WorldWideScience

Sample records for linear hyperbolic systems

  1. Stability problems for linear hyperbolic systems

    Eckhoff, K.S.

    1975-05-01

    The stability properties for the trivial solution of a general linear hyperbolic system of partial differential equations of the first order are studied. It is shown that results may be obtained by studying the stability properties of certain systems of ordinary differential equations which can be constructed from the hyperbolic system (the so-called transport equations). In some cases the associated stability problem for the transport equations can in fact be shown to be equivalent to the stability problem for the hyperbolic system, but in general the transport equations will only give the necessary conditions for stability. (Auth.)

  2. Tikhonov theorem for linear hyperbolic systems

    Tang , Ying; Prieur , Christophe; Girard , Antoine

    2015-01-01

    International audience; A class of linear systems of conservation laws with a small perturbation parameter is introduced. By setting the perturbation parameter to zero, two subsystems, the reduced system standing for the slow dynamics and the boundary-layer system representing the fast dynamics, are computed. It is first proved that the exponential stability of the full system implies the stability of both subsystems. Secondly, a counter example is given to indicate that the converse is not t...

  3. Modeling and analysis of linear hyperbolic systems of balance laws

    Bartecki, Krzysztof

    2016-01-01

    This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...

  4. Weak linear degeneracy and lifespan of classical solutions for first order quasilinear hyperbolic systems

    Li Tatsien

    1994-01-01

    By means of the concept of the weak linear degeneracy, one gets the global existence and the sharp estimate of the lifespan of C 1 solutions to the Cauchy problem for general first order quasilinear hyperbolic systems with small initial data with compact support. (author). 23 refs, 1 fig

  5. Mixed problems for linear symmetric hyperbolic systems with characteristic boundary conditions

    Secchi, P.

    1994-01-01

    We consider the initial-boundary value problem for symmetric hyperbolic systems with characteristic boundary of constant multiplicity. In the linear case we give some results about the existence of regular solutions in suitable functions spaces which take in account the loss of regularity in the normal direction to the characteristic boundary. We also consider the equations of ideal magneto-hydrodynamics under perfectly conducting wall boundary conditions and give some results about the solvability of such mixed problem. (author). 16 refs

  6. Fast computation of the Maslov index for hyperbolic linear systems with periodic coefficients

    Chardard, F; Dias, F; Bridges, T J

    2006-01-01

    The Maslov index is a topological property of periodic orbits of finite-dimensional Hamiltonian systems that is widely used in semiclassical quantization, quantum chaology, stability of waves and classical mechanics. The Maslov index is determined from the analysis of a linear Hamiltonian system with periodic coefficients. In this paper, a numerical scheme is devised to compute the Maslov index for hyperbolic linear systems when the phase space has a low dimension. The idea is to compute on the exterior algebra of the ambient vector space, where the Lagrangian subspace representing the unstable subspace is reduced to a line. When the exterior algebra is projectified the Lagrangian subspace always forms a closed loop. The idea is illustrated by application to Hamiltonian systems on a phase space of dimension 4. The theory is used to compute the Maslov index for the spectral problem associated with periodic solutions of the fifth-order Korteweg de Vries equation

  7. Hyperbolicity and constrained evolution in linearized gravity

    Matzner, Richard A.

    2005-01-01

    Solving the 4-d Einstein equations as evolution in time requires solving equations of two types: the four elliptic initial data (constraint) equations, followed by the six second order evolution equations. Analytically the constraint equations remain solved under the action of the evolution, and one approach is to simply monitor them (unconstrained evolution). Since computational solution of differential equations introduces almost inevitable errors, it is clearly 'more correct' to introduce a scheme which actively maintains the constraints by solution (constrained evolution). This has shown promise in computational settings, but the analysis of the resulting mixed elliptic hyperbolic method has not been completely carried out. We present such an analysis for one method of constrained evolution, applied to a simple vacuum system, linearized gravitational waves. We begin with a study of the hyperbolicity of the unconstrained Einstein equations. (Because the study of hyperbolicity deals only with the highest derivative order in the equations, linearization loses no essential details.) We then give explicit analytical construction of the effect of initial data setting and constrained evolution for linearized gravitational waves. While this is clearly a toy model with regard to constrained evolution, certain interesting features are found which have relevance to the full nonlinear Einstein equations

  8. On the hyperbolicity condition in linear elasticity

    Remigio Russo

    1991-05-01

    Full Text Available This talk, which is mainly expository and based on [2-5], discusses the hyperbolicity conditions in linear elastodynamics. Particular emphasis is devoted to the key role it plays in the uniqueness questions associated with the mixed boundary-initial value problem in unbounded domains.

  9. Piecewise linear regression splines with hyperbolic covariates

    Cologne, John B.; Sposto, Richard

    1992-09-01

    Consider the problem of fitting a curve to data that exhibit a multiphase linear response with smooth transitions between phases. We propose substituting hyperbolas as covariates in piecewise linear regression splines to obtain curves that are smoothly joined. The method provides an intuitive and easy way to extend the two-phase linear hyperbolic response model of Griffiths and Miller and Watts and Bacon to accommodate more than two linear segments. The resulting regression spline with hyperbolic covariates may be fit by nonlinear regression methods to estimate the degree of curvature between adjoining linear segments. The added complexity of fitting nonlinear, as opposed to linear, regression models is not great. The extra effort is particularly worthwhile when investigators are unwilling to assume that the slope of the response changes abruptly at the join points. We can also estimate the join points (the values of the abscissas where the linear segments would intersect if extrapolated) if their number and approximate locations may be presumed known. An example using data on changing age at menarche in a cohort of Japanese women illustrates the use of the method for exploratory data analysis. (author)

  10. Congruence Approximations for Entrophy Endowed Hyperbolic Systems

    Barth, Timothy J.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.

  11. A note on sigular limits to hyperbolic systems

    Bianchini, Stefano

    2000-01-01

    In this note we consider two different singular limits to hyperbolic system of conservation laws, namely the standard backward schemes for non linear semigroups and the semidiscrete scheme. Under the assumption that the rarefaction curve of the corresponding hyperbolic system are straight lines, we prove the stability of the solution and the convergence to the perturbed system to the unique solution of the limit system for initial data with small total variation.

  12. Linearization of germs of hyperbolic vector fields

    Bonckaert, P; Naudot, [No Value; Yang, JZ

    2003-01-01

    We develop a normal form to express asymptotically a conjugacy between a germ of resonant vector field and its linear part. We show that such an asymptotic expression can be written in terms of functions of the Logarithmic Mourtada type. To cite this article: P Bonckaert et al., C. R. Acad. Sci.

  13. Output Tracking for Systems with Non-Hyperbolic and Near Non-Hyperbolic Internal Dynamics: Helicopter Hover Control

    Devasia, Santosh

    1996-01-01

    A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics is presented. This approach integrates stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics is used (1) to remove non-hyperbolicity which an obstruction to applying stable inversion techniques and (2) to reduce large pre-actuation time needed to apply stable inversion for near non-hyperbolic cases. The method is applied to an example helicopter hover control problem with near non-hyperbolic internal dynamic for illustrating the trade-off between exact tracking and reduction of pre-actuation time.

  14. A simple finite element method for linear hyperbolic problems

    Mu, Lin; Ye, Xiu

    2017-01-01

    Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.

  15. Hyperbolic systems with analytic coefficients well-posedness of the Cauchy problem

    Nishitani, Tatsuo

    2014-01-01

    This monograph focuses on the well-posedness of the Cauchy problem for linear hyperbolic systems with matrix coefficients. Mainly two questions are discussed: (A) Under which conditions on lower order terms is the Cauchy problem well posed? (B) When is the Cauchy problem well posed for any lower order term? For first order two by two systems with two independent variables with real analytic coefficients, we present complete answers for both (A) and (B). For first order systems with real analytic coefficients we prove general necessary conditions for question (B) in terms of minors of the principal symbols. With regard to sufficient conditions for (B), we introduce hyperbolic systems with nondegenerate characteristics, which contains strictly hyperbolic systems, and prove that the Cauchy problem for hyperbolic systems with nondegenerate characteristics is well posed for any lower order term. We also prove that any hyperbolic system which is close to a hyperbolic system with a nondegenerate characteristic of mu...

  16. Stability and boundary stabilization of 1-D hyperbolic systems

    Bastin, Georges

    2016-01-01

    This monograph explores the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations. It presents typical examples of hyperbolic systems for a wide range of physical engineering applications, allowing readers to understand the concepts in whichever setting is most familiar to them. With these examples, it also illustrates how control boundary conditions may be defined for the most commonly used control devices. The authors begin with the simple case of systems of two linear conservation laws and then consider the stability of systems under more general boundary conditions that may be differential, nonlinear, or switching. They then extend their discussion to the case of nonlinear conservation laws and demonstrate the use of Lyapunov functions in this type of analysis. Systems of balance laws are considered next, starting with the linear variety before they move on to more general cases of nonlinear ones. They go on to show how the problem of boundary...

  17. Quasilinear Hyperbolic Systems, Compressible Flows, and Waves

    Sharma, Vishnu D

    2010-01-01

    Filled with practical examples, this book presents a self-contained discussion of quasilinear hyperbolic equations and systems with applications. It emphasizes nonlinear theory and introduces some of the most active research in the field. The author elucidates all necessary mathematical concepts in the first three chapters, including an introduction to general wave propagation problems. He highlights the application of various approaches, such as singular surface theory, asymptotic methods, and self-similarity, to solve practical physical problems from areas, including gasdynamics, radiation g

  18. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    2014-03-01

    accuracy, with rapid convergence over each physical time step, typically less than five Newton iter - ations. 1 Contents 1 Introduction 3 2 Hyperbolic...however, we employ the Gauss - Seidel (GS) relaxation, which is also an O(N) method for the discretization arising from hyperbolic advection-diffusion system...advection-diffusion scheme. The linear dependency of the iterations on Table 1: Boundary layer problem ( Convergence criteria: Residuals < 10−8.) log10Re

  19. On hyperbolic-dissipative systems of composite type

    Tan, Zhong; Wang, Yanjin

    2016-01-01

    The Shizuta-Kawashima condition plays the fundamental role in guaranteeing global stability for systems of hyperbolic-parabolic/hyperbolic with relaxation. However, there are many important physical systems not satisfying this coupling condition, which are of composite type with regard to dissipation. The compressible Navier-Stokes equations with zero heat conductivity and Euler equations of adiabatic flow through porous media are two typical examples. In this paper, we construct the global unique solution near constant equilibria to these two systems in three dimensions for the small Hℓ (ℓ > 3) initial data. Our proof is based on a reformation of the systems in terms of the pressure, velocity and entropy, a scaled energy estimates with minimal fractional derivative counts in conjunction with the linear L2-L2 decay estimates to extract a fast enough decay of velocity gradient, which is used to close the energy estimates for the non-dissipative entropy. We also include an application to certain two-phase models.

  20. Optimal boundary control and boundary stabilization of hyperbolic systems

    Gugat, Martin

    2015-01-01

    This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary.  The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization.  Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples.  To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled.  Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization.

  1. Qualitative behavior of global solutions to inhomogeneous quasilinear hyperbolic systems

    Hsiao, L.

    1994-01-01

    The emphasis is the influence to the qualitative behavior of solutions caused by the lower order term, which is certain dissipation, in quasilinear hyperbolic systems. Both classical solutions and discontinuous weak solutions are discussed. (author). 12 refs

  2. Differentiable dynamical systems an introduction to structural stability and hyperbolicity

    Wen, Lan

    2016-01-01

    This is a graduate text in differentiable dynamical systems. It focuses on structural stability and hyperbolicity, a topic that is central to the field. Starting with the basic concepts of dynamical systems, analyzing the historic systems of the Smale horseshoe, Anosov toral automorphisms, and the solenoid attractor, the book develops the hyperbolic theory first for hyperbolic fixed points and then for general hyperbolic sets. The problems of stable manifolds, structural stability, and shadowing property are investigated, which lead to a highlight of the book, the \\Omega-stability theorem of Smale. While the content is rather standard, a key objective of the book is to present a thorough treatment for some tough material that has remained an obstacle to teaching and learning the subject matter. The treatment is straightforward and hence could be particularly suitable for self-study. Selected solutions are available electronically for instructors only. Please send email to textbooks@ams.org for more informatio...

  3. Optimal control for parabolic-hyperbolic system with time delay

    Kowalewski, A.

    1985-07-01

    In this paper we consider an optimal control problem for a system described by a linear partial differential equation of the parabolic-hyperbolic type with time delay in the state. The right-hand side of this equation and the initial conditions are not continuous functions usually, but they are measurable functions belonging to L 2 or Lsup(infinity) spaces. Therefore, the solution of this equation is given by a certain Sobolev space. The time delay in the state is constant, but it can be also a function of time. The control time T is fixed in our problem. Making use of the Milutin-Dubovicki theorem, necessary and sufficient conditions of optimality with the quadratic performance functional and constrained control are derived for the Dirichlet problem. The flow chart of the algorithm which can be used in the numerical solving of certain optimization problems for distributed systems is also presented. (author)

  4. Radioligand assays - methods and applications. IV. Uniform regression of hyperbolic and linear radioimmunoassay calibration curves

    Keilacker, H; Becker, G; Ziegler, M; Gottschling, H D [Zentralinstitut fuer Diabetes, Karlsburg (German Democratic Republic)

    1980-10-01

    In order to handle all types of radioimmunoassay (RIA) calibration curves obtained in the authors' laboratory in the same way, they tried to find a non-linear expression for their regression which allows calibration curves with different degrees of curvature to be fitted. Considering the two boundary cases of the incubation protocol they derived a hyperbolic inverse regression function: x = a/sub 1/y + a/sub 0/ + asub(-1)y/sup -1/, where x is the total concentration of antigen, asub(i) are constants, and y is the specifically bound radioactivity. An RIA evaluation procedure based on this function is described providing a fitted inverse RIA calibration curve and some statistical quality parameters. The latter are of an order which is normal for RIA systems. There is an excellent agreement between fitted and experimentally obtained calibration curves having a different degree of curvature.

  5. Linear hyperbolic functional-differential equations with essentially bounded right-hand side

    Domoshnitsky, A.; Lomtatidze, Alexander; Maghakyan, A.; Šremr, Jiří

    2011-01-01

    Roč. 2011, - (2011), s. 242965 ISSN 1085-3375 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear functional-differential equation of hyperbolic type * Darboux problem * unique solvability Subject RIV: BA - General Mathematics Impact factor: 1.318, year: 2011 http://www.hindawi.com/journals/ aaa /2011/242965/

  6. Higher order Godunov methods for general systems of hyperbolic conservation laws

    Bell, J.B.; Colella, P.; Trangenstein, J.A.

    1989-01-01

    We describe an extension of higher order Godunov methods to general systems of hyperbolic conservation laws. This extension allow the method to be applied to problems that are not strictly hyperbolic and exhibit local linear degeneracies in the wave fields. The method constructs an approximation of the Riemann problem from local wave information. A generalization of the Engquist--Osher flux for systems is then used to compute a numerical flux based on this approximation. This numerical flux replaces the Godunov numerical flux in the algorithm, thereby eliminating the need for a global Riemann problem solution. The additional modifications to the Godunov methodology that are needed to treat loss of strict hyperbolicity are described in detail. The method is applied to some simple model problems for which the glocal analytic structure is known. The method is also applied to the black-oil model for multiphase flow in petroleum reservoirs. copyright 1989 Academic Press, Inc

  7. The algebraic-hyperbolic approach to the linearized gravitational constraints on a Minkowski background

    Winicour, Jeffrey

    2017-01-01

    An algebraic-hyperbolic method for solving the Hamiltonian and momentum constraints has recently been shown to be well posed for general nonlinear perturbations of the initial data for a Schwarzschild black hole. This is a new approach to solving the constraints of Einstein’s equations which does not involve elliptic equations and has potential importance for the construction of binary black hole data. In order to shed light on the underpinnings of this approach, we consider its application to obtain solutions of the constraints for linearized perturbations of Minkowski space. In that case, we find the surprising result that there are no suitable Cauchy hypersurfaces in Minkowski space for which the linearized algebraic-hyperbolic constraint problem is well posed. (note)

  8. A parabolic-hyperbolic system modelling a moving cell

    Fabiana Cardetti

    2009-08-01

    Full Text Available In this article, we study the existence and uniqueness of local solutions for a moving boundary problem governed by a coupled parabolic-hyperbolic system. The results can be applied to cell movement, extending a result obtained by Choi, Groulx, and Lui in 2005.

  9. Semilinear hyperbolic systems and equations with singular initial data

    Gramchev, T.

    1991-07-01

    We study the weak limits of solutions u ε (t, ·) for ε→0 to semilinear strictly hyperbolic systems and wave equations with initial data u ε (0, ·) approximating a distribution κ, 0 ε (t, ·) for ε→0 exists. 13 refs

  10. Symmetric positive differential equations and first order hyperbolic systems

    Tangmanee, S.

    1981-12-01

    We prove that under some conditions the first order hyperbolic system and its associated mixed initial boundary conditions considered, for example, in Kreiss (Math. Comp. 22, 703-704 (1968)) and Kreiss and Gustafsson (Math. Comp. 26, 649-686 (1972)), can be transformed into a symmetric positive system of P.D.E.'s with admissible boundary conditions of Friedrich's type (Comm. Pure Appl. Math 11, 333-418 (1958)). (author)

  11. Operator-Based Preconditioning of Stiff Hyperbolic Systems

    Reynolds, Daniel R.; Samtaney, Ravi; Woodward, Carol S.

    2009-01-01

    We introduce an operator-based scheme for preconditioning stiff components encountered in implicit methods for hyperbolic systems of partial differential equations posed on regular grids. The method is based on a directional splitting of the implicit operator, followed by a characteristic decomposition of the resulting directional parts. This approach allows for solution to any number of characteristic components, from the entire system to only the fastest, stiffness-inducing waves. We apply the preconditioning method to stiff hyperbolic systems arising in magnetohydro- dynamics and gas dynamics. We then present numerical results showing that this preconditioning scheme works well on problems where the underlying stiffness results from the interaction of fast transient waves with slowly-evolving dynamics, scales well to large problem sizes and numbers of processors, and allows for additional customization based on the specific problems under study

  12. Hyperbolicity and integral expression of the Lyapunov exponents for linear cocycles

    Dai, Xiongping

    Consider in this paper a linear skew-product system (θ,Θ) :T×W×R→W×R; (t,w,x)↦(tw,Θ(t,w)ṡx) where T=R or Z, and θ :(t,w)↦tw is a topological dynamical system on a compact metrizable space W, and where Θ(t,w)∈GL(n,R) satisfies the cocycle condition based on θ and is continuously differentiable in t if T=R. We show that 'semi λ-exponential dichotomy' of (θ,Θ) implies ' λ-exponential dichotomy.' Precisely, if Θ has no Lyapunov exponent λ and is almost uniformly λ-contracting along the λ-stable direction E(w;λ) and if dimE(w;λ) is constant a.e., then Θ is almost λ-exponentially dichotomous. To prove this, we first use Liao's spectrum theorem, which gives integral expression of the Lyapunov exponents, and then use the semi-uniform ergodic theorem by Sturman and Stark, which allows one to derive uniform estimates from nonuniform ones. As a consequence, we obtain the open-and-dense hyperbolicity of eventual GL(2,R)-cocycles based on a uniquely ergodic endomorphism, and of GL(2,R)-cocycles based on a uniquely ergodic equi-continuous endomorphism, respectively. On the other hand, in the sense of C-topology we obtain the density of SL(2,R)-cocycles having positive Lyapunov exponent based on a minimal subshift satisfying the Boshernitzan condition.

  13. Hyperbolic-symmetry vector fields.

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  14. Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity

    Christoforou, Cleopatra

    2017-12-10

    We extend the relative entropy identity to the class of hyperbolic-parabolic systems whose hyperbolic part is symmetrizable. The resulting identity is useful to provide measure valued weak versus strong uniqueness theorems for the hyperbolic problem. Also, it yields a convergence result in the zero-viscosity limit to smooth solutions in an Lp framework. The relative entropy identity is also developed for the system of gas dynamics for viscous and heat conducting gases, and for the system of thermoviscoelasticity with viscosity and heat-conduction. Existing differences between the example and the general hyperbolic theory are underlined.

  15. Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity

    Christoforou, Cleopatra; Tzavaras, Athanasios

    2017-01-01

    We extend the relative entropy identity to the class of hyperbolic-parabolic systems whose hyperbolic part is symmetrizable. The resulting identity is useful to provide measure valued weak versus strong uniqueness theorems for the hyperbolic problem. Also, it yields a convergence result in the zero-viscosity limit to smooth solutions in an Lp framework. The relative entropy identity is also developed for the system of gas dynamics for viscous and heat conducting gases, and for the system of thermoviscoelasticity with viscosity and heat-conduction. Existing differences between the example and the general hyperbolic theory are underlined.

  16. Demonstrator of atmospheric reentry system with hyperbolic velocity—DASH

    Morita, Yasuhiro; Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Abe, Takashi

    2003-01-01

    Among a wide variety of challenging projects planned for the coming decade is the MUSES-C mission designed by the ISAS of Japan. Despite huge amount of data collected by the previous interplanetary spacecraft and probes, the origin and evolution of the solar system still remains unveiled due to their limited information. Thus, our concern has been directed toward a sample return to carry sample from an asteroid back to the earth, which will contribute to better understanding of the system. One of the keys to success is considered the reentry technology with hyperbolic velocity, which has not been demonstrated yet. With this as background, the demonstrator of atmospheric reentry system with hyperbolic velocity, DASH, has been given a commitment to demonstrate the high-speed reentry technology, which will be launched in summer of next year by Japan's H-IIA rocket in a piggyback configuration. The spaceship, composed of a reentry capsule and its carrier, will be injected into a geostationary transfer orbit (GTO) and after several revolutions it will deorbit by burn of a solid propellant deorbit motor. The capsule, identical to that of the sample return mission, can experience the targeted level of thermal environment even from the GTO by tracing a specially designed reentry trajectory.

  17. Exact boundary controllability of nodal profile for quasilinear hyperbolic systems

    Li, Tatsien; Gu, Qilong

    2016-01-01

    This book provides a comprehensive overview of the exact boundary controllability of nodal profile, a new kind of exact boundary controllability stimulated by some practical applications. This kind of controllability is useful in practice as it does not require any precisely given final state to be attained at a suitable time t=T by means of boundary controls, instead it requires the state to exactly fit any given demand (profile) on one or more nodes after a suitable time t=T by means of boundary controls. In this book we present a general discussion of this kind of controllability for general 1-D first order quasilinear hyperbolic systems and for general 1-D quasilinear wave equations on an interval as well as on a tree-like network using a modular-structure construtive method, suggested in LI Tatsien's monograph "Controllability and Observability for Quasilinear Hyperbolic Systems"(2010), and we establish a complete theory on the local exact boundary controllability of nodal profile for 1-D quasilinear hyp...

  18. High-Order Wave Propagation Algorithms for Hyperbolic Systems

    Ketcheson, David I.

    2013-01-22

    We present a finite volume method that is applicable to hyperbolic PDEs including spatially varying and semilinear nonconservative systems. The spatial discretization, like that of the well-known Clawpack software, is based on solving Riemann problems and calculating fluctuations (not fluxes). The implementation employs weighted essentially nonoscillatory reconstruction in space and strong stability preserving Runge--Kutta integration in time. The method can be extended to arbitrarily high order of accuracy and allows a well-balanced implementation for capturing solutions of balance laws near steady state. This well-balancing is achieved through the $f$-wave Riemann solver and a novel wave-slope WENO reconstruction procedure. The wide applicability and advantageous properties of the method are demonstrated through numerical examples, including problems in nonconservative form, problems with spatially varying fluxes, and problems involving near-equilibrium solutions of balance laws.

  19. The necessary and sufficient conditions of the optimality for hyperbolic systems with non-differentiable performance functional

    Kowalewski, A.

    1982-11-01

    In this paper an optimal control problem with non-differentiable cost function for distributed parameter system is solved. As an example an optimal control problem for system described by a linear partial differential of hyperbolic type with the Neuman's boundary condition is considered. By use of the Milutin-Dubovicki method, necessary and sufficient conditions of optimality with non-differentiable performance functional and constrained control are derived for Neuman's problem. (author)

  20. Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems

    Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri

    2018-05-01

    The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.

  1. Survey of a numerical procedure for the solution of hyperbolic systems of three dimensional fluid flow

    Graf, U.

    1986-01-01

    A combination of several numerical methods is used to construct a procedure for effective calculation of complex three-dimensional fluid flow problems. The split coefficient matrix (SCM) method is used so that the differenced equations of the hyperbolic system do not disturb correct signal propagation. The semi-discretisation of the equations of the SCM method is done with the asymmetric, separated region, weighted residual (ASWR) method to give accurate solutions on a relatively coarse mesh. For the resulting system of ordinary differential equations, a general-purpose ordinary differential equation solver is used in conjunction with a method of fractional steps for an economic solution of the large system of linear equations. (orig.) [de

  2. Structural stability of solutions to the Riemann problem for a non-strictly hyperbolic system with flux approximation

    Meina Sun

    2016-05-01

    Full Text Available We study the Riemann problem for a non-strictly hyperbolic system of conservation laws under the linear approximations of flux functions with three parameters. The approximated system also belongs to the type of triangular systems of conservation laws and this approximation does not change the structure of Riemann solutions to the original system. Furthermore, it is proven that the Riemann solutions to the approximated system converge to the corresponding ones to the original system as the perturbation parameter tends to zero.

  3. A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws

    Lafitte, Pauline; Melis, Ward; Samaey, Giovanni

    2017-07-01

    We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.

  4. Exact solutions to robust control problems involving scalar hyperbolic conservation laws using Mixed Integer Linear Programming

    Li, Yanning

    2013-10-01

    This article presents a new robust control framework for transportation problems in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi equation, we pose the problem of controlling the state of the system on a network link, using boundary flow control, as a Linear Program. Unlike many previously investigated transportation control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e. discontinuities in the state of the system). We also demonstrate that the same framework can handle robust control problems, in which the uncontrollable components of the initial and boundary conditions are encoded in intervals on the right hand side of inequalities in the linear program. The lower bound of the interval which defines the smallest feasible solution set is used to solve the robust LP (or MILP if the objective function depends on boolean variables). Since this framework leverages the intrinsic properties of the Hamilton-Jacobi equation used to model the state of the system, it is extremely fast. Several examples are given to demonstrate the performance of the robust control solution and the trade-off between the robustness and the optimality. © 2013 IEEE.

  5. Exact solutions to robust control problems involving scalar hyperbolic conservation laws using Mixed Integer Linear Programming

    Li, Yanning; Canepa, Edward S.; Claudel, Christian G.

    2013-01-01

    This article presents a new robust control framework for transportation problems in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi equation, we pose the problem of controlling the state of the system on a network link, using boundary flow control, as a Linear Program. Unlike many previously investigated transportation control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e. discontinuities in the state of the system). We also demonstrate that the same framework can handle robust control problems, in which the uncontrollable components of the initial and boundary conditions are encoded in intervals on the right hand side of inequalities in the linear program. The lower bound of the interval which defines the smallest feasible solution set is used to solve the robust LP (or MILP if the objective function depends on boolean variables). Since this framework leverages the intrinsic properties of the Hamilton-Jacobi equation used to model the state of the system, it is extremely fast. Several examples are given to demonstrate the performance of the robust control solution and the trade-off between the robustness and the optimality. © 2013 IEEE.

  6. Carleman estimates and applications to inverse problems for hyperbolic systems

    Bellassoued, Mourad

    2017-01-01

    This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of wh...

  7. Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2017-10-01

    This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.

  8. Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations

    Nakamura, Gen; Vashisth, Manmohan

    2017-01-01

    In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...

  9. Blow-up Mechanism of Classical Solutions to Quasilinear Hyperbolic Systems in the Critical Case

    2006-01-01

    This paper deals with the blow-up phenomenon, particularly, the geometric blow-up mechanism, of classical solutions to the Cauchy problem for quasilinear hyperbolic systems in the critical case. We prove that it is still the envelope of the same family of characteristics which yields the blowup of classical solutions to the Cauchy problem in the critical case.

  10. From Anosov dynamics to hyperbolic attractors

    the dynamics on the attractive sets of the self-oscillatory systems and for the original Anosov geodesic flow. The hyperbolic nature ... Hyperbolic theory is a branch of the theory of dynami- ..... Figure 5. Verification of the hyperbolicity criterion for.

  11. Non linear system become linear system

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  12. Weak asymptotic solution for a non-strictly hyperbolic system of conservation laws-II

    Manas Ranjan Sahoo

    2016-04-01

    Full Text Available In this article we introduce a concept of entropy weak asymptotic solution for a system of conservation laws and construct the same for a prolonged system of conservation laws which is highly non-strictly hyperbolic. This is first done for Riemann type initial data by introducing $\\delta,\\delta',\\delta''$ waves along a discontinuity curve and then for general initial data by piecing together the Riemann solutions.

  13. Ray equations of a weak shock in a hyperbolic system of ...

    differential form of this system of conservation laws is a hyperbolic system of partial differential equations. A(u)ut + B(α)(u)uxα = 0,. (1.3) where. A(u) = 〈∇u,H〉 and B(α)(u) = 〈∇u, F(α)〉,. (1.4) and we use the summation convention that a repeated symbol in subscripts and super- scripts in a term will mean summation over the ...

  14. Simultaneous exact controllability for Maxwell equations and for a second-order hyperbolic system

    Boris V. Kapitonov

    2010-02-01

    Full Text Available We present a result on "simultaneous" exact controllability for two models that describe two hyperbolic dynamics. One is the system of Maxwell equations and the other a vector-wave equation with a pressure term. We obtain the main result using modified multipliers in order to generate a necessary observability estimate which allow us to use the Hilbert Uniqueness Method (HUM introduced by Lions.

  15. Linear system theory

    Callier, Frank M.; Desoer, Charles A.

    1991-01-01

    The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.

  16. A chaotic jerk system with non-hyperbolic equilibrium: Dynamics ...

    KARTHIKEYAN RAJAGOPAL

    2018-03-09

    Mar 9, 2018 ... as a set of first-order differential equations [49]. Such systems are ..... operational amplifiers and three analog multipliers. .... [40] C Shen, S Yu, J Lü and G Chen, IEEE T. Circuits-I: Regular Papers 61(8), 2380 (2014). [41] M F ...

  17. Global nonexistence results for a class of hyperbolic systems

    Said-Houari, Belkacem

    2011-12-01

    Our concern in this paper is to prove blow-up results to the non-autonomous nonlinear system of wave equations utt-Δu=a(t,x)| v|p,vtt-Δv=b(t,x)|u|q,t>0, x∈RN in any space dimension. We show that a curve F̃(p,q)=0 depending on the space dimension, on the exponents p,q and on the behavior of the functions a(t,x) and b(t,x) exists, such that all nontrivial solutions to the above system blow-up in a finite time whenever F̃(p,q)>0. Our method of proof uses some estimates developed by Galaktionov and Pohozaev in [11] for a single non-autonomous wave equation enabling us to obtain a system of ordinary differential inequalities from which the desired result is derived. Our result generalizes some important results such as the ones in Del Santo et al. (1996) [12] and Galaktionov and Pohozaev (2003) [11]. The advantage here is that our result applies to a wide variety of problems. © 2011 Elsevier Ltd. All rights reserved.

  18. A novel grid multiwing chaotic system with only non-hyperbolic equilibria

    Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le

    2018-05-01

    The structure of the chaotic attractor of a system is mainly determined by the nonlinear functions in system equations. By using a new saw-tooth wave function and a new stair function, a novel complex grid multiwing chaotic system which belongs to non-Shil'nikov chaotic system with non-hyperbolic equilibrium points is proposed in this paper. It is particularly interesting that the complex grid multiwing attractors are generated by increasing the number of non-hyperbolic equilibrium points, which are different from the traditional methods of realising multiwing attractors by adding the index-2 saddle-focus equilibrium points in double-wing chaotic systems. The basic dynamical properties of the new system, such as dissipativity, phase portraits, the stability of the equilibria, the time-domain waveform, power spectrum, bifurcation diagram, Lyapunov exponents, and so on, are investigated by theoretical analysis and numerical simulations. Furthermore, the corresponding electronic circuit is designed and simulated on the Multisim platform. The Multisim simulation results and the hardware experimental results are in good agreement with the numerical simulations of the same system on Matlab platform, which verify the feasibility of this new grid multiwing chaotic system.

  19. Hyperbolic geometry

    Iversen, Birger

    1992-01-01

    Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics

  20. The Split Coefficient Matrix method for hyperbolic systems of gasdynamic equations

    Chakravarthy, S. R.; Anderson, D. A.; Salas, M. D.

    1980-01-01

    The Split Coefficient Matrix (SCM) finite difference method for solving hyperbolic systems of equations is presented. This new method is based on the mathematical theory of characteristics. The development of the method from characteristic theory is presented. Boundary point calculation procedures consistent with the SCM method used at interior points are explained. The split coefficient matrices that define the method for steady supersonic and unsteady inviscid flows are given for several examples. The SCM method is used to compute several flow fields to demonstrate its accuracy and versatility. The similarities and differences between the SCM method and the lambda-scheme are discussed.

  1. Structural stability of Riemann solutions for strictly hyperbolic systems with three piecewise constant states

    Xuefeng Wei

    2016-12-01

    Full Text Available This article concerns the wave interaction problem for a strictly hyperbolic system of conservation laws whose Riemann solutions involve delta shock waves. To cover all situations, the global solutions are constructed when the initial data are taken as three piecewise constant states. It is shown that the Riemann solutions are stable with respect to a specific small perturbation of the Riemann initial data. In addition, some interesting nonlinear phenomena are captured during the process of constructing the solutions, such as the generation and decomposition of delta shock waves.

  2. Admissibility and hyperbolicity

    Barreira, Luís; Valls, Claudia

    2018-01-01

    This book gives a comprehensive overview of the relationship between admissibility and hyperbolicity. Essential theories and selected developments are discussed with highlights to applications. The dedicated readership includes researchers and graduate students specializing in differential equations and dynamical systems (with emphasis on hyperbolicity) who wish to have a broad view of the topic and working knowledge of its techniques. The book may also be used as a basis for appropriate graduate courses on hyperbolicity; the pointers and references given to further research will be particularly useful. The material is divided into three parts: the core of the theory, recent developments, and applications. The first part pragmatically covers the relation between admissibility and hyperbolicity, starting with the simpler case of exponential contractions. It also considers exponential dichotomies, both for discrete and continuous time, and establishes corresponding results building on the arguments for exponent...

