WorldWideScience

Sample records for linear gyrokinetic delta-f

  1. Gyrokinetic linearized Landau collision operator

    DEFF Research Database (Denmark)

    Madsen, Jens

    2013-01-01

    The full gyrokinetic electrostatic linearized Landau collision operator is calculated including the equilibrium operator, which represents the effect of collisions between gyrokinetic Maxwellian particles. First, the equilibrium operator describes energy exchange between different plasma species...

  2. Linear signatures in nonlinear gyrokinetics: interpreting turbulence with pseudospectra

    Science.gov (United States)

    Hatch, D. R.; Jenko, F.; Bañón Navarro, A.; Bratanov, V.; Terry, P. W.; Pueschel, M. J.

    2016-07-01

    A notable feature of plasma turbulence is its propensity to retain features of the underlying linear eigenmodes in a strongly turbulent state—a property that can be exploited to predict various aspects of the turbulence using only linear information. In this context, this work examines gradient-driven gyrokinetic plasma turbulence through three lenses—linear eigenvalue spectra, pseudospectra, and singular value decomposition (SVD). We study a reduced gyrokinetic model whose linear eigenvalue spectra include ion temperature gradient driven modes, stable drift waves, and kinetic modes representing Landau damping. The goal is to characterize in which ways, if any, these familiar ingredients are manifest in the nonlinear turbulent state. This pursuit is aided by the use of pseudospectra, which provide a more nuanced view of the linear operator by characterizing its response to perturbations. We introduce a new technique whereby the nonlinearly evolved phase space structures extracted with SVD are linked to the linear operator using concepts motivated by pseudospectra. Using this technique, we identify nonlinear structures that have connections to not only the most unstable eigenmode but also subdominant modes that are nonlinearly excited. The general picture that emerges is a system in which signatures of the linear physics persist in the turbulence, albeit in ways that cannot be fully explained by the linear eigenvalue approach; a non-modal treatment is necessary to understand key features of the turbulence.

  3. Linear multispecies gyrokinetic flux tube benchmarks in shaped tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, G.; Sauter, O.; Brunner, S.; Burckel, A.; Villard, L. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne (Switzerland); Camenen, Y. [Aix-Marseille Université CNRS, PIIM UMR 7345, 13397 Marseille (France); Casson, F. J. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Dorland, W. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Fable, E.; Görler, T. [Max-Planck Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Jenko, F.; Told, D. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Peeters, A. G. [Physics Department, University of Bayreuth, 95440 Bayreuth (Germany)

    2016-03-15

    Verification is the fundamental step that any turbulence simulation code has to be submitted in order to assess the proper implementation of the underlying equations. We have carried out a cross comparison of three flux tube gyrokinetic codes, GENE [F. Jenko et al., Phys. Plasmas 7, 1904 (2000)], GKW [A. G. Peeters et al., Comput. Phys. Commun. 180, 2650 (2009)], and GS2 [W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)], focusing our attention on the effect of realistic geometries described by a series of MHD equilibria with increasing shaping complexity. To simplify the effort, the benchmark has been limited to the electrostatic collisionless linear behaviour of the system. A fully gyrokinetic model has been used to describe the dynamics of both ions and electrons. Several tests have been carried out looking at linear stability at ion and electron scales, where for the assumed profiles Ion Temperature Gradient (ITG)/Trapped Electron Modes and Electron Temperature Gradient modes are unstable. The capability of the codes to handle a non-zero ballooning angle has been successfully benchmarked in the ITG regime. Finally, the standard Rosenbluth-Hinton test has been successfully carried out looking at the effect of shaping on Zonal Flows (ZFs) and Geodesic Acoustic Modes (GAMs). Inter-code comparison as well as validation of simulation results against analytical estimates has been accomplished. All the performed tests confirm that plasma elongation strongly stabilizes plasma instabilities as well as leads to a strong increase in ZF residual and GAM damping.

  4. A quasi-linear gyrokinetic transport model for tokamak plasmas

    CERN Document Server

    Casati, Alessandro

    2012-01-01

    The development of a quasi-linear gyrokinetic transport model for tokamak plasmas, ultimately designed to provide physically comprehensive predictions of the time evolution of the thermodynamic relevant quantities, is a task that requires tight links among theoretical, experimental and numerical studies. The framework of the model here proposed, which operates a reduction of complexity on the nonlinear self-organizing plasma dynamics, allows in fact multiple validations of the current understanding of the tokamak micro-turbulence. The main outcomes of this work stem from the fundamental steps involved by the formulation of such a reduced transport model, namely: (1) the verification of the quasi-linear plasma response against the nonlinearly computed solution, (2) the improvement of the turbulent saturation model through an accurate validation of the nonlinear codes against the turbulence measurements, (3) the integration of the quasi-linear model within an integrated transport solver.

  5. Benchmark of a new multi-ion-species collision operator for $\\delta f$ Monte Carlo neoclassical simulation

    CERN Document Server

    Satake, Shinsuke; Pianpanit, Theerasarn; Sugama, Hideo; Nunami, Masanori; Matsuoka, Seikichi; Ishiguro, Seiji; Kanno, Ryutaro

    2016-01-01

    A numerical method to implement a linearized Coulomb collision operator for multi-ion-species neoclassical transport simulation using two-weight $\\delta f$ Monte Carlo method is developed. The conservation properties and the adjointness of the operator in the collisions between two particle species with different temperatures are verified. The linearized operator in a $\\delta f$ Monte Carlo code is benchmarked with other two kinetic simulation codes, i. e., a $\\delta f$ continuum gyrokinetic code with the same linearized collision operator and a full-f PIC code with Nanbu collision operator. The benchmark simulations of the equilibration process of plasma flow and temperature fluctuation among several particle species show very good agreement between $\\delta f$ Monte Carlo code and the other two codes. An error in the H-theorem in the two-weight $\\delta f$ Monte Carlo method is found, which is caused by the weight spreading phenomenon inherent in the two-weight $\\delta f$ method. It is demonstrated that the w...

  6. Linear and nonlinear verification of gyrokinetic microstability codes

    Science.gov (United States)

    Bravenec, R. V.; Candy, J.; Barnes, M.; Holland, C.

    2011-12-01

    Verification of nonlinear microstability codes is a necessary step before comparisons or predictions of turbulent transport in toroidal devices can be justified. By verification we mean demonstrating that a code correctly solves the mathematical model upon which it is based. Some degree of verification can be accomplished indirectly from analytical instability threshold conditions, nonlinear saturation estimates, etc., for relatively simple plasmas. However, verification for experimentally relevant plasma conditions and physics is beyond the realm of analytical treatment and must rely on code-to-code comparisons, i.e., benchmarking. The premise is that the codes are verified for a given problem or set of parameters if they all agree within a specified tolerance. True verification requires comparisons for a number of plasma conditions, e.g., different devices, discharges, times, and radii. Running the codes and keeping track of linear and nonlinear inputs and results for all conditions could be prohibitive unless there was some degree of automation. We have written software to do just this and have formulated a metric for assessing agreement of nonlinear simulations. We present comparisons, both linear and nonlinear, between the gyrokinetic codes GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and GS2 [W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. We do so at the mid-radius for the same discharge as in earlier work [C. Holland, A. E. White, G. R. McKee, M. W. Shafer, J. Candy, R. E. Waltz, L. Schmitz, and G. R. Tynan, Phys. Plasmas 16, 052301 (2009)]. The comparisons include electromagnetic fluctuations, passing and trapped electrons, plasma shaping, one kinetic impurity, and finite Debye-length effects. Results neglecting and including electron collisions (Lorentz model) are presented. We find that the linear frequencies with or without collisions agree well between codes, as do the time averages of

  7. Angular momentum transport modeling: achievements of a gyrokinetic quasi-linear approach

    CERN Document Server

    Cottier, P; Camenen, Y; Gurcan, O D; Casson, F J; Garbet, X; Hennequin, P; Tala, T

    2014-01-01

    QuaLiKiz, a model based on a local gyrokinetic eigenvalue solver is expanded to include momentum flux modeling in addition to heat and particle fluxes. Essential for accurate momentum flux predictions, the parallel asymmetrization of the eigenfunctions is successfully recovered by an analytical fluid model. This is tested against self-consistent gyrokinetic calculations and allows for a correct prediction of the ExB shear impact on the saturated potential amplitude by means of a mixing length rule. Hence, the effect of the ExB shear is recovered on all the transport channels including the induced residual stress. Including these additions, QuaLiKiz remains ~10 000 faster than non-linear gyrokinetic codes allowing for comparisons with experiments without resorting to high performance computing. The example is given of momentum pinch calculations in NBI modulation experiments.

  8. Fluid electron, gyrokinetic ion simulations of linear internal kink and energetic particle modes

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Michael, E-mail: michael.cole@ipp.mpg.de; Mishchenko, Alexey; Könies, Axel; Kleiber, Ralf; Borchardt, Matthias [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2014-07-15

    The internal kink mode is an important plasma instability responsible for a broad class of undesirable phenomena in tokamaks, including the sawtooth cycle and fishbones. To predict and discover ways to mitigate this behaviour in current and future devices, numerical simulations are necessary. The internal kink mode can be modelled by reduced magnetohydrodynamics (MHD). Fishbone modes are an inherently kinetic and non-linear phenomenon based on the n = 1 Energetic Particle Mode (EPM), and have been studied using hybrid codes that combine a reduced MHD bulk plasma model with a kinetic treatment of fast ions. In this work, linear simulations are presented using a hybrid model which couples a fluid treatment of electrons with a gyrokinetic treatment of both bulk and fast ions. Studies of the internal kink mode in geometry relevant to large tokamak experiments are presented and the effect of gyrokinetic ions is considered. Interaction of the kink with gyrokinetic fast ions is also considered, including the destabilisation of the linear n = 1 EPM underlying the fishbone.

  9. Extension of gyrokinetics to transport time scales

    CERN Document Server

    Parra, Felix I

    2013-01-01

    Gyrokinetic simulations have greatly improved our theoretical understanding of turbulent transport in fusion devices. Most gyrokinetic models in use are delta-f simulations in which the slowly varying radial profiles of density and temperature are assumed to be constant for turbulence saturation times, and only the turbulent electromagnetic fluctuations are calculated. New massive simulations are being built to self-consistently determine the radial profiles of density and temperature. However, these new codes have failed to realize that modern gyrokinetic formulations, composed of a gyrokinetic Fokker-Planck equation and a gyrokinetic quasineutrality equation, are only valid for delta-f simulations that do not reach the longer transport time scales necessary to evolve radial profiles. In tokamaks, due to axisymmetry, the evolution of the axisymmetric radial electric field is a challenging problem requiring substantial modifications to gyrokinetic treatments. In this thesis, I study the effect of turbulence o...

  10. Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests

    CERN Document Server

    Barnes, M; Dorland, W; Ernst, D R; Hammett, G W; Ricci, P; Rogers, B N; Schekochihin, A A; Tatsuno, T

    2008-01-01

    A set of key properties for an ideal dissipation scheme in gyrokinetic simulations is proposed, and implementation of a model collision operator satisfying these properties is described. This operator is based on the exact linearized test-particle collision operator, with approximations to the field-particle terms that preserve conservation laws and an H-Theorem. It includes energy diffusion, pitch-angle scattering, and finite Larmor radius effects corresponding to classical (real-space) diffusion. The numerical implementation in the continuum gyrokinetic code GS2 is fully implicit and guarantees exact satisfaction of conservation properties. Numerical results are presented showing that the correct physics is captured over the entire range of collisionalities, from the collisionless to the strongly collisional regimes, without recourse to artificial dissipation.

  11. Gyrokinetic simulation of internal kink modes

    Energy Technology Data Exchange (ETDEWEB)

    Naitou, Hiroshi; Tsuda, Kenji [Yamaguchi Univ., Ube (Japan). Dept. of Electrical and Electronical Engineering; Lee, W.W. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Sydora, R.D. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics

    1995-05-01

    Internal disruption in a tokamak has been simulated using a three-dimensional magneto-inductive gyrokinetic particle code. The code operates in both the standard gyrokinetic mode (total-f code) and the fully nonlinear characteristic mode ({delta}f code). The latter, a recent addition, is a quiet low noise algorithm. The computational model represents a straight tokamak with periodic boundary conditions in the toroidal direction. The plasma is initially uniformly distributed in a square cross section with perfectly conducting walls. The linear mode structure of an unstable m = 1 (poloidal) and n = 1 (toroidal) kinetic internal kink mode is clearly observed, especially in the {delta}f code. The width of the current layer around the x-point, where magnetic reconnection occurs, is found to be close to the collisionless electron skin depth. This is consistent with the theory in which electron inertia has a dominant role. The nonlinear behavior of the mode is found to be quite similar for both codes. Full reconnection in the Alfven time scale is observed along with the electrostatic potential structures created during the full reconnection phase. The E x B drift due to this electrostatic potential dominates the nonlinear phase of the development after the full reconnection.

  12. The linear tearing instability in three dimensional, toroidal gyro-kinetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hornsby, W. A., E-mail: william.hornsby@ipp.mpg.de; Migliano, P.; Buchholz, R.; Kroenert, L.; Weikl, A.; Peeters, A. G. [Theoretical Physics V, Department of Physics, Universitaet Bayreuth, Bayreuth D-95447 (Germany); Zarzoso, D.; Poli, E. [Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching bei München (Germany); Casson, F. J. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2015-02-15

    Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro-kinetic turbulence code, GKW. The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate, and frequency of the mode were investigated by varying the current profile, collisionality, and the pressure gradients. Both collisionless and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absence of a pressure gradient is observed, which is attributed to toroidal finite Larmor-radius effects. When a pressure gradient is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However, the island rotation reverses direction at high collisionality. The growth rate is found to follow a η{sup 1∕7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability analysis as performed by Hastie et al. using the same current and safety factor profiles but for cylindrical geometry, however, here a modification due to toroidal coupling and pressure effects is seen.

  13. Ion temperature profile stiffness: non-linear gyrokinetic simulations and comparison with experiment

    CERN Document Server

    Citrin, J; Haverkort, J W; Hogeweij, G M D; Jenko, F; Mantica, P; Pueschel, M J; Told, D; contributors, JET-EFDA

    2013-01-01

    Recent experimental observations at JET show evidence of reduced ion temperature profile stiffness at low magnetic shear (s) in the presence of flow shear. Non-linear gyrokinetic simulations are performed, aiming to investigate the physical mechanism behind the observations. The sensitivity of profile stiffness to the variations of plasma parameters experimentally observed when transitioning to the low-stiffness regime is assessed. It is found that non-linear electromagnetic effects, even at low beta_e, can significantly reduce the profile stiffness, although not by a degree sufficient to explain the experimental observations. The effect of toroidal flow shear itself is not predicted by the simulations to lead to a significant reduction in flux due to significant parallel gradient velocity destabilisation. For the majority of discharges studied, the simulated and experimental ion heat flux values do agree within reasonable variations of input parameters around the experimental uncertainties. However, no such ...

  14. Linear gyrokinetic particle-in-cell simulations of Alfven instabilities in tokamaks

    CERN Document Server

    Biancalani, A; Briguglio, S; Koenies, A; Lauber, Ph; Mishchenko, A; Poli, E; Scott, B D; Zonca, F

    2015-01-01

    The linear dynamics of Alfven modes in tokamaks is investigated here by means of the global gyrokinetic particle-in-cell code NEMORB. The model equations are shown and the local shear Alfven wave dispersion relation is derived, recovering the continuous spectrum in the incompressible ideal MHD limit. A verification and benchmark analysis is performed for continuum modes in a cylinder and for toroidicity-induced Alfven Eigenmodes. Modes in a reversed-shear equilibrium are also investigated, and the dependence of the spatial structure in the poloidal plane on the equilibrium parameters is described. In particular, a phase-shift in the poloidal angle is found to be present for modes whose frequency touches the continuum, whereas a radial symmetry is found to be characteristic of modes in the continuum gap.

  15. The non-linear evolution of the tearing mode in electromagnetic turbulence using gyrokinetic simulations

    CERN Document Server

    Hornsby, William A; Buchholz, Rico; Grosshauser, Stefan; Weikl, Arne; Zarzoso, David; Casson, Francis J; Poli, Emanuele; Peeters, Artur G

    2015-01-01

    The non-linear evolution of a magnetic island is studied using the Vlasov gyro-kinetic code GKW. The interaction of electromagnetic turbulence with a self-consistently growing magnetic island, generated by a tearing unstable $\\Delta' > 0$ current profile, is considered. The turbulence is able to seed the magnetic island and bypass the linear growth phase by generating structures that are approximately an ion gyro-radius in width. The non-linear evolution of the island width and its rotation frequency, after this seeding phase, is found to be modified and is dependent on the value of the plasma beta and equilibrium pressure gradients. At low values of beta the island evolves largely independent of the turbulence, while at higher values the interaction has a dramatic effect on island growth, causing the island to grow exponentially at the growth rate of its linear phase, even though the island is larger than linear theory validity. The turbulence forces the island to rotate in the ion-diamagnetic direction as o...

  16. Comparison of Implicit Multiscale Full Kinetics to Gyrokinetics

    Science.gov (United States)

    Parker, Scott; Sturdevant, Benjamin; Chen, Yang

    2016-10-01

    Recent progress has been made developing full kinetic Lorentz force ion dynamics using implicit multiscale techniques. It is now possible to capture low-frequency physics along with finite Larmor radius (FLR) effects with a fully kinetic multiscale delta-f particle simulation. The utility of such a model is to be able to verify gyrokinetics in situations where the smallness of the ordering parameters are under question. Additionally, such a model can help identify what higher order terms in gyrokinetics might be important. Orbit averaging and sub-cycling are utilized with an implicit particle time advance based on variational principles. This produces stable and accurate ion trajectories on long time scales. Excellent agreement with the gyrokinetic dispersion relation is obtained including full FLR effects. Ion Bernstein waves are easily suppressed with the implicit time advance. We have developed a global toroidal electrostatic adiabatic electron Lorentz ion code. We will report our linear results benchmarking Lorentz ions with gyrokinetics for the Cyclone base case. We will also present our progress on ion including drift-kinetic electrons and electromagnetic perturbations.

  17. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in National Spherical Torus Experiment

    Science.gov (United States)

    Guttenfelder, W.; Kaye, S. M.; Ren, Y.; Solomon, W.; Bell, R. E.; Candy, J.; Gerhardt, S. P.; LeBlanc, B. P.; Yuh, H.

    2016-05-01

    This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostatic ballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes in a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. As the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.

  18. Ion temperature profile stiffness: non-linear gyrokinetic simulations and comparison with experiment

    NARCIS (Netherlands)

    Citrin, J.; Jenko, F.; Mantica, P.; Told, D.; Bourdelle, C.; Dumont, R.; Garcia, J.; Haverkort, J. W.; Hogeweij, G. M. D.; Johnson, T.; Pueschel, M. J.

    2014-01-01

    Recent experimental observations at JET show evidence of reduced ion temperature profile stiffness. An extensive set of nonlinear gyrokinetic simulations are performed based on the experimental discharges, investigating the physical mechanism behind the observations. The impact on the ion heat flux

  19. Linear gyrokinetic particle-in-cell simulations for small to large toroidal wavenumbers

    Energy Technology Data Exchange (ETDEWEB)

    Fivaz, M.; Tran, T.M.; Villard, L.; Appert, K.; Brunner, S.; Vaclavik, J. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Parker, S.E. [Colorado Univ., Boulder, CO (United States). Dept. of Physics

    1996-09-01

    We study here low frequency electrostatic microinstabilities driven by ion temperature gradients (ITG instabilities) relevant to anomalous ion heat transport in tokamaks. The plasma is modelled with gyrokinetic ions and adiabatic electrons. An axisymmetric equilibrium magnetic structure is provided by the MHD equilibrium code CHEASE. The full plasma cross-section is considered in the simulation. We follow the time-evolution of electrostatic, quasineutral perturbations of a local Maxwellian equilibrium distribution function, using two different particle-in-cell (PIC) codes running on a massively parallel CRAY-T3D. (author) 4 figs., 9 refs.

  20. Verification and validation of linear gyrokinetic simulation of Alfven eigenmodes in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Spong, D. A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Bass, E. M. [Department of Physics, University of California, San Diego, California 192093 (United States); Deng, W.; Heidbrink, W. W.; Lin, Z. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Tobias, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 085430 (United States); Van Zeeland, M. A. [General Atomics, San Diego, California 92121 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas 78712 (United States); Domier, C. W.; Luhmann, N. C. Jr. [Department of Electrical and Computer Engineering and Department of Applied Science, University of California, Davis, California 95616 (United States)

    2012-08-15

    A verification and validation study is carried out for a sequence of reversed shear Alfven instability time slices. The mode frequency increases in time as the minimum (q{sub min}) in the safety factor profile decreases. Profiles and equilibria are based upon reconstructions of DIII-D discharge (no. 142111) in which many such frequency up-sweeping modes were observed. Calculations of the frequency and mode structure evolution from two gyrokinetic codes, GTC and GYRO, and a gyro-Landau fluid code TAEFL are compared. The experimental mode structure of the instability was measured using time-resolved two-dimensional electron cyclotron emission imaging. The three models reproduce the frequency upsweep event within {+-}10% of each other, and the average of the code predictions is within {+-}8% of the measurements; growth rates are predicted that are consistent with the observed spectral line widths. The mode structures qualitatively agree with respect to radial location and width, dominant poloidal mode number, ballooning structure, and the up-down asymmetry, with some remaining differences in the details. Such similarities and differences between the predictions of the different models and the experimental results are a valuable part of the verification/validation process and help to guide future development of the modeling efforts.

  1. An improved approximation for the analytical treatment of the local linear gyro-kinetic plasma dispersion relation in toroidal geometry

    Science.gov (United States)

    Migliano, P.; Zarzoso, D.; Artola, F. J.; Camenen, Y.; Garbet, X.

    2017-09-01

    The analytical treatment of plasma kinetic linear instabilities in toroidal geometry is commonly tackled employing a power series expansion of the resonant part of the dispersion relation. This expansion is valid under the assumption that the modulus of the mode frequency is smaller than the magnitude of the frequencies characterising the system (the drift, bounce and transit frequencies for example). We will refer to this approximation as high frequency approximation (HFA). In this paper the linear plasma dispersion relation is derived in the framework of the gyro-kinetic model, for the electrostatic case, in the local limit, in the absence of collisions, for a non rotating plasma, considering adiabatic electrons, in toroidal circular geometry, neglecting the parallel dynamics effect. A systematic analysis of the meaning and limitations of the HFA is performed. As already known, the HFA is not valid for tokamak relevant parameters. A new way to approximate the resonant part of the dispersion relation, called here Improved high frequency approximation (IHFA), is therefore proposed. A quantitative analysis of the ion temperature gradient (ITG) instability is presented. The IHFA is shown to be applicable to the treatment of the ITG instability in tokamaks.

  2. Gyrokinetic equivalence

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Felix I; Catto, Peter J [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States)], E-mail: fparra@mit.edu, E-mail: catto@psfc.mit.edu

    2009-06-15

    We compare two different derivations of the gyrokinetic equation: the Hamiltonian approach in Dubin D H E et al (1983 Phys. Fluids 26 3524) and the recursive methodology in Parra F I and Catto P J (2008 Plasma Phys. Control. Fusion 50 065014). We prove that both approaches yield the same result at least to second order in a Larmor radius over macroscopic length expansion. There are subtle differences in the definitions of some of the functions that need to be taken into account to prove the equivalence.

  3. Gyrokinetic equivalence

    Science.gov (United States)

    Parra, Felix I.; Catto, Peter J.

    2009-06-01

    We compare two different derivations of the gyrokinetic equation: the Hamiltonian approach in Dubin D H E et al (1983 Phys. Fluids 26 3524) and the recursive methodology in Parra F I and Catto P J (2008 Plasma Phys. Control. Fusion 50 065014). We prove that both approaches yield the same result at least to second order in a Larmor radius over macroscopic length expansion. There are subtle differences in the definitions of some of the functions that need to be taken into account to prove the equivalence.

  4. Cystic fibrosis Delta F508 heterozygotes, smoking, and reproduction

    DEFF Research Database (Denmark)

    Dahl, Morten; Tybjaerg-Hansen, A; Wittrup, H H

    1998-01-01

    Cystic fibrosis is the most common fatal autosomal recessive disease affecting Caucasian populations. It remains a puzzle how this disease is maintained at such a remarkably high incidence, however, it could be due to a reproductive advantage in cystic fibrosis heterozygotes. We tested this hypot......Cystic fibrosis is the most common fatal autosomal recessive disease affecting Caucasian populations. It remains a puzzle how this disease is maintained at such a remarkably high incidence, however, it could be due to a reproductive advantage in cystic fibrosis heterozygotes. We tested.......001). In conclusion, overall these results do not support a reproductive advantage for cystic fibrosis DeltaF508 heterozygotes. However, the data cannot totally exclude the possibility that nonsmoking DeltaF508 heterozygotes experience a reproductive advantage while smoking DeltaF508 heterozygotes experience...... the opposite, a reproductive disadvantage. Accordingly, the data suggest a previously undocumented role of smoking on fecundity among cystic fibrosis heterozygotes....

