. Hence, it is always a big challenge for investors to select the best model that could fulfill their goal in investment with respect to risk and return. In this paper we aims to discuss and compare the portfolio allocation and performance generated by quadratic and linear portfolio optimization models namely of Markowitz and Maximin model respectively. The application of these models has been proven to be significant and popular among others. However transaction cost has been debated as one of the important aspects that should be considered for portfolio reallocation as portfolio return could be significantly reduced when transaction cost is taken into consideration. Therefore, recognizing the importance to consider transaction cost value when calculating portfolio' return, we formulate this paper by using data from Shariah compliant securities listed in Bursa Malaysia. It is expected that, results from this paper will effectively justify the advantage of one model to another and shed some lights in quest to find the best decision making tools in investment for individual investors.

14. Linear approximation model network and its formation via ...

niques, an alternative `linear approximation model' (LAM) network approach is .... network is LPV, existing LTI theory is difficult to apply (Kailath 1980). ..... Beck J V, Arnold K J 1977 Parameter estimation in engineering and science (New York: ...

15. Sphaleron in a non-linear sigma model

Sogo, Kiyoshi; Fujimoto, Yasushi.

1989-08-01

We present an exact classical saddle point solution in a non-linear sigma model. It has a topological charge 1/2 and mediates the vacuum transition. The quantum fluctuations and the transition rate are also examined. (author)

16. On D-branes from gauged linear sigma models

Govindarajan, S.; Jayaraman, T.; Sarkar, T.

2001-01-01

We study both A-type and B-type D-branes in the gauged linear sigma model by considering worldsheets with boundary. The boundary conditions on the matter and vector multiplet fields are first considered in the large-volume phase/non-linear sigma model limit of the corresponding Calabi-Yau manifold, where we find that we need to add a contact term on the boundary. These considerations enable to us to derive the boundary conditions in the full gauged linear sigma model, including the addition of the appropriate boundary contact terms, such that these boundary conditions have the correct non-linear sigma model limit. Most of the analysis is for the case of Calabi-Yau manifolds with one Kaehler modulus (including those corresponding to hypersurfaces in weighted projective space), though we comment on possible generalisations

17. Optimization for decision making linear and quadratic models

Murty, Katta G

2010-01-01

While maintaining the rigorous linear programming instruction required, Murty's new book is unique in its focus on developing modeling skills to support valid decision-making for complex real world problems, and includes solutions to brand new algorithms.

18. Study of linear induction motor characteristics : the Mosebach model

1976-05-31

This report covers the Mosebach theory of the double-sided linear induction motor, starting with the ideallized model and accompanying assumptions, and ending with relations for thrust, airgap power, and motor efficiency. Solutions of the magnetic in...

19. Study of linear induction motor characteristics : the Oberretl model

1975-05-30

The Oberretl theory of the double-sided linear induction motor (LIM) is examined, starting with the idealized model and accompanying assumptions, and ending with relations for predicted thrust, airgap power, and motor efficiency. The effect of varyin...

20. Comparative study between output factors obtained in a linear accelerator used for radiosurgery treatments

Velázquez Trejo, J.J.; Olive, K.I.; Gutiérrez Castillo, J.G.; Hardy Pérez, A.E.

2017-01-01

Purpose: To compare the output factors obtained in a linear accelerator with conical collimators using five models of detectors, through tree different methods: the ratio of detector readings, the “daisy chain” technique (for diodes) and applying the k fclin, fmsr Qclin, Qmsr factors based in the formalism proposed by the IAEA (this one was applied only to tree detectors). Methods: A linear accelerator Varian-iX was employed with BrainLab conical collimators (30 mm to 7.5 mm), the detectors used were: PTW-PinPoint 31016 (×2), PTW-tipo E 60017 (×2), PTW-microLion 31018 (×2), EDGE (Sun-Nuclear), y PTW-Semiflex 31010. For the first three models were analyzed two detectors with different series. The measurements were carried out in water at depth of 1.5 cm and source to surface distance of 98.5 cm. Results: With the readings ratio method, all detectors showed differences from 3.5% to more than 15% in the smallest field sizes, for the diodes the “daisy chain” method did not provide significant corrections. Applying the k fclin, fmsr Qclin, Qmsr Small the detectors PTW60017, PTW31018 and EDGE showed differences of less than 3%. Conclusions: In small fields the readings ratio method could introduce significant errors in the output factor determination. Applying the k fclin, fmsr Qclin, Qmsr proved to be a viable option. [es

1. Comparative Study of Bancruptcy Prediction Models

Isye Arieshanti

2013-09-01

Full Text Available Early indication of bancruptcy is important for a company. If companies aware of  potency of their bancruptcy, they can take a preventive action to anticipate the bancruptcy. In order to detect the potency of a bancruptcy, a company can utilize a a model of bancruptcy prediction. The prediction model can be built using a machine learning methods. However, the choice of machine learning methods should be performed carefully. Because the suitability of a model depends on the problem specifically. Therefore, in this paper we perform a comparative study of several machine leaning methods for bancruptcy prediction. According to the comparative study, the performance of several models that based on machine learning methods (k-NN, fuzzy k-NN, SVM, Bagging Nearest Neighbour SVM, Multilayer Perceptron(MLP, Hybrid of MLP + Multiple Linear Regression, it can be showed that fuzzy k-NN method achieve the best performance with accuracy 77.5%

2. Optimization Research of Generation Investment Based on Linear Programming Model

Wu, Juan; Ge, Xueqian

Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

3. Nonlinearity measure and internal model control based linearization in anti-windup design

Perev, Kamen [Systems and Control Department, Technical University of Sofia, 8 Cl. Ohridski Blvd., 1756 Sofia (Bulgaria)

2013-12-18

This paper considers the problem of internal model control based linearization in anti-windup design. The nonlinearity measure concept is used for quantifying the control system degree of nonlinearity. The linearizing effect of a modified internal model control structure is presented by comparing the nonlinearity measures of the open-loop and closed-loop systems. It is shown that the linearization properties are improved by increasing the control system local feedback gain. However, it is emphasized that at the same time the stability of the system deteriorates. The conflicting goals of stability and linearization are resolved by solving the design problem in different frequency ranges.

4. Generalized linear mixed models modern concepts, methods and applications

Stroup, Walter W

2012-01-01

PART I The Big PictureModeling BasicsWhat Is a Model?Two Model Forms: Model Equation and Probability DistributionTypes of Model EffectsWriting Models in Matrix FormSummary: Essential Elements for a Complete Statement of the ModelDesign MattersIntroductory Ideas for Translating Design and Objectives into ModelsDescribing ""Data Architecture"" to Facilitate Model SpecificationFrom Plot Plan to Linear PredictorDistribution MattersMore Complex Example: Multiple Factors with Different Units of ReplicationSetting the StageGoals for Inference with Models: OverviewBasic Tools of InferenceIssue I: Data

5. A comparison of linear tyre models for analysing shimmy

Besselink, I.J.M.; Maas, J.W.L.H.; Nijmeijer, H.

2011-01-01

A comparison is made between three linear, dynamic tyre models using low speed step responses and yaw oscillation tests. The match with the measurements improves with increasing complexity of the tyre model. Application of the different tyre models to a two degree of freedom trailing arm suspension

6. Unification of three linear models for the transient visual system

Brinker, den A.C.

1989-01-01

Three different linear filters are considered as a model describing the experimentally determined triphasic impulse responses of discs. These impulse responses arc associated with the transient visual system. Each model reveals a different feature of the system. Unification of the models is

7. A BEHAVIORAL-APPROACH TO LINEAR EXACT MODELING

ANTOULAS, AC; WILLEMS, JC

1993-01-01

The behavioral approach to system theory provides a parameter-free framework for the study of the general problem of linear exact modeling and recursive modeling. The main contribution of this paper is the solution of the (continuous-time) polynomial-exponential time series modeling problem. Both

8. Linearized models for a new magnetic control in MAST

Artaserse, G., E-mail: giovanni.artaserse@enea.it [Associazione Euratom-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Maviglia, F.; Albanese, R. [Associazione Euratom-ENEA-CREATE sulla Fusione, Via Claudio 21, I-80125 Napoli (Italy); McArdle, G.J.; Pangione, L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

2013-10-15

Highlights: ► We applied linearized models for a new magnetic control on MAST tokamak. ► A suite of procedures, conceived to be machine independent, have been used. ► We carried out model-based simulations, taking into account eddy currents effects. ► Comparison with the EFIT flux maps and the experimental magnetic signals are shown. ► A current driven model for the dynamic simulations of the experimental data have been performed. -- Abstract: The aim of this work is to provide reliable linearized models for the design and assessment of a new magnetic control system for MAST (Mega Ampère Spherical Tokamak) using rtEFIT, which can easily be exported to MAST Upgrade. Linearized models for magnetic control have been obtained using the 2D axisymmetric finite element code CREATE L. MAST linearized models include equivalent 2D axisymmetric schematization of poloidal field (PF) coils, vacuum vessel, and other conducting structures. A plasmaless and a double null configuration have been chosen as benchmark cases for the comparison with experimental data and EFIT reconstructions. Good agreement has been found with the EFIT flux map and the experimental signals coming from magnetic probes with only few mismatches probably due to broken sensors. A suite of procedures (equipped with a user friendly interface to be run even remotely) to provide linearized models for magnetic control is now available on the MAST linux machines. A new current driven model has been used to obtain a state space model having the PF coil currents as inputs. Dynamic simulations of experimental data have been carried out using linearized models, including modelling of the effects of the passive structures, showing a fair agreement. The modelling activity has been useful also to reproduce accurately the interaction between plasma current and radial position control loops.

9. Linearized models for a new magnetic control in MAST

Artaserse, G.; Maviglia, F.; Albanese, R.; McArdle, G.J.; Pangione, L.

2013-01-01

Highlights: ► We applied linearized models for a new magnetic control on MAST tokamak. ► A suite of procedures, conceived to be machine independent, have been used. ► We carried out model-based simulations, taking into account eddy currents effects. ► Comparison with the EFIT flux maps and the experimental magnetic signals are shown. ► A current driven model for the dynamic simulations of the experimental data have been performed. -- Abstract: The aim of this work is to provide reliable linearized models for the design and assessment of a new magnetic control system for MAST (Mega Ampère Spherical Tokamak) using rtEFIT, which can easily be exported to MAST Upgrade. Linearized models for magnetic control have been obtained using the 2D axisymmetric finite element code CREATE L. MAST linearized models include equivalent 2D axisymmetric schematization of poloidal field (PF) coils, vacuum vessel, and other conducting structures. A plasmaless and a double null configuration have been chosen as benchmark cases for the comparison with experimental data and EFIT reconstructions. Good agreement has been found with the EFIT flux map and the experimental signals coming from magnetic probes with only few mismatches probably due to broken sensors. A suite of procedures (equipped with a user friendly interface to be run even remotely) to provide linearized models for magnetic control is now available on the MAST linux machines. A new current driven model has been used to obtain a state space model having the PF coil currents as inputs. Dynamic simulations of experimental data have been carried out using linearized models, including modelling of the effects of the passive structures, showing a fair agreement. The modelling activity has been useful also to reproduce accurately the interaction between plasma current and radial position control loops

10. Influence of the void fraction in the linear reactivity model

Castillo, J.A.; Ramirez, J.R.; Alonso, G.

2003-01-01

The linear reactivity model allows the multicycle analysis in pressurized water reactors in a simple and quick way. In the case of the Boiling water reactors the void fraction it varies axially from 0% of voids in the inferior part of the fuel assemblies until approximately 70% of voids to the exit of the same ones. Due to this it is very important the determination of the average void fraction during different stages of the reactor operation to predict the burnt one appropriately of the same ones to inclination of the pattern of linear reactivity. In this work a pursuit is made of the profile of power for different steps of burnt of a typical operation cycle of a Boiling water reactor. Starting from these profiles it builds an algorithm that allows to determine the voids profile and this way to obtain the average value of the same one. The results are compared against those reported by the CM-PRESTO code that uses another method to carry out this calculation. Finally, the range in which is the average value of the void fraction during a typical cycle is determined and an estimate of the impact that it would have the use of this value in the prediction of the reactivity produced by the fuel assemblies is made. (Author)

11. H∞ /H2 model reduction through dilated linear matrix inequalities

2012-01-01

This paper presents sufficient dilated linear matrix inequalities (LMI) conditions to the \$H_{infty}\$ and \$H_{2}\$ model reduction problem. A special structure of the auxiliary (slack) variables allows the original model of order \$n\$ to be reduced to an order \$r=n/s\$ where \$n,r,s in field{N}\$. Arb......This paper presents sufficient dilated linear matrix inequalities (LMI) conditions to the \$H_{infty}\$ and \$H_{2}\$ model reduction problem. A special structure of the auxiliary (slack) variables allows the original model of order \$n\$ to be reduced to an order \$r=n/s\$ where \$n,r,s in field...

12. Prediction of minimum temperatures in an alpine region by linear and non-linear post-processing of meteorological models

R. Barbiero

2007-05-01

Full Text Available Model Output Statistics (MOS refers to a method of post-processing the direct outputs of numerical weather prediction (NWP models in order to reduce the biases introduced by a coarse horizontal resolution. This technique is especially useful in orographically complex regions, where large differences can be found between the NWP elevation model and the true orography. This study carries out a comparison of linear and non-linear MOS methods, aimed at the prediction of minimum temperatures in a fruit-growing region of the Italian Alps, based on the output of two different NWPs (ECMWF T511–L60 and LAMI-3. Temperature, of course, is a particularly important NWP output; among other roles it drives the local frost forecast, which is of great interest to agriculture. The mechanisms of cold air drainage, a distinctive aspect of mountain environments, are often unsatisfactorily captured by global circulation models. The simplest post-processing technique applied in this work was a correction for the mean bias, assessed at individual model grid points. We also implemented a multivariate linear regression on the output at the grid points surrounding the target area, and two non-linear models based on machine learning techniques: Neural Networks and Random Forest. We compare the performance of all these techniques on four different NWP data sets. Downscaling the temperatures clearly improved the temperature forecasts with respect to the raw NWP output, and also with respect to the basic mean bias correction. Multivariate methods generally yielded better results, but the advantage of using non-linear algorithms was small if not negligible. RF, the best performing method, was implemented on ECMWF prognostic output at 06:00 UTC over the 9 grid points surrounding the target area. Mean absolute errors in the prediction of 2 m temperature at 06:00 UTC were approximately 1.2°C, close to the natural variability inside the area itself.

13. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

2016-01-01

Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19

14. Non-linear Growth Models in Mplus and SAS

Grimm, Kevin J.; Ram, Nilam

2013-01-01

Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134

15. Variance Function Partially Linear Single-Index Models1.

Lian, Heng; Liang, Hua; Carroll, Raymond J

2015-01-01

We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function.

16. Optimizing Biorefinery Design and Operations via Linear Programming Models

Talmadge, Michael; Batan, Liaw; Lamers, Patrick; Hartley, Damon; Biddy, Mary; Tao, Ling; Tan, Eric

2017-03-28

The ability to assess and optimize economics of biomass resource utilization for the production of fuels, chemicals and power is essential for the ultimate success of a bioenergy industry. The team of authors, consisting of members from the National Renewable Energy Laboratory (NREL) and the Idaho National Laboratory (INL), has developed simple biorefinery linear programming (LP) models to enable the optimization of theoretical or existing biorefineries. The goal of this analysis is to demonstrate how such models can benefit the developing biorefining industry. It focuses on a theoretical multi-pathway, thermochemical biorefinery configuration and demonstrates how the biorefinery can use LP models for operations planning and optimization in comparable ways to the petroleum refining industry. Using LP modeling tools developed under U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) funded efforts, the authors investigate optimization challenges for the theoretical biorefineries such as (1) optimal feedstock slate based on available biomass and prices, (2) breakeven price analysis for available feedstocks, (3) impact analysis for changes in feedstock costs and product prices, (4) optimal biorefinery operations during unit shutdowns / turnarounds, and (5) incentives for increased processing capacity. These biorefinery examples are comparable to crude oil purchasing and operational optimization studies that petroleum refiners perform routinely using LPs and other optimization models. It is important to note that the analyses presented in this article are strictly theoretical and they are not based on current energy market prices. The pricing structure assigned for this demonstrative analysis is consistent with \$4 per gallon gasoline, which clearly assumes an economic environment that would favor the construction and operation of biorefineries. The analysis approach and examples provide valuable insights into the usefulness of analysis tools for

17. comparative analysis of some existing kinetic models with proposed

IGNATIUS NWIDI

two statistical parameters namely; linear regression coefficient of correlation (R2) and ... Keynotes: Heavy metals, Biosorption, Kinetics Models, Comparative analysis, Average Relative Error. 1. ... If the flow rate is low, a simple manual batch.

18. Transport coefficients from SU(3) Polyakov linearmodel

Tawfik, A.; Diab, A.

2015-01-01

In the mean field approximation, the grand potential of SU(3) Polyakov linearmodel (PLSM) is analyzed for the order parameter of the light and strange chiral phase-transitions, σ l and σ s , respectively, and for the deconfinement order parameters φ and φ*. Furthermore, the subtracted condensate Δ l,s and the chiral order-parameters M b are compared with lattice QCD calculations. By using the dynamical quasiparticle model (DQPM), which can be considered as a system of noninteracting massive quasiparticles, we have evaluated the decay width and the relaxation time of quarks and gluons. In the framework of LSM and with Polyakov loop corrections included, the interaction measure Δ/T 4 , the specific heat c v and speed of sound squared c s 2 have been determined, as well as the temperature dependence of the normalized quark number density n q /T 3 and the quark number susceptibilities χ q /T 2 at various values of the baryon chemical potential. The electric and heat conductivity, σ e and κ, and the bulk and shear viscosities normalized to the thermal entropy, ζ/s and η/s, are compared with available results of lattice QCD calculations.

19. Phylogenetic mixtures and linear invariants for equal input models.

Casanellas, Marta; Steel, Mike

2017-04-01

The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).

20. Non-linear calibration models for near infrared spectroscopy

Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

2014-01-01

by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear...... models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS......-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration...

1. Estimation and variable selection for generalized additive partial linear models

Wang, Li

2011-08-01

We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.

2. Matrix model and time-like linear dila ton matter

2004-01-01

We consider a matrix model description of the 2d string theory whose matter part is given by a time-like linear dilaton CFT. This is equivalent to the c=1 matrix model with a deformed, but very simple Fermi surface. Indeed, after a Lorentz transformation, the corresponding 2d spacetime is a conventional linear dila ton background with a time-dependent tachyon field. We show that the tree level scattering amplitudes in the matrix model perfectly agree with those computed in the world-sheet theory. The classical trajectories of fermions correspond to the decaying D-boranes in the time-like linear dilaton CFT. We also discuss the ground ring structure. Furthermore, we study the properties of the time-like Liouville theory by applying this matrix model description. We find that its ground ring structure is very similar to that of the minimal string. (author)

3. Vortices, semi-local vortices in gauged linear sigma model

Kim, Namkwon

1998-11-01

We consider the static (2+1)D gauged linear sigma model. By analyzing the governing system of partial differential equations, we investigate various aspects of the model. We show the existence of energy finite vortices under a partially broken symmetry on R 2 with the necessary condition suggested by Y. Yang. We also introduce generalized semi-local vortices and show the existence of energy finite semi-local vortices under a certain condition. The vacuum manifold for the semi-local vortices turns out to be graded. Besides, with a special choice of a representation, we show that the O(3) sigma model of which target space is nonlinear is a singular limit of the gauged linear sigma model of which target space is linear. (author)

4. TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS

Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.

2017-01-01

Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971

5. Log-normal frailty models fitted as Poisson generalized linear mixed models.

Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver

2016-12-01

The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

6. Linear mixed models a practical guide using statistical software

West, Brady T; Galecki, Andrzej T

2006-01-01

Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-navigate reference details the use of procedures for fitting LMMs in five popular statistical software packages: SAS, SPSS, Stata, R/S-plus, and HLM. The authors introduce basic theoretical concepts, present a heuristic approach to fitting LMMs based on bo

7. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

2012-12-01

In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

8. Analysis of baseline, average, and longitudinally measured blood pressure data using linear mixed models.

Hossain, Ahmed; Beyene, Joseph

2014-01-01

This article compares baseline, average, and longitudinal data analysis methods for identifying genetic variants in genome-wide association study using the Genetic Analysis Workshop 18 data. We apply methods that include (a) linear mixed models with baseline measures, (b) random intercept linear mixed models with mean measures outcome, and (c) random intercept linear mixed models with longitudinal measurements. In the linear mixed models, covariates are included as fixed effects, whereas relatedness among individuals is incorporated as the variance-covariance structure of the random effect for the individuals. The overall strategy of applying linear mixed models decorrelate the data is based on Aulchenko et al.'s GRAMMAR. By analyzing systolic and diastolic blood pressure, which are used separately as outcomes, we compare the 3 methods in identifying a known genetic variant that is associated with blood pressure from chromosome 3 and simulated phenotype data. We also analyze the real phenotype data to illustrate the methods. We conclude that the linear mixed model with longitudinal measurements of diastolic blood pressure is the most accurate at identifying the known single-nucleotide polymorphism among the methods, but linear mixed models with baseline measures perform best with systolic blood pressure as the outcome.

9. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

Martinez-Luaces, Victor E.

2013-01-01

This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

10. Optical linear algebra processors - Noise and error-source modeling

Casasent, D.; Ghosh, A.

1985-01-01

The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

11. Optical linear algebra processors: noise and error-source modeling.

Casasent, D; Ghosh, A

1985-06-01

The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

12. CONTRIBUTIONS TO THE FINITE ELEMENT MODELING OF LINEAR ULTRASONIC MOTORS

Oana CHIVU

2013-05-01

Full Text Available The present paper is concerned with the main modeling elements as produced by means of thefinite element method of linear ultrasonic motors. Hence, first the model is designed and then a modaland harmonic analysis are carried out in view of outlining the main outcomes

13. Linear and Nonlinear Career Models: Metaphors, Paradigms, and Ideologies.

Buzzanell, Patrice M.; Goldzwig, Steven R.

1991-01-01

Examines the linear or bureaucratic career models (dominant in career research, metaphors, paradigms, and ideologies) which maintain career myths of flexibility and individualized routes to success in organizations incapable of offering such versatility. Describes nonlinear career models which offer suggestive metaphors for re-visioning careers…

14. Low-energy limit of the extended Linear Sigma Model

Divotgey, Florian [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Kovacs, Peter [Wigner Research Center for Physics, Hungarian Academy of Sciences, Institute for Particle and Nuclear Physics, Budapest (Hungary); GSI Helmholtzzentrum fuer Schwerionenforschung, ExtreMe Matter Institute, Darmstadt (Germany); Giacosa, Francesco [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Jan-Kochanowski University, Institute of Physics, Kielce (Poland); Rischke, Dirk H. [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); University of Science and Technology of China, Interdisciplinary Center for Theoretical Study and Department of Modern Physics, Hefei, Anhui (China)

2018-01-15

The extended Linear Sigma Model is an effective hadronic model based on the linear realization of chiral symmetry SU(N{sub f}){sub L} x SU(N{sub f}){sub R}, with (pseudo)scalar and (axial-)vector mesons as degrees of freedom. In this paper, we study the low-energy limit of the extended Linear Sigma Model (eLSM) for N{sub f} = flavors by integrating out all fields except for the pions, the (pseudo-)Nambu-Goldstone bosons of chiral symmetry breaking. The resulting low-energy effective action is identical to Chiral Perturbation Theory (ChPT) after choosing a representative for the coset space generated by chiral symmetry breaking and expanding it in powers of (derivatives of) the pion fields. The tree-level values of the coupling constants of the effective low-energy action agree remarkably well with those of ChPT. (orig.)

15. Linear Power-Flow Models in Multiphase Distribution Networks: Preprint

Bernstein, Andrey; Dall' Anese, Emiliano

2017-05-26

This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.

16. Portfolio optimization by using linear programing models based on genetic algorithm

Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

2018-01-01

In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

17. The minimal linear σ model for the Goldstone Higgs

Feruglio, F.; Gavela, M.B.; Kanshin, K.; Machado, P.A.N.; Rigolin, S.; Saa, S.

2016-01-01

In the context of the minimal SO(5) linear σ-model, a complete renormalizable Lagrangian -including gauge bosons and fermions- is considered, with the symmetry softly broken to SO(4). The scalar sector describes both the electroweak Higgs doublet and the singlet σ. Varying the σ mass would allow to sweep from the regime of perturbative ultraviolet completion to the non-linear one assumed in models in which the Higgs particle is a low-energy remnant of some strong dynamics. We analyze the phenomenological implications and constraints from precision observables and LHC data. Furthermore, we derive the d≤6 effective Lagrangian in the limit of heavy exotic fermions.

18. A variational formulation for linear models in coupled dynamic thermoelasticity

Feijoo, R.A.; Moura, C.A. de.

1981-07-01

A variational formulation for linear models in coupled dynamic thermoelasticity which quite naturally motivates the design of a numerical scheme for the problem, is studied. When linked to regularization or penalization techniques, this algorithm may be applied to more general models, namely, the ones that consider non-linear constraints associated to variational inequalities. The basic postulates of Mechanics and Thermodynamics as well as some well-known mathematical techniques are described. A thorough description of the algorithm implementation with the finite-element method is also provided. Proofs for existence and uniqueness of solutions and for convergence of the approximations are presented, and some numerical results are exhibited. (Author) [pt

19. Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables

Henson, Robert A.; Templin, Jonathan L.; Willse, John T.

2009-01-01

This paper uses log-linear models with latent variables (Hagenaars, in "Loglinear Models with Latent Variables," 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between many common models is explicitly defined and discussed. In addition, because the log-linear model with latent variables is a general model for…

20. Functional linear models for association analysis of quantitative traits.

Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao

2013-11-01

Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY

1. Linear models for sound from supersonic reacting mixing layers

Chary, P. Shivakanth; Samanta, Arnab

2016-12-01

We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.

2. Stochastic modeling of mode interactions via linear parabolized stability equations

Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

2017-11-01

Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

3. Linear modeling of possible mechanisms for parkinson tremor generation

Lohnberg, P.

1978-01-01

The power of Parkinson tremor is expressed in terms of possibly changed frequency response functions between relevant variables in the neuromuscular system. The derivation starts out from a linear loopless equivalent model of mechanisms for general tremor generation. Hypothetical changes in this

4. Current algebra of classical non-linear sigma models

Forger, M.; Laartz, J.; Schaeper, U.