  3. Generalized hyperbolic functions to find soliton-like solutions for a system of coupled nonlinear Schroedinger equations

    Yomba, Emmanuel

    2008-01-01

    With the aid of symbolic computation, we demonstrate that the known method which is based on the new generalized hyperbolic functions and the new kinds of generalized hyperbolic function transformations, generates classes of exact solutions to a system of coupled nonlinear Schroedinger equations. This system includes the modified Hubbard model and the system of coupled nonlinear Schroedinger derived by Lazarides and Tsironis. Four types of solutions for this system are given explicitly, namely: new bright-bright, new dark-dark, new bright-dark and new dark-bright solitons

  4. Global Classical Solutions for Partially Dissipative Hyperbolic System of Balance Laws

    Xu, Jiang; Kawashima, Shuichi

    2014-02-01

    The basic existence theory of Kato and Majda enables us to obtain local-in-time classical solutions to generally quasilinear hyperbolic systems in the framework of Sobolev spaces (in x) with higher regularity. However, it remains a challenging open problem whether classical solutions still preserve well-posedness in the case of critical regularity. This paper is concerned with partially dissipative hyperbolic system of balance laws. Under the entropy dissipative assumption, we establish the local well-posedness and blow-up criterion of classical solutions in the framework of Besov spaces with critical regularity with the aid of the standard iteration argument and Friedrichs' regularization method. Then we explore the theory of function spaces and develop an elementary fact that indicates the relation between homogeneous and inhomogeneous Chemin-Lerner spaces (mixed space-time Besov spaces). This fact allows us to capture the dissipation rates generated from the partial dissipative source term and further obtain the global well-posedness and stability by assuming at all times the Shizuta-Kawashima algebraic condition. As a direct application, the corresponding well-posedness and stability of classical solutions to the compressible Euler equations with damping are also obtained.

  5. Where the Solar system meets the solar neighbourhood: patterns in the distribution of radiants of observed hyperbolic minor bodies

    de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl; Aarseth, Sverre J.

    2018-05-01

    Observed hyperbolic minor bodies might have an interstellar origin, but they can be natives of the Solar system as well. Fly-bys with the known planets or the Sun may result in the hyperbolic ejection of an originally bound minor body; in addition, members of the Oort cloud could be forced to follow inbound hyperbolic paths as a result of secular perturbations induced by the Galactic disc or, less frequently, due to impulsive interactions with passing stars. These four processes must leave distinctive signatures in the distribution of radiants of observed hyperbolic objects, both in terms of coordinates and velocity. Here, we perform a systematic numerical exploration of the past orbital evolution of known hyperbolic minor bodies using a full N-body approach and statistical analyses to study their radiants. Our results confirm the theoretical expectations that strong anisotropies are present in the data. We also identify a statistically significant overdensity of high-speed radiants towards the constellation of Gemini that could be due to the closest and most recent known fly-by of a star to the Solar system, that of the so-called Scholz's star. In addition to and besides 1I/2017 U1 (`Oumuamua), we single out eight candidate interstellar comets based on their radiants' velocities.

  6. On the Smooth Dependence of SRB Measures for Partially Hyperbolic Systems

    Zhang, Zhiyuan

    2018-02-01

    In this paper, we study the differentiability of SRB measures for partially hyperbolic systems. We show that for any {s ≥ 1}, for any integer {ℓ ≥ 2}, any sufficiently large r, any φ \\in Cr(T, R)} such that the map {f : T^2 \\to T^2, f(x,y) = (ℓ x, y + φ(x))} is {C^r}-stably ergodic, there exists an open neighbourhood of f in {C^r(T^2,T^2)} such that any map in this neighbourhood has a unique SRB measure with {C^{s-1}} density, which depends on the dynamics in a {C^s} fashion. We also construct a C^{∞} mostly contracting partially hyperbolic diffeomorphism {f: T^3 \\to T^3} such that all f' in a C 2 open neighbourhood of f possess a unique SRB measure {μ_{f'}} and the map {f' \\mapsto μ_{f'}} is strictly Hölder at f, in particular, non-differentiable. This gives a partial answer to Dolgopyat's Question 13.3 in Dolgopyat (Commun Math Phys 213:181-201, 2000).

  7. Hyperbolic strings

    Popov, A.D.

    1991-01-01

    We introduce hyperbolic strings as closed bosonic strings with the target space R d-1,1 xT q+1,1 which has an additional time-like dimension in the internal space. The Fock spaces of the q-parametric family of standard bosonic, fermionic and heterotic strings with the target spaces of dimension n≤d+q are shown to be embedded into the Fock space of hyperbolic strings. The condition of the absence of anomaly fixes d and q for all three types of strings written in a bosonized form. (orig.)

  8. A second-order iterative implicit-explicit hybrid scheme for hyperbolic systems of conservation laws

    Dai, Wenlong; Woodward, P.R.

    1996-01-01

    An iterative implicit-explicit hybrid scheme is proposed for hyperbolic systems of conservation laws. Each wave in a system may be implicitly, or explicitly, or partially implicitly and partially explicitly treated depending on its associated Courant number in each numerical cell, and the scheme is able to smoothly switch between implicit and explicit calculations. The scheme is of Godunov-type in both explicit and implicit regimes, is in a strict conservation form, and is accurate to second-order in both space and time for all Courant numbers. The computer code for the scheme is easy to vectorize. Multicolors proposed in this paper may reduce the number of iterations required to reach a converged solution by several orders for a large time step. The feature of the scheme is shown through numerical examples. 38 refs., 12 figs

  9. A Synthesizable VHDL Model of the Exact Solution for Three-dimensional Hyperbolic Positioning System

    Ralph Bucher

    2002-01-01

    Full Text Available This paper presents a synthesizable VHDL model of a three-dimensional hyperbolic positioning system algorithm. The algorithm obtains an exact solution for the three-dimensional location of a mobile given the locations of four fixed stations (like a global positioning system [GPS] satellite or a base station in a cell and the signal time of arrival (TOA from the mobile to each station. The detailed derivation of the steps required in the algorithm is presented. A VHDL model of the algorithm was implemented and simulated using the IEEE numeric_std package. Signals were described by a 32-bit vector. Simulation results predict location of the mobile is off by 1 m for best case and off by 36 m for worst case. A C + + program using real numbers was used as a benchmark for the accuracy and precision of the VHDL model. The model can be easily synthesized for low power hardware implementation.

  10. Convexity and Weighted Integral Inequalities for Energy Decay Rates of Nonlinear Dissipative Hyperbolic Systems

    Alabau-Boussouira, Fatiha

    2005-01-01

    This work is concerned with the stabilization of hyperbolic systems by a nonlinear feedback which can be localized on a part of the boundary or locally distributed. We show that general weighted integral inequalities together with convexity arguments allow us to produce a general semi-explicit formula which leads to decay rates of the energy in terms of the behavior of the nonlinear feedback close to the origin. This formula allows us to unify for instance the cases where the feedback has a polynomial growth at the origin, with the cases where it goes exponentially fast to zero at the origin. We also give three other significant examples of nonpolynomial growth at the origin. We also prove the optimality of our results for the one-dimensional wave equation with nonlinear boundary dissipation. The key property for obtaining our general energy decay formula is the understanding between convexity properties of an explicit function connected to the feedback and the dissipation of energy

  11. Casimir effect in hyperbolic polygons

    Ahmedov, H

    2007-01-01

    Using the point splitting regularization method and the trace formula for the spectra of quantum-mechanical systems in hyperbolic polygons which are the fundamental domains of discrete isometry groups acting in the two-dimensional hyperboloid we calculate the Casimir energy for massless scalar fields in hyperbolic polygons. The dependence of the vacuum energy on the number of vertices is established

  12. A chaotic jerk system with non-hyperbolic equilibrium: Dynamics, effect of time delay and circuit realisation

    Rajagopal, Karthikeyan; Pham, Viet-Thanh; Tahir, Fadhil Rahma; Akgul, Akif; Abdolmohammadi, Hamid Reza; Jafari, Sajad

    2018-04-01

    The literature on chaos has highlighted several chaotic systems with special features. In this work, a novel chaotic jerk system with non-hyperbolic equilibrium is proposed. The dynamics of this new system is revealed through equilibrium analysis, phase portrait, bifurcation diagram and Lyapunov exponents. In addition, we investigate the time-delay effects on the proposed system. Realisation of such a system is presented to verify its feasibility.

  13. Geometry in a dynamical system without space: Hyperbolic Geometry in Kuramoto Oscillator Systems

    Engelbrecht, Jan; Chen, Bolun; Mirollo, Renato

    Kuramoto oscillator networks have the special property that their time evolution is constrained to lie on 3D orbits of the Möbius group acting on the N-fold torus TN which explains the N - 3 constants of motion discovered by Watanabe and Strogatz. The dynamics for phase models can be further reduced to 2D invariant sets in T N - 1 which have a natural geometry equivalent to the unit disk Δ with hyperbolic metric. We show that the classic Kuramoto model with order parameter Z1 (the first moment of the oscillator configuration) is a gradient flow in this metric with a unique fixed point on each generic 2D invariant set, corresponding to the hyperbolic barycenter of an oscillator configuration. This gradient property makes the dynamics especially easy to analyze. We exhibit several new families of Kuramoto oscillator models which reduce to gradient flows in this metric; some of these have a richer fixed point structure including non-hyperbolic fixed points associated with fixed point bifurcations. Work Supported by NSF DMS 1413020.

  14. Discontinuous Galerkin Method for Hyperbolic Conservation Laws

    Mousikou, Ioanna

    2016-11-11

    Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect the formation of shock waves. We consider one-dimensional systems of hyperbolic conservation laws and produce approximations using finite difference, finite volume and finite element methods. Due to stability issues of classical finite element methods for hyperbolic conservation laws, we study the discontinuous Galerkin method, which was recently introduced. The method involves completely discontinuous basis functions across each element and it can be considered as a combination of finite volume and finite element methods. We illustrate the implementation of discontinuous Galerkin method using Legendre polynomials, in case of scalar equations and in case of quasi-linear systems, and we review important theoretical results about stability and convergence of the method. The applications of finite volume and discontinuous Galerkin methods to linear and non-linear scalar equations, as well as to the system of elastodynamics, are exhibited.

  15. Discontinuous Galerkin Method for Hyperbolic Conservation Laws

    Mousikou, Ioanna

    2016-01-01

    Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect the formation of shock waves. We consider one-dimensional systems of hyperbolic conservation laws and produce approximations using finite difference, finite volume and finite element methods. Due to stability issues of classical finite element methods for hyperbolic conservation laws, we study the discontinuous Galerkin method, which was recently introduced. The method involves completely discontinuous basis functions across each element and it can be considered as a combination of finite volume and finite element methods. We illustrate the implementation of discontinuous Galerkin method using Legendre polynomials, in case of scalar equations and in case of quasi-linear systems, and we review important theoretical results about stability and convergence of the method. The applications of finite volume and discontinuous Galerkin methods to linear and non-linear scalar equations, as well as to the system of elastodynamics, are exhibited.

  16. Linearization of the Lorenz system

    Li, Chunbiao; Sprott, Julien Clinton; Thio, Wesley

    2015-01-01

    A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation

  17. Linearization of the Lorenz system

    Li, Chunbiao, E-mail: goontry@126.com [School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Engineering Technology Research and Development Center of Jiangsu Circulation Modernization Sensor Network, Jiangsu Institute of Commerce, Nanjing 211168 (China); Sprott, Julien Clinton [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States); Thio, Wesley [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 (United States)

    2015-05-08

    A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation.

  18. Hyperbolicity in median graphs

    mic problems in hyperbolic spaces and hyperbolic graphs have been .... that in general the main obstacle is that we do not know the location of ...... [25] Jonckheere E and Lohsoonthorn P, A hyperbolic geometry approach to multipath routing,.

  19. Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium systems with heat flux

    Sobolev, S. L.

    2018-02-01

    Some analogies between different nonequilibrium heat conduction models, particularly random walk, the discrete variable model, and the Boltzmann transport equation with the single relaxation time approximation, have been discussed. We show that, under an assumption of a finite value of the heat carrier velocity, these models lead to the hyperbolic heat conduction equation and the modified Fourier law with relaxation term. Corresponding effective temperature and entropy have been introduced and analyzed. It has been demonstrated that the effective temperature, defined as a geometric mean of the kinetic temperatures of the heat carriers moving in opposite directions, acts as a criterion for thermalization and is a nonlinear function of the kinetic temperature and heat flux. It is shown that, under highly nonequilibrium conditions when the heat flux tends to its maximum possible value, the effective temperature, heat capacity, and local entropy go to zero even at a nonzero equilibrium temperature. This provides a possible generalization of the third law to nonequilibrium situations. Analogies and differences between the proposed effective temperature and some other definitions of a temperature in nonequilibrium state, particularly for active systems, disordered semiconductors under electric field, and adiabatic gas flow, have been shown and discussed. Illustrative examples of the behavior of the effective temperature and entropy during nonequilibrium heat conduction in a monatomic gas and a strong shockwave have been analyzed.

  20. Dynamical systems and linear algebra

    Colonius, Fritz (Prof.)

    2007-01-01

    Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)

  1. Diffusive instabilities in hyperbolic reaction-diffusion equations

    Zemskov, Evgeny P.; Horsthemke, Werner

    2016-03-01

    We investigate two-variable reaction-diffusion systems of the hyperbolic type. A linear stability analysis is performed, and the conditions for diffusion-driven instabilities are derived. Two basic types of eigenvalues, real and complex, are described. Dispersion curves for both types of eigenvalues are plotted and their behavior is analyzed. The real case is related to the Turing instability, and the complex one corresponds to the wave instability. We emphasize the interesting feature that the wave instability in the hyperbolic equations occurs in two-variable systems, whereas in the parabolic case one needs three reaction-diffusion equations.

  2. New generalized hyperbolic functions to find new coupled ultraslow optical soliton pairs in a cold three-state double- and system

    Yomba, Emmanuel

    2007-01-01

    We demonstrate that the known method which is based on the new generalized hyperbolic functions and the new kinds of generalized hyperbolic function transformations, generates classes of exact solutions to a system of coupled nonlinear Schroedinger equations governing the nonlinear evolution of the envelopes probe fields in the four-mixing scheme. Four types of solutions are given explicitly, namely new bright-bright, new dark-dark, new bright-dark and new dark-bright solitons

  3. Analysis and Adaptive Synchronization of Two Novel Chaotic Systems with Hyperbolic Sinusoidal and Cosinusoidal Nonlinearity and Unknown Parameters

    S. Vaidyanathan

    2013-09-01

    Full Text Available This research work describes the modelling of two novel 3-D chaotic systems, the first with a hyperbolic sinusoidal nonlinearity and two quadratic nonlinearities (denoted as system (A and the second with a hyperbolic cosinusoidal nonlinearity and two quadratic nonlinearities (denoted as system (B. In this work, a detailed qualitative analysis of the novel chaotic systems (A and (B has been presented, and the Lyapunov exponents and Kaplan-Yorke dimension of these chaotic systems have been obtained. It is found that the maximal Lyapunov exponent (MLE for the novel chaotic systems (A and (B has a large value, viz. for the system (A and for the system (B. Thus, both the novel chaotic systems (A and (B display strong chaotic behaviour. This research work also discusses the problem of finding adaptive controllers for the global chaos synchronization of identical chaotic systems (A, identical chaotic systems (B and nonidentical chaotic systems (A and (B with unknown system parameters. The adaptive controllers for achieving global chaos synchronization of the novel chaotic systems (A and (B have been derived using adaptive control theory and Lyapunov stability theory. MATLAB simulations have been shown to illustrate the novel chaotic systems (A and (B, and also the adaptive synchronization results derived for the novel chaotic systems (A and (B.

  4. Shadowing and hyperbolicity

    Pilyugin, Sergei Yu

    2017-01-01

    Focusing on the theory of shadowing of approximate trajectories (pseudotrajectories) of dynamical systems, this book surveys recent progress in establishing relations between shadowing and such basic notions from the classical theory of structural stability as hyperbolicity and transversality. Special attention is given to the study of "quantitative" shadowing properties, such as Lipschitz shadowing (it is shown that this property is equivalent to structural stability both for diffeomorphisms and smooth flows), and to the passage to robust shadowing (which is also equivalent to structural stability in the case of diffeomorphisms, while the situation becomes more complicated in the case of flows). Relations between the shadowing property of diffeomorphisms on their chain transitive sets and the hyperbolicity of such sets are also described. The book will allow young researchers in the field of dynamical systems to gain a better understanding of new ideas in the global qualitative theory. It will also be of int...

  5. Path integration on hyperbolic spaces

    Grosche, C [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    1991-11-01

    Quantum mechanics on the hyperbolic spaces of rank one is discussed by path integration technique. Hyperbolic spaces are multi-dimensional generalisation of the hyperbolic plane, i.e. the Poincare upper half-plane endowed with a hyperbolic geometry. We evalute the path integral on S{sub 1} {approx equal} SO (n,1)/SO(n) and S{sub 2} {approx equal} SU(n,1)/S(U(1) x U(n)) in a particular coordinate system, yielding explicitly the wave-functions and the energy spectrum. Futhermore we can exploit a general property of all these spaces, namely that they can be parametrized by a pseudopolar coordinate system. This allows a separation in path integration over spheres and an additional path integration over the remaining hyperbolic coordinate, yielding effectively a path integral for a modified Poeschl-Teller potential. Only continuous spectra can exist in all the cases. For all the hyperbolic spaces of rank one we find a general formula for the largest lower bound (zero-point energy) of the spectrum which is given by E{sub O} = h{sup 2} /8m(m{sub {alpha}} +2m{sub 2} {alpha}){sup 2} (m {alpha} and m{sub 2}{alpha} denote the dimension of the root subspace corresponding to the roots {alpha} and 2{alpha}, respectively). I also discuss the case, where a constant magnetic field on H{sup n} is incorporated. (orig.).

  6. Path integration on hyperbolic spaces

    Grosche, C.

    1991-11-01

    Quantum mechanics on the hyperbolic spaces of rank one is discussed by path integration technique. Hyperbolic spaces are multi-dimensional generalisation of the hyperbolic plane, i.e. the Poincare upper half-plane endowed with a hyperbolic geometry. We evalute the path integral on S 1 ≅ SO (n,1)/SO(n) and S 2 ≅ SU(n,1)/S[U(1) x U(n)] in a particular coordinate system, yielding explicitly the wave-functions and the energy spectrum. Futhermore we can exploit a general property of all these spaces, namely that they can be parametrized by a pseudopolar coordinate system. This allows a separation in path integration over spheres and an additional path integration over the remaining hyperbolic coordinate, yielding effectively a path integral for a modified Poeschl-Teller potential. Only continuous spectra can exist in all the cases. For all the hyperbolic spaces of rank one we find a general formula for the largest lower bound (zero-point energy) of the spectrum which is given by E O = h 2 /8m(m α +2m 2 α) 2 (m α and m 2 α denote the dimension of the root subspace corresponding to the roots α and 2α, respectively). I also discuss the case, where a constant magnetic field on H n is incorporated. (orig.)

  7. Hyperbolic manifolds as vacuum solutions in Kaluza-Klein theories

    Aref'eva, I.Ya.; Volovich, I.V.

    1985-08-01

    The relevance of compact hyperbolic manifolds in the context of Kaluza-Klein theories is discussed. Examples of spontaneous compactification on hyperbolic manifolds including d dimensional (d>=8) Einstein-Yang-Mills gravity and 11-dimensional supergravity are considered. Some mathematical facts about hyperbolic manifolds essential for the physical content of the theory are briefly summarized. Non-linear σ-models based on hyperbolic manifolds are discussed. (author)

  8. The Entropy Principle from Continuum Mechanics to Hyperbolic Systems of Balance Laws: The Modern Theory of Extended Thermodynamics

    Tommaso Ruggeri

    2008-09-01

    Full Text Available We discuss the different roles of the entropy principle in modern thermodynamics. We start with the approach of rational thermodynamics in which the entropy principle becomes a selection rule for physical constitutive equations. Then we discuss the entropy principle for selecting admissible discontinuous weak solutions and to symmetrize general systems of hyperbolic balance laws. A particular attention is given on the local and global well-posedness of the relative Cauchy problem for smooth solutions. Examples are given in the case of extended thermodynamics for rarefied gases and in the case of a multi-temperature mixture of fluids.

  9. Feedback systems for linear colliders

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  10. A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system

    Jia, Meng; Fan, Yang-Yu; Tian, Wei-Jian

    2011-03-01

    Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend. This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time. Based on this theory and combined with the improved DHT computing method, this paper reports a new fast computing method to DHT, which magnifies the DHT computing speed without decreasing its accuracy. Project supported by the National Natural Science Foundation of China (Grant No. 60872159).

  11. A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system

    Jia Meng; Fan Yang-Yu; Tian Wei-Jian

    2011-01-01

    Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend. This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time. Based on this theory and combined with the improved DHT computing method, this paper reports a new fast computing method to DHT, which magnifies the DHT computing speed without decreasing its accuracy. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Homoclinic Ω-explosion and domains of hyperbolicity

    Sten'kin, O V; Shil'nikov, L P

    1998-01-01

    The existence of domains of hyperbolicity is proved for general one-parameter families of multidimensional systems that undergo a homoclinic Ω-explosion and the structure of the hyperbolic sets is studied for such families

  13. Feedback Systems for Linear Colliders

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies

  14. Window observers for linear systems

    Utkin Vadim

    2000-01-01

    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  15. Hyperbolic Chaos A Physicist’s View

    Kuznetsov, Sergey P

    2012-01-01

    "Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos.   This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering.   Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.  

  16. Universal asymptotics in hyperbolicity breakdown

    Bjerklöv, Kristian; Saprykina, Maria

    2008-01-01

    We study a scenario for the disappearance of hyperbolicity of invariant tori in a class of quasi-periodic systems. In this scenario, the system loses hyperbolicity because two invariant directions come close to each other, losing their regularity. In a recent paper, based on numerical results, Haro and de la Llave (2006 Chaos 16 013120) discovered a quantitative universality in this scenario, namely, that the minimal angle between the two invariant directions has a power law dependence on the parameters and the exponents of the power law are universal. We present an analytic proof of this result

  17. Systems of Inhomogeneous Linear Equations

    Scherer, Philipp O. J.

    Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.

  18. Linear collider systems and costs

    Loew, G.A.

    1993-05-01

    The purpose of this paper is to examine some of the systems and sub-systems involved in so-called ''conventional'' e + e - linear colliders and to study how their design affects the overall cost of these machines. There are presently a total of at least six 500 GeV c. of m. linear collider projects under study in the world. Aside from TESLA (superconducting linac at 1.3 GHz) and CLIC (two-beam accelerator with main linac at 30GHz), the other four proposed e + e - linear colliders can be considered ''conventional'' in that their main linacs use the proven technique of driving room temperature accelerator sections with pulsed klystrons and modulators. The centrally distinguishing feature between these projects is their main linac rf frequency: 3 GHz for the DESY machine, 11.424 GHz for the SLAC and JLC machines, and 14 GHz for the VLEPP machine. The other systems, namely the electron and positron sources, preaccelerators, compressors, damping rings and final foci, are fairly similar from project to project. Probably more than 80% of the cost of these linear colliders will be incurred in the two main linacs facing each other and it is therefore in their design and construction that major savings or extra costs may be found

  19. THREE-POINT BACKWARD FINITE DIFFERENCE METHOD FOR SOLVING A SYSTEM OF MIXED HYPERBOLIC-PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS. (R825549C019)

    A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...

  20. Geometry of hyperbolic monopoles

    Nash, C.

    1986-01-01

    The hyperbolic monopoles of Atiyah [M. F. Atiyah, Commun. Math. Phys. 93, 471 (1984); ''Magnetic monopoles in hyperbolic space,'' in Proceedings of the International Colloquium on Vector Bundles (Tata Institute, Bombay, 1984)] and Chakrabarti [A. Chakrabarti, J. Math. Phys. 27, 340 (1986)] are introduced and their geometric properties and relations to instantons and ordinary monopoles clarified. A key tool is the use of the ball model of hyperbolic space to construct and examine solutions

  1. High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms

    Xing Yulong; Shu Chiwang

    2006-01-01

    Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source term. In our earlier work [J. Comput. Phys. 208 (2005) 206-227; J. Sci. Comput., accepted], we designed a well-balanced finite difference weighted essentially non-oscillatory (WENO) scheme, which at the same time maintains genuine high order accuracy for general solutions, to a class of hyperbolic systems with separable source terms including the shallow water equations, the elastic wave equation, the hyperbolic model for a chemosensitive movement, the nozzle flow and a two phase flow model. In this paper, we generalize high order finite volume WENO schemes and Runge-Kutta discontinuous Galerkin (RKDG) finite element methods to the same class of hyperbolic systems to maintain a well-balanced property. Finite volume and discontinuous Galerkin finite element schemes are more flexible than finite difference schemes to treat complicated geometry and adaptivity. However, because of a different computational framework, the maintenance of the well-balanced property requires different technical approaches. After the description of our well-balanced high order finite volume WENO and RKDG schemes, we perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions, the non-oscillatory property for general solutions with discontinuities, and the genuine high order accuracy in smooth regions

  2. Travelling plateaus for a hyperbolic Keller–Segel system with attraction and repulsion: existence and branching instabilities

    Perthame, Benoît; Tang, Min; Vauchelet, Nicolas; Schmeiser, Christian

    2011-01-01

    How can repulsive and attractive forces, acting on a conservative system, create stable travelling patterns or branching instabilities? We have proposed to study this question in the framework of the hyperbolic Keller–Segel system with logistic sensitivity. This is a model system motivated by experiments on cell communities auto-organization, a field which is also called socio-biology. We continue earlier modelling work, where we have shown numerically that branching patterns arise for this system and we have analysed this instability by formal asymptotics for small diffusivity of the chemo-repellent. Here we are interested in the more general situation, where the diffusivities of both the chemo-attractant and the chemo-repellent are positive. To do so, we develop an appropriate functional analysis framework. We apply our method to two cases. Firstly we analyse steady states. Secondly we analyse travelling waves when neglecting the degradation coefficient of the chemo-repellent; the unique wave speed appears through a singularity cancellation which is the main theoretical difficulty. This shows that in different situations the cell density takes the shape of a plateau. The existence of steady states and travelling plateaus are a symptom of how rich the system is and why branching instabilities can occur. Numerical tests show that large plateaus may split into smaller ones, which remain stable

  3. Chosen interval methods for solving linear interval systems with special type of matrix

    Szyszka, Barbara

    2013-10-01

    The paper is devoted to chosen direct interval methods for solving linear interval systems with special type of matrix. This kind of matrix: band matrix with a parameter, from finite difference problem is obtained. Such linear systems occur while solving one dimensional wave equation (Partial Differential Equations of hyperbolic type) by using the central difference interval method of the second order. Interval methods are constructed so as the errors of method are enclosed in obtained results, therefore presented linear interval systems contain elements that determining the errors of difference method. The chosen direct algorithms have been applied for solving linear systems because they have no errors of method. All calculations were performed in floating-point interval arithmetic.

  4. Linear operator inequalities for strongly stable weakly regular linear systems

    Curtain, RF

    2001-01-01

    We consider the question of the existence of solutions to certain linear operator inequalities (Lur'e equations) for strongly stable, weakly regular linear systems with generating operators A, B, C, 0. These operator inequalities are related to the spectral factorization of an associated Popov

  5. Hyperbolic partial differential equations

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  6. Angles in hyperbolic lattices

    Risager, Morten S.; Södergren, Carl Anders

    2017-01-01

    It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...

  7. Vortices on hyperbolic surfaces

    Manton, Nicholas S; Rink, Norman A

    2010-01-01

    It is shown that Abelian Higgs vortices on a hyperbolic surface M can be constructed geometrically from holomorphic maps f: M → N, where N is also a hyperbolic surface. The fields depend on f and on the metrics of M and N. The vortex centres are the ramification points, where the derivative of f vanishes. The magnitude of the Higgs field measures the extent to which f is locally an isometry. Witten's construction of vortices on the hyperbolic plane is rederived, and new examples of vortices on compact surfaces and on hyperbolic surfaces of revolution are obtained. The interpretation of these solutions as SO(3)-invariant, self-dual SU(2) Yang-Mills fields on R 4 is also given.

  8. Hyperbolic space for tourists

    Blasjo, Viktor|info:eu-repo/dai/nl/338038108

    2013-01-01

    We discuss how a creature accustomed to Euclidean space would fare in a world of hyperbolic or spherical geometry, and conversely. Various optical illusions and counterintuitive experiences arise, which can be explicated mathematically using plane models of these geometries.

  9. Dynamic linearization system for a radiation gauge

    Panarello, J.A.

    1977-01-01

    The linearization system and process converts a high resolution non-linear analog input signal, representative of the thickness of an object, into a high resolution linear analog output signal suitable for use in driving a variety of output devices. The system requires only a small amount of memory for storing pre-calculated non-linear correction coefficients. The system channels the input signal to separate circuit paths so that it may be used directly to; locate an appropriate correction coefficient; develop a correction term after an appropriate correction coefficient is located; and develop a linearized signal having the same high resolution inherent in the input signal. The system processes the linearized signal to compensate for the possible errors introduced by radiation source noise. The processed linearized signal is the high resolution linear analog output signal which accurately represents the thickness of the object being gauged

  10. Linear quadratic optimization for positive LTI system

    Muhafzan, Yenti, Syafrida Wirma; Zulakmal

    2017-05-01

    Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

  11. On the coupling of systems of hyperbolic conservation laws with ordinary differential equations

    Borsche, Raul; Colombo, Rinaldo M; Garavello, Mauro

    2010-01-01

    Motivated by applications to the piston problem, to a manhole model, to blood flow and to supply chain dynamics, this paper deals with a system of conservation laws coupled with a system of ordinary differential equations. The former is defined on a domain with boundary and the coupling is provided by the boundary condition. For each of the examples considered, numerical integrations are provided

  12. Numerical solutions of a general coupled nonlinear system of parabolic and hyperbolic equations of thermoelasticity

    Sweilam, N. H.; Abou Hasan, M. M.

    2017-05-01

    In this paper, the weighted-average non-standard finite-difference (WANSFD) method is used to study numerically the general time-fractional nonlinear, one-dimensional problem of thermoelasticity. This model contains the standard system arising in thermoelasticity as a special case. The stability of the proposed method is analyzed by a procedure akin to the standard John von Neumann technique. Moreover, the accuracy of the proposed scheme is proved. Numerical results are presented graphically, which reveal that the WANSFD method is easy to implement, effective and convenient for solving the proposed system. The proposed method could also be easily extended to solve other systems of fractional partial differential equations.

  13. Fast sweeping methods for hyperbolic systems of conservation laws at steady state II

    Engquist, Björn; Froese, Brittany D.; Tsai, Yen-Hsi Richard

    2015-04-01

    The idea of using fast sweeping methods for solving stationary systems of conservation laws has previously been proposed for efficiently computing solutions with sharp shocks. We further develop these methods to allow for a more challenging class of problems including problems with sonic points, shocks originating in the interior of the domain, rarefaction waves, and two-dimensional systems. We show that fast sweeping methods can produce higher-order accuracy. Computational results validate the claims of accuracy, sharp shock curves, and optimal computational efficiency.

  14. Representation of the contextual statistical model by hyperbolic amplitudes

    Khrennikov, Andrei

    2005-01-01

    We continue the development of a so-called contextual statistical model (here context has the meaning of a complex of physical conditions). It is shown that, besides contexts producing the conventional trigonometric cos-interference, there exist contexts producing the hyperbolic cos-interference. Starting with the corresponding interference formula of total probability we represent such contexts by hyperbolic probabilistic amplitudes or in the abstract formalism by normalized vectors of a hyperbolic analogue of the Hilbert space. There is obtained a hyperbolic Born's rule. Incompatible observables are represented by noncommutative operators. This paper can be considered as the first step towards hyperbolic quantum probability. We also discuss possibilities of experimental verification of hyperbolic quantum mechanics: in physics of elementary particles, string theory as well as in experiments with nonphysical systems, e.g., in psychology, cognitive sciences, and economy

  15. On pole structure assignment in linear systems

    Loiseau, J.-J.; Zagalak, Petr

    2009-01-01

    Roč. 82, č. 7 (2009), s. 1179-1192 ISSN 0020-7179 R&D Projects: GA ČR(CZ) GA102/07/1596 Institutional research plan: CEZ:AV0Z10750506 Keywords : linear systems * linear state feedback * pole structure assignment Subject RIV: BC - Control Systems Theory Impact factor: 1.124, year: 2009 http://library.utia.cas.cz/separaty/2009/AS/zagalak-on pole structure assignment in linear systems.pdf

  16. Hyperbolic Metamaterials with Complex Geometry

    Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei

    2016-01-01

    We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...

  17. Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators

    Semenova, N.; Anishchenko, V. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Zakharova, A.; Schöll, E. [Institut für Theoretische Physik, TU Berlin, Hardenbergstraße 36, 10623 Berlin (Germany)

    2016-06-08

    In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.

  18. Displacement measurement system for linear array detector

    Zhang Pengchong; Chen Ziyu; Shen Ji

    2011-01-01

    It presents a set of linear displacement measurement system based on encoder. The system includes displacement encoders, optical lens and read out circuit. Displacement read out unit includes linear CCD and its drive circuit, two amplifier circuits, second order Butterworth low-pass filter and the binarization circuit. The coding way is introduced, and various parts of the experimental signal waveforms are given, and finally a linear experimental test results are given. The experimental results are satisfactory. (authors)

  19. Numerical solution of large sparse linear systems

    Meurant, Gerard; Golub, Gene.

    1982-02-01

    This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr

  20. Balanced truncation for linear switched systems

    Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef

    2013-01-01

    In this paper, we present a theoretical analysis of the model reduction algorithm for linear switched systems from Shaker and Wisniewski (2011, 2009) and . This algorithm is a reminiscence of the balanced truncation method for linear parameter varying systems (Wood et al., 1996) [3]. Specifically...

  1. Sources of hyperbolic geometry

    Stillwell, John

    1996-01-01

    This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...

  2. Asymptotic behaviour of solutions of the first boundary-value problem for strongly hyperbolic systems near a conical point at the boundary of the domain

    Hung, Nguyen M

    1999-01-01

    An existence and uniqueness theorem for generalized solutions of the first initial-boundary-value problem for strongly hyperbolic systems in bounded domains is established. The question of estimates in Sobolev spaces of the derivatives with respect to time of the generalized solution is discussed. It is shown that the smoothness of generalized solutions with respect to time is independent of the structure of the boundary of the domain but depends on the coefficients of the right-hand side. Results on the smoothness of the generalized solution and its asymptotic behaviour in a neighbourhood of a conical boundary point are also obtained

  3. Observability of linear systems with saturated outputs

    Koplon, R.; Sontag, E.D.; Hautus, M.L.J.

    1994-01-01

    We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.

  4. Hyperbolic conservation laws in continuum physics

    Dafermos, Constantine M

    2016-01-01

    This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conser...

  5. Multidimensional Riemann problem with self-similar internal structure - part III - a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems

    Balsara, Dinshaw S.; Nkonga, Boniface

    2017-10-01

    Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-structure for use on structured meshes is the goal of this work. The multidimensional MuSIC Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic conservation law. The multidimensional Riemann solver is made to be consistent with constraints that emerge naturally from the Galerkin projection of the self-similar states within the wave model. When the full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete Riemann solver in a multidimensional sense. I.e., all the intermediate waves are represented in the multidimensional wave model. The work also presents, for the very first time, an important analysis of the dissipation characteristics of multidimensional Riemann solvers. The present Riemann solver results in the most efficient implementation of a multidimensional Riemann solver with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help with well-balancing. Implementation-related details are presented in pointwise fashion for the one-dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver.