  5. Verification and validation of linear gyrokinetic simulation of Alfv n eigenmodes in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Spong, Donald A [ORNL; Bass, Eric [General Atomics, San Diego; Deng, Wenjun [Princeton Plasma Physics Laboratory (PPPL); Heidbrink, W. [University of California, Irvine; Lin, Zhihong [University of California, Irvine; Tobias, Ben [University of California, Davis; Van Zeeland, Michael [General Atomics; Austin, M. E. [University of Texas, Austin; Domier, C. W. [University of California, Davis; Luhmann, N.C. [University of California, Davis

    2012-01-01

    A verification and validation study is carried out for a sequence of reversed shear Alfven instability time slices. The mode frequency increases in time as the minimum (q{sub min}) in the safety factor profile decreases. Profiles and equilibria are based upon reconstructions of DIII-D discharge (No.142111) in which many such frequency up-sweeping modes were observed. Calculations of the frequency and mode structure evolution from two gyrokinetic codes, GTC and GYRO, and a gyro-Landau fluid code TAEFL are compared. The experimental mode structure of the instability was measured using time-resolved two-dimensional electron cyclotron emission imaging. The three models reproduce the frequency upsweep event within {+-}10% of each other, and the average of the code predictions is within {+-}8% of the measurements; growth rates are predicted that are consistent with the observed spectral line widths. The mode structures qualitatively agree with respect to radial location and width, dominant poloidal mode number, ballooning structure, and the up-down asymmetry, with some remaining differences in the details. Such similarities and differences between the predictions of the different models and the experimental results are a valuable part of the verification/validation process and help to guide future development of the modeling efforts.

  6. Fully non-linear multi-species Fokker-Planck-Landau collisions for gyrokinetic particle-in-cell simulations of fusion plasma

    Science.gov (United States)

    Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.

    2015-11-01

    We describe the implementation, and application of a time-dependent, fully nonlinear multi-species Fokker-Planck-Landau collision operator based on the single-species work of Yoon and Chang [Phys. Plasmas 21, 032503 (2014)] in the full-function gyrokinetic particle-in-cell codes XGC1 [Ku et al., Nucl. Fusion 49, 115021 (2009)] and XGCa. XGC simulations include the pedestal and scrape-off layer, where significant deviations of the particle distribution function from a Maxwellian can occur. Thus, in order to describe collisional effects on neoclassical and turbulence physics accurately, the use of a non-linear collision operator is a necessity. Our collision operator is based on a finite volume method using the velocity-space distribution functions sampled from the marker particles. Since the same fine configuration space mesh is used for collisions and the Poisson solver, the workload due to collisions can be comparable to or larger than the workload due to particle motion. We demonstrate that computing time spent on collisions can be kept affordable by applying advanced parallelization strategies while conserving mass, momentum, and energy to reasonable accuracy. We also show results of production scale XGCa simulations in the H-mode pedestal and compare to conventional theory. Work supported by US DOE OFES and OASCR.

  7. {delta}f simulation of ion neoclassical transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Nakajima, N.; Okamoto, M.; Murakami, S. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-07-01

    Ion neoclassical transport with finite orbit width dynamics is calculated over whole poloidal cross section by using accurate {delta}f method which employs an improved like-particle collision operator and an accurate weighting scheme to solve drift kinetic equation. Ion thermal transport near magnetic axis shows a great reduction from its conventional neoclassical level due to non-standard orbit topology, like that of previous {delta}f simulation. On other hand, the direct particle loss from confinement region may strongly increase ion energy transport near the edge. It is found that ion parallel flow near the axis is also largely reduced due to non-standard orbit topology. In the presence of steep density gradient, ion thermal conductivity is significantly reduced, and an ion particle flux is driven by self-collision alone. (author)

  8. An accurate {delta}f method for neoclassical transport calculation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.X.; Nakajima, N.; Murakami, S.; Okamoto, M. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-03-01

    A {delta}f method, solving drift kinetic equation, for neoclassical transport calculation is presented in detail. It is demonstrated that valid results essentially rely on the correct evaluation of marker density g in weight calculation. A general and accurate weighting scheme is developed without using some assumed g in weight equation for advancing particle weights, unlike the previous schemes. This scheme employs an additional weight function to directly solve g from its kinetic equation using the idea of {delta}f method. Therefore the severe constraint that the real marker distribution must be consistent with the initially assumed g during a simulation is relaxed. An improved like-particle collision scheme is presented. By performing compensation for momentum, energy and particle losses arising from numerical errors, the conservations of all the three quantities are greatly improved during collisions. Ion neoclassical transport due to self-collisions is examined under finite banana case as well as zero banana limit. A solution with zero particle and zero energy flux (in case of no temperature gradient) over whole poloidal section is obtained. With the improvement in both like-particle collision scheme and weighting scheme, the {delta}f simulation shows a significantly upgraded performance for neoclassical transport study. (author)

  9. Gyrokinetic field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-08-01

    The Lagrangian formulation of the gyrokinetic theory is generalized in order to describe the particles' dynamics as well as the self-consistent behavior of the electromagnetic fields. The gyrokinetic equation for the particle distribution function and the gyrokinetic Maxwell's equations for the electromagnetic fields are both derived from the variational principle for the Lagrangian consisting of the parts of particles, fields, and their interaction. In this generalized Lagrangian formulation, the energy conservation property for the total nonlinear gyrokinetic system of equations is directly shown from the Noether's theorem. This formulation can be utilized in order to derive the nonlinear gyrokinetic system of equations and the rigorously conserved total energy for fluctuations with arbitrary frequency. (author)

  10. Global gyrokinetic simulations with strong flows

    Science.gov (United States)

    Collier, J. D.; McMillan, B. F.; Robinson, J. R.

    2016-11-01

    We report on the investigation of strong toroidal rotation effects in a global tokamak code, ORB5. This includes the implementation of a strong flow gyrokinetic Lagrangian, allowing a complete treatment of centrifugal and Coriolis effects in the laboratory frame. In order to consistently perform the linear analysis in this system, an axisymmetric gyrokinetic equilibrium distribution function is defined using the constants of motion: we show it corresponds to the standard choice in the local limit and is close to the neoclassical solution in the banana regime. The energy and momentum transport equations are presented in an analogous form to those for the weak flow system. Linear studies of Ion Temperature Gradient (ITG) modes in rotating plasmas are performed to determine how the global effects interact with the effects of strong rotation. We also determine the geodesic acoustic mode dispersion with respect to plasma rotation rate in this gyrokinetic model and compare it to MHD theory.

  11. Nonlinear delta f Simulations of Collective Effects in Intense Charged Particle Beams

    CERN Document Server

    Hong Qi

    2003-01-01

    A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, ...

  12. Stellarator Microinstability and Turbulence Simulations Using Gyrofluid (GryfX) and Gyrokinetic (GS2) Codes

    Science.gov (United States)

    Martin, Mike; Landreman, Matt; Mandell, Noah; Dorland, William

    2016-10-01

    GryfX is a delta-f code that evolves the gyrofluid set of equations using sophisticated nonlinear closures, with the option to evolve zonal flows (ky =0) kinetically. Since fluid models require less memory to store than a kinetic model, GryfX is ideally suited and thus written to run on a Graphics Processing Unit (GPU), yielding about a 1,200 times performance advantage over GS2. Here we present the first stellarator simulations using GryfX. Results compare linear growth rates of the Ion Temperature Gradient (ITG) mode between GryfX and the gyrokinetic code, GS2, using stellarator geometries from the National Compact Stellarator Experiment (NCSX) and Wendelstein 7-X (W7X). Strong agreement of <10% for maximum growth rates is observed between GS2 and GryfX for temperature gradients away from marginal stability for both NCSX and W7X geometries. Nonlinear stellarator results using GS2/GryfX are also presented.

  13. Delta-f and hydrodynamic methods for semiconductor transport

    Energy Technology Data Exchange (ETDEWEB)

    Thode, L.E.; Hotchkiss, R.; Gray, M.; Snell, C.; Barnes, D.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory. The authors have developed a prototype plug-and-play (PCUBED) environment based upon a C++ class called a fragment. A fragment is a universal object that can represent any data type. Fragments provide an excellent intuitive approach to the development of an efficient architecture, as well as providing a common data implementation within and between codes. As a result, the PCUBED environment allows for the generation of many different codes within a common framework. At this time, there are seven major codes implemented within the PCUBED environment. Input, output, restart, setup, and graphics are programmed using a high-level approach to insure human efficiency. In contrast, computationally intensive algorithms are programmed using a low-level approach to insure computational efficiency. Fragments provide a straightforward approach to switch between high-level and low-level programming. PCUBED has been tested on a Macintosh PowerPC; on IBM, SUN, HP, and SGI workstations; and on the CRAY YMP and Cray T3D. Using this environment, the authors have incorporated a drift diffusion, energy balance, hydrodynamic, and Monte Carlo model for metal-oxide semiconductor field-effect transistors (MOSFETs) into a single architecture. With all the models in a common framework, they have investigated the noise characteristics of hybrid and delta-f models. Although hybrid and delta-f models appear viable in one dimension, the noise level of higher order transport coefficients in two and three dimensions makes the utility of such combined methods questionable.

  14. Distinguishing between MSSM and NMSSM through $\\Delta F=2$ processes

    CERN Document Server

    Kumar, Jacky

    2016-01-01

    We study deviations between MSSM and $Z_3$ -invariant NMSSM, with respect to their predictions in $\\Delta F = 2$ processes. We find that potentially significant effects arise either from the well known double-penguin diagrams, due to the extra scalar NMSSM states, or from neutralino-gluino box contributions, due to the extended neutralino sector. Both are discussed to be effective in the large $tan \\beta$ regime. Enhanced genuine-NMSSM contributions in double penguins are expected for a light singlet spectrum (CP-even,CP-odd), while the magnitude of box effects is primarily controlled through singlino mixing. The latter is found to be typically subleading (but non-negligible) for $\\lambda \\lesssim 0.5$, however it can become dominant for $\\lambda \\sim$ $O(1)$. We also study the low $\\tan \\beta$ regime, where a distinction between MSSM and NMSSM can come instead due to experimental constraints, acting differently on the allowed parameter space of each model. To this end, we incorporate the recent limits from $...

  15. Free energy balance in gyrokinetic turbulence

    Science.gov (United States)

    Bañón Navarro, A.; Morel, P.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Görler, T.; Jenko, F.

    2011-09-01

    Free energy plays an important role in gyrokinetic theory, since it is known to be a nonlinear invariant. Its evolution equations are derived and analyzed for the case of ion temperature gradient driven turbulence, using the formalism adopted in the Gene code. In particular, the ion temperature gradient drive, the collisional dissipation as well as entropy/electrostatic energy transfer channels represented by linear curvature and parallel terms are analyzed in detail.

  16. Gyrokinetic Calculations of the Neoclassical Radial Electric Field in Stellarator Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, J.L.V.; Williams, J.; Boozer, A.H.; Lin, Z.

    2001-04-09

    A novel method to calculate the neoclassical radial electric field in stellarator plasmas is described. The method, which does not have the inconvenience of large statistical fluctuations (noise) of standard Monte Carlo technique, is based on the variation of the combined parallel and perpendicular pressures on a magnetic surface. Using a three-dimensional gyrokinetic delta f code, the calculation of the radial electric field in the National Compact Stellarator Experiment has been carried out. It is shown that a direct evaluation of radial electric field based on a direct calculation of the radial particle flux is not tractable due to the considerable noise.

  17. Study of no-man's land physics in the total-f gyrokinetic code XGC1

    Science.gov (United States)

    Ku, Seung Hoe; Chang, C. S.; Lang, J.

    2014-10-01

    While the ``transport shortfall'' in the ``no-man's land'' has been observed often in delta-f codes, it has not yet been observed in the global total-f gyrokinetic particle code XGC1. Since understanding the interaction between the edge and core transport appears to be a critical element in the prediction for ITER performance, understanding the no-man's land issue is an important physics research topic. Simulation results using the Holland case will be presented and the physics causing the shortfall phenomenon will be discussed. Nonlinear nonlocal interaction of turbulence, secondary flows, and transport appears to be the key.

  18. Translational symmetry of high order tokamak flux surface shaping in gyrokinetics

    CERN Document Server

    Ball, Justin; Barnes, Michael

    2015-01-01

    A particular translational symmetry of the local nonlinear $\\delta f$ gyrokinetic model is demonstrated analytically and verified numerically. This symmetry shows that poloidally translating all the flux surface shaping effects with large poloidal mode number by a single tilt angle has an exponentially small effect on the transport properties of a tokamak. This is shown using a generalization of the Miller local equilibrium model to specify an arbitrary flux surface geometry. With this geometry specification we find that, when performing an expansion in large flux surface shaping mode number, the governing equations of gyrokinetics are symmetric in the poloidal translation of the high order shaping effects. This allows us to take the fluxes from a single configuration and calculate the fluxes in any configuration that can be produced by translating the large mode number shaping effects. This creates a distinction between tokamaks with mirror symmetric flux surfaces and tokamaks without mirror symmetry, which ...

  19. DeltaF508 heterozygosity in cystic fibrosis and susceptibility to asthma

    DEFF Research Database (Denmark)

    Dahl, Morten; Tybjaerg-Hansen, A; Lange, P;

    1998-01-01

    Cystic fibrosis is a recessive disorder mainly characterised by lung disease. We tested the hypothesis that individuals heterozygous for the common cystic fibrosis deltaF508 mutation are at risk of obstructive pulmonary disease....

  20. Identification of natural coumarin compounds that rescue defective DeltaF508-CFTR chloride channel gating.

    Science.gov (United States)

    Xu, Li-Na; Na, Wan-Li; Liu, Xin; Hou, Shu-Guang; Lin, Sen; Yang, Hong; Ma, Tong-Hui

    2008-08-01

    1. Deletion of phenylalanine at position 508 (DeltaF508) of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is the most common mutation causing cystic fibrosis (CF). Effective pharmacological therapy of CF caused by the DeltaF508-CFTR mutation requires the rescue of both intracellular processing and channel gating defects. 2. We identified a class of natural coumarin compounds that can correct the defective DeltaF508-CFTR chloride channel gating by screening a collection of 386 single natural compounds from Chinese medicinal herbs. Screening was performed with an iodide influx assay in Fischer rat thyroid epithelial cells coexpressing DeltaF508-CFTR and an iodide-sensitive fluorescent indicator (YFP-H148Q/I152L). 3. Dose-dependent potentiation of defective DeltaF508-CFTR chloride channel gating by five coumarin compounds was demonstrated by the fluorescent iodide influx assay and confirmed by an Ussing chamber short-circuit current assay. Activation was fully abolished by the specific CFTR inhibitor CFTR(inh)-172. Two potent compounds, namely imperatorin and osthole, have activation K(d) values of approximately 10 micromol/L, as determined by the short-circuit current assay. The active coumarin compounds do not elevate intracellular cAMP levels. Activation of DeltaF508-CFTR by the coumarin compounds requires cAMP agonist, suggesting direct interaction with the mutant CFTR molecule. Kinetics analysis indicated rapid activation of DeltaF508-CFTR by the coumarin compounds, with half-maximal activation of CFTR activators may represent a new class of natural lead compounds for the development of pharmacological therapies for CF caused by the DeltaF508 mutation.

  1. Delta F508 testing of the DNA bank of the Royal Manchester Children's Hospital.

    Science.gov (United States)

    Schwarz, M J; Super, M; Wallis, C; Beighton, P; Newton, C; Heptinstall, L E; Summers, C; Markham, A; Hambleton, G; Webb, K W

    1990-09-01

    Details of haplotype and delta F508 status from various populations represented in the cystic fibrosis (CF) DNA bank of the Royal Manchester Children's Hospital are provided, together with information on the association of genotype and clinical status. Clinical details and DNA analyses from native English in the North-West and South-West of England (Bath), from Lancashire Pakistani families and from Afrikaans Namibian families are compared. A 78.5% incidence of delta F508 has been found in English families. Compound heterozygotes with CF and only one delta F508 gene have an increased likelihood of having milder disease, with less Pseudomonas isolated from sputum and relatively more showing either no regular respiratory pathogens or colonisation with Staphylococcus. There is also a relative increase in meconium ileus in these compound heterozygotes. The diagnosis of CF may be in doubt in some subjects negative for delta F508. Some of the Bath families have unusual haplotypes for an English population and a compound heterozygote delta F508/delta I507 has been found. There is evidence from metD analysis of the founder effect in the Afrikaans Namibian families, who have a high delta F508 incidence.

  2. On the two weighting scheme for {delta}f collisional transport simulation

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, M.; Nakajima, N.; Wang, W. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-08-01

    The validity is given to the newly proposed two weighting {delta}f scheme (Wang et al., Research Report of National Institute for Fusion Science NIFS-588, 1999) for collisional or neoclassical transport calculations, which can solve the drift kinetic equation taking account of effects of steep plasma gradients, large radial electric field, finite banana width, and the non-standard orbit topology near the axis. The marker density functions in weight equations are successively solved by using the idea of {delta}f method and a hierarchy of equations for weight and marker density functions is obtained. These hierarchy equations are solved by choosing an appropriate source function for each marker density. Thus the validity of the two weighting {delta}f scheme is mathematically proved. (author)

  3. Transport in gyrokinetic tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Mynick, H.E.; Parker, S.E.

    1995-01-01

    A comprehensive study of transport in full-volume gyrokinetic (gk) simulations of ion temperature gradient driven turbulence in core tokamak plasmas is presented. Though this ``gyrokinetic tokamak`` is much simpler than experimental tokamaks, such simplicity is an asset, because a dependable nonlinear transport theory for such systems should be more attainable. Toward this end, we pursue two related lines of inquiry. (1) We study the scalings of gk tokamaks with respect to important system parameters. In contrast to real machines, the scalings of larger gk systems (a/{rho}{sub s} {approx_gt} 64) with minor radius, with current, and with a/{rho}{sub s} are roughly consistent with the approximate theoretical expectations for electrostatic turbulent transport which exist as yet. Smaller systems manifest quite different scalings, which aids in interpreting differing mass-scaling results in other work. (2) With the goal of developing a first-principles theory of gk transport, we use the gk data to infer the underlying transport physics. The data indicate that, of the many modes k present in the simulation, only a modest number (N{sub k} {approximately} 10) of k dominate the transport, and for each, only a handful (N{sub p} {approximately} 5) of couplings to other modes p appear to be significant, implying that the essential transport physics may be described by a far simpler system than would have been expected on the basis of earlier nonlinear theory alone. Part of this analysis is the inference of the coupling coefficients M{sub kpq} governing the nonlinear mode interactions, whose measurement from tokamak simulation data is presented here for the first time.

  4. A truncated CFTR protein rescues endogenous DeltaF508-CFTR and corrects chloride transport in mice.

    Science.gov (United States)

    Cormet-Boyaka, Estelle; Hong, Jeong S; Berdiev, Bakhram K; Fortenberry, James A; Rennolds, Jessica; Clancy, J P; Benos, Dale J; Boyaka, Prosper N; Sorscher, Eric J

    2009-11-01

    Cystic fibrosis (CF) is most frequently associated with deletion of phenylalanine at position 508 (DeltaF508) in the CF transmembrane conductance regulator (CFTR) protein. The DeltaF508-CFTR mutant protein exhibits a folding defect that affects its processing and impairs chloride-channel function. This study aimed to determine whether CFTR fragments approximately half the size of wild-type CFTR and complementary to the portion of CFTR bearing the mutation can specifically rescue the processing of endogenous DeltaF508-CFTR in vivo. cDNA encoding CFTR fragments were delivered to human airway epithelial cells and mice harboring endogenous DeltaF508-CFTR. Delivery of small CFTR fragments, which do not act as chloride channels by themselves, rescue DeltaF508-CFTR. Therefore, we can speculate that the presence of the CFTR fragment, which does not harbor a mutation, might facilitate intermolecular interactions. The rescue of CFTR was evident by the restoration of chloride transport in human CFBE41o- bronchial epithelial cells expressing DeltaF508-CFTR in vitro. More important, nasal administration of an adenovirus expressing a complementary CFTR fragment restored some degree of CFTR activity in the nasal airways of DeltaF508 homozygous mice in vivo. These findings identify complementary protein fragments as a viable in vivo approach for correcting disease-causing misfolding of plasma membrane proteins.

  5. Improving conservation properties of a 5D gyrokinetic semi-Lagrangian code

    Science.gov (United States)

    Latu, Guillaume; Grandgirard, Virginie; Abiteboul, Jérémie; Crouseilles, Nicolas; Dif-Pradalier, Guilhem; Garbet, Xavier; Ghendrih, Philippe; Mehrenberger, Michel; Sarazin, Yanick; Sonnendrücker, Eric

    2014-11-01

    In gyrokinetic turbulent simulations, the knowledge of some stationary states can help reducing numerical artifacts. Considering long-term simulations, the qualities of the Vlasov solver and of the radial boundary conditions have an impact on the conservation properties. In order to improve mass and energy conservation mainly, the following methods are investigated: fix the radial boundary conditions on a stationary state, use a 4D advection operator that avoids a directional splitting, interpolate with a delta-f approach. The combination of these techniques in the semi-Lagrangian code gysela leads to a net improvement of the conservation properties in 5D simulations. Contribution to the Topical Issue "Theory and Applications of the Vlasov Equation", edited by Francesco Pegoraro, Francesco Califano, Giovanni Manfredi and Philip J. Morrison.

  6. Gyrokinetic simulations of neoclassical transport using a minimal collision operator

    Science.gov (United States)

    Dif-Pradalier, G.; Grandgirard, V.; Sarazin, Y.; Garbet, X.; Ghendrih, Ph.; Angelino, P.

    2008-11-01

    Conventional neoclassical predictions are successfully recovered within a gyrokinetic framework using a minimal Fokker-Planck collision operator. This operator is shown to accurately describe some essential features of neoclassical theory, namely the neoclassical transport, the poloidal rotation and the linear damping of axisymmetric flows while interestingly preserving a high numerical efficiency. Its form makes it especially adapted to Eulerian or Semi-Lagrangian schemes.

  7. Gyrokinetic simulations of neoclassical transport using a minimal collision operator

    OpenAIRE

    Dif-Pradalier, Guilhem; Grandgirard, Virginie; Sarazin, Yanick; Garbet, Xavier; Ghendrih, Philippe; Angelino, P

    2008-01-01

    International audience; Conventional neoclassical predictions are successfully recovered within a gyrokinetic framework using a minimal Fokker–Planck collision operator. This operator is shown to accurately describe some essential features of neoclassical theory, namely the neoclassical transport, the poloidal rotation and the linear damping of axisymmetric flows while interestingly preserving a high numerical efficiency. Its form makes it especially adapted to Eulerian or Semi–Lagrangian sch...

  8. Scalable Quasineutral solver for gyrokinetic simulation

    OpenAIRE

    Latu, Guillaume; Grandgirard, Virginie; Crouseilles, Nicolas; Dif-Pradalier, Guilhem

    2011-01-01

    Modeling turbulent transport is a major goal in order to predict confinement issues in a tokamak plasma. The gyrokinetic framework considers a computational domain in five dimensions to look at kinetic issues in a plasma. Gyrokinetic simulations lead to huge computational needs. Up to now, the gyrokinetic code GYSELA performed large simulations using a few thousands of cores. The work proposed here improves GYSELA onto two points: memory scalability and execution time. The new solution allows...

  9. Verification of gyrokinetic microstability codes with an LHD configuration

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, D. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nunami, M. [National Inst. for Fusion Science (Japan); Watanabe, T. -H. [Nagoya Univ. (Japan); Sugama, H. [National Inst. for Fusion Science (Japan); Tanaka, K. [National Inst. for Fusion Science (Japan)

    2014-11-01

    We extend previous benchmarks of the GS2 and GKV-X codes to verify their algorithms for solving the gyrokinetic Vlasov-Poisson equations for plasma microturbulence. Code benchmarks are the most complete way of verifying the correctness of implementations for the solution of mathematical models for complex physical processes such as those studied here. The linear stability calculations reported here are based on the plasma conditions of an ion-ITB plasma in the LHD configuration. The plasma parameters and the magnetic geometry differ from previous benchmarks involving these codes. We find excellent agreement between the independently written pre-processors that calculate the geometrical coefficients used in the gyrokinetic equations. Grid convergence tests are used to establish the resolution and domain size needed to obtain converged linear stability results. The agreement of the frequencies, growth rates and eigenfunctions in the benchmarks reported here provides additional verification that the algorithms used by the GS2 and GKV-X codes are correctly finding the linear eigenvalues and eigenfunctions of the gyrokinetic Vlasov-Poisson equations.

  10. Current status of the Standard Model CKM fit and constraints on $\\Delta F=2$ New Physics

    CERN Document Server

    Charles, J; Descotes-Genon, S; Lacker, H; Menzel, A; Monteil, S; Niess, V; Ocariz, J; Orloff, J; Perez, A; Qian, W; Tisserand, V; Trabelsi, K; Urquijo, P; Silva, L Vale

    2015-01-01

    This letter summarises the status of the global fit of the CKM parameters within the Standard Model performed by the CKMfitter group. Special attention is paid to the inputs for the CKM angles $\\alpha$ and $\\gamma$ and the status of $B_s\\to\\mu\\mu$ and $B_d\\to \\mu\\mu$ decays. We illustrate the current situation for other unitarity triangles. We also discuss the constraints on generic $\\Delta F=2$ New Physics. All results have been obtained with the CKMfitter analysis package, featuring the frequentist statistical approach and using Rfit to handle theoretical uncertainties.