1992-01-01

The current algebra of classical non-linear sigma models on arbitrary Riemannian manifolds is analyzed. It is found that introducing, in addition to the Noether current j μ associated with the global symmetry of the theory, a composite scalar field j, the algebra closes under Poisson brackets. (orig.)

5. Mathematical modelling and linear stability analysis of laser fusion cutting

Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich

2016-01-01

A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.

6. Non Linear signa models probing the string structure

Abdalla, E.

1987-01-01

The introduction of a term depending on the extrinsic curvature to the string action, and related non linear sigma models defined on a symmetric space SO(D)/SO(2) x SO(d-2) is descussed . Coupling to fermions are also treated. (author) [pt

7. Confidence Intervals for Assessing Heterogeneity in Generalized Linear Mixed Models

Wagler, Amy E.

2014-01-01

Generalized linear mixed models are frequently applied to data with clustered categorical outcomes. The effect of clustering on the response is often difficult to practically assess partly because it is reported on a scale on which comparisons with regression parameters are difficult to make. This article proposes confidence intervals for…

8. Penalized Estimation in Large-Scale Generalized Linear Array Models

Lund, Adam; Vincent, Martin; Hansen, Niels Richard

2017-01-01

Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension...

9. Expressions for linearized perturbations in ideal-fluid cosmological models

Ratra, B.

1988-01-01

We present closed-form solutions of the relativistic linear perturbation equations (in synchronous gauge) that govern the evolution of inhomogeneities in homogeneous, spatially flat, ideal-fluid, cosmological models. These expressions, which are valid for irregularities on any scale, allow one to analytically interpolate between the known approximate solutions which are valid at early times and at late times

10. S-AMP for non-linear observation models

Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

2015-01-01

Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...

11. Plane answers to complex questions the theory of linear models

Christensen, Ronald

1987-01-01

This book was written to rigorously illustrate the practical application of the projective approach to linear models. To some, this may seem contradictory. I contend that it is possible to be both rigorous and illustrative and that it is possible to use the projective approach in practical applications. Therefore, unlike many other books on linear models, the use of projections and sub­ spaces does not stop after the general theory. They are used wherever I could figure out how to do it. Solving normal equations and using calculus (outside of maximum likelihood theory) are anathema to me. This is because I do not believe that they contribute to the understanding of linear models. I have similar feelings about the use of side conditions. Such topics are mentioned when appropriate and thenceforward avoided like the plague. On the other side of the coin, I just as strenuously reject teaching linear models with a coordinate free approach. Although Joe Eaton assures me that the issues in complicated problems freq...

12. A simulation model of a coordinated decentralized linear supply chain

Ashayeri, Jalal; Cannella, S.; Lopez Campos, M.; Miranda, P.A.

2015-01-01

This paper presents a simulation-based study of a coordinated, decentralized linear supply chain (SC) system. In the proposed model, any supply tier considers its successors as part of its inventory system and generates replenishment orders on the basis of its partners’ operational information. We

13. Mathematical modelling and linear stability analysis of laser fusion cutting

Hermanns, Torsten; Schulz, Wolfgang [RWTH Aachen University, Chair for Nonlinear Dynamics, Steinbachstr. 15, 52047 Aachen (Germany); Vossen, Georg [Niederrhein University of Applied Sciences, Chair for Applied Mathematics and Numerical Simulations, Reinarzstr.. 49, 47805 Krefeld (Germany); Thombansen, Ulrich [RWTH Aachen University, Chair for Laser Technology, Steinbachstr. 15, 52047 Aachen (Germany)

2016-06-08

A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.

14. A non-linear dissipative model of magnetism

Durand, P.; Paidarová, Ivana

2010-01-01

Roč. 89, č. 6 (2010), s. 67004 ISSN 1286-4854 R&D Projects: GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : non-linear dissipative model of magnetism * thermodynamics * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry http://epljournal.edpsciences.org/

15. Modeling and verifying non-linearities in heterodyne displacement interferometry

Cosijns, S.J.A.G.; Haitjema, H.; Schellekens, P.H.J.

2002-01-01

The non-linearities in a heterodyne laser interferometer system occurring from the phase measurement system of the interferometer andfrom non-ideal polarization effects of the optics are modeled into one analytical expression which includes the initial polarization state ofthe laser source, the

16. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.

Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S

2017-06-01

The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were

17. Generalized linear longitudinal mixed models with linear covariance structure and multiplicative random effects

Holst, René; Jørgensen, Bent

2015-01-01

The paper proposes a versatile class of multiplicative generalized linear longitudinal mixed models (GLLMM) with additive dispersion components, based on explicit modelling of the covariance structure. The class incorporates a longitudinal structure into the random effects models and retains...... a marginal as well as a conditional interpretation. The estimation procedure is based on a computationally efficient quasi-score method for the regression parameters combined with a REML-like bias-corrected Pearson estimating function for the dispersion and correlation parameters. This avoids...... the multidimensional integral of the conventional GLMM likelihood and allows an extension of the robust empirical sandwich estimator for use with both association and regression parameters. The method is applied to a set of otholit data, used for age determination of fish....

18. Identifiability Results for Several Classes of Linear Compartment Models.

Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa

2015-08-01

Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.

19. Finite element modeling of nanotube structures linear and non-linear models

2016-01-01

This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.

20. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

Beardsell, Alec; Collier, William; Han, Tao

2016-09-01

1. Linear Dynamics Model for Steam Cooled Fast Power Reactors

Vollmer, H

1968-04-15

A linear analytical dynamic model is developed for steam cooled fast power reactors. All main components of such a plant are investigated on a general though relatively simple basis. The model is distributed in those parts concerning the core but lumped as to the external plant components. Coolant is considered as compressible and treated by the actual steam law. Combined use of analogue and digital computer seems most attractive.

2. Deterministic operations research models and methods in linear optimization

2013-01-01

Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations resear

3. One-loop dimensional reduction of the linear σ model

Malbouisson, A.P.C.; Silva-Neto, M.B.; Svaiter, N.F.

1997-05-01

We perform the dimensional reduction of the linear σ model at one-loop level. The effective of the reduced theory obtained from the integration over the nonzero Matsubara frequencies is exhibited. Thermal mass and coupling constant renormalization constants are given, as well as the thermal renormalization group which controls the dependence of the counterterms on the temperature. We also recover, for the reduced theory, the vacuum instability of the model for large N. (author)

4. Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts.

Lin, Huiming; Fu, Bo; Qin, Guoyou; Zhu, Zhongyi

2017-12-01

We develop a doubly robust estimation of generalized partial linear models for longitudinal data with dropouts. Our method extends the highly efficient aggregate unbiased estimating function approach proposed in Qu et al. (2010) to a doubly robust one in the sense that under missing at random (MAR), our estimator is consistent when either the linear conditional mean condition is satisfied or a model for the dropout process is correctly specified. We begin with a generalized linear model for the marginal mean, and then move forward to a generalized partial linear model, allowing for nonparametric covariate effect by using the regression spline smoothing approximation. We establish the asymptotic theory for the proposed method and use simulation studies to compare its finite sample performance with that of Qu's method, the complete-case generalized estimating equation (GEE) and the inverse-probability weighted GEE. The proposed method is finally illustrated using data from a longitudinal cohort study. © 2017, The International Biometric Society.

5. A linearized dispersion relation for orthorhombic pseudo-acoustic modeling

Song, Xiaolei; Alkhalifah, Tariq Ali

2012-01-01

Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen's parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.

6. Non-linear sigma model on the fuzzy supersphere

Kurkcuoglu, Seckin

2004-01-01

In this note we develop fuzzy versions of the supersymmetric non-linear sigma model on the supersphere S (2,2) . In hep-th/0212133 Bott projectors have been used to obtain the fuzzy C P 1 model. Our approach utilizes the use of supersymmetric extensions of these projectors. Here we obtain these (super)-projectors and quantize them in a fashion similar to the one given in hep-th/0212133. We discuss the interpretation of the resulting model as a finite dimensional matrix model. (author)

7. Optimal difference-based estimation for partially linear models

Zhou, Yuejin; Cheng, Yebin; Dai, Wenlin; Tong, Tiejun

2017-01-01

Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.

8. Modeling and analysis of linear hyperbolic systems of balance laws

Bartecki, Krzysztof

2016-01-01

This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...

9. Optimal difference-based estimation for partially linear models

Zhou, Yuejin

2017-12-16

Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.

10. An R2 statistic for fixed effects in the linear mixed model.

Edwards, Lloyd J; Muller, Keith E; Wolfinger, Russell D; Qaqish, Bahjat F; Schabenberger, Oliver

2008-12-20

Statisticians most often use the linear mixed model to analyze Gaussian longitudinal data. The value and familiarity of the R(2) statistic in the linear univariate model naturally creates great interest in extending it to the linear mixed model. We define and describe how to compute a model R(2) statistic for the linear mixed model by using only a single model. The proposed R(2) statistic measures multivariate association between the repeated outcomes and the fixed effects in the linear mixed model. The R(2) statistic arises as a 1-1 function of an appropriate F statistic for testing all fixed effects (except typically the intercept) in a full model. The statistic compares the full model with a null model with all fixed effects deleted (except typically the intercept) while retaining exactly the same covariance structure. Furthermore, the R(2) statistic leads immediately to a natural definition of a partial R(2) statistic. A mixed model in which ethnicity gives a very small p-value as a longitudinal predictor of blood pressure (BP) compellingly illustrates the value of the statistic. In sharp contrast to the extreme p-value, a very small R(2) , a measure of statistical and scientific importance, indicates that ethnicity has an almost negligible association with the repeated BP outcomes for the study.

11. Linear indices in nonlinear structural equation models : best fitting proper indices and other composites

Dijkstra, T.K.; Henseler, J.

2011-01-01

The recent advent of nonlinear structural equation models with indices poses a new challenge to the measurement of scientific constructs. We discuss, exemplify and add to a family of statistical methods aimed at creating linear indices, and compare their suitability in a complex path model with

12. A Hierarchical Linear Model for Estimating Gender-Based Earnings Differentials.

Haberfield, Yitchak; Semyonov, Moshe; Addi, Audrey

1998-01-01

Estimates of gender earnings inequality in data from 116,431 Jewish workers were compared using a hierarchical linear model (HLM) and ordinary least squares model. The HLM allows estimation of the extent to which earnings inequality depends on occupational characteristics. (SK)

13. Structural linear measurements in the newborn brain: accuracy of cranial ultrasound compared to MRI

Leijser, Lara M.; Srinivasan, Latha; Cowan, Frances M.; Rutherford, Mary A.; Counsell, Serena J.; Allsop, Joanna M.

2007-01-01

Structural size in the neonatal brain is of clinical importance. Cranial ultrasonography (cUS) is the primary method used for evaluating the neonatal brain and it is important to know whether linear measurements made using this technique are accurate. To compare linear measurements of different cerebral structures made from neonatal cUS and contemporaneous MRI. Preterm and term infants studies with cUS and MRI on the same day were studied. Linear measurements made using both techniques from many cerebral structures were compared using a paired t-test. A total of 44 sets of scans from 26 preterm and 8 term infants were assessed. Small but significant differences between the cUS and MRI measurements (P<0.05) were found for the ventricular index, the posterior horn depth of the lateral ventricle, the extracerebral space and interhemispheric fissure, and the cortex of the cingulate gyrus. No significant differences were found for any other measurements. Linear measurements from cUS are accurate for most neonatal cerebral structures. Significant differences compared to MRI were found for a few structures, but only for the cortex were the absolute differences marked and possibly of clinical importance. (orig.)

14. General mirror pairs for gauged linear sigma models

Aspinwall, Paul S.; Plesser, M. Ronen [Departments of Mathematics and Physics, Duke University,Box 90320, Durham, NC 27708-0320 (United States)

2015-11-05

We carefully analyze the conditions for an abelian gauged linear σ-model to exhibit nontrivial IR behavior described by a nonsingular superconformal field theory determining a superstring vacuum. This is done without reference to a geometric phase, by associating singular behavior to a noncompact space of (semi-)classical vacua. We find that models determined by reflexive combinatorial data are nonsingular for generic values of their parameters. This condition has the pleasant feature that the mirror of a nonsingular gauged linear σ-model is another such model, but it is clearly too strong and we provide an example of a non-reflexive mirror pair. We discuss a weaker condition inspired by considering extremal transitions, which is also mirror symmetric and which we conjecture to be sufficient. We apply these ideas to extremal transitions and to understanding the way in which both Berglund-Hübsch mirror symmetry and the Vafa-Witten mirror orbifold with discrete torsion can be seen as special cases of the general combinatorial duality of gauged linear σ-models. In the former case we encounter an example showing that our weaker condition is still not necessary.

15. General mirror pairs for gauged linear sigma models

Aspinwall, Paul S.; Plesser, M. Ronen

2015-01-01

We carefully analyze the conditions for an abelian gauged linear σ-model to exhibit nontrivial IR behavior described by a nonsingular superconformal field theory determining a superstring vacuum. This is done without reference to a geometric phase, by associating singular behavior to a noncompact space of (semi-)classical vacua. We find that models determined by reflexive combinatorial data are nonsingular for generic values of their parameters. This condition has the pleasant feature that the mirror of a nonsingular gauged linear σ-model is another such model, but it is clearly too strong and we provide an example of a non-reflexive mirror pair. We discuss a weaker condition inspired by considering extremal transitions, which is also mirror symmetric and which we conjecture to be sufficient. We apply these ideas to extremal transitions and to understanding the way in which both Berglund-Hübsch mirror symmetry and the Vafa-Witten mirror orbifold with discrete torsion can be seen as special cases of the general combinatorial duality of gauged linear σ-models. In the former case we encounter an example showing that our weaker condition is still not necessary.

16. Symmetry conservation in the linear chiral soliton model

Goeke, K.

1988-01-01

The linear chiral soliton model with quark fields and elementary pion- and sigma-fields is solved in order to describe static properties of the nucleon and the delta resonance. To this end a Fock-state of the system is constructed consisting out of three valence quarks in a first orbit with a generalized hedgehog spin-flavour configuration. Coherent states are used to provide a quantum description for the mesonic parts of the total wave function. The corresponding classical pion field also exhibit a generalized hedgehog structure. In a pure mean field approximation the variation of the total energy results in the ordinary hedgehog form. In a quantized approach the generalized hedgehog-baryon is projected onto states with good spin and isospin and then noticeable deviations from the simple hedgehog form, if the relevant degrees of freedom of the wave function are varied after the projection. Various nucleon properties are calculated. These include proton and neutron charge radii, and the magnetic moment of the proton for which good agreement with experiment is obtained. The absolute value of the neutron magnetic moment comes out too large, similarly as the axial vector coupling constant and the pion-nucleon-nucleon coupling constant.To the generalization of the hedgehog the Goldberger-Treiman relation and a corresponding virial theorem are fulfilled. Variation of the quark-meson coupling parameter g and the sigma mass m σ shows that the g A is always at least 40 % too large compared to experiment. Hence it is concluded that either the inclusion of the polarization of the Dirac sea and/or further mesons with may be vector character or the consideration of intrinsic deformation is necessary. The concepts and results of the projections are compared with the semiclassical collective quantization method. 6 tabs., 14 figs., 43 refs

17. A comparative study of linear measurements on facial skeleton with frontal and lateral cephalogram.

Gandikota, Chandra Sekhar; Rayapudi, Naveen; Challa, Padma Latha; Juvvadi, Shubhaker Rao; Yudhister, P V; Rao, Gutti Hariprasad

2012-04-01

To compare the accuracy of linear measurements on lateral and frontal cephalograms with gold standard skull measurements. Based on the specific criteria including reliable occlusion and condyles fitting in glenoid fossa, 15 dry human skulls were selected from a larger collection. Lateral and frontal cephalograms were taken of each skull by standardized methods. Steel ball bearings were used to identify the anatomic landmarks. Linear measurements in midsagittal plane were made on all three records. Intraclass correlation coefficients, Pearson's correlation coefficient and regression constant were calculated to assess the records simultaneously. The frontal cephalometric measurements showed high correlation to the direct skull measurements (Pearson's coefficient 0.943linear measurements of the lateral cephalometric record are greater than the corresponding frontal cephalometric images. The overall findings of the present study showed that the frontal cephalometric measurements are closely related to the direct skull measures.

18. A comparative study of linear measurements on facial skeleton with frontal and lateral cephalogram

Chandra Sekhar Gandikota

2012-01-01

Full Text Available Objective: To compare the accuracy of linear measurements on lateral and frontal cephalograms with gold standard skull measurements . Materials and Methods: Based on the specific criteria including reliable occlusion and condyles fitting in glenoid fossa, 15 dry human skulls were selected from a larger collection. Lateral and frontal cephalograms were taken of each skull by standardized methods. Steel ball bearings were used to identify the anatomic landmarks. Linear measurements in midsagittal plane were made on all three records. Intraclass correlation coefficients, Pearson′s correlation coefficient and regression constant were calculated to assess the records simultaneously. Results: The frontal cephalometric measurements showed high correlation to the direct skull measurements (Pearson′s coefficient 0.943linear measurements of the lateral cephalometric record are greater than the corresponding frontal cephalometric images. The overall findings of the present study showed that the frontal cephalometric measurements are closely related to the direct skull measures.

19. Comparing light sensitivity, linearity and step response of electronic cameras for ophthalmology.

Kopp, O; Markert, S; Tornow, R P

2002-01-01

To develop and test a procedure to measure and compare light sensitivity, linearity and step response of electronic cameras. The pixel value (PV) of digitized images as a function of light intensity (I) was measured. The sensitivity was calculated from the slope of the P(I) function, the linearity was estimated from the correlation coefficient of this function. To measure the step response, a short sequence of images was acquired. During acquisition, a light source was switched on and off using a fast shutter. The resulting PV was calculated for each video field of the sequence. A CCD camera optimized for the near-infrared (IR) spectrum showed the highest sensitivity for both, visible and IR light. There are little differences in linearity. The step response depends on the procedure of integration and read out.

20. Comparing subjective contours for Kanizsa squares and linear edge alignments ('New York Titanic' figures).

Gillam, Barbara; Marlow, Phillip J

2014-01-01

One current view is that subjective contours may involve high-level detection of a salient shape with back propagation to early visual areas where small receptive fields allow for scrutiny of relevant details. This idea applies to Kanizsa-type figures. However, Gillam and Chan (2002 Psychological Science, 13, 279-282) using figures based on Gillam's graphic 'New York Titanic' (Gillam, 1997 Thresholds: Limits of perception. New York: Arts Magazine) showed that strong subjective contours can be seen along the linearly aligned edges of a set of shapes if occlusion cues of 'extrinsic edge' and 'entropy contrast' are strong. Here we compared ratings of the strength of subjective contours along linear alignments with those seen in Kanizsa figures. The strongest subjective contour for a single set of linearly aligned shapes was similar in strength to the edges of a Kanizsa square (controlling for support ratio) despite the lack of a salient region. The addition of a second set of linearly aligned inducers consistent with a common surface increased subjective-contour strength, as did having four rather than two 'pacmen' in the Kanizsa figure, indicating a role for surface support. We argue that linear subjective contours allow for the investigation of certain occlusion cues and the interactions between them that are not easily explored with Kanizsa figures.

1. A Graphical User Interface to Generalized Linear Models in MATLAB

Peter Dunn

1999-07-01

Full Text Available Generalized linear models unite a wide variety of statistical models in a common theoretical framework. This paper discusses GLMLAB-software that enables such models to be fitted in the popular mathematical package MATLAB. It provides a graphical user interface to the powerful MATLAB computational engine to produce a program that is easy to use but with many features, including offsets, prior weights and user-defined distributions and link functions. MATLAB's graphical capacities are also utilized in providing a number of simple residual diagnostic plots.

2. MAGDM linear-programming models with distinct uncertain preference structures.

Xu, Zeshui S; Chen, Jian

2008-10-01

Group decision making with preference information on alternatives is an interesting and important research topic which has been receiving more and more attention in recent years. The purpose of this paper is to investigate multiple-attribute group decision-making (MAGDM) problems with distinct uncertain preference structures. We develop some linear-programming models for dealing with the MAGDM problems, where the information about attribute weights is incomplete, and the decision makers have their preferences on alternatives. The provided preference information can be represented in the following three distinct uncertain preference structures: 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first establish some linear-programming models based on decision matrix and each of the distinct uncertain preference structures and, then, develop some linear-programming models to integrate all three structures of subjective uncertain preference information provided by the decision makers and the objective information depicted in the decision matrix. Furthermore, we propose a simple and straightforward approach in ranking and selecting the given alternatives. It is worth pointing out that the developed models can also be used to deal with the situations where the three distinct uncertain preference structures are reduced to the traditional ones, i.e., utility values, fuzzy preference relations, and multiplicative preference relations. Finally, we use a practical example to illustrate in detail the calculation process of the developed approach.

3. Modelling of Asphalt Concrete Stiffness in the Linear Viscoelastic Region

Mazurek, Grzegorz; Iwański, Marek

2017-10-01

Stiffness modulus is a fundamental parameter used in the modelling of the viscoelastic behaviour of bituminous mixtures. On the basis of the master curve in the linear viscoelasticity range, the mechanical properties of asphalt concrete at different loading times and temperatures can be predicted. This paper discusses the construction of master curves under rheological mathematical models i.e. the sigmoidal function model (MEPDG), the fractional model, and Bahia and co-workers’ model in comparison to the results from mechanistic rheological models i.e. the generalized Huet-Sayegh model, the generalized Maxwell model and the Burgers model. For the purposes of this analysis, the reference asphalt concrete mix (denoted as AC16W) intended for the binder coarse layer and for traffic category KR3 (5×105 controlled strain mode. The fixed strain level was set at 25με to guarantee that the stiffness modulus of the asphalt concrete would be tested in a linear viscoelasticity range. The master curve was formed using the time-temperature superposition principle (TTSP). The stiffness modulus of asphalt concrete was determined at temperatures 10°C, 20°C and 40°C and at loading times (frequency) of 0.1, 0.3, 1, 3, 10, 20 Hz. The model parameters were fitted to the rheological models using the original programs based on the nonlinear least squares sum method. All the rheological models under analysis were found to be capable of predicting changes in the stiffness modulus of the reference asphalt concrete to satisfactory accuracy. In the cases of the fractional model and the generalized Maxwell model, their accuracy depends on a number of elements in series. The best fit was registered for Bahia and co-workers model, generalized Maxwell model and fractional model. As for predicting the phase angle parameter, the largest discrepancies between experimental and modelled results were obtained using the fractional model. Except the Burgers model, the model matching quality was

4. A Non-Gaussian Spatial Generalized Linear Latent Variable Model

Irincheeva, Irina

2012-08-03

We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.

5. A non-linear model of economic production processes

Ponzi, A.; Yasutomi, A.; Kaneko, K.

2003-06-01

We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.

6. A Non-Gaussian Spatial Generalized Linear Latent Variable Model

Irincheeva, Irina; Cantoni, Eva; Genton, Marc G.

2012-01-01

We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.

7. Dynamic generalized linear models for monitoring endemic diseases

Lopes Antunes, Ana Carolina; Jensen, Dan; Hisham Beshara Halasa, Tariq

2016-01-01

The objective was to use a Dynamic Generalized Linear Model (DGLM) based on abinomial distribution with a linear trend, for monitoring the PRRS (Porcine Reproductive and Respiratory Syndrome sero-prevalence in Danish swine herds. The DGLM was described and its performance for monitoring control...... and eradication programmes based on changes in PRRS sero-prevalence was explored. Results showed a declining trend in PRRS sero-prevalence between 2007 and 2014 suggesting that Danish herds are slowly eradicating PRRS. The simulation study demonstrated the flexibility of DGLMs in adapting to changes intrends...... in sero-prevalence. Based on this, it was possible to detect variations in the growth model component. This study is a proof-of-concept, demonstrating the use of DGLMs for monitoring endemic diseases. In addition, the principles stated might be useful in general research on monitoring and surveillance...

8. Estimation and Inference for Very Large Linear Mixed Effects Models

Gao, K.; Owen, A. B.

2016-01-01

Linear mixed models with large imbalanced crossed random effects structures pose severe computational problems for maximum likelihood estimation and for Bayesian analysis. The costs can grow as fast as \$N^{3/2}\$ when there are N observations. Such problems arise in any setting where the underlying factors satisfy a many to many relationship (instead of a nested one) and in electronic commerce applications, the N can be quite large. Methods that do not account for the correlation structure can...

9. NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS

TOMAS, R.; FISCHER, W.; JAIN, A.; LUO, Y.; PILAT, F.

2004-01-01

For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability

10. Electromagnetic axial anomaly in a generalized linear sigma model

Fariborz, Amir H.; Jora, Renata

2017-06-01

We construct the electromagnetic anomaly effective term for a generalized linear sigma model with two chiral nonets, one with a quark-antiquark structure, the other one with a four-quark content. We compute in the leading order of this framework the decays into two photons of six pseudoscalars: π0(137 ), π0(1300 ), η (547 ), η (958 ), η (1295 ) and η (1760 ). Our results agree well with the available experimental data.

11. Wireless Positioning Based on a Segment-Wise Linear Approach for Modeling the Target Trajectory

Figueiras, Joao; Pedersen, Troels; Schwefel, Hans-Peter

2008-01-01

Positioning solutions in infrastructure-based wireless networks generally operate by exploiting the channel information of the links between the Wireless Devices and fixed networking Access Points. The major challenge of such solutions is the modeling of both the noise properties of the channel...... measurements and the user mobility patterns. One class of typical human being movement patterns is the segment-wise linear approach, which is studied in this paper. Current tracking solutions, such as the Constant Velocity model, hardly handle such segment-wise linear patterns. In this paper we propose...... a segment-wise linear model, called the Drifting Points model. The model results in an increased performance when compared with traditional solutions....

12. Linear theory for filtering nonlinear multiscale systems with model error.

Berry, Tyrus; Harlim, John

2014-07-08

In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online , as part of a filtering

13. Technical note: A linear model for predicting δ13 Cprotein.

Pestle, William J; Hubbe, Mark; Smith, Erin K; Stevenson, Joseph M

2015-08-01

Development of a model for the prediction of δ(13) Cprotein from δ(13) Ccollagen and Δ(13) Cap-co . Model-generated values could, in turn, serve as "consumer" inputs for multisource mixture modeling of paleodiet. Linear regression analysis of previously published controlled diet data facilitated the development of a mathematical model for predicting δ(13) Cprotein (and an experimentally generated error term) from isotopic data routinely generated during the analysis of osseous remains (δ(13) Cco and Δ(13) Cap-co ). Regression analysis resulted in a two-term linear model (δ(13) Cprotein (%) = (0.78 × δ(13) Cco ) - (0.58× Δ(13) Cap-co ) - 4.7), possessing a high R-value of 0.93 (r(2)  = 0.86, P analysis of human osseous remains. These predicted values are ideal for use in multisource mixture modeling of dietary protein source contribution. © 2015 Wiley Periodicals, Inc.