  6. Isolators Including Main Spring Linear Guide Systems

    Goold, Ryan (Inventor); Buchele, Paul (Inventor); Hindle, Timothy (Inventor); Ruebsamen, Dale Thomas (Inventor)

    2017-01-01

    Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.

  7. Transition from complete synchronization to spatio-temporal chaos in coupled chaotic systems with nonhyperbolic and hyperbolic attractors

    Rybalova, Elena; Semenova, Nadezhda; Strelkova, Galina; Anishchenko, Vadim

    2017-06-01

    We study the transition from coherence (complete synchronization) to incoherence (spatio-temporal chaos) in ensembles of nonlocally coupled chaotic maps with nonhyperbolic and hyperbolic attractors. As basic models of a partial element we use the Henon map and the Lozi map. We show that the transition to incoherence in a ring of coupled Henon maps occurs through the appearance of phase and amplitude chimera states. An ensemble of coupled Lozi maps demonstrates the coherence-incoherence transition via solitary states and no chimera states are observed in this case.

  8. On the statistics of the minimal solution of a linear Diophantine equation and uniform distribution of the real part of orbits in hyperbolic spaces

    Risager, Morten S.; Rudnick, Zeev

    We study a variant of a problem considered by Dinaburg and Sinai on the statistics of the minimal solution to a linear Diophantine equation. We show that the signed ratio between the Euclidean norms of the minimal solution and the coefficient vector is uniformly distributed modulo one. We reduce ...

  9. Linear systems a measurement based approach

    Bhattacharyya, S P; Mohsenizadeh, D N

    2014-01-01

    This brief presents recent results obtained on the analysis, synthesis and design of systems described by linear equations. It is well known that linear equations arise in most branches of science and engineering as well as social, biological and economic systems. The novelty of this approach is that no models of the system are assumed to be available, nor are they required. Instead, a few measurements made on the system can be processed strategically to directly extract design values that meet specifications without constructing a model of the system, implicitly or explicitly. These new concepts are illustrated by applying them to linear DC and AC circuits, mechanical, civil and hydraulic systems, signal flow block diagrams and control systems. These applications are preliminary and suggest many open problems. The results presented in this brief are the latest effort in this direction and the authors hope these will lead to attractive alternatives to model-based design of engineering and other systems.

  10. Hyperbolicity of projective hypersurfaces

    Diverio, Simone

    2016-01-01

    This book presents recent advances on Kobayashi hyperbolicity in complex geometry, especially in connection with projective hypersurfaces. This is a very active field, not least because of the fascinating relations with complex algebraic and arithmetic geometry. Foundational works of Serge Lang and Paul A. Vojta, among others, resulted in precise conjectures regarding the interplay of these research fields (e.g. existence of Zariski dense entire curves should correspond to the (potential) density of rational points). Perhaps one of the conjectures which generated most activity in Kobayashi hyperbolicity theory is the one formed by Kobayashi himself in 1970 which predicts that a very general projective hypersurface of degree large enough does not contain any (non-constant) entire curves. Since the seminal work of Green and Griffiths in 1979, later refined by J.-P. Demailly, J. Noguchi, Y.-T. Siu and others, it became clear that a possible general strategy to attack this problem was to look at particular algebr...

  11. Advanced Research Workshop on Nonlinear Hyperbolic Problems

    Serre, Denis; Raviart, Pierre-Arnaud

    1987-01-01

    The field of nonlinear hyperbolic problems has been expanding very fast over the past few years, and has applications - actual and potential - in aerodynamics, multifluid flows, combustion, detonics amongst other. The difficulties that arise in application are of theoretical as well as numerical nature. In fact, the papers in this volume of proceedings deal to a greater extent with theoretical problems emerging in the resolution of nonlinear hyperbolic systems than with numerical methods. The volume provides an excellent up-to-date review of the current research trends in this area.

  12. Final focus systems for linear colliders

    Erickson, R.A.

    1987-11-01

    The final focus system of a linear collider must perform two primary functions, it must focus the two opposing beams so that their transverse dimensions at the interaction point are small enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. In addition, the final focus system must transport the outgoing beams to a location where they can be recycled or safely dumped. Elementary optical considerations for linear collider final focus systems are discussed, followed by chromatic aberrations. The design of the final focus system of the SLAC Linear Collider (SLC) is described. Tuning and diagnostics and steering to collision are discussed. Most of the examples illustrating the concepts covered are drawn from the SLC, but the principles and conclusions are said to be generally applicable to other linear collider designs as well. 26 refs., 17 figs

  13. On deformations of linear differential systems

    Gontsov, R.R.; Poberezhnyi, V.A.; Helminck, G.F.

    2011-01-01

    This article concerns deformations of meromorphic linear differential systems. Problems relating to their existence and classification are reviewed, and the global and local behaviour of solutions to deformation equations in a neighbourhood of their singular set is analysed. Certain classical

  14. Superconducting linear accelerator system for NSC

    59, No. 5. — journal of. November 2002 physics pp. 849–858. Superconducting linear accelerator system for NSC ... cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indige- ... Prototype resonator was.

  15. Ergodicity-breaking bifurcations and tunneling in hyperbolic transport models

    Giona, M.; Brasiello, A.; Crescitelli, S.

    2015-11-01

    One of the main differences between parabolic transport, associated with Langevin equations driven by Wiener processes, and hyperbolic models related to generalized Kac equations driven by Poisson processes, is the occurrence in the latter of multiple stable invariant densities (Frobenius multiplicity) in certain regions of the parameter space. This phenomenon is associated with the occurrence in linear hyperbolic balance equations of a typical bifurcation, referred to as the ergodicity-breaking bifurcation, the properties of which are thoroughly analyzed.

  16. Fast Solvers for Dense Linear Systems

    Kauers, Manuel [Research Institute for Symbolic Computation (RISC), Altenbergerstrasse 69, A4040 Linz (Austria)

    2008-10-15

    It appears that large scale calculations in particle physics often require to solve systems of linear equations with rational number coefficients exactly. If classical Gaussian elimination is applied to a dense system, the time needed to solve such a system grows exponentially in the size of the system. In this tutorial paper, we present a standard technique from computer algebra that avoids this exponential growth: homomorphic images. Using this technique, big dense linear systems can be solved in a much more reasonable time than using Gaussian elimination over the rationals.

  17. Dunkl Hyperbolic Equations

    Hatem Mejjaoli

    2008-12-01

    Full Text Available We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.

  18. Signals and transforms in linear systems analysis

    Wasylkiwskyj, Wasyl

    2013-01-01

    Signals and Transforms in Linear Systems Analysis covers the subject of signals and transforms, particularly in the context of linear systems theory. Chapter 2 provides the theoretical background for the remainder of the text. Chapter 3 treats Fourier series and integrals. Particular attention is paid to convergence properties at step discontinuities. This includes the Gibbs phenomenon and its amelioration via the Fejer summation techniques. Special topics include modulation and analytic signal representation, Fourier transforms and analytic function theory, time-frequency analysis and frequency dispersion. Fundamentals of linear system theory for LTI analogue systems, with a brief account of time-varying systems, are covered in Chapter 4 . Discrete systems are covered in Chapters 6 and 7.  The Laplace transform treatment in Chapter 5 relies heavily on analytic function theory as does Chapter 8 on Z -transforms. The necessary background on complex variables is provided in Appendix A. This book is intended to...

  19. Linear integral equations and soliton systems

    Quispel, G.R.W.

    1983-01-01

    A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)

  20. A non-local theory of generalized entropy solutions of the Cauchy problem for a class of hyperbolic systems of conservation laws

    Panov, E Yu

    1999-01-01

    We consider a hyperbolic system of conservation laws on the space of symmetric second-order matrices. The right-hand side of this system contains the functional calculus operator f-bar(U) generated in the general case only by a continuous scalar function f(u). For these systems we define and describe the set of singular entropies, introduce the concept of generalized entropy solutions of the corresponding Cauchy problem, and investigate the properties of generalized entropy solutions. We define the class of strong generalized entropy solutions, in which the Cauchy problem has precisely one solution. We suggest a condition on the initial data under which any generalized entropy solution is strong, which implies its uniqueness. Under this condition we establish that the 'vanishing viscosity' method converges. An example shows that in the general case there can be more than one generalized entropy solution

  1. STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS

    Jorge Enrique Mayta Guillermo

    2016-12-01

    Full Text Available In this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems with abrupt changes. We give some denitions of stability for the MJLS system, where these types of stability are equivalent as long as the state space of the Markov chain is nite. Finally we present a theorem that characterizes the stochastic stability by means of an equation of the Lyapunov type. The result is a generalization of a theorem in classical theory.

  2. Integrability and Linearizability of the Lotka-Volterra System with a Saddle Point with Rational Hyperbolicity Ratio

    Gravel, Simon; Thibault, Pierre

    In this paper, we consider normalizability, integrability and linearizability properties of the Lotka-Volterra system in the neighborhood of a singular point with eigenvalues 1 and - λ. The results are obtained by generalizing and expanding two methods already known: the power expansion of the first integral or of the linearizing transformation and the transformation of the saddle into a node. With these methods we find conditions that are valid for λ∈ R+ or λ∈ Q. These conditions will allow us to find all the integrable and linearizable systems for λ= {p}/{2} and {2}/{p} with p∈ N+.

  3. Correlated Levy Noise in Linear Dynamical Systems

    Srokowski, T.

    2011-01-01

    Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit. Applicability of the adiabatic approximation in the case of the linear force is discussed. (author)

  4. Introduction to linear systems of differential equations

    Adrianova, L Ya

    1995-01-01

    The theory of linear systems of differential equations is one of the cornerstones of the whole theory of differential equations. At its root is the concept of the Lyapunov characteristic exponent. In this book, Adrianova presents introductory material and further detailed discussions of Lyapunov exponents. She also discusses the structure of the space of solutions of linear systems. Classes of linear systems examined are from the narrowest to widest: 1)�autonomous, 2)�periodic, 3)�reducible to autonomous, 4)�nearly reducible to autonomous, 5)�regular. In addition, Adrianova considers the following: stability of linear systems and the influence of perturbations of the coefficients on the stability the criteria of uniform stability and of uniform asymptotic stability in terms of properties of the solutions several estimates of the growth rate of solutions of a linear system in terms of its coefficients How perturbations of the coefficients change all the elements of the spectrum of the system is defin...

  5. Numerical simulation of idealized front motion in neutral and stratified atmosphere with a hyperbolic system of equations

    Yudin, M. S.

    2017-11-01

    In the present paper, stratification effects on surface pressure in the propagation of an atmospheric gravity current (cold front) over flat terrain are estimated with a non-hydrostatic finite-difference model of atmospheric dynamics. Artificial compressibility is introduced into the model in order to make its equations hyperbolic. For comparison with available simulation data, the physical processes under study are assumed to be adiabatic. The influence of orography is also eliminated. The front surface is explicitly described by a special equation. A time filter is used to suppress the non-physical oscillations. The results of simulations of surface pressure under neutral and stable stratification are presented. Under stable stratification the front moves faster and shows an abrupt pressure jump at the point of observation. This fact is in accordance with observations and the present-day theory of atmospheric fronts.

  6. Final Focus Systems in Linear Colliders

    Raubenheimer, Tor

    1998-01-01

    In colliding beam facilities, the ''final focus system'' must demagnify the beams to attain the very small spot sizes required at the interaction points. The first final focus system with local chromatic correction was developed for the Stanford Linear Collider where very large demagnifications were desired. This same conceptual design has been adopted by all the future linear collider designs as well as the SuperConducting Supercollider, the Stanford and KEK B-Factories, and the proposed Muon Collider. In this paper, the over-all layout, physics constraints, and optimization techniques relevant to the design of final focus systems for high-energy electron-positron linear colliders are reviewed. Finally, advanced concepts to avoid some of the limitations of these systems are discussed

  7. Generalized Cross-Gramian for Linear Systems

    Shaker, Hamid Reza

    2012-01-01

    The cross-gramian is a well-known matrix with embedded controllability and observability information. The cross-gramian is related to the Hankel operator and the Hankel singular values of a linear square system and it has several interesting properties. These properties make the cross...... square symmetric systems, the ordinary cross-gramian does not exist. To cope with this problem, a new generalized cross-gramian is introduced in this paper. In contrast to the ordinary cross-gramian, the generalized cross-gramian can be easily obtained for general linear systems and therefore can be used...

  8. Linear dynamic coupling in geared rotor systems

    David, J. W.; Mitchell, L. D.

    1986-01-01

    The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.

  9. On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws

    Panov, E Yu

    2000-01-01

    Many-dimensional non-strictly hyperbolic systems of conservation laws with a radially degenerate flux function are considered. For such systems the set of entropies is defined and described, the concept of generalized entropy solution of the Cauchy problem is introduced, and the properties of generalized entropy solutions are studied. The class of strong generalized entropy solutions is distinguished, in which the Cauchy problem in question is uniquely soluble. A condition on the initial data is described that ensures that the generalized entropy solution is strong and therefore unique. Under this condition the convergence of the 'vanishing viscosity' method is established. An example presented in the paper shows that a generalized entropy solution is not necessarily unique in the general case

  10. On output regulation for linear systems

    Saberi, Ali; Stoorvogel, Antonie Arij; Sannuti, Peddapullaiah

    For both continuous- and discrete-time systems, we revisit the output regulation problem for linear systems. We generalize the problem formulation in order • to expand the class of reference or disturbance signals, • to utilize the derivative or feedforward information of reference signals whenever

  11. Linear response theory for quantum open systems

    Wei, J. H.; Yan, YiJing

    2011-01-01

    Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.

  12. When to call a linear system nonnegative

    Nieuwenhuis, J.W.

    1998-01-01

    In this paper we will consider discrete time invariant linear systems that allow for an input-state-output representation with a finite dimensional state space, and that have a finite number of inputs and outputs. The basic issue in this paper is when to call these systems nonnegative. An important

  13. ITMETH, Iterative Routines for Linear System

    Greenbaum, A.

    1989-01-01

    1 - Description of program or function: ITMETH is a collection of iterative routines for solving large, sparse linear systems. 2 - Method of solution: ITMETH solves general linear systems of the form AX=B using a variety of methods: Jacobi iteration; Gauss-Seidel iteration; incomplete LU decomposition or matrix splitting with iterative refinement; diagonal scaling, matrix splitting, or incomplete LU decomposition with the conjugate gradient method for the problem AA'Y=B, X=A'Y; bi-conjugate gradient method with diagonal scaling, matrix splitting, or incomplete LU decomposition; and ortho-min method with diagonal scaling, matrix splitting, or incomplete LU decomposition. ITMETH also solves symmetric positive definite linear systems AX=B using the conjugate gradient method with diagonal scaling or matrix splitting, or the incomplete Cholesky conjugate gradient method

  14. Conduction cooling systems for linear accelerator cavities

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  15. Rf system specifications for a linear accelerator

    Young, A.; Eaton, L.E.

    1992-01-01

    A linear accelerator contains many systems; however, the most complex and costly is the RF system. The goal of an RF system is usually simply stated as maintaining the phase and amplitude of the RF signal within a given tolerance to accelerate the charged particle beam. An RF system that drives a linear accelerator needs a complete system specification, which should contain specifications for all the subsystems (i.e., high-power RF, low-level RF, RF generation/distribution, and automation control). This paper defines a format for the specifications of these subsystems and discusses each RF subsystem independently to provide a comprehensive understanding of the function of each subsystem. This paper concludes with an example of a specification spreadsheet allowing one to input the specifications of a subsystem. Thus, some fundamental parameters (i.e., the cost and size) of the RF system can be determined

  16. Chaos as an intermittently forced linear system.

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kaiser, Eurika; Kutz, J Nathan

    2017-05-30

    Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth's magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.

  17. Final focus systems for linear colliders

    Helm, R.; Irwin, J.

    1992-08-01

    Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We will outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We will discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread, bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, will be described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC will be given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC)

  18. Final focus systems for linear colliders

    Helm, R.; Irwing, J.

    1992-01-01

    Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread , bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, are described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC are given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC). (Author) 16 refs., 4 tabs., 6 figs

  19. Dual-range linearized transimpedance amplifier system

    Wessendorf, Kurt O.

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  20. Consys Linear Control System Design Software Package

    Diamantidis, Z.

    1987-01-01

    This package is created in order to help engineers, researchers, students and all who work on linear control systems. The software includes all time and frequency domain analysises, spectral analysises and networks, active filters and regulators design aids. The programmes are written on Hewlett Packard computer in Basic 4.0

  1. Disturbance Decoupling of Switched Linear Systems

    Yurtseven, E.; Heemels, W.P.M.H.; Camlibel, M.K.

    2010-01-01

    In this paper we consider disturbance decoupling problems for switched linear systems. We will provide necessary and sufficient conditions for three different versions of disturbance decoupling, which differ based on which signals are considered to be the disturbance. In the first version the

  2. Uzawa method for fuzzy linear system

    Ke Wang

    2013-01-01

    An Uzawa method is presented for solving fuzzy linear systems whose coefficient matrix is crisp and the right-hand side column is arbitrary fuzzy number vector. The explicit iterative scheme is given. The convergence is analyzed with convergence theorems and the optimal parameter is obtained. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.

  3. Collimation systems in the next linear collider

    Merminga, N.; Irwin, J.; Helm, R.; Ruth, R.D.

    1991-02-01

    Experience indicates that beam collimation will be an essential element of the next generation e + E - linear colliders. A proposal for using nonlinear lenses to drive beam tails to large amplitudes was presented in a previous paper. Here we study the optimization of such systems including effects of wakefields and optical aberrations. Protection and design of the scrapers in these systems are discussed. 9 refs., 7 figs

  4. Standard diffusive systems are well-posed linear systems

    Matignon, Denis; Zwart, Heiko J.

    2004-01-01

    The class of well-posed linear systems as introduced by Salamon has become a well-understood class of systems, see e.g. the work of Weiss and the book of Staffans. Many partial partial differential equations with boundary control and point observation can be formulated as a well-posed linear system.

  5. Hyperbolic Plykin attractor can exist in neuron models

    Belykh, V.; Belykh, I.; Mosekilde, Erik

    2005-01-01

    Strange hyperbolic attractors are hard to find in real physical systems. This paper provides the first example of a realistic system, a canonical three-dimensional (3D) model of bursting neurons, that is likely to have a strange hyperbolic attractor. Using a geometrical approach to the study...... of the neuron model, we derive a flow-defined Poincare map giving ail accurate account of the system's dynamics. In a parameter region where the neuron system undergoes bifurcations causing transitions between tonic spiking and bursting, this two-dimensional map becomes a map of a disk with several periodic...... holes. A particular case is the map of a disk with three holes, matching the Plykin example of a planar hyperbolic attractor. The corresponding attractor of the 3D neuron model appears to be hyperbolic (this property is not verified in the present paper) and arises as a result of a two-loop (secondary...

  6. Existence for a class of discrete hyperbolic problems

    Luca Rodica

    2006-01-01

    Full Text Available We investigate the existence and uniqueness of solutions to a class of discrete hyperbolic systems with some nonlinear extreme conditions and initial data, in a real Hilbert space.

  7. Parameter identifiability of linear dynamical systems

    Glover, K.; Willems, J. C.

    1974-01-01

    It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.

  8. Identification of general linear mechanical systems

    Sirlin, S. W.; Longman, R. W.; Juang, J. N.

    1983-01-01

    Previous work in identification theory has been concerned with the general first order time derivative form. Linear mechanical systems, a large and important class, naturally have a second order form. This paper utilizes this additional structural information for the purpose of identification. A realization is obtained from input-output data, and then knowledge of the system input, output, and inertia matrices is used to determine a set of linear equations whereby we identify the remaining unknown system matrices. Necessary and sufficient conditions on the number, type and placement of sensors and actuators are given which guarantee identificability, and less stringent conditions are given which guarantee generic identifiability. Both a priori identifiability and a posteriori identifiability are considered, i.e., identifiability being insured prior to obtaining data, and identifiability being assured with a given data set.

  9. Linear systems optimal and robust control

    Sinha, Alok

    2007-01-01

    Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...

  10. Hyperbolic phonon polaritons in hexagonal boron nitride (Conference Presentation)

    Dai, Siyuan; Ma, Qiong; Fei, Zhe; Liu, Mengkun; Goldflam, Michael D.; Andersen, Trond; Garnett, William; Regan, Will; Wagner, Martin; McLeod, Alexander S.; Rodin, Alexandr; Zhu, Shou-En; Watanabe, Kenji; Taniguchi, T.; Dominguez, Gerado; Thiemens, Mark; Castro Neto, Antonio H.; Janssen, Guido C. A. M.; Zettl, Alex; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M.; Basov, Dmitri N.

    2016-09-01

    Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [1]. Additionally, we carried out the modification of hyperbolic response in meta-structures comprised of a mononlayer graphene deposited on hBN [2]. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the "hyperlens" for subdiffractional focusing and imaging using a slab of hBN [3]. References [1] S. Dai et al., Science, 343, 1125 (2014). [2] S. Dai et al., Nature Nanotechnology, 10, 682 (2015). [3] S. Dai et al., Nature Communications, 6, 6963 (2015).

  11. On the automorphisms of foliations defined by complex linear vectorfields

    Shahshahani, S.

    1989-04-01

    We study biholomorphisms of C n that preserve the foliation associated to a complex linear vector fields. It is shown that for hyperbolic Poincare vector fields the only such biholomorphisms are linear. Nonlinear biholomorphisms emerge in the presence of resonance among the eigenvalues of the system. A complete classification is given in dimension 2. (author). 8 refs, 1 fig

  12. Hyperbolicity measures democracy in real-world networks

    Borassi, Michele; Chessa, Alessandro; Caldarelli, Guido

    2015-09-01

    In this work, we analyze the hyperbolicity of real-world networks, a geometric quantity that measures if a space is negatively curved. We provide two improvements in our understanding of this quantity: first of all, in our interpretation, a hyperbolic network is "aristocratic", since few elements "connect" the system, while a non-hyperbolic network has a more "democratic" structure with a larger number of crucial elements. The second contribution is the introduction of the average hyperbolicity of the neighbors of a given node. Through this definition, we outline an "influence area" for the vertices in the graph. We show that in real networks the influence area of the highest degree vertex is small in what we define "local" networks (i.e., social or peer-to-peer networks), and large in "global" networks (i.e., power grid, metabolic networks, or autonomous system networks).

  13. Lectures on algebraic system theory: Linear systems over rings

    Kamen, E. W.

    1978-01-01

    The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.

  14. Hyperbolic isometries of systolic complexes

    Prytula, Tomasz Pawel

    The main topics of this thesis are the geometric features of systolic complexesarising from the actions of hyperbolic isometries. The thesis consists ofan introduction followed by two articles.Given a hyperbolic isometry h of a systolic complex X, our central theme isto study the minimal displace......The main topics of this thesis are the geometric features of systolic complexesarising from the actions of hyperbolic isometries. The thesis consists ofan introduction followed by two articles.Given a hyperbolic isometry h of a systolic complex X, our central theme isto study the minimal...... algebraic-topological features of systolic groups. In addition, we provide newexamples of systolic groups.In the first article we show that the minimal displacement set of a hyperbolicisometry of a systolic complex is quasi-isometric to the product of a tree andthe real line. We use this theorem...

  15. High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2015-01-01

    In this paper, we construct high-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the second-order accuracy of the hyperbolic schemes can be greatly improved by requiring the scheme to preserve exact quadratic solutions. We also show that the improved second-order scheme can be easily extended to third-order by further requiring the exactness for cubic solutions. We construct these schemes based on the LDA and the SUPG methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit solver by the exact residual Jacobian of the second-order scheme, and demonstrate rapid convergence of 10-15 iterations to reduce the residuals by 10 orders of magnitude. We demonstrate also that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids, including curved boundary problems, using linear elements. We also present Fourier analysis performed on the constructed linear system and show that an under-relaxation parameter is needed for stabilization of Gauss-Seidel relaxation.

  16. Critical opalescence in hyperbolic metamaterials

    Smolyaninov, Igor I

    2011-01-01

    Hyperbolic metamaterials in which the dielectric component exhibits critical opalescence have been considered. It appears that fluctuations of the effective refractive index in these materials are strongly enhanced and so 'virtual electromagnetic black holes' may appear as a result of these fluctuations. Therefore, the behaviour of 'optical space' inside hyperbolic metamaterials looks somewhat similar to the behaviour of real physical space-time on the Planck scale

  17. Critical opalescence in hyperbolic metamaterials

    Smolyaninov, Igor I.

    2011-12-01

    Hyperbolic metamaterials in which the dielectric component exhibits critical opalescence have been considered. It appears that fluctuations of the effective refractive index in these materials are strongly enhanced and so 'virtual electromagnetic black holes' may appear as a result of these fluctuations. Therefore, the behaviour of 'optical space' inside hyperbolic metamaterials looks somewhat similar to the behaviour of real physical space-time on the Planck scale.

  18. An injection system for a linear accelerator

    Santos, A.C.R.

    1978-03-01

    An injection system for the Linear Accelerator is developed using the parameters of machines at the Centro Brasileiro de Pesquisas Fisicas and the Instituto Militar de Engenharia. The proposed system consists basically of a prebuncher and a chopper. The pre-buncher is used to improve the energy resolution and also to increase the accelerator target current. The chopper is used to remove from the beam the electrons that have no possibility of attaining the desired energy and that are usually lost in the walls and the cavity tube, thus producing undesirable background. Theoretical development of the chopper is performed in order to obtain its dimensions for future construction. The complete design the pre-buncher and its feed supply system and the experimental verication of its performance are also presented. It is intended to give the necessary information for the design and construction of the complete injection system proposed. (Author) [pt

  19. Operator approach to linear control systems

    Cheremensky, A

    1996-01-01

    Within the framework of the optimization problem for linear control systems with quadratic performance index (LQP), the operator approach allows the construction of a systems theory including a number of particular infinite-dimensional optimization problems with hardly visible concreteness. This approach yields interesting interpretations of these problems and more effective feedback design methods. This book is unique in its emphasis on developing methods for solving a sufficiently general LQP. Although this is complex material, the theory developed here is built on transparent and relatively simple principles, and readers with less experience in the field of operator theory will find enough material to give them a good overview of the current state of LQP theory and its applications. Audience: Graduate students and researchers in the fields of mathematical systems theory, operator theory, cybernetics, and control systems.

  20. First-order symmetrizable hyperbolic formulations of Einstein's equations including lapse and shift as dynamical fields

    Alvi, Kashif

    2002-01-01

    First-order hyperbolic systems are promising as a basis for numerical integration of Einstein's equations. In previous work, the lapse and shift have typically not been considered part of the hyperbolic system and have been prescribed independently. This can be expensive computationally, especially if the prescription involves solving elliptic equations. Therefore, including the lapse and shift in the hyperbolic system could be advantageous for numerical work. In this paper, two first-order symmetrizable hyperbolic systems are presented that include the lapse and shift as dynamical fields and have only physical characteristic speeds

  1. Iterative solution of large linear systems

    Young, David Matheson

    1971-01-01

    This self-contained treatment offers a systematic development of the theory of iterative methods. Its focal point resides in an analysis of the convergence properties of the successive overrelaxation (SOR) method, as applied to a linear system with a consistently ordered matrix. The text explores the convergence properties of the SOR method and related techniques in terms of the spectral radii of the associated matrices as well as in terms of certain matrix norms. Contents include a review of matrix theory and general properties of iterative methods; SOR method and stationary modified SOR meth

  2. a Continuous-Time Positive Linear System

    Kyungsup Kim

    2013-01-01

    Full Text Available This paper discusses a computational method to construct positive realizations with sparse matrices for continuous-time positive linear systems with multiple complex poles. To construct a positive realization of a continuous-time system, we use a Markov sequence similar to the impulse response sequence that is used in the discrete-time case. The existence of the proposed positive realization can be analyzed with the concept of a polyhedral convex cone. We provide a constructive algorithm to compute positive realizations with sparse matrices of some positive systems under certain conditions. A sufficient condition for the existence of a positive realization, under which the proposed constructive algorithm works well, is analyzed.

  3. Linear and non-linear energy barriers in systems of interacting single-domain ferromagnetic particles

    Petrila, Iulian; Bodale, Ilie; Rotarescu, Cristian; Stancu, Alexandru

    2011-01-01

    A comparative analysis between linear and non-linear energy barriers used for modeling statistical thermally-excited ferromagnetic systems is presented. The linear energy barrier is obtained by new symmetry considerations about the anisotropy energy and the link with the non-linear energy barrier is also presented. For a relevant analysis we compare the effects of linear and non-linear energy barriers implemented in two different models: Preisach-Neel and Ising-Metropolis. The differences between energy barriers which are reflected in different coercive field dependence of the temperature are also presented. -- Highlights: → The linear energy barrier is obtained from symmetry considerations. → The linear and non-linear energy barriers are calibrated and implemented in Preisach-Neel and Ising-Metropolis models. → The temperature and time effects of the linear and non-linear energy barriers are analyzed.

  4. [Hyperbolic growth of marine and continental biodiversity through the phanerozoic and community evolution].

    Markov, A V; Korotaev, A V

    2008-01-01

    Among diverse models that are used to describe and interpret the changes in global biodiversity through the Phanerozoic, the exponential and logistic models (traditionally used in population biology) are the most popular. As we have recently demonstrated (Markov, Korotayev, 2007), the growth of the Phanerozoic marine biodiversity at genus level correlates better with the hyperbolic model (widely used in demography and macrosociology). Here we show that the hyperbolic model is also applicable to the Phanerozoic continental biota at genus and family levels, and to the marine biota at species, genus, and family levels. There are many common features in the evolutionary dynamics of the marine and continental biotas that imply similarity and common nature of the factors and mechanisms underlying the hyperbolic growth. Both marine and continental biotas are characterized by continuous growth of the mean longevity of taxa, by decreasing extinction and origination rates, by similar pattern of replacement of dominant groups, by stepwise accumulation of evolutionary stable, adaptable and "physiologically buffered" taxa with effective mechanisms of parental care, protection of early developmental stages, etc. At the beginning of the development of continental biota, the observed taxonomic diversity was substantially lower than that predicted by the hyperbolic model. We suggest that this is due, firstly, to the fact that, during the earliest stages of the continental biota evolution, the groups that are not preserved in the fossil record (such as soil bacteria, unicellular algae, lichens, etc.) played a fundamental role, and secondly, to the fact that the continental biota initially formed as a marginal portion of the marine biota, rather than a separate system. The hyperbolic dynamics is most prominent when both marine and continental biotas are considered together. This fact can be interpreted as a proof of the integrated nature of the biosphere. In the macrosociological

  5. New approach to solve symmetric fully fuzzy linear systems

    concepts of fuzzy set theory and then define a fully fuzzy linear system of equations. .... To represent the above problem as fully fuzzy linear system, we represent x .... Fully fuzzy linear systems can be solved by Linear programming approach, ...

  6. SLAP, Large Sparse Linear System Solution Package

    Greenbaum, A.

    1987-01-01

    1 - Description of program or function: SLAP is a set of routines for solving large sparse systems of linear equations. One need not store the entire matrix - only the nonzero elements and their row and column numbers. Any nonzero structure is acceptable, so the linear system solver need not be modified when the structure of the matrix changes. Auxiliary storage space is acquired and released within the routines themselves by use of the LRLTRAN POINTER statement. 2 - Method of solution: SLAP contains one direct solver, a band matrix factorization and solution routine, BAND, and several interactive solvers. The iterative routines are as follows: JACOBI, Jacobi iteration; GS, Gauss-Seidel Iteration; ILUIR, incomplete LU decomposition with iterative refinement; DSCG and ICCG, diagonal scaling and incomplete Cholesky decomposition with conjugate gradient iteration (for symmetric positive definite matrices only); DSCGN and ILUGGN, diagonal scaling and incomplete LU decomposition with conjugate gradient interaction on the normal equations; DSBCG and ILUBCG, diagonal scaling and incomplete LU decomposition with bi-conjugate gradient iteration; and DSOMN and ILUOMN, diagonal scaling and incomplete LU decomposition with ORTHOMIN iteration

  7. ROBUST MPC FOR STABLE LINEAR SYSTEMS

    M.A. Rodrigues

    2002-03-01

    Full Text Available In this paper, a new model predictive controller (MPC, which is robust for a class of model uncertainties, is developed. Systems with stable dynamics and time-invariant model uncertainty are treated. The development herein proposed is focused on real industrial systems where the controller is part of an on-line optimization scheme and works in the output-tracking mode. In addition, the system has a time-varying number of degrees of freedom since some of the manipulated inputs may become constrained. Moreover, the number of controlled outputs may also vary during system operation. Consequently, the actual system may show operating conditions with a number of controlled outputs larger than the number of available manipulated inputs. The proposed controller uses a state-space model, which is aimed at the representation of the output-predicted trajectory. Based on this model, a cost function is proposed whereby the output error is integrated along an infinite prediction horizon. It is considered the case of multiple operating points, where the controller stabilizes a set of models corresponding to different operating conditions for the system. It is shown that closed-loop stability is guaranteed by the feasibility of a linear matrix optimization problem.

  8. Optimal Control of Switching Linear Systems

    Ali Benmerzouga

    2004-06-01

    Full Text Available A solution to the control of switching linear systems with input constraints was given in Benmerzouga (1997 for both the conventional enumeration approach and the new approach. The solution given there turned out to be not unique. The main objective in this work is to determine the optimal control sequences {Ui(k ,  i = 1,..., M ;  k = 0, 1, ...,  N -1} which transfer the system from a given initial state  X0  to a specific target state  XT  (or to be as close as possible by using the same discrete time solution obtained in Benmerzouga (1997 and minimizing a running cost-to-go function. By using the dynamic programming technique, the optimal solution is found for both approaches given in Benmerzouga (1997. The computational complexity of the modified algorithm is also given.

  9. Well logging system with linearity control

    Jones, J.M.