  11. Mammalian osmolytes and S-nitrosoglutathione promote Delta F508 cystic fibrosis transmembrane conductance regulator (CFTR) protein maturation and function.

    Science.gov (United States)

    Howard, Marybeth; Fischer, Horst; Roux, Jeremie; Santos, Bento C; Gullans, Steven R; Yancey, Paul H; Welch, William J

    2003-09-12

    In cystic fibrosis, the absence of functional CFTR results in thick mucous secretions in the lung and intestines, as well as pancreatic deficiency. Although expressed at high levels in the kidney, mutations in CFTR result in little or no apparent kidney dysfunction. In an effort to understand this phenomenon, we analyzed Delta F508 CFTR maturation and function in kidney cells under conditions that are common to the kidney, namely osmotic stress. Kidney cells were grown in culture and adapted to 250 mM NaCl and 250 mM urea. High performance liquid chromatography analysis of lysates from kidney cells adapted to these conditions identified an increase in the cellular osmolytes glycerophosphorylcholine, myo-inositol, sorbitol, and taurine. In contrast to isoosmotic conditions, hyperosmotic stress led to the proper folding and processing of Delta F508 CFTR. Furthermore, three of the cellular osmolytes, when added individually to cells, proved effective in promoting the proper folding and processing of the Delta F508 CFTR protein in both epithelial and fibroblast cells. Whole-cell patch clamping of osmolyte-treated cells showed that Delta F508 CFTR had trafficked to the plasma membrane and was activated by forskolin. Encouraged by these findings, we looked at other features common to the kidney that may impact Delta F508 maturation and function. Interestingly, a small molecule, S-nitrosoglutathione, which is a substrate for gamma glutamyltranspeptidase, an abundant enzyme in the kidney, likewise promoted Delta F508 CFTR maturation and function. S-Nitrosoglutathione-corrected Delta F508 CFTR exhibited a shorter half-life as compared with wild type CFTR. These results demonstrate the feasibility of a small molecule approach as a therapeutic treatment in promoting Delta F508 CFTR maturation and function and suggest that an additional treatment may be required to stabilize Delta F508 CFTR protein once present at the plasma membrane. Finally, our observations may help to

  12. Momentum transport in gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Rico

    2016-07-01

    In this thesis, the gyrokinetic-Vlasov code GKW is used to study turbulent transport, with a focus on radial transport of toroidal momentum. To support the studies on turbulent transport an eigenvalue solver has been implemented into GKW. This allows to find, not only the most unstable mode, but also subdominant modes. Furthermore it is possible to follow the modes in parameter scans. Furthermore, two fundamental mechanisms that can generate an intrinsic rotation have been investigated: profile shearing and the velocity nonlinearity. The study of toroidal momentum transport in a tokamak due to profile shearing reveals that the momentum flux can not be accurately described by the gradient in the turbulent intensity. Consequently, a description using the profile variation is used. A linear model has been developed that is able to reproduce the variations in the momentum flux as the profiles of density and temperature vary, reasonably well. It uses, not only the gradient length of density and temperature profile, but also their derivative, i.e. the second derivative of the logarithm of the temperature and the density profile. It is shown that both first as well as second derivatives contribute to the generation of a momentum flux. A difference between the linear and nonlinear simulations has been found with respect to the behaviour of the momentum flux. In linear simulations the momentum flux is independent of the normalized Larmor radius ρ{sub *}, whereas it is linear in ρ{sub *} for nonlinear simulations, provided ρ{sub *} is small enough (≤4.10{sup -3}). Nonlinear simulations reveal that the profile shearing can generate an intrinsic rotation comparable to that of current experiments. Under reactor conditions, however, the intrinsic rotation from the profile shearing is expected to be small due to the small normalized Larmor radius ρ{sub *}

  13. A generalized gyrokinetic Poisson solver

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Z.; Lee, W.W.

    1995-03-01

    A generalized gyrokinetic Poisson solver has been developed, which employs local operations in the configuration space to compute the polarization density response. The new technique is based on the actual physical process of gyrophase-averaging. It is useful for nonlocal simulations using general geometry equilibrium. Since it utilizes local operations rather than the global ones such as FFT, the new method is most amenable to massively parallel algorithms.

  14. Gyrokinetic stability theory of electron-positron plasmas

    CERN Document Server

    Helander, Per

    2016-01-01

    The linear gyrokinetic stability properties of magnetically confined electron-positron plasmas are investigated in the parameter regime most likely to be relevant for the first laboratory experiments involving such plasmas, where the density is small enough that collisions can be ignored and the Debye length substantially exceeds the gyroradius. Although the plasma beta is very small, electromagnetic effects are retained, but magnetic compressibility can be neglected. The work of a previous publication (Helander, 2014) is thus extended to include electromagnetic instabilities, which are of importance in closed-field-line configurations, where such instabilities can occur at arbitrarily low pressure. It is found that gyrokinetic instabilities are completely absent if the magnetic field is homogeneous: any instability must involve magnetic curvature or shear. Furthermore, in dipole magnetic fields, the stability threshold for interchange modes with wavelengths exceeding the Debye radius coincides with that in i...

  15. New variables for gyrokinetic electromagnetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Alexey, E-mail: alexey.mishchenko@ipp.mpg.de; Cole, Michael; Kleiber, Ralf; Könies, Axel [Max Planck Institute for Plasma Physics, D-17491 Greifswald (Germany)

    2014-05-15

    A new approach to electromagnetic gyrokinetic simulations based on modified gyrokinetic theory is described. The method is validated using a particle-in-cell code. The Toroidal Alfvén Eigenmode at low perpendicular mode numbers, the so-called “magnetohydrodynamical limit,” has been successfully simulated using this method.

  16. Complete NLO QCD Corrections for Tree Level Delta F = 2 FCNC Processe

    CERN Document Server

    Buras, Andrzej J

    2012-01-01

    Anticipating the important role of tree level FCNC processes in the indirect search for new physics at distance scales as short as 10^-19-10^-21 m, we present complete NLO QCD corrections to tree level Delta F=2 processes mediated by heavy colourless gauge bosons and scalars. Such contributions can be present at the fundamental level when GIM mechanism is absent as in numerous Z' models, gauged flavour models with new heavy neutral gauge bosons and Left-Right symmetric models with heavy neutral scalars. They can also be generated at one loop in models having GIM at the fundamental level and MFV of which Two-Higgs Doublet models with and without SUSY are the best known examples. In models containing vectorial heavy fermions that mix with the standard chiral quarks and models in which Z and SM neutral Higgs H mix with new heavy gauge bosons and scalars also tree-level Z and SM neutral Higgs contributions to Delta F=2 processes are possible. In all these extensions new local operators are generated having Wilson...

  17. Variational approach to non-Hamiltonian particle gyrokinetic theory

    Science.gov (United States)

    Pozzo, M.; Tessarotto, M.; Zorat, R.; White, R. B.

    1997-11-01

    A fundamental aspect of kinetic theory and particle simulation approaches for magnetoplasmas is the formulation of gyrokinetic theory, particularly non-linear gyrokinetics, when single-particle orbit dynamics is described by a non-Hamiltonian system, as corresponds, for example, to the characteristics for the Fokker-Planck kinetic equation. In this case, in fact, both Lie-transform [1,2] and Lagrangian [3] approaches are not directly applicable to describe the non-Hamiltonian particle orbit dynamics. The purpose of the investigation is to propose a new direct perturbative theory to nonlinear particle gyrokinetics applying to non-Hamiltonian systems. Its formulation will be analyzed in detail and its basic features compared with those of previous perturbative approaches. 1 - T.S. Hahm, W.W. Lee and A. Brizard, Phys. Fluids 3, 1940 (1988). 2 - A. Brizard, Phys. Plasmas 2, 459 (1995). 3 - M. Pozzo, M. Tessarotto and R. Zorat, in Theory of fusion Plasmas, E.Sindoni et al. eds. (Societá Italiana di Fisica, Editrice Compositori, Bologna, 1996), p.295.

  18. Gyrokinetic δ particle simulation of trapped electron mode driven turbulence

    Science.gov (United States)

    Lang, Jianying

    2007-11-01

    Turbulent transport driven by collisionless trapped electron modes (CTEM) is systematically studied using gyrokinetic delta-f particle-in-cell simulation. Scaling with local plasma parameters, including density gradient, electron temperature gradient, magnetic shear, temperature ratio and aspect ratio, is investigated. Simulation results are compared with previous simulations and theoretical predictions. Nonlinearly the transport level increases with increasing magnetic shear. We explain the nonlinear magnetic shear scaling by differences in the radial correlation lengths caused by toroidal coupling. The turbulence is more radially elongated at higher magnetic shear compared with low magnetic shear. We show that the suppression effect of zonal flow on CTEM transport depends on both the electron temperature gradient and the electron to ion temperature ratio. This helps explain the previous contradictory conclusions on the importance of zonal flows in different parameter regimes.ootnotetextT. Dannert, F. Jenko, Phys. Plasmas 12, 072309 (2005); D. Ernst, et al., Phys. Plasmas 11, 2637 (2004). Zonal flow suppression is consistent with the rate of EXB shearing from the ambient turbulence as well as the radial broadening of the spectra. Strong geodesic acoustic modes (GAMs) are generated along with zonal flows and the frequency of the GAMs agrees well with kinetic theory.ootnotetextT. Watari, et al., Phys. Plasmas 13, 062504 (2006). We further explore the nonlinear saturation mechanism when the zonal flows are not important. We find that when only a single toroidal mode (and its conjugate) is kept, reasonable nonlinear saturation is obtained. Investigating a range of n, modes with larger mode number n saturate at a higher level relative to lower n modes, indicating a turbulent inverse cascade process.

  19. Electromagnetic Gyrokinetic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wan, W

    2003-11-19

    A new electromagnetic kinetic electron {delta} particle simulation model has been demonstrated to work well at large values of plasma {beta} times the ion-to-electron mass ratio. The simulation is three-dimensional using toroidal flux-tube geometry and includes electron-ion collisions. The model shows accurate shear Alfven wave damping and microtearing physics. Zonal flows with kinetic electrons are found to be turbulent with the spectrum peaking at zero and having a width in the frequency range of the driving turbulence. This is in contrast with adiabatic electron cases where the zonal flows are near stationary, even though the linear behavior of the zonal flow is not significantly affected by kinetic electrons. zonal fields are found to be very weak, consistent with theoretical predictions for {beta} below the kinetic ballooning limit. Detailed spectral analysis of the turbulence data is presented in the various limits.

  20. A multi-species collisional operator for full-F gyrokinetics

    Science.gov (United States)

    Estève, D.; Garbet, X.; Sarazin, Y.; Grandgirard, V.; Cartier-Michaud, T.; Dif-Pradalier, G.; Ghendrih, P.; Latu, G.; Norscini, C.

    2015-12-01

    A linearized multi-species collision operator has been developed for an efficient implementation in gyrokinetic codes. This operator satisfies the main expected properties: particle, momentum, and energy conservation, and existence of an H-theorem. A gyrokinetic version is then calculated, which involves derivatives with respect to the gyrocenter position, parallel velocity, and magnetic momentum. An isotropic version in the velocity space can be constructed for the specific problem of trace impurities colliding with a main species. A simpler version that involves derivatives with parallel velocity only has been developed. This reduced version has been implemented in the GYSELA gyrokinetic code, and is shown to comply with particle, momentum, and energy conservation laws. Moreover, the interspecies relaxation rates for momentum and energy agree very well with the theoretical values.

  1. A multi-species collisional operator for full-F gyrokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Estève, D.; Garbet, X.; Sarazin, Y.; Grandgirard, V.; Cartier-Michaud, T.; Dif-Pradalier, G.; Ghendrih, P.; Latu, G.; Norscini, C. [CEA, IRFM, F-13108 St. Paul-lez-Durance cedex (France)

    2015-12-15

    A linearized multi-species collision operator has been developed for an efficient implementation in gyrokinetic codes. This operator satisfies the main expected properties: particle, momentum, and energy conservation, and existence of an H-theorem. A gyrokinetic version is then calculated, which involves derivatives with respect to the gyrocenter position, parallel velocity, and magnetic momentum. An isotropic version in the velocity space can be constructed for the specific problem of trace impurities colliding with a main species. A simpler version that involves derivatives with parallel velocity only has been developed. This reduced version has been implemented in the GYSELA gyrokinetic code, and is shown to comply with particle, momentum, and energy conservation laws. Moreover, the interspecies relaxation rates for momentum and energy agree very well with the theoretical values.

  2. A high-order electromagnetic gyrokinetic model

    CERN Document Server

    Miyato, N

    2013-01-01

    A high-order extension is presented for the electromagnetic gyrokinetic formulation in which the parallel canonical momentum is taken as one of phase space coordinates. The high-order displacement vector associated with the guiding-center transformation should be considered in the long wavelength regime. This yields addtional terms in the gyrokinetic Hamiltonian which lead to modifications to the gyrokinetic Poisson and Amp\\`ere equations. In addition, the high-order piece of the guiding-center transformation for the parallel canonical momentum should be also kept in the electromagnetic model. The high-order piece contains the Ba\\~nos drift effect and further modifies the gyrokinetic Amp\\`ere equation.

  3. Equilibrium fluctuation energy of gyrokinetic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Krommes, J.A.; Lee, W.W.; Oberman, C.

    1985-11-01

    The thermal equilibrium electric field fluctuation energy of the gyrokinetic model of magnetized plasma is computed, and found to be smaller than the well-known result (k)/8..pi.. = 1/2T/(1 + (klambda/sub D/)/sup 2/) valid for arbitrarily magnetized plasmas. It is shown that, in a certain sense, the equilibrium electric field energy is minimum in the gyrokinetic regime. 13 refs., 2 figs.

  4. Neoclassical equilibrium in gyrokinetic simulations

    Science.gov (United States)

    Garbet, X.; Dif-Pradalier, G.; Nguyen, C.; Sarazin, Y.; Grandgirard, V.; Ghendrih, Ph.

    2009-06-01

    This paper presents a set of model collision operators, which reproduce the neoclassical equilibrium and comply with the constraints of a full-f global gyrokinetic code. The assessment of these operators is based on an entropy variational principle, which allows one to perform a fast calculation of the neoclassical diffusivity and poloidal velocity. It is shown that the force balance equation is recovered at lowest order in the expansion parameter, the normalized gyroradius, hence allowing one to calculate correctly the radial electric field. Also, the conventional neoclassical transport and the poloidal velocity are reproduced in the plateau and banana regimes. The advantages and drawbacks of the various model operators are discussed in view of the requirements for neoclassical and turbulent transport.

  5. GYSELA, a full-f global gyrokinetic Semi-Lagrangian code for ITG turbulence simulations

    Science.gov (United States)

    Grandgirard, V.; Sarazin, Y.; Garbet, X.; Dif-Pradalier, G.; Ghendrih, Ph.; Crouseilles, N.; Latu, G.; Sonnendrücker, E.; Besse, N.; Bertrand, P.

    2006-11-01

    This work addresses non-linear global gyrokinetic simulations of ion temperature gradient (ITG) driven turbulence with the GYSELA code. The particularity of GYSELA code is to use a fixed grid with a Semi-Lagrangian (SL) scheme and this for the entire distribution function. The 4D non-linear drift-kinetic version of the code already showns the interest of such a SL method which exhibits good properties of energy conservation in non-linear regime as well as an accurate description of fine spatial scales. The code has been upgrated to run 5D simulations of toroidal ITG turbulence. Linear benchmarks and non-linear first results prove that semi-lagrangian codes can be a credible alternative for gyrokinetic simulations.

  6. Delta F=2 Observables and Fine-Tuning in a Warped Extra Dimension with Custodial Protection

    CERN Document Server

    Blanke, Monika; Duling, Bjoern; Gori, Stefania; Weiler, Andreas

    2009-01-01

    We present a complete study of Delta S = 2 and Delta B = 2 processes in warped extra dimensional models with a custodial protection of Z b_L anti-b_L, including epsilon_K, Delta M_K, Delta M_s, Delta M_d, A_SL^q, Delta Gamma_q, A_CP(B_d -> psi K_S) and A_CP(B_s -> psi phi). These processes are affected by tree level contributions from Kaluza-Klein gluons and new heavy electroweak gauge bosons Z_H and Z', with the latter implied by the custodial protection mechanism. We confirm recent findings that the fully anarchic approach where all the hierarchies in quark masses and weak mixing angles are geometrically explained seems implausible and we confirm that the KK mass scale M_KK generically has to be at least ~ 20TeV to satisfy the epsilon_K constraint. We point out, however, that there exist regions in parameter space with only modest fine-tuning in the 5D Yukawa couplings which satisfy all existing Delta F = 2 and electroweak precision constraints for scales M_KK ~ 3TeV in reach of the LHC. Simultaneously we f...

  7. Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.

    Directory of Open Access Journals (Sweden)

    Adrian W R Serohijos

    2008-02-01

    Full Text Available The absence of a functional ATP Binding Cassette (ABC protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR from apical membranes of epithelial cells is responsible for cystic fibrosis (CF. Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1. Biochemical and cell biological studies show that the DeltaF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the DeltaF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-DeltaF508 variants exhibited significantly higher folding probabilities than the original NBD1-DeltaF508, thereby partially rescuing folding ability of the NBD1-DeltaF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of

  8. Dynamic Procedure for Filtered Gyrokinetic Simulations

    CERN Document Server

    Morel, Pierre; Albrecht-Marc, Michel; Carati, Daniele; Merz, Florian; Görler, Tobias; Jenko, Frank

    2011-01-01

    Large Eddy Simulations (LES) of gyrokinetic plasma turbulence are investigated as interesting candidates to decrease the computational cost. A dynamic procedure is implemented in the GENE code, allowing for dynamic optimization of the free parameters of the LES models (setting the amplitudes of dissipative terms). Employing such LES methods, one recovers the free energy and heat flux spectra obtained from highly resolved Direct Numerical Simulations (DNS). Systematic comparisons are performed for different values of the temperature gradient and magnetic shear, parameters which are of prime importance in Ion Temperature Gradient (ITG) driven turbulence. Moreover, the degree of anisotropy of the problem, that can vary with parameters, can be adapted dynamically by the method that shows Gyrokinetic Large Eddy Simulation (GyroLES) to be a serious candidate to reduce numerical cost of gyrokinetic solvers.

  9. Second order Gyrokinetic theory for Particle-In-Cell codes

    CERN Document Server

    Tronko, Natalia; Sonnendruecker, Eric

    2016-01-01

    The main idea of Gyrokinetic dynamical reduction consists in systematical removing of fastest scale of motion (the gyro motion) from plasma's dynamics, resulting in a considerable model simplification and gain of computing time. Gyrokinetic Maxwell-Vlasov system is broadly implemented in nowadays numerical experiments for modeling strongly magnetized plasma (both laboratory and astrophysical). Different versions of reduced set of equations exist depending on the construction of the Gyrokinetic reduction procedure and approximations assumed while their derivation. The purpose of this paper is to explicitly show the connection between the general second order gyrokinetic Maxwell-Vlasov system issued from the Modern Gyrokinetic theory derivation and the model currently implemented in global electromagnetic Particle in Cell code ORB5. Strictly necessary information about the Modern Gyrokinetic formalism is given together with the consistent derivation of the gyrokinetic Maxwell-Vlasov equations from the first pri...

  10. Intercode comparison of gyrokinetic global electromagnetic modes

    Science.gov (United States)

    Görler, T.; Tronko, N.; Hornsby, W. A.; Bottino, A.; Kleiber, R.; Norscini, C.; Grandgirard, V.; Jenko, F.; Sonnendrücker, E.

    2016-07-01

    Aiming to fill a corresponding lack of sophisticated test cases for global electromagnetic gyrokinetic codes, a new hierarchical benchmark is proposed. Starting from established test sets with adiabatic electrons, fully gyrokinetic electrons, and electrostatic fluctuations are taken into account before finally studying the global electromagnetic micro-instabilities. Results from up to five codes involving representatives from different numerical approaches as particle-in-cell methods, Eulerian and Semi-Lagrangian are shown. By means of spectrally resolved growth rates and frequencies and mode structure comparisons, agreement can be confirmed on ion-gyro-radius scales, thus providing confidence in the correct implementation of the underlying equations.

  11. Direct identification of predator-prey dynamics in gyrokinetic simulations

    Science.gov (United States)

    Kobayashi, Sumire; Gürcan, Özgür D.; Diamond, Patrick H.

    2015-09-01

    The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varying level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.

  12. Direct identification of predator-prey dynamics in gyrokinetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gürcan, Özgür D [Laboratoire de Physique des Plasmas, CNRS, Paris-Sud, Ecole Polytechnique, UMR7648, F-91128 Palaiseau (France); Diamond, Patrick H. [University of California, San Diego, La Jolla, California 92093-0319 (United States)

    2015-09-15

    The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varying level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.

  13. Including collisions in gyrokinetic tokamak and stellarator simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kauffmann, Karla

    2012-04-10

    Particle and heat transport in fusion devices often exceed the neoclassical prediction. This anomalous transport is thought to be produced by turbulence caused by microinstabilities such as ion and electron-temperature-gradient (ITG/ETG) and trapped-electron-mode (TEM) instabilities, the latter ones known for being strongly influenced by collisions. Additionally, in stellarators, the neoclassical transport can be important in the core, and therefore investigation of the effects of collisions is an important field of study. Prior to this thesis, however, no gyrokinetic simulations retaining collisions had been performed in stellarator geometry. In this work, collisional effects were added to EUTERPE, a previously collisionless gyrokinetic code which utilizes the {delta}f method. To simulate the collisions, a pitch-angle scattering operator was employed, and its implementation was carried out following the methods proposed in [Takizuka and Abe 1977, Vernay Master's thesis 2008]. To test this implementation, the evolution of the distribution function in a homogeneous plasma was first simulated, where Legendre polynomials constitute eigenfunctions of the collision operator. Also, the solution of the Spitzer problem was reproduced for a cylinder and a tokamak. Both these tests showed that collisions were correctly implemented and that the code is suited for more complex simulations. As a next step, the code was used to calculate the neoclassical radial particle flux by neglecting any turbulent fluctuations in the distribution function and the electric field. Particle fluxes in the neoclassical analytical regimes were simulated for tokamak and stellarator (LHD) configurations. In addition to the comparison with analytical fluxes, a successful benchmark with the DKES code was presented for the tokamak case, which further validates the code for neoclassical simulations. In the final part of the work, the effects of collisions were investigated for slab and toroidal

  14. Global full-f gyrokinetic simulations of plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Grandgirard, V [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Sarazin, Y [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Angelino, P [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Bottino, A [Max Plank Institut fr Plasmaphysik, IPP-EURATOM AssociationGarching (Germany); Crouseilles, N [IRMA, Universite Louis Pasteur, 7, rue Rene Descartes, 67084 Strasbourg Cedex (France); Darmet, G [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Dif-Pradalier, G [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Garbet, X [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Ghendrih, Ph [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Jolliet, S [CRPP, Association Euratom-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Latu, G [LaBRI, 341 Cours Liberation, 33405 Talence Cedex (France); Sonnendruecker, E [IRMA, Universite Louis Pasteur, 7, rue Rene Descartes, 67084 Strasbourg Cedex (France); Villard, L [CRPP, Association Euratom-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland)

    2007-12-15

    Critical physical issues can be specifically tackled with the global full-f gyrokinetic code GYSELA. Three main results are presented. First, the self-consistent treatment of equilibrium and fluctuations highlights the competition between two compensation mechanisms for the curvature driven vertical charge separation, namely, parallel flow and polarization. The impact of the latter on the turbulent transport is discussed. In the non-linear regime, the benchmark with the Particle-In-Cell code ORB5 looks satisfactory. Second, the transport scaling with {rho}{sub *} is found to depend both on {rho}{sub *} itself and on the distance to the linear threshold. Finally, a statistical steady-state turbulent regime is achieved in a reduced version of GYSELA by prescribing a constant heat source.

  15. Global full-f gyrokinetic simulations of plasma turbulence

    Science.gov (United States)

    Grandgirard, V.; Sarazin, Y.; Angelino, P.; Bottino, A.; Crouseilles, N.; Darmet, G.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, Ph; Jolliet, S.; Latu, G.; Sonnendrücker, E.; Villard, L.

    2007-12-01

    Critical physical issues can be specifically tackled with the global full-f gyrokinetic code GYSELA. Three main results are presented. First, the self-consistent treatment of equilibrium and fluctuations highlights the competition between two compensation mechanisms for the curvature driven vertical charge separation, namely, parallel flow and polarization. The impact of the latter on the turbulent transport is discussed. In the non-linear regime, the benchmark with the Particle-In-Cell code ORB5 looks satisfactory. Second, the transport scaling with ρ* is found to depend both on ρ* itself and on the distance to the linear threshold. Finally, a statistical steady-state turbulent regime is achieved in a reduced version of GYSELA by prescribing a constant heat source.

  16. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, G. M.; Candy, J. [General Atomics, San Diego, California 92186 (United States); Howard, N. T. [Oak Ridge Institute for Science Education (ORISE), Oak Ridge, Tennessee 37831 (United States); Holland, C. [University of California San Diego, San Diego, California 92093 (United States)

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the threshold for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.