14. Warped Linear Prediction of Physical Model Excitations with Applications in Audio Compression and Instrument Synthesis

Glass, Alexis; Fukudome, Kimitoshi

2004-12-01

A sound recording of a plucked string instrument is encoded and resynthesized using two stages of prediction. In the first stage of prediction, a simple physical model of a plucked string is estimated and the instrument excitation is obtained. The second stage of prediction compensates for the simplicity of the model in the first stage by encoding either the instrument excitation or the model error using warped linear prediction. These two methods of compensation are compared with each other, and to the case of single-stage warped linear prediction, adjustments are introduced, and their applications to instrument synthesis and MPEG4's audio compression within the structured audio format are discussed.

15. Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime

Debayle, A.; Masson-Laborde, P.-E.; Ruyer, C.; Casanova, M.; Loiseau, P.

2018-05-01

We present an extensive numerical study by means of particle-in-cell simulations of the energy transfer that occurs during the crossing of two laser beams. In the linear regime, when ions are not trapped in the potential well induced by the laser interference pattern, a very good agreement is obtained with a simple linear stationary model, provided the laser intensity is sufficiently smooth. These comparisons include different plasma compositions to cover the strong and weak Landau damping regimes as well as the multispecies case. The correct evaluation of the linear Landau damping at the phase velocity imposed by the laser interference pattern is essential to estimate the energy transfer rate between the laser beams, once the stationary regime is reached. The transient evolution obtained in kinetic simulations is also analysed by means of a full analytical formula that includes 3D beam energy exchange coupled with the ion acoustic wave response. Specific attention is paid to the energy transfer when the laser presents small-scale inhomogeneities. In particular, the energy transfer is reduced when the laser inhomogeneities are comparable with the Landau damping characteristic length of the ion acoustic wave.

16. Neutron stars in non-linear coupling models

Taurines, Andre R.; Vasconcellos, Cesar A.Z.; Malheiro, Manuel; Chiapparini, Marcelo

2001-01-01

We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, ∼ 0.72M s un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)

17. Neutron stars in non-linear coupling models

Taurines, Andre R.; Vasconcellos, Cesar A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil); Malheiro, Manuel [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Chiapparini, Marcelo [Universidade do Estado, Rio de Janeiro, RJ (Brazil)

2001-07-01

We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, {approx} 0.72M{sub s}un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)

18. A Comparative Evaluation of the Linear Dimensional Accuracy of Four Impression Techniques using Polyether Impression Material

Manoj, Smita Sara; Cherian, K. P.; Chitre, Vidya; Aras, Meena

2013-01-01

There is much discussion in the dental literature regarding the superiority of one impression technique over the other using addition silicone impression material. However, there is inadequate information available on the accuracy of different impression techniques using polyether. The purpose of this study was to assess the linear dimensional accuracy of four impression techniques using polyether on a laboratory model that simulates clinical practice. The impression material used was Impregu...

19. Network Traffic Monitoring Using Poisson Dynamic Linear Models

Merl, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

2011-05-09

In this article, we discuss an approach for network forensics using a class of nonstationary Poisson processes with embedded dynamic linear models. As a modeling strategy, the Poisson DLM (PoDLM) provides a very flexible framework for specifying structured effects that may influence the evolution of the underlying Poisson rate parameter, including diurnal and weekly usage patterns. We develop a novel particle learning algorithm for online smoothing and prediction for the PoDLM, and demonstrate the suitability of the approach to real-time deployment settings via a new application to computer network traffic monitoring.

20. On the chiral phase transition in the linear sigma model

Tran Huu Phat; Nguyen Tuan Anh; Le Viet Hoa

2003-01-01

The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)

1. Bayesian Subset Modeling for High-Dimensional Generalized Linear Models

Liang, Faming; Song, Qifan; Yu, Kai

2013-01-01

criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening

2. Application of linearized model to the stability analysis of the pressurized water reactor

Li Haipeng; Huang Xiaojin; Zhang Liangju

2008-01-01

A Linear Time-Invariant model of the Pressurized Water Reactor is formulated through the linearization of the nonlinear model. The model simulation results show that the linearized model agrees well with the nonlinear model under small perturbation. Based upon the Lyapunov's First Method, the linearized model is applied to the stability analysis of the Pressurized Water Reactor. The calculation results show that the methodology of linearization to stability analysis is conveniently feasible. (authors)

3. The Overgeneralization of Linear Models among University Students' Mathematical Productions: A Long-Term Study

Esteley, Cristina B.; Villarreal, Monica E.; Alagia, Humberto R.

2010-01-01

Over the past several years, we have been exploring and researching a phenomenon that occurs among undergraduate students that we called extension of linear models to non-linear contexts or overgeneralization of linear models. This phenomenon appears when some students use linear representations in situations that are non-linear. In a first phase,…

4. A non-linear model of information seeking behaviour

Allen E. Foster

2005-01-01

Full Text Available The results of a qualitative, naturalistic, study of information seeking behaviour are reported in this paper. The study applied the methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling combined purposive and snowball methods, and led to a final sample of 45 inter-disciplinary researchers from the University of Sheffield. In-depth semi-structured interviews were used to elicit detailed examples of information seeking. Coding of interview transcripts took place in multiple iterations over time and used Atlas-ti software to support the process. The results of the study are represented in a non-linear Model of Information Seeking Behaviour. The model describes three core processes (Opening, Orientation, and Consolidation and three levels of contextual interaction (Internal Context, External Context, and Cognitive Approach, each composed of several individual activities and attributes. The interactivity and shifts described by the model show information seeking to be non-linear, dynamic, holistic, and flowing. The paper concludes by describing the whole model of behaviours as analogous to an artist's palette, in which activities remain available throughout information seeking. A summary of key implications of the model and directions for further research are included.

5. Effect Displays in R for Generalised Linear Models

John Fox

2003-07-01

Full Text Available This paper describes the implementation in R of a method for tabular or graphical display of terms in a complex generalised linear model. By complex, I mean a model that contains terms related by marginality or hierarchy, such as polynomial terms, or main effects and interactions. I call these tables or graphs effect displays. Effect displays are constructed by identifying high-order terms in a generalised linear model. Fitted values under the model are computed for each such term. The lower-order "relatives" of a high-order term (e.g., main effects marginal to an interaction are absorbed into the term, allowing the predictors appearing in the high-order term to range over their values. The values of other predictors are fixed at typical values: for example, a covariate could be fixed at its mean or median, a factor at its proportional distribution in the data, or to equal proportions in its several levels. Variations of effect displays are also described, including representation of terms higher-order to any appearing in the model.

6. Global numerical modeling of magnetized plasma in a linear device

Magnussen, Michael Løiten

Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion dev...... with simulations performed at different ionization levels, using a simple model for plasma interaction with neutrals. It is found that the steady state and the saturated state of the system bifurcates when the neutral interaction dominates the electron-ion collisions.......Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion...... devices, and are easier to diagnose due to lower temperatures and a better access to the plasma. In order to gain greater insight into this complex turbulent behavior, numerical simulations of plasma in a linear device are performed in this thesis. Here, a three-dimensional drift-fluid model is derived...

7. Non-linear nuclear engineering models as genetic programming application

Domingos, Roberto P.; Schirru, Roberto; Martinez, Aquilino S.

1997-01-01

This work presents a Genetic Programming paradigm and a nuclear application. A field of Artificial Intelligence, based on the concepts of Species Evolution and Natural Selection, can be understood as a self-programming process where the computer is the main agent responsible for the discovery of a program able to solve a given problem. In the present case, the problem was to find a mathematical expression in symbolic form, able to express the existent relation between equivalent ratio of a fuel cell, the enrichment of fuel elements and the multiplication factor. Such expression would avoid repeatedly reactor physics codes execution for core optimization. The results were compared with those obtained by different techniques such as Neural Networks and Linear Multiple Regression. Genetic Programming has shown to present a performance as good as, and under some features superior to Neural Network and Linear Multiple Regression. (author). 10 refs., 8 figs., 1 tabs

8. Wavefront Sensing for WFIRST with a Linear Optical Model

Jurling, Alden S.; Content, David A.

2012-01-01

In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

9. An axisymmetrical non-linear finite element model for induction heating in injection molding tools

Guerrier, Patrick; Nielsen, Kaspar Kirstein; Menotti, Stefano

2016-01-01

To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed......, including the non-linear temperature dependent magnetic data described by a three-parameter modified Frohlich equation fitted to the magnetic saturation curve, and solved with an iterative procedure. The numerical calculations are compared with experiments conducted with two types of induction coils, built...... in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear permeability to use...

10. Long-range correlation in synchronization and syncopation tapping: a linear phase correction model.

Didier Delignières

Full Text Available We propose in this paper a model for accounting for the increase in long-range correlations observed in asynchrony series in syncopation tapping, as compared with synchronization tapping. Our model is an extension of the linear phase correction model for synchronization tapping. We suppose that the timekeeper represents a fractal source in the system, and that a process of estimation of the half-period of the metronome, obeying a random-walk dynamics, combines with the linear phase correction process. Comparing experimental and simulated series, we show that our model allows accounting for the experimentally observed pattern of serial dependence. This model complete previous modeling solutions proposed for self-paced and synchronization tapping, for a unifying framework of event-based timing.

11. Modeling winter precipitation over the Juneau Icefield, Alaska, using a linear model of orographic precipitation

Roth, Aurora; Hock, Regine; Schuler, Thomas V.; Bieniek, Peter A.; Pelto, Mauri; Aschwanden, Andy

2018-03-01

Assessing and modeling precipitation in mountainous areas remains a major challenge in glacier mass balance modeling. Observations are typically scarce and reanalysis data and similar climate products are too coarse to accurately capture orographic effects. Here we use the linear theory of orographic precipitation model (LT model) to downscale winter precipitation from a regional climate model over the Juneau Icefield, one of the largest ice masses in North America (>4000 km2), for the period 1979-2013. The LT model is physically-based yet computationally efficient, combining airflow dynamics and simple cloud microphysics. The resulting 1 km resolution precipitation fields show substantially reduced precipitation on the northeastern portion of the icefield compared to the southwestern side, a pattern that is not well captured in the coarse resolution (20 km) WRF data. Net snow accumulation derived from the LT model precipitation agrees well with point observations across the icefield. To investigate the robustness of the LT model results, we perform a series of sensitivity experiments varying hydrometeor fall speeds, the horizontal resolution of the underlying grid, and the source of the meteorological forcing data. The resulting normalized spatial precipitation pattern is similar for all sensitivity experiments, but local precipitation amounts vary strongly, with greatest sensitivity to variations in snow fall speed. Results indicate that the LT model has great potential to provide improved spatial patterns of winter precipitation for glacier mass balance modeling purposes in complex terrain, but ground observations are necessary to constrain model parameters to match total amounts.

12. A linearized dispersion relation for orthorhombic pseudo-acoustic modeling

Song, Xiaolei

2012-11-04

Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen\\'s parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.

13. Available pressure amplitude of linear compressor based on phasor triangle model

Duan, C. X.; Jiang, X.; Zhi, X. Q.; You, X. K.; Qiu, L. M.

2017-12-01

The linear compressor for cryocoolers possess the advantages of long-life operation, high efficiency, low vibration and compact structure. It is significant to study the match mechanisms between the compressor and the cold finger, which determines the working efficiency of the cryocooler. However, the output characteristics of linear compressor are complicated since it is affected by many interacting parameters. The existing matching methods are simplified and mainly focus on the compressor efficiency and output acoustic power, while neglecting the important output parameter of pressure amplitude. In this study, a phasor triangle model basing on analyzing the forces of the piston is proposed. It can be used to predict not only the output acoustic power, the efficiency, but also the pressure amplitude of the linear compressor. Calculated results agree well with the measurement results of the experiment. By this phasor triangle model, the theoretical maximum output pressure amplitude of the linear compressor can be calculated simply based on a known charging pressure and operating frequency. Compared with the mechanical and electrical model of the linear compressor, the new model can provide an intuitionistic understanding on the match mechanism with faster computational process. The model can also explain the experimental phenomenon of the proportional relationship between the output pressure amplitude and the piston displacement in experiments. By further model analysis, such phenomenon is confirmed as an expression of the unmatched design of the compressor. The phasor triangle model may provide an alternative method for the compressor design and matching with the cold finger.

14. Linearized vector radiative transfer model MCC++ for a spherical atmosphere

Postylyakov, O.V.

2004-01-01

15. Exactly soluble two-state quantum models with linear couplings

Torosov, B T; Vitanov, N V

2008-01-01

A class of exact analytic solutions of the time-dependent Schroedinger equation is presented for a two-state quantum system coherently driven by a nonresonant external field. The coupling is a linear function of time with a finite duration and the detuning is constant. Four special models are considered in detail, namely the shark, double-shark, tent and zigzag models. The exact solution is derived by rotation of the Landau-Zener propagator at an angle of π/4 and is expressed in terms of Weber's parabolic cylinder function. Approximations for the transition probabilities are derived for all four models by using the asymptotics of the Weber function; these approximations demonstrate various effects of physical interest for each model

16. Rectifier Current Control for an LLC Resonant Converter Based on a Simplified Linearized Model

Zhijian Fang; Junhua Wang; Shanxu Duan; Liangle Xiao; Guozheng Hu; Qisheng Liu

2018-01-01

In this paper, a rectifier current control for an LLC resonant converter is proposed, based on a simplified, two-order, linearized model that adds a rectifier current feedback inner loop to improve dynamic performance. Compared to the traditional large-signal model with seven resonant states, this paper utilizes a rectifier current state to represent the characteristics of the resonant states, simplifying the LLC resonant model from seven orders to two orders. Then, the rectifier current feed...

17. Parametric Linear Hybrid Automata for Complex Environmental Systems Modeling

Samar Hayat Khan Tareen

2015-07-01

Full Text Available Environmental systems, whether they be weather patterns or predator-prey relationships, are dependent on a number of different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of these systems. Towards this end, we have applied a logical modeling approach to model and analyze the behavioral trends and systematic trajectories that these systems exhibit without delving into their quantification. This approach, formalized by René Thomas for discrete logical modeling of Biological Regulatory Networks (BRNs and further extended in our previous studies as parametric biological linear hybrid automata (Bio-LHA, has been previously employed for the analyses of different molecular regulatory interactions occurring across various cells and microbial species. As relationships between different interacting components of a system can be simplified as positive or negative influences, we can employ the Bio-LHA framework to represent different components of the environmental system as positive or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete/continuous modeling which lead to refinements among the fore-casted behaviors in order to find out which ones are actually possible. We have taken two case studies: an interaction of three microbial species in a freshwater pond, and a more complex atmospheric system, to show the applications of the Bio-LHA methodology for the timed hybrid modeling of environmental systems. Results show that the approach using the Bio-LHA is a viable method for behavioral modeling of complex environmental systems by finding timing constraints while keeping the complexity of the model

18. Linear models for multivariate, time series, and spatial data

Christensen, Ronald

1991-01-01

This is a companion volume to Plane Answers to Complex Questions: The Theory 0/ Linear Models. It consists of six additional chapters written in the same spirit as the last six chapters of the earlier book. Brief introductions are given to topics related to linear model theory. No attempt is made to give a comprehensive treatment of the topics. Such an effort would be futile. Each chapter is on a topic so broad that an in depth discussion would require a book-Iength treatment. People need to impose structure on the world in order to understand it. There is a limit to the number of unrelated facts that anyone can remem­ ber. If ideas can be put within a broad, sophisticatedly simple structure, not only are they easier to remember but often new insights become avail­ able. In fact, sophisticatedly simple models of the world may be the only ones that work. I have often heard Arnold Zellner say that, to the best of his knowledge, this is true in econometrics. The process of modeling is fundamental to understand...

19. Linear mixed models a practical guide using statistical software

West, Brady T; Galecki, Andrzej T

2014-01-01

Highly recommended by JASA, Technometrics, and other journals, the first edition of this bestseller showed how to easily perform complex linear mixed model (LMM) analyses via a variety of software programs. Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition continues to lead readers step by step through the process of fitting LMMs. This second edition covers additional topics on the application of LMMs that are valuable for data analysts in all fields. It also updates the case studies using the latest versions of the software procedures and provides up-to-date information on the options and features of the software procedures available for fitting LMMs in SAS, SPSS, Stata, R/S-plus, and HLM.New to the Second Edition A new chapter on models with crossed random effects that uses a case study to illustrate software procedures capable of fitting these models Power analysis methods for longitudinal and clustered study designs, including software options for power analyses and suggest...

20. Linear Economy Versus Circular Economy: A Comparative and Analyzer Study for Optimization of Economy for Sustainability

Sariatli Furkan

2017-05-01

Full Text Available Upon visiting the existing literature on the subject of linear vs. circular economy, this paper finds that, the blueprint of the current economy is hardly sustainable by using the comparative benchmarking method that drained from literature. The intrinsic mechanics of the linear economy, by relying on the wasteful take - make - dispose flow, is detrimental to the environment, cannot supply the growing populace of our planet with essential services and it naturally leads to strained profitability. Elements of a plausible solution to the challenges have been around for decades, although they have only recently been compiled in to the conceptual framework of circular economy. The core ideas of Circular Economy are elimination of waste by design, respect for the social, economic and natural environment and resource-conscious business conduct. Built on the backbone of these principles, the circular economy has demonstrated to deliver tangible benefits and viability to address the economic, environmental and social challenges of our days.

1. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

Adcock, T. A. A.; Taylor, P. H.

2016-01-01

The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum

2. Tip-tilt disturbance model identification based on non-linear least squares fitting for Linear Quadratic Gaussian control

Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing

2018-05-01

We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.

3. Bayesian uncertainty quantification in linear models for diffusion MRI.

Sjölund, Jens; Eklund, Anders; Özarslan, Evren; Herberthson, Magnus; Bånkestad, Maria; Knutsson, Hans

2018-03-29

Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification. Copyright © 2018 Elsevier Inc. All rights reserved.

4. Thermal radiation analysis for small satellites with single-node model using techniques of equivalent linearization

Anh, N.D.; Hieu, N.N.; Chung, P.N.; Anh, N.T.

2016-01-01

Highlights: • Linearization criteria are presented for a single-node model of satellite thermal. • A nonlinear algebraic system for linearization coefficients is obtained. • The temperature evolutions obtained from different methods are explored. • The temperature mean and amplitudes versus the heat capacity are discussed. • The dual criterion approach yields smaller errors than other approximate methods. - Abstract: In this paper, the method of equivalent linearization is extended to the thermal analysis of satellite using both conventional and dual criteria of linearization. These criteria are applied to a differential nonlinear equation of single-node model of the heat transfer of a small satellite in the Low Earth Orbit. A system of nonlinear algebraic equations for linearization coefficients is obtained in the closed form and then solved by the iteration method. The temperature evolution, average values and amplitudes versus the heat capacity obtained by various approaches including Runge–Kutta algorithm, conventional and dual criteria of equivalent linearization, and Grande's approach are compared together. Numerical results reveal that temperature responses obtained from the method of linearization and Grande's approach are quite close to those obtained from the Runge–Kutta method. The dual criterion yields smaller errors than those of the remaining methods when the nonlinearity of the system increases, namely, when the heat capacity varies in the range [1.0, 3.0] × 10 4  J K −1 .

5. OPLS statistical model versus linear regression to assess sonographic predictors of stroke prognosis.

2012-01-01

The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.

6. Development and Validation of Linear Alternator Models for the Advanced Stirling Convertor

Metscher, Jonathan F.; Lewandowski, Edward J.

2015-01-01

Two models of the linear alternator of the Advanced Stirling Convertor (ASC) have been developed using the Sage 1-D modeling software package. The first model relates the piston motion to electric current by means of a motor constant. The second uses electromagnetic model components to model the magnetic circuit of the alternator. The models are tuned and validated using test data and also compared against each other. Results show both models can be tuned to achieve results within 7 of ASC test data under normal operating conditions. Using Sage enables the creation of a complete ASC model to be developed and simulations completed quickly compared to more complex multi-dimensional models. These models allow for better insight into overall Stirling convertor performance, aid with Stirling power system modeling, and in the future support NASA mission planning for Stirling-based power systems.

7. Spatial generalised linear mixed models based on distances.

Melo, Oscar O; Mateu, Jorge; Melo, Carlos E

2016-10-01

Risk models derived from environmental data have been widely shown to be effective in delineating geographical areas of risk because they are intuitively easy to understand. We present a new method based on distances, which allows the modelling of continuous and non-continuous random variables through distance-based spatial generalised linear mixed models. The parameters are estimated using Markov chain Monte Carlo maximum likelihood, which is a feasible and a useful technique. The proposed method depends on a detrending step built from continuous or categorical explanatory variables, or a mixture among them, by using an appropriate Euclidean distance. The method is illustrated through the analysis of the variation in the prevalence of Loa loa among a sample of village residents in Cameroon, where the explanatory variables included elevation, together with maximum normalised-difference vegetation index and the standard deviation of normalised-difference vegetation index calculated from repeated satellite scans over time. © The Author(s) 2013.

8. Linear system identification via backward-time observer models

Juang, Jer-Nan; Phan, Minh

1993-01-01

This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.

9. Accelerating transient simulation of linear reduced order models.

Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad

2011-10-01

Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.

10. Behavioral modeling of the dominant dynamics in input-output transfer of linear(ized) circuits

Beelen, T.G.J.; Maten, ter E.J.W.; Sihaloho, H.J.; Eijndhoven, van S.J.L.

2010-01-01

We present a powerful procedure for determining both the dominant dynamics of the inputoutput transfer and the corresponding most influential circuit parameters of a linear(ized) circuit. The procedure consists of several steps in which a specific (sub)problem is solved and its solution is used in

11. Modeling Pan Evaporation for Kuwait by Multiple Linear Regression

Almedeij, Jaber

2012-01-01

Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values. PMID:23226984

12. A linear model for flow over complex terrain

Frank, H P [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

1999-03-01

A linear flow model similar to WA{sup s}P or LINCOM has been developed. Major differences are an isentropic temperature equation which allows internal gravity waves, and vertical advection of the shear of the mean flow. The importance of these effects are illustrated by examples. Resource maps are calculated from a distribution of geostrophic winds and stratification for Pyhaetunturi Fell in northern Finland and Acqua Spruzza in Italy. Stratification becomes important if the inverse Froude number formulated with the width of the hill becomes of order one or greater. (au) EU-JOULE-3. 16 refs.

13. Linear-quadratic model predictions for tumor control probability

Yaes, R.J.

1987-01-01

Sigmoid dose-response curves for tumor control are calculated from the linear-quadratic model parameters α and Β, obtained from human epidermoid carcinoma cell lines, and are much steeper than the clinical dose-response curves for head and neck cancers. One possible explanation is the presence of small radiation-resistant clones arising from mutations in an initially homogeneous tumor. Using the mutation theory of Delbruck and Luria and of Goldie and Coldman, the authors discuss the implications of such radiation-resistant clones for clinical radiation therapy

14. Inventory model using bayesian dynamic linear model for demand forecasting

Marisol Valencia-Cárdenas

2014-12-01

Full Text Available An important factor of manufacturing process is the inventory management of terminated product. Constantly, industry is looking for better alternatives to establish an adequate plan of production and stored quantities, with optimal cost, getting quantities in a time horizon, which permits to define resources and logistics with anticipation, needed to distribute products on time. Total absence of historical data, required by many statistical models to forecast, demands the search for other kind of accurate techniques. This work presents an alternative that not only permits to forecast, in an adjusted way, but also, to provide optimal quantities to produce and store with an optimal cost, using Bayesian statistics. The proposal is illustrated with real data. Palabras clave: estadística bayesiana, optimización, modelo de inventarios, modelo lineal dinámico bayesiano. Keywords: Bayesian statistics, opti

15. Predicting oropharyngeal tumor volume throughout the course of radiation therapy from pretreatment computed tomography data using general linear models.

2014-05-01

The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: -11.6%-23.8%) and 14.6% (range: -7.3%-27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: -6.8%-40.3%) and 13.1% (range: -1.5%-52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: -11.1%-20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography images and facilitate improved treatment management.

16. Using Linear and Non-Linear Temporal Adjustments to Align Multiple Phenology Curves, Making Vegetation Status and Health Directly Comparable

Hargrove, W. W.; Norman, S. P.; Kumar, J.; Hoffman, F. M.

2017-12-01

National-scale polar analysis of MODIS NDVI allows quantification of degree of seasonality expressed by local vegetation, and also selects the most optimum start/end of a local "phenological year" that is empirically customized for the vegetation that is growing at each location. Interannual differences in timing of phenology make direct comparisons of vegetation health and performance between years difficult, whether at the same or different locations. By "sliding" the two phenologies in time using a Procrustean linear time shift, any particular phenological event or "completion milestone" can be synchronized, allowing direct comparison of differences in timing of other remaining milestones. Going beyond a simple linear translation, time can be "rubber-sheeted," compressed or dilated. Considering one phenology curve to be a reference, the second phenology can be "rubber-sheeted" to fit that baseline as well as possible by stretching or shrinking time to match multiple control points, which can be any recognizable phenological events. Similar to "rubber sheeting" to georectify a map inside a GIS, rubber sheeting a phenology curve also yields a warping signature that shows at every time and every location how many days the adjusted phenology is ahead or behind the phenological development of the reference vegetation. Using such temporal methods to "adjust" phenologies may help to quantify vegetation impacts from frost, drought, wildfire, insects and diseases by permitting the most commensurate quantitative comparisons with unaffected vegetation.

17. Phenomenology of non-minimal supersymmetric models at linear colliders

Porto, Stefano

2015-06-01

The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics

18. Non-Linear Slosh Damping Model Development and Validation

Yang, H. Q.; West, Jeff

2015-01-01

Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can

19. Some computer simulations based on the linear relative risk model

Gilbert, E.S.