    1973-01-01

    Apparatus is described for controlling the gain of a nuclear well logging system comprising: (1) means for measuring the energy spectrum of gamma rays produced by earth formation materials surrounding a well borehole; (2) means for measuring the number of counts of a gamma rays having an energy falling within each of at least two predetermined energy band portions of the gamma ray energy spectrum; (3) means for generating a signal proportional to the ratio of the gamma ray counts and for comparing the ratio signal with at least one constant ratio calibration signal; (4) means for generating an error signal representative of the difference of the ratio signal and the constant ratio calibration signal; and (5) means for using the error signal to control the linearity of the well logging system. (author)

  10. Linear concentration system; Sistema de concentracion lineal

    Gonzalez Lugo, J.I; Leon Rovira, N; Aguayo Tellez, H [Instituto Tecnologico y de Estudios Superiores de Monterrey, Monterrey, Nuevo Leon (Mexico)]. E-mails: a00812662@itesm.mx; noel.leon@itesm.mx; haguayo@itesm.mx

    2013-03-15

    Solar linear concentration technologies to generate high temperatures are limited to the ranges of 200 to 500 degrees Celsius. While its performance has been tested through prototypes and pilot plants around the world, there are still areas of opportunity that can be exploited to obtain a linear concentration that achieves temperatures above this range in order to have a better use of the available solar energy. Because of this: It is possible to develop a linear concentration system that can track the sun with minimal movement of the absorber-receiver while maintaining temperatures above 850 degrees Celsius sufficient for industrial processes that require that temperature. The methodology consists of a series of stages (conceptual design, simulation, evaluation, development concept, results and validation) through which concepts are generated that allow design and evaluation of solar concentrator configurations with the help of simulation software. We have designed a linear parabolic concentrating system which comprises a set of mirrors segments with different focal lengths that works within the range of 600 degrees Celsius; however, it is advancing in the development of a double concentration to reach 850 degrees Celsius. [Spanish] Las tecnologias de concentracion lineal solar para generar altas temperaturas se ven limitadas a los rangos de 200 a 500 grados centigrados. Si bien su funcionamiento ha sido probado a traves de prototipos y plantas piloto alrededor del mundo, aun existen areas de oportunidad que pueden ser aprovechadas para obtener un sistema de concentracion lineal que permita alcanzar temperaturas mayores a este rango para asi tener un mejor aprovechamiento de la energia solar disponible. Debido a esto: Es posible desarrollar un sistema de concentracion lineal capaz de seguir la trayectoria del Sol con minimo movimiento del absorbedor-recibidor al mismo tiempo que mantiene temperaturas superiores a los 850 grados centigrados suficientes para

  11. Properties of solutions in semi-hyperbolic patches for unsteady transonic small disturbance equations

    Ilija Jegdic

    2015-09-01

    Full Text Available We consider a two-dimensional Riemann problem for the unsteady transonic small disturbance equation resulting in diverging rarefaction waves. We write the problem in self-similar coordinates and we obtain a mixed type (hyperbolic-elliptic system. Resolving the one-dimensional discontinuities in the far field, where the system is hyperbolic, and using characteristics, we formulate the problem in a semi-hyperbolic patch that is between the hyperbolic and the elliptic regions. A semi-hyperbolic patch is known as a region where one family out of two nonlinear families of characteristics starts on a sonic curve and ends on a transonic shock. We obtain existence of a smooth local solution in this semi-hyperbolic patch and we prove various properties of global smooth solutions based on a characteristic decomposition using directional derivatives.

  12. Linear Actuator System for the NASA Docking System

    Dick, Brandon N.; Oesch, Christopher; Rupp, Timothy W.

    2017-01-01

    The Linear Actuator System (LAS) is a major sub-system within the NASA Docking System (NDS). The NDS Block 1 will be used on the Boeing Crew Space Transportation (CST-100) system to achieve docking with the International Space Station. Critical functions in the Soft Capture aspect of docking are performed by the LAS. This paper describes the general function of the LAS, the system's key requirements and technical challenges, and the development and qualification approach for the system.

  13. Relative null controllability of linear systems with multiple delays in ...

    varying multiple delays in state and control are developed. If the uncontrolled system is uniformly asymptotically stable, and if the linear system is controllable, then the linear system is null controllable. Journal of the Nigerian Association of ...

  14. Linear optical response of finite systems using multishift linear system solvers

    Hübener, Hannes; Giustino, Feliciano [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)

    2014-07-28

    We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.

  15. Control system analysis for the perturbed linear accelerator rf system

    Sung Il Kwon

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

  16. CONTROL SYSTEM ANALYSIS FOR THE PERTURBED LINEAR ACCELERATOR RF SYSTEM

    SUNG-IL KWON; AMY H. REGAN

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller

  17. Linear-array systems for aerospace NDE

    Smith, Robert A.; Willsher, Stephen J.; Bending, Jamie M.

    1999-01-01

    Rapid large-area inspection of composite structures for impact damage and multi-layered aluminum skins for corrosion has been a recognized priority for several years in both military and civil aerospace applications. Approaches to this requirement have followed two clearly different routes: the development of novel large-area inspection systems, and the enhancement of current ultrasonic or eddy-current methods to reduce inspection times. Ultrasonic inspection is possible with standard flaw detection equipment but the addition of a linear ultrasonic array could reduce inspection times considerably. In order to investigate their potential, 9-element and 17-element linear ultrasonic arrays for composites, and 64-element arrays for aluminum skins, have been developed to DERA specifications for use with the ANDSCAN area scanning system. A 5 m 2 composite wing surface has been scanned with a scan resolution of approximately 3 mm in 6 hours. With subsequent software and hardware improvements all four composite wing surfaces (top/bottom, left/right) of a military fighter aircraft can potentially be inspected in less than a day. Array technology has been very widely used in the medical ultrasound field although rarely above 10 MHz, whereas lap-joint inspection requires a pulse center-frequency of 12 to 20 MHz in order to resolve the separate interfaces in the lap joint. A 128 mm-long multi-element array of 5 mmx2 mm ultrasonic elements for use with the ANDSCAN scanning software was produced to a DERA specification by an NDT manufacturer with experience in the medical imaging field. This paper analyses the performance of the transducers that have been produced and evaluates their use in scanning systems of different configurations

  18. Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems

    Bambang Riyanto

    2005-11-01

    Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.

  19. Thermodynamics of (1-alkanol + linear monoether) systems

    Gonzalez, Juan Antonio; Mozo, Ismael; Garcia de la Fuente, Isaias; Cobos, Jose Carlos; Riesco, Nicolas

    2008-01-01

    Densities, ρ, and speeds of sound, u, of systems formed by 1-heptanol, or 1-octanol, or 1-decanol and dibutylether have been measured at a temperature of (293.15, 298.15, and 303.15) K and atmospheric pressure using a vibrating tube densimeter and sound analyser Anton Paar model DSA-5000. The ρ and u values were used to calculate excess molar volumes, V E , and deviations from the ideal behaviour of the thermal expansion coefficient, Δα p and of the isentropic compressibilities, Δκ S . The available database on molar excess enthalpies, H E , and V E for (1-alkanol + linear monoether) systems was used to investigate interactional and structural effects in such mixtures. The enthalpy of the OH...O bonds is lower for methanol solutions, and for the remainder systems, it is practically independent of the mixture compounds. The V E variation with the chain length of the 1-alkanol points out the existence of structural effects for systems including longer 1-alkanols. The ERAS model is applied to the studied mixtures. ERAS represents quite accurately H E and V E data using parameters which consistently depend on the molecular structure

  20. Identification problems in linear transformation system

    Delforge, Jacques.

    1975-01-01

    An attempt was made to solve the theoretical and numerical difficulties involved in the identification problem relative to the linear part of P. Delattre's theory of transformation systems. The theoretical difficulties are due to the very important problem of the uniqueness of the solution, which must be demonstrated in order to justify the value of the solution found. Simple criteria have been found when measurements are possible on all the equivalence classes, but the problem remains imperfectly solved when certain evolution curves are unknown. The numerical difficulties are of two kinds: a slow convergence of iterative methods and a strong repercussion of numerical and experimental errors on the solution. In the former case a fast convergence was obtained by transformation of the parametric space, while in the latter it was possible, from sensitivity functions, to estimate the errors, to define and measure the conditioning of the identification problem then to minimize this conditioning as a function of the experimental conditions [fr

  1. The spectrum of hyperbolic surfaces

    Bergeron, Nicolas

    2016-01-01

    This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called “arithmetic hyperbolic surfaces”, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them. After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss. The fruit of several graduate level courses at Orsay...

  2. The hyperbolic problem

    Gualdesi, Lavinio

    2017-04-01

    Mooring lines in the Ocean might be seen as a pretty simple seamanlike activity. Connecting valuable scientific instrumentation to it transforms this simple activity into a sophisticated engineering support which needs to be accurately designed, developed, deployed, monitored and hopefully recovered with its precious load of scientific data. This work is an historical travel along the efforts carried out by scientists all over the world to successfully predict mooring line behaviour through both mathematical simulation and experimental verifications. It is at first glance unexpected how many factors one must observe to get closer and closer to a real ocean situation. Most models have dual applications for mooring lines and towed bodies lines equations. Numerous references are provided starting from the oldest one due to Isaac Newton. In his "Philosophiae Naturalis Principia Matematica" (1687) the English scientist, while discussing about the law of motion for bodies in resistant medium, is envisaging a hyperbolic fitting to the phenomenon including asymptotic behaviour in non-resistant media. A non-exhaustive set of mathematical simulations of the mooring lines trajectory prediction is listed hereunder to document how the subject has been under scientific focus over almost a century. Pode (1951) Prior personal computers diffusion a tabular form of calculus of cable geometry was used by generations of engineers keeping in mind the following limitations and approximations: tangential drag coefficients were assumed to be negligible. A steady current flow was assumed as in the towed configuration. Cchabra (1982) Finite Element Method that assumes an arbitrary deflection angle for the top first section and calculates equilibrium equations down to the sea floor iterating up to a compliant solution. Gualdesi (1987) ANAMOOR. A Fortran Program based on iterative methods above including experimental data from intensive mooring campaign. Database of experimental drag

  3. Distinguished hyperbolic trajectories in time-dependent fluid flows: analytical and computational approach for velocity fields defined as data sets

    K. Ide

    2002-01-01

    Full Text Available In this paper we develop analytical and numerical methods for finding special hyperbolic trajectories that govern geometry of Lagrangian structures in time-dependent vector fields. The vector fields (or velocity fields may have arbitrary time dependence and be realized only as data sets over finite time intervals, where space and time are discretized. While the notion of a hyperbolic trajectory is central to dynamical systems theory, much of the theoretical developments for Lagrangian transport proceed under the assumption that such a special hyperbolic trajectory exists. This brings in new mathematical issues that must be addressed in order for Lagrangian transport theory to be applicable in practice, i.e. how to determine whether or not such a trajectory exists and, if it does exist, how to identify it in a sequence of instantaneous velocity fields. We address these issues by developing the notion of a distinguished hyperbolic trajectory (DHT. We develop an existence criteria for certain classes of DHTs in general time-dependent velocity fields, based on the time evolution of Eulerian structures that are observed in individual instantaneous fields over the entire time interval of the data set. We demonstrate the concept of DHTs in inhomogeneous (or "forced" time-dependent linear systems and develop a theory and analytical formula for computing DHTs. Throughout this work the notion of linearization is very important. This is not surprising since hyperbolicity is a "linearized" notion. To extend the analytical formula to more general nonlinear time-dependent velocity fields, we develop a series of coordinate transforms including a type of linearization that is not typically used in dynamical systems theory. We refer to it as Eulerian linearization, which is related to the frame independence of DHTs, as opposed to the Lagrangian linearization, which is typical in dynamical systems theory, which is used in the computation of Lyapunov exponents. We

  4. Geometry in the large and hyperbolic chaos

    Hasslacher, B.; Mainieri, R.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors calculated observables in strongly chaotic systems. This is difficult to do because of a lack of a workable orbit classification for such systems. This is due to global geometrical information from the original dynamical system being entangled in an unknown way throughout the orbit sequence. They used geometrical methods from modern mathematics and recent connections between global geometry and modern quantum field theory to study the natural geometrical objects belonging to hard chaos-hyperbolic manifolds.

  5. Reversed phase propagation for hyperbolic surface waves

    Repän, Taavi; Novitsky, Andrey; Willatzen, Morten

    2018-01-01

    Magnetic properties can be used to control phase propagation in hyperbolic metamaterials. However, in the visible spectrum magnetic properties are difficult to obtain. We discuss hyperbolic surface waves allowing for a similar control over phase, achieved without magnetic properties....

  6. System theory as applied differential geometry. [linear system

    Hermann, R.

    1979-01-01

    The invariants of input-output systems under the action of the feedback group was examined. The approach used the theory of Lie groups and concepts of modern differential geometry, and illustrated how the latter provides a basis for the discussion of the analytic structure of systems. Finite dimensional linear systems in a single independent variable are considered. Lessons of more general situations (e.g., distributed parameter and multidimensional systems) which are increasingly encountered as technology advances are presented.

  7. Normal form of linear systems depending on parameters

    Nguyen Huynh Phan.

    1995-12-01

    In this paper we resolve completely the problem to find normal forms of linear systems depending on parameters for the feedback action that we have studied for the special case of controllable linear systems. (author). 24 refs

  8. PWR control system design using advanced linear and non-linear methodologies

    Rabindran, N.; Whitmarsh-Everiss, M.J.

    2004-01-01

    Consideration is here given to the methodology deployed for non-linear heuristic analysis in the time domain supported by multi-variable linear control system design methods for the purposes of operational dynamics and control system analysis. This methodology is illustrated by the application of structural singular value μ analysis to Pressurised Water Reactor control system design. (author)

  9. Orbital and escape dynamics in barred galaxies - II. The 3D system: exploring the role of the normally hyperbolic invariant manifolds

    Jung, Christof; Zotos, Euaggelos E.

    2016-12-01

    A three degrees of freedom (3-dof) barred galaxy model composed of a spherically symmetric nucleus, a bar, a flat disc and a spherically symmetric dark matter halo is used for investigating the dynamics of the system. We use colour-coded plots to demonstrate how the value of the semimajor axis of the bar influences the regular or chaotic dynamics of the 3-dof system. For distinguishing between ordered and chaotic motion, we use the Smaller ALingment Index (SALI) method, a fast yet very accurate tool. Undoubtedly, the most important elements of the dynamics are the normally hyperbolic invariant manifolds (NHIMs) located in the vicinity of the index 1 Lagrange points L2 and L3. These manifolds direct the flow of stars over the saddle points, while they also trigger the formation of rings and spirals. The dynamics in the neighbourhood of the saddle points is visualized by bifurcation diagrams of the Lyapunov orbits as well as by the restriction of the Poincaré map to the NHIMs. In addition, we reveal how the semimajor axis of the bar influences the structure of these manifolds which determine the final stellar structure (rings or spirals). Our numerical simulations suggest that in galaxies with weak bars the formation of R1 rings or R_1^' } pseudo-rings is favoured. In the case of galaxies with intermediate and strong bars, the invariant manifolds seem to give rise to R1R2 rings and twin spiral formations, respectively. We also compare our numerical outcomes with earlier related work and with observational data.

  10. Exact Solutions for Einstein's Hyperbolic Geometric Flow

    He Chunlei

    2008-01-01

    In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow

  11. Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics

    Kuznetsov, Sergei P [Saratov Branch, Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov (Russian Federation)

    2011-02-28

    Research is reviewed on the identification and construction of physical systems with chaotic dynamics due to uniformly hyperbolic attractors (such as the Plykin attraction or the Smale-Williams solenoid). Basic concepts of the mathematics involved and approaches proposed in the literature for constructing systems with hyperbolic attractors are discussed. Topics covered include periodic pulse-driven models; dynamics models consisting of periodically repeated stages, each described by its own differential equations; the construction of systems of alternately excited coupled oscillators; the use of parametrically excited oscillations; and the introduction of delayed feedback. Some maps, differential equations, and simple mechanical and electronic systems exhibiting chaotic dynamics due to the presence of uniformly hyperbolic attractors are presented as examples. (reviews of topical problems)

  12. Holographic complexity of cold hyperbolic black holes

    Barbón, José L.F.; Martín-García, Javier

    2015-01-01

    AdS black holes with hyperbolic horizons provide strong-coupling descriptions of thermal CFT states on hyperboloids. The low-temperature limit of these systems is peculiar. In this note we show that, in addition to a large ground state degeneracy, these states also have an anomalously large holographic complexity, scaling logarithmically with the temperature. We speculate on whether this fact generalizes to other systems whose extreme infrared regime is formally controlled by Conformal Quantum Mechanics, such as various instances of near-extremal charged black holes.

  13. Superconducting linear accelerator system for NSC

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed ...

  14. A discussion of hyperbolicity in CATHENA 4. Virtual mass and phase-to-interface pressure differences

    Aydemir, Nusret U.

    2012-01-01

    It is well known that the one-dimensional equations of motion for two-phase flow are non-hyperbolic. Non-hyperbolicity can lead to numerical instabilities, destroying the solution. However, researchers in the last few decades were able to show that inclusion of virtual mass and/or phase-to-interface pressure differences in the momentum equations successfully render the equations of motion hyperbolic. In the present paper, the effect of including virtual mass and phase-to-interface pressure terms in the momentum equations on the hyperbolicity of the two-phase model in the CATHENA 4 code is discussed. The study is motivated by the fact that the inclusion of either model has been shown in the open literature to lead to a hyperbolic system separately. However, no known study exists that examine hyperbolicity in the presence of both these terms in the momentum equations. In this work, both terms are considered in the model equations simultaneously and their implications on the hyperbolicity of the two-phase model are discussed. Specifically, it is shown that in the case of mixed flow, there is a distinct region of non-hyperbolicity that developers need to be aware of when their equations include both the virtual mass and the phase-to-interface terms. Selecting the coefficients of phase-to-interface pressure difference terms properly ensures that the equations are hyperbolic for a wide range of conditions. (orig.)

  15. Cognitive Procedures and Hyperbolic Discounting

    Nir, A.

    2004-01-01

    "Hyperbolic discount functions are characterized by a relatively high discount rate over short horizons and a relatively low discount rate over long horizons" (Laibson 1997).We suggest two cognitive procedures where individuals perceive future utility as decreasing at a decreasing rate as a function

  16. Dynamics beyond uniform hyperbolicity a global geometric and probabilistic perspective

    Bonatti, Christian; Viana, Marcelo

    2005-01-01

    The notion of uniform hyperbolicity, introduced by Steve Smale in the early sixties, unified important developments and led to a remarkably successful theory for a large class of systems: uniformly hyperbolic systems often exhibit complicated evolution which, nevertheless, is now rather well understood, both geometrically and statistically.Another revolution has been taking place in the last couple of decades, as one tries to build a global theory for "most" dynamical systems, recovering as much as possible of the conclusions of the uniformly hyperbolic case, in great generality. This book aims to put such recent developments in a unified perspective, and to point out open problems and likely directions for further progress. It is aimed at researchers, both young and senior, willing to get a quick, yet broad, view of this part of dynamics. Main ideas, methods, and results are discussed, at variable degrees of depth, with references to the original works for details and complementary information.

  17. Symmetric linear systems - An application of algebraic systems theory

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  18. One-way spatial integration of hyperbolic equations

    Towne, Aaron; Colonius, Tim

    2015-11-01

    In this paper, we develop and demonstrate a method for constructing well-posed one-way approximations of linear hyperbolic systems. We use a semi-discrete approach that allows the method to be applied to a wider class of problems than existing methods based on analytical factorization of idealized dispersion relations. After establishing the existence of an exact one-way equation for systems whose coefficients do not vary along the axis of integration, efficient approximations of the one-way operator are constructed by generalizing techniques previously used to create nonreflecting boundary conditions. When physically justified, the method can be applied to systems with slowly varying coefficients in the direction of integration. To demonstrate the accuracy and computational efficiency of the approach, the method is applied to model problems in acoustics and fluid dynamics via the linearized Euler equations; in particular we consider the scattering of sound waves from a vortex and the evolution of hydrodynamic wavepackets in a spatially evolving jet. The latter problem shows the potential of the method to offer a systematic, convergent alternative to ad hoc regularizations such as the parabolized stability equations.

  19. Photon gas with hyperbolic dispersion relations

    Mohseni, Morteza

    2013-01-01

    We investigate the density of states for a photon gas confined in a nonmagnetic metamaterial medium in which some components of the permittivity tensor are negative. We study the effect of the resulting hyperbolic dispersion relations on the black body spectral density. We show that for both of the possible wavevector space topologies, the spectral density vanishes at a certain frequency. We obtain the partition function and derive some thermodynamical quantities of the system. To leading order, the results resemble those of a one- or two-dimensional photon gas with an enhanced density of states. (paper)

  20. A study on switched linear system identification using game ...

    A study on switched linear system identification using game-theoretic strategies and neural computing. ... This study deals with application of game-theoretic strategies and neural computing to switched linear ... AJOL African Journals Online.

  1. Reduction of Linear Functional Systems using Fuhrmann's Equivalence

    Mohamed S. Boudellioua

    2016-11-01

    Full Text Available Functional systems arise in the treatment of systems of partial differential equations, delay-differential equations, multidimensional equations, etc. The problem of reducing a linear functional system to a system containing fewer equations and unknowns was first studied by Serre. Finding an equivalent presentation of a linear functional system containing fewer equations and fewer unknowns can generally simplify both the study of the structural properties of the linear functional system and of different numerical analysis issues, and it can sometimes help in solving the linear functional system. In this paper, Fuhrmann's equivalence is used to present a constructive result on the reduction of under-determined linear functional systems to a single equation involving a single unknown. This equivalence transformation has been studied by a number of authors and has been shown to play an important role in the theory of linear functional systems.

  2. High density linear systems for fusion power

    Ellis, W.R.; Krakowski, R.A.

    1975-01-01

    The physics and technological limitations and uncertainties associated with the linear theta pinch are discussed in terms of a generalized energy balance, which has as its basis the ratio (Q/sub E/) of total electrical energy generated to net electrical energy consumed. Included in this total is the virtual energy of bred fissile fuel, if a hybrid blanket is used, as well as the actual of real energy deposited in the blanket by the fusion neutron. The advantages and disadvantages of the pulsed operation demanded by the linear theta pinch are also discussed

  3. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D

    Boscheri, Walter; Dumbser, Michael

    2014-10-01

    In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with

  4. Analysis of Linear Hybrid Systems in CLP

    Banda, Gourinath; Gallagher, John Patrick

    2009-01-01

    In this paper we present a procedure for representing the semantics of linear hybrid automata (LHAs) as constraint logic programs (CLP); flexible and accurate analysis and verification of LHAs can then be performed using generic CLP analysis and transformation tools. LHAs provide an expressive...

  5. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  6. Nonlinear hyperbolic waves in multidimensions

    Prasad, Phoolan

    2001-01-01

    The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...

  7. A SYSTEMIC VISION OF BIOLOGY: OVERCOMING LINEARITY

    M. Mayer

    2005-07-01

    were used to build  a hipermedia  material.  This  technology  permit  overcomes a linear  communication, improving the  comprehension  of the network perspective.   The teachers  speeches revealed  their  conceptual  con- structions along the  course,  showed the development of the  competences  in identify  interconnection points  in the flow and chemical cycling of energy, compatible  with a systemic view of life.

  8. Solving Fully Fuzzy Linear System of Equations in General Form

    A. Yousefzadeh

    2012-06-01

    Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  9. Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time

    Wang, Yu

    1995-08-01

    The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.

  10. Reliability modelling and simulation of switched linear system ...

    Reliability modelling and simulation of switched linear system control using temporal databases. ... design of fault-tolerant real-time switching systems control and modelling embedded micro-schedulers for complex systems maintenance.

  11. Front tracking for hyperbolic conservation laws

    Holden, Helge

    2015-01-01

    This is the second edition of a well-received book providing the fundamentals of the theory hyperbolic conservation laws. Several chapters have been rewritten, new material has been added, in particular, a chapter on space dependent flux functions, and the detailed solution of the Riemann problem for the Euler equations. Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. From the reviews of the first edition: "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet  "I have read the book with great pleasure, and I can recommend it to experts ...

  12. Computation of Hyperbolic Structures in Knot Theory

    Weeks, Jeffrey R.

    2003-01-01

    This chapter from the upcoming Handbook of Knot Theory (eds. Menasco and Thistlethwaite) shows how to construct hyperbolic structures on link complements and perform hyperbolic Dehn filling. Along with a new elementary exposition of the standard ideas from Thurston's work, the article includes never-before-published explanations of SnapPea's algorithms for triangulating a link complement efficiently and for converging quickly to the hyperbolic structure while avoiding singularities in the par...

  13. Energy balance in a system with quasispherical linear compression

    Es'kov, A.G.; Kozlov, N.P.; Kurtmullaev, R.K.; Semenov, V.N.; Khvesyuk, V.I.; Yaminskii, A.V.

    1983-01-01

    This letter reports the resists of some experimental studies and a numerical simulation of the Tor-linear fusion system, 1 in which a heavy plasma shell with a closed magnetic structure is compressed in a quasispherical manner. The parameters of the Tor-Linear, at the Kurchatov Institute of Atomic Energy in Moscow are as follows: The energy stored in the system which accelerates the linear is E = 0.5 MJ; the linear mass is m = 0.2 kg; the working volume of the linear module is 1.5 x 10 -3 m 3 ; the linear velocity is approx.10 3 m/s; the guiding field in the toriod in the linear is 1--10 x 10 21 m -3 ; and the intial volume of the plasma in the linear chamber is 2.5 x 10 -4 m 3 . In this series of experiments, new solutions were developed for all the systems of the plasma--linear complex of the Tor-Linear: to produce a plasma toroid, to transport it, and to trap it in the linear cavity

  14. A Proposed Method for Solving Fuzzy System of Linear Equations

    Reza Kargar

    2014-01-01

    Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.

  15. Indirect synthesis of multi-degree of freedom transient systems. [linear programming for a kinematically linear system

    Pilkey, W. D.; Chen, Y. H.

    1974-01-01

    An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.

  16. Minimal solution of general dual fuzzy linear systems

    Abbasbandy, S.; Otadi, M.; Mosleh, M.

    2008-01-01

    Fuzzy linear systems of equations, play a major role in several applications in various area such as engineering, physics and economics. In this paper, we investigate the existence of a minimal solution of general dual fuzzy linear equation systems. Two necessary and sufficient conditions for the minimal solution existence are given. Also, some examples in engineering and economic are considered

  17. Partial Linearization of Mechanical Systems with Application to Observer Design

    Sarras, Ioannis; Venkatraman, Aneesh; Ortega, Romeo; Schaft, Arjan van der

    2008-01-01

    We consider general mechanical systems and establish a necessary and sufficient condition for the existence of a suitable change in the generalized momentum coordinates such that the new dynamics become linear in the transformed momenta. The class of systems which can be (partially) linearized by

  18. Simultaneous Balancing and Model Reduction of Switched Linear Systems

    Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.

    2011-01-01

    In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not

  19. Linear System Control Using Stochastic Learning Automata

    Ziyad, Nigel; Cox, E. Lucien; Chouikha, Mohamed F.

    1998-01-01

    This paper explains the use of a Stochastic Learning Automata (SLA) to control switching between three systems to produce the desired output response. The SLA learns the optimal choice of the damping ratio for each system to achieve a desired result. We show that the SLA can learn these states for the control of an unknown system with the proper choice of the error criteria. The results of using a single automaton are compared to using multiple automata.

  20. Useful tools for non-linear systems: Several non-linear integral inequalities

    Agahi, H.; Mohammadpour, A.; Mesiar, Radko; Vaezpour, M. S.

    2013-01-01

    Roč. 49, č. 1 (2013), s. 73-80 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : Monotone measure * Comonotone functions * Integral inequalities * Universal integral Subject RIV: BA - General Mathematics Impact factor: 3.058, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-useful tools for non-linear systems several non-linear integral inequalities.pdf

  1. Decentralized linear quadratic power system stabilizers for multi ...

    Introduction. Modern excitation systems considerably enhance the overall transient stability of power systems ..... to the local bus rather than the angle δ measured with respect to the remote bus. ... With this in view, the linear and nonlinear per-.

  2. Advanced fabrication of hyperbolic metamaterials

    Shkondin, Evgeniy; Sukham, Johneph; Panah, Mohammad Esmail Aryaee

    2017-01-01

    Hyperbolic metamaterials can provide unprecedented properties in accommodation of high-k (high wave vector) waves and enhancement of the optical density of states. To reach such performance the metamaterials have to be fabricated with as small imperfections as possible. Here we report on our...... advances in two approaches in fabrication of optical metamaterials. We deposit ultrathin ultrasmooth gold layers with the assistance of organic material (APTMS) adhesion layer. The technology supports the stacking of such layers in a multiperiod construction with alumina spacers between gold films, which...

  3. A new active absorption system and its performance to linear and non-linear waves

    Andersen, Thomas Lykke; Clavero, M.; Frigaard, Peter Bak

    2016-01-01

    Highlights •An active absorption system for wavemakers has been developed. •The theory for flush mounted gauges has been extended to cover also small gaps. •The new system has been validated in a wave flume with wavemakers in both ends. •A generation and absorption procedure for highly non-linear...

  4. On Optimal Feedback Control for Stationary Linear Systems

    Russell, David L.

    2010-01-01

    We study linear-quadratic optimal control problems for finite dimensional stationary linear systems AX+BU=Z with output Y=CX+DU from the viewpoint of linear feedback solution. We interpret solutions in relation to system robustness with respect to disturbances Z and relate them to nonlinear matrix equations of Riccati type and eigenvalue-eigenvector problems for the corresponding Hamiltonian system. Examples are included along with an indication of extensions to continuous, i.e., infinite dimensional, systems, primarily of elliptic type.

  5. Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis

    Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel

    2013-01-01

    This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007

  6. Tangent hyperbolic circular frequency diverse array radars

    Sarah Saeed

    2016-03-01

    Full Text Available Frequency diverse array (FDA with uniform frequency offset (UFO has been in spot light of research for past few years. Not much attention has been devoted to non-UFOs in FDA. This study investigates tangent hyperbolic (TH function for frequency offset selection scheme in circular FDAs (CFDAs. Investigation reveals a three-dimensional single-maximum beampattern, which promises to enhance system detection capability and signal-to-interference plus noise ratio. Furthermore, by utilising the versatility of TH function, a highly configurable type array system is achieved, where beampatterns of three different configurations of FDA can be generated, just by adjusting a single function parameter. This study further examines the utility of the proposed TH-CFDA in some practical radar scenarios.

  7. Gradient remediability in linear distributed parabolic systems ...

    The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...

  8. The homogeneous geometries of real hyperbolic space

    Castrillón López, Marco; Gadea, Pedro Martínez; Swann, Andrew Francis

    We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use...... our analysis to show that the moduli space of homogeneous structures on real hyperbolic space has two connected components....

  9. On a new class of hyperbolic functions

    Stakhov, Alexey; Rozin, Boris

    2005-01-01

    This article presents the results of some new research on a new class of hyperbolic functions that unite the characteristics of the classical hyperbolic functions and the recurring Fibonacci and Lucas series. The hyperbolic Fibonacci and Lucas functions, which are the being extension of Binet's formulas for the Fibonacci and Lucas numbers in continuous domain, transform the Fibonacci numbers theory into 'continuous' theory because every identity for the hyperbolic Fibonacci and Lucas functions has its discrete analogy in the framework of the Fibonacci and Lucas numbers. Taking into consideration a great role played by the hyperbolic functions in geometry and physics, ('Lobatchevski's hyperbolic geometry', 'Four-dimensional Minkowski's world', etc.), it is possible to expect that the new theory of the hyperbolic functions will bring to new results and interpretations on mathematics, biology, physics, and cosmology. In particular, the result is vital for understanding the relation between transfinitness i.e. fractal geometry and the hyperbolic symmetrical character of the disintegration of the neural vacuum, as pointed out by El Naschie [Chaos Solitons and Fractals 17 (2003) 631

  10. Linearization of Nonautonomous Impulsive System with Nonuniform Exponential Dichotomy

    Yongfei Gao

    2014-01-01

    Full Text Available This paper gives a version of Hartman-Grobman theorem for the impulsive differential equations. We assume that the linear impulsive system has a nonuniform exponential dichotomy. Under some suitable conditions, we proved that the nonlinear impulsive system is topologically conjugated to its linear system. Indeed, we do construct the topologically equivalent function (the transformation. Moreover, the method to prove the topological conjugacy is quite different from those in previous works (e.g., see Barreira and Valls, 2006.

  11. On the discretization of linear fractional representations of LPV systems

    Toth, R.; Lovera, M.; Heuberger, P.S.C.; Corno, M.; Hof, Van den P.M.J.

    2012-01-01

    Commonly, controllers for linear parameter-varying (LPV) systems are designed in continuous time using a linear fractional representation (LFR) of the plant. However, the resulting controllers are implemented on digital hardware. Furthermore, discrete-time LPV synthesis approaches require a

  12. Automatic frequency control system for driving a linear accelerator

    Helgesson, A.L.

    1976-01-01

    An automatic frequency control system is described for maintaining the drive frequency applied to a linear accelerator to produce maximum particle output from the accelerator. The particle output amplitude is measured and the frequency of the radio frequency source powering the linear accelerator is adjusted to maximize particle output amplitude

  13. The art and science of hyperbolic tessellations.

    Van Dusen, B; Taylor, R P

    2013-04-01

    The visual impact of hyperbolic tessellations has captured artists' imaginations ever since M.C. Escher generated his Circle Limit series in the 1950s. The scaling properties generated by hyperbolic geometry are different to the fractal scaling properties found in nature's scenery. Consequently, prevalent interpretations of Escher's art emphasize the lack of connection with nature's patterns. However, a recent collaboration between the two authors proposed that Escher's motivation for using hyperbolic geometry was as a method to deliberately distort nature's rules. Inspired by this hypothesis, this year's cover artist, Ben Van Dusen, embeds natural fractals such as trees, clouds and lightning into a hyperbolic scaling grid. The resulting interplay of visual structure at multiple size scales suggests that hybridizations of fractal and hyperbolic geometries provide a rich compositional tool for artists.

  14. Application of Nearly Linear Solvers to Electric Power System Computation

    Grant, Lisa L.

    To meet the future needs of the electric power system, improvements need to be made in the areas of power system algorithms, simulation, and modeling, specifically to achieve a time frame that is useful to industry. If power system time-domain simulations could run in real-time, then system operators would have situational awareness to implement online control and avoid cascading failures, significantly improving power system reliability. Several power system applications rely on the solution of a very large linear system. As the demands on power systems continue to grow, there is a greater computational complexity involved in solving these large linear systems within reasonable time. This project expands on the current work in fast linear solvers, developed for solving symmetric and diagonally dominant linear systems, in order to produce power system specific methods that can be solved in nearly-linear run times. The work explores a new theoretical method that is based on ideas in graph theory and combinatorics. The technique builds a chain of progressively smaller approximate systems with preconditioners based on the system's low stretch spanning tree. The method is compared to traditional linear solvers and shown to reduce the time and iterations required for an accurate solution, especially as the system size increases. A simulation validation is performed, comparing the solution capabilities of the chain method to LU factorization, which is the standard linear solver for power flow. The chain method was successfully demonstrated to produce accurate solutions for power flow simulation on a number of IEEE test cases, and a discussion on how to further improve the method's speed and accuracy is included.

  15. Feedback linearizing control of a MIMO power system

    Ilyes, Laszlo

    Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.

  16. Portable, x-band, linear accelerator systems

    Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.

    1985-01-01

    Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for nondestructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz

  17. Structure Learning in Stochastic Non-linear Dynamical Systems

    Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.

    2005-12-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.

  18. Portable, x-band, linear accelerator systems

    Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.