  17. Beyond scale separation in gyrokinetic turbulence

    Science.gov (United States)

    Garbet, X.; Sarazin, Y.; Grandgirard, V.; Dif-Pradalier, G.; Darmet, G.; Ghendrih, Ph.; Angelino, P.; Bertrand, P.; Besse, N.; Gravier, E.; Morel, P.; Sonnendrücker, E.; Crouseilles, N.; Dischler, J.-M.; Latu, G.; Violard, E.; Brunetti, M.; Brunner, S.; Lapillonne, X.; Tran, T.-M.; Villard, L.; Boulet, M.

    2007-09-01

    This paper presents the results obtained with a set of gyrokinetic codes based on a semi-Lagrangian scheme. Several physics issues are addressed, namely, the comparison between fluid and kinetic descriptions, the intermittent behaviour of flux driven turbulence and the role of large scale flows in toroidal ITG turbulence. The question of the initialization of full-F simulations is also discussed.

  18. Simulating the effects of stellarator geometry on gyrokinetic drift-wave turbulence

    Science.gov (United States)

    Baumgaertel, Jessica Ann

    Nuclear fusion is a clean, safe form of energy with abundant fuel. In magnetic fusion energy (MFE) experiments, the plasma fuel is confined by magnetic fields at very high temperatures and densities. One fusion reactor design is the non-axisymmetric, torus-shaped stellarator. Its fully-3D fields have advantages over the simpler, better-understood axisymmetric tokamak, including the ability to optimize magnetic configurations for desired properties, such as lower transport (longer confinement time). Turbulence in the plasma can break MFE confinement. While turbulent transport is known to cause a significant amount of heat loss in tokamaks, it is a new area of research in stellarators. Gyrokinetics is a good mathematical model of the drift-wave instabilities that cause turbulence. Multiple gyrokinetic turbulence codes that had great success comparing to tokamak experiments are being converted for use with stellarator geometry. This thesis describes such adaptations of the gyrokinetic turbulence code, GS2. Herein a new computational grid generator and upgrades to GS2 itself are described, tested, and benchmarked against three other gyrokinetic codes. Using GS2, detailed linear studies using the National Compact Stellarator Experiment (NCSX) geometry were conducted. The first compares stability in two equilibria with different β=(plasma pressure)/(magnetic pressure). Overall, the higher β case was more stable than the lower β case. As high β is important for MFE experiments, this is encouraging. The second compares NCSX linear stability to a tokamak case. NCSX was more stable with a 20% higher critical temperature gradient normalized by the minor radius, suggesting that the fusion power might be enhanced by ˜ 50%. In addition, the first nonlinear, non-axisymmetric GS2 simulations are presented. Finally, linear stability of two locations in a W7-AS plasma were compared. The experimentally-measured parameters used were from a W7-AS shot in which measured heat fluxes

  19. A 5D gyrokinetic full- f global semi-Lagrangian code for flux-driven ion turbulence simulations

    Science.gov (United States)

    Grandgirard, V.; Abiteboul, J.; Bigot, J.; Cartier-Michaud, T.; Crouseilles, N.; Dif-Pradalier, G.; Ehrlacher, Ch.; Esteve, D.; Garbet, X.; Ghendrih, Ph.; Latu, G.; Mehrenberger, M.; Norscini, C.; Passeron, Ch.; Rozar, F.; Sarazin, Y.; Sonnendrücker, E.; Strugarek, A.; Zarzoso, D.

    2016-10-01

    This paper addresses non-linear gyrokinetic simulations of ion temperature gradient (ITG) turbulence in tokamak plasmas. The electrostatic GYSELA code is one of the few international 5D gyrokinetic codes able to perform global, full- f and flux-driven simulations. Its has also the numerical originality of being based on a semi-Lagrangian (SL) method. This reference paper for the GYSELA code presents a complete description of its multi-ion species version including: (i) numerical scheme, (ii) high level of parallelism up to 500k cores and (iii) conservation law properties.

  20. Gyrokinetic studies of the effect of beta on drift-wave stability in NCSX

    CERN Document Server

    Baumgaertel, J A; Mikkelsen, D R; Nunami, M; Xanthopoulos, P

    2012-01-01

    The gyrokinetic turbulence code GS2 was used to investigate the effects of plasma beta on linear, collisionless ion temperature gradient (ITG) modes and trapped electron modes (TEM) in National Compact Stellarator Experiment (NCSX) geometry. Plasma beta affects stability in two ways: through the equilibrium and through magnetic fluctuations. The first was studied here by comparing ITG and TEM stability in two NCSX equilibria of differing beta values, revealing that the high beta equilibrium was marginally more stable than the low beta equilibrium in the adiabatic-electron ITG mode case. However, the high beta case had a lower kinetic-electron ITG mode critical gradient. Electrostatic and electromagnetic ITG and TEM mode growth rate dependencies on temperature gradient and density gradient were qualitatively similar. The second beta effect is demonstrated via electromagnetic ITG growth rates' dependency on GS2's beta input parameter. A linear benchmark with gyrokinetic codes GENE and GKV-X is also presented.

  1. Gyrokinetic simulations of ETG Turbulence*

    Science.gov (United States)

    Nevins, William

    2005-10-01

    Recent gyrokinetic simulations of electron temperature gradient (ETG) turbulence [1,2] produced different results despite similar plasma parameters. Ref.[1] differs from Ref.[2] in that [1] eliminates magnetically trapped particles ( r/R=0 ), while [2] retains magnetically trapped particles ( r/R 0.18 ). Differences between [1] and [2] have been attributed to insufficient phase-space resolution and novel physics associated with toroidicity and/or global simulations[2]. We have reproduced the results reported in [2] using a flux-tube, particle-in-cell (PIC) code, PG3EQ[3], thereby eliminating global effects as the cause of the discrepancy. We observe late-time decay of ETG turbulence and the steady-state heat transport in agreement with [2], and show this results from discrete particle noise. Discrete particle noise is a numerical artifact, so both the PG3EQ simulations reported here and those reported in Ref.[2] have little to say about steady-state ETG turbulence and the associated anomalous electron heat transport. Our attempts to benchmark PIC and continuum[4] codes at the plasma parameters used in Ref.[2] produced very large, intermittent transport. We will present an alternate benchmark point for ETG turbulence, where several codes reproduce the same transport levels. Parameter scans about this new benchmark point will be used to investigate the parameter dependence of ETG transport and to elucidate saturation mechanisms proposed in Refs.[1,2] and elsewhere[5-7].*In collaboration with A. Dimits (LLNL), J. Candy, C. Estrada-Mila (GA), W. Dorland (U of MD), F. Jenko, T. Dannert (Max-Planck Institut), and G. Hammett (PPPL). Work at LLNL performed for US DOE under Contract W7405-ENG-48.[1] F. Jenko and W. Dorland, PRL 89, 225001 (2002).[2] Z. Lin et al, 2004 Sherwood Mtg.; 2004 TTF Mtg.; Fusion Energy 2004 (IAEA, Vienna, 2005); Bull. Am. Phys. Soc. (November, 2004); 2005 TTF Mtg.; 2005 Sherwood Mtg.; Z. Lin, et al, Phys. Plasmas 12, 056125 (2005). [3] A.M. Dimits

  2. Gyrokinetic theory for arbitrary wavelength electromagnetic modes in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Qin, H.; Tang, W.M.; Rewoldt, G.

    1997-10-15

    A linear gyrokinetic system for arbitrary wavelength electromagnetic modes is developed. A wide range of modes in inhomogeneous plasmas, such as the internal kink modes, the toroidal Alfven eigenmode (TAE) modes, and the drift modes, can be recovered from this system. The inclusion of most of the interesting physical factors into a single framework enables one to look at many familiar modes simultaneously and thus to study the modifications of and the interactions between them in a systematic way. Especially, the authors are able to investigate self-consistently the kinetic MHD phenomena entirely from the kinetic side. Phase space Lagrangian Lie perturbation methods and a newly developed computer algebra package for vector analysis in general coordinate system are utilized in the analytical derivation. In tokamak geometries, a 2D finite element code has been developed and tested. In this paper, they present the basic theoretical formalism and some of the preliminary results.

  3. Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.X.; Lin, Z.; Tang, W.M.; Lee, W.W.; Ethier, S.; Lewandowski, J.L.V.; Rewoldt, G.; Hahm, T.S.; Manickam, J.

    2006-01-01

    A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.

  4. A very general electromagnetic gyrokinetic formalism

    CERN Document Server

    McMillan, Ben F

    2015-01-01

    We derive a gyrokinetic formalism which is very generally valid: the ordering allows both large inhomogeneities in plasma flow and magnetic field at long wavelength, like typical drift-kinetic theories, as well as fluctuations at the gyro-scale. The underlying approach is to order the vorticity to be small, and to assert that the timescales in the local plasma frame are long compared to the gyrofrequency. Unlike most other derivations, we do not treat the long and short wavelength components of the fluctuating fields separately; the single-field description permits a direct evaluation of the gyrokinetic Ampere and Poisson equations across the full range of length scales, and enables intermediate-scale phenomena to be consistently handled.

  5. Global gyrokinetic simulation of tokamak transport

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, G.; Horton, W.; Kishimoto, Y.; LeBrun, M.J.; Tajima, T. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies]|[Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)

    1998-10-01

    A kinetic simulation code based on the gyrokinetic ion dynamics in global general metric (including a tokamak with circular or noncircular cross-section) has been developed. This gyrokinetic simulation is capable of examining the global and semi-global driftwave structures and their associated transport in a tokamak plasma. The authors investigate the property of the ion temperature gradient (ITG) or {eta}{sub i}({eta}{sub i} {equivalent_to} {partial_derivative}{ell}nT{sub i}/{partial_derivative}{ell}n n{sub i}) driven drift waves in a tokamak plasma. The emergent semi-global drift wave modes give rise to thermal transport characterized by the Bohm scaling.

  6. Chasing Hamiltonian structure in gyrokinetic theory

    CERN Document Server

    Burby, J W

    2015-01-01

    Hamiltonian structure is pursued and uncovered in collisional and collisionless gyrokinetic theory. A new Hamiltonian formulation of collisionless electromagnetic theory is presented that is ideally suited to implementation on modern supercomputers. The method used to uncover this structure is described in detail and applied to a number of examples, where several well-known plasma models are endowed with a Hamiltonian structure for the first time. The first energy- and momentum-conserving formulation of full-F collisional gyrokinetics is presented. In an effort to understand the theoretical underpinnings of this result at a deeper level, a \\emph{stochastic} Hamiltonian modeling approach is presented and applied to pitch angle scattering. Interestingly, the collision operator produced by the Hamiltonian approach is equal to the Lorentz operator plus higher-order terms, but does not exactly conserve energy. Conversely, the classical Lorentz collision operator is provably not Hamiltonian in the stochastic sense.

  7. Free energy cascade in gyrokinetic turbulence

    CERN Document Server

    Navarro, A Bañón; Albrecht-Marc, M; Merz, F; Görler, T; Jenko, F; Carati, D

    2010-01-01

    In gyrokinetic theory, the quadratic nonlinearity is known to play an important role in the dynamics by redistributing (in a conservative fashion) the free energy between the various active scales. In the present study, the free energy transfer is analyzed for the case of ion temperature gradient driven turbulence. It is shown that it shares many properties with the energy transfer in fluid turbulence. In particular, one finds a forward (from large to small scales), extremely local, and self-similar cascade of free energy in the plane perpendicular to the background magnetic field. These findings shed light on some fundamental properties of plasma turbulence, and encourage the development of large eddy simulation techniques for gyrokinetics.

  8. Neoclassical physics in full distribution function gyrokinetics

    Science.gov (United States)

    Dif-Pradalier, G.; Diamond, P. H.; Grandgirard, V.; Sarazin, Y.; Abiteboul, J.; Garbet, X.; Ghendrih, Ph.; Latu, G.; Strugarek, A.; Ku, S.; Chang, C. S.

    2011-06-01

    Treatment of binary Coulomb collisions when the full gyrokinetic distribution function is evolved is discussed here. A spectrum of different collision operators is presented, differing through both the physics that can be addressed and the numerics they are based on. Eulerian-like (semi-Lagrangian) and particle in cell (PIC) (Monte-Carlo) schemes are successfully cross-compared, and a detailed confrontation to neoclassical theory is shown.

  9. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  10. Continuum Edge Gyrokinetic Theory and Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X Q; Xiong, Z; Dorr, M R; Hittinger, J A; Bodi, K; Candy, J; Cohen, B I; Cohen, R H; Colella, P; Kerbel, G D; Krasheninnikov, S; Nevins, W M; Qin, H; Rognlien, T D; Snyder, P B; Umansky, M V

    2007-01-09

    The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential, and mirror ratio; and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regime with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the banana regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL. (5) Our 5D gyrokinetic formulation yields a set of nonlinear electrostatic gyrokinetic equations that are for both neoclassical and turbulence simulations.

  11. Gyrokinetic studies of core turbulence features in ASDEX Upgrade H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, A. Bañón, E-mail: banon@physics.ucla.edu; Told, D. [Max-Planck-Institut für Plasmaphysik, Boltzmannstrase 2, 85748 Garching (Germany); Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Happel, T.; Görler, T.; Abiteboul, J.; Bustos, A.; Doerk, H. [Max-Planck-Institut für Plasmaphysik, Boltzmannstrase 2, 85748 Garching (Germany); Jenko, F. [Max-Planck-Institut für Plasmaphysik, Boltzmannstrase 2, 85748 Garching (Germany); Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Max-Planck/Princeton Center for Plasma Physics (United States)

    2015-04-15

    Gyrokinetic validation studies are crucial for developing confidence in the model incorporated in numerical simulations and thus improving their predictive capabilities. As one step in this direction, we simulate an ASDEX Upgrade discharge with the GENE code, and analyze various fluctuating quantities and compare them to experimental measurements. The approach taken is the following. First, linear simulations are performed in order to determine the turbulence regime. Second, the heat fluxes in nonlinear simulations are matched to experimental fluxes by varying the logarithmic ion temperature gradient within the expected experimental error bars. Finally, the dependence of various quantities with respect to the ion temperature gradient is analyzed in detail. It is found that density and temperature fluctuations can vary significantly with small changes in this parameter, thus making comparisons with experiments very sensitive to uncertainties in the experimental profiles. However, cross-phases are more robust, indicating that they are better observables for comparisons between gyrokinetic simulations and experimental measurements.

  12. Overview of gyrokinetic studies of finite-β microturbulence

    Science.gov (United States)

    Terry, P. W.; Carmody, D.; Doerk, H.; Guttenfelder, W.; Hatch, D. R.; Hegna, C. C.; Ishizawa, A.; Jenko, F.; Nevins, W. M.; Predebon, I.; Pueschel, M. J.; Sarff, J. S.; Whelan, G. G.

    2015-10-01

    Recent results on electromagnetic turbulence from gyrokinetic studies in different magnetic configurations are overviewed, detailing the physics of electromagnetic turbulence and transport, and the effect of equilibrium magnetic field scale lengths. Ion temperature gradient (ITG) turbulence is shown to produce magnetic stochasticity through nonlinear excitation of linearly stable tearing-parity modes. The excitation, which is catalyzed by the zonal flow, produces an electron heat flux proportional to β2 that deviates markedly from quasilinear theory. Above a critical beta known as the non-zonal transition (NZT), the magnetic fluctuations disable zonal flows by allowing electron streaming that shorts zonal potential between flux surfaces. This leads to a regime of very high transport levels. Kinetic ballooning mode (KBM) saturation is described. For tokamaks saturation involves twisted structures arising from magnetic shear; for helical plasmas oppositely inclined convection cells interact by mutual shearing. Microtearing modes are unstable in the magnetic geometry of tokamaks and the reversed field pinch (RFP). In NSTX instability requires finite collisionality, large beta, and is favored by increasing magnetic shear and decreasing safety factor. In the RFP, a new branch of microtearing with finite growth rate at vanishing collisionality is shown from analytic theory to require the electron grad-B/curvature drift resonance. However, gyrokinetic modeling of experimental MST RFP discharges at finite beta reveals turbulence that is electrostatic, has large zonal flows, and a large Dimits shift. Analysis shows that the shorter equilibrium magnetic field scale lengths increase the critical gradients associated with the instability of trapped electron modes, ITG and microtearing, while increasing beta thresholds for KBM instability and the NZT.

  13. Non-physical momentum sources in slab geometry gyrokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Felix I; Catto, Peter J, E-mail: f.parradiaz@physics.ox.ac.u, E-mail: catto@psfc.mit.ed [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States)

    2010-08-15

    We investigate momentum transport in the Hamiltonian electrostatic gyrokinetic formulation of Dubin et al (1983 Phys. Fluids 26 3524). We prove that the long wavelength electric field obtained from the gyrokinetic quasineutrality introduces a non-physical momentum source in the low flow ordering.

  14. Non-physical momentum sources in slab geometry gyrokinetics

    Science.gov (United States)

    Parra, Felix I.; Catto, Peter J.

    2010-08-01

    We investigate momentum transport in the Hamiltonian electrostatic gyrokinetic formulation of Dubin et al (1983 Phys. Fluids 26 3524). We prove that the long wavelength electric field obtained from the gyrokinetic quasineutrality introduces a non-physical momentum source in the low flow ordering.

  15. Perturbative renormalization of $\\Delta F = 2$ four-fermion operators with the chirally rotated Schr\\"odinger functional

    CERN Document Server

    Brida, Mattia Dalla; Vilaseca, Pol

    2016-01-01

    The chirally rotated Schr\\"odinger functional ($\\chi$SF) renders the mechanism of automatic $O(a)$ improvement compatible with Schr\\"odinger functional (SF) renormalization schemes. Here we define a family of renormalization schemes based on the $\\chi$SF for a complete basis of $\\Delta F = 2$ parity-odd four-fermion operators. We compute the corresponding scale-dependent renormalization constants to one-loop order in perturbation theory and obtain their NLO anomalous dimensions by matching to the $\\overline{\\textrm{MS}}$ scheme. Due to automatic $O(a)$ improvement, once the $\\chi$SF is renormalized and improved at the boundaries, the step scaling functions (SSF) of these operators approach their continuum limit with $O(a^{2})$ corrections without the need of operator improvement.

  16. Global full-f gyrokinetic simulations with GYSELA

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y.; Grandgirard, V.; Darmet, G.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.

    2007-07-01

    The gyrokinetic description of turbulence allows one to investigate the impact of wave particle resonances on the transport level, as well as a rigorous treatment of the dynamics of zonal flows, which are known to contribute to the turbulence saturation. Various numerical approaches can be envisaged to tackle the problem. The GYSELA code is based on a semi- Lagrangian scheme, which takes benefit from both the Eulerian and PIC approaches. The full ion distribution function is considered, allowing for the self-consistent treatment of equilibrium and fluctuations. Several implications of such an approach will be highlighted. First, in toroidal geometry, properly choosing the initial state reveals crucial in those simulations where the equilibrium and the fluctuations are resolved simultaneously. Especially, previous results report the self generation of large scale flows if the initial state departs from an equilibrium. Here, the dynamics of these flow is derived analytically, showing that an up-down asymmetric geodesic acoustic mode builds up first, linearly in time. It results from the vertical charge imbalance due to the magnetic field inhomogeneity. 5D simulations confirm these analytical results. Conversely, when initialising with an equilibrium distribution function, i.e. depending on the motion invariants only, the vertical charge separation is naturally compensated by parallel flows Second, when scale separation between equilibrium and fluctuations is no longer assumed, the mean profile relaxation competes with the non linear couplings, which govern direct or inverse energy cascades, to saturate the turbulence level. In the 5D version of GYSELA, modelling the electrostatic branch of the Ion Temperature Gradient turbulence, coupling to two thermal baths located at the radial boundaries provides the free energy to the system. While the linear regime allows one to recover the Cyclone base case, the non-linear turbulent regime exhibits the complexity of boundary

  17. On Higher-order Corrections to Gyrokinetic Vlasov-Poisson Equations in the Long Wavelength Limit

    Energy Technology Data Exchange (ETDEWEB)

    W.W. Lee and R.A. Kolesnikov

    2009-02-17

    In this paper, we present a simple iterative procedure for obtaining the higher order E x B and dE/dt (polarization) drifts associated with the gyrokinetic Vlasov-Poisson equations in the long wavelength limit of k⊥ρi ~ o(ε) and k⊥L ~ o(1), where ρi is the ion gyroradius, L is the scale length of the background inhomogeneity and ε is a smallness parameter. It can be shown that these new higher order k⊥ρi terms, which are also related to the higher order perturbations of the electrostatic potential Φ, should have negligible effects on turbulent and neoclassical transport in tokamaks, regardless of the form of the background distribution and the amplitude of the perturbation. To address further the issue of a non-Maxwellian plasma, higher order finite Larmor radius terms in the gyrokinetic Poisson's equation have been studied and shown to be unimportant as well. On the other hand, the terms of o(k2⊥ρi2) ~ o(ε) and k⊥L ~ o(1) can indeed have impact on microturbulence, especially in the linear stage, such as those arising from the difference between the guiding center and the gyrocenter densities due to the presence of the background gradients. These results will be compared with a recent study questioning the validity of the commonly used gyrokinetic equations for long time simulations.

  18. A very general electromagnetic gyrokinetic formalism

    Science.gov (United States)

    McMillan, B. F.; Sharma, A.

    2016-09-01

    We derive a gyrokinetic formalism which is very generally valid: the ordering allows both large inhomogeneities in plasma flow and magnetic field at long wavelength, such as typical drift-kinetic theories, as well as fluctuations at the gyro-scale. The underlying approach is to order the vorticity to be small, and to assert that the timescales in the local plasma frame are long compared to the gyrofrequency. Unlike most other derivations, we do not treat the long and short wavelength components of the fluctuating fields separately; the single-field description defines the particle motion and their interaction with the electromagnetic field at small-scale, the system-scale, and intermediate length scales in a unified fashion. As in earlier literature, the work consists of identifying a coordinate system where the gyroangle-dependent terms are small, and using a near-unity transform to systematically find a set of coordinates where the gyroangle dependence vanishes. We derive a gyrokinetic Lagrangian which is valid where the vorticity | ∇ × ( E × B / B ) | is small compared to the gyrofrequency Ω, and the magnetic field scale length is long compared to the gyroradius; we also require that time variation be slow in an appropriately chosen reference frame. This appears to be a minimum set of constraints on a gyrokinetic theory and is substantially more general than earlier approaches. It is the general-geometry electromagnetic extension of Dimits, Phys. Plasmas 17, 055901 (2010) (which is an electrostatic formalism with a homogeneous background magnetic field). This approach also does not require a separate treatment of fluctuating and background components of the magnetic field, unlike much of the previous literature. As a consequence, the "cross terms" due to a combination of long- and short-wavelength variation, which were ignored in the earlier work (but derived in a more restrictive ordering in Parra and Calvo, Plasma Phys. Controlled Fusion 53, 045001 (2011

  19. Nonlinear Gyrokinetic Theory With Polarization Drift

    Energy Technology Data Exchange (ETDEWEB)

    L. Wang and T.S. Hahm

    2010-03-25

    A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)] .

  20. Second order gyrokinetic theory for particle-in-cell codes

    Science.gov (United States)

    Tronko, Natalia; Bottino, Alberto; Sonnendrücker, Eric

    2016-08-01

    The main idea of the gyrokinetic dynamical reduction consists in a systematical removal of the fast scale motion (the gyromotion) from the dynamics of the plasma, resulting in a considerable simplification and a significant gain of computational time. The gyrokinetic Maxwell-Vlasov equations are nowadays implemented in for modeling (both laboratory and astrophysical) strongly magnetized plasmas. Different versions of the reduced set of equations exist, depending on the construction of the gyrokinetic reduction procedure and the approximations performed in the derivation. The purpose of this article is to explicitly show the connection between the general second order gyrokinetic Maxwell-Vlasov system issued from the modern gyrokinetic theory and the model currently implemented in the global electromagnetic Particle-in-Cell code ORB5. Necessary information about the modern gyrokinetic formalism is given together with the consistent derivation of the gyrokinetic Maxwell-Vlasov equations from first principles. The variational formulation of the dynamics is used to obtain the corresponding energy conservation law, which in turn is used for the verification of energy conservation diagnostics currently implemented in ORB5. This work fits within the context of the code verification project VeriGyro currently run at IPP Max-Planck Institut in collaboration with others European institutions.

  1. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ku, S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hager, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Chang, C. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kwon, J. M. [National Fusion Research Institute, Republic of Korea; Parker, S. E. [University of Colorado Boulder, USA

    2016-06-01

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.

  2. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ku, S., E-mail: sku@pppl.gov [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Hager, R.; Chang, C.S. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kwon, J.M. [National Fusion Research Institute (Korea, Republic of); Parker, S.E. [University of Colorado Boulder (United States)

    2016-06-15

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.

  3. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    Science.gov (United States)

    Ku, S.; Hager, R.; Chang, C. S.; Kwon, J. M.; Parker, S. E.

    2016-06-01

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation - e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others - can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function - driven by ionization, charge exchange and wall loss - is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.