1991-10-01

This report presents the results of computer simulations designed to evaluate and compare the performance of the likelihood ratio statistic and the score statistic for making inferences about the linear relative risk mode. The work was motivated by data on workers exposed to low doses of radiation, and the report includes illustration of several procedures for obtaining confidence limits for the excess relative risk coefficient based on data from three studies of nuclear workers. The computer simulations indicate that with small sample sizes and highly skewed dose distributions, asymptotic approximations to the score statistic or to the likelihood ratio statistic may not be adequate. For testing the null hypothesis that the excess relative risk is equal to zero, the asymptotic approximation to the likelihood ratio statistic was adequate, but use of the asymptotic approximation to the score statistic rejected the null hypothesis too often. Frequently the likelihood was maximized at the lower constraint, and when this occurred, the asymptotic approximations for the likelihood ratio and score statistics did not perform well in obtaining upper confidence limits. The score statistic and likelihood ratio statistics were found to perform comparably in terms of power and width of the confidence limits. It is recommended that with modest sample sizes, confidence limits be obtained using computer simulations based on the score statistic. Although nuclear worker studies are emphasized in this report, its results are relevant for any study investigating linear dose-response functions with highly skewed exposure distributions. 22 refs., 14 tabs

20. A comparative study of iterative solutions to linear systems arising in quantum mechanics

Jing Yanfei; Huang Tingzhu; Duan Yong; Carpentieri, Bruno

2010-01-01

This study is mainly focused on iterative solutions with simple diagonal preconditioning to two complex-valued nonsymmetric systems of linear equations arising from a computational chemistry model problem proposed by Sherry Li of NERSC. Numerical experiments show the feasibility of iterative methods to some extent when applied to the problems and reveal the competitiveness of our recently proposed Lanczos biconjugate A-orthonormalization methods to other classic and popular iterative methods. By the way, experiment results also indicate that application specific preconditioners may be mandatory and required for accelerating convergence.

1. Performance study of Active Queue Management methods: Adaptive GRED, REDD, and GRED-Linear analytical model

Hussein Abdel-jaber

2015-10-01

Full Text Available Congestion control is one of the hot research topics that helps maintain the performance of computer networks. This paper compares three Active Queue Management (AQM methods, namely, Adaptive Gentle Random Early Detection (Adaptive GRED, Random Early Dynamic Detection (REDD, and GRED Linear analytical model with respect to different performance measures. Adaptive GRED and REDD are implemented based on simulation, whereas GRED Linear is implemented as a discrete-time analytical model. Several performance measures are used to evaluate the effectiveness of the compared methods mainly mean queue length, throughput, average queueing delay, overflow packet loss probability, and packet dropping probability. The ultimate aim is to identify the method that offers the highest satisfactory performance in non-congestion or congestion scenarios. The first comparison results that are based on different packet arrival probability values show that GRED Linear provides better mean queue length; average queueing delay and packet overflow probability than Adaptive GRED and REDD methods in the presence of congestion. Further and using the same evaluation measures, Adaptive GRED offers a more satisfactory performance than REDD when heavy congestion is present. When the finite capacity of queue values varies the GRED Linear model provides the highest satisfactory performance with reference to mean queue length and average queueing delay and all the compared methods provide similar throughput performance. However, when the finite capacity value is large, the compared methods have similar results in regard to probabilities of both packet overflowing and packet dropping.

2. Non linear permanent magnets modelling with the finite element method

Chavanne, J.; Meunier, G.; Sabonnadiere, J.C.

1989-01-01

In order to perform the calculation of permanent magnets with the finite element method, it is necessary to take into account the anisotropic behaviour of hard magnetic materials (Ferrites, NdFeB, SmCo5). In linear cases, the permeability of permanent magnets is a tensor. This one is fully described with the permeabilities parallel and perpendicular to the easy axis of the magnet. In non linear cases, the model uses a texture function which represents the distribution of the local easy axis of the cristallytes of the magnet. This function allows a good representation of the angular dependance of the coercitive field of the magnet. As a result, it is possible to express the magnetic induction B and the tensor as functions of the field and the texture parameter. This model has been implemented in the software FLUX3D where the tensor is used for the Newton-Raphson procedure. 3D demagnetization of a ferrite magnet by a NdFeB magnet is a suitable representative example. They analyze the results obtained for an ideally oriented ferrite magnet and a real one using a measured texture parameter

3. Linear collider signal of anomaly mediated supersymmetry breaking model

Ghosh Dilip Kumar; Kundu, Anirban; Roy, Probir; Roy, Sourov

2001-01-01

Though the minimal model of anomaly mediated supersymmetry breaking has been significantly constrained by recent experimental and theoretical work, there are still allowed regions of the parameter space for moderate to large values of tan β. We show that these regions will be comprehensively probed in a √s = 1 TeV e + e - linear collider. Diagnostic signals to this end are studied by zeroing in on a unique and distinct feature of a large class of models in this genre: a neutral winolike Lightest Supersymmetric Particle closely degenerate in mass with a winolike chargino. The pair production processes e + e - → e tilde L ± e tilde L ± , e tilde R ± e tilde R ± , e tilde L ± e tilde R ± , ν tilde anti ν tilde, χ tilde 1 0 χ tilde 2 0 , χ tilde 2 0 χ tilde 2 0 are all considered at √s = 1 TeV corresponding to the proposed TESLA linear collider in two natural categories of mass ordering in the sparticle spectra. The signals analysed comprise multiple combinations of fast charged leptons (any of which can act as the trigger) plus displaced vertices X D (any of which can be identified by a heavy ionizing track terminating in the detector) and/or associated soft pions with characteristic momentum distributions. (author)

4. Probabilistic model of ligaments and tendons: Quasistatic linear stretching

Bontempi, M.

2009-03-01

Ligaments and tendons have a significant role in the musculoskeletal system and are frequently subjected to injury. This study presents a model of collagen fibers, based on the study of a statistical distribution of fibers when they are subjected to quasistatic linear stretching. With respect to other methodologies, this model is able to describe the behavior of the bundle using less ad hoc hypotheses and is able to describe all the quasistatic stretch-load responses of the bundle, including the yield and failure regions described in the literature. It has two other important results: the first is that it is able to correlate the mechanical behavior of the bundle with its internal structure, and it suggests a methodology to deduce the fibers population distribution directly from the tensile-test data. The second is that it can follow fibers’ structure evolution during the stretching and it is possible to study the internal adaptation of fibers in physiological and pathological conditions.

5. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

Wang, John T.

2010-01-01

The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

6. Locally supersymmetric D=3 non-linear sigma models

Wit, B. de; Tollsten, A.K.; Nicolai, H.

1993-01-01

We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is riemannian or Kaehler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it generally decomposes, into two separate quaternionic spaces, associated with inequivalent supermultiplets. For N=5, 6, 8 there is a unique (symmetric) space for any given number of supermultiplets. Beyond that there are only theories based on a single supermultiplet for N=9, 10, 12 and 16, associated with coset spaces with the exceptional isometry groups F 4(-20) , E 6(-14) , E 7(-5) and E 8(+8) , respectively. For N=3 and N ≥ 5 the D=2 theories obtained by dimensional reduction are two-loop finite. (orig.)

7. Explicit estimating equations for semiparametric generalized linear latent variable models

Ma, Yanyuan

2010-07-05

We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.

8. Synthetic Domain Theory and Models of Linear Abadi & Plotkin Logic

Møgelberg, Rasmus Ejlers; Birkedal, Lars; Rosolini, Guiseppe

2008-01-01

Plotkin suggested using a polymorphic dual intuitionistic/linear type theory (PILLY) as a metalanguage for parametric polymorphism and recursion. In recent work the first two authors and R.L. Petersen have defined a notion of parametric LAPL-structure, which are models of PILLY, in which one can...... reason using parametricity and, for example, solve a large class of domain equations, as suggested by Plotkin.In this paper, we show how an interpretation of a strict version of Bierman, Pitts and Russo's language Lily into synthetic domain theory presented by Simpson and Rosolini gives rise...... to a parametric LAPL-structure. This adds to the evidence that the notion of LAPL-structure is a general notion, suitable for treating many different parametric models, and it provides formal proofs of consequences of parametricity expected to hold for the interpretation. Finally, we show how these results...

9. A note on probabilistic models over strings: the linear algebra approach.

Bouchard-Côté, Alexandre

2013-12-01

Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.

10. State space model extraction of thermohydraulic systems – Part I: A linear graph approach

Uren, K.R.; Schoor, G. van

2013-01-01

Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state

11. Solving large mixed linear models using preconditioned conjugate gradient iteration.

Strandén, I; Lidauer, M

1999-12-01

Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.

12. Impact of using linear optimization models in dose planning for HDR brachytherapy

Holm, Aasa; Larsson, Torbjoern; Carlsson Tedgren, Aasa

2012-01-01

Purpose: Dose plans generated with optimization models hitherto used in high-dose-rate (HDR) brachytherapy have shown a tendency to yield longer dwell times than manually optimized plans. Concern has been raised for the corresponding undesired hot spots, and various methods to mitigate these have been developed. The hypotheses upon this work is based are (a) that one cause for the long dwell times is the use of objective functions comprising simple linear penalties and (b) that alternative penalties, as these are piecewise linear, would lead to reduced length of individual dwell times. Methods: The characteristics of the linear penalties and the piecewise linear penalties are analyzed mathematically. Experimental comparisons between the two types of penalties are carried out retrospectively for a set of prostate cancer patients. Results: When the two types of penalties are compared, significant changes can be seen in the dwell times, while most dose-volume parameters do not differ significantly. On average, total dwell times were reduced by 4.2%, with a reduction of maximum dwell times by 25%, when the alternative penalties were used. Conclusions: The use of linear penalties in optimization models for HDR brachytherapy is one cause for the undesired long dwell times that arise in mathematically optimized plans. By introducing alternative penalties, a significant reduction in dwell times can be achieved for HDR brachytherapy dose plans. Although various measures for mitigating the long dwell times are already available, the observation that linear penalties contribute to their appearance is of fundamental interest.

13. Linear mixed-effects modeling approach to FMRI group analysis.

Chen, Gang; Saad, Ziad S; Britton, Jennifer C; Pine, Daniel S; Cox, Robert W

2013-06-01

Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity

14. Improved quantum efficiency models of CZTSe: GE nanolayer solar cells with a linear electric field.

Lee, Sanghyun; Price, Kent J; Saucedo, Edgardo; Giraldo, Sergio

2018-02-08

We fabricated and characterized CZTSe:Ge nanolayer (quantum efficiency for Ge doped CZTSe devices. The linear electric field model is developed with the incomplete gamma function of the quantum efficiency as compared to the empirical data at forward bias conditions. This model is characterized with a consistent set of parameters from a series of measurements and the literature. Using the analytical modelling method, the carrier collection profile in the absorber is calculated and closely fitted by the developed mathematical expressions to identify the carrier dynamics during the quantum efficiency measurement of the device. The analytical calculation is compared with the measured quantum efficiency data at various bias conditions.

15. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

Drzewiecki Wojciech

2016-12-01

Full Text Available In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques.

16. Direction of Effects in Multiple Linear Regression Models.

Wiedermann, Wolfgang; von Eye, Alexander

2015-01-01

Previous studies analyzed asymmetric properties of the Pearson correlation coefficient using higher than second order moments. These asymmetric properties can be used to determine the direction of dependence in a linear regression setting (i.e., establish which of two variables is more likely to be on the outcome side) within the framework of cross-sectional observational data. Extant approaches are restricted to the bivariate regression case. The present contribution extends the direction of dependence methodology to a multiple linear regression setting by analyzing distributional properties of residuals of competing multiple regression models. It is shown that, under certain conditions, the third central moments of estimated regression residuals can be used to decide upon direction of effects. In addition, three different approaches for statistical inference are discussed: a combined D'Agostino normality test, a skewness difference test, and a bootstrap difference test. Type I error and power of the procedures are assessed using Monte Carlo simulations, and an empirical example is provided for illustrative purposes. In the discussion, issues concerning the quality of psychological data, possible extensions of the proposed methods to the fourth central moment of regression residuals, and potential applications are addressed.

17. Linear model applied to the evaluation of pharmaceutical stability data

Renato Cesar Souza

2013-09-01

Full Text Available The expiry date on the packaging of a product gives the consumer the confidence that the product will retain its identity, content, quality and purity throughout the period of validity of the drug. The definition of this term in the pharmaceutical industry is based on stability data obtained during the product registration. By the above, this work aims to apply the linear regression according to the guideline ICH Q1E, 2003, to evaluate some aspects of a product undergoing in a registration phase in Brazil. With this propose, the evaluation was realized with the development center of a multinational company in Brazil, with samples of three different batches composed by two active principal ingredients in two different packages. Based on the preliminary results obtained, it was possible to observe the difference of degradation tendency of the product in two different packages and the relationship between the variables studied, added knowledge so new models of linear equations can be applied and developed for other products.

18. Fourth standard model family neutrino at future linear colliders

Ciftci, A.K.; Ciftci, R.; Sultansoy, S.

2005-01-01

It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac (ν 4 ) and Majorana (N 1 ) neutrinos at future linear colliders with √(s)=500 GeV, 1 TeV, and 3 TeV are considered. The cross section for the process e + e - →ν 4 ν 4 (N 1 N 1 ) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels (ν 4 (N 1 )→μ ± W ± ) provide cleanest signature at e + e - colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at √(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures

19. Generalized linear models with random effects unified analysis via H-likelihood

Lee, Youngjo; Pawitan, Yudi

2006-01-01

Since their introduction in 1972, generalized linear models (GLMs) have proven useful in the generalization of classical normal models. Presenting methods for fitting GLMs with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including combining information over trials (meta-analysis), analysis of frailty models for survival data, genetic epidemiology, and analysis of spatial and temporal models with correlated errors.Written by pioneering authorities in the field, this reference provides an introduction to various theories and examines likelihood inference and GLMs. The authors show how to extend the class of GLMs while retaining as much simplicity as possible. By maximizing and deriving other quantities from h-likelihood, they also demonstrate how to use a single algorithm for all members of the class, resulting in a faster algorithm as compared to existing alternatives. Complementing theory with examples, many of...

20. Characteristics and Properties of a Simple Linear Regression Model

Kowal Robert

2016-12-01

Full Text Available A simple linear regression model is one of the pillars of classic econometrics. Despite the passage of time, it continues to raise interest both from the theoretical side as well as from the application side. One of the many fundamental questions in the model concerns determining derivative characteristics and studying the properties existing in their scope, referring to the first of these aspects. The literature of the subject provides several classic solutions in that regard. In the paper, a completely new design is proposed, based on the direct application of variance and its properties, resulting from the non-correlation of certain estimators with the mean, within the scope of which some fundamental dependencies of the model characteristics are obtained in a much more compact manner. The apparatus allows for a simple and uniform demonstration of multiple dependencies and fundamental properties in the model, and it does it in an intuitive manner. The results were obtained in a classic, traditional area, where everything, as it might seem, has already been thoroughly studied and discovered.

1. A simple non-linear model of immune response

Gutnikov, Sergei; Melnikov, Yuri

2003-01-01

It is still unknown why the adaptive immune response in the natural immune system based on clonal proliferation of lymphocytes requires interaction of at least two different cell types with the same antigen. We present a simple mathematical model illustrating that the system with separate types of cells for antigen recognition and patogen destruction provides more robust adaptive immunity than the system where just one cell type is responsible for both recognition and destruction. The model is over-simplified as we did not have an intention of describing the natural immune system. However, our model provides a tool for testing the proposed approach through qualitative analysis of the immune system dynamics in order to construct more sophisticated models of the immune systems that exist in the living nature. It also opens a possibility to explore specific features of highly non-linear dynamics in nature-inspired computational paradigms like artificial immune systems and immunocomputing . We expect this paper to be of interest not only for mathematicians but also for biologists; therefore we made effort to explain mathematics in sufficient detail for readers without professional mathematical background

2. Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming

Cardoso, Goncalo; Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; DeForest, Nicholas; Barbosa-Povoa, Ana; Ferrao, Paulo

2013-05-23

This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6percent.

3. Distributing Correlation Coefficients of Linear Structure-Activity/Property Models

Sorana D. BOLBOACA

2011-12-01

Full Text Available Quantitative structure-activity/property relationships are mathematical relationships linking chemical structure and activity/property in a quantitative manner. These in silico approaches are frequently used to reduce animal testing and risk-assessment, as well as to increase time- and cost-effectiveness in characterization and identification of active compounds. The aim of our study was to investigate the pattern of correlation coefficients distribution associated to simple linear relationships linking the compounds structure with their activities. A set of the most common ordnance compounds found at naval facilities with a limited data set with a range of toxicities on aquatic ecosystem and a set of seven properties was studied. Statistically significant models were selected and investigated. The probability density function of the correlation coefficients was investigated using a series of possible continuous distribution laws. Almost 48% of the correlation coefficients proved fit Beta distribution, 40% fit Generalized Pareto distribution, and 12% fit Pert distribution.

4. Modeling and analysis of linearized wheel-rail contact dynamics

Soomro, Z.

2014-01-01

The dynamics of the railway vehicles are nonlinear and depend upon several factors including vehicle speed, normal load and adhesion level. The presence of contaminants on the railway track makes them unpredictable too. Therefore in order to develop an effective control strategy it is important to analyze the effect of each factor on dynamic response thoroughly. In this paper a linearized model of a railway wheel-set is developed and is later analyzed by varying the speed and adhesion level by keeping the normal load constant. A wheel-set is the wheel-axle assembly of a railroad car. Patch contact is the study of the deformation of solids that touch each other at one or more points. (author)

5. Human visual modeling and image deconvolution by linear filtering

Larminat, P. de; Barba, D.; Gerber, R.; Ronsin, J.

1978-01-01

The problem is the numerical restoration of images degraded by passing through a known and spatially invariant linear system, and by the addition of a stationary noise. We propose an improvement of the Wiener's filter to allow the restoration of such images. This improvement allows to reduce the important drawbacks of classical Wiener's filter: the voluminous data processing, the lack of consideration of the vision's characteristivs which condition the perception by the observer of the restored image. In a first paragraph, we describe the structure of the visual detection system and a modelling method of this system. In the second paragraph we explain a restoration method by Wiener filtering that takes the visual properties into account and that can be adapted to the local properties of the image. Then the results obtained on TV images or scintigrams (images obtained by a gamma-camera) are commented [fr

6. Convergence diagnostics for Eigenvalue problems with linear regression model

Shi, Bo; Petrovic, Bojan

2011-01-01

Although the Monte Carlo method has been extensively used for criticality/Eigenvalue problems, a reliable, robust, and efficient convergence diagnostics method is still desired. Most methods are based on integral parameters (multiplication factor, entropy) and either condense the local distribution information into a single value (e.g., entropy) or even disregard it. We propose to employ the detailed cycle-by-cycle local flux evolution obtained by using mesh tally mechanism to assess the source and flux convergence. By applying a linear regression model to each individual mesh in a mesh tally for convergence diagnostics, a global convergence criterion can be obtained. We exemplify this method on two problems and obtain promising diagnostics results. (author)

7. A Dynamic Linear Modeling Approach to Public Policy Change

Loftis, Matthew; Mortensen, Peter Bjerre

2017-01-01

Theories of public policy change, despite their differences, converge on one point of strong agreement. The relationship between policy and its causes can and does change over time. This consensus yields numerous empirical implications, but our standard analytical tools are inadequate for testing...... them. As a result, the dynamic and transformative relationships predicted by policy theories have been left largely unexplored in time-series analysis of public policy. This paper introduces dynamic linear modeling (DLM) as a useful statistical tool for exploring time-varying relationships in public...... policy. The paper offers a detailed exposition of the DLM approach and illustrates its usefulness with a time series analysis of U.S. defense policy from 1957-2010. The results point the way for a new attention to dynamics in the policy process and the paper concludes with a discussion of how...

8. Baryon and meson phenomenology in the extended Linear Sigma Model

Giacosa, Francesco; Habersetzer, Anja; Teilab, Khaled; Eshraim, Walaa; Divotgey, Florian; Olbrich, Lisa; Gallas, Susanna; Wolkanowski, Thomas; Janowski, Stanislaus; Heinz, Achim; Deinet, Werner; Rischke, Dirk H. [Institute for Theoretical Physics, J. W. Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Kovacs, Peter; Wolf, Gyuri [Institute for Particle and Nuclear Physics, Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525 Budapest (Hungary); Parganlija, Denis [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)

2014-07-01

The vacuum phenomenology obtained within the so-called extended Linear Sigma Model (eLSM) is presented. The eLSM Lagrangian is constructed by including from the very beginning vector and axial-vector d.o.f., and by requiring dilatation invariance and chiral symmetry. After a general introduction of the approach, particular attention is devoted to the latest results. In the mesonic sector the strong decays of the scalar and the pseudoscalar glueballs, the weak decays of the tau lepton into vector and axial-vector mesons, and the description of masses and decays of charmed mesons are shown. In the baryonic sector the omega production in proton-proton scattering and the inclusion of baryons with strangeness are described.

9. Non Abelian T-duality in Gauged Linear Sigma Models

Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto

2018-04-01

Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.

10. Comparing performance of standard and iterative linear unmixing methods for hyperspectral signatures

Gault, Travis R.; Jansen, Melissa E.; DeCoster, Mallory E.; Jansing, E. David; Rodriguez, Benjamin M.

2016-05-01

Linear unmixing is a method of decomposing a mixed signature to determine the component materials that are present in sensor's field of view, along with the abundances at which they occur. Linear unmixing assumes that energy from the materials in the field of view is mixed in a linear fashion across the spectrum of interest. Traditional unmixing methods can take advantage of adjacent pixels in the decomposition algorithm, but is not the case for point sensors. This paper explores several iterative and non-iterative methods for linear unmixing, and examines their effectiveness at identifying the individual signatures that make up simulated single pixel mixed signatures, along with their corresponding abundances. The major hurdle addressed in the proposed method is that no neighboring pixel information is available for the spectral signature of interest. Testing is performed using two collections of spectral signatures from the Johns Hopkins University Applied Physics Laboratory's Signatures Database software (SigDB): a hand-selected small dataset of 25 distinct signatures from a larger dataset of approximately 1600 pure visible/near-infrared/short-wave-infrared (VIS/NIR/SWIR) spectra. Simulated spectra are created with three and four material mixtures randomly drawn from a dataset originating from SigDB, where the abundance of one material is swept in 10% increments from 10% to 90%with the abundances of the other materials equally divided amongst the remainder. For the smaller dataset of 25 signatures, all combinations of three or four materials are used to create simulated spectra, from which the accuracy of materials returned, as well as the correctness of the abundances, is compared to the inputs. The experiment is expanded to include the signatures from the larger dataset of almost 1600 signatures evaluated using a Monte Carlo scheme with 5000 draws of three or four materials to create the simulated mixed signatures. The spectral similarity of the inputs to the

11. A comparison of linear interpolation models for iterative CT reconstruction.

Hahn, Katharina; Schöndube, Harald; Stierstorfer, Karl; Hornegger, Joachim; Noo, Frédéric

2016-12-01

Recent reports indicate that model-based iterative reconstruction methods may improve image quality in computed tomography (CT). One difficulty with these methods is the number of options available to implement them, including the selection of the forward projection model and the penalty term. Currently, the literature is fairly scarce in terms of guidance regarding this selection step, whereas these options impact image quality. Here, the authors investigate the merits of three forward projection models that rely on linear interpolation: the distance-driven method, Joseph's method, and the bilinear method. The authors' selection is motivated by three factors: (1) in CT, linear interpolation is often seen as a suitable trade-off between discretization errors and computational cost, (2) the first two methods are popular with manufacturers, and (3) the third method enables assessing the importance of a key assumption in the other methods. One approach to evaluate forward projection models is to inspect their effect on discretized images, as well as the effect of their transpose on data sets, but significance of such studies is unclear since the matrix and its transpose are always jointly used in iterative reconstruction. Another approach is to investigate the models in the context they are used, i.e., together with statistical weights and a penalty term. Unfortunately, this approach requires the selection of a preferred objective function and does not provide clear information on features that are intrinsic to the model. The authors adopted the following two-stage methodology. First, the authors analyze images that progressively include components of the singular value decomposition of the model in a reconstructed image without statistical weights and penalty term. Next, the authors examine the impact of weights and penalty on observed differences. Image quality metrics were investigated for 16 different fan-beam imaging scenarios that enabled probing various aspects

12. On the analysis of clonogenic survival data: Statistical alternatives to the linear-quadratic model

Unkel, Steffen; Belka, Claus; Lauber, Kirsten

2016-01-01

The most frequently used method to quantitatively describe the response to ionizing irradiation in terms of clonogenic survival is the linear-quadratic (LQ) model. In the LQ model, the logarithm of the surviving fraction is regressed linearly on the radiation dose by means of a second-degree polynomial. The ratio of the estimated parameters for the linear and quadratic term, respectively, represents the dose at which both terms have the same weight in the abrogation of clonogenic survival. This ratio is known as the α/β ratio. However, there are plausible scenarios in which the α/β ratio fails to sufficiently reflect differences between dose-response curves, for example when curves with similar α/β ratio but different overall steepness are being compared. In such situations, the interpretation of the LQ model is severely limited. Colony formation assays were performed in order to measure the clonogenic survival of nine human pancreatic cancer cell lines and immortalized human pancreatic ductal epithelial cells upon irradiation at 0-10 Gy. The resulting dataset was subjected to LQ regression and non-linear log-logistic regression. Dimensionality reduction of the data was performed by cluster analysis and principal component analysis. Both the LQ model and the non-linear log-logistic regression model resulted in accurate approximations of the observed dose-response relationships in the dataset of clonogenic survival. However, in contrast to the LQ model the non-linear regression model allowed the discrimination of curves with different overall steepness but similar α/β ratio and revealed an improved goodness-of-fit. Additionally, the estimated parameters in the non-linear model exhibit a more direct interpretation than the α/β ratio. Dimensionality reduction of clonogenic survival data by means of cluster analysis was shown to be a useful tool for classifying radioresistant and sensitive cell lines. More quantitatively, principal component analysis allowed

13. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

2017-02-01

To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

14. Interactions in Generalized Linear Models: Theoretical Issues and an Application to Personal Vote-Earning Attributes

Tsung-han Tsai

2013-05-01

Full Text Available There is some confusion in political science, and the social sciences in general, about the meaning and interpretation of interaction effects in models with non-interval, non-normal outcome variables. Often these terms are casually thrown into a model specification without observing that their presence fundamentally changes the interpretation of the resulting coefficients. This article explains the conditional nature of reported coefficients in models with interactions, defining the necessarily different interpretation required by generalized linear models. Methodological issues are illustrated with an application to voter information structured by electoral systems and resulting legislative behavior and democratic representation in comparative politics.

15. Modeling the frequency of opposing left-turn conflicts at signalized intersections using generalized linear regression models.