    1985-01-01

    Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for non-destructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz

  19. Linear quadratic Gaussian balancing for discrete-time infinite-dimensional linear systems

    Opmeer, MR; Curtain, RF

    2004-01-01

    In this paper, we study the existence of linear quadratic Gaussian (LQG)-balanced realizations for discrete-time infinite-dimensional systems. LQG-balanced realizations are those for which the smallest nonnegative self-adjoint solutions of the control and filter Riccati equations are equal. We show

  20. Sparse Linear Solver for Power System Analysis Using FPGA

    Johnson, J. R; Nagvajara, P; Nwankpa, C

    2005-01-01

    .... Numerical solution to load flow equations are typically computed using Newton-Raphson iteration, and the most time consuming component of the computation is the solution of a sparse linear system...

  1. Perfect commuting-operator strategies for linear system games

    Cleve, Richard; Liu, Li; Slofstra, William

    2017-01-01

    Linear system games are a generalization of Mermin's magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bob's measurement operators act on a joint Hilbert space, and Alice's operators must commute with Bob's operators. We show that perfect strategies in this model correspond to possibly infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely presented group associated with the linear system which arises from the non-commutative equations.

  2. A conceptual design of Final Focus Systems for linear colliders

    Brown, K.L.

    1987-06-01

    Linear colliders are a relatively recent development in the evolution of particle accelerators. This report discusses some of the approaches that have been considered for the design of Final Focus Systems to demagnify the beam exiting from a linac to the small size suitable for collisions at the interaction point. The system receiving the most attention is the one adopted for the SLAC Linear Collider. However, the theory and optical techniques discussed should be applicable to the design efforts for future machines

  3. ON THE STABILIZATION OF THE LINEAR HYBRID SYSTEM STRUCTURE

    Kirillov

    2014-11-01

    Full Text Available The linear control hybrid system, consisting of a fi- nite set of subsystems (modes having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.

  4. Iterative algorithms for large sparse linear systems on parallel computers

    Adams, L. M.

    1982-01-01

    Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.

  5. Simultaneous Balancing and Model Reduction of Switched Linear Systems

    Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.

    2011-01-01

    In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not limited to a certain type of balancing, and they are applicable for different types of balancing corresponding to different equations, like Lyapunov or Riccati equations. The results obtained are ...

  6. Solar photovoltaic water pumping system using a new linear actuator

    Andrada Gascón, Pedro; Castro, Javier

    2007-01-01

    In this paper a photovoltaic solar pumping system using a new linear actuator is presented. This linear actuator is a double-sided flat two-phase variable-reluctance linear stepper motor that moves a piston-type water pump with the help of a rope, a pulley and a counterweight. The entire actuator pump ensemble is controlled by a simple electronic unit that manages the electric power generated by a photovoltaic array. The proposed system is suitable for rural communities in developing...

  7. Phase and amplitude detection system for the Stanford Linear Accelerator

    Fox, J.D.; Schwarz, H.D.

    1983-01-01

    A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  8. Synchronization of linearly coupled unified chaotic systems based on linear balanced feedback scheme with constraints

    Chen, H.-H.; Chen, C.-S.; Lee, C.-I

    2009-01-01

    This paper investigates the synchronization of unidirectional and bidirectional coupled unified chaotic systems. A balanced coupling coefficient control method is presented for global asymptotic synchronization using the Lyapunov stability theorem and a minimum scheme with no constraints/constraints. By using the result of the above analysis, the balanced coupling coefficients are then designed to achieve the chaos synchronization of linearly coupled unified chaotic systems. The feasibility and effectiveness of the proposed chaos synchronization scheme are verified via numerical simulations.

  9. Linear waves and stability in ideal magnetohydrodynamics

    Eckhoff, K.S.

    1987-05-01

    Linear waves superimposed on an arbitrary basic state in ideal magnetohydrodynamics are studied by an asymptotic expansion valid for short wavelenghts. The theory allows for a gravitational potential, and it may therefore be applied both in astrophysics and in problems related to thermonuclear fusion. The linearized equations for the perturbations of the basic state are found in the form of a symmetric hyperbolic system. This symmetric hyperbolic system is shown to possess characteristics of nonuniform multiplicity, which implies that waves of different types may interact. In particular it is shown that the mass waves, the Alf-n waves, and the slow magnetoacoustic waves will persistently interact in the exceptional case where the local wave number vector is perpendicular to the magnetic field. The equations describing this interaction are found in the form of a weakly coupled hyperbolic system. This weakly coupled hyperbloc system is studied in a number of special cases, and detailed analytic results are obtained for some such cases. The results show that the interaction of the waves may be one of the major causes of instability of the basic state. It seems beyond doubt that the interacting waves contain the physically relevant parts of the waves, which often are referred to as ballooning modes, including Suydam modes and Mercier modes

  10. Solution of generalized shifted linear systems with complex symmetric matrices

    Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo

    2012-01-01

    We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1–9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126–140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.

  11. Economic MPC for a linear stochastic system of energy units

    Jørgensen, John Bagterp; Sokoler, Leo Emil; Standardi, Laura

    2016-01-01

    This paper summarizes comprehensively the work in four recent PhD theses from the Technical University of Denmark related to Economic MPC of future power systems. Future power systems will consist of a large number of decentralized power producers and a large number of controllable power consumers...... in addition to stochastic power producers such as wind turbines and solar power plants. Control of such large scale systems requires new control algorithms. In this paper, we formulate the control of such a system as an Economic Model Predictive Control (MPC) problem. When the power producers and controllable...... power consumers have linear dynamics, the Economic MPC may be expressed as a linear program. We provide linear models for a number of energy units in an energy system, formulate an Economic MPC for coordination of such a system. We indicate how advances in computational MPC makes the solutions...

  12. Stability analysis of switched linear systems defined by graphs

    Athanasopoulos, N.; Lazar, M.

    2014-01-01

    We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching,

  13. Euclidean null controllability of linear systems with delays in state ...

    Sufficient conditions are developed for the Euclidean controllability of linear systems with delay in state and in control. Namely, if the uncontrolled system is uniformly asymptotically stable and the control equation proper, then the control system is Euclidean null controllable. Journal of the Nigerian Association of ...

  14. Incremental Closed-loop Identification of Linear Parameter Varying Systems

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2011-01-01

    , closed-loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can be extended...

  15. Stability and response bounds of non-conservative linear systems

    Pommer, Christian

    2003-01-01

    For a linear system of second order differential equations the stability is studied by Lyapunov's direct method. The Lyapunov matrix equation is solved and a sufficient condition for stability is expressed by the system matrices. For a system which satisfies the condition for stability the Lyapunov...

  16. Linear Optimization of Frequency Spectrum Assignments Across System

    2016-03-01

    selection tools, frequency allocation, transmission optimization, electromagnetic maneuver warfare, electronic protection, assignment model 15. NUMBER ...Characteristics Modeled ...............................................................29 Table 10.   Antenna Systems Modeled , Number of Systems and...surveillance EW early warning GAMS general algebraic modeling system GHz gigahertz IDE integrated development environment ILP integer linear program

  17. Approximate Treatment of the Dirac Equation with Hyperbolic Potential Function

    Durmus, Aysen

    2018-03-01

    The time independent Dirac equation is solved analytically for equal scalar and vector hyperbolic potential function in the presence of Greene and Aldrich approximation scheme. The bound state energy equation and spinor wave functions expressed by the hypergeometric function have been obtained in detail with asymptotic iteration approach. In order to indicate the accuracy of this different approach proposed to solve second order linear differential equations, we present that in the non-relativistic limit, analytical solutions of the Dirac equation converge to those of the Schrödinger one. We introduce numerical results of the theoretical analysis for hyperbolic potential function. Bound states corresponding to arbitrary values of n and l are reported for potential parameters covering a wide range of interaction. Also, we investigate relativistic vibrational energy spectra of alkali metal diatomic molecules in the different electronic states. It is observed that theoretical vibrational energy values are consistent with experimental Rydberg-Klein-Rees (RKR) results and vibrational energies of NaK, K_2 and KRb diatomic molecules interacting with hyperbolic potential smoothly converge to the experimental dissociation limit D_e=2508cm^{-1}, 254cm^{-1} and 4221cm^{-1}, respectively.

  18. On Hubbard-Stratonovich transformations over hyperbolic domains

    Fyodorov, Yan V

    2005-01-01

    We discuss and prove the validity of the Hubbard-Stratonovich (HS) identities over hyperbolic domains which are used frequently in studies on disordered systems and random matrices. We also introduce a counterpart of the HS identity arising in disordered systems with 'chiral' symmetry. Apart from this we outline a way of deriving the nonlinear σ-model from the gauge-invariant Wegner k-orbital model avoiding the use of the HS transformations

  19. A Gyrovector Space Approach to Hyperbolic Geometry

    Ungar, Abraham

    2009-01-01

    The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. T

  20. Stability analysis of switched linear systems defined by graphs

    Athanasopoulos, Nikolaos; Lazar, Mircea

    2015-01-01

    We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching, periodic systems, and systems with minimum and maximum dwell time specifications. To reach the result, we describe the set of rules that define the admissible transitions with a weighted directed gra...

  1. On the hyperbolicity of Einstein's and other gauge field equations

    Friedrich, H.

    1985-01-01

    It is shown that Einstein's vacuum field equations (respectively the conformal vacuum field equations) in a frame formalism imply a symmetric hyperbolic system of ''reduce'' propagation equations for any choice of coordinate system and frame field (and conformal factor). Certain freely specifiable ''gauge source'' functions occurring in the reduced equations reflect the choice of gauge. Together with the initial data they determine the gauge uniquely. Their choice does not affect the isometry class (conformal class) of a solution of an initial value problem. By the same method symmetric hyperbolic propagation equations are obtained from other gauge field equations, irrespective of the gauge. Using the concept of source functions one finds that Einstein's field equation, considered as second order equations for the metric coefficients, are of wave equation type in any coordinate system. (orig.)

  2. A convex optimization approach for solving large scale linear systems

    Debora Cores

    2017-01-01

    Full Text Available The well-known Conjugate Gradient (CG method minimizes a strictly convex quadratic function for solving large-scale linear system of equations when the coefficient matrix is symmetric and positive definite. In this work we present and analyze a non-quadratic convex function for solving any large-scale linear system of equations regardless of the characteristics of the coefficient matrix. For finding the global minimizers, of this new convex function, any low-cost iterative optimization technique could be applied. In particular, we propose to use the low-cost globally convergent Spectral Projected Gradient (SPG method, which allow us to extend this optimization approach for solving consistent square and rectangular linear system, as well as linear feasibility problem, with and without convex constraints and with and without preconditioning strategies. Our numerical results indicate that the new scheme outperforms state-of-the-art iterative techniques for solving linear systems when the symmetric part of the coefficient matrix is indefinite, and also for solving linear feasibility problems.

  3. A comparison between linear and toroidal Extrap systems

    Lehnert, B.

    1988-09-01

    The Extrap scheme consists of a Z-pinch immersed in an octupole field generated by currents in a set of external conductors. A comparison between linear and toroidal Extrap geometry is made in this paper. As compared to toroidal systems, linear geometry has the advantages of relative simplicity and of a current drive by means of electrodes. Linear devices are convenient for basic studies of Extrap, at moderately high pinch currents and plasma temperatures. Within the parameter ranges of experiments at high pinch currents and plasma temperatures, linear systems have on the other hand some substantial disadvantages, on account of the plasma interaction with the end regions. This results in a limitation of the energy confinement time, and leads in the case of an ohmically heated plasma to excessively high plasma densities and small pinch radii which also complicate the introduction of the external conductors. (author)

  4. Linear local stability of electrostatic drift modes in helical systems

    Yamagishi, O.; Nakajima, N.; Sugama, H.; Nakamura, Y.

    2003-01-01

    We investigate the stability of the drift wave in helical systems. For this purpose, we solve the linear local gyrokinetic-Poisson equation, in the electrostatic regime. As a model of helical plasmas, Large helical Device (LHD) is considered. The equation we apply is rather exact in the framework of linear gyrokinetic theory, where only the approximation is the ballooning representation. In this paper, we consider only collisionless cases. All the frequency regime can be naturally reated without any assumptions, and in such cases, ion temperature gradient modes (ITG), trapped electron modes (TEM), and electron temperature gradient modes (ETG) are expected to become unstable linearly independently. (orig.)

  5. Hyperbolic theory of relativistic conformal dissipative fluids

    Lehner, Luis; Reula, Oscar A.; Rubio, Marcelo E.

    2018-01-01

    We develop a complete description of the class of conformal relativistic dissipative fluids of divergence form, following the formalism described in [R. Geroch and L. Lindblom, Phys. Rev. D 41, 1855 (1990), 10.1103/PhysRevD.41.1855, S. Pennisi, Some considerations on a non linear approach to extended thermodynamics and in Proceedings of Symposium of Kinetic Theory and Extended Thermodynamics, Bologna, 1987.]. This type of theory is fully described in terms of evolution variables whose dynamics are governed by total divergence-type conservation laws. Specifically, we give a characterization of the whole family of conformal fluids in terms of a single master scalar function defined up to second-order corrections in dissipative effects, which we explicitly find in general form. This allows us to identify the equilibrium states of the theory and derive constitutive relations and a Fourier-like law for the corresponding first-order theory heat flux. Finally, we show that among this class of theories—and near equilibrium configurations—there exist symmetric hyperbolic ones, implying that for them one can define well-posed initial value problems.

  6. Chaotic Dynamics in Smart Grid and Suppression Scheme via Generalized Fuzzy Hyperbolic Model

    Qiuye Sun

    2014-01-01

    Full Text Available This paper presents a method to control chaotic behavior of a typical Smart Grid based on generalized fuzzy hyperbolic model (GFHM. As more and more distributed generations (DG are incorporated into the Smart Grid, the chaotic behavior occurs increasingly. To verify the behavior, a dynamic model which describes a power system with DG is presented firstly. Then, the simulation result shows that the power system can lead to chaos under certain initial conditions. Based on the universal approximation of GFHM, we confirm that the chaotic behavior could be suppressed by a new controller, which is designed by means of solving a linear matrix inequality (LMI. This approach could make a good application to suppress the chaos in Smart Grid. Finally, a numerical example is given to demonstrate the effectiveness of the proposed chaotic suppression strategy.

  7. H 2 guaranteed cost control of discrete linear systems

    Colmenares W.

    2000-01-01

    Full Text Available This paper presents necessary and sufficient conditions for the existence of a quadratically stabilizing output feedback controller which also assures H 2 guaranteed cost performance on a discrete linear uncertain system where the uncertainty is of the norm bounded type. The conditions are presented as a collection of linear matrix inequalities.The solution, however requires a search over a scalar parameter space.

  8. Structured Control of Affine Linear Parameter Varying Systems

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2011-01-01

    This paper presents a new procedure to design structured controllers for discrete-time affine linear parametervarying systems (A LPV). The class of control structures includes decentralized of any order, fixed order output feedback, simultaneous plant-control design, among others. A parametervarying...... non-convex condition for an upper bound on the induced L2-norm performance is solved by an iterative linear matrix inequalities (LMI) optimization algorithm. Numerical examples demostrate the effectiveness of the proposed approach....

  9. On the stability of non-linear systems

    Guelman, M.

    1968-09-01

    A study is made of the absolute stability of nonlinear systems, using Liapounov's second method and taking into account the results obtained from V.M. Popov's work. The results already established are first presented, in particular concerning the frequency domain criterions for absolute stability of automatic control systems containing one single non linearity. The results have been extended to show the existence of a limiting parabola. New use is then made of the methods studied for deriving absolute stability criterions for a system containing a different type of non linearity. Finally, the results obtained are considered from the point of view of Aizerman's conjecture. (author) [fr

  10. Applications of equivalent linearization approaches to nonlinear piping systems

    Park, Y.; Hofmayer, C.; Chokshi, N.

    1997-01-01

    The piping systems in nuclear power plants, even with conventional snubber supports, are highly complex nonlinear structures under severe earthquake loadings mainly due to various mechanical gaps in support structures. Some type of nonlinear analysis is necessary to accurately predict the piping responses under earthquake loadings. The application of equivalent linearization approaches (ELA) to seismic analyses of nonlinear piping systems is presented. Two types of ELA's are studied; i.e., one based on the response spectrum method and the other based on the linear random vibration theory. The test results of main steam and feedwater piping systems supported by snubbers and energy absorbers are used to evaluate the numerical accuracy and limitations

  11. Modified hyperbolic sine model for titanium dioxide-based memristive thin films

    Abu Bakar, Raudah; Syahirah Kamarozaman, Nur; Fazlida Hanim Abdullah, Wan; Herman, Sukreen Hana

    2018-03-01

    Since the emergence of memristor as the newest fundamental circuit elements, studies on memristor modeling have been evolved. To date, the developed models were based on the linear model, linear ionic drift model using different window functions, tunnelling barrier model and hyperbolic-sine function based model. Although using hyperbolic-sine function model could predict the memristor electrical properties, the model was not well fitted to the experimental data. In order to improve the performance of the hyperbolic-sine function model, the state variable equation was modified. On the one hand, the addition of window function cannot provide an improved fitting. By multiplying the Yakopcic’s state variable model to Chang’s model on the other hand resulted in the closer agreement with the TiO2 thin film experimental data. The percentage error was approximately 2.15%.

  12. State space and input-output linear systems

    Delchamps, David F

    1988-01-01

    It is difficult for me to forget the mild sense of betrayal I felt some ten years ago when I discovered, with considerable dismay, that my two favorite books on linear system theory - Desoer's Notes for a Second Course on Linear Systems and Brockett's Finite Dimensional Linear Systems - were both out of print. Since that time, of course, linear system theory has undergone a transformation of the sort which always attends the maturation of a theory whose range of applicability is expanding in a fashion governed by technological developments and by the rate at which such advances become a part of engineering practice. The growth of the field has inspired the publication of some excellent books; the encyclopedic treatises by Kailath and Chen, in particular, come immediately to mind. Nonetheless, I was inspired to write this book primarily by my practical needs as a teacher and researcher in the field. For the past five years, I have taught a one semester first year gradu­ ate level linear system theory course i...

  13. Unification of three linear models for the transient visual system

    Brinker, den A.C.

    1989-01-01

    Three different linear filters are considered as a model describing the experimentally determined triphasic impulse responses of discs. These impulse responses arc associated with the transient visual system. Each model reveals a different feature of the system. Unification of the models is

  14. Punctuated equilibrium in a non-linear system of action

    J.S. Timmermans (Jos)

    2008-01-01

    textabstractColeman's equilibrium model of social development, the Linear System of Action, is extended to cover the dynamics of societal transitions. The model implemented has the characteristics of a dissipative system. A variation and selection algorithm favoring the retention of relatively

  15. Lag synchronization of chaotic systems with time-delayed linear

    In this paper, the lag synchronization of chaotic systems with time-delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differential equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic systems.

  16. INPUT-OUTPUT STRUCTURE OF LINEAR-DIFFERENTIAL ALGEBRAIC SYSTEMS

    KUIJPER, M; SCHUMACHER, JM

    Systems of linear differential and algebraic equations occur in various ways, for instance, as a result of automated modeling procedures and in problems involving algebraic constraints, such as zero dynamics and exact model matching. Differential/algebraic systems may represent an input-output

  17. Frequency Interval Cross Gramians for Linear and Bilinear Systems

    Jazlan, Ahmad; Sreeram, Victor; Shaker, Hamid Reza

    2017-01-01

    In many control engineering problems, it is desired to analyze the systems at particular frequency intervals of interest. This paper focuses on the development of frequency interval cross gramians for both linear and bilinear systems. New generalized Sylvester equations for calculating the freque...

  18. Switching control of linear systems for generating chaos

    Liu Xinzhi; Teo, Kok-Lay; Zhang Hongtao; Chen Guanrong

    2006-01-01

    In this paper, a new switching method is developed, which can be applied to generating different types of chaos or chaos-like dynamics from two or more linear systems. A numerical simulation is given to illustrate the generated chaotic dynamic behavior of the systems with some variable parameters. Finally, a circuit is built to realize various chaotic dynamical behaviors

  19. New approach to solve symmetric fully fuzzy linear systems

    In this paper, we present a method to solve fully fuzzy linear systems with symmetric coefficient matrix. The symmetric coefficient matrix is decomposed into two systems of equations by using Cholesky method and then a solution can be obtained. Numerical examples are given to illustrate our method.

  20. Criteria for stability of linear dynamical systems with multiple delays ...

    In this study we considered a linear Dynamical system with multiple delays and find suitable conditions on the systems parameters such that for a given initial function, we can define a mapping in a carefully chosen complete metric space on which the mapping has a unique fixed point. An asymptotic stability theory for the ...

  1. A data-acquisition system for high speed linear CCD

    Liu Zhiyan; Chen Xiangcai; Jiang Xiaoshan; Zhang Hongyu; Liang Zhongwang; Xiang Haisheng; Hu Jun

    2010-01-01

    A data-acquisition system for high speed linear CCD (Charge Coupled device) is mainly introduced. The optical fiber transmission technology is used. The data is sent to PC through USB or PCI interface. The construction of the system, the design of the PCI interface hardware, software design and the design of the control program running on host computer are also introduced. (authors)

  2. Hyperbolic Conservation Laws and Related Analysis with Applications

    Holden, Helge; Karlsen, Kenneth

    2014-01-01

    This book presents thirteen papers, representing the most significant advances and current trends in nonlinear hyperbolic conservation laws and related analysis with applications. Topics covered include a survey on multidimensional systems of conservation laws as well as novel results  on liquid crystals, conservation laws with discontinuous flux functions, and applications to sedimentation.  Also included are articles on recent advances in the Euler equations and the Navier-Stokes-Fourier-Poisson system, in addition to new results on collective phenomena described by the Cucker-Smale model.    The Workshop on Hyperbolic Conservation Laws and Related Analysis with Applications at the International Centre for Mathematical Sciences (Edinburgh, UK) held in Edinburgh, September 2011, produced this fine collection of original research and survey articles. Many leading mathematicians attended the event and submitted their contributions for this volume. It is addressed to researchers and graduate students inter...

  3. Partial Synchronization Manifolds for Linearly Time-Delay Coupled Systems

    Steur, Erik; van Leeuwen, Cees; Michiels, Wim

    2014-01-01

    Sometimes a network of dynamical systems shows a form of incomplete synchronization characterized by synchronization of some but not all of its systems. This type of incomplete synchronization is called partial synchronization. Partial synchronization is associated with the existence of partial synchronization manifolds, which are linear invariant subspaces of C, the state space of the network of systems. We focus on partial synchronization manifolds in networks of system...

  4. The linear sizes tolerances and fits system modernization

    Glukhov, V. I.; Grinevich, V. A.; Shalay, V. V.

    2018-04-01

    The study is carried out on the urgent topic for technical products quality providing in the tolerancing process of the component parts. The aim of the paper is to develop alternatives for improving the system linear sizes tolerances and dimensional fits in the international standard ISO 286-1. The tasks of the work are, firstly, to classify as linear sizes the elements additionally linear coordinating sizes that determine the detail elements location and, secondly, to justify the basic deviation of the tolerance interval for the element's linear size. The geometrical modeling method of real details elements, the analytical and experimental methods are used in the research. It is shown that the linear coordinates are the dimensional basis of the elements linear sizes. To standardize the accuracy of linear coordinating sizes in all accuracy classes, it is sufficient to select in the standardized tolerance system only one tolerance interval with symmetrical deviations: Js for internal dimensional elements (holes) and js for external elements (shafts). The main deviation of this coordinating tolerance is the average zero deviation, which coincides with the nominal value of the coordinating size. Other intervals of the tolerance system are remained for normalizing the accuracy of the elements linear sizes with a fundamental change in the basic deviation of all tolerance intervals is the maximum deviation corresponding to the limit of the element material: EI is the lower tolerance for the of the internal elements (holes) sizes and es is the upper tolerance deviation for the outer elements (shafts) sizes. It is the sizes of the material maximum that are involved in the of the dimensional elements mating of the shafts and holes and determine the fits type.

  5. Conformal hyperbolicity of Lorentzian warped products

    Markowitz, M.J.

    1982-01-01

    A space-time M is said to be conformally hyperbolic if the intrinsic conformal Lorentz pseudodistance dsub(M) is a true distance. In this paper criteria are derived which insure the conformal hyperbolicity of certain space-times which are generalizations of the Robertson-Walker spaces. Then dsub(M) is determined explicitly for Einstein-de Sitter space, and important cosmological model. (author)

  6. Conformal hyperbolicity of Lorentzian warped products

    Markowitz, M.J. (Chicago Univ., IL (USA). Dept. of Mathematics)

    1982-12-01

    A space-time M is said to be conformally hyperbolic if the intrinsic conformal Lorentz pseudodistance dsub(M) is a true distance. In this paper criteria are derived which insure the conformal hyperbolicity of certain space-times which are generalizations of the Robertson-Walker spaces. Then dsub(M) is determined explicitly for Einstein-de Sitter space, and important cosmological model.

  7. Electromagnetic ``black holes'' in hyperbolic metamaterials

    Smolyaninov, Igor

    2013-03-01

    We demonstrate that spatial variations of the dielectric tensor components in a hyperbolic metamaterial may lead to formation of electromagnetic ``black holes'' inside this metamaterial. Similar to real black holes, horizon area of the electromagnetic ``black holes'' is quantized in units of the effective ``Planck scale'' squared. Potential experimental realizations of such electromagnetic ``black holes'' will be considered. For example, this situation may be realized in a hyperbolic metamaterial in which the dielectric component exhibits critical opalescence.

  8. Some problems on nonlinear hyperbolic equations and applications

    Peng, YueJun

    2010-01-01

    This volume is composed of two parts: Mathematical and Numerical Analysis for Strongly Nonlinear Plasma Models and Exact Controllability and Observability for Quasilinear Hyperbolic Systems and Applications. It presents recent progress and results obtained in the domains related to both subjects without attaching much importance to the details of proofs but rather to difficulties encountered, to open problems and possible ways to be exploited. It will be very useful for promoting further study on some important problems in the future.

  9. Damped oscillations of linear systems a mathematical introduction

    Veselić, Krešimir

    2011-01-01

    The theory of linear damped oscillations was originally developed more than hundred years ago and is still of vital research interest to engineers, mathematicians and physicists alike. This theory plays a central role in explaining the stability of mechanical structures in civil engineering, but it also has applications in other fields such as electrical network systems and quantum mechanics. This volume gives an introduction to linear finite dimensional damped systems as they are viewed by an applied mathematician. After a short overview of the physical principles leading to the linear system model, a largely self-contained mathematical theory for this model is presented. This includes the geometry of the underlying indefinite metric space, spectral theory of J-symmetric matrices and the associated quadratic eigenvalue problem. Particular attention is paid to the sensitivity issues which influence numerical computations. Finally, several recent research developments are included, e.g. Lyapunov stability and ...

  10. Ultra-high Frequency Linear Fiber Optic Systems

    Lau, Kam

    2011-01-01

    This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...

  11. Conformal and covariant Z4 formulation of the Einstein equations: Strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes

    Dumbser, Michael; Guercilena, Federico; Köppel, Sven; Rezzolla, Luciano; Zanotti, Olindo

    2018-04-01

    We present a strongly hyperbolic first-order formulation of the Einstein equations based on the conformal and covariant Z4 system (CCZ4) with constraint-violation damping, which we refer to as FO-CCZ4. As CCZ4, this formulation combines the advantages of a conformal and traceless formulation, with the suppression of constraint violations given by the damping terms, but being first order in time and space, it is particularly suited for a discontinuous Galerkin (DG) implementation. The strongly hyperbolic first-order formulation has been obtained by making careful use of first and second-order ordering constraints. A proof of strong hyperbolicity is given for a selected choice of standard gauges via an analytical computation of the entire eigenstructure of the FO-CCZ4 system. The resulting governing partial differential equations system is written in nonconservative form and requires the evolution of 58 unknowns. A key feature of our formulation is that the first-order CCZ4 system decouples into a set of pure ordinary differential equations and a reduced hyperbolic system of partial differential equations that contains only linearly degenerate fields. We implement FO-CCZ4 in a high-order path-conservative arbitrary-high-order-method-using-derivatives (ADER)-DG scheme with adaptive mesh refinement and local time-stepping, supplemented with a third-order ADER-WENO subcell finite-volume limiter in order to deal with singularities arising with black holes. We validate the correctness of the formulation through a series of standard tests in vacuum, performed in one, two and three spatial dimensions, and also present preliminary results on the evolution of binary black-hole systems. To the best of our knowledge, these are the first successful three-dimensional simulations of moving punctures carried out with high-order DG schemes using a first-order formulation of the Einstein equations.

  12. Plasma diagnostics by Abel inversion in hyperbolic geometry

    Alhasi, A.S.; Elliott, J.A.

    1992-01-01

    Plasma confined in the UMIST linear quadrupole adopts a configuration with approximately hyperbolic symmetry. The normal diagnostic is a Langmuir probe, but we have developed an alternative method using optical emission tomography based upon an analytic Abel inversion. Plasma radiance is obtained as a function of a parameter identifying magnetic flux surfaces. The inversion algorithm has been tested using artificial data. Experimentally, the results show that ionizing collisions cause the confined plasma distribution to broaden as the plasma travels through the confining field. This is shown to be a consequence of the approximate incompressibility of the E x B flow. (author)

  13. System identication of a linearized hysteretic system using covariance driven stochastic subspace identication

    Bajric, Anela

    A single mass Bouc-Wen oscillator with linear static restoring force contribution is approximated by an equivalent linear system. The aim of the linearized model is to emulate the correct force-displacement response of the Bouc-Wenmodel with characteristic hysteretic behaviour. The linearized mod...

  14. Linearly and nonlinearly bidirectionally coupled synchronization of hyperchaotic systems

    Zhou Jin; Lu Junan; Wu Xiaoqun

    2007-01-01

    To date, there have been many results about unidirectionally coupled synchronization of chaotic systems. However, much less work is reported on bidirectionally-coupled synchronization. In this paper, we investigate the synchronization of two bidirectionally coupled Chen hyperchaotic systems, which are coupled linearly and nonlinearly respectively. Firstly, linearly coupled synchronization of two hyperchaotic Chen systems is investigated, and a theorem on how to choose the coupling coefficients are developed to guarantee the global asymptotical synchronization of two coupled hyperchaotic systems. Analysis shows that the choice of the coupling coefficients relies on the bound of the chaotic system. Secondly, the nonlinearly coupled synchronization is studied; a sufficient condition for the locally asymptotical synchronization is derived, which is independent of the bound of the hyperchaotic system. Finally, numerical simulations are included to verify the effectiveness and feasibility of the developed theorems

  15. Linear dynamical quantum systems analysis, synthesis, and control

    Nurdin, Hendra I

    2017-01-01

    This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...

  16. Polynomial chaos methods for hyperbolic partial differential equations numerical techniques for fluid dynamics problems in the presence of uncertainties

    Pettersson, Mass Per; Nordström, Jan

    2015-01-01

    This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-based techniques. The approach described in the text takes advantage of stochastic Galerkin projections applied to the original conservation laws to produce a large system of modified partial differential equations, the solutions to which directly provide a full statistical characterization of the effect of uncertainties. Polynomial Chaos Methods of Hyperbolic Partial Differential Equations focuses on the analysis of stochastic Galerkin systems obtained for linear and non-linear convection-diffusion equations and for a systems of conservation laws; a detailed well-posedness and accuracy analysis is presented to enable the design of robust and stable numerical methods. The exposition is restricted to one spatial dime...

  17. Nonautonomous linear system of the terrestrial carbon cycle

    Luo, Y.

    2012-12-01

    Carbon cycle has been studied by uses of observation through various networks, field and laboratory experiments, and simulation models. Much less has been done on theoretical thinking and analysis to understand fundament properties of carbon cycle and then guide observatory, experimental, and modeling research. This presentation is to explore what would be the theoretical properties of terrestrial carbon cycle and how those properties can be used to make observatory, experimental, and modeling research more effective. Thousands of published data sets from litter decomposition and soil incubation studies almost all indicate that decay processes of litter and soil organic carbon can be well described by first order differential equations with one or more pools. Carbon pool dynamics in plants and soil after disturbances (e.g., wildfire, clear-cut of forests, and plows of soil for cropping) and during natural recovery or ecosystem restoration also exhibit characteristics of first-order linear systems. Thus, numerous lines of empirical evidence indicate that the terrestrial carbon cycle can be adequately described as a nonautonomous linear system. The linearity reflects the nature of the carbon cycle that carbon, once fixed by photosynthesis, is linearly transferred among pools within an ecosystem. The linear carbon transfer, however, is modified by nonlinear functions of external forcing variables. In addition, photosynthetic carbon influx is also nonlinearly influenced by external variables. This nonautonomous linear system can be mathematically expressed by a first-order linear ordinary matrix equation. We have recently used this theoretical property of terrestrial carbon cycle to develop a semi-analytic solution of spinup. The new methods have been applied to five global land models, including NCAR's CLM and CABLE models and can computationally accelerate spinup by two orders of magnitude. We also use this theoretical property to develop an analytic framework to

  18. Refined Fuchs inequalities for systems of linear differential equations

    Gontsov, R R

    2004-01-01

    We refine the Fuchs inequalities obtained by Corel for systems of linear meromorphic differential equations given on the Riemann sphere. Fuchs inequalities enable one to estimate the sum of exponents of the system over all its singular points. We refine these well-known inequalities by considering the Jordan structure of the leading coefficient of the Laurent series for the matrix of the right-hand side of the system in the neighbourhood of a singular point

  19. The graphics software of the Saclay linear accelerator control system

    Gournay, J.F.

    1987-06-01

    The Control system of the Saclay Linear Accelerator is based upon modern technology hardware. In the graphic software, pictures are created in exactly the same manner for all the graphic devices supported by the system. The informations used to draw a picture are stored in an array called a graphic segment. Three output primitives are used to add graphic material in a segment. Three coordinate systems are defined

  20. Stability analysis of linear switching systems with time delays

    Li Ping; Zhong Shouming; Cui Jinzhong

    2009-01-01

    The issue of stability analysis of linear switching system with discrete and distributed time delays is studied in this paper. An appropriate switching rule is applied to guarantee the stability of the whole switching system. Our results use a Riccati-type Lyapunov functional under a condition on the time delay. So, switching systems with mixed delays are developed. A numerical example is given to illustrate the effectiveness of our results.

  1. Chaos synchronization of a unified chaotic system via partial linearization

    Yu Yongguang; Li Hanxiong; Duan Jian

    2009-01-01

    A partial linearization method is proposed for realizing the chaos synchronization of an unified chaotic system. Through synchronizing partial state of the chaotic systems can result in the synchronization of their entire states, and the resulting controller is singularity free. The results can be easily extended to the synchronization of other similar chaotic systems. Simulation results are conducted to show the effectiveness of the method.

  2. 8th International Conference on Hyperbolic Problems : Theory, Numerics, Applications

    Warnecke, Gerald

    2001-01-01

    The Eighth International Conference on Hyperbolic Problems - Theory, Nu­ merics, Applications, was held in Magdeburg, Germany, from February 27 to March 3, 2000. It was attended by over 220 participants from many European countries as well as Brazil, Canada, China, Georgia, India, Israel, Japan, Taiwan, und the USA. There were 12 plenary lectures, 22 further invited talks, and around 150 con­ tributed talks in parallel sessions as well as posters. The speakers in the parallel sessions were invited to provide a poster in order to enhance the dissemination of information. Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. Despite considerable progress, the mathematical theory is still strug­ gling with fundamental open problems concerning systems of such equations in multiple space dimensions. For various applications the development of accurate and efficient numerical schemes for computat...