  4. Impact of the [delta]F508 Mutation in First Nucleotide-binding Domain of Human Cystic Fibrosis Transmembrane Conductance Regulator on Domain Folding and Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Hal A.; Zhao, Xun; Wang, Chi; Sauder, J. Michael; Rooney, Isabelle; Noland, Brian W.; Lorimer, Don; Kearins, Margaret C.; Conners, Kris; Condon, Brad; Maloney, Peter C.; Guggino, William B.; Hunt, John F.; Emtage, Spencer (SG); (Columbia); (JHU)

    2010-07-19

    Cystic fibrosis is caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR), commonly the deletion of residue Phe-508 (DeltaF508) in the first nucleotide-binding domain (NBD1), which results in a severe reduction in the population of functional channels at the epithelial cell surface. Previous studies employing incomplete NBD1 domains have attributed this to aberrant folding of DeltaF508 NBD1. We report structural and biophysical studies on complete human NBD1 domains, which fail to demonstrate significant changes of in vitro stability or folding kinetics in the presence or absence of the DeltaF508 mutation. Crystal structures show minimal changes in protein conformation but substantial changes in local surface topography at the site of the mutation, which is located in the region of NBD1 believed to interact with the first membrane spanning domain of CFTR. These results raise the possibility that the primary effect of DeltaF508 is a disruption of proper interdomain interactions at this site in CFTR rather than interference with the folding of NBD1. Interestingly, increases in the stability of NBD1 constructs are observed upon introduction of second-site mutations that suppress the trafficking defect caused by the DeltaF508 mutation, suggesting that these suppressors might function indirectly by improving the folding efficiency of NBD1 in the context of the full-length protein. The human NBD1 structures also solidify the understanding of CFTR regulation by showing that its two protein segments that can be phosphorylated both adopt multiple conformations that modulate access to the ATPase active site and functional interdomain interfaces.

  5. Large scale dynamics in flux driven gyrokinetic turbulence

    Science.gov (United States)

    Sarazin, Y.; Grandgirard, V.; Abiteboul, J.; Allfrey, S.; Garbet, X.; Ghendrih, Ph.; Latu, G.; Strugarek, A.; Dif-Pradalier, G.

    2010-05-01

    The turbulent transport governed by the toroidal ion temperature gradient driven instability is analysed with the full-f global gyrokinetic code GYSELA (Grandgirard et al 2007 Plasma Phys. Control. Fusion 49 B173) when the system is driven by a prescribed heat source. Weak, yet finite, collisionality governs a neoclassical ion heat flux that can compete with the turbulent driven transport. In turn, the ratio of turbulent to neoclassical transport increases with the source magnitude, resulting in the degradation of confinement with additional power. The turbulent flux exhibits avalanche-like events, characterized by intermittent outbursts which propagate ballistically roughly at the diamagnetic velocity. Locally, the temperature gradient can drop well below the linear stability threshold. Large outbursts are found to correlate with streamer-like structures of the convection cells albeit their Fourier spectrum departs significantly from that of the most unstable linear modes. Last, the poloidal rotation of turbulent eddies is essentially governed by the radial electric field at moderate density gradient.

  6. Non-Maxwellian background effects in gyrokinetic simulations with GENE

    Science.gov (United States)

    Di Siena, A.; Görier, T.; Doerk, H.; Citrin, J.; Johnson, T.; Schneider, M.; Poli, E.; Contributors, JET

    2016-11-01

    The interaction between fast particles and core turbulence has been established as a central issue for a tokamak reactor. Recent results predict significant enhancement of electromagnetic stabilisation of ITG turbulence in the presence of fast ions. However, most of these simulations were performed with the assumption of equivalent Maxwellian distributed particles, whereas to rigorously model fast ions, a non-Maxwellian background distribution function is needed. To this aim, the underlying equations in the gyrokinetic code GENE have been re-derived and implemented for a completely general background distribution function. After verification studies, a previous investigation on a particular JET plasma has been revised with linear simulations. The plasma is composed by Deuterium, electron, Carbon impurities, NBI fast Deuterium and ICRH 3He. Fast particle distributions have been modelled with a number of different analytic choices in order to study the impact of non-Maxwellian distributions on the plasma turbulence: slowing down and anisotropic Maxwellian. Linear growth rates are studied as a function of the wave number and compared with those obtained using an equivalent Maxwellian. Generally, the choice of the 3He distribution seems to have a stronger impact on the microinstabilities than that of the fast Deuterium.

  7. Gyrokinetic simulation of driftwave instability in field-reversed configuration

    Science.gov (United States)

    Fulton, D. P.; Lau, C. K.; Schmitz, L.; Holod, I.; Lin, Z.; Tajima, T.; Binderbauer, M. W.

    2016-05-01

    Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realistic pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.

  8. The theory of gyrokinetic turbulence: A multiple-scales approach

    CERN Document Server

    Plunk, Gabriel G

    2009-01-01

    Gyrokinetics is a rich and rewarding playground to study some of the mysteries of modern physics. In this thesis I present work, motivated by the quest for fusion energy, which seeks to uncover some of the inner workings of turbulence in magnetized plasmas. I begin with the fundamental theory of gyrokinetics, and a novel formulation of its extension to the equations for mean-scale transport -- the equations which must be solved to determine the performance of magnetically confined fusion devices. The second project presents gyrokinetic secondary instability theory as a mechanism to bring about saturation of the basic instabilities that drive gyrokinetic turbulence. Emphasis is put on the ability for this analytic theory to predict basic properties of the nonlinear state, which can be applied to a mixing length phenomenology of transport. The final project is an application of the methods from inertial range understanding of fluid turbulence, to describe the stationary state of fully developed two-dimensional ...

  9. Frequency of the deltaF508 mutation in 108 cystic fibrosis patients in São Paulo: comparison with reported Brazilian data Freqüência da mutação deltaF508 em 108 pacientes com fibrose cística de São Paulo: comparação com dados de estudos brasileiros

    Directory of Open Access Journals (Sweden)

    Thelma Suely Okay

    2005-04-01

    Full Text Available PURPOSE: To analyze the frequency of the delta F508 (deltaF508 deletion mutation in 108 unrelated cystic fibrosis patients and compare the results with the previously reported data for Brazilian patients. Cystic fibrosis is the leading cause of genetic disease in Caucasians, and the deltaF508 deletion is the most common mutation associated with the disease. METHOD: The frequency of the deltaF508 mutation was assessed by means of a polymerase chain reaction (PCR followed by detection in 8% silver-stained polyacrylamide gels. RESULTS: Twenty-three of 108 patients (21.3% were homozygous for the deltaF508 deletion, 50 were heterozygous (46.3%, and the remaining 35 (32.4% were non-carriers. In terms of alleles, there were 96 mutated (96/216 or 44.45% and 120 wild-type ones (120/216 or 55.5%. CONCLUSION: The 44.45% of affected alleles that were found is higher than the 33% first described in 1993, but slightly lower than the 48% recently reported. Moreover, our data corroborated the idea that the frequency of the deltaF508 mutation is lower in Brazil in comparison to that found in studies carried out in Europe and North American (circa 70.0%, probably due to increased racial miscegenation. These findings must be taken into account before any genetic screening of the population is proposed in Brazil.OBJETIVO: Analisar a freqüência da mutação delta F508 (deltaF508 em 108 pacientes não aparentados, com fibrose cística e comparou os resultados com os dados de outros estudos brasileiros. A fibrose cística (CF constitui a doença genética mais comum em populações caucasianas, sendo a deltaF508 a mais freqüente dentre as mutações relacionadas à doença. MÉTODO: A freqüência da deltaF508 foi analisada por meio da Reação em Cadeia da Polimerase (PCR seguida de detecção em géis de poliacrilamida a 8%. RESULTADOS: Vinte e três dos 108 pacientes foram homozigotos para a mutação (21,3%, 50 foram heterozigotos (46,3% e os 35 restantes n

  10. The theory of gyrokinetic turbulence: A multiple-scales approach

    OpenAIRE

    Plunk, Gabriel G.

    2009-01-01

    Gyrokinetics is a rich and rewarding playground to study some of the mysteries of modern physics. In this thesis I present work, motivated by the quest for fusion energy, which seeks to uncover some of the inner workings of turbulence in magnetized plasmas. I begin with the fundamental theory of gyrokinetics, and a novel formulation of its extension to the equations for mean-scale transport -- the equations which must be solved to determine the performance of magnetically confined fusion devi...

  11. An Efficient Method for Verifying Gyrokinetic Microstability Codes

    Science.gov (United States)

    Bravenec, R.; Candy, J.; Dorland, W.; Holland, C.

    2009-11-01

    Benchmarks for gyrokinetic microstability codes can be developed through successful ``apples-to-apples'' comparisons among them. Unlike previous efforts, we perform the comparisons for actual discharges, rendering the verification efforts relevant to existing experiments and future devices (ITER). The process requires i) assembling the experimental analyses at multiple times, radii, discharges, and devices, ii) creating the input files ensuring that the input parameters are faithfully translated code-to-code, iii) running the codes, and iv) comparing the results, all in an organized fashion. The purpose of this work is to automate this process as much as possible: At present, a python routine is used to generate and organize GYRO input files from TRANSP or ONETWO analyses. Another routine translates the GYRO input files into GS2 input files. (Translation software for other codes has not yet been written.) Other python codes submit the multiple GYRO and GS2 jobs, organize the results, and collect them into a table suitable for plotting. (These separate python routines could easily be consolidated.) An example of the process -- a linear comparison between GYRO and GS2 for a DIII-D discharge at multiple radii -- will be presented.

  12. Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Belli, E. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hammett, G. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dorland, W. [Univ. of Maryland, College Park, MD (United States)

    2008-08-01

    The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ-1.5 or κ-2.0, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.

  13. Gyrokinetic Studies of Microinstabilities in the RFP

    CERN Document Server

    Carmody, Daniel; Terry, P W

    2013-01-01

    An analytic equilibrium, the Toroidal Bessel Function Model, is used in conjunction with the gyrokinetic code GYRO to investigate the nature of microinstabilities in a reversed field pinch (RFP) plasma. The effect of the normalized electron plasma pressure ({\\beta}) on the characteristics of the microinstabilities is studied. A transition between an ion temperature gradient (ITG) driven mode and a microtearing mode as the dominant instability is found to occur at a {\\beta} value of approximately 4.5%. Suppression of the ITG mode occurs as in the tokamak, through coupling to shear Alfven waves, with a critical {\\beta} for stability higher than its tokamak equivalent due to a shorter parallel connection length. There is a steep dependence of the microtearing growth rate on temperature gradient suggesting high profile stiffness. There is evidence for a collisionless microtearing mode. The properties of this mode are investigated, and it is found that curvature drift plays an important role in the instability.

  14. Petascale Parallelization of the Gyrokinetic Toroidal Code

    Energy Technology Data Exchange (ETDEWEB)

    Ethier, Stephane; Adams, Mark; Carter, Jonathan; Oliker, Leonid

    2010-05-01

    The Gyrokinetic Toroidal Code (GTC) is a global, three-dimensional particle-in-cell application developed to study microturbulence in tokamak fusion devices. The global capability of GTC is unique, allowing researchers to systematically analyze important dynamics such as turbulence spreading. In this work we examine a new radial domain decomposition approach to allow scalability onto the latest generation of petascale systems. Extensive performance evaluation is conducted on three high performance computing systems: the IBM BG/P, the Cray XT4, and an Intel Xeon Cluster. Overall results show that the radial decomposition approach dramatically increases scalability, while reducing the memory footprint - allowing for fusion device simulations at an unprecedented scale. After a decade where high-end computing (HEC) was dominated by the rapid pace of improvements to processor frequencies, the performance of next-generation supercomputers is increasingly differentiated by varying interconnect designs and levels of integration. Understanding the tradeoffs of these system designs is a key step towards making effective petascale computing a reality. In this work, we examine a new parallelization scheme for the Gyrokinetic Toroidal Code (GTC) [?] micro-turbulence fusion application. Extensive scalability results and analysis are presented on three HEC systems: the IBM BlueGene/P (BG/P) at Argonne National Laboratory, the Cray XT4 at Lawrence Berkeley National Laboratory, and an Intel Xeon cluster at Lawrence Livermore National Laboratory. Overall results indicate that the new radial decomposition approach successfully attains unprecedented scalability to 131,072 BG/P cores by overcoming the memory limitations of the previous approach. The new version is well suited to utilize emerging petascale resources to access new regimes of physical phenomena.

  15. Gyro-kinetic analysis of micro-instabilities in negative shear tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Idomura, Yasuhiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-01-01

    In order to study linear and nonlinear properties of micro-instabilities in negative shear tokamaks, a gyro-kinetic integral eigenvalue code and a gyro-kinetic finite element particle-in-cell (PIC) code are developed. Linear calculations show that both the slab ion temperature gradient driven (ITG) mode and the slab electron temperature gradient driven (ETG) mode become strongly unstable around the q{sub min}-surface, where q{sub min} is the minimum value of a safety factor q. Both modes have three types of branches in the negative shear configuration: a single mode-rational surface mode, a double mode-rational surface mode, and a non-resonant mode. The ETG turbulence in a slab configuration modeling the negative shear tokamak is studies using a gyro-kinetic finite element PIC code. It is found that quasi-steady E{sub r} x B zonal flows are generated in finite magnetic shear regions in both sides of the q{sub min}-surface, where the electron thermal transport is reduced substantially. Stability analyses of the electrostatic Kelvin-Helmholtz (K-H) mode show that the quasi-steady E{sub r} x B zonal flow profile is closely related to the q-profile or the magnetic shear, which has a stabilizing effect on the K-H mode. By changing the q-profile to reduce the magnetic shear, the K-H mode becomes unstable for the quasi-steady E{sub r} x B zonal flows, and the E{sub r} x B zonal flows disappear in the weak magnetic shear region. Numerical results show a possibility of controlling E{sub r} x B zonal flows with the magnetic shear, through the stability of the K-H mode. (author)

  16. Verification of Gyrokinetic Particle of Turbulent Simulation of Device Size Scaling Transport

    Institute of Scientific and Technical Information of China (English)

    LIN Zhihong; S. ETHIER; T. S. HAHM; W. M. TANG

    2012-01-01

    Verification and historical perspective are presented on the gyrokinetic particle simulations that discovered the device size scaling of turbulent transport and indentified the geometry model as the source of the long-standing disagreement between gyrokinetic particle and continuum simulations.

  17. Perpendicular magnetic anisotropy and magnetic proximity effect in Pt{sub 1-{delta}F}e{sub {delta}/}Co multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Q.L. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Cai, J.W., E-mail: jwcai@aphy.iphy.ac.c [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); He, S.L. [Department of Physics, Capital Normal University, Beijing 100037 (China); Sun, L. [Department of Mechanical Engineering, University of Houston, Houston, TX 77204 (United States)

    2011-03-15

    The perpendicular magnetic anisotropy (PMA) and magnetization in Pt{sub 1-{delta}F}e{sub {delta}/}Co ({delta}=0, 0.017, 0.04 and 0.06) multilayer films have been investigated. It is found that, on adding a small amount of Fe into the Pt layers, Pt/Co multilayer films maintain well-defined PMA at both 5 and 300 K along with significantly enhanced magnetization even at room temperature, which is far greater than the Curie temperature of Pt{sub 1-{delta}F}e{sub {delta}} dilute alloys. Further study demonstrates that the large enhancement of the magnetization in the Fe doped Pt/Co multilayers at 300 K arises from the bulk moment of the Pt{sub 1-{delta}F}e{sub {delta}} layers at the interface region, where the ferromagnetic order persists up to room temperature due to the strengthened exchange interactions between Fe atoms via strongly polarized Pt near the Pt{sub 1-{delta}F}e{sub {delta}/}Co interfaces. For the Pt{sub 0.96}Fe{sub 0.04}/Pt multilayers, the magnetically ordered region in each Pt{sub 0.96}Fe{sub 0.04} layer extends over at least 10 A from the interface at room temperature. - Research Highlights: Pt/Co multilayers with Fe doped into Pt layers maintain perpendicular anisotropy. Interfacial moment of the Fe doped Pt/Co multilayers is greatly enhanced at RT. Magnetic proximity effect is found in the Fe doped Pt/Co multilayers.

  18. Asymptotic and spectral analysis of the gyrokinetic-waterbag integro-differential operator in toroidal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Besse, Nicolas, E-mail: Nicolas.Besse@oca.eu [Laboratoire J.-L. Lagrange, UMR CNRS/OCA/UCA 7293, Université Côte d’Azur, Observatoire de la Côte d’Azur, Bd de l’Observatoire CS 34229, 06304 Nice Cedex 4 (France); Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex (France); Coulette, David, E-mail: David.Coulette@ipcms.unistra.fr [Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex (France); Institut de Physique et Chimie des Matériaux de Strasbourg, UMR CNRS/US 7504, Université de Strasbourg, 23 Rue du Loess, 67034 Strasbourg (France)

    2016-08-15

    Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov–Poisson and Vlasov–Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to the VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, “Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry” (submitted)] and were found to be surprisingly close to those for the original

  19. Asymptotic and spectral analysis of the gyrokinetic-waterbag integro-differential operator in toroidal geometry

    Science.gov (United States)

    Besse, Nicolas; Coulette, David

    2016-08-01

    Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov-Poisson and Vlasov-Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to the VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, "Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry" (submitted)] and were found to be surprisingly close to those for the original gyrokinetic

  20. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    Energy Technology Data Exchange (ETDEWEB)

    John A. Krommes

    2007-10-09

    The present state of the theory of fluctuations in gyrokinetic GK plasmas and especially its application to sampling noise in GK particle-in-cell PIC simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism.

  1. Numerical instability in a 2D gyrokinetic code caused by divergent E X B flow

    Energy Technology Data Exchange (ETDEWEB)

    Byers, J.A.; Dimits, Y.M.; Langdon, A.B. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    In this paper, a numerical instability first observed in an 2D electrostatic gyrokinetic code is described. The instability should also be present in some form in many versons of particle-in-cell simulation codes that employ guiding center drifts. A perturbation analysis of the instability is given and its results agree quantitatively with the observations from the gyrokinetic code in all respects. The basic mechanism is a false divergence of the E X B flow caused by the interpolation between the grid and the particles as coupled with the specific numerical method for calculating E = -{del} {phi}. Stability or instability depends in detail on the specific choice of particle interpolation method and field method. One common interpolation method, subtracted dipole, is stable. Other commonly used interpolation methods, linear and quadratic, are unstable when combined with a finite difference for the electric field. Linear and quadratic interpolation can be rendered stable if combined with another method for the electric field, the analytic differential of the interpolated potential.

  2. Numerical Instability in a 2D Gyrokinetic Code Caused by Divergent E × B Flow

    Science.gov (United States)

    Byers, J. A.; Dimits, A. M.; Matsuda, Y.; Langdon, A. B.

    1994-12-01

    In this paper, a numerical instability first observed in a 2D electrostatic gyrokinetic code is described. The instability should also be present in some form in many versons of particle-in-cell simulation codes that employ guiding center drifts. A perturbation analysis of the instability is given and its results agree quantitatively with the observations from the gyrokinetic code in all respects. The basic mechanism is a false divergence of the E × B flow caused by the interpolation between the grid and the particles as coupled with the specific numerical method for calculating E - ∇φ. Stability or instability depends in detail on the specific choice of particle interpolation method and field method. One common interpolation method, subtracted dipole, is stable. Other commonly used interpolation methods, linear and quadratic, are unstable when combined with a finite difference for the electric field. Linear and quadratic interpolation can be rendered stable if combined with another method for the electric field, the analytic differential of the interpolated potential.

  3. Profile stiffness measurements in the Helically Symmetric experiment and comparison to nonlinear gyrokinetic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Weir, G. M.; Faber, B. J.; Likin, K. M.; Talmadge, J. N.; Anderson, D. T.; Anderson, F. S. B. [HSX Plasma Laboratory, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)

    2015-05-15

    Stiffness measurements are presented in the quasi-helically symmetric experiment (HSX), in which the neoclassical transport is comparable to that in a tokamak and turbulent transport dominates throughout the plasma. Electron cyclotron emission is used to measure the local electron temperature response to modulated electron cyclotron resonant heating. The amplitude and phase of the heat wave through the steep electron temperature gradient (ETG) region of the plasma are used to determine a transient electron thermal diffusivity that is close to the steady-state diffusivity. The low stiffness in the region between 0.2 ≤ r/a ≤ 0.4 agrees with the scaling of the steady-state heat flux with temperature gradient in this region. These experimental results are compared to gyrokinetic calculations in a flux-tube geometry using the gyrokinetic electromagnetic numerical experiment code with two kinetic species. Linear simulations show that the ETG mode may be experimentally relevant within r/a ≤ 0.2, while the Trapped Electron Mode (TEM) is the dominant long-wavelength microturbulence instability across most of the plasma. The TEM is primarily driven by the density gradient. Non-linear calculations of the saturated heat flux driven by the TEM and ETG bracket the experimental heat flux.

  4. Benchmarking of the Gyrokinetic Microstability Codes GYRO, GS2, and GEM

    Science.gov (United States)

    Bravenec, Ronald; Chen, Yang; Wan, Weigang; Parker, Scott; Candy, Jeff; Barnes, Michael; Howard, Nathan; Holland, Christopher; Wang, Eric

    2012-10-01

    The physics capabilities of modern gyrokinetic microstability codes are now so extensive that they cannot be verified fully for realistic tokamak plasmas using purely analytic approaches. Instead, verification (demonstrating that the codes correctly solve the gyrokinetic-Maxwell equations) must rely on benchmarking (comparing code results for identical plasmas and physics). Benchmarking exercises for a low-power DIII-D discharge at the mid-radius have been presented recently for the Eulerian codes GYRO and GS2 [R.V. Bravenec, J. Candy, M. Barnes, C. Holland, Phys. Plasmas 18, 122505 (2011)]. This work omitted ExB flow shear, but we include it here. We also present GYRO/GS2 comparisons for a high-power Alcator C-Mod discharge. To add further confidence to the verification exercises, we have recently added the particle-in-cell (PIC) code GEM to the efforts. We find good agreement of linear frequencies between GEM and GYRO/GS2 for the DIII-D plasma. We also present preliminary nonlinear comparisons. This benchmarking includes electromagnetic effects, plasma shaping, kinetic electrons and one impurity. In addition, we compare linear results among the three codes for the steep-gradient edge region of a DIII-D plasma between edge-localized modes.

  5. Phase space scales of free energy dissipation in gradient-driven gyrokinetic turbulence

    Science.gov (United States)

    Hatch, D. R.; Jenko, F.; Bratanov, V.; Navarro, A. Bañón; Navarro

    2014-08-01

    A reduced four-dimensional (integrated over perpendicular velocity) gyrokinetic model of slab ion temperature gradient-driven turbulence is used to study the phase-space scales of free energy dissipation in a turbulent kinetic system over a broad range of background gradients and collision frequencies. Parallel velocity is expressed in terms of Hermite polynomials, allowing for a detailed study of the scales of free energy dynamics over the four-dimensional phase space. A fully spectral code - the DNA code - that solves this system is described. Hermite free energy spectra are significantly steeper than would be expected linearly, causing collisional dissipation to peak at large scales in velocity space even for arbitrarily small collisionality. A key cause of the steep Hermite spectra is a critical balance - an equilibration of the parallel streaming time and the nonlinear correlation time - that extends to high Hermite number n. Although dissipation always peaks at large scales in all phase space dimensions, small-scale dissipation becomes important in an integrated sense when collisionality is low enough and/or nonlinear energy transfer is strong enough. Toroidal full-gyrokinetic simulations using the Gene code are used to verify results from the reduced model. Collision frequencies typically found in present-day experiments correspond to turbulence regimes slightly favoring large-scale dissipation, while turbulence in low-collisionality systems like ITER and space and astrophysical plasmas is expected to rely increasingly on small-scale dissipation mechanisms. This work is expected to inform gyrokinetic reduced modeling efforts like Large Eddy Simulation and gyrofluid techniques.

  6. Suppression of turbulence and subcritical fluctuations in differentially rotating gyrokinetic plasmas

    CERN Document Server

    Schekochihin, A A; Cowley, S C

    2011-01-01

    Differential rotation is known to suppress linear instabilities in fusion plasmas. However, even in the absence of growing eigenmodes, subcritical fluctuations that grow transiently can lead to sustained turbulence. Here transient growth of electrostatic fluctuations driven by the parallel velocity gradient (PVG) and the ion temperature gradient (ITG) in the presence of a perpendicular ExB velocity shear is considered. The maximally simplified case of zero magnetic shear is treated in the framework of a local shearing box. There are no linearly growing eigenmodes, so all excitations are transient. The maximal amplification factor of initial perturbations and the corresponding wavenumbers are calculated as functions of q/\\epsilon (=safety factor/aspect ratio), temperature gradient and velocity shear. Analytical results are corroborated and supplemented by linear gyrokinetic numerical tests. For sufficiently low values of q/\\epsilon (<7 in our model), regimes with fully suppressed ion-scale turbulence are po...

  7. Variational principle for the parallel-symplectic representation of electromagnetic gyrokinetic theory

    Science.gov (United States)

    Brizard, Alain J.

    2017-08-01

    The nonlinear (full-f) electromagnetic gyrokinetic Vlasov-Maxwell equations are derived in the parallel-symplectic representation from an Eulerian gyrokinetic variational principle. The gyrokinetic Vlasov-Maxwell equations are shown to possess an exact energy conservation law, which is derived by the Noether method from the gyrokinetic variational principle. Here, the gyrocenter Poisson bracket and the gyrocenter Jacobian contain contributions from the perturbed magnetic field. In the full-f formulation of the gyrokinetic Vlasov-Maxwell theory presented here, the gyrocenter parallel-Ampère equation contains a second-order contribution to the gyrocenter current density that is derived from the second-order gyrocenter ponderomotive Hamiltonian.