Zhang, Xin; Liu, Pan; Chen, Yuguang; Bai, Lu; Wang, Wei

2014-01-01

The primary objective of this study was to identify whether the frequency of traffic conflicts at signalized intersections can be modeled. The opposing left-turn conflicts were selected for the development of conflict predictive models. Using data collected at 30 approaches at 20 signalized intersections, the underlying distributions of the conflicts under different traffic conditions were examined. Different conflict-predictive models were developed to relate the frequency of opposing left-turn conflicts to various explanatory variables. The models considered include a linear regression model, a negative binomial model, and separate models developed for four traffic scenarios. The prediction performance of different models was compared. The frequency of traffic conflicts follows a negative binominal distribution. The linear regression model is not appropriate for the conflict frequency data. In addition, drivers behaved differently under different traffic conditions. Accordingly, the effects of conflicting traffic volumes on conflict frequency vary across different traffic conditions. The occurrences of traffic conflicts at signalized intersections can be modeled using generalized linear regression models. The use of conflict predictive models has potential to expand the uses of surrogate safety measures in safety estimation and evaluation.

16. Linear and nonlinear models for predicting fish bioconcentration factors for pesticides.

Yuan, Jintao; Xie, Chun; Zhang, Ting; Sun, Jinfang; Yuan, Xuejie; Yu, Shuling; Zhang, Yingbiao; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu

2016-08-01

This work is devoted to the applications of the multiple linear regression (MLR), multilayer perceptron neural network (MLP NN) and projection pursuit regression (PPR) to quantitative structure-property relationship analysis of bioconcentration factors (BCFs) of pesticides tested on Bluegill (Lepomis macrochirus). Molecular descriptors of a total of 107 pesticides were calculated with the DRAGON Software and selected by inverse enhanced replacement method. Based on the selected DRAGON descriptors, a linear model was built by MLR, nonlinear models were developed using MLP NN and PPR. The robustness of the obtained models was assessed by cross-validation and external validation using test set. Outliers were also examined and deleted to improve predictive power. Comparative results revealed that PPR achieved the most accurate predictions. This study offers useful models and information for BCF prediction, risk assessment, and pesticide formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

17. A linear ion optics model for extraction from a plasma ion source

Dietrich, J.

1987-01-01

A linear ion optics model for ion extraction from a plasma ion source is presented, based on the paraxial equations which account for lens effects, space charge and finite source ion temperature. This model is applied to three- and four-electrode extraction systems with circular apertures. The results are compared with experimental data and numerical calculations in the literature. It is shown that the improved calculations of space charge effects and lens effects allow better agreement to be obtained than in earlier linear optics models. A principal result is that the model presented here describes the dependence of the optimum perveance on the aspect ratio in a manner similar to the nonlinear optics theory. (orig.)

18. Nonstandard Finite Difference Method Applied to a Linear Pharmacokinetics Model

Oluwaseun Egbelowo

2017-05-01

Full Text Available We extend the nonstandard finite difference method of solution to the study of pharmacokinetic–pharmacodynamic models. Pharmacokinetic (PK models are commonly used to predict drug concentrations that drive controlled intravenous (I.V. transfers (or infusion and oral transfers while pharmacokinetic and pharmacodynamic (PD interaction models are used to provide predictions of drug concentrations affecting the response of these clinical drugs. We structure a nonstandard finite difference (NSFD scheme for the relevant system of equations which models this pharamcokinetic process. We compare the results obtained to standard methods. The scheme is dynamically consistent and reliable in replicating complex dynamic properties of the relevant continuous models for varying step sizes. This study provides assistance in understanding the long-term behavior of the drug in the system, and validation of the efficiency of the nonstandard finite difference scheme as the method of choice.

19. Performances of some estimators of linear model with ...

The estimators are compared by examing the finite properties of estimators namely; sum of biases, sum of absolute biases, sum of variances and sum of the mean squared error of the estimated parameter of the model. Results show that when the autocorrelation level is small (ρ=0.4), the MLGD estimator is best except when ...

20. Wavelet-linear genetic programming: A new approach for modeling monthly streamflow

Ravansalar, Masoud; Rajaee, Taher; Kisi, Ozgur

2017-06-01

The streamflows are important and effective factors in stream ecosystems and its accurate prediction is an essential and important issue in water resources and environmental engineering systems. A hybrid wavelet-linear genetic programming (WLGP) model, which includes a discrete wavelet transform (DWT) and a linear genetic programming (LGP) to predict the monthly streamflow (Q) in two gauging stations, Pataveh and Shahmokhtar, on the Beshar River at the Yasuj, Iran were used in this study. In the proposed WLGP model, the wavelet analysis was linked to the LGP model where the original time series of streamflow were decomposed into the sub-time series comprising wavelet coefficients. The results were compared with the single LGP, artificial neural network (ANN), a hybrid wavelet-ANN (WANN) and Multi Linear Regression (MLR) models. The comparisons were done by some of the commonly utilized relevant physical statistics. The Nash coefficients (E) were found as 0.877 and 0.817 for the WLGP model, for the Pataveh and Shahmokhtar stations, respectively. The comparison of the results showed that the WLGP model could significantly increase the streamflow prediction accuracy in both stations. Since, the results demonstrate a closer approximation of the peak streamflow values by the WLGP model, this model could be utilized for the simulation of cumulative streamflow data prediction in one month ahead.

1. Linear programming model can explain respiration of fermentation products

Möller, Philip; Liu, Xiaochen; Schuster, Stefan

2018-01-01

Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the “Warburg effect”. The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited. PMID:29415045

2. Linear programming model can explain respiration of fermentation products.

Möller, Philip; Liu, Xiaochen; Schuster, Stefan; Boley, Daniel

2018-01-01

Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the "Warburg effect". The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited.

3. Ajuste de modelos estocásticos lineares e não-lineares para a descrição do perfil longitudinal de árvores Fitting linear and nonlinear stochastic models to describe longitudinal tree profile

2007-10-01

Full Text Available Os modelos polinomiais são mais difundidos no meio florestal brasileiro na descrição do perfil de árvores devido à sua facilidade de ajuste e precisão. O mesmo não ocorre com os modelos não-lineares, os quais possuem maior dificuldade de ajuste. Dentre os modelos não-lineares clássicos, na descrição do perfil, podem-se citar o de Gompertz, o Logístico e o de Weibull. Portanto, este estudo visou comparar os modelos lineares e não lineares para a descrição do perfil de árvores. As medidas de comparação foram o coeficiente de determinação (R², o erro-padrão residual (s yx, o coeficiente de determinação corrigido (R²ajustado, o gráfico dos resíduos e a facilidade de ajuste. Os resultados ressaltaram que, dentre os modelos não-lineares, o que obteve melhor desempenho, de forma geral, foi o modelo Logístico, apesar de o modelo de Gompertz ser melhor em termos de erro-padrão residual. Nos modelos lineares, o polinômio proposto por Pires & Calegario foi superior aos demais. Ao comparar os modelos não-lineares com os lineares, o modelo Logístico foi melhor em razão, principalmente, do fato de o comportamento dos dados ser não-linear, à baixa correlação entre os parâmetros e à fácil interpretação deles, facilitando a convergência e o ajuste.Polynomial models are most commonly used in Brazilian forestry for taper modeling due to its straightforwardly fitting and precision. The use of nonlinear regression classic models, like Gompertz, Logistic and Weibull, is not very common in Brazil. Therefore, this study aimed to verify the best nonlinear and linear models, and among these the best model to describe the longitudinal tree profile. The comparison measures were: R², syx, R²adjusted, residual graphics and fitting convergence. The results pointed out that among the non-linear models the best behavior, in general, was given by the Logistic model, although the Gompertz model was superior compared with the Weibull

4. Generalized Functional Linear Models With Semiparametric Single-Index Interactions

Li, Yehua

2010-06-01

We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.

5. Sparse linear models: Variational approximate inference and Bayesian experimental design

Seeger, Matthias W

2009-01-01

A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.

6. Sparse linear models: Variational approximate inference and Bayesian experimental design

Seeger, Matthias W [Saarland University and Max Planck Institute for Informatics, Campus E1.4, 66123 Saarbruecken (Germany)

2009-12-01

A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.

7. Generalized Functional Linear Models With Semiparametric Single-Index Interactions

Li, Yehua; Wang, Naisyin; Carroll, Raymond J.

2010-01-01

We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.

8. Modeling containment of large wildfires using generalized linear mixed-model analysis

Mark Finney; Isaac C. Grenfell; Charles W. McHugh

2009-01-01

Billions of dollars are spent annually in the United States to contain large wildland fires, but the factors contributing to suppression success remain poorly understood. We used a regression model (generalized linear mixed-model) to model containment probability of individual fires, assuming that containment was a repeated-measures problem (fixed effect) and...

9. Stochastic linear hybrid systems: Modeling, estimation, and application

Seah, Chze Eng

Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS

10. Modelling the influence of sensory dynamics on linear and nonlinear driver steering control

Nash, C. J.; Cole, D. J.

2018-05-01

A recent review of the literature has indicated that sensory dynamics play an important role in the driver-vehicle steering task, motivating the design of a new driver model incorporating human sensory systems. This paper presents a full derivation of the linear driver model developed in previous work, and extends the model to control a vehicle with nonlinear tyres. Various nonlinear controllers and state estimators are compared with different approximations of the true system dynamics. The model simulation time is found to increase significantly with the complexity of the controller and state estimator. In general the more complex controllers perform best, although with certain vehicle and tyre models linearised controllers perform as well as a full nonlinear optimisation. Various extended Kalman filters give similar results, although the driver's sensory dynamics reduce control performance compared with full state feedback. The new model could be used to design vehicle systems which interact more naturally and safely with a human driver.

11. Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods.

Ho, Yuh-Shan

2006-01-01

A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.

12. Identification of Affine Linear Parameter Varying Models for Adaptive Interventions in Fibromyalgia Treatment.

Dos Santos, P Lopes; Deshpande, Sunil; Rivera, Daniel E; Azevedo-Perdicoúlis, T-P; Ramos, J A; Younger, Jarred

2013-12-31

There is good evidence that naltrexone, an opioid antagonist, has a strong neuroprotective role and may be a potential drug for the treatment of fibromyalgia. In previous work, some of the authors used experimental clinical data to identify input-output linear time invariant models that were used to extract useful information about the effect of this drug on fibromyalgia symptoms. Additional factors such as anxiety, stress, mood, and headache, were considered as additive disturbances. However, it seems reasonable to think that these factors do not affect the drug actuation, but only the way in which a participant perceives how the drug actuates on herself. Under this hypothesis the linear time invariant models can be replaced by State-Space Affine Linear Parameter Varying models where the disturbances are seen as a scheduling signal signal only acting at the parameters of the output equation. In this paper a new algorithm for identifying such a model is proposed. This algorithm minimizes a quadratic criterion of the output error. Since the output error is a linear function of some parameters, the Affine Linear Parameter Varying system identification is formulated as a separable nonlinear least squares problem. Likewise other identification algorithms using gradient optimization methods several parameter derivatives are dynamical systems that must be simulated. In order to increase time efficiency a canonical parametrization that minimizes the number of systems to be simulated is chosen. The effectiveness of the algorithm is assessed in a case study where an Affine Parameter Varying Model is identified from the experimental data used in the previous study and compared with the time-invariant model.

13. A Linear Mixed-Effects Model of Wireless Spectrum Occupancy

2010-01-01

Full Text Available We provide regression analysis-based statistical models to explain the usage of wireless spectrum across four mid-size US cities in four frequency bands. Specifically, the variations in spectrum occupancy across space, time, and frequency are investigated and compared between different sites within the city as well as with other cities. By applying the mixed-effects models, several conclusions are drawn that give the occupancy percentage and the ON time duration of the licensed signal transmission as a function of several predictor variables.

14. A comparative study of Kalman filter and Linear Matrix Inequality based H infinity filter for SPND delay compensation

Tamboli, P.K.; Duttagupta, Siddhartha P.; Roy, Kallol

2016-01-01

Highlights: • Derivation for delay compensation algorithm using recursive Kalman filter. • Derivation for delay compensation algorithm using Linear Matrix Inequality based H infinity filter. • Process modeling suitable for delay compensation. • Dynamic tuning of the delay compensation algorithm for both Kalman and H infinity filter. • Simulations and trade-off curve for Kalman and H infinity filter. - Abstract: This paper deals with delay compensation of vanadium Self Powered Neutron Detectors (SPNDs) using Linear Matrix Inequality (LMI) based H-infinity filtering method and compares the results with Kalman filtering method. The entire study is established upon the framework of neutron flux estimation in large core Pressurized Heavy Water Reactor (PHWR) in which delayed SPNDs such as vanadium SPNDs are used as in-core flux monitoring detectors. The use of vanadium SPNDs are limited to 3-D flux mapping despite of providing better Signal to Noise Ratio as compared to other prompt SPNDs, due to their small prompt component in the signal. The use of an appropriate delay compensation technique has been always considered to be an effective strategy to build a prompt and accurate estimate of the neutron flux. We also indicate the noise-response trade-off curve for both the techniques. Since all the delay compensation algorithms always suffer from noise amplification, we propose an efficient adaptive parameter tuning technique for improving performance of the filtering algorithm against noise in the measurement.

15. Modelling lactation curve for milk fat to protein ratio in Iranian buffaloes (Bubalus bubalis) using non-linear mixed models.

2016-08-01

The aim of this study was to compare seven non-linear mathematical models (Brody, Wood, Dhanoa, Sikka, Nelder, Rook and Dijkstra) to examine their efficiency in describing the lactation curves for milk fat to protein ratio (FPR) in Iranian buffaloes. Data were 43 818 test-day records for FPR from the first three lactations of Iranian buffaloes which were collected on 523 dairy herds in the period from 1996 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly FPR records of buffaloes using the non-linear mixed model procedure (PROC NLMIXED) in SAS and the parameters were estimated. The models were tested for goodness of fit using Akaike's information criterion (AIC), Bayesian information criterion (BIC) and log maximum likelihood (-2 Log L). The Nelder and Sikka mixed models provided the best fit of lactation curve for FPR in the first and second lactations of Iranian buffaloes, respectively. However, Wood, Dhanoa and Sikka mixed models provided the best fit of lactation curve for FPR in the third parity buffaloes. Evaluation of first, second and third lactation features showed that all models, except for Dijkstra model in the third lactation, under-predicted test time at which daily FPR was minimum. On the other hand, minimum FPR was over-predicted by all equations. Evaluation of the different models used in this study indicated that non-linear mixed models were sufficient for fitting test-day FPR records of Iranian buffaloes.

16. Comparing the Discrete and Continuous Logistic Models

Gordon, Sheldon P.

2008-01-01

The solutions of the discrete logistic growth model based on a difference equation and the continuous logistic growth model based on a differential equation are compared and contrasted. The investigation is conducted using a dynamic interactive spreadsheet. (Contains 5 figures.)

17. QSAR models for prediction study of HIV protease inhibitors using support vector machines, neural networks and multiple linear regression

Rachid Darnag

2017-02-01

Full Text Available Support vector machines (SVM represent one of the most promising Machine Learning (ML tools that can be applied to develop a predictive quantitative structure–activity relationship (QSAR models using molecular descriptors. Multiple linear regression (MLR and artificial neural networks (ANNs were also utilized to construct quantitative linear and non linear models to compare with the results obtained by SVM. The prediction results are in good agreement with the experimental value of HIV activity; also, the results reveal the superiority of the SVM over MLR and ANN model. The contribution of each descriptor to the structure–activity relationships was evaluated.

18. Linear stability analysis of flow instabilities with a nodalized reduced order model in heated channel

Paul, Subhanker; Singh, Suneet

2015-01-01

The prime objective of the presented work is to develop a Nodalized Reduced Order Model (NROM) to carry linear stability analysis of flow instabilities in a two-phase flow system. The model is developed by dividing the single phase and two-phase region of a uniformly heated channel into N number of nodes followed by time dependent spatial linear approximations for single phase enthalpy and two-phase quality between the consecutive nodes. Moving boundary scheme has been adopted in the model, where all the node boundaries vary with time due to the variation of boiling boundary inside the heated channel. Using a state space approach, the instability thresholds are delineated by stability maps plotted in parameter planes of phase change number (N pch ) and subcooling number (N sub ). The prime feature of the present model is that, though the model equations are simpler due to presence of linear-linear approximations for single phase enthalpy and two-phase quality, yet the results are in good agreement with the existing models (Karve [33]; Dokhane [34]) where the model equations run for several pages and experimental data (Solberg [41]). Unlike the existing ROMs, different two-phase friction factor multiplier correlations have been incorporated in the model. The applicability of various two-phase friction factor multipliers and their effects on stability behaviour have been depicted by carrying a comparative study. It is also observed that the Friedel model for friction factor calculations produces the most accurate results with respect to the available experimental data. (authors)

19. Comparison of Linear and Nonlinear Model Predictive Control for Optimization of Spray Dryer Operation

Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

2015-01-01

In this paper, we compare the performance of an economically optimizing Nonlinear Model Predictive Controller (E-NMPC) to a linear tracking Model Predictive Controller (MPC) for a spray drying plant. We find in this simulation study, that the economic performance of the two controllers are almost...... equal. We evaluate the economic performance with an industrially recorded disturbance scenario, where unmeasured disturbances and model mismatch are present. The state of the spray dryer, used in the E-NMPC and MPC, is estimated using Kalman Filters with noise covariances estimated by a maximum...

20. Radio-over-fiber linearization with optimized genetic algorithm CPWL model.

Mateo, Carlos; Carro, Pedro L; García-Dúcar, Paloma; De Mingo, Jesús; Salinas, Íñigo

2017-02-20

This article proposes an optimized version of a canonical piece-wise-linear (CPWL) digital predistorter in order to enhance the linearity of a radio-over-fiber (RoF) LTE mobile fronthaul. In this work, we propose a threshold allocation optimization process carried out by a genetic algorithm (GA) in order to optimize the CPWL model (GA-CPWL). Firstly, experiments show how the CPWL model outperforms the classical memory polynomial DPD in an intensity modulation/direct detection (IM/DD) RoF link. Then, the GA-CPWL predistorter is compared with the CPWL model in several scenarios, in order to verify that the proposed DPD offers better performance in different optical transmission conditions. Experimental results reveal that with a proper threshold allocation, the GA-CPWL predistorter offers very promising outcomes.

1. Behavioral and macro modeling using piecewise linear techniques

Kruiskamp, M.W.; Leenaerts, D.M.W.; Antao, B.

1998-01-01

In this paper we will demonstrate that most digital, analog as well as behavioral components can be described using piecewise linear approximations of their real behavior. This leads to several advantages from the viewpoint of simulation. We will also give a method to store the resulting linear

2. Simultaneous Balancing and Model Reduction of Switched Linear Systems

Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.

2011-01-01

In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not

3. Sampled-data models for linear and nonlinear systems

Yuz, Juan I

2014-01-01

Sampled-data Models for Linear and Nonlinear Systems provides a fresh new look at a subject with which many researchers may think themselves familiar. Rather than emphasising the differences between sampled-data and continuous-time systems, the authors proceed from the premise that, with modern sampling rates being as high as they are, it is becoming more appropriate to emphasise connections and similarities. The text is driven by three motives: ·      the ubiquity of computers in modern control and signal-processing equipment means that sampling of systems that really evolve continuously is unavoidable; ·      although superficially straightforward, sampling can easily produce erroneous results when not treated properly; and ·      the need for a thorough understanding of many aspects of sampling among researchers and engineers dealing with applications to which they are central. The authors tackle many misconceptions which, although appearing reasonable at first sight, are in fact either p...

4. Dynamics of edge currents in a linearly quenched Haldane model

Mardanya, Sougata; Bhattacharya, Utso; Agarwal, Amit; Dutta, Amit

2018-03-01

In a finite-time quantum quench of the Haldane model, the Chern number determining the topology of the bulk remains invariant, as long as the dynamics is unitary. Nonetheless, the corresponding boundary attribute, the edge current, displays interesting dynamics. For the case of sudden and adiabatic quenches the postquench edge current is solely determined by the initial and the final Hamiltonians, respectively. However for a finite-time (τ ) linear quench in a Haldane nanoribbon, we show that the evolution of the edge current from the sudden to the adiabatic limit is not monotonic in τ and has a turning point at a characteristic time scale τ =τ0 . For small τ , the excited states lead to a huge unidirectional surge in the edge current of both edges. On the other hand, in the limit of large τ , the edge current saturates to its expected equilibrium ground-state value. This competition between the two limits lead to the observed nonmonotonic behavior. Interestingly, τ0 seems to depend only on the Semenoff mass and the Haldane flux. A similar dynamics for the edge current is also expected in other systems with topological phases.

5. Parameter estimation and hypothesis testing in linear models

Koch, Karl-Rudolf

1999-01-01

The necessity to publish the second edition of this book arose when its third German edition had just been published. This second English edition is there­ fore a translation of the third German edition of Parameter Estimation and Hypothesis Testing in Linear Models, published in 1997. It differs from the first English edition by the addition of a new chapter on robust estimation of parameters and the deletion of the section on discriminant analysis, which has been more completely dealt with by the author in the book Bayesian In­ ference with Geodetic Applications, Springer-Verlag, Berlin Heidelberg New York, 1990. Smaller additions and deletions have been incorporated, to im­ prove the text, to point out new developments or to eliminate errors which became apparent. A few examples have been also added. I thank Springer-Verlag for publishing this second edition and for the assistance in checking the translation, although the responsibility of errors remains with the author. I also want to express my thanks...

6. Linear multivariate evaluation models for spatial perception of soundscape.

Deng, Zhiyong; Kang, Jian; Wang, Daiwei; Liu, Aili; Kang, Joe Zhengyu

2015-11-01

Soundscape is a sound environment that emphasizes the awareness of auditory perception and social or cultural understandings. The case of spatial perception is significant to soundscape. However, previous studies on the auditory spatial perception of the soundscape environment have been limited. Based on 21 native binaural-recorded soundscape samples and a set of auditory experiments for subjective spatial perception (SSP), a study of the analysis among semantic parameters, the inter-aural-cross-correlation coefficient (IACC), A-weighted-equal sound-pressure-level (L(eq)), dynamic (D), and SSP is introduced to verify the independent effect of each parameter and to re-determine some of their possible relationships. The results show that the more noisiness the audience perceived, the worse spatial awareness they received, while the closer and more directional the sound source image variations, dynamics, and numbers of sound sources in the soundscape are, the better the spatial awareness would be. Thus, the sensations of roughness, sound intensity, transient dynamic, and the values of Leq and IACC have a suitable range for better spatial perception. A better spatial awareness seems to promote the preference slightly for the audience. Finally, setting SSPs as functions of the semantic parameters and Leq-D-IACC, two linear multivariate evaluation models of subjective spatial perception are proposed.

7. Form factors in the projected linear chiral sigma model

Alberto, P.; Coimbra Univ.; Bochum Univ.; Ruiz Arriola, E.; Fiolhais, M.; Urbano, J.N.; Coimbra Univ.; Goeke, K.; Gruemmer, F.; Bochum Univ.

1990-01-01

Several nucleon form factors are computed within the framework of the linear chiral soliton model. To this end variational means and projection techniques applied to generalized hedgehog quark-boson Fock states are used. In this procedure the Goldberger-Treiman relation and a virial theorem for the pion-nucleon form factor are well fulfilled demonstrating the consistency of the treatment. Both proton and neutron charge form factors are correctly reproduced, as well as the proton magnetic one. The shapes of the neutron magnetic and of the axial form factors are good but their absolute values at the origin are too large. The slopes of all the form factors at zero momentum transfer are in good agreement with the experimental data. The pion-nucleon form factor exhibits to great extent a monopole shape with a cut-off mass of Λ=690 MeV. Electromagnetic form factors for the vertex γNΔ and the nucleon spin distribution are also evaluated and discussed. (orig.)

8. A Comparative Evaluation of the Linear Dimensional Accuracy of Four Impression Techniques using Polyether Impression Material.

Manoj, Smita Sara; Cherian, K P; Chitre, Vidya; Aras, Meena

2013-12-01

There is much discussion in the dental literature regarding the superiority of one impression technique over the other using addition silicone impression material. However, there is inadequate information available on the accuracy of different impression techniques using polyether. The purpose of this study was to assess the linear dimensional accuracy of four impression techniques using polyether on a laboratory model that simulates clinical practice. The impression material used was Impregum Soft™, 3 M ESPE and the four impression techniques used were (1) Monophase impression technique using medium body impression material. (2) One step double mix impression technique using heavy body and light body impression materials simultaneously. (3) Two step double mix impression technique using a cellophane spacer (heavy body material used as a preliminary impression to create a wash space with a cellophane spacer, followed by the use of light body material). (4) Matrix impression using a matrix of polyether occlusal registration material. The matrix is loaded with heavy body material followed by a pick-up impression in medium body material. For each technique, thirty impressions were made of a stainless steel master model that contained three complete crown abutment preparations, which were used as the positive control. Accuracy was assessed by measuring eight dimensions (mesiodistal, faciolingual and inter-abutment) on stone dies poured from impressions of the master model. A two-tailed t test was carried out to test the significance in difference of the distances between the master model and the stone models. One way analysis of variance (ANOVA) was used for multiple group comparison followed by the Bonferroni's test for pair wise comparison. The accuracy was tested at α = 0.05. In general, polyether impression material produced stone dies that were smaller except for the dies produced from the one step double mix impression technique. The ANOVA revealed a highly

9. Numerical study of corner separation in a linear compressor cascade using various turbulence models

Liu Yangwei

2016-06-01

Full Text Available Three-dimensional corner separation is a common phenomenon that significantly affects compressor performance. Turbulence model is still a weakness for RANS method on predicting corner separation flow accurately. In the present study, numerical study of corner separation in a linear highly loaded prescribed velocity distribution (PVD compressor cascade has been investigated using seven frequently used turbulence models. The seven turbulence models include Spalart–Allmaras model, standard k–ɛ model, realizable k–ɛ model, standard k–ω model, shear stress transport k–ω model, v2–f model and Reynolds stress model. The results of these turbulence models have been compared and analyzed in detail with available experimental data. It is found the standard k–ɛ model, realizable k–ɛ model, v2–f model and Reynolds stress model can provide reasonable results for predicting three dimensional corner separation in the compressor cascade. The Spalart–Allmaras model, standard k–ω model and shear stress transport k–ω model overestimate corner separation region at incidence of 0°. The turbulence characteristics are discussed and turbulence anisotropy is observed to be stronger in the corner separating region.