  3. 7th International Conference on Hyperbolic Problems Theory, Numerics, Applications

    Jeltsch, Rolf

    1999-01-01

    These proceedings contain, in two volumes, approximately one hundred papers presented at the conference on hyperbolic problems, which has focused to a large extent on the laws of nonlinear hyperbolic conservation. Two-fifths of the papers are devoted to mathematical aspects such as global existence, uniqueness, asymptotic behavior such as large time stability, stability and instabilities of waves and structures, various limits of the solution, the Riemann problem and so on. Roughly the same number of articles are devoted to numerical analysis, for example stability and convergence of numerical schemes, as well as schemes with special desired properties such as shock capturing, interface fitting and high-order approximations to multidimensional systems. The results in these contributions, both theoretical and numerical, encompass a wide range of applications such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phe...

  4. SNR Estimation in Linear Systems with Gaussian Matrices

    Suliman, Mohamed Abdalla Elhag; Alrashdi, Ayed; Ballal, Tarig; Al-Naffouri, Tareq Y.

    2017-01-01

    This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.

  5. SNR Estimation in Linear Systems with Gaussian Matrices

    Suliman, Mohamed Abdalla Elhag

    2017-09-27

    This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.

  6. Experimental quantum computing to solve systems of linear equations.

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  7. Periodic solutions of asymptotically linear Hamiltonian systems without twist conditions

    Cheng Rong [Coll. of Mathematics and Physics, Nanjing Univ. of Information Science and Tech., Nanjing (China); Dept. of Mathematics, Southeast Univ., Nanjing (China); Zhang Dongfeng [Dept. of Mathematics, Southeast Univ., Nanjing (China)

    2010-05-15

    In dynamical system theory, especially in many fields of applications from mechanics, Hamiltonian systems play an important role, since many related equations in mechanics can be written in an Hamiltonian form. In this paper, we study the existence of periodic solutions for a class of Hamiltonian systems. By applying the Galerkin approximation method together with a result of critical point theory, we establish the existence of periodic solutions of asymptotically linear Hamiltonian systems without twist conditions. Twist conditions play crucial roles in the study of periodic solutions for asymptotically linear Hamiltonian systems. The lack of twist conditions brings some difficulty to the study. To the authors' knowledge, very little is known about the case, where twist conditions do not hold. (orig.)

  8. Theoretical analysis of balanced truncation for linear switched systems

    Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef

    2012-01-01

    In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians and their singu......In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians...... for showing this independence is realization theory of linear switched systems. [1] H. R. Shaker and R. Wisniewski, "Generalized gramian framework for model/controller order reduction of switched systems", International Journal of Systems Science, Vol. 42, Issue 8, 2011, 1277-1291. [2] H. R. Shaker and R....... Wisniewski, "Switched Systems Reduction Framework Based on Convex Combination of Generalized Gramians", Journal of Control Science and Engineering, 2009....

  9. Linear-constraint wavefront control for exoplanet coronagraphic imaging systems

    Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean

    2017-01-01

    A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.

  10. Seismic analysis of equipment system with non-linearities such as gap and friction using equivalent linearization method

    Murakami, H.; Hirai, T.; Nakata, M.; Kobori, T.; Mizukoshi, K.; Takenaka, Y.; Miyagawa, N.

    1989-01-01

    Many of the equipment systems of nuclear power plants contain a number of non-linearities, such as gap and friction, due to their mechanical functions. It is desirable to take such non-linearities into account appropriately for the evaluation of the aseismic soundness. However, in usual design works, linear analysis method with rough assumptions is applied from engineering point of view. An equivalent linearization method is considered to be one of the effective analytical techniques to evaluate non-linear responses, provided that errors to a certain extent are tolerated, because it has greater simplicity in analysis and economization in computing time than non-linear analysis. The objective of this paper is to investigate the applicability of the equivalent linearization method to evaluate the maximum earthquake response of equipment systems such as the CANDU Fuelling Machine which has multiple non- linearities

  11. Design techniques for large scale linear measurement systems

    Candy, J.V.

    1979-03-01

    Techniques to design measurement schemes for systems modeled by large scale linear time invariant systems, i.e., physical systems modeled by a large number (> 5) of ordinary differential equations, are described. The techniques are based on transforming the physical system model to a coordinate system facilitating the design and then transforming back to the original coordinates. An example of a three-stage, four-species, extraction column used in the reprocessing of spent nuclear fuel elements is presented. The basic ideas are briefly discussed in the case of noisy measurements. An example using a plutonium nitrate storage vessel (reprocessing) with measurement uncertainty is also presented

  12. Decentralized linear quadratic power system stabilizers for multi ...

    Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not ...

  13. Force analysis of linear induction motor for magnetic levitation system

    Kuijpers, A.A.; Nemlioglu, C.; Sahin, F.; Verdel, A.J.D.; Compter, J.C.; Lomonova, E.

    2010-01-01

    This paper presents the analyses of thrust and normal forces of linear induction motor (LIM) segments which are implemented in a rotating ring system. To obtain magnetic levitation in a cost effective and sustainable way, decoupled control of thrust and normal forces is required. This study includes

  14. Input design for linear dynamic systems using maxmin criteria

    Sadegh, Payman; Hansen, Lars H.; Madsen, Henrik

    1998-01-01

    This paper considers the problem of input design for maximizing the smallest eigenvalue of the information matrix for linear dynamic systems. The optimization of the smallest eigenvalue is of interest in parameter estimation and parameter change detection problems. We describe a simple cutting...

  15. Generating Nice Linear Systems for Matrix Gaussian Elimination

    Homewood, L. James

    2004-01-01

    In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…

  16. Daylighting System Based on Novel Design of Linear Fresnel lens

    Thanh Tuan Pham

    2017-10-01

    Full Text Available In this paper, we present a design and optical simulation of a daylighting system using a novel design of linear Fresnel lens, which is constructed based on the conservation of optical path length and edge ray theorem. The linear Fresnel lens can achieve a high uniformity by using a new idea of design in which each groove of the lens distributes sunlight uniformly over the receiver so that the whole lens also uniformly distributes sunlight over the receiver. In this daylighting system, the novel design of linear Fresnel lens significantly improves the uniformity of collector and distributor. Therefore, it can help to improve the performance of the daylighting system. The structure of the linear Fresnel lenses is designed by using Matlab. Then, the structure of lenses is appreciated by ray tracing in LightToolsTM to find out the optimum lens shape. In addition, the simulation is performed by using LightToolsTM to estimate the efficiency of the daylighting system. The results show that the designed collector can achieve the efficiency of ~80% with the tolerance of ~0.60 and the concentration ratio of 340 times, while the designed distributor can reach a high uniformity of >90%.

  17. Robust self-triggered MPC for constrained linear systems

    Brunner, F.D.; Heemels, W.P.M.H.; Allgöwer, F.

    2014-01-01

    In this paper we propose a robust self-triggered model predictive control algorithm for linear systems with additive bounded disturbances and hard constraints on the inputs and state. In self-triggered control, at every sampling instant the time until the next sampling instant is computed online

  18. Stability Analysis for Multi-Parameter Linear Periodic Systems

    Seyranian, A.P.; Solem, Frederik; Pedersen, Pauli

    1999-01-01

    This paper is devoted to stability analysis of general linear periodic systems depending on real parameters. The Floquet method and perturbation technique are the basis of the development. We start out with the first and higher-order derivatives of the Floquet matrix with respect to problem...

  19. Relative controllability and null controllability of linear delay systems ...

    Necessary and sufficient conditions are established for the relative, absolute controllability and null controllability of the generalized linear delay system and its discrete prototype. The paper presents illuminating examples on previous controllability results by Manitius and Olbrot [7] and carries over the results of Onwuatu [8] ...

  20. Time-optimal feedback control for linear systems

    Mirica, S.

    1976-01-01

    The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)

  1. Linear and non-linear systems identification for adaptive control in mechanical applications vibration suppression

    Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco

    2012-04-01

    During the last years, more and more mechanical applications saw the introduction of active control strategies. In particular, the need of improving the performances and/or the system health is very often associated to vibration suppression. This goal can be achieved considering both passive and active solutions. In this sense, many active control strategies have been developed, such as the Independent Modal Space Control (IMSC) or the resonant controllers (PPF, IRC, . . .). In all these cases, in order to tune and optimize the control strategy, the knowledge of the system dynamic behaviour is very important and it can be achieved both considering a numerical model of the system or through an experimental identification process. Anyway, dealing with non-linear or time-varying systems, a tool able to online identify the system parameters becomes a key-point for the control logic synthesis. The aim of the present work is the definition of a real-time technique, based on ARMAX models, that estimates the system parameters starting from the measurements of piezoelectric sensors. These parameters are returned to the control logic, that automatically adapts itself to the system dynamics. The problem is numerically investigated considering a carbon-fiber plate model forced through a piezoelectric patch.

  2. Observability of linear control systems on Lie groups

    Ayala, V.; Hacibekiroglu, A.K.

    1995-01-01

    In this paper, we study the observability problem for a linear control system Σ on a Lie group G. The drift vector field of Σ is an infinitesimal automorphism of G and the control vectors are elements in the Lie algebra of G. We establish algebraic conditions to characterize locally and globally observability for Σ. As in the linear case on R n , these conditions are independent of the control vector. We give an algorithm on the co-tangent bundle of G to calculate the equivalence class of the neutral element. (author). 6 refs

  3. Monitoring and control system of the Saclay electron linear accelerator

    Lafontaine, Antoine

    1974-01-01

    A description is given of the automatic monitoring and control system of the 60MeV electron linear accelerator of the Centre d'Etudes Nucleaires de Saclay. The paper is mostly concerned with the programmation of the system. However, in a real time device, there is a very close association between computer and electronics, the latter are therefore described in details and make up most of the paper. [fr

  4. A new timing system for the Stanford Linear Collider

    Paffrath, L.; Bernstein, D.; Kang, H.; Koontz, R.; Leger, G.; Pierce, W.; Ross, M.; Wilmunder, A.

    1985-01-01

    In order to be able to meet the goals of the Stanford Linear Collider, a much more precise timing system had to be implemented. This paper describes the specification and design of this system, and the results obtained from its use on 1/3 of the SLAC linac. The functions of various elements are described, and a programmable delay unit (PDU) is described in detail

  5. Hyperchaotic encryption based on multi-scroll piecewise linear Systems

    García-Martínez, M.; Ontanon-García, L.J.; Campos-Cantón, E.; Čelikovský, Sergej

    2015-01-01

    Roč. 270, č. 1 (2015), s. 413-424 ISSN 0096-3003 R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : Hyperchaotic encryption * Piecewise linear systems * Stream cipher * Pseudo-random bit generator * Chaos theory * Multi-scrollattractors Subject RIV: BC - Control Systems Theory Impact factor: 1.345, year: 2015 http://library.utia.cas.cz/separaty/2015/TR/celikovsky-0446895.pdf

  6. Global Linear Representations of Nonlinear Systems and the Adjoint Map

    Banks, S.P.

    1988-01-01

    In this paper we shall study the global linearization of nonlinear systems on a manifold by two methods. The first consists of an expansion of the vector field in the space of square integrable vector fields. In the second method we use the adjoint representation of the Lie algebra vector fields to obtain an infinite-dimensional matrix representation of the system. A connection between the two approaches will be developed.

  7. Comments on new iterative methods for solving linear systems

    Wang Ke

    2017-06-01

    Full Text Available Some new iterative methods were presented by Du, Zheng and Wang for solving linear systems in [3], where it is shown that the new methods, comparing to the classical Jacobi or Gauss-Seidel method, can be applied to more systems and have faster convergence. This note shows that their methods are suitable for more matrices than positive matrices which the authors suggested through further analysis and numerical examples.

  8. A representation theorem for linear discrete-space systems

    Sandberg Irwin W.

    1998-01-01

    Full Text Available The cornerstone of the theory of discrete-time single-input single-output linear systems is the idea that every such system has an input–output map H that can be represented by a convolution or the familiar generalization of a convolution. This thinking involves an oversight which is corrected in this note by adding an additional term to the representation.

  9. A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems

    Benzi, M.; Tůma, Miroslav

    1998-01-01

    Roč. 19, č. 3 (1998), s. 968-994 ISSN 1064-8275 R&D Projects: GA ČR GA201/93/0067; GA AV ČR IAA230401 Keywords : large sparse systems * interative methods * preconditioning * approximate inverse * sparse linear systems * sparse matrices * incomplete factorizations * conjugate gradient -type methods Subject RIV: BA - General Mathematics Impact factor: 1.378, year: 1998

  10. Design and performance of the Stanford Linear Collider Control System

    Melen, R.E.

    1984-10-01

    The success of the Stanford Linear Collider (SLC) will be dependent upon the implementation of a very large advanced computer-based instrumentation and control system. This paper describes the architectural design of this system as well as a critique of its performance. This critique is based on experience obtained from its use in the control and monitoring of 1/3 of the SLAC linac and in support of an expensive experimental machine physics experimental program. 11 references, 3 figures

  11. Layered van der Waals crystals with hyperbolic light dispersion

    Gjerding, Morten Niklas; Petersen, R.; Pedersen, T.G.

    2017-01-01

    Compared to artificially structured hyperbolic metamaterials, whose performance is limited by the finite size of the metallic components, the sparse number of naturally hyperbolic materials recently discovered are promising candidates for the next generation of hyperbolic materials. Using first......-principles calculations, we extend the number of known naturally hyperbolic materials to the broad class of layered transition metal dichalcogenides (TMDs). The diverse electronic properties of the transition metal dichalcogenides result in a large variation of the hyperbolic frequency regimes ranging from the near...... materials with hyperbolic dispersion among the family of layered transition metal dichalcogenides....

  12. Universal Linear Precoding for NBI-Proof Widely Linear Equalization in MC Systems

    Donatella Darsena

    2007-09-01

    Full Text Available In multicarrier (MC systems, transmitter redundancy, which is introduced by means of finite-impulse response (FIR linear precoders, allows for perfect or zero-forcing (ZF equalization of FIR channels (in the absence of noise. Recently, it has been shown that the noncircular or improper nature of some symbol constellations offers an intrinsic source of redundancy, which can be exploited to design efficient FIR widely-linear (WL receiving structures for MC systems operating in the presence of narrowband interference (NBI. With regard to both cyclic-prefixed and zero-padded transmission techniques, it is shown in this paper that, with appropriately designed precoders, it is possible to synthesize in both cases WL-ZF universal equalizers, which guarantee perfect symbol recovery for any FIR channel. Furthermore, it is theoretically shown that the intrinsic redundancy of the improper symbol sequence also enables WL-ZF equalization, based on the minimum mean output-energy criterion, with improved NBI suppression capabilities. Finally, results of numerical simulations are presented, which assess the merits of the proposed precoding designs and validate the theoretical analysis carried out.

  13. Self-Tuning Control of Linear Systems Followed by Deadzones

    K. Kazlauskas

    2014-02-01

    Full Text Available The aim of the present paper is to increase the efficiency of self-tuning generalized minimum variance (GMV control of linear time-invariant (LTI systems followed by deadzone nonlinearities. An approach, based on reordering of observations to be processed for the reconstruction of an unknown internal signal that acts between LTI system and a static nonlinear block of the closed-loop Wiener system, has been developed. The results of GMV self-tuning control of the second order LTI system with an ordinary deadzone are given.

  14. Algorithmic Approach to Abstracting Linear Systems by Timed Automata

    Sloth, Christoffer; Wisniewski, Rafael

    2011-01-01

    This paper proposes an LMI-based algorithm for abstracting dynamical systems by timed automata, which enables automatic formal verification of linear systems. The proposed abstraction is based on partitioning the state space of the system using positive invariant sets, generated by Lyapunov...... functions. This partitioning ensures that the vector field of the dynamical system is transversal to all facets of the cells, which induces some desirable properties of the abstraction. The algorithm is based on identifying intersections of level sets of quadratic Lyapunov functions, and determining...

  15. Focal points and principal solutions of linear Hamiltonian systems revisited

    Šepitka, Peter; Šimon Hilscher, Roman

    2018-05-01

    In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.

  16. Fundamentals of linear systems for physical scientists and engineers

    Puri, N N

    2009-01-01

    Thanks to the advent of inexpensive computing, it is possible to analyze, compute, and develop results that were unthinkable in the '60s. Control systems, telecommunications, robotics, speech, vision, and digital signal processing are but a few examples of computing applications. While there are many excellent resources available that focus on one or two topics, few books cover most of the mathematical techniques required for a broader range of applications. Fundamentals of Linear Systems for Physical Scientists and Engineers is such a resource. The book draws from diverse areas of engineering and the physical sciences to cover the fundamentals of linear systems. Assuming no prior knowledge of complex mathematics on the part of the reader, the author uses his nearly 50 years of teaching experience to address all of the necessary mathematical techniques. Original proofs, hundreds of examples, and proven theorems illustrate and clarify the material. An extensive table provides Lyapunov functions for differentia...

  17. Computer Based Dose Control System on Linear Accelerator

    Taxwim; Djoko-SP; Widi-Setiawan; Agus-Budi Wiyatna

    2000-01-01

    The accelerator technology has been used for radio therapy. DokterKaryadi Hospital in Semarang use electron or X-ray linear accelerator (Linac)for cancer therapy. One of the control parameter of linear accelerator isdose rate. It is particle current or amount of photon rate to the target. Thecontrol of dose rate in linac have been done by adjusting repetition rate ofanode pulse train of electron source. Presently the control is stillproportional control. To enhance the quality of the control result (minimalstationer error, velocity and stability), the dose control system has beendesigned by using the PID (Proportional Integral Differential) controlalgorithm and the derivation of transfer function of control object.Implementation of PID algorithm control system is done by giving an input ofdose error (the different between output dose and dose rate set point). Theoutput of control system is used for correction of repetition rate set pointfrom pulse train of electron source anode. (author)

  18. Linear and nonlinear dynamic systems in financial time series prediction

    Salim Lahmiri

    2012-10-01

    Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.

  19. A parallel solver for huge dense linear systems

    Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.

    2011-11-01

    HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system

  20. Galerkin projection methods for solving multiple related linear systems

    Chan, T.F.; Ng, M.; Wan, W.L.

    1996-12-31

    We consider using Galerkin projection methods for solving multiple related linear systems A{sup (i)}x{sup (i)} = b{sup (i)} for 1 {le} i {le} s, where A{sup (i)} and b{sup (i)} are different in general. We start with the special case where A{sup (i)} = A and A is symmetric positive definite. The method generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed system, by the CG method and then projects the residuals of other systems orthogonally onto the generated Krylov subspace to get the approximate solutions. The whole process is repeated with another unsolved system as a seed until all the systems are solved. We observe in practice a super-convergence behaviour of the CG process of the seed system when compared with the usual CG process. We also observe that only a small number of restarts is required to solve all the systems if the right-hand sides are close to each other. These two features together make the method particularly effective. In this talk, we give theoretical proof to justify these observations. Furthermore, we combine the advantages of this method and the block CG method and propose a block extension of this single seed method. The above procedure can actually be modified for solving multiple linear systems A{sup (i)}x{sup (i)} = b{sup (i)}, where A{sup (i)} are now different. We can also extend the previous analytical results to this more general case. Applications of this method to multiple related linear systems arising from image restoration and recursive least squares computations are considered as examples.

  1. Front tracking for hyperbolic conservation laws

    Holden, Helge

    2002-01-01

    Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet "I have read the book with great pleasure, and I can recommend it to experts as well as students. It can also be used for reliable and very exciting basis for a one-semester graduate course." S. Noelle, Book review, German Math. Soc. "Making it an ideal first book for the theory of nonlinear partial differential equations...an excellent reference for a graduate course on nonlinear conservation laws." M. Laforest, Comp. Phys. Comm.

  2. Klein bottle logophysics: a unified principle for non-linear systems, cosmology, geophysics, biology, biomechanics and perception

    Lucio Rapoport, Diego

    2013-04-01

    We present a unified principle for science that surmounts dualism, in terms of torsion fields and the non-orientable surfaces, notably the Klein Bottle and its logic, the Möbius strip and the projective plane. We apply it to the complex numbers and cosmology, to non-linear systems integrating the issue of hyperbolic divergences with the change of orientability, to the biomechanics of vision and the mammal heart, to the morphogenesis of crustal shapes on Earth in connection to the wavefronts of gravitation, elasticity and electromagnetism, to pattern recognition of artificial images and visual recognition, to neurology and the topographic maps of the sensorium, to perception, in particular of music. We develop it in terms of the fundamental 2:1 resonance inherent to the Möbius strip and the Klein Bottle, the minimal surfaces representation of the wavefronts, and the non-dual Klein Bottle logic inherent to pattern recognition, to the harmonic functions and vector fields that lay at the basis of geophysics and physics at large. We discuss the relation between the topographic maps of the sensorium, and the issue of turning inside-out of the visual world as a general principle for cognition, topological chemistry, cell biology and biological morphogenesis in particular in embryology

  3. Klein bottle logophysics: a unified principle for non-linear systems, cosmology, geophysics, biology, biomechanics and perception

    Rapoport, Diego Lucio

    2013-01-01

    We present a unified principle for science that surmounts dualism, in terms of torsion fields and the non-orientable surfaces, notably the Klein Bottle and its logic, the Möbius strip and the projective plane. We apply it to the complex numbers and cosmology, to non-linear systems integrating the issue of hyperbolic divergences with the change of orientability, to the biomechanics of vision and the mammal heart, to the morphogenesis of crustal shapes on Earth in connection to the wavefronts of gravitation, elasticity and electromagnetism, to pattern recognition of artificial images and visual recognition, to neurology and the topographic maps of the sensorium, to perception, in particular of music. We develop it in terms of the fundamental 2:1 resonance inherent to the Möbius strip and the Klein Bottle, the minimal surfaces representation of the wavefronts, and the non-dual Klein Bottle logic inherent to pattern recognition, to the harmonic functions and vector fields that lay at the basis of geophysics and physics at large. We discuss the relation between the topographic maps of the sensorium, and the issue of turning inside-out of the visual world as a general principle for cognition, topological chemistry, cell biology and biological morphogenesis in particular in embryology

  4. An extended GS method for dense linear systems

    Niki, Hiroshi; Kohno, Toshiyuki; Abe, Kuniyoshi

    2009-09-01

    Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399-1411] derived the GSOR method, which uses an upper triangular matrix [Omega] in order to solve dense linear systems. By applying functional analysis, the authors presented an expression for the optimum [Omega]. Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized SOR method for dense linear systems of boundary element equations, SIAM J. Comput. 19 (1998) 953-967] also introduced further interesting results. In this note, we employ a matrix analysis approach to investigate these schemes, and derive theorems that compare these schemes with existing preconditioners for dense linear systems. We show that the convergence rate of the Gauss-Seidel method with preconditioner PG is superior to that of the GSOR method. Moreover, we define some splittings associated with the iterative schemes. Some numerical examples are reported to confirm the theoretical analysis. We show that the EGS method with preconditioner produces an extremely small spectral radius in comparison with the other schemes considered.

  5. Essential uncontrollability of discrete linear, time-invariant, dynamical systems

    Cliff, E. M.

    1975-01-01

    The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.

  6. The new control system of the Saclay linear accelerator

    Gournay, J.F.; Gourcy, G.; Garreau, F.; Giraud, A.; Rouault, J.

    1985-05-01

    A new control system for the Safety Linear Accelerator is now being designed. The computer control architecture is based on 3 dedicated VME crates with MC68000 micro-processors: one crate with a disk-based operating system will run the high level application programs and the data base management facilities, another one will manage the man-machine communications and the third one will interface the system to the linac equipments. Communications between the VME microcomputers will be done through 16 bit parallel links. The software is modular and organized in specific layers, the data base is fully distributed. About 90% of the code is written in Fortran

  7. Kalman filtering for time-delayed linear systems

    LU Xiao; WANG Wei

    2006-01-01

    This paper is to study the linear minimum variance estimation for discrete- time systems. A simple approach to the problem is presented by developing re-organized innovation analysis for the systems with instantaneous and double time-delayed measurements. It is shown that the derived estimator involves solving three different standard Kalman filtering with the same dimension as the original system. The obtained results form the basis for solving some complicated problems such as H∞ fixed-lag smoothing, preview control, H∞ filtering and control with time delays.

  8. Fundamental Matrix for a Class of Point Delay Linear Systems

    Sen, M. de la; Alastruey, C. F.

    1998-01-01

    It is difficult to establish explicit analytic forms for fundamental matrices of delayed linear systems. In this paper, an explicit form of exponential type is given for such a matrix in the case of punctual delays. The existence of real and complex fundamental matrices, for the case of real parameterizations of the differential system, is studied and discussed. Some additional commutativity properties involving the matrices parameters and the fundamental matrices as well as explicit expressions for the solution of the delayed differential system are also given. (Author)

  9. Control of Non-linear Marine Cooling System

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non-linearitie......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  10. Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information

    Naoki Yamamoto

    2014-11-01

    Full Text Available To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.

  11. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.

    Yan, Wei; Mortensen, N Asger; Wubs, Martijn

    2013-06-17

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.

  12. Causality and hyperbolicity of Lovelock theories

    Reall, Harvey S; Tanahashi, Norihiro; Way, Benson

    2014-01-01

    In Lovelock theories, gravity can travel faster or slower than light. The causal structure is determined by the characteristic hypersurfaces. We generalize a recent result of Izumi to prove that any Killing horizon is a characteristic hypersurface for all gravitational degrees of freedom of a Lovelock theory. Hence gravitational signals cannot escape from the region inside such a horizon. We investigate the hyperbolicity of Lovelock theories by determining the characteristic hypersurfaces for various backgrounds. First we consider Ricci flat type N spacetimes. We show that characteristic hypersurfaces are generically all non-null and that Lovelock theories are hyperbolic in any such spacetime. Next we consider static, maximally symmetric black hole solutions of Lovelock theories. Again, characteristic surfaces are generically non-null. For some small black holes, hyperbolicity is violated near the horizon. This implies that the stability of such black holes is not a well-posed problem. (paper)

  13. Optimal linear precoding for indoor visible light communication system

    Sifaou, Houssem

    2017-07-31

    Visible light communication (VLC) is an emerging technique that uses light-emitting diodes (LED) to combine communication and illumination. It is considered as a promising scheme for indoor wireless communication that can be deployed at reduced costs while offering high data rate performance. In this paper, we focus on the design of the downlink of a multi-user VLC system. Inherent to multi-user systems is the interference caused by the broadcast nature of the medium. Linear precoding based schemes are among the most popular solutions that have recently been proposed to mitigate inter-user interference. This paper focuses on the design of the optimal linear precoding scheme that solves the max-min signal-to-interference-plus-noise ratio (SINR) problem. The performance of the proposed precoding scheme is studied under different working conditions and compared with the classical zero-forcing precoding. Simulations have been provided to illustrate the high gain of the proposed scheme.

  14. Solution of the fully fuzzy linear systems using iterative techniques

    Dehghan, Mehdi; Hashemi, Behnam; Ghatee, Mehdi

    2007-01-01

    This paper mainly intends to discuss the iterative solution of fully fuzzy linear systems which we call FFLS. We employ Dubois and Prade's approximate arithmetic operators on LR fuzzy numbers for finding a positive fuzzy vector x-tilde which satisfies A-tildex-tilde=b, where A-tilde and b-tilde are a fuzzy matrix and a fuzzy vector, respectively. Please note that the positivity assumption is not so restrictive in applied problems. We transform FFLS and propose iterative techniques such as Richardson, Jacobi, Jacobi overrelaxation (JOR), Gauss-Seidel, successive overrelaxation (SOR), accelerated overrelaxation (AOR), symmetric and unsymmetric SOR (SSOR and USSOR) and extrapolated modified Aitken (EMA) for solving FFLS. In addition, the methods of Newton, quasi-Newton and conjugate gradient are proposed from nonlinear programming for solving a fully fuzzy linear system. Various numerical examples are also given to show the efficiency of the proposed schemes

  15. Solution methods for large systems of linear equations in BACCHUS

    Homann, C.; Dorr, B.

    1993-05-01

    The computer programme BACCHUS is used to describe steady state and transient thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor. In such computer programmes generally large systems of linear equations with sparse matrices of coefficients, resulting from discretization of coolant conservation equations, must be solved thousands of times giving rise to large demands of main storage and CPU time. Direct and iterative solution methods of the systems of linear equations, available in BACCHUS, are described, giving theoretical details and experience with their use in the programme. Besides use of a method of lines, a Runge-Kutta-method, for solution of the partial differential equation is outlined. (orig.) [de

  16. Nonautonomous linear Hamiltonian systems oscillation, spectral theory and control

    Johnson, Russell; Novo, Sylvia; Núñez, Carmen; Fabbri, Roberta

    2016-01-01

    This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hami...

  17. Optimal approximation of linear systems by artificial immune response

    2006-01-01

    This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstracts four elements, namely, antigen, antibody, reaction rules among antibodies, and driving algorithm describing how the rules are applied to antibodies, to simulate the process of immune response. Some reaction rules including clonal selection rules, immunological memory rules and immune regulation rules are introduced. Using the theorem of Markov chain, it is proofed that the new model is convergent. The experimental study on the optimal approximation of a stable linear system and an unstable one show that the approximate models searched by the new model have better performance indices than those obtained by some existing algorithms including the differential evolution algorithm and the multi-agent genetic algorithm.

  18. Large linear magnetoresistivity in strongly inhomogeneous planar and layered systems

    Bulgadaev, S.A.; Kusmartsev, F.V.

    2005-01-01

    Explicit expressions for magnetoresistance R of planar and layered strongly inhomogeneous two-phase systems are obtained, using exact dual transformation, connecting effective conductivities of in-plane isotropic two-phase systems with and without magnetic field. These expressions allow to describe the magnetoresistance of various inhomogeneous media at arbitrary concentrations x and magnetic fields H. All expressions show large linear magnetoresistance effect with different dependencies on the phase concentrations. The corresponding plots of the x- and H-dependencies of R(x,H) are represented for various values, respectively, of magnetic field and concentrations at some values of inhomogeneity parameter. The obtained results show a remarkable similarity with the existing experimental data on linear magnetoresistance in silver chalcogenides Ag 2+δ Se. A possible physical explanation of this similarity is proposed. It is shown that the random, stripe type, structures of inhomogeneities are the most suitable for a fabrication of magnetic sensors and a storage of information at room temperatures

  19. Maximization of energy in the output of a linear system

    Dudley, D.G.

    1976-01-01

    A time-limited signal which, when passed through a linear system, maximizes the total output energy is considered. Previous work has shown that the solution is given by the eigenfunction associated with the maximum eigenvalue in a Hilbert-Schmidt integral equation. Analytical results are available for the case where the transfer function is a low-pass filter. This work is extended by obtaining a numerical solution to the integral equation which allows results for reasonably general transfer functions

  20. Linear Quantum Systems: Non-Classical States and Robust Stability

    2016-06-29

    modulation and entanglement in a compound gradient echo memory, Physical Review A 93(2) 023809 2016. We present a theoretical model for a Kerr...Carvalho, M. Hedges and M R James, Analysis of the operation of gradient echo memories using a quantum input-output model, New Journal of Physics , 15...new structured uncertainty methods that ensure robust stability of quantum systems based on nominal linear models, and (v) physical realizability

  1. Dynamic logic architecture based on piecewise-linear systems

    Peng Haipeng; Liu Fei; Li Lixiang; Yang Yixian; Wang Xue

    2010-01-01

    This Letter explores piecewise-linear systems to construct dynamic logic architecture. The proposed schemes can discriminate the two input signals and obtain 16 kinds of logic operations by different combinations of parameters and conditions for determining the output. Each logic cell performs more flexibly, that makes it possible to achieve complex logic operations more simply and construct computing architecture with less logic cells. We also analyze the various performances of our schemes under different conditions and the characteristics of these schemes.

  2. CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM

    S.H. Nasseri

    2011-07-01

    Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.

  3. CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM

    S.H. Nasseri

    2009-10-01

    Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.

  4. Efficient Preconditioning of Sequences of Nonsymmetric Linear Systems

    Duintjer Tebbens, Jurjen; Tůma, Miroslav

    2007-01-01

    Roč. 29, č. 5 (2007), s. 1918-1941 ISSN 1064-8275 R&D Projects: GA AV ČR 1ET400300415; GA AV ČR KJB100300703 Institutional research plan: CEZ:AV0Z10300504 Keywords : preconditioned iterative methods * sparse matrices * sequences of linear algebraic systems * incomplete factorizations * factorization updates * Gauss–Jordan transformations * minimum spanning tree Subject RIV: BA - General Mathematics Impact factor: 1.784, year: 2007

  5. AZTEC: A parallel iterative package for the solving linear systems

    Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    We describe a parallel linear system package, AZTEC. The package incorporates a number of parallel iterative methods (e.g. GMRES, biCGSTAB, CGS, TFQMR) and preconditioners (e.g. Jacobi, Gauss-Seidel, polynomial, domain decomposition with LU or ILU within subdomains). Additionally, AZTEC allows for the reuse of previous preconditioning factorizations within Newton schemes for nonlinear methods. Currently, a number of different users are using this package to solve a variety of PDE applications.

  6. Computing the Gromov hyperbolicity constant of a discrete metric space

    Ismail, Anas

    2012-01-01

    , and many other areas of research. The Gromov hyperbolicity constant of several families of graphs and geometric spaces has been determined. However, so far, the only known algorithm for calculating the Gromov hyperbolicity constant δ of a discrete metric

  7. Multilayer cladding with hyperbolic dispersion for plasmonic waveguides

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    We study the properties of plasmonic waveguides with a dielectric core and multilayer metal-dielectric claddings that possess hyperbolic dispersion. The waveguides hyperbolic multilayer claddings show better performance in comparison to conventional plasmonic waveguides. © OSA 2015....

  8. Feedback Linearization Controller for a Wind Energy Power System

    Muthana Alrifai

    2016-09-01

    Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.

  9. Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory

    Richtarik, Peter; Taká č, Martin

    2017-01-01

    We develop a family of reformulations of an arbitrary consistent linear system into a stochastic problem. The reformulations are governed by two user-defined parameters: a positive definite matrix defining a norm, and an arbitrary discrete or continuous distribution over random matrices. Our reformulation has several equivalent interpretations, allowing for researchers from various communities to leverage their domain specific insights. In particular, our reformulation can be equivalently seen as a stochastic optimization problem, stochastic linear system, stochastic fixed point problem and a probabilistic intersection problem. We prove sufficient, and necessary and sufficient conditions for the reformulation to be exact. Further, we propose and analyze three stochastic algorithms for solving the reformulated problem---basic, parallel and accelerated methods---with global linear convergence rates. The rates can be interpreted as condition numbers of a matrix which depends on the system matrix and on the reformulation parameters. This gives rise to a new phenomenon which we call stochastic preconditioning, and which refers to the problem of finding parameters (matrix and distribution) leading to a sufficiently small condition number. Our basic method can be equivalently interpreted as stochastic gradient descent, stochastic Newton method, stochastic proximal point method, stochastic fixed point method, and stochastic projection method, with fixed stepsize (relaxation parameter), applied to the reformulations.