  8. Nonlinear electromagnetic gyrokinetic equation for plasmas with large mean flows

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan); Horton, W.

    1998-02-01

    A new nonlinear electromagnetic gyrokinetic equation is derived for plasmas with large flow velocities on the order of the ion thermal speed. The gyrokinetic equation derived here is given in the form which is valid for general magnetic geometries including the slab, cylindrical and toroidal configurations. The source term for the anomalous viscosity arising through the Reynolds stress is identified in the gyrokinetic equation. For the toroidally rotating plasma, particle, energy and momentum balance equations as well as the detailed definitions of the anomalous transport fluxes and the anomalous entropy production are shown. The quasilinear anomalous transport matrix connecting the conjugate pairs of the anomalous fluxes and the forces satisfies the Onsager symmetry. (author)

  9. Gyrokinetic particle simulation of a field reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, D. P., E-mail: dfulton@uci.edu; Lau, C. K.; Holod, I.; Lin, Z., E-mail: zhihongl@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Dettrick, S. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2016-01-15

    Gyrokinetic particle simulation of the field-reversed configuration (FRC) has been developed using the gyrokinetic toroidal code (GTC). The magnetohydrodynamic equilibrium is mapped from cylindrical coordinates to Boozer coordinates for the FRC core and scrape-off layer (SOL), respectively. A field-aligned mesh is constructed for solving self-consistent electric fields using a semi-spectral solver in a partial torus FRC geometry. This new simulation capability has been successfully verified and driftwave instability in the FRC has been studied using the gyrokinetic simulation for the first time. Initial GTC simulations find that in the FRC core, the ion-scale driftwave is stabilized by the large ion gyroradius. In the SOL, the driftwave is unstable on both ion and electron scales.

  10. Effects of collisions on conservation laws in gyrokinetic field theory

    CERN Document Server

    Sugama, H; Nunami, M

    2015-01-01

    Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novel gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the pres...

  11. Gyrokinetic Equations for Strong-Gradient Regions

    CERN Document Server

    Dimits, Andris M

    2011-01-01

    The gyrokinetic derivation of [A.M. Dimits, L.L. LoDestro, D.H.E. Dubin, Phys. Fluids B4, 274 (1992).] is extended to general equilibrium magnetic fields. The result is a practical set equations that is valid for large perturbation amplitudes [q*psi/T=O(1), where psi=phi-v*A_||/c] but which is much simpler, easier to implement, and has more straightforward expressions for its conservation properties than the equation sets derived in the large-flow orderings. Here, phi and A_|| are the perturbed electrostatic and parallel magnetic potentials, v is the particle velocity, c is the speed of light, and T is the temperature. The derivation is based on the quantity epsilon=(rho/lambda)*q*psi/T as the small expansion parameter, where rho is the gyroradius and lambda is the perpendicular wavelength. Physically, this means that the ExB velocity and the component of the parallel velocity perpendicular to the equilibrium magnetic field are small compared to the thermal velocity. For nonlinear fluctuations saturated at mi...

  12. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. III. Collisionless tearing mode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongjian [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Southwestern Institution of Physics, Chengdu 610041 (China); Bao, Jian [Fusion Simulation Center, Peking University, Beijing 100871 (China); Han, Tao; Wang, Jiaqi [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Lin, Zhihong, E-mail: zhihongl@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)

    2016-02-15

    A finite-mass electron fluid model for low frequency electromagnetic fluctuations, particularly the collisionless tearing mode, has been implemented in the gyrokinetic toroidal code. Using this fluid model, linear properties of the collisionless tearing mode have been verified. Simulations verify that the linear growth rate of the single collisionless tearing mode is proportional to D{sub e}{sup 2}, where D{sub e} is the electron skin depth. On the other hand, the growth rate of a double tearing mode is proportional to D{sub e} in the parameter regime of fusion plasmas.

  13. Gyrokinetic study of the impact of the electron to ion heating ratio on the turbulent diffusion of highly charged impurities

    Energy Technology Data Exchange (ETDEWEB)

    Angioni, C. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

    2015-10-15

    A gyrokinetic study based on numerical and analytical calculations is presented, which computes the dependence of the turbulent diffusion of highly charged impurities on the ratio of the electron to the ion heat flux of the plasma. Nonlinear simulations show that the size of the turbulent diffusion of heavy impurities can vary by one order of magnitude with fixed total heat flux and is an extremely sensitive function of the electron to ion heat flux ratio. Numerical linear calculations are found to reproduce the nonlinear results. Thereby, a quasi-linear analytical approach is used to explain the origin of this dependence.

  14. Gyrokinetic simulations with a general equilibrium distribution function

    Science.gov (United States)

    Wilkie, George; Highcock, Edmund; Abel, Ian; Dorland, William

    2013-10-01

    Applying the gyrokinetic framework to study the dynamics of fast particles requires a transport-scale equilibrium distribution that is not Maxwellian, and whose functional form may not be known a priori. The GS2 gyrokinetics code has been modified to accommodate an arbitrary equilibrium distribution and this capability has been validated. The need to resolve the tail of the distribution for fast particles introduces numerical challenges that are resolved by implementing a generalized quadrature scheme that retains spectral accuracy of velocity-space integrals. Preliminary simulation results are presented.

  15. Ion transport barriers triggered by plasma polarization in gyrokinetic simulations

    Science.gov (United States)

    Strugarek, A.; Sarazin, Y.; Zarzoso, D.; Abiteboul, J.; Brun, A. S.; Cartier-Michaud, T.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, Ph; Grandgirard, V.; Latu, G.; Passeron, C.; Thomine, O.

    2013-07-01

    The creation of ion transport barriers by externally induced sheared E × B flows is investigated with the global, full-f and flux-driven gyrokinetic code GYSELA. A gyrokinetic source of vorticity is designed and proves to be efficient in polarizing the plasma. Induced sheared electric fields develop in the turbulent core and are accompanied by the creation of a transport barrier. The barrier and the sheared flow relax quasi-periodically because of zonal flow activity and a destabilizing temperature anisotropy induced by the vorticity source. A new cyclic mechanism leading to the relaxation of transport barriers in tokamaks is discovered.

  16. Monte-Carlo finite elements gyrokinetic simulations of Alfven modes in tokamaks

    Science.gov (United States)

    Bottino, Alberto; Biancalani, Alessandro; Palermo, Francesco; Tronko, Natalia

    2016-10-01

    The global gyrokinetic code ORB5 can simultaneously include electromagnetic perturbations, general ideal MHD axisymmetric equilibria, zonal-flow preserving sources, collisions, and the ability to solve the full core plasma including the magnetic axis. In this work, a Monte Carlo Particle In Cell Finite Element model, starting from a gyrokinetic discrete Lagrangian, is derived and implemented into the ORB5 code. The variations of the Lagrangian are used to obtain the time continuous equations of motion for the particles and the Finite Element approximation of the field equations. The Noether theorem for the semi-discretised system, implies a certain number of conservation properties for the final set of equation. Linear and nonlinear results, concerning Alfvén instabilities, in the presence of an energetic particle population, and microinstabilities, such as electromagnetic ion temperature gradient (ITG) driven modes and kinetic ballooning modes (KBM), will be presented and discussed. Due to losses of energetic particles, Alfvén instabilities can not only affect plasma stability and damage the walls, but also strongly impact the heating efficiency of a fusion reactor and ultimately the possibility of reaching ignition.

  17. Using a local gyrokinetic code to study global ITG modes in tokamaks

    CERN Document Server

    Abdoul, P A; Roach, C M; Wilson, H R

    2015-01-01

    In this paper the global mode structures of linear ion-temperature-gradient (ITG) modes in tokamak plasmas are obtained by combining results from the local gyrokinetic code GS2 with analytical theory. Local gyrokinetic calculations, using GS2, are performed for a range of radial flux surfaces, ${x}$, and ballooning phase angles, ${p}$, to map out the local complex mode frequency, ${\\Omega_{0}(x,p)=\\omega_{0}(x,p)+i\\gamma_{0}(x,p)}$ for a single toroidal mode number, ${n}$. Taylor expanding ${\\Omega_{0}}$ about ${x=0}$, and employing the Fourier-ballooning representation leads to a second order ODE for the amplitude envelope, ${A\\left(p\\right)}$ , which describes how the local results are combined to form the global mode. We employ the so-called CYCLONE base case for circular Miller equilibrium model. Assuming radially varying profiles of ${a/L_{T}}$ and ${a/L_{n}}$, peaked at ${x=0}$, and with all other equilibrium profiles held constant, ${\\Omega_{0}(x,p)}$ is found to have a stationary point. The reconstruc...

  18. The theory of gyrokinetic turbulence: A multiple-scales approach

    Science.gov (United States)

    Plunk, Gabriel Galad

    Gyrokinetics is a rich and rewarding playground to study some of the mysteries of modern physics -- such as turbulence, universality, self-organization and dynamic criticality -- which are found in physical systems that are driven far from thermodynamic equilibrium. One such system is of particular importance, as it is central in the development of fusion energy -- this system is the turbulent plasma found in magnetically confined fusion device. In this thesis I present work, motivated by the quest for fusion energy, which seeks to uncover some of the inner workings of turbulence in magnetized plasmas. I present three projects, based on the work of me and my collaborators, which take a tour of different aspects and approaches to the gyrokinetic turbulence problem. I begin with the fundamental theory of gyrokinetics, and a novel formulation of its extension to the equations for mean-scale transport -- the equations which must be solved to determine the performance of Magnetically confined fusion devices. The results of this work include (1) the equations of evolution for the mean scale (equilibrium) density, temperature and magnetic field of the plasma, (2) a detailed Poynting's theorem for the energy balance and (3) the entropy balance equations. The second project presents gyrokinetic secondary instability theory as a mechanism to bring about saturation of the basic instabilities that drive gyrokinetic turbulence. Emphasis is put on the ability for this analytic theory to predict basic properties of the nonlinear state, which can be applied to a mixing length phenomenology of transport. The results of this work include (1) an integral equation for the calculation of the growth rate of the fully gyrokinetic secondary instability with finite Larmor radius (FLR) affects included exactly, (2) the demonstration of the robustness of the secondary instability at fine scales (krhoi for ion temperature gradient (ITG) turbulence and krhoe ≪ 1 for electron temperature

  19. Gyrokinetic simulations of turbulent transport: size scaling and chaotic behaviour

    Science.gov (United States)

    Villard, L.; Bottino, A.; Brunner, S.; Casati, A.; Chowdhury, J.; Dannert, T.; Ganesh, R.; Garbet, X.; Görler, T.; Grandgirard, V.; Hatzky, R.; Idomura, Y.; Jenko, F.; Jolliet, S.; Khosh Aghdam, S.; Lapillonne, X.; Latu, G.; McMillan, B. F.; Merz, F.; Sarazin, Y.; Tran, T. M.; Vernay, T.

    2010-12-01

    Important steps towards the understanding of turbulent transport have been made with the development of the gyrokinetic framework for describing turbulence and with the emergence of numerical codes able to solve the set of gyrokinetic equations. This paper presents some of the main recent advances in gyrokinetic theory and computing of turbulence. Solving 5D gyrokinetic equations for each species requires state-of-the-art high performance computing techniques involving massively parallel computers and parallel scalable algorithms. The various numerical schemes that have been explored until now, Lagrangian, Eulerian and semi-Lagrangian, each have their advantages and drawbacks. A past controversy regarding the finite size effect (finite ρ*) in ITG turbulence has now been resolved. It has triggered an intensive benchmarking effort and careful examination of the convergence properties of the different numerical approaches. Now, both Eulerian and Lagrangian global codes are shown to agree and to converge to the flux-tube result in the ρ* → 0 limit. It is found, however, that an appropriate treatment of geometrical terms is necessary: inconsistent approximations that are sometimes used can lead to important discrepancies. Turbulent processes are characterized by a chaotic behaviour, often accompanied by bursts and avalanches. Performing ensemble averages of statistically independent simulations, starting from different initial conditions, is presented as a way to assess the intrinsic variability of turbulent fluxes and obtain reliable estimates of the standard deviation. Further developments concerning non-adiabatic electron dynamics around mode-rational surfaces and electromagnetic effects are discussed.

  20. A basic plasma test for gyrokinetics: GDC turbulence in LAPD

    Science.gov (United States)

    Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.

    2017-02-01

    Providing an important step towards validating gyrokinetics under comparatively little-explored conditions, simulations of pressure-gradient-driven plasma turbulence in the Large Plasma Device (LAPD) are compared with experimental observations. The corresponding signatures confirm the existence of a novel regime of turbulence, based on the recently-discovered gradient-driven drift coupling (GDC) instability, which is thus confirmed as a candidate mechanism for turbulence in basic, space and astrophysical plasmas. Despite the limitations of flux-tube gyrokinetics for this scenario, when accounting for box size scaling by applying a scalar factor η =6, agreement between simulations and experiment improves to within a factor of two for key observables: compressional magnetic, density, and temperature fluctuations, both in amplitude and structure. Thus, a first, strong indication is presented that the GDC instability seen in gyrokinetics appears to operate in the experiment and that the essential instability physics is present in the numerical model. Overall, the gyrokinetic framework and its numerical implementation in the Gene code therefore perform well for LAPD plasmas very different from their brethren in fusion experiments.

  1. Steady-State Gyrokinetics Transport Code (SSGKT), A Scientific Application Partnership with the Framework Application for Core-Edge Transport Simulations, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fahey, Mark R. [Oak Ridge National Laboratory; Candy, Jeff [General Atomics

    2013-11-07

    This project initiated the development of TGYRO ? a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale GYRO turbulence simulations into a framework for practical multi-scale simulation of conventional tokamaks as well as future reactors. Using a lightweight master transport code, multiple independent (each massively parallel) gyrokinetic simulations are coordinated. The capability to evolve profiles using the TGLF model was also added to TGYRO and represents a more typical use-case for TGYRO. The goal of the project was to develop a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale gyrokinetic turbulence simulations into a framework for practical multi-scale simulation of a burning plasma core ? the International Thermonuclear Experimental Reactor (ITER) in particular. This multi-scale simulation capability will be used to predict the performance (the fusion energy gain, Q) given the H-mode pedestal temperature and density. At present, projections of this type rely on transport models like GLF23, which are based on rather approximate fits to the results of linear and nonlinear simulations. Our goal is to make these performance projections with precise nonlinear gyrokinetic simulations. The method of approach is to use a lightweight master transport code to coordinate multiple independent (each massively parallel) gyrokinetic simulations using the GYRO code. This project targets the practical multi-scale simulation of a reactor core plasma in order to predict the core temperature and density profiles given the H-mode pedestal temperature and density. A master transport code will provide feedback to O(16) independent gyrokinetic simulations (each massively parallel). A successful feedback scheme offers a novel approach to predictive modeling of an important national and international problem. Success in this area of fusion simulations will allow US scientists to direct the research path of ITER over the next two

  2. Gyrokinetic studies of trapped electron mode turbulence in the Helically Symmetric eXperiment stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Faber, B. J. [HSX Plasma Lab, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Pueschel, M. J.; Terry, P. W. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Proll, J. H. E. [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald (Germany); Max-Planck/Princeton Research Center for Plasma Physics, 17491 Greifswald (Germany); Xanthopoulos, P. [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald (Germany); Hegna, C. C. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Weir, G. M.; Likin, K. M.; Talmadge, J. N. [HSX Plasma Lab, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-07-15

    Gyrokinetic simulations of plasma microturbulence in the Helically Symmetric eXperiment are presented. Using plasma profiles relevant to experimental operation, four dominant drift wave regimes are observed in the ion wavenumber range, which are identified as different flavors of density-gradient-driven trapped electron modes. For the most part, the heat transport exhibits properties associated with turbulence driven by these types of modes. Additionally, long-wavelength, radially localized, nonlinearly excited coherent structures near the resonant central flux surface, not predicted by linear simulations, can further enhance flux levels. Integrated heat fluxes are compatible with experimental observations in the corresponding density gradient range. Despite low shearing rates, zonal flows are observed to regulate turbulence but can be overwhelmed at higher density gradients by the long-wavelength coherent structures.

  3. Comparison of Measurements of Profile Stiffness in HSX to Nonlinear Gyrokinetic Calculations

    Science.gov (United States)

    Weir, Gavin

    2014-10-01

    Tokamaks and stellarators have observed significant differences in profile stiffness, defined as the ratio of the transient thermal diffusivity obtained from heat pulse propagation to the diffusivity obtained from steady-state power balance. Typically, stellarators have measured stiffness values below 2 and tokamaks have observed stiffness greater than 4. In this paper we present the first results on stiffness measurements in the quasihelically symmetric experiment HSX in which the neoclassical transport is comparable to that in a tokamak and turbulent transport dominates throughout the plasma. Electron Cyclotron Emission (ECE) is used to measure the local electron temperature perturbation from modulating the ECRH system on HSX. Spectral analysis of the ECE data yields a profile of the perturbed amplitude and a resulting transient electron thermal diffusivity that is close to the steady-state diffusivity. This evidence of a lack of stiffness in HSX agrees with the scaling of the steady-state heat flux with temperature gradient. The experimental data is compared to gyrokinetic calculations using the GENE code with two kinetic species. Linear calculations demonstrate that the Trapped Electron Mode (TEM) is the dominant long-wavelength microturbulence instability with growth rates that scale linearly with electron temperature gradient. Nonlinear gyrokinetic flux tube simulations indicate that the TEM contributes significantly to the saturated heat fluxes in HSX, shifting the transport-carrying wavenumbers to larger values than in typical Ion Temperature Gradient (ITG) turbulence. A set of nonlinear simulations are being executed, examining the saturated nonlinear heat flux as a function of the electron temperature gradient, to obtain a stiffness value from the simulations to compare with experimental results. This work is supported by DOE Grant DE-FG02-93ER54222.

  4. Low dimensional gyrokinetic PIC simulation by δf method

    Science.gov (United States)

    Chen, C. M.; Nishimura, Yasutaro; Cheng, C. Z.

    2015-11-01

    A step by step development of our low dimensional gyrokinetic Particle-in-Cell (PIC) simulation is reported. One dimensional PIC simulation of Langmuir wave dynamics is benchmarked. We then take temporal plasma echo as a test problem to incorporate the δf method. Electrostatic driftwave simulation in one dimensional slab geometry is resumed in the presence of finite density gradients. By carefully diagnosing contour plots of the δf values in the phase space, we discuss the saturation mechanism of the driftwave instabilities. A v∥ formulation is employed in our new electromagnetic gyrokinetic method by solving Helmholtz equation for time derivative of the vector potential. Electron and ion momentum balance equations are employed in the time derivative of the Ampere's law. This work is supported by Ministry of Science and Technology of Taiwan, MOST 103-2112-M-006-007 and MOST 104-2112-M-006-019.

  5. Gyrokinetic treatment of a grazing angle magnetic presheath

    Science.gov (United States)

    Geraldini, A.; Parra, F. I.; Militello, F.

    2017-02-01

    We develop a gyrokinetic treatment for ions in the magnetic presheath, close to the plasma-wall boundary. We focus on magnetic presheaths with a small magnetic field to wall angle, α \\ll 1 (in radians). Characteristic lengths perpendicular to the wall in such a magnetic presheath scale with the typical ion Larmor orbit size, {ρ }{{i}}. The smallest scale length associated with variations parallel to the wall is taken to be across the magnetic field, and ordered l={ρ }{{i}}/δ , where δ \\ll 1 is assumed. The scale lengths along the magnetic field line are assumed so long that variations associated with this direction are neglected. These orderings are consistent with what we expect close to the divertor target of a tokamak. We allow for a strong component of the electric field {E} in the direction normal to the electron repelling wall, with strong variation in the same direction. The large change of the electric field over an ion Larmor radius distorts the orbit so that it is not circular. We solve for the lowest order orbits by identifying coordinates, which consist of constants of integration, an adiabatic invariant and a gyrophase, associated with periodic ion motion in the system with α =δ =0. By using these new coordinates as variables in the limit α ∼ δ \\ll 1, we obtain a generalised ion gyrokinetic equation. We find another quantity that is conserved to first order and use this to simplify the gyrokinetic equation, solving it in the case of a collisionless magnetic presheath. Assuming a Boltzmann response for the electrons, a form of the quasineutrality equation that exploits the change of variables is derived. The gyrokinetic and quasineutrality equations give the ion distribution function and electrostatic potential in the magnetic presheath if the entrance boundary condition is specified.

  6. On the influence of initial state on gyrokinetic simulations

    OpenAIRE

    Dif-Pradalier, Guilhem; Grandgirard, P; Sarazin, P; Garbet, P; Ghendrih, Philippe; Angelino, P

    2008-01-01

    International audience; The influence of the initial state on the turbulence and transport is addressed in collisionless, global, and full-f gyrokinetic simulations solving both the equilibrium and the fluctuations. For two strongly differing initial states, it is found that the steady turbulent regime exhibits nearly identical statistical properties. This result is in marked contrast with the claim of different final states. In fact, a long transient with very different properties finally ev...

  7. Effects of collisions on conservation laws in gyrokinetic field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H.; Nunami, M. [National Institute for Fusion Science, Toki 509-5292 (Japan); Department of Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Watanabe, T.-H. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2015-08-15

    Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novel gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations.

  8. Predictive Gyrokinetic Transport Simulations and Application of Synthetic Diagnostics

    Science.gov (United States)

    Candy, J.

    2009-11-01

    In this work we make use of the gyrokinetic transport solver TGYRO [1] to predict kinetic plasma profiles consistent with energy and particle fluxes in the DIII-D tokamak. TGYRO uses direct nonlinear and neoclassical fluxes calculated by the GYRO and NEO codes, respectively, to solve for global, self-consistent temperature and density profiles via Newton iteration. Previous work has shown that gyrokinetic simulation results for DIII-D discharge 128913 match experimental data rather well in the plasma core, but with a discrepancy in both fluxes and fluctuation levels emerging closer to the edge (r/a > 0.8). The present work will expand on previous results by generating model predictions across the entire plasma core, rather than at isolated test radii. We show that TGYRO predicts temperature and density profiles in good agreement with experimental observations which simultaneously yield near-exact (to within experimental uncertainties) agreement with power balance calculations of the particle and energy fluxes for r/a Holland, R.E. Waltz, M.R. Fahey, and E. Belli, ``Tokamak profile prediction using direct gyrokinetic and neoclassical simulation," Phys. Plasmas 16, 060704 (2009). [2] C. Holland, A.E. White, G.R. McKee, M.W. Shafer, J. Candy, R.E. Waltz, L. Schmitz, and G.R. Tynan, ``Implementation and application of two synthetic diagnostics for validating simulations of core tokamak turbulence," Phys. Plasmas 16, 052301 (2009).

  9. Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes

    Science.gov (United States)

    Angioni, C.; Bilato, R.; Casson, F. J.; Fable, E.; Mantica, P.; Odstrcil, T.; Valisa, M.; ASDEX Upgrade Team; Contributors, JET

    2017-02-01

    In tokamaks, the role of turbulent transport of heavy impurities, relative to that of neoclassical transport, increases with increasing size of the plasma, as clarified by means of general scalings, which use the ITER standard scenario parameters as reference, and by actual results from a selection of discharges from ASDEX Upgrade and JET. This motivates the theoretical investigation of the properties of the turbulent convection of heavy impurities by nonlinear gyrokinetic simulations in the experimentally relevant conditions of comparable ion and electron heat fluxes. These conditions also correspond to an intermediate regime between dominant ion temperature gradient turbulence and trapped electron mode turbulence. At moderate plasma toroidal rotation, the turbulent convection of heavy impurities, computed with nonlinear gyrokinetic simulations, is found to be directed outward, in contrast to that obtained by quasi-linear calculations based on the most unstable linear mode, which is directed inward. In this mixed turbulence regime, with comparable electron and ion heat fluxes, the nonlinear results of the impurity transport can be explained by the coexistence of both ion temperature gradient and trapped electron modes in the turbulent state, both contributing to the turbulent convection and diffusion of the impurity. The impact of toroidal rotation on the turbulent convection is also clarified.

  10. Gyrokinetic Studies of Turbulence in Steep Gradient Region: Role of Turbulence Spreading and E x B Shear

    Energy Technology Data Exchange (ETDEWEB)

    T.S. Hahm; Z. Lin; P.H. Diamond; G. Rewoldt; W.X. Wang; S. Ethier; O. Gurcan; W.W. Lee; W.M. Tang

    2004-12-21

    An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length.

  11. Completing NLO QCD Corrections for Tree Level Non-Leptonic Delta F = 1 Decays Beyond the Standard Model

    CERN Document Server

    Buras, Andrzej J

    2012-01-01

    In various extensions of the Standard Model (SM) tree level non-leptonic decays of hadrons receive contributions from new heavy gauge bosons and scalars. Prominent examples are the right-handed W' bosons in left-right symmetric models and charged Higgs (H^\\pm) particles in models with extended scalar sector like two Higgs doublet models and supersymmetric models. Even in the case of decays with four different quark flavours involved, to which penguin operators cannot contribute, twenty linearly independent operators, instead of two in the SM, have to be considered. Anticipating the important role of such decays at the LHCb, KEKB and Super-B in Rome and having in mind future improved lattice computations, we complete the existing NLO QCD formulae for these processes by calculating O(alpha_s) corrections to matching conditions for the Wilson coefficients of all contributing operators in the NDR-\\bar{MS} scheme. This allows to reduce certain unphysical scale and renormalization scheme dependences in the existing...