10. An improved risk-explicit interval linear programming model for pollution load allocation for watershed management.

Xia, Bisheng; Qian, Xin; Yao, Hong

2017-11-01

Although the risk-explicit interval linear programming (REILP) model has solved the problem of having interval solutions, it has an equity problem, which can lead to unbalanced allocation between different decision variables. Therefore, an improved REILP model is proposed. This model adds an equity objective function and three constraint conditions to overcome this equity problem. In this case, pollution reduction is in proportion to pollutant load, which supports balanced development between different regional economies. The model is used to solve the problem of pollution load allocation in a small transboundary watershed. Compared with the REILP original model result, our model achieves equity between the upstream and downstream pollutant loads; it also overcomes the problem of greatest pollution reduction, where sources are nearest to the control section. The model provides a better solution to the problem of pollution load allocation than previous versions.

11. Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses

Martinez-Luaces, Victor

2009-01-01

In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…

12. An improved robust model predictive control for linear parameter-varying input-output models

Abbas, H.S.; Hanema, J.; Tóth, R.; Mohammadpour, J.; Meskin, N.

2018-01-01

This paper describes a new robust model predictive control (MPC) scheme to control the discrete-time linear parameter-varying input-output models subject to input and output constraints. Closed-loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal

13. A new approach to modeling linear accelerator systems

Gillespie, G.H.; Hill, B.W.; Jameson, R.A.

1994-01-01

A novel computer code is being developed to generate system level designs of radiofrequency ion accelerators with specific applications to machines of interest to Accelerator Driven Transmutation Technologies (ADTT). The goal of the Accelerator System Model (ASM) code is to create a modeling and analysis tool that is easy to use, automates many of the initial design calculations, supports trade studies used in accessing alternate designs and yet is flexible enough to incorporate new technology concepts as they emerge. Hardware engineering parameters and beam dynamics are to be modeled at comparable levels of fidelity. Existing scaling models of accelerator subsystems were used to produce a prototype of ASM (version 1.0) working within the Shell for Particle Accelerator Related Code (SPARC) graphical user interface. A small user group has been testing and evaluating the prototype for about a year. Several enhancements and improvements are now being developed. The current version of ASM is described and examples of the modeling and analysis capabilities are illustrated. The results of an example study, for an accelerator concept typical of ADTT applications, is presented and sample displays from the computer interface are shown

14. A non-linear state space approach to model groundwater fluctuations

Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.

2006-01-01

A non-linear state space model is developed for describing groundwater fluctuations. Non-linearity is introduced by modeling the (unobserved) degree of water saturation of the root zone. The non-linear relations are based on physical concepts describing the dependence of both the actual

15. Half-trek criterion for generic identifiability of linear structural equation models

Foygel, R.; Draisma, J.; Drton, M.

2012-01-01

A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations

16. Half-trek criterion for generic identifiability of linear structural equation models

Foygel, R.; Draisma, J.; Drton, M.

2011-01-01

A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations

17. On-line validation of linear process models using generalized likelihood ratios

Tylee, J.L.

1981-12-01

A real-time method for testing the validity of linear models of nonlinear processes is described and evaluated. Using generalized likelihood ratios, the model dynamics are continually monitored to see if the process has moved far enough away from the nominal linear model operating point to justify generation of a new linear model. The method is demonstrated using a seventh-order model of a natural circulation steam generator

18. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

Drzewiecki, Wojciech

2016-12-01

In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.

19. A Bivariate Generalized Linear Item Response Theory Modeling Framework to the Analysis of Responses and Response Times.

Molenaar, Dylan; Tuerlinckx, Francis; van der Maas, Han L J

2015-01-01

A generalized linear modeling framework to the analysis of responses and response times is outlined. In this framework, referred to as bivariate generalized linear item response theory (B-GLIRT), separate generalized linear measurement models are specified for the responses and the response times that are subsequently linked by cross-relations. The cross-relations can take various forms. Here, we focus on cross-relations with a linear or interaction term for ability tests, and cross-relations with a curvilinear term for personality tests. In addition, we discuss how popular existing models from the psychometric literature are special cases in the B-GLIRT framework depending on restrictions in the cross-relation. This allows us to compare existing models conceptually and empirically. We discuss various extensions of the traditional models motivated by practical problems. We also illustrate the applicability of our approach using various real data examples, including data on personality and cognitive ability.

20. The Accuracy and Reproducibility of Linear Measurements Made on CBCT-derived Digital Models.

2016-04-01

To evaluate the accuracy and reproducibility of linear measurements made on cone-beam computed tomography (CBCT)-derived digital models. A total of 25 patients (44% female, 18.7 ± 4 years) who had CBCT images for diagnostic purposes were included. Plaster models were obtained and digital models were extracted from CBCT scans. Seven linear measurements from predetermined landmarks were measured and analyzed on plaster models and the corresponding digital models. The measurements included arch length and width at different sites. Paired t test and Bland-Altman analysis were used to evaluate the accuracy of measurements on digital models compared to the plaster models. Also, intraclass correlation coefficients (ICCs) were used to evaluate the reproducibility of the measurements in order to assess the intraobserver reliability. The statistical analysis showed significant differences on 5 out of 14 variables, and the mean differences ranged from -0.48 to 0.51 mm. The Bland-Altman analysis revealed that the mean difference between variables was (0.14 ± 0.56) and (0.05 ± 0.96) mm and limits of agreement between the two methods ranged from -1.2 to 0.96 and from -1.8 to 1.9 mm in the maxilla and the mandible, respectively. The intraobserver reliability values were determined for all 14 variables of two types of models separately. The mean ICC value for the plaster models was 0.984 (0.924-0.999), while it was 0.946 for the CBCT models (range from 0.850 to 0.985). Linear measurements obtained from the CBCT-derived models appeared to have a high level of accuracy and reproducibility.

1. Simultaneous Balancing and Model Reduction of Switched Linear Systems

Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.

2011-01-01

In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not limited to a certain type of balancing, and they are applicable for different types of balancing corresponding to different equations, like Lyapunov or Riccati equations. The results obtained are ...

2. Linear regression metamodeling as a tool to summarize and present simulation model results.

Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

2013-10-01

Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

3. Developing ontological model of computational linear algebra - preliminary considerations

Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Lirkov, I.

2013-10-01

The aim of this paper is to propose a method for application of ontologically represented domain knowledge to support Grid users. The work is presented in the context provided by the Agents in Grid system, which aims at development of an agent-semantic infrastructure for efficient resource management in the Grid. Decision support within the system should provide functionality beyond the existing Grid middleware, specifically, help the user to choose optimal algorithm and/or resource to solve a problem from a given domain. The system assists the user in at least two situations. First, for users without in-depth knowledge about the domain, it should help them to select the method and the resource that (together) would best fit the problem to be solved (and match the available resources). Second, if the user explicitly indicates the method and the resource configuration, it should "verify" if her choice is consistent with the expert recommendations (encapsulated in the knowledge base). Furthermore, one of the goals is to simplify the use of the selected resource to execute the job; i.e., provide a user-friendly method of submitting jobs, without required technical knowledge about the Grid middleware. To achieve the mentioned goals, an adaptable method of expert knowledge representation for the decision support system has to be implemented. The selected approach is to utilize ontologies and semantic data processing, supported by multicriterial decision making. As a starting point, an area of computational linear algebra was selected to be modeled, however, the paper presents a general approach that shall be easily extendable to other domains.

4. A Comparative of business process modelling techniques

Tangkawarow, I. R. H. T.; Waworuntu, J.

2016-04-01

5. Delta-tilde interpretation of standard linear mixed model results

Brockhoff, Per Bruun; Amorim, Isabel de Sousa; Kuznetsova, Alexandra

2016-01-01

effects relative to the residual error and to choose the proper effect size measure. For multi-attribute bar plots of F-statistics this amounts, in balanced settings, to a simple transformation of the bar heights to get them transformed into depicting what can be seen as approximately the average pairwise...... data set and compared to actual d-prime calculations based on Thurstonian regression modeling through the ordinal package. For more challenging cases we offer a generic "plug-in" implementation of a version of the method as part of the R-package SensMixed. We discuss and clarify the bias mechanisms...

6. Comparing Consider-Covariance Analysis with Sigma-Point Consider Filter and Linear-Theory Consider Filter Formulations

Lisano, Michael E.

2007-01-01

Recent literature in applied estimation theory reflects growing interest in the sigma-point (also called unscented ) formulation for optimal sequential state estimation, often describing performance comparisons with extended Kalman filters as applied to specific dynamical problems [c.f. 1, 2, 3]. Favorable attributes of sigma-point filters are described as including a lower expected error for nonlinear even non-differentiable dynamical systems, and a straightforward formulation not requiring derivation or implementation of any partial derivative Jacobian matrices. These attributes are particularly attractive, e.g. in terms of enabling simplified code architecture and streamlined testing, in the formulation of estimators for nonlinear spaceflight mechanics systems, such as filter software onboard deep-space robotic spacecraft. As presented in [4], the Sigma-Point Consider Filter (SPCF) algorithm extends the sigma-point filter algorithm to the problem of consider covariance analysis. Considering parameters in a dynamical system, while estimating its state, provides an upper bound on the estimated state covariance, which is viewed as a conservative approach to designing estimators for problems of general guidance, navigation and control. This is because, whether a parameter in the system model is observable or not, error in the knowledge of the value of a non-estimated parameter will increase the actual uncertainty of the estimated state of the system beyond the level formally indicated by the covariance of an estimator that neglects errors or uncertainty in that parameter. The equations for SPCF covariance evolution are obtained in a fashion similar to the derivation approach taken with standard (i.e. linearized or extended) consider parameterized Kalman filters (c.f. [5]). While in [4] the SPCF and linear-theory consider filter (LTCF) were applied to an illustrative linear dynamics/linear measurement problem, in the present work examines the SPCF as applied to

7. Downscaling of rainfall in Peru using Generalised Linear Models

Bergin, E.; Buytaert, W.; Onof, C.; Wheater, H.

2012-04-01

The assessment of water resources in the Peruvian Andes is particularly important because the Peruvian economy relies heavily on agriculture. Much of the agricultural land is situated near to the coast and relies on large quantities of water for irrigation. The simulation of synthetic rainfall series is thus important to evaluate the reliability of water supplies for current and future scenarios of climate change. In addition to water resources concerns, there is also a need to understand extreme heavy rainfall events, as there was significant flooding in Machu Picchu in 2010. The region exhibits a reduction of rainfall in 1983, associated with El Nino Southern Oscillation (SOI). NCEP Reanalysis 1 data was used to provide weather variable data. Correlations were calculated for several weather variables using raingauge data in the Andes. These were used to evaluate teleconnections and provide suggested covariates for the downscaling model. External covariates used in the model include sea level pressure and sea surface temperature over the region of the Humboldt Current. Relative humidity and temperature data over the region are also included. The SOI teleconnection is also used. Covariates are standardised using observations for 1960-1990. The GlimClim downscaling model was used to fit a stochastic daily rainfall model to 13 sites in the Peruvian Andes. Results indicate that the model is able to reproduce rainfall statistics well, despite the large area used. Although the correlation between individual rain gauges is generally quite low, all sites are affected by similar weather patterns. This is an assumption of the GlimClim downscaling model. Climate change scenarios are considered using several GCM outputs for the A1B scenario. GCM data was corrected for bias using 1960-1990 outputs from the 20C3M scenario. Rainfall statistics for current and future scenarios are compared. The region shows an overall decrease in mean rainfall but with an increase in variance.

8. Longitudinal mathematics development of students with learning disabilities and students without disabilities: a comparison of linear, quadratic, and piecewise linear mixed effects models.

Kohli, Nidhi; Sullivan, Amanda L; Sadeh, Shanna; Zopluoglu, Cengiz

2015-04-01

Effective instructional planning and intervening rely heavily on accurate understanding of students' growth, but relatively few researchers have examined mathematics achievement trajectories, particularly for students with special needs. We applied linear, quadratic, and piecewise linear mixed-effects models to identify the best-fitting model for mathematics development over elementary and middle school and to ascertain differences in growth trajectories of children with learning disabilities relative to their typically developing peers. The analytic sample of 2150 students was drawn from the Early Childhood Longitudinal Study - Kindergarten Cohort, a nationally representative sample of United States children who entered kindergarten in 1998. We first modeled students' mathematics growth via multiple mixed-effects models to determine the best fitting model of 9-year growth and then compared the trajectories of students with and without learning disabilities. Results indicate that the piecewise linear mixed-effects model captured best the functional form of students' mathematics trajectories. In addition, there were substantial achievement gaps between students with learning disabilities and students with no disabilities, and their trajectories differed such that students without disabilities progressed at a higher rate than their peers who had learning disabilities. The results underscore the need for further research to understand how to appropriately model students' mathematics trajectories and the need for attention to mathematics achievement gaps in policy. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

9. Adaptive rival penalized competitive learning and combined linear predictor model for financial forecast and investment.

Cheung, Y M; Leung, W M; Xu, L

1997-01-01

We propose a prediction model called Rival Penalized Competitive Learning (RPCL) and Combined Linear Predictor method (CLP), which involves a set of local linear predictors such that a prediction is made by the combination of some activated predictors through a gating network (Xu et al., 1994). Furthermore, we present its improved variant named Adaptive RPCL-CLP that includes an adaptive learning mechanism as well as a data pre-and-post processing scheme. We compare them with some existing models by demonstrating their performance on two real-world financial time series--a China stock price and an exchange-rate series of US Dollar (USD) versus Deutschmark (DEM). Experiments have shown that Adaptive RPCL-CLP not only outperforms the other approaches with the smallest prediction error and training costs, but also brings in considerable high profits in the trading simulation of foreign exchange market.

10. Fuzzy linear model for production optimization of mining systems with multiple entities

Vujic, Slobodan; Benovic, Tomo; Miljanovic, Igor; Hudej, Marjan; Milutinovic, Aleksandar; Pavlovic, Petar

2011-12-01

Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research methods in mining engineering. After the introductory review of properties and limitations of applying LP, short reviews of the general settings of deterministic and fuzzy LP models are presented. With the purpose of comparative analysis, the application of both LP models is presented using the example of the Bauxite Basin Niksic with five mines. After the assessment, LP is an efficient mathematical modeling tool in production planning and solving many other single-criteria optimization problems of mining engineering. After the comparison of advantages and deficiencies of both deterministic and fuzzy LP models, the conclusion presents benefits of the fuzzy LP model but is also stating that seeking the optimal plan of production means to accomplish the overall analysis that will encompass the LP model approaches.

11. The Dangers of Estimating V˙O2max Using Linear, Nonexercise Prediction Models.

Nevill, Alan M; Cooke, Carlton B

2017-05-01

This study aimed to compare the accuracy and goodness of fit of two competing models (linear vs allometric) when estimating V˙O2max (mL·kg·min) using nonexercise prediction models. The two competing models were fitted to the V˙O2max (mL·kg·min) data taken from two previously published studies. Study 1 (the Allied Dunbar National Fitness Survey) recruited 1732 randomly selected healthy participants, 16 yr and older, from 30 English parliamentary constituencies. Estimates of V˙O2max were obtained using a progressive incremental test on a motorized treadmill. In study 2, maximal oxygen uptake was measured directly during a fatigue limited treadmill test in older men (n = 152) and women (n = 146) 55 to 86 yr old. In both studies, the quality of fit associated with estimating V˙O2max (mL·kg·min) was superior using allometric rather than linear (additive) models based on all criteria (R, maximum log-likelihood, and Akaike information criteria). Results suggest that linear models will systematically overestimate V˙O2max for participants in their 20s and underestimate V˙O2max for participants in their 60s and older. The residuals saved from the linear models were neither normally distributed nor independent of the predicted values nor age. This will probably explain the absence of a key quadratic age term in the linear models, crucially identified using allometric models. Not only does the curvilinear age decline within an exponential function follow a more realistic age decline (the right-hand side of a bell-shaped curve), but the allometric models identified either a stature-to-body mass ratio (study 1) or a fat-free mass-to-body mass ratio (study 2), both associated with leanness when estimating V˙O2max. Adopting allometric models will provide more accurate predictions of V˙O2max (mL·kg·min) using plausible, biologically sound, and interpretable models.

12. Three dimensional force prediction in a model linear brushless dc motor

Moghani, J.S.; Eastham, J.F.; Akmese, R.; Hill-Cottingham, R.J. (Univ. of Bath (United Kingdom). School of Electronic and Electric Engineering)

1994-11-01

Practical results are presented for the three axes forces produced on the primary of a linear brushless dc machine which is supplied from a three-phase delta-modulated inverter. Conditions of both lateral alignment and lateral displacement are considered. Finite element analysis using both two and three dimensional modeling is compared with the practical results. It is shown that a modified two dimensional model is adequate, where it can be used, in the aligned position and that the full three dimensional method gives good results when the machine is axially misaligned.

13. Methodology and Applications in Non-linear Model-based Geostatistics

Christensen, Ole Fredslund

that are approximately Gaussian. Parameter estimation and prediction for the transformed Gaussian model is studied. In some cases a transformation cannot possibly render the data Gaussian. A methodology for analysing such data was introduced by Diggle, Tawn and Moyeed (1998): The generalised linear spatial model...... priors for Bayesian inference is discussed. Procedures for parameter estimation and prediction are studied. Theoretical properties of Markov chain Monte Carlo algorithms are investigated, and different algorithms are compared. In addition, the thesis contains a manual for an R-package, geoRglmm, which...

14. Describing Growth Pattern of Bali Cows Using Non-linear Regression Models

Mohd. Hafiz A.W

2016-12-01

Full Text Available The objective of this study was to evaluate the best fit non-linear regression model to describe the growth pattern of Bali cows. Estimates of asymptotic mature weight, rate of maturing and constant of integration were derived from Brody, von Bertalanffy, Gompertz and Logistic models which were fitted to cross-sectional data of body weight taken from 74 Bali cows raised in MARDI Research Station Muadzam Shah Pahang. Coefficient of determination (R2 and residual mean squares (MSE were used to determine the best fit model in describing the growth pattern of Bali cows. Von Bertalanffy model was the best model among the four growth functions evaluated to determine the mature weight of Bali cattle as shown by the highest R2 and lowest MSE values (0.973 and 601.9, respectively, followed by Gompertz (0.972 and 621.2, respectively, Logistic (0.971 and 648.4, respectively and Brody (0.932 and 660.5, respectively models. The correlation between rate of maturing and mature weight was found to be negative in the range of -0.170 to -0.929 for all models, indicating that animals of heavier mature weight had lower rate of maturing. The use of non-linear model could summarize the weight-age relationship into several biologically interpreted parameters compared to the entire lifespan weight-age data points that are difficult and time consuming to interpret.

15. Restricted DCJ-indel model: sorting linear genomes with DCJ and indels

2012-01-01

Background The double-cut-and-join (DCJ) is a model that is able to efficiently sort a genome into another, generalizing the typical mutations (inversions, fusions, fissions, translocations) to which genomes are subject, but allowing the existence of circular chromosomes at the intermediate steps. In the general model many circular chromosomes can coexist in some intermediate step. However, when the compared genomes are linear, it is more plausible to use the so-called restricted DCJ model, in which we proceed the reincorporation of a circular chromosome immediately after its creation. These two consecutive DCJ operations, which create and reincorporate a circular chromosome, mimic a transposition or a block-interchange. When the compared genomes have the same content, it is known that the genomic distance for the restricted DCJ model is the same as the distance for the general model. If the genomes have unequal contents, in addition to DCJ it is necessary to consider indels, which are insertions and deletions of DNA segments. Linear time algorithms were proposed to compute the distance and to find a sorting scenario in a general, unrestricted DCJ-indel model that considers DCJ and indels. Results In the present work we consider the restricted DCJ-indel model for sorting linear genomes with unequal contents. We allow DCJ operations and indels with the following constraint: if a circular chromosome is created by a DCJ, it has to be reincorporated in the next step (no other DCJ or indel can be applied between the creation and the reincorporation of a circular chromosome). We then develop a sorting algorithm and give a tight upper bound for the restricted DCJ-indel distance. Conclusions We have given a tight upper bound for the restricted DCJ-indel distance. The question whether this bound can be reduced so that both the general and the restricted DCJ-indel distances are equal remains open. PMID:23281630

16. COMPARATIVE ANALYSIS OF SOFTWARE DEVELOPMENT MODELS

Sandeep Kaur*

2017-01-01

No geek is unfamiliar with the concept of software development life cycle (SDLC). This research deals with the various SDLC models covering waterfall, spiral, and iterative, agile, V-shaped, prototype model. In the modern era, all the software systems are fallible as they can’t stand with certainty. So, it is tried to compare all aspects of the various models, their pros and cons so that it could be easy to choose a particular model at the time of need

17. Linear and nonlinear ARMA model parameter estimation using an artificial neural network

Chon, K. H.; Cohen, R. J.

1997-01-01

This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.

18. Linear mixed-effects models to describe individual tree crown width for China-fir in Fujian Province, southeast China.

Hao, Xu; Yujun, Sun; Xinjie, Wang; Jin, Wang; Yao, Fu

2015-01-01

A multiple linear model was developed for individual tree crown width of Cunninghamia lanceolata (Lamb.) Hook in Fujian province, southeast China. Data were obtained from 55 sample plots of pure China-fir plantation stands. An Ordinary Linear Least Squares (OLS) regression was used to establish the crown width model. To adjust for correlations between observations from the same sample plots, we developed one level linear mixed-effects (LME) models based on the multiple linear model, which take into account the random effects of plots. The best random effects combinations for the LME models were determined by the Akaike's information criterion, the Bayesian information criterion and the -2logarithm likelihood. Heteroscedasticity was reduced by three residual variance functions: the power function, the exponential function and the constant plus power function. The spatial correlation was modeled by three correlation structures: the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)], and the compound symmetry structure (CS). Then, the LME model was compared to the multiple linear model using the absolute mean residual (AMR), the root mean square error (RMSE), and the adjusted coefficient of determination (adj-R2). For individual tree crown width models, the one level LME model showed the best performance. An independent dataset was used to test the performance of the models and to demonstrate the advantage of calibrating LME models.

19. The Linearity of Optical Tomography: Sensor Model and Experimental Verification

Siti Zarina MOHD. MUJI

2011-09-01

Full Text Available The aim of this paper is to show the linearization of optical sensor. Linearity of the sensor response is a must in optical tomography application, which affects the tomogram result. Two types of testing are used namely, testing using voltage parameter and testing with time unit parameter. For the former, the testing is by measuring the voltage when the obstacle is placed between transmitter and receiver. The obstacle diameters are between 0.5 until 3 mm. The latter is also the same testing but the obstacle is bigger than the former which is 59.24 mm and the testing purpose is to measure the time unit spend for the ball when it cut the area of sensing circuit. Both results show a linear relation that proves the optical sensors is suitable for process tomography application.

20. An EM Algorithm for Double-Pareto-Lognormal Generalized Linear Model Applied to Heavy-Tailed Insurance Claims

Enrique Calderín-Ojeda

2017-11-01

Full Text Available Generalized linear models might not be appropriate when the probability of extreme events is higher than that implied by the normal distribution. Extending the method for estimating the parameters of a double Pareto lognormal distribution (DPLN in Reed and Jorgensen (2004, we develop an EM algorithm for the heavy-tailed Double-Pareto-lognormal generalized linear model. The DPLN distribution is obtained as a mixture of a lognormal distribution with a double Pareto distribution. In this paper the associated generalized linear model has the location parameter equal to a linear predictor which is used to model insurance claim amounts for various data sets. The performance is compared with those of the generalized beta (of the second kind and lognorma distributions.

1. Predicting oropharyngeal tumor volume throughout the course of radiation therapy from pretreatment computed tomography data using general linear models

2014-01-01

Purpose: The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Methods: Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. Results: In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: −11.6%–23.8%) and 14.6% (range: −7.3%–27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: −6.8%–40.3%) and 13.1% (range: −1.5%–52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: −11.1%–20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. Conclusions: A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography

2. A primer for biomedical scientists on how to execute model II linear regression analysis.

Ludbrook, John

2012-04-01

1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.

3. Spillways Scheduling for Flood Control of Three Gorges Reservoir Using Mixed Integer Linear Programming Model

Maoyuan Feng

2014-01-01

Full Text Available This study proposes a mixed integer linear programming (MILP model to optimize the spillways scheduling for reservoir flood control. Unlike the conventional reservoir operation model, the proposed MILP model specifies the spillways status (including the number of spillways to be open and the degree of the spillway opened instead of reservoir release, since the release is actually controlled by using the spillway. The piecewise linear approximation is used to formulate the relationship between the reservoir storage and water release for a spillway, which should be open/closed with a status depicted by a binary variable. The control order and symmetry rules of spillways are described and incorporated into the constraints for meeting the practical demand. Thus, a MILP model is set up to minimize the maximum reservoir storage. The General Algebraic Modeling System (GAMS and IBM ILOG CPLEX Optimization Studio (CPLEX software are used to find the optimal solution for the proposed MILP model. The China’s Three Gorges Reservoir, whose spillways are of five types with the total number of 80, is selected as the case study. It is shown that the proposed model decreases the flood risk compared with the conventional operation and makes the operation more practical by specifying the spillways status directly.

4. Efficient Estimation of Non-Linear Dynamic Panel Data Models with Application to Smooth Transition Models

Gørgens, Tue; Skeels, Christopher L.; Wurtz, Allan

This paper explores estimation of a class of non-linear dynamic panel data models with additive unobserved individual-specific effects. The models are specified by moment restrictions. The class includes the panel data AR(p) model and panel smooth transition models. We derive an efficient set...... of moment restrictions for estimation and apply the results to estimation of panel smooth transition models with fixed effects, where the transition may be determined endogenously. The performance of the GMM estimator, both in terms of estimation precision and forecasting performance, is examined in a Monte...

5. Is it Worth Comparing Different Bankruptcy Models?

Miroslava Dolejšová

2015-01-01

Full Text Available The aim of this paper is to compare the performance of small enterprises in the Zlín and Olomouc Regions. These enterprises were assessed using the Altman Z-Score model, the IN05 model, the Zmijewski model and the Springate model. The batch selected for this analysis included 16 enterprises from the Zlín Region and 16 enterprises from the Olomouc Region. Financial statements subjected to the analysis are from 2006 and 2010. The statistical data analysis was performed using the one-sample z-test for proportions and the paired t-test. The outcomes of the evaluation run using the Altman Z-Score model, the IN05 model and the Springate model revealed the enterprises to be financially sound, but the Zmijewski model identified them as being insolvent. The one-sample z-test for proportions confirmed that at least 80% of these enterprises show a sound financial condition. A comparison of all models has emphasized the substantial difference produced by the Zmijewski model. The paired t-test showed that the financial performance of small enterprises had remained the same during the years involved. It is recommended that small enterprises assess their financial performance using two different bankruptcy models. They may wish to combine the Zmijewski model with any bankruptcy model (the Altman Z-Score model, the IN05 model or the Springate model to ensure a proper method of analysis.