  10. Linear circuits, systems and signal processing: theory and application

    Byrnes, C.I.; Saeks, R.E.; Martin, C.F.

    1988-01-01

    In part because of its universal role as a first approximation of more complicated behaviour and in part because of the depth and breadth of its principle paradigms, the study of linear systems continues to play a central role in control theory and its applications. Enhancing more traditional applications to aerospace and electronics, application areas such as econometrics, finance, and speech and signal processing have contributed to a renaissance in areas such as realization theory and classical automatic feedback control. Thus, the last few years have witnessed a remarkable research effort expended in understanding both new algorithms and new paradigms for modeling and realization of linear processes and in the analysis and design of robust control strategies. The papers in this volume reflect these trends in both the theory and applications of linear systems and were selected from the invited and contributed papers presented at the 8th International Symposium on the Mathematical Theory of Networks and Systems held in Phoenix on June 15-19, 1987

  11. Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory

    Richtarik, Peter

    2017-06-04

    We develop a family of reformulations of an arbitrary consistent linear system into a stochastic problem. The reformulations are governed by two user-defined parameters: a positive definite matrix defining a norm, and an arbitrary discrete or continuous distribution over random matrices. Our reformulation has several equivalent interpretations, allowing for researchers from various communities to leverage their domain specific insights. In particular, our reformulation can be equivalently seen as a stochastic optimization problem, stochastic linear system, stochastic fixed point problem and a probabilistic intersection problem. We prove sufficient, and necessary and sufficient conditions for the reformulation to be exact. Further, we propose and analyze three stochastic algorithms for solving the reformulated problem---basic, parallel and accelerated methods---with global linear convergence rates. The rates can be interpreted as condition numbers of a matrix which depends on the system matrix and on the reformulation parameters. This gives rise to a new phenomenon which we call stochastic preconditioning, and which refers to the problem of finding parameters (matrix and distribution) leading to a sufficiently small condition number. Our basic method can be equivalently interpreted as stochastic gradient descent, stochastic Newton method, stochastic proximal point method, stochastic fixed point method, and stochastic projection method, with fixed stepsize (relaxation parameter), applied to the reformulations.

  12. Cuspidal discrete series for projective hyperbolic spaces

    Andersen, Nils Byrial; Flensted-Jensen, Mogens

    2013-01-01

    Abstract. We have in [1] proposed a definition of cusp forms on semisimple symmetric spaces G/H, involving the notion of a Radon transform and a related Abel transform. For the real non-Riemannian hyperbolic spaces, we showed that there exists an infinite number of cuspidal discrete series......, and at most finitely many non-cuspidal discrete series, including in particular the spherical discrete series. For the projective spaces, the spherical discrete series are the only non-cuspidal discrete series. Below, we extend these results to the other hyperbolic spaces, and we also study the question...

  13. Solving hyperbolic heat conduction using electrical simulation

    Gheitaghy, A. M.; Talaee, M. R.

    2013-01-01

    In the present study, the electrical network simulation method is proposed to solve the hyperbolic and parabolic heat conduction problem considering Cattaneo-Vernoute (C.V) constitutive relation. Using this new proposed numerical model and the electrical circuit simulation program HSPICE, transient temperature and heat flux profiles at slab can be obtained easily and quickly. To verify the proposed method, the obtained numerical results for cases of one dimensional two-layer slab under periodic boundary temperature with perfect and imperfect thermal contact are compared with the published results. Comparisons show the proposed technique might be considered as a useful tool in the analysis of parabolic and hyperbolic thermal problems.

  14. Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity

    Yan, Wei; Wubs, Martijn; Mortensen, N. Asger

    2012-01-01

    We study metamaterials known as hyperbolic media that in the usual local-response approximation exhibit hyperbolic dispersion and an associated broadband singularity in the density of states. Instead, from the more microscopic hydrodynamic Drude theory we derive qualitatively different optical...... properties of these metamaterials, due to the free-electron nonlocal optical response of their metal constituents. We demonstrate that nonlocal response gives rise to a large-wavevector cutoff in the dispersion that is inversely proportional to the Fermi velocity of the electron gas, but also for small...

  15. Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities

    Y. N. Pavlov

    2015-01-01

    Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic

  16. Linear filtering of systems with memory and application to finance

    2006-01-01

    Full Text Available We study the linear filtering problem for systems driven by continuous Gaussian processes V ( 1 and V ( 2 with memory described by two parameters. The processes V ( j have the virtue that they possess stationary increments and simple semimartingale representations simultaneously. They allow for straightforward parameter estimations. After giving the semimartingale representations of V ( j by innovation theory, we derive Kalman-Bucy-type filtering equations for the systems. We apply the result to the optimal portfolio problem for an investor with partial observations. We illustrate the tractability of the filtering algorithm by numerical implementations.

  17. Parametric Linear Hybrid Automata for Complex Environmental Systems Modeling

    Samar Hayat Khan Tareen

    2015-07-01

    Full Text Available Environmental systems, whether they be weather patterns or predator-prey relationships, are dependent on a number of different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of these systems. Towards this end, we have applied a logical modeling approach to model and analyze the behavioral trends and systematic trajectories that these systems exhibit without delving into their quantification. This approach, formalized by René Thomas for discrete logical modeling of Biological Regulatory Networks (BRNs and further extended in our previous studies as parametric biological linear hybrid automata (Bio-LHA, has been previously employed for the analyses of different molecular regulatory interactions occurring across various cells and microbial species. As relationships between different interacting components of a system can be simplified as positive or negative influences, we can employ the Bio-LHA framework to represent different components of the environmental system as positive or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete/continuous modeling which lead to refinements among the fore-casted behaviors in order to find out which ones are actually possible. We have taken two case studies: an interaction of three microbial species in a freshwater pond, and a more complex atmospheric system, to show the applications of the Bio-LHA methodology for the timed hybrid modeling of environmental systems. Results show that the approach using the Bio-LHA is a viable method for behavioral modeling of complex environmental systems by finding timing constraints while keeping the complexity of the model

  18. Development of a linear induction motor based artificial muscle system.

    Gruber, A; Arguello, E; Silva, R

    2013-01-01

    We present the design of a linear induction motor based on electromagnetic interactions. The engine is capable of producing a linear movement from electricity. The design consists of stators arranged in parallel, which produce a magnetic field sufficient to displace a plunger along its axial axis. Furthermore, the winding has a shell and cap of ferromagnetic material that amplifies the magnetic field. This produces a force along the length of the motor that is similar to that of skeletal muscle. In principle, the objective is to use the engine in the development of an artificial muscle system for prosthetic applications, but it could have multiple applications, not only in the medical field, but in other industries.

  19. Synchronization and Control of Linearly Coupled Singular Systems

    Fang Qingxiang

    2013-01-01

    Full Text Available The synchronization and control problem of linearly coupled singular systems is investigated. The uncoupled dynamical behavior at each node is general and can be chaotic or, otherwise the coupling matrix is not assumed to be symmetrical. Some sufficient conditions for globally exponential synchronization are derived based on Lyapunov stability theory. These criteria, which are in terms of linear matrix inequality (LMI, indicate that the left and right eigenvectors corresponding to eigenvalue zero of the coupling matrix play key roles in the stability analysis of the synchronization manifold. The controllers are designed for state feedback control and pinning control, respectively. Finally, a numerical example is provided to illustrate the effectiveness of the proposed conditions.

  20. Demultiplexing of photonic temporal modes by a linear system

    Xu, Shuang; Shen, H. Z.; Yi, X. X.

    2018-03-01

    Temporally and spatially overlapping but field-orthogonal photonic temporal modes (TMs) that intrinsically span a high-dimensional Hilbert space are recently suggested as a promising means of encoding information on photons. Presently, the realization of photonic TM technology, particularly to retrieve the information it carries, i.e., demultiplexing of photonic TMs, is mostly dependent on nonlinear medium and frequency conversion. Meanwhile, its miniaturization, simplification, and optimization remain the focus of research. In this paper, we propose a scheme of TM demultiplexing using linear systems consisting of resonators with linear couplings. Specifically, we examine a unidirectional array of identical resonators with short environment correlations. For both situations with and without tunable couplers, propagation formulas are derived to demonstrate photonic TM demultiplexing capabilities. The proposed scheme, being entirely feasible with current technologies, might find potential applications in quantum information processing.

  1. Linear and Non-Linear Dielectric Response of Periodic Systems from Quantum Monte Carlo

    Umari, Paolo

    2006-03-01

    We present a novel approach that allows to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wavefunction, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence. The polarization is sampled through forward-walking. This approach has been validated for the case of the polarizability of an isolated hydrogen atom, and then applied to a periodic system. We then calculate the linear susceptibility and second-order hyper-susceptibility of molecular-hydrogen chains whith different bond-length alternations, and assess the quality of nodal surfaces derived from density-functional theory or from Hartree-Fock. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.P. Umari, A.J. Williamson, G. Galli, and N. MarzariPhys. Rev. Lett. 95, 207602 (2005).

  2. Linearization Technologies for Broadband Radio-Over-Fiber Transmission Systems

    Xiupu Zhang

    2014-11-01

    Full Text Available Linearization technologies that can be used for linearizing RoF transmission are reviewed. Three main linearization methods, i.e. electrical analog linearization, optical linearization, and electrical digital linearization are presented and compared. Analog linearization can be achieved using analog predistortion circuits, and can be used for suppression of odd order nonlinear distortion components, such as third and fifth order. Optical linearization includes mixed-polarization, dual-wavelength, optical channelization and the others, implemented in optical domain, to suppress both even and odd order nonlinear distortion components, such as second and third order. Digital predistortion has been a widely used linearization method for RF power amplifiers. However, digital linearization that requires analog to digital converter is severely limited to hundreds of MHz bandwidth. Instead, analog and optical linearization provide broadband linearization with up to tens of GHz. Therefore, for broadband radio over fiber transmission that can be used for future broadband cloud radio access networks, analog and optical linearization are more appropriate than digital linearization. Generally speaking, both analog and optical linearization are able to improve spur-free dynamic range greater than 10 dB over tens of GHz. In order for current digital linearization to be used for broadband radio over fiber transmission, the reduced linearization complexity and increased linearization bandwidth are required. Moreover, some digital linearization methods in which the complexity can be reduced, such as Hammerstein type, may be more promising and require further investigation.

  3. Control of Linear Parameter Varying Systems with Applications

    Mohammadpour, Javad

    2012-01-01

    Control of Linear Parameter Varying Systems with Applications compiles state-of-the-art contributions on novel analytical and computational methods to address system modeling and identification, complexity reduction, performance analysis and control design for time-varying and nonlinear systems in the LPV framework. The book has an interdisciplinary character by emphasizing techniques that can be commonly applied in various engineering fields. It also includes a rich collection of illustrative applications in diverse domains to substantiate the effectiveness of the design methodologies and provide pointers to open research directions. The book is divided into three parts. The first part collects chapters of a more tutorial character on the background of LPV systems modeling and control. The second part gathers chapters devoted to the theoretical advancement of LPV analysis and synthesis methods to cope with the design constraints such as uncertainties and time delay. The third part of the volume showcases con...

  4. The new control system of the Saclay linear accelerator

    Gournay, J.F.

    1985-10-01

    A new control system for the Saclay Linear Accelerator designed during the two past years is now in operation. The computer control architecture is based on 3 dedicated VME crates: one crate with a disk-based operating system runs the high level application programs and the database management facilities, another one manages the man-machine communications and the third one interfaces the system to the linac equipments. At the present time, communications between the VME micro-computers are done through 16 bit parallel links. The software is modular and organized in specific layers, the database is fully distributed. About 90% of the code is written in Fortran. The present status of the system is discussed and the hardware and software developments are described

  5. Core reset system design for linear induction accelerator

    Durga Praveen Kumar, D.; Mitra, S.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    A repetitive pulsed power system based Linear Induction Accelerator (LIA-200) is being developed at BARC to get an electron beam of 200keV, 5kA, 50ns, 10-100 Hz. Amorphous core is the heart of these accelerators. It serves various functions in different subsystems viz. pulse power modulator, pulse transformer, magnetic switches and induction cavities. One of the factors that make the magnetic components compact is utilization of the total flux swing available in the core. In the present system, magnetic switches, pulse transformers, and induction cavity are designed to avail the full flux swing available in the core. For achieving this objective, flux density in the core has to be kept at the reverse saturation, before the main pulse is applied. The electrical circuit which makes it possible is called the core reset system. In this paper the details of core reset system designed for LIA-200 are described. (author)

  6. Atomic disintegrations for partially hyperbolic diffeomorphisms

    Homburg, Ale Jan

    2017-01-01

    Shub and Wilkinson and Ruelle and Wilkinson studied a class of volume preserving diffeomorphisms on the three dimensional torus that are stably ergodic. The diffeomorphisms are partially hyperbolic and admit an invariant central foliation of circles. The foliation is not absolutely continuous; in

  7. Analytic vortex solutions on compact hyperbolic surfaces

    Maldonado, Rafael; Manton, Nicholas S

    2015-01-01

    We construct, for the first time, abelian Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations. (paper)

  8. The Hyperbolic Sine Cardinal and the Catenary

    Sanchez-Reyes, Javier

    2012-01-01

    The hyperbolic function sinh(x)/x receives scant attention in the literature. We show that it admits a clear geometric interpretation as the ratio between length and chord of a symmetric catenary segment. The inverse, together with the use of dimensionless parameters, furnishes a compact, explicit construction of a general catenary segment of…

  9. Studies in the Hyperbolic Circle Problem

    Cherubini, Giacomo

    In this thesis we study the remainder term e(s) in the hyperbolic lattice point counting problem. Our main approach to this problem is that of the spectral theory of automorphic forms. We show that the function e(s) exhibits properties similar to those of almost periodic functions, and we study d...

  10. Nonlinear sigma models with compact hyperbolic target spaces

    Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; Stoica, Bogdan; Stokes, James

    2016-01-01

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group II. Quantum systems, Sov. Phys. JETP 34 (1972) 610. J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [http://inspirehep.net/search?p=find+J+%22J.Phys.,C6,1181%22]. . Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.

  11. Nonlinear sigma models with compact hyperbolic target spaces

    Gubser, Steven [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Saleem, Zain H. [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States); National Center for Physics, Quaid-e-Azam University Campus,Islamabad 4400 (Pakistan); Schoenholz, Samuel S. [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States); Stoica, Bogdan [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Stokes, James [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States)

    2016-06-23

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group II. Quantum systems, Sov. Phys. JETP 34 (1972) 610. J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [http://inspirehep.net/search?p=find+J+%22J.Phys.,C6,1181%22]. . Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.

  12. Extended Thermodynamics: a Theory of Symmetric Hyperbolic Field Equations

    Müller, Ingo

    2008-12-01

    Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear first order differential equations. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields. The kinetic theory of gases, or the moment theories based on the Boltzmann equation provide an explicit example for extended thermodynamics. The theory proves its usefulness and practicality in the successful treatment of light scattering in rarefied gases. This presentation is based upon the book [1] of which the author of this paper is a co-author. For more details about the motivation and exploitation of the basic principles the interested reader is referred to that reference. It would seem that extended thermodynamics is worthy of the attention of mathematicians. It may offer them a non-trivial field of study concerning hyperbolic equations, if ever they get tired of the Burgers equation. Physicists may prefer to appreciate the success of extended thermodynamics in light scattering and to work on the open problems concerning the modification of the Navier-Stokes-Fourier theory in rarefied gases as predicted by extended thermodynamics of 13, 14, and more moments.

  13. Hyperbolic projections of siemens 3d-mlc leaf paths

    Menzies, N.

    2004-01-01

    Full text: The Siemens Primus linear accelerator has the option of being fitted with a multi-leaf collimator (3D-MLC) that is marketed as having 'double focus', to achieve a constant dose penumbra for all leaf settings. This is achieved by moving the leaves through arcs (similar to some conventional collimator jaws), as well as shaping the leaf side-faces as divergent planes from the x-ray source. One consequence of the mechanical design of the 3D-MLC is that as individual leaves are moved, their projections from the light / x-ray source to the treatment plane follow paths that are hyperbolic, as shown in the figure below. (The eccentricity of the hyperbola is a function of leaf number / distance from centre.) The trajectories of the MLC leaves were modelled (in a spreadsheet) using geometrical projections of the MLC leaves to the treatment plane, with construction details provided in Siemens documentation. The results were checked against the image of the leaf in the linac light field. This problem belongs to the class of conic sections in mathematics, where the intersection of a plane with both nappes of a double right circular cone results in a hyperbola. The good agreement between the model and the light field image provided confirmation of the MLC construction details. AS/NZS 4434.1:1996 (reproduced from IEC 976:1989) provides specifications for maximum deviation from orthogonality of adjacent edges, which can be interpreted for MLC collimators to parallelism of the direction of leaf travel and the adjacent collimator edge (e.g. Elekta ATS). However for the Siemens 'double focused' MLC, it is demonstrated that the geometrical construction of the MLC militates against the leaf image being used for this kind of test. It is also demonstrated that at last one commercial treatment planning system models the Siemens leaf trajectories linearly. The clinical significance of the error in this model is shown to be negligible. Copyright (2004) Australasian College of

  14. Practical application of equivalent linearization approaches to nonlinear piping systems

    Park, Y.J.; Hofmayer, C.H.

    1995-01-01

    The use of mechanical energy absorbers as an alternative to conventional hydraulic and mechanical snubbers for piping supports has attracted a wide interest among researchers and practitioners in the nuclear industry. The basic design concept of energy absorbers (EA) is to dissipate the vibration energy of piping systems through nonlinear hysteretic actions of EA exclamation point s under design seismic loads. Therefore, some type of nonlinear analysis needs to be performed in the seismic design of piping systems with EA supports. The equivalent linearization approach (ELA) can be a practical analysis tool for this purpose, particularly when the response approach (RSA) is also incorporated in the analysis formulations. In this paper, the following ELA/RSA methods are presented and compared to each other regarding their practice and numerical accuracy: Response approach using the square root of sum of squares (SRSS) approximation (denoted RS in this paper). Classical ELA based on modal combinations and linear random vibration theory (denoted CELA in this paper). Stochastic ELA based on direct solution of response covariance matrix (denoted SELA in this paper). New algorithms to convert response spectra to the equivalent power spectral density (PSD) functions are presented for both the above CELA and SELA methods. The numerical accuracy of the three EL are studied through a parametric error analysis. Finally, the practicality of the presented analysis is demonstrated in two application examples for piping systems with EA supports

  15. A RECIPE FOR LINEAR COLLIDER FINAL FOCUS SYSTEM DESIGN

    Seryi, Andrei

    2003-01-01

    The design of Final Focus systems for linear colliders is challenging because of the large demagnifications needed to produce nanometer-sized beams at the interaction point. Simple first- and second-order matrix matching have proven insufficient for this task, and minimization of third- and higher-order aberrations is essential. An appropriate strategy is required for the latter to be successful. A recipe for Final Focus design, and a set of computational tools used to implement this approach, are described herein. An example of the use of this procedure is given

  16. Periodic orbits from Δ-modulation of stable linear systems

    Xia, X.; Zinober, A.

    2004-01-01

    The �-modulated control of a single input, discrete time, linear stable system is investigated. The modulation direction is given by cTx where c �Rn/{0} is a given, otherwise arbitrary, vector. We obtain necessary and sufficient conditions for the existence of periodic points of a finite order. Some concrete results about the existence of a certain order of periodic points are also derived. We also study the relationship between certain polyhedra and the periodicity of the �-modulated orb...

  17. Probing LINEAR Collider Final Focus Systems in SuperKEKB

    Thrane, Paul Conrad Vaagen

    2017-01-01

    A challenge for future linear collider final focus systems is the large chromaticity produced by the final quadrupoles. SuperKEKB will be correcting high levels of chromaticity using the traditional scheme which has been also proposed for the CLIC FFS. We present early simulation results indicating that lowering β*у in the SuperKEKB Low Energy Ring might be possible given on-axis injection and low bunch current, opening the possibility of testing chromaticity correction beyond FFTB level, similar to ILC and approaching that of CLIC. CLIC – Note – 1077

  18. Optimal Robust Fault Detection for Linear Discrete Time Systems

    Nike Liu

    2008-01-01

    Full Text Available This paper considers robust fault-detection problems for linear discrete time systems. It is shown that the optimal robust detection filters for several well-recognized robust fault-detection problems, such as ℋ−/ℋ∞, ℋ2/ℋ∞, and ℋ∞/ℋ∞ problems, are the same and can be obtained by solving a standard algebraic Riccati equation. Optimal filters are also derived for many other optimization criteria and it is shown that some well-studied and seeming-sensible optimization criteria for fault-detection filter design could lead to (optimal but useless fault-detection filters.

  19. A novel linear switched reluctance motor for railway transportation systems

    Daldaban, Ferhat; Ustkoyuncu, Nurettin

    2010-01-01

    This paper presents the design and realization of a new linear switched reluctance motor (LSRM) structure, especially suitable for high-speed railway systems. The new model has a double active stator configuration and provides high force for many applications with low cost. The characteristics of the LSRM are obtained by using finite element analysis (FEA) and analytical calculations. The results of the FEA and analytical calculations are presented, and compared with experimental results. In addition, a classical double-sided LSRM (DSLSRM) is modeled with the same specifications of the new motor structure and the results are compared.

  20. Novel Approach to Linear Accelerator Superconducting Magnet System

    Kashikhin, Vladimir

    2011-01-01

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  1. Considering system non-linearity in transmission pricing

    Oloomi-Buygi, M.; Salehizadeh, M. Reza

    2008-01-01

    In this paper a new approach for transmission pricing is presented. The contribution of a contract on power flow of a transmission line is used as extent-of-use criterion for transmission pricing. In order to determine the contribution of each contract on power flow of each transmission line, first the contribution of each contract on each voltage angle is determined, which is called voltage angle decomposition. To this end, DC power flow is used to compute a primary solution for voltage angle decomposition. To consider the impacts of system non-linearity on voltage angle decomposition, a method is presented to determine the share of different terms of sine argument in sine value. Then the primary solution is corrected in different iterations of decoupled Newton-Raphson power flow using the presented sharing method. The presented approach is applied to a 4-bus test system and IEEE 30-bus test system and the results are analyzed. (author)

  2. Data acquisition system for linear PSD based neutron diffractometer

    Pande, S.S.; Borkar, S.P.; Behere, Anita; Ghodgaonkar, M.D.

    2001-01-01

    Single or multi-PSD configurations are used in different neutron diffractometer setups. A data acquisition system is developed to serve the gross requirements of all the diffractometer setups. It is also customized to specific requirements of different setups. The hardware is developed as a Transputer based add-on card. Most of the hardware functionality is handled in the Transputer program thus improving throughput of the system. The card can handle 16 RDCs, a few motor controls and on/off controls. The software comprises of a front-end Windows98 application, a Transputer program and a device driver. The data acquisition system performs data acquisition, analysis, display and storage. Analysis includes converting raw data of linear PSD to equiangular format, merging and clubbing the data to make a continuous equiangular spectrum. Calibration of individual PSD is a crucial activity in correctly merging the data coming from PSDs. (author)

  3. Computing with high-resolution upwind schemes for hyperbolic equations

    Chakravarthy, S.R.; Osher, S.; California Univ., Los Angeles)

    1985-01-01

    Computational aspects of modern high-resolution upwind finite-difference schemes for hyperbolic systems of conservation laws are examined. An operational unification is demonstrated for constructing a wide class of flux-difference-split and flux-split schemes based on the design principles underlying total variation diminishing (TVD) schemes. Consideration is also given to TVD scheme design by preprocessing, the extension of preprocessing and postprocessing approaches to general control volumes, the removal of expansion shocks and glitches, relaxation methods for implicit TVD schemes, and a new family of high-accuracy TVD schemes. 21 references

  4. Computation of Quasi-Periodic Normally Hyperbolic Invariant Tori: Algorithms, Numerical Explorations and Mechanisms of Breakdown

    Canadell, Marta; Haro, Àlex

    2017-12-01

    We present several algorithms for computing normally hyperbolic invariant tori carrying quasi-periodic motion of a fixed frequency in families of dynamical systems. The algorithms are based on a KAM scheme presented in Canadell and Haro (J Nonlinear Sci, 2016. doi: 10.1007/s00332-017-9389-y), to find the parameterization of the torus with prescribed dynamics by detuning parameters of the model. The algorithms use different hyperbolicity and reducibility properties and, in particular, compute also the invariant bundles and Floquet transformations. We implement these methods in several 2-parameter families of dynamical systems, to compute quasi-periodic arcs, that is, the parameters for which 1D normally hyperbolic invariant tori with a given fixed frequency do exist. The implementation lets us to perform the continuations up to the tip of the quasi-periodic arcs, for which the invariant curves break down. Three different mechanisms of breakdown are analyzed, using several observables, leading to several conjectures.

  5. Onto the stability analysis of hyperbolic secant-shaped Bose-Einstein condensate

    Sabari, S.; Murali, R.

    2018-05-01

    We analyze the stability of the hyperbolic secant-shaped attractive Bose-Einstein condensate in the absence of external trapping potential. The appropriate theoretical model for the system is described by the nonlinear mean-field Gross-Pitaevskii equation with time varying two-body interaction effects. Using the variational method, the stability of the system is analyzed under the influence of time varying two-body interactions. Further we confirm that the stability of the attractive condensate increases by considering the hyperbolic secant-shape profile instead of Gaussian shape. The analytical results are compared with the numerical simulation by employing the split-step Crank-Nicholson method.

  6. Final focus system tuning studies towards Compact Linear Collider feasibility

    Marin, E.; Latina, A.; Tomás, R.; Schulte, D.

    2018-01-01

    In this paper we present the latest results regarding the tuning study of the baseline design of the final focus system of the Compact Linear Collider (CLIC-FFS). CLIC aims to provide collisions to the experiments at a luminosity above 1034 c m-2 s-1 . In order to deliver such luminosity in a single pass machine, the vertical beam size at the interaction point (IP) is reduced to about 1 nm, which imposes unprecedented tuning difficulties to the system. In previous studies, 90% of the machines reached 90% of the nominal luminosity at the expense of 18 000 luminosity measurements, when considering beam position monitor errors and transverse misalignments of magnets for a single beam case. In the present study, additional static imperfections as, roll misalignments, strength v2.epss are included. Moreover both e- and e+ beamlines are properly simulated. A new tuning procedure based on linear and nonlinear knobs is implemented to effectively cure the most relevant beam size aberrations at the IP. The obtained results for single and double beam studies under solely static imperfections are presented.

  7. Policy Effects in Hyperbolic vs. Exponential Models of Consumption and Retirement.

    Gustman, Alan L; Steinmeier, Thomas L

    2012-06-01

    This paper constructs a structural retirement model with hyperbolic preferences and uses it to estimate the effect of several potential Social Security policy changes. Estimated effects of policies are compared using two models, one with hyperbolic preferences and one with standard exponential preferences. Sophisticated hyperbolic discounters may accumulate substantial amounts of wealth for retirement. We find it is frequently difficult to distinguish empirically between models with the two types of preferences on the basis of asset accumulation paths or consumption paths around the period of retirement. Simulations suggest that, despite the much higher initial time preference rate, individuals with hyperbolic preferences may actually value a real annuity more than individuals with exponential preferences who have accumulated roughly equal amounts of assets. This appears to be especially true for individuals with relatively high time preference rates or who have low assets for whatever reason. This affects the tradeoff between current benefits and future benefits on which many of the retirement incentives of the Social Security system rest.Simulations involving increasing the early entitlement age and increasing the delayed retirement credit do not show a great deal of difference whether exponential or hyperbolic preferences are used, but simulations for eliminating the earnings test show a non-trivially greater effect when exponential preferences are used.

  8. Elliptical, parabolic, and hyperbolic exchanges of energy in drag reducing plane Couette flows

    Pereira, Anselmo S.; Mompean, Gilmar; Thompson, Roney L.; Soares, Edson J.

    2017-11-01

    In the present paper, we investigate the polymer-turbulence interaction by discriminating between the mechanical responses of this system to three different subdomains: elliptical, parabolic, and hyperbolic, corresponding to regions where the magnitude of vorticity is greater than, equal to, or less than the magnitude of the rate of strain, respectively, in accordance with the Q-criterion. Recently, it was recognized that hyperbolic structures play a crucial role in the drag reduction phenomenon of viscoelastic turbulent flows, thanks to the observation that hyperbolic structures, as well as vortical ones, are weakened by the action of polymers in turbulent flows in a process that can be referred to as flow parabolization. We employ direct numerical simulations of a viscoelastic finite extensible nonlinear elastic model with the Peterlin approximation to examine the transient evolution and statistically steady regimes of a plane Couette flow that has been perturbed from a laminar flow at an initial time and developed a turbulent regime as a result of this perturbation. We have found that even more activity is located within the confines of the hyperbolic structures than in the elliptical ones, which highlights the importance of considering the role of hyperbolic structures in the drag reduction mechanism.

  9. Efficient Feedforward Linearization Technique Using Genetic Algorithms for OFDM Systems

    García Paloma

    2010-01-01

    Full Text Available Feedforward is a linearization method that simultaneously offers wide bandwidth and good intermodulation distortion suppression; so it is a good choice for Orthogonal Frequency Division Multiplexing (OFDM systems. Feedforward structure consists of two loops, being necessary an accurate adjustment between them along the time, and when temperature, environmental, or operating changes are produced. Amplitude and phase imbalances of the circuit elements in both loops produce mismatched effects that lead to degrade its performance. A method is proposed to compensate these mismatches, introducing two complex coefficients calculated by means of a genetic algorithm. A full study is carried out to choose the optimal parameters of the genetic algorithm applied to wideband systems based on OFDM technologies, which are very sensitive to nonlinear distortions. The method functionality has been verified by means of simulation.

  10. On modulated complex non-linear dynamical systems

    Mahmoud, G.M.; Mohamed, A.A.; Rauh, A.

    1999-01-01

    This paper is concerned with the development of an approximate analytical method to investigate periodic solutions and their stability in the case of modulated non-linear dynamical systems whose equation of motion is describe. Such differential equations appear, for example, in problems of colliding particle beams in high-energy accelerators or one-mass systems with two or more degrees of freedom, e.g. rotors. The significance of periodic solutions lies on the fact that all non-periodic responses, if convergent, would approach to periodic solutions at the steady-state conditions. The example shows a good agreement between numerical and analytical results for small values of ε. The effect of the periodic modulation on the stability of the 2π-periodic solutions is discussed

  11. Thermodynamic Optimality criteria for biological systems in linear irreversible thermodynamics

    Chimal, J C; Sánchez, N; Ramírez, PR

    2017-01-01

    In this paper the methodology of the so-called Linear Irreversible Thermodynamics (LIT) is applied; although traditionally used locally to study general systems in non-equilibrium states in which it is consider both internal and external contributions to the entropy increments in order to analyze the efficiency of two coupled processes with generalized fluxes J 1 , J 2 and their corresponding forces X 1 , X 2 . We extend the former analysis to takes into account two different operating regimes namely: Omega Function and Efficient Power criterion, respectively. Results show analogies in the optimal performance between and we can say that there exist a criteria of optimization which can be used specially for biological systems where a good design of the biological parameters made by nature at maximum efficient power conditions lead to more efficient engines than those at the maximum power conditions or ecological conditions. (paper)

  12. Linear system identification via backward-time observer models

    Juang, Jer-Nan; Phan, Minh

    1993-01-01

    This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.

  13. Ultra-high Frequency Linear Fiber Optic Systems

    Lau, Kam Y

    2009-01-01

    Designed for a one-semester course on fiber-optics systems and communication links, this book provides a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers.

  14. Linear theory for filtering nonlinear multiscale systems with model error.

    Berry, Tyrus; Harlim, John

    2014-07-08

    In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online , as part of a filtering

  15. Linear analysis of rotationally invariant, radially variant tomographic imaging systems

    Huesmann, R.H.

    1990-01-01

    This paper describes a method to analyze the linear imaging characteristics of rotationally invariant, radially variant tomographic imaging systems using singular value decomposition (SVD). When the projection measurements from such a system are assumed to be samples from independent and identically distributed multi-normal random variables, the best estimate of the emission intensity is given by the unweighted least squares estimator. The noise amplification of this estimator is inversely proportional to the singular values of the normal matrix used to model projection and backprojection. After choosing an acceptable noise amplification, the new method can determine the number of parameters and hence the number of pixels that should be estimated from data acquired from an existing system with a fixed number of angles and projection bins. Conversely, for the design of a new system, the number of angles and projection bins necessary for a given number of pixels and noise amplification can be determined. In general, computing the SVD of the projection normal matrix has cubic computational complexity. However, the projection normal matrix for this class of rotationally invariant, radially variant systems has a block circulant form. A fast parallel algorithm to compute the SVD of this block circulant matrix makes the singular value analysis practical by asymptotically reducing the computation complexity of the method by a multiplicative factor equal to the number of angles squared

  16. Linear homotopy solution of nonlinear systems of equations in geodesy

    Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.

    2010-01-01

    A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.

  17. Solutions of hyperbolic equations with the CIP-BS method

    Utsumi, Takayuki; Koga, James; Yamagiwa, Mitsuru; Yabe, Takashi; Aoki, Takayuki

    2004-01-01

    In this paper, we show that a new numerical method, the Constrained Interpolation Profile - Basis Set (CIP-BS) method, can solve general hyperbolic equations efficiently. This method uses a simple polynomial basis set that is easily extendable to any desired higher-order accuracy. The interpolating profile is chosen so that the subgrid scale solution approaches the local real solution owing to the constraints from the spatial derivatives of the master equations. Then, introducing scalar products, the linear and nonlinear partial differential equations are uniquely reduced to the ordinary differential equations for values and spatial derivatives at the grid points. The method gives stable, less diffusive, and accurate results. It is successfully applied to the continuity equation, the Burgers equation, the Korteweg-de Vries equation, and one-dimensional shock tube problems. (author)

  18. The theory of a general quantum system interacting with a linear dissipative system

    Feynman, R.P.; Vernon, F.L.

    2000-01-01

    A formalism has been developed, using Feynman's space-time formulation of nonrelativistic quantum mechanics whereby the behavior of a system of interest, which is coupled to other external quantum systems, may be calculated in terms of its own variables only. It is shown that the effect of the external systems in such a formalism can always be included in a general class of functionals (influence functionals) of the coordinates of the system only. The properties of influence functionals for general systems are examined. Then, specific forms of influence functionals representing the effect of definite and random classical forces, linear dissipative systems at finite temperatures, and combinations of these are analyzed in detail. The linear system analysis is first done for perfectly linear systems composed of combinations of harmonic oscillators, loss being introduced by continuous distributions of oscillators. Then approximately linear systems and restrictions necessary for the linear behavior are considered. Influence functionals for all linear systems are shown to have the same form in terms of their classical response functions. In addition, a fluctuation-dissipation theorem is derived relating temperature and dissipation of the linear system to a fluctuating classical potential acting on the system of interest which reduces to the Nyquist-Johnson relation for noise in the case of electric circuits. Sample calculations of transition probabilities for the spontaneous emission of an atom in free space and in a cavity are made. Finally, a theorem is proved showing that within the requirements of linearity all sources of noise or quantum fluctuation introduced by maser-type amplification devices are accounted for by a classical calculation of the characteristics of the maser

  19. An Efficient Numerical Approach for Solving Nonlinear Coupled Hyperbolic Partial Differential Equations with Nonlocal Conditions

    A. H. Bhrawy

    2014-01-01

    Full Text Available One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (PDEs as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions. This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical algorithm is efficient and very accurate.