  12. Gyrokinetic simulation of isotope scaling in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.W. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Santoro, R.A. [California Univ., Irvine, CA (United States). Dept. of Physics

    1995-07-01

    A three-dimensional global gyrokinetic particle code in toroidal geometry has been used for investigating the transport properties of ion temperature gradient (ITG) drift instabilities in tokamak plasmas. Using the isotopes of hydrogen (H{sup +}), deuterium (D{sup +}) and tritium (T{sup +}), we have found that, under otherwise identical conditions, there exists a favorable isotope scaling for the ion thermal diffusivity, i.e., Xi decreases with mass. Such a scaling, which exists both at the saturation of the instability and also at the nonlinear steady state, can be understood from the resulting wavenumber and frequency spectra.

  13. Estimation of enthalpy data for reactions involving gas phase ions utilizing lattice potential energies: fluoride ion affinities (FIA) and pF- values of mSbF5(l) and mSbF5(g) (m = 1, 2, 3), AsF5(g), AsF5.SO2(c). Standard enthalpies of formation: Delta(f)H degrees (SbmF5m+1)(-),g) (m = 1, 2, 3), Delta(f)H degrees (AsF6(-),g), and Delta(f)H degrees (NF4+,g).

    Science.gov (United States)

    Jenkins, H Donald Brooke; Roobottom, H K; Passmore, Jack

    2003-05-01

    Fluoride ion affinity (FIA) values (and the associated pF(-) values) are difficult to establish experimentally for pentafluorides of arsenic and antimony. Our approach, utilizing estimated lattice potential energies, provides a further opportunity to establish this data for liquid (and gaseous) SbF(5) and gaseous AsF(5) which compliments values obtained using ab initio routes for monomeric gas phase molecules and adds to results based on rigorous methods. A strategy is developed whereby construction of (multiple) Born-Fajans-Haber cycles centered around the (target) FIA reaction of interest yield a plethora of estimates for the enthalpy change of interest. This general approach is illustrated here by specific estimation of some experimentally based FIA values of SbF(5) and AsF(5). FIA values/kJ mol(-1) and pF- values estimated in this paper are FIA(SbF(5),l) approximately equal to -475 (+/-63), pF-(SbF(5),l) = 11.4 (+/-1.5); FIA(SbF(5),g) approximately equal to -506 (+/-63), pF-(SbF(5),g) = 12.4 (+/-1.5); FIA(2SbF(5),l) approximately equal to -609 (+/-63), pF- (2SbF(5),l) = 14.6 (+/-1.5); FIA (2SbF(5),g) approximately equal to -671 (+/-63), pF- (2SbF(5),g) = 16.0 (+/-1.5); FIA (3SbF(5),l) approximately -635 (+/-39), pF(-) (3SbF(5),l) = 15.2 (+/-0.9); FIA(3SbF(5),g) approximately -728 (+/-39), pF(-) (3SbF(5),g) = 17.4 (+/-0.9); FIA(AsF(5),g) approximately equal to -421 (+/-22), pF(-) (AsF(5),g) = 10.1 (+/- 0.5); and FIA (AsF(5).SO(2),s) approximately equal to -390 (+/-22), pF(-) (AsF(5).SO(2),s) = 9.3 (+/-0.5). Related standard enthalpies of formation (in kJ mol(-1)) are also assigned: Delta(f)H degrees (SbF(6)(-),g) approximately equal to -2075 (+/-52); Delta(f)H degrees (Sb(2)F(11)(-),g) approximately equal to -3520 (+/-63); Delta(f)H degrees (Sb(3)F(16)(-),g) approximately equal to -4874 (+/-39); Delta(f)H degrees (NF(4)(+),g) approximately equal to 903 (+/-32); Delta(f)H degrees (AsF(6)(-),g) approximately equal to -1907 (+/-22).

  14. Comparison of Linear Microinstability Calculations of Varying Input Realism

    Energy Technology Data Exchange (ETDEWEB)

    G. Rewoldt

    2003-09-08

    The effect of varying ''input realism'' or varying completeness of the input data for linear microinstability calculations, in particular on the critical value of the ion temperature gradient for the ion temperature gradient mode, is investigated using gyrokinetic and gyrofluid approaches. The calculations show that varying input realism can have a substantial quantitative effect on the results.

  15. Three-dimensional gyrokinetic simulation of the relaxation of a magnetized temperature filament

    Science.gov (United States)

    Sydora, R. D.; Morales, G. J.; Maggs, J. E.; Van Compernolle, B.

    2015-10-01

    An electromagnetic, 3D gyrokinetic particle code is used to study the relaxation of a magnetized electron temperature filament embedded in a large, uniform plasma of lower temperature. The study provides insight into the role played by unstable drift-Alfvén waves observed in a basic electron heat transport experiment [D. C. Pace et al., Phys. Plasmas 15, 122304 (2008)] in which anomalous cross-field transport has been documented. The simulation exhibits the early growth of temperature-gradient-driven, drift-Alfvén fluctuations that closely match the eigenmodes predicted by linear theory. At the onset of saturation, the unstable fluctuations display a spiral spatial pattern, similar to that observed in the laboratory, which causes the rearrangement of the temperature profile. After saturation of the linear instability, the system exhibits a markedly different behavior depending on the inclusion in the computation of modes without variation along the magnetic field, i.e., kz = 0. In their absence, the initial filament evolves into a broadened temperature profile, self-consistent with undamped, finite amplitude drift-Alfvén waves. But the inclusion of kz = 0 modes causes the destruction of the filament and damping of the drift-Alfvén modes leading to a final state consisting of undamped convective cells and multiple, smaller-scale filaments.

  16. Construction of reduced transport model by gyro-kinetic simulation with kinetic electrons in helical plasmas

    Science.gov (United States)

    Toda, S.; Nakata, M.; Nunami, M.; Ishizawa, A.; Watanabe, T.-H.; Sugama, H.

    2016-10-01

    A reduced model of the turbulent ion heat diffusivity is proposed by the gyrokinetic simulation code (GKV-X) with the adiabatic electrons for the high-Ti Large Helical Device discharge. The plasma parameter region of the short poloidal wavelength is studied, where the ion temperature gradient mode becomes unstable. The ion heat diffusivity by the nonlinear simulation with the kinetic electrons is found to be several times larger than the simulation results using the adiabatic electrons in the radial region 0.46 ion energy flux. The model of the turbulent diffusivity is derived as the function of the squared electrostatic potential fluctuation and the squared zonal flow potential. Next, the squared electrostatic potential fluctuation is approximated with the mixing length estimate. The squared zonal flow potential fluctuation is shown as the linear zonal flow response function. The reduced model of the turbulent diffusivity is derived as the function of the physical parameters by the linear GKV-X simulation with the kinetic electrons. This reduced model is applied to the transport code with the same procedure as.

  17. Properties of Discontinuous Galerkin Algorithms and Implications for Edge Gyrokinetics

    Science.gov (United States)

    Hammett, G. W.; Hakim, A.; Shi, E. L.; Abel, I. G.; Stoltzfus-Dueck, T.

    2015-11-01

    The continuum gyrokinetic code Gkeyll uses Discontinuous Galerkin (DG) algorithms, which have a lot of flexibility in the choice of basis functions and inner product norm that can be useful in designing algorithms for particular problems. Rather than use regular polynomial basis functions, we consider here Maxwellian-weighted basis functions (which have similarities to Gaussian radial basis functions). The standard Galerkin approach loses particle and energy conservation, but this can be restored with a particular weight for the inner product (this is equivalent to a Petrov-Galerkin method). This allows a full- F code to have some benefits similar to the Gaussian quadrature used in gyrokinetic δf codes to integrate Gaussians times some polynomials exactly. In tests of Gkeyll for electromagnetic fluctuations, we found it is important to use consistent basis functions where the potential is in a higher-order continuity subspace of the space for the vector potential A| |. A regular projection method to this subspace is a non-local operation, while we show a self-adjoint averaging operator that can preserve locality and energy conservation. This does not introduce damping, but like gyro-averaging involves only the reactive part of the dynamics. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.

  18. A Gyrokinetic 1D Scrape-Off Layer Model of an ELM Heat Pulse

    CERN Document Server

    Shi, E L; Hammett, G W

    2014-01-01

    We have applied an electrostatic gyrokinetic-based model to simulate parallel plasma transport in the scrape-off layer to a divertor plate. We focus on a test problem that has been studied previously, using parameters chosen to model a heat pulse driven by an edge localized mode (ELM) in JET. Previous work has used direct particle-in-cell equations with full dynamics, or Vlasov or fluid equations with only parallel dynamics. With the use of the gyrokinetic quasineutrality equation and logical sheath boundary conditions, spatial and temporal resolution requirements are no longer set by the electron Debye length and plasma frequency, respectively. This test problem also helps illustrate some of the physics contained in the Hamiltonian form of the gyrokinetic equations and some of the numerical challenges in developing an edge gyrokinetic code.

  19. Mitochondrial DNA genetic diversity and LCT-13910 and deltaF508 CFTR alleles typing in the medieval sample from Poland.

    Science.gov (United States)

    Płoszaj, T; Jerszyńska, B; Jędrychowska-Dańska, K; Lewandowska, M; Kubiak, D; Grzywnowicz, K; Masłowska, A; Witas, H W

    2015-06-01

    We attempted to confirm the resemblance of a local medieval population and to reconstruct their contribution to the formation of the modern Polish population at the DNA level. The HVR I mtDNA sequence and two nuclear alleles, LCT-13910C/T SNP and deltaF508 CFTR, were chosen as markers since the distribution of selected nuclear alleles varies among ethnic groups. A total of 47 specimens were selected from a medieval cemetery in Cedynia (located in the western Polish lowland). Regarding the HVR I profile, the analyzed population differed from the present-day population (P = 0.045, F(st) = 0.0103), in contrast to lactase persistence (LP) based on the LCT-13910T allele, thus indicating the lack of notable frequency changes of this allele during the last millennium (P = 0.141). The sequence of the HVR I mtDNA fragment allowed to identify six major haplogroups including H, U5, T, K, and HV0 within the medieval population of Cedynia which are common in today's central Europe. An analysis of haplogroup frequency and its comparison with modern European populations shows that the studied medieval population is more closely related to Finno-Ugric populations than to the present Polish population. Identification of less common haplogroups, i.e., Z and U2, both atypical of the modern Polish population and of Asian origin, provides evidence for some kind of connections between the studied and foreign populations. Furthermore, a comparison of the available aDNA sequences from medieval Europe suggests that populations differed from one another and a number of data from other locations are required to find out more about the features of the medieval gene pool profile.

  20. Cost-effective one-step PCR amplification of cystic fibrosis delta F508 fragment in a single cell for preimplantation genetic diagnosis.

    Science.gov (United States)

    Tsai, Y H

    1999-11-01

    The combination of in vitro fertilization (IVF) with PCR technologies enables diagnosis of single gene defects for preimplantation genetic diagnosis. This has been accomplished by two-step nested PCR, or PEP-PCR followed by nested PCR processes. To improve the detection of single cell genetic defects, the lysate of a single lymphocyte, with or without cystic fibrosis DeltaF508 mutation (CFDeltaF508), was incubated in a higher ionic strength solution containing mercaptoethanol prior to the addition of primers to the denatured cellular DNA. A single cell in 5 microl lysis buffer was incubated at 65 degrees C for 15 min, cooled, and neutralized with an equal volume of neutralizing buffer. A 5 microl aliquot of a solution X containing 50 mM MgCl(2), 1 M NaCl, and 10 mM mercaptoethanol was added to the neutralized cell lysate, followed by incubation at 93 degrees C for 15 min. The step was crucial to the successful amplification of CFDeltaF508 DNA fragment. The incubation of cell lysate in solution with the high level of sulphydryl reducing agent and a high ionic strength of about 0.45, at 93 degrees C for 15 min, might denature many chromatin-binding proteins and also ensure the complete dissociation of dsDNA. After the addition of PCR mix, the resulting reaction mixture still contained a sufficient level of sulphydryl reducing agent and 0.135 total ionic strength. This might reduce significantly the interference of various protein factors with DNA, and favour the primer-template annealing. The efficient initial annealing of the primers to target DNA sequences would facilitate PCR amplification efficacy. In conclusion, in more than 80 single cells tested (apart from one) the CFDeltaF508 defect was successfully demonstrated with the present protocol (>99 per cent), without using fluorescent primers and expensive automatic instrumentation.

  1. Búsqueda de la mutación delta F508 y análisis de dos polimorfismos de nucleótido único en el gen CFTR, en una muestra de población general de Valparaíso, Chile

    OpenAIRE

    Vera L,Alejandra; Henríquez-Roldán, Carlos F; González R,Francisco J; Molina F,Graciela

    2005-01-01

    Background: The Cystic Fibrosis (CF) carrier rate in Chile was estimated to be 1/40. CF is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Delta F508 mutation is the most common in CF patients in Chile and worldwide. Delta F508 has linkage disequilibrium with two Single Nucleotide Polymorphisms (SNP), often used to define the haplotypic frameworks of CF mutations. Aim: To know the frequency of the delta F508 mutation and to establish the SNPs, M470V...

  2. Comparison of BES measurements of ion-scale turbulence with direct, gyrokinetic simulations of MAST L-mode plasmas

    CERN Document Server

    Field, A R; Ghim, Y-c; Hill, P; McMillan, B; Roach, C M; Saarelma, S; Schekochihin, A A; Zoletnik, S

    2013-01-01

    Observations of ion-scale (k_y*rho_i <= 1) density turbulence of relative amplitude dn_e/n_e <= 0.2% are available on the Mega Amp Spherical Tokamak (MAST) using a 2D (8 radial x 4 poloidal channel) imaging Beam Emission Spectroscopy (BES) diagnostic. Spatial and temporal characteristics of this turbulence, i.e., amplitudes, correlation times, radial and perpendicular correlation lengths and apparent phase velocities of the density contours, are determined by means of correlation analysis. For a low-density, L-mode discharge with strong equilibrium flow shear exhibiting an internal transport barrier (ITB) in the ion channel, the observed turbulence characteristics are compared with synthetic density turbulence data generated from global, non-linear, gyro-kinetic simulations using the particle-in-cell (PIC) code NEMORB. This validation exercise highlights the need to include increasingly sophisticated physics, e.g., kinetic treatment of trapped electrons, equilibrium flow shear and collisions, to reprodu...

  3. Scrape-Off Layer Turbulence in Tokamaks Simulated with a Continuum Gyrokinetic Code

    CERN Document Server

    Hakim, A; Abel, I G; Hammett, G W; Stoltzfus-Dueck, T

    2016-01-01

    We are developing a new continuum gyrokinetic code, Gkeyll, for use in edge plasma simulations, and here present initial simulations of turbulence on open field lines with model sheath boundary conditions. The code implements an energy conserving discontinuous Galerkin scheme, applicable to a general class of Hamiltonian equations. Several applications to test problems have been done, including a calculation of the parallel heat-flux on divertor plates resulting from an ELM crash in JET, for a 1x/1v SOL scenario explored previously, where the ELM is modeled as a time-dependent intense upstream source. Here we present initial simulations of turbulence on open field lines in the LAPD linear plasma device. We have also done simulations in a helical open-field-line geometry. While various simplifications have been made at present, this still includes some of the key physics of SOL turbulence, such as bad-curvature drive for instabilities and rapid parallel losses with sheath boundary conditions. This is useful fo...

  4. Predictions on heat transport and plasma rotation from global gyrokinetic simulations

    Science.gov (United States)

    Sarazin, Y.; Grandgirard, V.; Abiteboul, J.; Allfrey, S.; Garbet, X.; Ghendrih, Ph.; Latu, G.; Strugarek, A.; Dif-Pradalier, G.; Diamond, P. H.; Ku, S.; Chang, C. S.; McMillan, B. F.; Tran, T. M.; Villard, L.; Jolliet, S.; Bottino, A.; Angelino, P.

    2011-10-01

    Flux-driven global gyrokinetic codes are now mature enough to make predictions in terms of turbulence and transport in tokamak plasmas. Some of the recent breakthroughs of three such codes, namely GYSELA, ORB5 and XGC1, are reported and compared wherever appropriate. In all three codes, turbulent transport appears to be mediated by avalanche-like events, for a broad range of ρ* = ρi/a values, ratio of the gyro-radius over the minor radius. Still, the radial correlation length scales with ρi, leading to the gyro-Bohm scaling of the effective transport coefficient below ρ* ≈ 1/300. The possible explanation could be due to the fact that avalanches remain meso-scale due to the interaction with zonal flows, whose characteristic radial wavelength appears to be almost independent of the system size. As a result of the radial corrugation of the turbulence driven zonal and mean flows, the shear of the radial electric field can be significantly underestimated if poloidal rotation is assumed to be governed by the neoclassical theory, especially at low collisionality. Indeed, the turbulence contribution to the poloidal rotation increases when collisionality decreases. Finally, the numerical verification of toroidal momentum balance shows that both neoclassical and turbulent contributions to the Reynolds' stress tensor play the dominant role. The phase space analysis further reveals that barely passing supra-thermal particles mostly contribute to the toroidal flow generation, consistently with quasi-linear predictions.

  5. Global approach to the spectral problem of microinstabilities in tokamak plasmas using a gyrokinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, S. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-08-01

    Ion temperature gradient (ITG)-related instabilities are studied in tokamak-like plasmas with the help of a new global eigenvalue code. Ions are modelled in the frame of gyrokinetic theory so that finite Larmor radius effects of these particles are retained to all orders. Non-adiabatic trapped electron dynamics is taken into account through the bounce-averaged drift kinetic equation. Assuming electrostatic perturbations, the system is closed with the quasineutrality relation. Practical methods are presented which make this global approach feasible. These include a non-standard wave decomposition compatible with the curved geometry as well as adapting an efficient root finding algorithm for computing the unstable spectrum. These techniques are applied to a low pressure configuration given by a large aspect ratio torus with circular, concentric magnetic surfaces. Simulations from a linear, time evolution, particle in cell code provide a useful benchmark. Comparisons with local ballooning calculations for different parameter scans enable further validation while illustrating the limits of that representation at low toroidal wave numbers or for non-interchange-like instabilities. The stabilizing effect of negative magnetic shear is also considered, in which case the global results show not only an attenuation of the growth rate but also a reduction of the radial extent induced by a transition from the toroidal- to the slab-ITG mode. Contributions of trapped electrons to the ITG instability as well as the possible coupling to the trapped electron mode are clearly brought to the fore. (author) figs., tabs., 69 refs.

  6. Gyrokinetic Particle Simulation of Compressible Electromagnetic Turbulence in High-β Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhihong

    2014-03-13

    Supported by this award, the PI and his research group at the University of California, Irvine (UCI) have carried out computational and theoretical studies of instability, turbulence, and transport in laboratory and space plasmas. Several massively parallel, gyrokinetic particle simulation codes have been developed to study electromagnetic turbulence in space and laboratory plasmas. In space plasma projects, the simulation codes have been successfully applied to study the spectral cascade and plasma heating in kinetic Alfven wave turbulence, the linear and nonlinear properties of compressible modes including mirror instability and drift compressional mode, and the stability of the current sheet instabilities with finite guide field in the context of collisionless magnetic reconnection. The research results have been published in 25 journal papers and presented at many national and international conferences. Reprints of publications, source codes, and other research-related information are also available to general public on the PI’s webpage (http://phoenix.ps.uci.edu/zlin/). Two PhD theses in space plasma physics are highlighted in this report.

  7. Nonlinear seed island generation by three-dimensional electromagnetic, gyrokinetic turbulence

    CERN Document Server

    Hornsby, William; Buchholz, Rico; Peeters, Arthur; Zarzoso, David; Casson, Francis; Poli, Emanuele

    2014-01-01

    Turbulence is shown to be critical to the onset and evolution of the neoclassical tearing mode, affecting both its growth and rotation. The interaction is here studied for the first time in the three dimensional, toroidal gyrokinetic framework. Turbulent fluctuations do not destroy the growing island early in its development, which maintains a coherent form as it grows, in fact the island is seeded and its rotation frequency determined, by nonlinear interaction. This process provides an initial structure that is of the order of an ion gyro-radius wide, allowing the island to rapidly reach a large size. A large degree of stochastisation around the seperatrix, and a complete breakdown of the X-point is seen, which significantly reduces the effective island width. A turbulent modification of the electrostatic field in and around the island greatly affects the size of the resonant layer width, and the island is seen to grow at the linear rate even though the island is significantly wider than the singular layer w...

  8. Turbulence spectra and transport barriers in gyrokinetic simulations

    Science.gov (United States)

    Sarazin, Y.; Grandgirard, V.; Angelino, P.; Casati, A.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, Ph.; Gürcan, O.; Hennequin, P.; Sabot, R.

    2008-11-01

    The energy spectra of the Ion Temperature Gradient driven fluctuations are investigated with the global full-f gyrokinetic code GYSELA. For monotonous q profile, the poloidal spectrum can equally be fitted with two power laws or with a unique exponential. When prescribing an additional sheared radial electric field in view of triggering a transport barrier, the system is found to promptly polarize and screen this field, likely in a transient evolution towards a canonical equilibrium. For a reversed q profile, the negative shear region exhibits larger fluctuations, possibly due to the slab branch of ITG, characterized by a flatter spectrum. No clear transport barrier signature is observed in the vicinity of s = 0 when the radial extent of the gap without resonant modes is smaller than the turbulence correlation length.

  9. Gyrokinetic modelling of stationary electron and impurity profiles in tokamaks

    CERN Document Server

    Skyman, Andreas; Tegnered, Daniel

    2014-01-01

    Particle transport due to Ion Temperature Gradient/Trapped Electron (ITG/TE) mode turbulence is investigated using the gyrokinetic code GENE. Both a reduced quasilinear (QL) treatment and nonlinear (NL) simulations are performed for typical tokamak parameters corresponding to ITG dominated turbulence. A selfconsistent treatment is used, where the stationary local profiles are calculated corresponding to zero particle flux simultaneously for electrons and trace impurities. The scaling of the stationary profiles with magnetic shear, safety factor, electron-to-ion temperature ratio, collisionality, toroidal sheared rotation, triangularity, and elongation is investigated. In addition, the effect of different main ion mass on the zero flux condition is discussed. The electron density gradient can significantly affect the stationary impurity profile scaling. It is therefore expected, that a selfconsistent treatment will yield results more comparable to experimental results for parameter scans where the stationary b...

  10. Linear study of global microinstabilities using spectral and PIC methods

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, S.; Fivaz, M.; Vaclavik, J.; Appert, K.; Tran, T.M. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-09-01

    A spectral as well as a time evolution PIC code are presently being developed to solve the linearized gyrokinetic equations for studying global microinstabilities in toroidal geometry. In many ways these two methods are complementary and therefore allow for valuable cross-checking and validation of the different approximations made. This parallel approach forms a firm basis for future studies of non-linear evolution or higher dimensional systems. (author) 7 figs., 18 refs.

  11. Long-wavelength limit of gyrokinetics in a turbulent tokamak and its intrinsic ambipolarity

    CERN Document Server

    Calvo, Ivan

    2012-01-01

    Recently, the electrostatic gyrokinetic Hamiltonian and change of coordinates have been computed to order $\\epsilon^2$ in general magnetic geometry. Here $\\epsilon$ is the gyrokinetic expansion parameter, the gyroradius over the macroscopic scale length. Starting from these results, the long-wavelength limit of the gyrokinetic Fokker-Planck and quasineutrality equations is taken for tokamak geometry. Employing the set of equations derived in the present article, it is possible to calculate the long-wavelength components of the distribution functions and of the poloidal electric field to order $\\epsilon^2$. These higher-order pieces contain both neoclassical and turbulent contributions, and constitute one of the necessary ingredients (the other is given by the short-wavelength components up to second order) that will eventually enter a complete model for the radial transport of toroidal angular momentum in a tokamak in the low flow ordering. Finally, we provide an explicit and detailed proof that the system co...

  12. A gyrokinetic perspective on the JET-ILW pedestal

    Science.gov (United States)

    Hatch, D. R.; Kotschenreuther, M.; Mahajan, S.; Valanju, P.; Liu, X.

    2017-03-01

    JET has been unable to recover historical confinement levels when operating with an ITER-like wall (ILW) due largely to the inaccessibility of high pedestal temperatures. Finding a path to overcome this challenge is of utmost importance for both a prospective JET DT campaign and for future ITER operation. Gyrokinetic simulations (using the Gene code) quantitatively capture experimental transport levels for a representative experimental discharge and qualitatively recover the major experimental trends. Microtearing turbulence is a major transport mechanisms for the low-temperature pedestals characteristic of unseeded JET-ILW discharges. At higher temperatures and/or lower {ρ\\ast} , we identify electrostatic ITG transport of a type that is strongly shear-suppressed on smaller machines. Consistent with observations, this transport mechanism is strongly reduced by the presence of a low-Z impurity (e.g. carbon or nitrogen at the level of {{Z}\\text{eff}}∼ 2 ), recovering the accessibility of high pedestal temperatures. Notably, simulations based on dimensionless {ρ\\ast} scans recover historical scaling behavior except in the unique JET-ILW parameter regime where ITG turbulence becomes important. Our simulations also elucidate the observed degradation of confinement caused by gas puffing, emphasizing the important role of the density pedestal structure. This study maps out important regions of parameter space, providing insights that may point to optimal physical regimes that can enable the recovery of high pedestal temperatures on JET.