6. A wild model of linear arithmetic and discretely ordered modules

Glivický, Petr; Pudlák, Pavel

2017-01-01

Roč. 63, č. 6 (2017), s. 501-508 ISSN 0942-5616 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : linear arithmetics Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.250, year: 2016

7. Evaluation of linear induction motor characteristics : the Yamamura model

1975-04-30

The Yamamura theory of the double-sided linear induction motor (LIM) excited by a constant current source is discussed in some detail. The report begins with a derivation of thrust and airgap power using the method of vector potentials and theorem of...

8. Assessment of Poisson, logit, and linear models for genetic analysis of clinical mastitis in Norwegian Red cows.

Vazquez, A I; Gianola, D; Bates, D; Weigel, K A; Heringstad, B

2009-02-01

Clinical mastitis is typically coded as presence/absence during some period of exposure, and records are analyzed with linear or binary data models. Because presence includes cows with multiple episodes, there is loss of information when a count is treated as a binary response. The Poisson model is designed for counting random variables, and although it is used extensively in epidemiology of mastitis, it has rarely been used for studying the genetics of mastitis. Many models have been proposed for genetic analysis of mastitis, but they have not been formally compared. The main goal of this study was to compare linear (Gaussian), Bernoulli (with logit link), and Poisson models for the purpose of genetic evaluation of sires for mastitis in dairy cattle. The response variables were clinical mastitis (CM; 0, 1) and number of CM cases (NCM; 0, 1, 2, ..). Data consisted of records on 36,178 first-lactation daughters of 245 Norwegian Red sires distributed over 5,286 herds. Predictive ability of models was assessed via a 3-fold cross-validation using mean squared error of prediction (MSEP) as the end-point. Between-sire variance estimates for NCM were 0.065 in Poisson and 0.007 in the linear model. For CM the between-sire variance was 0.093 in logit and 0.003 in the linear model. The ratio between herd and sire variances for the models with NCM response was 4.6 and 3.5 for Poisson and linear, respectively, and for model for CM was 3.7 in both logit and linear models. The MSEP for all cows was similar. However, within healthy animals, MSEP was 0.085 (Poisson), 0.090 (linear for NCM), 0.053 (logit), and 0.056 (linear for CM). For mastitic animals the MSEP values were 1.206 (Poisson), 1.185 (linear for NCM response), 1.333 (logit), and 1.319 (linear for CM response). The models for count variables had a better performance when predicting diseased animals and also had a similar performance between them. Logit and linear models for CM had better predictive ability for healthy

9. An Analysis of Turkey's PISA 2015 Results Using Two-Level Hierarchical Linear Modelling

2017-01-01

In the field of education, most of the data collected are multi-level structured. Cities, city based schools, school based classes and finally students in the classrooms constitute a hierarchical structure. Hierarchical linear models give more accurate results compared to standard models when the data set has a structure going far as individuals,…

10. Impact of Diagnosticity on the Adequacy of Models for Cognitive Diagnosis under a Linear Attribute Structure: A Simulation Study

de La Torre, Jimmy; Karelitz, Tzur M.

2009-01-01

Compared to unidimensional item response models (IRMs), cognitive diagnostic models (CDMs) based on latent classes represent examinees' knowledge and item requirements using discrete structures. This study systematically examines the viability of retrofitting CDMs to IRM-based data with a linear attribute structure. The study utilizes a procedure…

11. Model structure learning: A support vector machine approach for LPV linear-regression models

Toth, R.; Laurain, V.; Zheng, W-X.; Poolla, K.

2011-01-01

Accurate parametric identification of Linear Parameter-Varying (LPV) systems requires an optimal prior selection of a set of functional dependencies for the parametrization of the model coefficients. Inaccurate selection leads to structural bias while over-parametrization results in a variance

12. Huffman and linear scanning methods with statistical language models.

Roark, Brian; Fried-Oken, Melanie; Gibbons, Chris

2015-03-01

Current scanning access methods for text generation in AAC devices are limited to relatively few options, most notably row/column variations within a matrix. We present Huffman scanning, a new method for applying statistical language models to binary-switch, static-grid typing AAC interfaces, and compare it to other scanning options under a variety of conditions. We present results for 16 adults without disabilities and one 36-year-old man with locked-in syndrome who presents with complex communication needs and uses AAC scanning devices for writing. Huffman scanning with a statistical language model yielded significant typing speedups for the 16 participants without disabilities versus any of the other methods tested, including two row/column scanning methods. A similar pattern of results was found with the individual with locked-in syndrome. Interestingly, faster typing speeds were obtained with Huffman scanning using a more leisurely scan rate than relatively fast individually calibrated scan rates. Overall, the results reported here demonstrate great promise for the usability of Huffman scanning as a faster alternative to row/column scanning.

13. Admissible Estimators in the General Multivariate Linear Model with Respect to Inequality Restricted Parameter Set

Shangli Zhang

2009-01-01

Full Text Available By using the methods of linear algebra and matrix inequality theory, we obtain the characterization of admissible estimators in the general multivariate linear model with respect to inequality restricted parameter set. In the classes of homogeneous and general linear estimators, the necessary and suffcient conditions that the estimators of regression coeffcient function are admissible are established.

14. Wellness Model of Supervision: A Comparative Analysis

Lenz, A. Stephen; Sangganjanavanich, Varunee Faii; Balkin, Richard S.; Oliver, Marvarene; Smith, Robert L.

2012-01-01

This quasi-experimental study compared the effectiveness of the Wellness Model of Supervision (WELMS; Lenz & Smith, 2010) with alternative supervision models for developing wellness constructs, total personal wellness, and helping skills among counselors-in-training. Participants were 32 master's-level counseling students completing their…

15. An Optimal DEM Reconstruction Method for Linear Array Synthetic Aperture Radar Based on Variational Model

Shi Jun

2015-02-01

Full Text Available Downward-looking Linear Array Synthetic Aperture Radar (LASAR has many potential applications in the topographic mapping, disaster monitoring and reconnaissance applications, especially in the mountainous area. However, limited by the sizes of platforms, its resolution in the linear array direction is always far lower than those in the range and azimuth directions. This disadvantage leads to the blurring of Three-Dimensional (3D images in the linear array direction, and restricts the application of LASAR. To date, the research on 3D SAR image enhancement has focused on the sparse recovery technique. In this case, the one-to-one mapping of Digital Elevation Model (DEM brakes down. To overcome this, an optimal DEM reconstruction method for LASAR based on the variational model is discussed in an effort to optimize the DEM and the associated scattering coefficient map, and to minimize the Mean Square Error (MSE. Using simulation experiments, it is found that the variational model is more suitable for DEM enhancement applications to all kinds of terrains compared with the Orthogonal Matching Pursuit (OMPand Least Absolute Shrinkage and Selection Operator (LASSO methods.

16. Linear time series modeling of GPS-derived TEC observations over the Indo-Thailand region

Suraj, Puram Sai; Kumar Dabbakuti, J. R. K.; Chowdhary, V. Rajesh; Tripathi, Nitin K.; Ratnam, D. Venkata

2017-12-01

This paper proposes a linear time series model to represent the climatology of the ionosphere and to investigate the characteristics of hourly averaged total electron content (TEC). The GPS-TEC observation data at the Bengaluru international global navigation satellite system (GNSS) service (IGS) station (geographic 13.02°N , 77.57°E ; geomagnetic latitude 4.4°N ) have been utilized for processing the TEC data during an extended period (2009-2016) in the 24{th} solar cycle. Solar flux F10.7p index, geomagnetic Ap index, and periodic oscillation factors have been considered to construct a linear TEC model. It is evident from the results that solar activity effect on TEC is high. It reaches the maximum value (˜ 40 TECU) during the high solar activity (HSA) year (2014) and minimum value (˜ 15 TECU) during the low solar activity (LSA) year (2009). The larger magnitudes of semiannual variations are observed during the HSA periods. The geomagnetic effect on TEC is relatively low, with the highest being ˜ 4 TECU (March 2015). The magnitude of periodic variations can be seen more significantly during HSA periods (2013-2015) and less during LSA periods (2009-2011). The correlation coefficient of 0.89 between the observations and model-based estimations has been found. The RMSE between the observed TEC and model TEC values is 4.0 TECU (linear model) and 4.21 TECU (IRI2016 Model). Further, the linear TEC model has been validated at different latitudes over the northern low-latitude region. The solar component (F10.7p index) value decreases with an increase in latitude. The magnitudes of the periodic component become less significant with the increase in latitude. The influence of geomagnetic component becomes less significant at Lucknow GNSS station (26.76°N, 80.88°E) when compared to other GNSS stations. The hourly averaged TEC values have been considered and ionospheric features are well recovered with linear TEC model.

17. Preisach hysteresis model for non-linear 2D heat diffusion

Jancskar, Ildiko; Ivanyi, Amalia

2006-01-01

This paper analyzes a non-linear heat diffusion process when the thermal diffusivity behaviour is a hysteretic function of the temperature. Modelling this temperature dependence, the discrete Preisach algorithm as general hysteresis model has been integrated into a non-linear multigrid solver. The hysteretic diffusion shows a heating-cooling asymmetry in character. The presented type of hysteresis speeds up the thermal processes in the modelled systems by a very interesting non-linear way

18. Localization of Non-Linearly Modeled Autonomous Mobile Robots Using Out-of-Sequence Measurements

Jesus M. de la Cruz

2012-02-01

Full Text Available This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost.

19. Investigation of flip-flop effects in a linear analog comparator-with-hysteresis circuit

Roche, N.J.H.; Buchner, S.P.; Warner, J.H.; McMorrow, D.; Roig, F.; Auriel, G.; Dusseau, L.; Boch, J.; Saigne, F.; Azais, B.

2013-01-01

The impact of the positive feedback loop on analog single event transient (ASET) shapes was investigated for a comparator- with-hysteresis circuit. Simulation based on previous developed ASET simulation tool is used to model the impact of the power supply voltage, the input voltage level and the injected energy. Simulation results show that these kinds of circuits are sensitive to flip-flop effects. This phenomenon occurs if the input voltage is in the hysteresis band range. In this case, simulations show that the ASET can latch the output into a non-desired state by changing the state of the circuit on his transfer characteristic curves. Laser experiments were conducted and show that the simulation outputs are in agreement with the experimental collected data. (authors)

20. Skinfold creep under load of caliper. Linear visco- and poroelastic model simulations.

Nowak, Joanna; Nowak, Bartosz; Kaczmarek, Mariusz

2015-01-01

This paper addresses the diagnostic idea proposed in [11] to measure the parameter called rate of creep of axillary fold of tissue using modified Harpenden skinfold caliper in order to distinguish normal and edematous tissue. Our simulations are intended to help understanding the creep phenomenon and creep rate parameter as a sensitive indicator of edema existence. The parametric analysis shows the tissue behavior under the external load as well as its sensitivity to changes of crucial hydro-mechanical tissue parameters, e.g., permeability or stiffness. The linear viscoelastic and poroelastic models of normal (single phase) and oedematous tissue (twophase: swelled tissue with excess of interstitial fluid) implemented in COMSOL Multiphysics environment are used. Simulations are performed within the range of small strains for a simplified fold geometry, material characterization and boundary conditions. The predicted creep is the result of viscosity (viscoelastic model) or pore fluid displacement (poroelastic model) in tissue. The tissue deformations, interstitial fluid pressure as well as interstitial fluid velocity are discussed in parametric analysis with respect to elasticity modulus, relaxation time or permeability of tissue. The creep rate determined within the models of tissue is compared and referred to the diagnostic idea in [11]. The results obtained from the two linear models of subcutaneous tissue indicate that the form of creep curve and the creep rate are sensitive to material parameters which characterize the tissue. However, the adopted modelling assumptions point to a limited applicability of the creep rate as the discriminant of oedema.

1. Modeling the Non-Linear Response of Fiber-Reinforced Laminates Using a Combined Damage/Plasticity Model

Schuecker, Clara; Davila, Carlos G.; Pettermann, Heinz E.

2008-01-01

The present work is concerned with modeling the non-linear response of fiber reinforced polymer laminates. Recent experimental data suggests that the non-linearity is not only caused by matrix cracking but also by matrix plasticity due to shear stresses. To capture the effects of those two mechanisms, a model combining a plasticity formulation with continuum damage has been developed to simulate the non-linear response of laminates under plane stress states. The model is used to compare the predicted behavior of various laminate lay-ups to experimental data from the literature by looking at the degradation of axial modulus and Poisson s ratio of the laminates. The influence of residual curing stresses and in-situ effect on the predicted response is also investigated. It is shown that predictions of the combined damage/plasticity model, in general, correlate well with the experimental data. The test data shows that there are two different mechanisms that can have opposite effects on the degradation of the laminate Poisson s ratio which is captured correctly by the damage/plasticity model. Residual curing stresses are found to have a minor influence on the predicted response for the cases considered here. Some open questions remain regarding the prediction of damage onset.

2. Study of the critical behavior of the O(N) linear and nonlinear sigma models

Graziani, F.R.

1983-01-01

A study of the large N behavior of both the O(N) linear and nonlinear sigma models is presented. The purpose is to investigate the relationship between the disordered (ordered) phase of the linear and nonlinear sigma models. Utilizing operator product expansions and stability analyses, it is shown that for 2 - (lambda/sub R/(M) is the dimensionless renormalized quartic coupling and lambda* is the IR fixed point) limit of the linear sigma model which yields the nonlinear sigma model. It is also shown that stable large N linear sigma models with lambda 0) and nonlinear models are trivial. This result (i.e., triviality) is well known but only for one and two component models. Interestingly enough, the lambda< d = 4 linear sigma model remains nontrivial and tachyonic free

3. Comparing Linear and Nonlinear Delivery of Introductory Psychology Lectures: Improving Student Retention

Cramer, Kenneth M.; Sands, Mandy

2016-01-01

As in most disciplines, the typical introductory class presents topics to students in a linear fashion, beginning (to use psychology as an example) with the history of the field, research methods, brain and neurons, sensation and perception, and so on. This study examined the impact of topic sequence on student achievement. The same professor…

4. AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S

Klumpp, A. R.

1994-01-01

This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

5. Generation companies decision-making modeling by linear control theory

Gutierrez-Alcaraz, G.; Sheble, Gerald B.

2010-01-01

This paper proposes four decision-making procedures to be employed by electric generating companies as part of their bidding strategies when competing in an oligopolistic market: naive, forward, adaptive, and moving average expectations. Decision-making is formulated in a dynamic framework by using linear control theory. The results reveal that interactions among all GENCOs affect market dynamics. Several numerical examples are reported, and conclusions are presented. (author)

6. New insights into soil temperature time series modeling: linear or nonlinear?

Bonakdari, Hossein; Moeeni, Hamid; Ebtehaj, Isa; Zeynoddin, Mohammad; Mahoammadian, Abdolmajid; Gharabaghi, Bahram

2018-03-01

Soil temperature (ST) is an important dynamic parameter, whose prediction is a major research topic in various fields including agriculture because ST has a critical role in hydrological processes at the soil surface. In this study, a new linear methodology is proposed based on stochastic methods for modeling daily soil temperature (DST). With this approach, the ST series components are determined to carry out modeling and spectral analysis. The results of this process are compared with two linear methods based on seasonal standardization and seasonal differencing in terms of four DST series. The series used in this study were measured at two stations, Champaign and Springfield, at depths of 10 and 20 cm. The results indicate that in all ST series reviewed, the periodic term is the most robust among all components. According to a comparison of the three methods applied to analyze the various series components, it appears that spectral analysis combined with stochastic methods outperformed the seasonal standardization and seasonal differencing methods. In addition to comparing the proposed methodology with linear methods, the ST modeling results were compared with the two nonlinear methods in two forms: considering hydrological variables (HV) as input variables and DST modeling as a time series. In a previous study at the mentioned sites, Kim and Singh Theor Appl Climatol 118:465-479, (2014) applied the popular Multilayer Perceptron (MLP) neural network and Adaptive Neuro-Fuzzy Inference System (ANFIS) nonlinear methods and considered HV as input variables. The comparison results signify that the relative error projected in estimating DST by the proposed methodology was about 6%, while this value with MLP and ANFIS was over 15%. Moreover, MLP and ANFIS models were employed for DST time series modeling. Due to these models' relatively inferior performance to the proposed methodology, two hybrid models were implemented: the weights and membership function of MLP and

7. Valuing a gas-fired power plant: A comparison of ordinary linear models, regime-switching approaches, and models with stochastic volatility

Heydari, Somayeh; Siddiqui, Afzal

2010-01-01

Energy prices are often highly volatile with unexpected spikes. Capturing these sudden spikes may lead to more informed decision-making in energy investments, such as valuing gas-fired power plants, than ignoring them. In this paper, non-linear regime-switching models and models with mean-reverting stochastic volatility are compared with ordinary linear models. The study is performed using UK electricity and natural gas daily spot prices and suggests that with the aim of valuing a gas-fired power plant with and without operational flexibility, non-linear models with stochastic volatility, specifically for logarithms of electricity prices, provide better out-of-sample forecasts than both linear models and regime-switching models.

8. A Comparison of Alternative Estimators of Linearly Aggregated Macro Models

Fikri Akdeniz

2012-07-01

Full Text Available Normal 0 false false false TR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman","serif"; mso-ansi-language:TR; mso-fareast-language:TR;} This paper deals with the linear aggregation problem. For the true underlying micro relations, which explain the micro behavior of the individuals, no restrictive rank conditions are assumed. Thus the analysis is presented in a framework utilizing generalized inverses of singular matrices. We investigate several estimators for certain linear transformations of the systematic part of the corresponding macro relations. Homogeneity of micro parameters is discussed. Best linear unbiased estimation for micro parameters is described.

9. Spatial Modeling of Flood Duration in Amazonian Floodplains Through Radar Remote Sensing and Generalized Linear Models

Ferreira-Ferreira, J.; Francisco, M. S.; Silva, T. S. F.

2017-12-01

Amazon floodplains play an important role in biodiversity maintenance and provide important ecosystem services. Flood duration is the prime factor modulating biogeochemical cycling in Amazonian floodplain systems, as well as influencing ecosystem structure and function. However, due to the absence of accurate terrain information, fine-scale hydrological modeling is still not possible for most of the Amazon floodplains, and little is known regarding the spatio-temporal behavior of flooding in these environments. Our study presents an new approach for spatial modeling of flood duration, using Synthetic Aperture Radar (SAR) and Generalized Linear Modeling. Our focal study site was Mamirauá Sustainable Development Reserve, in the Central Amazon. We acquired a series of L-band ALOS-1/PALSAR Fine-Beam mosaics, chosen to capture the widest possible range of river stage heights at regular intervals. We then mapped flooded area on each image, and used the resulting binary maps as the response variable (flooded/non-flooded) for multiple logistic regression. Explanatory variables were accumulated precipitation 15 days prior and the water stage height recorded in the Mamirauá lake gauging station observed for each image acquisition date, Euclidean distance from the nearest drainage, and slope, terrain curvature, profile curvature, planform curvature and Height Above the Nearest Drainage (HAND) derived from the 30-m SRTM DEM. Model results were validated with water levels recorded by ten pressure transducers installed within the floodplains, from 2014 to 2016. The most accurate model included water stage height and HAND as explanatory variables, yielding a RMSE of ±38.73 days of flooding per year when compared to the ground validation sites. The largest disagreements were 57 days and 83 days for two validation sites, while remaining locations achieved absolute errors lower than 38 days. In five out of nine validation sites, the model predicted flood durations with

10. Comparative analysis of used car price evaluation models

Chen, Chuancan; Hao, Lulu; Xu, Cong

2017-05-01

An accurate used car price evaluation is a catalyst for the healthy development of used car market. Data mining has been applied to predict used car price in several articles. However, little is studied on the comparison of using different algorithms in used car price estimation. This paper collects more than 100,000 used car dealing records throughout China to do empirical analysis on a thorough comparison of two algorithms: linear regression and random forest. These two algorithms are used to predict used car price in three different models: model for a certain car make, model for a certain car series and universal model. Results show that random forest has a stable but not ideal effect in price evaluation model for a certain car make, but it shows great advantage in the universal model compared with linear regression. This indicates that random forest is an optimal algorithm when handling complex models with a large number of variables and samples, yet it shows no obvious advantage when coping with simple models with less variables.

11. Linear and non-linear quantitative structure-activity relationship models on indole substitution patterns as inhibitors of HIV-1 attachment.

Nirouei, Mahyar; Ghasemi, Ghasem; Abdolmaleki, Parviz; Tavakoli, Abdolreza; Shariati, Shahab

2012-06-01

The antiviral drugs that inhibit human immunodeficiency virus (HIV) entry to the target cells are already in different phases of clinical trials. They prevent viral entry and have a highly specific mechanism of action with a low toxicity profile. Few QSAR studies have been performed on this group of inhibitors. This study was performed to develop a quantitative structure-activity relationship (QSAR) model of the biological activity of indole glyoxamide derivatives as inhibitors of the interaction between HIV glycoprotein gp120 and host cell CD4 receptors. Forty different indole glyoxamide derivatives were selected as a sample set and geometrically optimized using Gaussian 98W. Different combinations of multiple linear regression (MLR), genetic algorithms (GA) and artificial neural networks (ANN) were then utilized to construct the QSAR models. These models were also utilized to select the most efficient subsets of descriptors in a cross-validation procedure for non-linear log (1/EC50) prediction. The results that were obtained using GA-ANN were compared with MLR-MLR and MLR-ANN models. A high predictive ability was observed for the MLR, MLR-ANN and GA-ANN models, with root mean sum square errors (RMSE) of 0.99, 0.91 and 0.67, respectively (N = 40). In summary, machine learning methods were highly effective in designing QSAR models when compared to statistical method.

12. Comparing flood loss models of different complexity

Schröter, Kai; Kreibich, Heidi; Vogel, Kristin; Riggelsen, Carsten; Scherbaum, Frank; Merz, Bruno

2013-04-01

Any deliberation on flood risk requires the consideration of potential flood losses. In particular, reliable flood loss models are needed to evaluate cost-effectiveness of mitigation measures, to assess vulnerability, for comparative risk analysis and financial appraisal during and after floods. In recent years, considerable improvements have been made both concerning the data basis and the methodological approaches used for the development of flood loss models. Despite of that, flood loss models remain an important source of uncertainty. Likewise the temporal and spatial transferability of flood loss models is still limited. This contribution investigates the predictive capability of different flood loss models in a split sample cross regional validation approach. For this purpose, flood loss models of different complexity, i.e. based on different numbers of explaining variables, are learned from a set of damage records that was obtained from a survey after the Elbe flood in 2002. The validation of model predictions is carried out for different flood events in the Elbe and Danube river basins in 2002, 2005 and 2006 for which damage records are available from surveys after the flood events. The models investigated are a stage-damage model, the rule based model FLEMOps+r as well as novel model approaches which are derived using data mining techniques of regression trees and Bayesian networks. The Bayesian network approach to flood loss modelling provides attractive additional information concerning the probability distribution of both model predictions and explaining variables.

13. Linear spline multilevel models for summarising childhood growth trajectories: A guide to their application using examples from five birth cohorts.

Howe, Laura D; Tilling, Kate; Matijasevich, Alicia; Petherick, Emily S; Santos, Ana Cristina; Fairley, Lesley; Wright, John; Santos, Iná S; Barros, Aluísio Jd; Martin, Richard M; Kramer, Michael S; Bogdanovich, Natalia; Matush, Lidia; Barros, Henrique; Lawlor, Debbie A

2016-10-01

Childhood growth is of interest in medical research concerned with determinants and consequences of variation from healthy growth and development. Linear spline multilevel modelling is a useful approach for deriving individual summary measures of growth, which overcomes several data issues (co-linearity of repeat measures, the requirement for all individuals to be measured at the same ages and bias due to missing data). Here, we outline the application of this methodology to model individual trajectories of length/height and weight, drawing on examples from five cohorts from different generations and different geographical regions with varying levels of economic development. We describe the unique features of the data within each cohort that have implications for the application of linear spline multilevel models, for example, differences in the density and inter-individual variation in measurement occasions, and multiple sources of measurement with varying measurement error. After providing example Stata syntax and a suggested workflow for the implementation of linear spline multilevel models, we conclude with a discussion of the advantages and disadvantages of the linear spline approach compared with other growth modelling methods such as fractional polynomials, more complex spline functions and other non-linear models. © The Author(s) 2013.

14. A linear two-layer model for flat-band shift in irradiated MOS devices

Churchill, J N; Holstrom, F E; Collins, T W [International Business Machines Corp., San Jose, Calif. (USA)

1976-04-01

A closed-form mathematical expression is derived for the flat-band shift as a function of gate bias during electron irradiation. The model assumes that the charge in the oxide consists of charged layers of variable thickness at each of the two interfaces, depending on voltage polarity and magnitude. The region of extreme linearity which has been observed by numerous investigators and which normally occurs for the relatively small values of gate bias voltages fits this closed-form solution. Analytical results compare favourably with data obtained from 500 to 700 A thick oxides and with other previously published data.

15. Kovacs effect in the one-dimensional Ising model: A linear response analysis

2014-01-01

We analyze the so-called Kovacs effect in the one-dimensional Ising model with Glauber dynamics. We consider small enough temperature jumps, for which a linear response theory has been recently derived. Within this theory, the Kovacs hump is directly related to the monotonic relaxation function of the energy. The analytical results are compared with extensive Monte Carlo simulations, and an excellent agreement is found. Remarkably, the position of the maximum in the Kovacs hump depends on the fact that the true asymptotic behavior of the relaxation function is different from the stretched exponential describing the relevant part of the relaxation at low temperatures.

16. Mixed models, linear dependency, and identification in age-period-cohort models.

O'Brien, Robert M

2017-07-20

This paper examines the identification problem in age-period-cohort models that use either linear or categorically coded ages, periods, and cohorts or combinations of these parameterizations. These models are not identified using the traditional fixed effect regression model approach because of a linear dependency between the ages, periods, and cohorts. However, these models can be identified if the researcher introduces a single just identifying constraint on the model coefficients. The problem with such constraints is that the results can differ substantially depending on the constraint chosen. Somewhat surprisingly, age-period-cohort models that specify one or more of ages and/or periods and/or cohorts as random effects are identified. This is the case without introducing an additional constraint. I label this identification as statistical model identification and show how statistical model identification comes about in mixed models and why which effects are treated as fixed and which are treated as random can substantially change the estimates of the age, period, and cohort effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

17. Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.

Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko

2016-03-01

In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

18. Comparative study of linear and nonlinear ultrasonic techniques for evaluation thermal damage of tube like structures

Li, Weibin; Cho, Younho; Li, Xianqiang

2013-01-01

Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro damages in a tube like structure

19. Linear and Non-linear Multi-Input Multi-Output Model Predictive Control of Continuous Stirred Tank Reactor

2015-02-01

Full Text Available In this article, multi-input multi-output (MIMO linear model predictive controller (LMPC based on state space model and nonlinear model predictive controller based on neural network (NNMPC are applied on a continuous stirred tank reactor (CSTR. The idea is to have a good control system that will be able to give optimal performance, reject high load disturbance, and track set point change. In order to study the performance of the two model predictive controllers, MIMO Proportional-Integral-Derivative controller (PID strategy is used as benchmark. The LMPC, NNMPC, and PID strategies are used for controlling the residual concentration (CA and reactor temperature (T. NNMPC control shows a superior performance over the LMPC and PID controllers by presenting a smaller overshoot and shorter settling time.

20. A Linear Regression Model for Global Solar Radiation on Horizontal Surfaces at Warri, Nigeria

Michael S. Okundamiya

2013-10-01

Full Text Available The growing anxiety on the negative effects of fossil fuels on the environment and the global emission reduction targets call for a more extensive use of renewable energy alternatives. Efficient solar energy utilization is an essential solution to the high atmospheric pollution caused by fossil fuel combustion. Global solar radiation (GSR data, which are useful for the design and evaluation of solar energy conversion system, are not measured at the forty-five meteorological stations in Nigeria. The dearth of the measured solar radiation data calls for accurate estimation. This study proposed a temperature-based linear regression, for predicting the monthly average daily GSR on horizontal surfaces, at Warri (latitude 5.020N and longitude 7.880E an oil city located in the south-south geopolitical zone, in Nigeria. The proposed model is analyzed based on five statistical indicators (coefficient of correlation, coefficient of determination, mean bias error, root mean square error, and t-statistic, and compared with the existing sunshine-based model for the same study. The results indicate that the proposed temperature-based linear regression model could replace the existing sunshine-based model for generating global solar radiation data. Keywords: air temperature; empirical model; global solar radiation; regression analysis; renewable energy; Warri

1. Technical report on micro-mechanical versus conventional modelling in non-linear fracture mechanics

2001-07-01

While conventional fracture mechanics is capable of predicting crack growth behaviour if sufficient experimental observations are available, micro-mechanical modelling can both increase the accuracy of these predictions and model phenomena that are inaccessible by the conventional theory such as the ductile-cleavage temperature transition. A common argument against micro-mechanical modelling is that it is too complicated for use in routine engineering applications. This is both a computational and an educational problem. That micro-mechanical modelling is unnecessarily complicated is certainly true in many situations. The on-going development of micro-mechanical models, computational algorithms and computer speed will however most probably diminish the computational problem rather rapidly. Compare for instance the rate of development of computational methods for structural analysis. Meanwhile micro-mechanical modelling may serve as a tool by which more simplified engineering methods can be validated. The process of receiving a wide acceptance of the new methods is probably much slower. This involves many steps. First the research community must be in reasonable agreement on the methods and their use. Then the methods have to be implemented into computer software and into code procedures. The development and acceptance of conventional fracture mechanics may serve as an historical example of the time required before a new methodology has received a wide usage. The CSNI Working Group on Integrity and Ageing (IAGE) decided to carry out a report on micro-mechanical modeling to promote this promising and valuable technique. The report presents a comparison with non-linear fracture mechanics and highlights key aspects that could lead to a better knowledge and accurate predictions. Content: - 1. Introduction; - 2. Concepts of non-linear fracture mechanics with point crack tip modelling; - 3. Micro-mechanical models for cleavage fracture; - 4, Micro-mechanical modelling of

2. Circuit models and three-dimensional electromagnetic simulations of a 1-MA linear transformer driver stage

D. V. Rose

2010-09-01

Full Text Available A 3D fully electromagnetic (EM model of the principal pulsed-power components of a high-current linear transformer driver (LTD has been developed. LTD systems are a relatively new modular and compact pulsed-power technology based on high-energy density capacitors and low-inductance switches located within a linear-induction cavity. We model 1-MA, 100-kV, 100-ns rise-time LTD cavities [A. A. Kim et al., Phys. Rev. ST Accel. Beams 12, 050402 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050402] which can be used to drive z-pinch and material dynamics experiments. The model simulates the generation and propagation of electromagnetic power from individual capacitors and triggered gas switches to a radially symmetric output line. Multiple cavities, combined to provide voltage addition, drive a water-filled coaxial transmission line. A 3D fully EM model of a single 1-MA 100-kV LTD cavity driving a simple resistive load is presented and compared to electrical measurements. A new model of the current loss through the ferromagnetic cores is developed for use both in circuit representations of an LTD cavity and in the 3D EM simulations. Good agreement between the measured core current, a simple circuit model, and the 3D simulation model is obtained. A 3D EM model of an idealized ten-cavity LTD accelerator is also developed. The model results demonstrate efficient voltage addition when driving a matched impedance load, in good agreement with an idealized circuit model.

3. Comparative study of void fraction models

Borges, R.C.; Freitas, R.L.

1985-01-01

Some models for the calculation of void fraction in water in sub-cooled boiling and saturated vertical upward flow with forced convection have been selected and compared with experimental results in the pressure range of 1 to 150 bar. In order to know the void fraction axial distribution it is necessary to determine the net generation of vapour and the fluid temperature distribution in the slightly sub-cooled boiling region. It was verified that the net generation of vapour was well represented by the Saha-Zuber model. The selected models for the void fraction calculation present adequate results but with a tendency to super-estimate the experimental results, in particular the homogeneous models. The drift flux model is recommended, followed by the Armand and Smith models. (F.E.) [pt

4. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

1997-01-01

One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

5. Comparing coefficients of nested nonlinear probability models

Kohler, Ulrich; Karlson, Kristian Bernt; Holm, Anders

2011-01-01

In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general decomposi......In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general...... decomposition method that is unaffected by the rescaling or attenuation bias that arise in cross-model comparisons in nonlinear models. It recovers the degree to which a control variable, Z, mediates or explains the relationship between X and a latent outcome variable, Y*, underlying the nonlinear probability...

6. Modeling and comparison of superconducting linear actuators for highly dynamic motion

Bruyn B.J.H. de

2015-12-01

Full Text Available This paper presents a numerical modeling method for AC losses in highly dynamic linear actuators with high temperature superconducting (HTS tapes. The AC losses and generated force of two actuators, with different placement of the cryostats, are compared. In these actuators, the main loss component in the superconducting tapes are hysteresis losses, which result from both the non-sinusoidal phase currents and movement of the permanent magnets. The modeling method, based on the H-formulation of the magnetic fields, takes into account permanent magnetization and movement of permanent magnets. Calculated losses as function of the peak phase current of both superconducting actuators are compared to those of an equivalent non-cryogenic actuator.

7. Utility of low-order linear nuclear-power-plant models in plant diagnostics and control

Tylee, J.L.

1981-01-01

A low-order, linear model of a pressurized water reactor (PWR) plant is described and evaluated. The model consists of 23 linear, first-order difference equations and simulates all subsystems of both the primary and secondary sides of the plant. Comparisons between the calculated model response and available test data show the model to be an adequate representation of the actual plant dynamics. Suggested use for the model in an on-line digital plant diagnostics and control system are presented

8. Partially linear varying coefficient models stratified by a functional covariate

Maity, Arnab; Huang, Jianhua Z.

2012-01-01

We consider the problem of estimation in semiparametric varying coefficient models where the covariate modifying the varying coefficients is functional and is modeled nonparametrically. We develop a kernel-based estimator of the nonparametric

9. A linear time layout algorithm for business process models

Gschwind, T.; Pinggera, J.; Zugal, S.; Reijers, H.A.; Weber, B.

2014-01-01

The layout of a business process model influences how easily it can beunderstood. Existing layout features in process modeling tools often rely on graph representations, but do not take the specific properties of business process models into account. In this paper, we propose an algorithm that is

10. Free-piston engine linear generator for hybrid vehicles modeling study

Callahan, T. J.; Ingram, S. K.

1995-05-01

Development of a free piston engine linear generator was investigated for use as an auxiliary power unit for a hybrid electric vehicle. The main focus of the program was to develop an efficient linear generator concept to convert the piston motion directly into electrical power. Computer modeling techniques were used to evaluate five different designs for linear generators. These designs included permanent magnet generators, reluctance generators, linear DC generators, and two and three-coil induction generators. The efficiency of the linear generator was highly dependent on the design concept. The two-coil induction generator was determined to be the best design, with an efficiency of approximately 90 percent.

11. Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It

Grünwald, P.; van Ommen, T.

2017-01-01

We empirically show that Bayesian inference can be inconsistent under misspecification in simple linear regression problems, both in a model averaging/selection and in a Bayesian ridge regression setting. We use the standard linear model, which assumes homoskedasticity, whereas the data are

12. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

2006-01-01

Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

13. Genomic prediction based on data from three layer lines using non-linear regression models

Huang, H.; Windig, J.J.; Vereijken, A.; Calus, M.P.L.

2014-01-01

Background - Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. Methods - In an attempt to alleviate

14. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

2012-01-01

Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

15. Inconsistency of Bayesian inference for misspecified linear models, and a proposal for repairing it

P.D. Grünwald (Peter); T. van Ommen (Thijs)

2017-01-01

textabstractWe empirically show that Bayesian inference can be inconsistent under misspecification in simple linear regression problems, both in a model averaging/selection and in a Bayesian ridge regression setting. We use the standard linear model, which assumes homoskedasticity, whereas the data

16. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

2000-12-01

The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

17. Diagnostics for generalized linear hierarchical models in network meta-analysis.

Zhao, Hong; Hodges, James S; Carlin, Bradley P

2017-09-01

Network meta-analysis (NMA) combines direct and indirect evidence comparing more than 2 treatments. Inconsistency arises when these 2 information sources differ. Previous work focuses on inconsistency detection, but little has been done on how to proceed after identifying inconsistency. The key issue is whether inconsistency changes an NMA's substantive conclusions. In this paper, we examine such discrepancies from a diagnostic point of view. Our methods seek to detect influential and outlying observations in NMA at a trial-by-arm level. These observations may have a large effect on the parameter estimates in NMA, or they may deviate markedly from other observations. We develop formal diagnostics for a Bayesian hierarchical model to check the effect of deleting any observation. Diagnostics are specified for generalized linear hierarchical NMA models and investigated for both published and simulated datasets. Results from our example dataset using either contrast- or arm-based models and from the simulated datasets indicate that the sources of inconsistency in NMA tend not to be influential, though results from the example dataset suggest that they are likely to be outliers. This mimics a familiar result from linear model theory, in which outliers with low leverage are not influential. Future extensions include incorporating baseline covariates and individual-level patient data. Copyright © 2017 John Wiley & Sons, Ltd.

18. Comparison of Damage Models for Predicting the Non-Linear Response of Laminates Under Matrix Dominated Loading Conditions

Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.

2010-01-01

Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.

19. Non-linear characterisation of the physical model of an ancient masonry bridge

Fragonara, L Zanotti; Ceravolo, R; Matta, E; Quattrone, A; De Stefano, A; Pecorelli, M

2012-01-01

This paper presents the non-linear investigations carried out on a scaled model of a two-span masonry arch bridge. The model has been built in order to study the effect of the central pile settlement due to riverbank erosion. Progressive damage was induced in several steps by applying increasing settlements at the central pier. For each settlement step, harmonic shaker tests were conducted under different excitation levels, this allowing for the non-linear identification of the progressively damaged system. The shaker tests have been performed at resonance with the modal frequency of the structure, which were determined from a previous linear identification. Estimated non-linearity parameters, which result from the systematic application of restoring force based identification algorithms, can corroborate models to be used in the reassessment of existing structures. The method used for non-linear identification allows monitoring the evolution of non-linear parameters or indicators which can be used in damage and safety assessment.

20. Non-linear modelling to describe lactation curve in Gir crossbred cows

Yogesh C. Bangar

2017-02-01

Full Text Available Abstract Background The modelling of lactation curve provides guidelines in formulating farm managerial practices in dairy cows. The aim of the present study was to determine the suitable non-linear model which most accurately fitted to lactation curves of five lactations in 134 Gir crossbred cows reared in Research-Cum-Development Project (RCDP on Cattle farm, MPKV (Maharashtra. Four models viz. gamma-type function, quadratic model, mixed log function and Wilmink model were fitted to each lactation separately and then compared on the basis of goodness of fit measures viz. adjusted R2, root mean square error (RMSE, Akaike’s Informaion Criteria (AIC and Bayesian Information Criteria (BIC. Results In general, highest milk yield was observed in fourth lactation whereas it was lowest in first lactation. Among the models investigated, mixed log function and gamma-type function provided best fit of the lactation curve of first and remaining lactations, respectively. Quadratic model gave least fit to lactation curve in almost all lactations. Peak yield was observed as highest and lowest in fourth and first lactation, respectively. Further, first lactation showed highest persistency but relatively higher time to achieve peak yield than other lactations. Conclusion Lactation curve modelling using gamma-type function may be helpful to setting the management strategies at farm level, however, modelling must be optimized regularly before implementing them to enhance productivity in Gir crossbred cows.

1. Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data

Cheng, Guang; Zhou, Lan; Huang, Jianhua Z.

2014-01-01

We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based

2. Probe-level linear model fitting and mixture modeling results in high accuracy detection of differential gene expression

Lemieux Sébastien

2006-08-01

Full Text Available Abstract Background The identification of differentially expressed genes (DEGs from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication. Results On a wholly defined dataset, the PL-LM method was able to identify 75% of the differentially expressed genes within 10% of false positives. This accuracy was achieved both using the three replicates per conditions available in the dataset and using only one replicate per condition. Conclusion The method achieves, on this dataset, a higher accuracy than the best set of tools identified by the authors of the dataset, and does so using only one replicate per condition.

3. Approximate reduction of linear population models governed by stochastic differential equations: application to multiregional models.

Sanz, Luis; Alonso, Juan Antonio

2017-12-01

In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.

4. CONFIRMATION OF THE MATHEMATICAL MODEL ADEQUACY OF A LINEAR SYNCHRONOUS MOTOR

V. F. Novikov

2015-06-01

conducting a critical experiment by comparing the calculated and experimentally obtained values of the magnitude of traction for different structures of the linear synchronous motor. Practical value. The adequacy of the mathematical model of a linear synchronous motor of high-speed transport with the excitation of the DC magnetic field and the accepted assumptions is proved in this paper. The author also proved the applicability of the method of calculation of traction that occurs in it, the interaction of static magnetic field of the excitation system of a vehicle with a coil track structure. The use of this technique will reduce the amount of labor and machine time for the design of linear synchronous motors from the DC magnetic field of high-speed ground transportation.

5. Comparison of linear and nonlinear implementation of the compartmental tissue uptake model for dynamic contrast-enhanced MRI.

Kallehauge, Jesper F; Sourbron, Steven; Irving, Benjamin; Tanderup, Kari; Schnabel, Julia A; Chappell, Michael A

2017-06-01

Fitting tracer kinetic models using linear methods is much faster than using their nonlinear counterparts, although this comes often at the expense of reduced accuracy and precision. The aim of this study was to derive and compare the performance of the linear compartmental tissue uptake (CTU) model with its nonlinear version with respect to their percentage error and precision. The linear and nonlinear CTU models were initially compared using simulations with varying noise and temporal sampling. Subsequently, the clinical applicability of the linear model was demonstrated on 14 patients with locally advanced cervical cancer examined with dynamic contrast-enhanced magnetic resonance imaging. Simulations revealed equal percentage error and precision when noise was within clinical achievable ranges (contrast-to-noise ratio >10). The linear method was significantly faster than the nonlinear method, with a minimum speedup of around 230 across all tested sampling rates. Clinical analysis revealed that parameters estimated using the linear and nonlinear CTU model were highly correlated (ρ ≥ 0.95). The linear CTU model is computationally more efficient and more stable against temporal downsampling, whereas the nonlinear method is more robust to variations in noise. The two methods may be used interchangeably within clinical achievable ranges of temporal sampling and noise. Magn Reson Med 77:2414-2423, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

6. A COMPARATIVE STUDY ON MULTI-SWARM OPTIMISATION AND BAT ALGORITHM FOR UNCONSTRAINED NON LINEAR OPTIMISATION PROBLEMS

Evans BAIDOO

2016-12-01

Full Text Available A study branch that mocks-up a population of network of swarms or agents with the ability to self-organise is Swarm intelligence. In spite of the huge amount of work that has been done in this area in both theoretically and empirically and the greater success that has been attained in several aspects, it is still ongoing and at its infant stage. An immune system, a cloud of bats, or a flock of birds are distinctive examples of a swarm system. . In this study, two types of meta-heuristics algorithms based on population and swarm intelligence - Multi Swarm Optimization (MSO and Bat algorithms (BA - are set up to find optimal solutions of continuous non-linear optimisation models. In order to analyze and compare perfect solutions at the expense of performance of both algorithms, a chain of computational experiments on six generally used test functions for assessing the accuracy and the performance of algorithms, in swarm intelligence fields are used. Computational experiments show that MSO algorithm seems much superior to BA.

7. Modeling exposure–lag–response associations with distributed lag non-linear models

Gasparrini, Antonio

2014-01-01

In biomedical research, a health effect is frequently associated with protracted exposures of varying intensity sustained in the past. The main complexity of modeling and interpreting such phenomena lies in the additional temporal dimension needed to express the association, as the risk depends on both intensity and timing of past exposures. This type of dependency is defined here as exposure–lag–response association. In this contribution, I illustrate a general statistical framework for such associations, established through the extension of distributed lag non-linear models, originally developed in time series analysis. This modeling class is based on the definition of a cross-basis, obtained by the combination of two functions to flexibly model linear or nonlinear exposure-responses and the lag structure of the relationship, respectively. The methodology is illustrated with an example application to cohort data and validated through a simulation study. This modeling framework generalizes to various study designs and regression models, and can be applied to study the health effects of protracted exposures to environmental factors, drugs or carcinogenic agents, among others. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24027094

8. MetabR: an R script for linear model analysis of quantitative metabolomic data

Ernest Ben

2012-10-01

Full Text Available Abstract Background Metabolomics is an emerging high-throughput approach to systems biology, but data analysis tools are lacking compared to other systems level disciplines such as transcriptomics and proteomics. Metabolomic data analysis requires a normalization step to remove systematic effects of confounding variables on metabolite measurements. Current tools may not correctly normalize every metabolite when the relationships between each metabolite quantity and fixed-effect confounding variables are different, or for the effects of random-effect confounding variables. Linear mixed models, an established methodology in the microarray literature, offer a standardized and flexible approach for removing the effects of fixed- and random-effect confounding variables from metabolomic data. Findings Here we present a simple menu-driven program, “MetabR”, designed to aid researchers with no programming background in statistical analysis of metabolomic data. Written in the open-source statistical programming language R, MetabR implements linear mixed models to normalize metabolomic data and analysis of variance (ANOVA to test treatment differences. MetabR exports normalized data, checks statistical model assumptions, identifies differentially abundant metabolites, and produces output files to help with data interpretation. Example data are provided to illustrate normalization for common confounding variables and to demonstrate the utility of the MetabR program. Conclusions We developed MetabR as a simple and user-friendly tool for implementing linear mixed model-based normalization and statistical analysis of targeted metabolomic data, which helps to fill a lack of available data analysis tools in this field. The program, user guide, example data, and any future news or updates related to the program may be found at http://metabr.r-forge.r-project.org/.

9. Effect of correlation on covariate selection in linear and nonlinear mixed effect models.

Bonate, Peter L

2017-01-01

The effect of correlation among covariates on covariate selection was examined with linear and nonlinear mixed effect models. Demographic covariates were extracted from the National Health and Nutrition Examination Survey III database. Concentration-time profiles were Monte Carlo simulated where only one covariate affected apparent oral clearance (CL/F). A series of univariate covariate population pharmacokinetic models was fit to the data and compared with the reduced model without covariate. The "best" covariate was identified using either the likelihood ratio test statistic or AIC. Weight and body surface area (calculated using Gehan and George equation, 1970) were highly correlated (r = 0.98). Body surface area was often selected as a better covariate than weight, sometimes as high as 1 in 5 times, when weight was the covariate used in the data generating mechanism. In a second simulation, parent drug concentration and three metabolites were simulated from a thorough QT study and used as covariates in a series of univariate linear mixed effects models of ddQTc interval prolongation. The covariate with the largest significant LRT statistic was deemed the "best" predictor. When the metabolite was formation-rate limited and only parent concentrations affected ddQTc intervals the metabolite was chosen as a better predictor as often as 1 in 5 times depending on the slope of the relationship between parent concentrations and ddQTc intervals. A correlated covariate can be chosen as being a better predictor than another covariate in a linear or nonlinear population analysis by sheer correlation These results explain why for the same drug different covariates may be identified in different analyses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

10. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.

Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong

2015-05-01

In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.

11. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

Divall, S A; Humphrey, V F

2000-03-01

Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

12. Linear regression models for quantitative assessment of left ...

Changes in left ventricular structures and function have been reported in cardiomyopathies. No prediction models have been established in this environment. This study established regression models for prediction of left ventricular structures in normal subjects. A sample of normal subjects was drawn from a large urban ...

13. Non-linear modeling of active biohybrid materials

Paetsch, C.; Dorfmann, A.

2013-01-01

, such as those of Manduca sexta. In this study, we propose a model to assist in the analysis of biohybrid constructs by generalizing a recently proposed constitutive law for Manduca muscle tissue. The continuum model accounts (i) for the stimulation of muscle

14. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

2004-01-01

The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

15. A comparative numerical analysis of linear and nonlinear aerodynamic sound generation by vortex disturbances in homentropic constant shear flows

2015-01-01

plane, which results in highly directional linear sound radiation, whereas the nonlinearly generated waves are almost omni-directional. As part of this analysis, we compare the effectiveness of the linear and nonlinear mechanisms of wave generation within the range of validity of the rapid distortion theory and show the dominance of the linear aerodynamic sound generation. Finally, topological differences between the linear source term of the acoustic analogy equation and of the anisotropic non-normality induced linear mechanism of wave generation are found

16. Comparative Study of Evolutionary Multi-objective Optimization Algorithms for a Non-linear Greenhouse Climate Control Problem

Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard

2015-01-01

Non-trivial real world decision-making processes usually involve multiple parties having potentially conflicting interests over a set of issues. State-of-the-art multi-objective evolutionary algorithms (MOEA) are well known to solve this class of complex real-world problems. In this paper, we...... compare the performance of state-of-the-art multi-objective evolutionary algorithms to solve a non-linear multi-objective multi-issue optimisation problem found in Greenhouse climate control. The chosen algorithms in the study includes NSGAII, eNSGAII, eMOEA, PAES, PESAII and SPEAII. The performance...... of all aforementioned algorithms is assessed and compared using performance indicators to evaluate proximity, diversity and consistency. Our insights to this comparative study enhanced our understanding of MOEAs performance in order to solve a non-linear complex climate control problem. The empirical...

17. Partially linear varying coefficient models stratified by a functional covariate

Maity, Arnab

2012-10-01

We consider the problem of estimation in semiparametric varying coefficient models where the covariate modifying the varying coefficients is functional and is modeled nonparametrically. We develop a kernel-based estimator of the nonparametric component and a profiling estimator of the parametric component of the model and derive their asymptotic properties. Specifically, we show the consistency of the nonparametric functional estimates and derive the asymptotic expansion of the estimates of the parametric component. We illustrate the performance of our methodology using a simulation study and a real data application.

18. Modeling results for a linear simulator of a divertor

Hooper, E.B.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Jackson, M.C.; Kaiser, T.B.; Molvik, A.W.; Nevins, W.M.; Nilson, D.G.; Pearlstein, L.D.; Rognlien, T.D.

1993-01-01

A divertor simulator, IDEAL, has been proposed by S. Cohen to study the difficult power-handling requirements of the tokamak program in general and the ITER program in particular. Projections of the power density in the ITER divertor reach ∼ 1 Gw/m 2 along the magnetic fieldlines and > 10 MW/m 2 on a surface inclined at a shallow angle to the fieldlines. These power densities are substantially greater than can be handled reliably on the surface, so new techniques are required to reduce the power density to a reasonable level. Although the divertor physics must be demonstrated in tokamaks, a linear device could contribute to the development because of its flexibility, the easy access to the plasma and to tested components, and long pulse operation (essentially cw). However, a decision to build a simulator requires not just the recognition of its programmatic value, but also confidence that it can meet the required parameters at an affordable cost. Accordingly, as reported here, it was decided to examine the physics of the proposed device, including kinetic effects resulting from the intense heating required to reach the plasma parameters, and to conduct an independent cost estimate. The detailed role of the simulator in a divertor program is not explored in this report

19. Separation-induced boundary layer transition: Modeling with a non-linear eddy-viscosity model coupled with the laminar kinetic energy equation

Vlahostergios, Z.; Yakinthos, K.; Goulas, A.

2009-01-01

We present an effort to model the separation-induced transition on a flat plate with a semi-circular leading edge, using a cubic non-linear eddy-viscosity model combined with the laminar kinetic energy. A non-linear model, compared to a linear one, has the advantage to resolve the anisotropic behavior of the Reynolds-stresses in the near-wall region and it provides a more accurate expression for the generation of turbulence in the transport equation of the turbulence kinetic energy. Although in its original formulation the model is not able to accurately predict the separation-induced transition, the inclusion of the laminar kinetic energy increases its accuracy. The adoption of the laminar kinetic energy by the non-linear model is presented in detail, together with some additional modifications required for the adaption of the laminar kinetic energy into the basic concepts of the non-linear eddy-viscosity model. The computational results using the proposed combined model are shown together with the ones obtained using an isotropic linear eddy-viscosity model, which adopts also the laminar kinetic energy concept and in comparison with the existing experimental data.

20. Monte Carlo simulations with Symanzik's improved actions in the lattice 0(3) non-linear sigma-model

Berg, B.; Montvay, I.; Meyer, S.

1983-10-01

The scaling properties of the lattice 0(3) non-linear delta-model are studied. The mass-gap, energy-momentum dispersion, correlation functions are measured by numerical Monte Carlo methods. Symanzik's tree-level and 1-loop improved actions are compared to the standard (nearest neigbour) action. (orig.)