  20. Radii of Solvability and Unsolvability of Linear Systems

    Hladík, M.; Rohn, Jiří

    2016-01-01

    Roč. 503, 15 August (2016), s. 120-134 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * linear equations * linear inequalities * matrix norm Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016

  1. On problems with displacement in boundary conditions for hyperbolic equation

    Elena A. Utkina

    2016-03-01

    Full Text Available We consider three problems for hyperbolic equation on a plane in the characteristic domain. In these problems at least one of the conditions of the Goursat problem is replaced by nonlocal condition on the relevant characteristic. Non-local conditions are the linear combinations of the normal derivatives at points on opposite characteristics. In case of replacement of one condition we solve the problem by reduction to the Goursat problem for which it exists and is unique. To find the unknown Goursat condition author receives the integral equation, rewrite it in operational form and finds its unique solvability cases. To prove the unique solvability of the equation, the author shows the continuous linear operator and the fact, that some degree of the resulting operator is a contraction mapping. It is known that in this case the required Goursat condition can be written as Neumann series. We considered in detail only one of the tasks, but for both the unique solvability theorems are formulated. If the two conditions are changed, the uniqueness of the solution on the assumption that it exists, is proved by the method of a priori estimates. For this purpose, the inner product and the norm in $L_2$ are used. As a result, the conditions were obtained for the coefficients of a hyperbolic equation that ensure the uniqueness of the solution. An example is given, confirming that these conditions are essential. Namely, constructed an equation whose coefficients do not satisfy the conditions of the last theorem, given the conditions on the characteristics and nontrivial solution is built.

  2. Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System

    Lee, Hyun Jin; Kim, Jong Kyu; Lee, Sang Nam

    2015-01-01

    In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m 2 . When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system

  3. Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System

    Lee, Hyun Jin [Kookmin Univ., Seoul (Korea, Republic of); Kim, Jong Kyu; Lee, Sang Nam [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-12-15

    In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m{sup 2}. When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system.

  4. Periodic inventory system in cafeteria using linear programming

    Usop, Mohd Fais; Ishak, Ruzana; Hamdan, Ahmad Ridhuan

    2017-11-01

    Inventory management is an important factor in running a business. It plays a big role of managing the stock in cafeteria. If the inventories are failed to be managed wisely, it will affect the profit of the cafeteria. Therefore, the purpose of this study is to find the solution of the inventory management in cafeteria. Most of the cafeteria in Malaysia did not manage their stock well. Therefore, this study is to propose a database system of inventory management and to develop the inventory model in cafeteria management. In this study, new database system to improve the management of the stock in a weekly basis will be provided using Linear Programming Model to get the optimal range of the inventory needed for selected categories. Data that were collected by using the Periodic Inventory System at the end of the week within three months period being analyzed by using the Food Stock-take Database. The inventory model was developed from the collected data according to the category of the inventory in the cafeteria. Results showed the effectiveness of using the Periodic Inventory System and will be very helpful to the cafeteria management in organizing the inventory. Moreover, the findings in this study can reduce the cost of operation and increased the profit.

  5. RG cascades in hyperbolic quiver gauge theories

    Ahl Laamara, R.; Ait Ben Haddou, M.; Belhaj, A.; Drissi, L.B.; Saidi, E.H.

    2004-01-01

    In this paper, we provide a general classification of supersymmatric QFT4s into three basic sets: ordinary, affine and indefinite classes. The last class, which has not been enough explored in literature, is shown to share most of properties of ordinary and affine super-QFT4s. This includes, amongst others, its embedding in type II string on local Calabi-Yau threefolds. We give realizations of these supersymmetric QFT4s as D-brane world volume gauge theories. A special interest is devoted to hyperbolic subset for its peculiar features and for the role it plays in type IIB background with non-zero axion. We also study RG flows and duality cascades in case of hyperbolic quiver theories. Comments regarding the full indefinite sector are made

  6. Hyperbolic metamaterial lens with hydrodynamic nonlocal response

    Yan, Wei; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...... in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we...

  7. Incomplete factorization technique for positive definite linear systems

    Manteuffel, T.A.

    1980-01-01

    This paper describes a technique for solving the large sparse symmetric linear systems that arise from the application of finite element methods. The technique combines an incomplete factorization method called the shifted incomplete Cholesky factorization with the method of generalized conjugate gradients. The shifted incomplete Cholesky factorization produces a splitting of the matrix A that is dependent upon a parameter α. It is shown that if A is positive definite, then there is some α for which this splitting is possible and that this splitting is at least as good as the Jacobi splitting. The method is shown to be more efficient on a set of test problems than either direct methods or explicit iteration schemes

  8. Stability and complexity of small random linear systems

    Hastings, Harold

    2010-03-01

    We explore the stability of the small random linear systems, typically involving 10-20 variables, motivated by dynamics of the world trade network and the US and Canadian power grid. This report was prepared as an account of work sponsored by an agency of the US Government. Neither the US Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof.

  9. IMPROVING THE PERFORMANCE OF THE LINEAR SYSTEMS SOLVERS USING CUDA

    BOGDAN OANCEA

    2012-05-01

    Full Text Available Parallel computing can offer an enormous advantage regarding the performance for very large applications in almost any field: scientific computing, computer vision, databases, data mining, and economics. GPUs are high performance many-core processors that can obtain very high FLOP rates. Since the first idea of using GPU for general purpose computing, things have evolved and now there are several approaches to GPU programming: CUDA from NVIDIA and Stream from AMD. CUDA is now a popular programming model for general purpose computations on GPU for C/C++ programmers. A great number of applications were ported to CUDA programming model and they obtain speedups of orders of magnitude comparing to optimized CPU implementations. In this paper we present an implementation of a library for solving linear systems using the CCUDA framework. We present the results of performance tests and show that using GPU one can obtain speedups of about of approximately 80 times comparing with a CPU implementation.

  10. Compressive System Identification in the Linear Time-Invariant framework

    Toth, Roland

    2011-12-01

    Selection of an efficient model parametrization (model order, delay, etc.) has crucial importance in parametric system identification. It navigates a trade-off between representation capabilities of the model (structural bias) and effects of over-parametrization (variance increase of the estimates). There exists many approaches to this widely studied problem in terms of statistical regularization methods and information criteria. In this paper, an alternative ℓ 1 regularization scheme is proposed for estimation of sparse linear-regression models based on recent results in compressive sensing. It is shown that the proposed scheme provides consistent estimation of sparse models in terms of the so-called oracle property, it is computationally attractive for large-scale over-parameterized models and it is applicable in case of small data sets, i.e., underdetermined estimation problems. The performance of the approach w.r.t. other regularization schemes is demonstrated in an extensive Monte Carlo study. © 2011 IEEE.

  11. Hyperbolic spaces are of strictly negative type

    Hjorth, Poul G.; Kokkendorff, Simon L.; Markvorsen, Steen

    2002-01-01

    We study finite metric spaces with elements picked from, and distances consistent with, ambient Riemannian manifolds. The concepts of negative type and strictly negative type are reviewed, and the conjecture that hyperbolic spaces are of strictly negative type is settled, in the affirmative....... The technique of the proof is subsequently applied to show that every compact manifold of negative type must have trivial fundamental group, and to obtain a necessary criterion for product manifolds to be of negative type....

  12. A strictly hyperbolic equilibrium phase transition model

    Allaire, G; Faccanoni, G; Kokh, S.

    2007-01-01

    This Note is concerned with the strict hyperbolicity of the compressible Euler equations equipped with an equation of state that describes the thermodynamical equilibrium between the liquid phase and the vapor phase of a fluid. The proof is valid for a very wide class of fluids. The argument only relies on smoothness assumptions and on the classical thermodynamical stability assumptions, that requires a definite negative Hessian matrix for each phase entropy as a function of the specific volume and internal energy. (authors)

  13. Uncertainty quantification for hyperbolic and kinetic equations

    Pareschi, Lorenzo

    2017-01-01

    This book explores recent advances in uncertainty quantification for hyperbolic, kinetic, and related problems. The contributions address a range of different aspects, including: polynomial chaos expansions, perturbation methods, multi-level Monte Carlo methods, importance sampling, and moment methods. The interest in these topics is rapidly growing, as their applications have now expanded to many areas in engineering, physics, biology and the social sciences. Accordingly, the book provides the scientific community with a topical overview of the latest research efforts.

  14. Hyperbolic metamaterial lens with hydrodynamic nonlocal response

    Yan, Wei; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion cu...

  15. Gromov hyperbolicity in lexicographic product graphs

    41

    on the group [17]. The concept of hyperbolicity appears also in discrete mathematics, algorithms and networking. For .... graph (of a presentation with solvable word problem) there is an algorithm which allows to decide if it is ...... of Theorem 3.14, i.e., dG1◦{w}(Vp, [π(x)π(z)] ∪ [π(z)π(y)]) = δ(G1) with π the canonical projection.

  16. arXiv The Hyperbolic Higgs

    Cohen, Timothy; Giudice, Gian F.; Mccullough, Matthew

    2018-05-15

    We introduce the Hyperbolic Higgs, a novel solution to the little hierarchy problem that features Standard Model neutral scalar top partners. At one-loop order, the protection from ultraviolet sensitivity is due to an accidental non-compact symmetry of the Higgs potential that emerges in the infrared. Once the general features of the effective description are detailed, a completion that relies on a five dimensional supersymmetric framework is provided. Novel phenomenology is compared and contrasted with the Twin Higgs scenario.

  17. Mixed hyperbolic-second-order-parabolic formulations of general relativity

    Paschalidis, Vasileios

    2008-01-01

    Two new formulations of general relativity are introduced. The first one is a parabolization of the Arnowitt-Deser-Misner formulation and is derived by the addition of combinations of the constraints and their derivatives to the right-hand side of the Arnowitt-Deser-Misner evolution equations. The desirable property of this modification is that it turns the surface of constraints into a local attractor because the constraint propagation equations become second-order parabolic independently of the gauge conditions employed. This system may be classified as mixed hyperbolic--second-order parabolic. The second formulation is a parabolization of the Kidder-Scheel-Teukolsky formulation and is a manifestly mixed strongly hyperbolic--second-order-parabolic set of equations, bearing thus resemblance to the compressible Navier-Stokes equations. As a first test, a stability analysis of flat space is carried out and it is shown that the first modification exponentially damps and smoothes all constraint-violating modes. These systems provide a new basis for constructing schemes for long-term and stable numerical integration of the Einstein field equations.

  18. Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles

    Riley, Conor T.; Smalley, Joseph S. T.; Brodie, Jeffrey R. J.; Fainman, Yeshaiahu; Sirbuly, Donald J.; Liu, Zhaowei

    2017-02-01

    Broadband absorbers are essential components of many light detection, energy harvesting, and camouflage schemes. Current designs are either bulky or use planar films that cause problems in cracking and delamination during flexing or heating. In addition, transferring planar materials to flexible, thin, or low-cost substrates poses a significant challenge. On the other hand, particle-based materials are highly flexible and can be transferred and assembled onto a more desirable substrate but have not shown high performance as an absorber in a standalone system. Here, we introduce a class of particle absorbers called transferable hyperbolic metamaterial particles (THMMP) that display selective, omnidirectional, tunable, broadband absorption when closely packed. This is demonstrated with vertically aligned hyperbolic nanotube (HNT) arrays composed of alternating layers of aluminum-doped zinc oxide and zinc oxide. The broadband absorption measures >87% from 1,200 nm to over 2,200 nm with a maximum absorption of 98.1% at 1,550 nm and remains large for high angles. Furthermore, we show the advantages of particle-based absorbers by transferring the HNTs to a polymer substrate that shows excellent mechanical flexibility and visible transparency while maintaining near-perfect absorption in the telecommunications region. In addition, other material systems and geometries are proposed for a wider range of applications.

  19. Sampled-data models for linear and nonlinear systems

    Yuz, Juan I

    2014-01-01

    Sampled-data Models for Linear and Nonlinear Systems provides a fresh new look at a subject with which many researchers may think themselves familiar. Rather than emphasising the differences between sampled-data and continuous-time systems, the authors proceed from the premise that, with modern sampling rates being as high as they are, it is becoming more appropriate to emphasise connections and similarities. The text is driven by three motives: ·      the ubiquity of computers in modern control and signal-processing equipment means that sampling of systems that really evolve continuously is unavoidable; ·      although superficially straightforward, sampling can easily produce erroneous results when not treated properly; and ·      the need for a thorough understanding of many aspects of sampling among researchers and engineers dealing with applications to which they are central. The authors tackle many misconceptions which, although appearing reasonable at first sight, are in fact either p...

  20. Method of construction of the Riemann function for a second-order hyperbolic equation

    Aksenov, A. V.

    2017-12-01

    A linear hyperbolic equation of the second order in two independent variables is considered. The Riemann function of the adjoint equation is shown to be invariant with respect to the fundamental solutions transformation group. Symmetries and symmetries of fundamental solutions of the Euler-Poisson-Darboux equation are found. The Riemann function is constructed with the aid of fundamental solutions symmetries. Examples of the application of the algorithm for constructing Riemann function are given.

  1. The structure of spectral problems and geometry: hyperbolic surfaces in E sup 3

    Cieslinski, J L

    2003-01-01

    Working in the framework of Sym's soliton surfaces approach we point out that some simple assumptions about the structure of linear (spectral) problems of the theory of solitons lead uniquely to the geometry of some special immersions. In this paper we consider general su(2) spectral problems. Under some very weak assumptions they turn out to be associated with hyperbolic surfaces (surfaces of negative Gaussian curvature) immersed in three-dimensional Euclidean space, and especially with the so-called Bianchi surfaces.

  2. Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...

  3. 2-D linear motion system. Innovative technology summary report

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker trademark, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m 2 of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However

  4. Low-Rank Linear Dynamical Systems for Motor Imagery EEG.

    Zhang, Wenchang; Sun, Fuchun; Tan, Chuanqi; Liu, Shaobo

    2016-01-01

    The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from "BCI Competition III Dataset IVa" and "BCI Competition IV Database 2a." The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP.

  5. A virtual linear accelerator for verification of treatment planning systems

    Wieslander, Elinore

    2000-01-01

    A virtual linear accelerator is implemented into a commercial pencil-beam-based treatment planning system (TPS) with the purpose of investigating the possibility of verifying the system using a Monte Carlo method. The characterization set for the TPS includes depth doses, profiles and output factors, which is generated by Monte Carlo simulations. The advantage of this method over conventional measurements is that variations in accelerator output are eliminated and more complicated geometries can be used to study the performance of a TPS. The difference between Monte Carlo simulated and TPS calculated profiles and depth doses in the characterization geometry is less than ±2% except for the build-up region. This is of the same order as previously reported results based on measurements. In an inhomogeneous, mediastinum-like case, the deviations between TPS and simulations are small in the unit-density regions. In low-density regions, the TPS overestimates the dose, and the overestimation increases with increasing energy from 3.5% for 6 MV to 9.5% for 18 MV. This result points out the widely known fact that the pencil beam concept does not handle changes in lateral electron transport, nor changes in scatter due to lateral inhomogeneities. It is concluded that verification of a pencil-beam-based TPS with a Monte Carlo based virtual accelerator is possible, which facilitates the verification procedure. (author)

  6. Failure modes and natural control time for distributed vibrating systems

    Reid, R.M.

    1994-01-01

    The eigenstructure of the Gram matrix of frequency exponentials is used to study linear vibrating systems of hyperbolic type with distributed control. Using control norm as a practical measure of controllability and the vibrating string as a prototype, it is demonstrated that hyperbolic systems have a natural control time, even when only finitely many modes are excited. For shorter control times there are identifiable control failure modes which can be steered to zero only with very high cost in control norm. Both natural control time and the associated failure modes are constructed for linear fluids, strings, and beams, making note of the essential algorithms and Mathematica code, and displaying results graphically

  7. Stochastic linear hybrid systems: Modeling, estimation, and application

    Seah, Chze Eng

    Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS

  8. Popov–Belevitch–Hautus type tests for the controllability of linear complementarity systems

    Camlibel, M. Kanat

    2007-01-01

    It is well-known that checking certain controllability properties of very simple piecewise linear systems are undecidable problems. This paper deals with the controllability problem of a class of piecewise linear systems, known as linear complementarity systems. By exploiting the underlying

  9. Hyperbolic Rendezvous at Mars: Risk Assessments and Mitigation Strategies

    Jedrey, Ricky; Landau, Damon; Whitley, Ryan

    2015-01-01

    Given the current interest in the use of flyby trajectories for human Mars exploration, a key requirement is the capability to execute hyperbolic rendezvous. Hyperbolic rendezvous is used to transport crew from a Mars centered orbit, to a transiting Earth bound habitat that does a flyby. Representative cases are taken from future potential missions of this type, and a thorough sensitivity analysis of the hyperbolic rendezvous phase is performed. This includes early engine cutoff, missed burn times, and burn misalignment. A finite burn engine model is applied that assumes the hyperbolic rendezvous phase is done with at least two burns.

  10. Considerations on the hyperbolic complex Klein-Gordon equation

    Ulrych, S.

    2010-01-01

    This article summarizes and consolidates investigations on hyperbolic complex numbers with respect to the Klein-Gordon equation for fermions and bosons. The hyperbolic complex numbers are applied in the sense that complex extensions of groups and algebras are performed not with the complex unit, but with the product of complex and hyperbolic unit. The modified complexification is the key ingredient for the theory. The Klein-Gordon equation is represented in this framework in the form of the first invariant of the Poincare group, the mass operator, in order to emphasize its geometric origin. The possibility of new interactions arising from hyperbolic complex gauge transformations is discussed.

  11. Hyperbolic functions with configuration theorems and equivalent and equidecomposable figures

    Shervatov, V G; Skornyakov, L A; Boltyanskii, V G

    2007-01-01

    This single-volume compilation of three books centers on Hyperbolic Functions, an introduction to the relationship between the hyperbolic sine, cosine, and tangent, and the geometric properties of the hyperbola. The development of the hyperbolic functions, in addition to those of the trigonometric (circular) functions, appears in parallel columns for comparison. A concluding chapter introduces natural logarithms and presents analytic expressions for the hyperbolic functions.The second book, Configuration Theorems, requires only the most elementary background in plane and solid geometry. It dis

  12. On computation of Groebner bases for linear difference systems

    Gerdt, Vladimir P. [Laboratory of Information Technologies, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)]. E-mail: gerdt@jinr.ru

    2006-04-01

    In this paper, we present an algorithm for computing Groebner bases of linear ideals in a difference polynomial ring over a ground difference field. The input difference polynomials generating the ideal are also assumed to be linear. The algorithm is an adaptation to difference ideals of our polynomial algorithm based on Janet-like reductions.

  13. On computation of Groebner bases for linear difference systems

    Gerdt, Vladimir P.

    2006-01-01

    In this paper, we present an algorithm for computing Groebner bases of linear ideals in a difference polynomial ring over a ground difference field. The input difference polynomials generating the ideal are also assumed to be linear. The algorithm is an adaptation to difference ideals of our polynomial algorithm based on Janet-like reductions

  14. Stability and Linear Quadratic Differential Games of Discrete-Time Markovian Jump Linear Systems with State-Dependent Noise

    Huiying Sun

    2014-01-01

    Full Text Available We mainly consider the stability of discrete-time Markovian jump linear systems with state-dependent noise as well as its linear quadratic (LQ differential games. A necessary and sufficient condition involved with the connection between stochastic Tn-stability of Markovian jump linear systems with state-dependent noise and Lyapunov equation is proposed. And using the theory of stochastic Tn-stability, we give the optimal strategies and the optimal cost values for infinite horizon LQ stochastic differential games. It is demonstrated that the solutions of infinite horizon LQ stochastic differential games are concerned with four coupled generalized algebraic Riccati equations (GAREs. Finally, an iterative algorithm is presented to solve the four coupled GAREs and a simulation example is given to illustrate the effectiveness of it.

  15. Evaluation of beach cleanup effects using linear system analysis.

    Kataoka, Tomoya; Hinata, Hirofumi

    2015-02-15

    We established a method for evaluating beach cleanup effects (BCEs) based on a linear system analysis, and investigated factors determining BCEs. Here we focus on two BCEs: decreasing the total mass of toxic metals that could leach into a beach from marine plastics and preventing the fragmentation of marine plastics on the beach. Both BCEs depend strongly on the average residence time of marine plastics on the beach (τ(r)) and the period of temporal variability of the input flux of marine plastics (T). Cleanups on the beach where τ(r) is longer than T are more effective than those where τ(r) is shorter than T. In addition, both BCEs are the highest near the time when the remnants of plastics reach the local maximum (peak time). Therefore, it is crucial to understand the following three factors for effective cleanups: the average residence time, the plastic input period and the peak time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra

    Ndogmo, J. C.

    2017-06-01

    Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.

  17. Subwavelength optics with hyperbolic metamaterials: Waveguides, scattering, and optical topological transitions

    Ishii, Satoshi; Babicheva, Viktoriia E.; Shalaginov, Mikhail Y.

    2016-01-01

    Hyperbolic metamaterials possess unique optical properties owing to their hyperbolic dispersion. As hyperbolic metamaterials can be constructed just from periodic multilayers of metals and dielectrics, they have attracted considerable attention in the nanophotonics community. Here, we review some...

  18. Electron linear accelerator system for natural rubber vulcanization

    Rimjaem, S.; Kongmon, E.; Rhodes, M. W.; Saisut, J.; Thongbai, C.

    2017-09-01

    Development of an electron accelerator system, beam diagnostic instruments, an irradiation apparatus and electron beam processing methodology for natural rubber vulcanization is underway at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The project is carried out with the aims to improve the qualities of natural rubber products. The system consists of a DC thermionic electron gun, 5-cell standing-wave radio-frequency (RF) linear accelerator (linac) with side-coupling cavities and an electron beam irradiation apparatus. This system is used to produce electron beams with an adjustable energy between 0.5 and 4 MeV and a pulse current of 10-100 mA at a pulse repetition rate of 20-400 Hz. An average absorbed dose between 160 and 640 Gy is expected to be archived for 4 MeV electron beam when the accelerator is operated at 400 Hz. The research activities focus firstly on assembling of the accelerator system, study on accelerator properties and electron beam dynamic simulations. The resonant frequency of the RF linac in π/2 operating mode is 2996.82 MHz for the operating temperature of 35 °C. The beam dynamic simulations were conducted by using the code ASTRA. Simulation results suggest that electron beams with an average energy of 4.002 MeV can be obtained when the linac accelerating gradient is 41.7 MV/m. The rms transverse beam size and normalized rms transverse emittance at the linac exit are 0.91 mm and 10.48 π mm·mrad, respectively. This information can then be used as the input data for Monte Carlo simulations to estimate the electron beam penetration depth and dose distribution in the natural rubber latex. The study results from this research will be used to define optimal conditions for natural rubber vulcanization with different electron beam energies and doses. This is very useful for development of future practical industrial accelerator units.

  19. Direct linear driving systems; Les entrainements lineaires directs

    Favre, E.; Brunner, C.; Piaget, D. [ETEL SA (France)

    1999-11-01

    The linear motor is one of the most important developments in electrical drive technology. However, it only, began to be adopted on a large scale at the beginning of the 1990's and will not be considered a mature technology until well into the next millennium. Actuators based on linear motor technology have a number of technical advantages including high speed, high positional accuracy and fine resolution. They also require fewer component parts. Some precautions are necessary when using linear motors. Care must be taken to avoid overheating and excessive vibration, and the magnetic components must be protected.

  20. First-order systems of linear partial differential equations: normal forms, canonical systems, transform methods

    Heinz Toparkus

    2014-04-01

    Full Text Available In this paper we consider first-order systems with constant coefficients for two real-valued functions of two real variables. This is both a problem in itself, as well as an alternative view of the classical linear partial differential equations of second order with constant coefficients. The classification of the systems is done using elementary methods of linear algebra. Each type presents its special canonical form in the associated characteristic coordinate system. Then you can formulate initial value problems in appropriate basic areas, and you can try to achieve a solution of these problems by means of transform methods.

  1. Design of a hyperbolic microwave metallic lens

    Uckan, T.

    1979-12-01

    Due to problems caused by multiple reflections in the cavity walls of the EBT fusion research device, the use of a horn becomes important for the directivity of waves in the millimetric range. An ordinary dielectric lens cannot be used because of plasma-wall interactions. Microwave metallic lenses, designed to focus the energy into a plane wave, can improve the directivity considerably. By implementing a 70-GHz standard-gain horn with a delay-type hyperbolic lens, which consists of a solid metallic disk with a number of equal size small holes has indicated a gain of 15 dB over the no lens case

  2. Hyperbolic statics in space-time

    Pavlov, Dmitry; Kokarev, Sergey

    2014-01-01

    Based on the concept of material event as an elementary material source that is concentrated on metric sphere of zero radius --- light-cone of Minkowski space-time, we deduce the analog of Coulomb's law for hyperbolic space-time field universally acting between the events of space-time. Collective field that enables interaction of world lines of a pair of particles at rest contains a standard 3-dimensional Coulomb's part and logarithmic addendum. We've found that the Coulomb's part depends on...

  3. Badly approximable systems of linear forms in absolute value

    Hussain, M.; Kristensen, Simon

    In this paper we show that the set of mixed type badly approximable simultaneously small linear forms is of maximal dimension. As a consequence of this theorem we settle the conjecture stated in [9]....

  4. The graphics software of the Saclay Linear Accelerator control system

    Gournay, J.F.

    1988-01-01

    The graphics software used for the control of the Saclay Linear Accelerator is described. The specific requirements that such a software must have in this environment are outlined and some typical applications are presented. (orig.)

  5. Lag synchronization of chaotic systems with time-delayed linear ...

    delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differen- tial equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic ...

  6. Metrical theorems on systems of small inhomogeneous linear forms

    Hussain, Mumtaz; Kristensen, Simon

    In this paper we establish complete Khintchine-Groshev and Schmidt type theorems for inhomogeneous small linear forms in the so-called doubly metric case, in which the inhomogeneous parameter is not fixed.......In this paper we establish complete Khintchine-Groshev and Schmidt type theorems for inhomogeneous small linear forms in the so-called doubly metric case, in which the inhomogeneous parameter is not fixed....

  7. Metrical results on systems of small linear forms

    Hussain, M.; Kristensen, Simon

    In this paper the metric theory of Diophantine approximation associated with the small linear forms is investigated. Khintchine--Groshev theorems are established along with Hausdorff measure generalization without the monotonic assumption on the approximating function.......In this paper the metric theory of Diophantine approximation associated with the small linear forms is investigated. Khintchine--Groshev theorems are established along with Hausdorff measure generalization without the monotonic assumption on the approximating function....

  8. Robustness of Linear Systems towards Multi-Dissipative Pertubations

    Thygesen, Uffe Høgsbro; Poulsen, Niels Kjølstad

    1997-01-01

    We consider the question of robust stability of a linear time invariant plant subject to dynamic perturbations, which are dissipative in the sense of Willems with respect to several quadratic supply rates. For instance, parasitic dynamics are often both small gain and passive. We reduce several...... robustness analysis questions to linear matrix inequalities: robust stability, robust H2 performance and robust performance in presence of disturbances with finite signal-to-noise ratios...

  9. Polynomial stabilization of some dissipative hyperbolic systems

    Ammari, K.; Feireisl, Eduard; Nicaise, S.

    2014-01-01

    Roč. 34, č. 11 (2014), s. 4371-4388 ISSN 1078-0947 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : exponential stability * polynomial stability * observability inequality Subject RIV: BA - General Mathematics Impact factor: 0.826, year: 2014 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=9924

  10. Linear Matrix Inequalities for Analysis and Control of Linear Vector Second-Order Systems

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2015-01-01

    the Lyapunov matrix and the system matrices by introducing matrix multipliers, which potentially reduce conservativeness in hard control problems. Multipliers facilitate the usage of parameter-dependent Lyapunov functions as certificates of stability of uncertain and time-varying vector second-order systems......SUMMARY Many dynamical systems are modeled as vector second-order differential equations. This paper presents analysis and synthesis conditions in terms of LMI with explicit dependence in the coefficient matrices of vector second-order systems. These conditions benefit from the separation between....... The conditions introduced in this work have the potential to increase the practice of analyzing and controlling systems directly in vector second-order form. Copyright © 2014 John Wiley & Sons, Ltd....

  11. Computation of Quasiperiodic Normally Hyperbolic Invariant Tori: Rigorous Results

    Canadell, Marta; Haro, Àlex

    2017-12-01

    The development of efficient methods for detecting quasiperiodic oscillations and computing the corresponding invariant tori is a subject of great importance in dynamical systems and their applications in science and engineering. In this paper, we prove the convergence of a new Newton-like method for computing quasiperiodic normally hyperbolic invariant tori carrying quasiperiodic motion in smooth families of real-analytic dynamical systems. The main result is stated as an a posteriori KAM-like theorem that allows controlling the inner dynamics on the torus with appropriate detuning parameters, in order to obtain a prescribed quasiperiodic motion. The Newton-like method leads to several fast and efficient computational algorithms, which are discussed and tested in a companion paper (Canadell and Haro in J Nonlinear Sci, 2017. doi: 10.1007/s00332-017-9388-z), in which new mechanisms of breakdown are presented.

  12. A note on the time decay of solutions for the linearized Wigner-Poisson system

    Gamba, Irene; Gualdani, Maria; Sparber, Christof

    2009-01-01

    We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give

  13. New approach to solve fully fuzzy system of linear equations using ...

    Known example problems are solved to illustrate the efficacy and ... The concept of fuzzy set and fuzzy number were first introduced by Zadeh .... (iii) Fully fuzzy linear systems can be solved by linear programming approach, Gauss elim-.

  14. Doubly stratified MHD tangent hyperbolic nanofluid flow due to permeable stretched cylinder

    Nagendramma, V.; Leelarathnam, A.; Raju, C. S. K.; Shehzad, S. A.; Hussain, T.

    2018-06-01

    An investigation is exhibited to analyze the presence of heat source and sink in doubly stratified MHD incompressible tangent hyperbolic fluid due to stretching of cylinder embedded in porous space under nanoparticles. To develop the mathematical model of tangent hyperbolic nanofluid, movement of Brownian and thermophoretic are accounted. The established equations of continuity, momentum, thermal and solutal boundary layers are reassembled into sets of non-linear expressions. These assembled expressions are executed with the help of Runge-Kutta scheme with MATLAB. The impacts of sundry parameters are illustrated graphically and the engineering interest physical quantities like skin friction, Nusselt and Sherwood number are examined by computing numerical values. It is clear that the power-law index parameter and curvature parameter shows favorable effect on momentum boundary layer thickness whereas Weissennberg number reveals inimical influence.

  15. Computing the Gromov hyperbolicity of a discrete metric space

    Fournier, Hervé ; Ismail, Anas; Vigneron, Antoine E.

    2015-01-01

    We give exact and approximation algorithms for computing the Gromov hyperbolicity of an n-point discrete metric space. We observe that computing the Gromov hyperbolicity from a fixed base-point reduces to a (max,min) matrix product. Hence, using

  16. p-Capacity and p-Hyperbolicity of Submanifolds

    Holopainen, Ilkka; Markvorsen, Steen; Palmer, Vicente

    2009-01-01

    We use explicit solutions to a drifted Laplace equation in warped product model spaces as comparison constructions to show p-hyperbolicity of a large class of submanifolds for p >= 2. The condition for p-hyperbolicity is expressed in terms of upper support functions for the radial sectional curva...

  17. Computing the Gromov hyperbolicity constant of a discrete metric space

    Ismail, Anas

    2012-07-01

    Although it was invented by Mikhail Gromov, in 1987, to describe some family of groups[1], the notion of Gromov hyperbolicity has many applications and interpretations in different fields. It has applications in Biology, Networking, Graph Theory, and many other areas of research. The Gromov hyperbolicity constant of several families of graphs and geometric spaces has been determined. However, so far, the only known algorithm for calculating the Gromov hyperbolicity constant δ of a discrete metric space is the brute force algorithm with running time O (n4) using the four-point condition. In this thesis, we first introduce an approximation algorithm which calculates a O (log n)-approximation of the hyperbolicity constant δ, based on a layering approach, in time O(n2), where n is the number of points in the metric space. We also calculate the fixed base point hyperbolicity constant δr for a fixed point r using a (max, min)−matrix multiplication algorithm by Duan in time O(n2.688)[2]. We use this result to present a 2-approximation algorithm for calculating the hyper-bolicity constant in time O(n2.688). We also provide an exact algorithm to compute the hyperbolicity constant δ in time O(n3.688) for a discrete metric space. We then present some partial results we obtained for designing some approximation algorithms to compute the hyperbolicity constant δ.

  18. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  19. Contact Geometry of Hyperbolic Equations of Generic Type

    Dennis The

    2008-08-01

    Full Text Available We study the contact geometry of scalar second order hyperbolic equations in the plane of generic type. Following a derivation of parametrized contact-invariants to distinguish Monge-Ampère (class 6-6, Goursat (class 6-7 and generic (class 7-7 hyperbolic equations, we use Cartan's equivalence method to study the generic case. An intriguing feature of this class of equations is that every generic hyperbolic equation admits at most a nine-dimensional contact symmetry algebra. The nine-dimensional bound is sharp: normal forms for the contact-equivalence classes of these maximally symmetric generic hyperbolic equations are derived and explicit symmetry algebras are presented. Moreover, these maximally symmetric equations are Darboux integrable. An enumeration of several submaximally symmetric (eight and seven-dimensional generic hyperbolic structures is also given.

  20. Layered van der Waals crystals with hyperbolic light dispersion

    Gjerding, Morten Niklas; Petersen, R.; Pedersen, T.G.

    2017-01-01

    candidates for Purcell factor control of emission from diamond nitrogen-vacancy centers.Natural hyperbolic materials retain the peculiar optical properties of traditional metamaterials whilst not requiring artificial structuring. Here, the authors perform a theoretical screening of a large class of natural......Compared to artificially structured hyperbolic metamaterials, whose performance is limited by the finite size of the metallic components, the sparse number of naturally hyperbolic materials recently discovered are promising candidates for the next generation of hyperbolic materials. Using first......-infrared to the ultraviolet. Combined with the emerging field of van der Waals heterostructuring, we demonstrate how the hyperbolic properties can be further controlled by stacking different two-dimensional crystals opening new perspectives for atomic-scale design of photonic metamaterials. As an application, we identify...