  13. Gyrokinetic treatment of a grazing angle magnetic field

    CERN Document Server

    Geraldini, Alessandro; Militello, Fulvio

    2016-01-01

    We develop a gyrokinetic treatment for ions in the magnetic presheath, close to the plasma-wall boundary. We focus on magnetic presheaths with a small magnetic field to wall angle, $\\alpha \\ll 1$. Characteristic lengths perpendicular to the wall in such a magnetic presheath scale with the typical ion Larmor orbit size, $\\rho_{\\text{i}}$. The smallest scale length associated with variations parallel to the wall is taken to be across the magnetic field, and ordered $l = \\rho_{\\text{i}} / \\delta$, where $ \\delta \\ll 1$ is assumed. The scale lengths along the magnetic field line are assumed so long that variations associated with this direction are neglected. These orderings are consistent with what we expect close to the divertor target of a tokamak. We allow for a strong electric field $\\vec{E}$ in the direction normal to the electron repelling wall, with strong variation in the same direction. The large change of the electric field over an ion Larmor radius distorts the orbit so that it is not circular. We sol...

  14. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    WALTZ RE; CANDY J; HINTON FL; ESTRADA-MILA C; KINSEY JE

    2004-10-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.

  15. Electromagnetic gyrokinetic turbulence in finite-beta helical plasmasa)

    Science.gov (United States)

    Ishizawa, A.; Watanabe, T.-H.; Sugama, H.; Maeyama, S.; Nakajima, N.

    2014-05-01

    A saturation mechanism for microturbulence in a regime of weak zonal flow generation is investigated by means of electromagnetic gyrokinetic simulations. The study identifies a new saturation process of the kinetic ballooning mode (KBM) turbulence originating from the spatial structure of the KBM instabilities in a finite-beta Large Helical Device (LHD) plasma. Specifically, the most unstable KBM in LHD has an inclined mode structure with respect to the mid-plane of a torus, i.e., it has a finite radial wave-number in flux tube coordinates, in contrast to KBMs in tokamaks as well as ion-temperature gradient modes in tokamaks and helical systems. The simulations reveal that the growth of KBMs in LHD is saturated by nonlinear interactions of oppositely inclined convection cells through mutual shearing as well as by the zonal flow. The saturation mechanism is quantitatively investigated by analysis of the nonlinear entropy transfer that shows not only the mutual shearing but also a self-interaction with an elongated mode structure along the magnetic field line.

  16. MHD and Gyro-kinetic Stability of JET Pedestals

    CERN Document Server

    Saarelma, S; Dickinson, D; Frassinetti, L; Leyland, M J; Roach, C M; contributors, EFDA-JET

    2013-01-01

    The pedestal profile measurements in high triangularity JET plasmas show that with low fuelling the pedestal width decreases during the ELM cycle and with high fuelling it stays constant. In the low fuelling case the pedestal pressure gradient keeps increasing until the ELM crash and in the low fuelling case it reaches a saturation during the ELM cycle. An edge stability analysis using MHD and gyro-kinetic codes finds that at the end of the ELM cycle both JET plasmas become limited by finite-n peeling-ballooning modes and during the ELM cycle the steep pressure gradient region of the pedestal is both infinite-n ideal MHD ballooning mode and kinetic ballooning mode stable due to high bootstrap current. This indicates that during the ELM cycle the pedestal pressure gradient is not limited by kinetic ballooning modes. Any pedestal model based on pressure gradient being limited by kinetic ballooning modes needs to amended when predicting pedestals with high bootstrap current. Unstable micro-tearing modes are foun...

  17. Gyrokinetic theory and dynamics of the tokamak edge

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2016-08-15

    The validity of modern gyrokinetic field theory is assessed for the tokamak edge. The basic structure of the Lagrangian and resulting equations and their conservation laws is reviewed. The conventional microturbulence ordering for expansion is small potential/arbitrary wavelength. The equilibrium ordering for expansion is long wavelength/arbitrary amplitude. The long-wavelength form of the conventional Lagrangian is derived in detail. The two Lagrangians are shown to match at long wavelength if the E x B Mach number is small enough for its corrections to the gyroaveraging to be neglected. Therefore, the conventional derivation and its Lagrangian can be used at all wavelengths if these conditions are satisfied. Additionally, dynamical compressibility of the magnetic field can be neglected if the plasma beta is small. This allows general use of a shear-Alfven Lagrangian for edge turbulence and self consistent equilibrium-scale phenomena for flows, currents, and heat fluxes for conventional tokamaks without further modification by higher-order terms. Corrections in polarisation and toroidal angular momentum transport due to these higher-order terms for global edge turbulence computations are shown to be small. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. On the influence of initial state on gyrokinetic simulations

    Science.gov (United States)

    Dif-Pradalier, G.; Grandgirard, V.; Sarazin, Y.; Garbet, X.; Ghendrih, Ph.; Angelino, P.

    2008-04-01

    The influence of the initial state on the turbulence and transport is addressed in collisionless, global, and full-f gyrokinetic simulations solving both the equilibrium and the fluctuations. For two strongly differing initial states, it is found that the steady turbulent regime exhibits nearly identical statistical properties. This result is in marked contrast with the claim of different final states. In fact, a long transient with very different properties finally evolves towards the same turbulent regime for long simulation times. When the initial state is a local Maxwellian, i.e., constant on flux surfaces, a large-scale sheared electric potential develops on short time scales to compensate for the vertical curvature and grad-B drifts. We predict analytically (i) the temporal dynamics at short times of this electric potential, (ii) its poloidal structure, and (iii) its saturation time. All agree well with numerical simulations using the GYSELA code. The impact on the transport is twofold, as compared to the canonical initial state, where f only depends on the motion invariants: (i) the turbulence is delayed due to a weaker effective growth rate, (ii) the same transport level is obtained at long times and the turbulence exhibits nearly identical statistical characteristics. In agreement, the electric potential of these two cases has the same magnitude despite very different transients.

  19. Gyrokinetic simulations predict anomalous poloidal rotation in tokamak plasmas

    Science.gov (United States)

    Dif-Pradalier, Guilhem; Grandgirard, Virginie; Sarazin, Yanick; Garbet, Xavier; Ghendrih, Phillippe; Angelino, Paolo

    2008-11-01

    First-principle based collisionless gyrokinetic theory consensually provides today's deepest insight on turbulence-related problems in plasma physics. Conversely, neoclassical theory describes the effects of binary Coulomb collisions in a toroidal and inhomogeneous magnetic geometry and its consequences on particle trapping. The interplay between turbulence and collisions is a subject of great current focus for first-principle modeling since recent evidences have started to emphasise its relevance for the onset and the control of enhanced confinement regimes in the next-generation devices like Iter. A finite differences Fokker-Planck ion-ion collision operator is implemented in the full-f and global GYSELA code and has been thoroughly benchmarked in neoclassical regimes. Two types of simulations are compared, either purely neoclassical or turbulent including neoclassical effects. In each case, three different values of collisionality in the banana regime are investigated. Preliminary results show an enhancement of about 30% of the poloidal rotation of the main ions (Z=1) in the turbulent regime as compared to its neoclassical value. In all cases the radial force balance equation is satisfied within a few percent. Most of this increase comes from the radial electric field.

  20. Phase space structures in gyrokinetic simulations of fusion plasma turbulence

    Science.gov (United States)

    Ghendrih, Philippe; Norscini, Claudia; Cartier-Michaud, Thomas; Dif-Pradalier, Guilhem; Abiteboul, Jérémie; Dong, Yue; Garbet, Xavier; Gürcan, Ozgür; Hennequin, Pascale; Grandgirard, Virginie; Latu, Guillaume; Morel, Pierre; Sarazin, Yanick; Storelli, Alexandre; Vermare, Laure

    2014-10-01

    Gyrokinetic simulations of fusion plasmas give extensive information in 5D on turbulence and transport. This paper highlights a few of these challenging physics in global, flux driven simulations using experimental inputs from Tore Supra shot TS45511. The electrostatic gyrokinetic code GYSELA is used for these simulations. The 3D structure of avalanches indicates that these structures propagate radially at localised toroidal angles and then expand along the field line at sound speed to form the filaments. Analysing the poloidal mode structure of the potential fluctuations (at a given toroidal location), one finds that the low modes m = 0 and m = 1 exhibit a global structure; the magnitude of the m = 0 mode is much larger than that of the m = 1 mode. The shear layers of the corrugation structures are thus found to be dominated by the m = 0 contribution, that are comparable to that of the zonal flows. This global mode seems to localise the m = 2 mode but has little effect on the localisation of the higher mode numbers. However when analysing the pulsation of the latter modes one finds that all modes exhibit a similar phase velocity, comparable to the local zonal flow velocity. The consequent dispersion like relation between the modes pulsation and the mode numbers provides a means to measure the zonal flow. Temperature fluctuations and the turbulent heat flux are localised between the corrugation structures. Temperature fluctuations are found to exhibit two scales, small fluctuations that are localised by the corrugation shear layers, and appear to bounce back and forth radially, and large fluctuations, also readily observed on the flux, which are associated to the disruption of the corrugations. The radial ballistic velocity of both avalanche events if of the order of 0.5ρ∗c0 where ρ∗ = ρ0/a, a being the tokamak minor radius and ρ0 being the characteristic Larmor radius, ρ0 = c0/Ω0. c0 is the reference ion thermal velocity and Ω0 = qiB0/mi the reference

  1. Electromagnetic gyrokinetic turbulence in high-beta helical plasmas

    Science.gov (United States)

    Ishizawa, Akihiro

    2013-10-01

    Gyrokinetic simulation of electromagnetic turbulence in finite-beta plasmas is important for predicting the performance of fusion reactors. Whereas in low-beta tokamaks the zonal flow shear acts to regulate ion temperature gradient (ITG) driven turbulence, it has often been observed that the kinetic ballooning mode (KBM) and, at moderate-beta, the ITG mode continue to grow without reaching a physically relevant level of saturation. The corresponding problem in helical high-beta plasmas, the identification of a saturation mechanism for microturbulence in regimes where zonal flow generation is too weak, is the subject of the present work. This problem has not been previously explored because of numerical difficulties associated with complex three-dimensional magnetic structures as well as multiple spatio-temporal scales related to electromagnetic ion and electron dynamics. The present study identifies a new saturation process of the KBM turbulence originating from the spatial structure of the KBM instabilities in a high-beta Large Helical Device (LHD) plasma. Specifically, the most unstable KBM in LHD has an inclined mode structure with respect to the mid-plane of a torus, i.e. it has finite radial wave-number in flux tube coordinates, in contrast to KBMs in tokamaks as well as ITG modes in tokamaks and helical systems. The simulations reveal that the growth of KBMs in LHD is saturated by nonlinear interactions of oppositely inclined convection cells through mutual shearing, rather than by the zonal flow shear. The mechanism is quantitatively evaluated by analysis of the nonlinear entropy transfer.

  2. Verification of Gyrokinetic codes: theoretical background and applications

    Science.gov (United States)

    Tronko, Natalia

    2016-10-01

    In fusion plasmas the strong magnetic field allows the fast gyro motion to be systematically removed from the description of the dynamics, resulting in a considerable model simplification and gain of computational time. Nowadays, the gyrokinetic (GK) codes play a major role in the understanding of the development and the saturation of turbulence and in the prediction of the consequent transport. We present a new and generic theoretical framework and specific numerical applications to test the validity and the domain of applicability of existing GK codes. For a sound verification process, the underlying theoretical GK model and the numerical scheme must be considered at the same time, which makes this approach pioneering. At the analytical level, the main novelty consists in using advanced mathematical tools such as variational formulation of dynamics for systematization of basic GK code's equations to access the limits of their applicability. The indirect verification of numerical scheme is proposed via the Benchmark process. In this work, specific examples of code verification are presented for two GK codes: the multi-species electromagnetic ORB5 (PIC), and the radially global version of GENE (Eulerian). The proposed methodology can be applied to any existing GK code. We establish a hierarchy of reduced GK Vlasov-Maxwell equations using the generic variational formulation. Then, we derive and include the models implemented in ORB5 and GENE inside this hierarchy. At the computational level, detailed verification of global electromagnetic test cases based on the CYCLONE are considered, including a parametric β-scan covering the transition between the ITG to KBM and the spectral properties at the nominal β value.

  3. A minimal collision operator for implementing neoclassical transport in gyrokinetic simulations

    Science.gov (United States)

    Garbet, X.; Dif-Pradalier, G.; Nguyen, C.; Angelino, P.; Sarazin, Y.; Grandgirard, V.; Ghendrih, P.; Samain, A.

    2008-11-01

    This paper presents a class of collision operators, which reproduce neoclassical transport and comply with the constraints of a full-f global gyrokinetic code. The assessment of these operators is based on a variational entropy method, which allows a fast calculation of the neoclassical diffusivity and poloidal velocity.

  4. Global approach to the spectral problem of microinstabilities in a cylindrical plasma using a gyrokinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, S.; Vaclavik, J. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-03-01

    Considering the spectral problem of microinstabilities in a curved system, methods for solving the global gyrokinetic equation are presented for the simple case of a cylindrical plasma. They prove to be efficient for computing the full unstable spectrum of ITG-type modes and have shown to be applicable to the two-dimensional integral equation of tokamak configurations. (author) 5 figs., 22 refs.

  5. On the linear stability of collisionless microtearing modes

    CERN Document Server

    Predebon, I

    2013-01-01

    Microtearing modes are an important drive of turbulent heat transport in present-day fusion plasmas. We investigate their linear stability under very-low collisionality regimes, expected for the next generations of devices, using gyrokinetic and drift-kinetic approaches. At odds with current opinion, we show that collisionless microtearing instabilities may occur in certain experimental conditions, particularly relevant for such devices as reversed field pinches and spherical tokamaks.

  6. Gyrokinetic electron and fully kinetic ion simulations of fast magnetosonic waves in the magnetosphere

    Science.gov (United States)

    Gao, Xiaotian; Liu, Kaijun; Wang, Xueyi; Min, Kyungguk; Lin, Yu; Wang, Xiaogang

    2017-06-01

    Two-dimensional simulations using a gyrokinetic electron and fully kinetic ion (GeFi) scheme are preformed to study the excitation of fast magnetosonic waves in the terrestrial magnetosphere, which arise from the ion Bernstein instability driven by proton velocity distributions with a positive slope with respect to the perpendicular velocity. Since both ion and electron kinetics are relevant, particle-in-cell (PIC) simulations have often been employed to study the wave excitation. However, the full particle-in-cell scheme is computationally expensive for simulating waves in the ion scale because the electron scale must be fully resolved. Therefore, such simulations are limited to reduced proton-to-electron mass ratio ( m p / m e) and light-to-Alfvén speed ratio ( c / v A). The present study exploits the GeFi scheme that can break through these limitations to some extent, so larger m p / m e and c / v A can be used. In the simulations presented, the ion Bernstein instability is driven by a proton velocity distribution composed of 10% energetic protons with a shell distribution and 90% relatively cool, background protons with a Maxwellian distribution. The capability of the GeFi code in simulating the ion Bernstein instability is first demonstrated by comparing a GeFi simulation using reduced mass ratio ( m p / m e = 100) and speed ratio ( c / v A = 15) to a corresponding PIC simulation as well as linear dispersion analysis. A realistic speed ratio ( c / v A = 400) and a larger mass ratio ( m p / m e = 400) are then adopted in the GeFi code to explore how the results vary. It is shown that, as the increased m p / m e and c / v A lead to a larger lower hybrid frequency, ion Bernstein waves are excited at more ion cyclotron harmonics, consistent with the general prediction of linear dispersion theory. On the other hand, the GeFi simulations also revealed some interesting features after the instability saturation, which are likely related to nonlinear wave

  7. Benchmark studies of the gyro-Landau-fluid code and gyro-kinetic codes on kinetic ballooning modes

    Science.gov (United States)

    Tang, T. F.; Xu, X. Q.; Ma, C. H.; Bass, E. M.; Holland, C.; Candy, J.

    2016-03-01

    A Gyro-Landau-Fluid (GLF) 3 + 1 model has been recently implemented in BOUT++ framework, which contains full Finite-Larmor-Radius effects, Landau damping, and toroidal resonance [Ma et al., Phys. Plasmas 22, 055903 (2015)]. A linear global beta scan has been conducted using the JET-like circular equilibria (cbm18 series), showing that the unstable modes are kinetic ballooning modes (KBMs). In this work, we use the GYRO code, which is a gyrokinetic continuum code widely used for simulation of the plasma microturbulence, to benchmark with GLF 3 + 1 code on KBMs. To verify our code on the KBM case, we first perform the beta scan based on "Cyclone base case parameter set." We find that the growth rate is almost the same for two codes, and the KBM mode is further destabilized as beta increases. For JET-like global circular equilibria, as the modes localize in peak pressure gradient region, a linear local beta scan using the same set of equilibria has been performed at this position for comparison. With the drift kinetic electron module in the GYRO code by including small electron-electron collision to damp electron modes, GYRO generated mode structures and parity suggest that they are kinetic ballooning modes, and the growth rate is comparable to the GLF results. However, a radial scan of the pedestal for a particular set of cbm18 equilibria, using GYRO code, shows different trends for the low-n and high-n modes. The low-n modes show that the linear growth rate peaks at peak pressure gradient position as GLF results. However, for high-n modes, the growth rate of the most unstable mode shifts outward to the bottom of pedestal and the real frequency of what was originally the KBMs in ion diamagnetic drift direction steadily approaches and crosses over to the electron diamagnetic drift direction.

  8. Benchmark studies of the gyro-Landau-fluid code and gyro-kinetic codes on kinetic ballooning modes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, T. F. [Dalian University of Technology, Dalian 116024 (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Ma, C. H. [Fusion Simulation Center, School of Physics, Peking University, Beijing (China); Bass, E. M.; Candy, J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Holland, C. [University of California San Diego, La Jolla, California 92093-0429 (United States)

    2016-03-15

    A Gyro-Landau-Fluid (GLF) 3 + 1 model has been recently implemented in BOUT++ framework, which contains full Finite-Larmor-Radius effects, Landau damping, and toroidal resonance [Ma et al., Phys. Plasmas 22, 055903 (2015)]. A linear global beta scan has been conducted using the JET-like circular equilibria (cbm18 series), showing that the unstable modes are kinetic ballooning modes (KBMs). In this work, we use the GYRO code, which is a gyrokinetic continuum code widely used for simulation of the plasma microturbulence, to benchmark with GLF 3 + 1 code on KBMs. To verify our code on the KBM case, we first perform the beta scan based on “Cyclone base case parameter set.” We find that the growth rate is almost the same for two codes, and the KBM mode is further destabilized as beta increases. For JET-like global circular equilibria, as the modes localize in peak pressure gradient region, a linear local beta scan using the same set of equilibria has been performed at this position for comparison. With the drift kinetic electron module in the GYRO code by including small electron-electron collision to damp electron modes, GYRO generated mode structures and parity suggest that they are kinetic ballooning modes, and the growth rate is comparable to the GLF results. However, a radial scan of the pedestal for a particular set of cbm18 equilibria, using GYRO code, shows different trends for the low-n and high-n modes. The low-n modes show that the linear growth rate peaks at peak pressure gradient position as GLF results. However, for high-n modes, the growth rate of the most unstable mode shifts outward to the bottom of pedestal and the real frequency of what was originally the KBMs in ion diamagnetic drift direction steadily approaches and crosses over to the electron diamagnetic drift direction.

  9. 3D hybrid simulations with gyrokinetic particle ions and fluid electrons

    Energy Technology Data Exchange (ETDEWEB)

    Belova, E.V.; Park, W.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Strauss, H.R. [New York Univ., NY (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1998-12-31

    The previous hybrid MHD/particle model (MH3D-K code) represented energetic ions as gyrokinetic (or drift-kinetic) particles coupled to MHD equations using the pressure or current coupling scheme. A small energetic to bulk ion density ratio was assumed, n{sub h}/n{sub b} {much_lt} 1, allowing the neglect of the energetic ion perpendicular inertia in the momentum equation and the use of MHD Ohm`s law E = {minus}v{sub b} {times} B. A generalization of this model in which all ions are treated as gyrokinetic/drift-kinetic particles and fluid description is used for the electron dynamics is considered in this paper.

  10. Gyrokinetic simulations of fusion plasmas using a spectral velocity space representation

    CERN Document Server

    Parker, Joseph Thomas

    2016-01-01

    Magnetic confinement fusion reactors suffer severely from heat and particle losses through turbulent transport, which has inspired the construction of ever larger and more expensive reactors. Numerical simulations are vital to their design and operation, but particle collisions are too infrequent for fluid descriptions to be valid. Instead, strongly magnetised fusion plasmas are described by the gyrokinetic equations, a nonlinear integro-differential system for evolving the particle distribution functions in a five-dimensional position and velocity space, and the consequent electromagnetic field. Due to the high dimensionality, simulations of small reactor sections require hundreds of thousands of CPU hours on High Performance Computing platforms. We develop a Hankel-Hermite spectral representation for velocity space that exploits structural features of the gyrokinetic system. The representation exactly conserves discrete free energy in the absence of explicit dissipation, while our Hermite hypercollision ope...

  11. Flux-driven gyrokinetic simulations of ion turbulent transport at low magnetic shear

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y; Strugarek, A; Dif-Pradalier, G; Abiteboul, J; Allfrey, S; Garbet, X; Ghendrih, Ph; Grandgirard, V; Latu, G, E-mail: yanick.sarazin@cea.fr

    2010-11-01

    Ion Temperature Gradient driven turbulence is investigated with the global full-f gyrokinetic code GYSELA for different magnetic equilibria. Reversed shear and monotonous q profile cases do not exhibit dramatic changes nor in the dynamics nor in the level of turbulence, leading to similar mean profiles. Especially, no transport barrier is observed in the vicinity of s = 0 in the general case, although the radial extent of the gap without resonant modes is larger than the typical turbulence correlation length. Conversely, a transport barrier is found to develop in the gap region if non resonant modes are artificially suppressed from the simulation. Such simulations tend to reconcile previously published contradictory results, while extending the analysis to more realistic flux-driven gyrokinetic regimes.

  12. Defining an equilibrium state in global full-f gyrokinetic models

    OpenAIRE

    Dif-Pradalier, Guilhem; Grandgirard, V; Sarazin, Y.; ,; ,; (:unav); Ghendrih, Philippe

    2008-01-01

    International audience; This paper tackles the delicate choice of the initial distribution function in full-f gyrokinetic codes such as GYSELA 5D, aiming at predicting the turbulent transport level in low collisional tokamak plasmas. It is found, both analytically and numerically, that a Maxwellian distribution function with constant profiles on magnetic flux surfaces leads to the fast generation of a large scale electric field. Such a field opposes the up–down charge separation governed by t...

  13. Search for the Missing L-mode Edge Transport and Possible Breakdown of Gyrokinetics

    Science.gov (United States)

    Waltz, R. E.

    2012-10-01

    While GYRO simulations of typical core (0 theory of 6D drift-cyclotron kinetics following the fast time scale of the gyrophase to test the breakdown of 5D gyrokinetics with reduced model simulations is presented. 6pt [1] C. Holland, A.E. White, et al., Phys. Plasmas 16, 052301 (2009). [2] R.E. Waltz, J. Candy, C.C. Petty, Phys. Plasmas 13, 072304 (2006).

  14. Hybrid Gyrofluid/Gyrokinetic Modeling of Tokamak Turbulence with GryfX

    Science.gov (United States)

    Mandell, Noah; Dorland, Bill; Highcock, Edmund; Hammett, Greg

    2016-10-01

    Gyrofluid models are more efficient than gyrokinetic models, but have a disadvantage in their potential lack of physics fidelity. Here we present three major improvements to the physics fidelity and speed of gyrofluid models, which we encapsulate in the GryfX gyrofluid turbulence code. First, we implement a new nonlinear closure to model the cascade of free energy simultaneously in k⊥ and v⊥ via nonlinear phase-mixing (NLPM). Second, we use a hybrid algorithm that improves zonal flow physics by simulating zonal flow modes with a fully gyrokinetic model. These two improvements bring heat flux predictions from nonlinear GryfX simulations into agreement with the gyrokinetic code GS2. Third, we implement the equations on modern heterogeneous computing platforms, both as a standalone simulation tool that exploits the power of GPUs and as a component of TRINITY (a transport modeling code for tokamaks). GryfX has a roughly 1,200 times performance advantage over GS2 due to the combination of GPU acceleration and the reduction of hundreds of velocity space grid points to six gyrofluid moments. This makes GryfX ideal for large parameter scans, and enables the use of the TRINITY-GryfX system for efficient multi-scale analysis of tokamak turbulence on transport time scales. Present address: Chalmers University, Gothenburg, Sweden.

  15. A flux-matched gyrokinetic analysis of DIII-D L-mode turbulence

    Science.gov (United States)

    Görler, T.; White, A. E.; Told, D.; Jenko, F.; Holland, C.; Rhodes, T. L.

    2014-12-01

    Previous nonlinear gyrokinetic simulations of specific DIII-D L-mode cases have been found to significantly underpredict the ion heat transport and associated density and temperature fluctuation levels by up to almost one of order of magnitude in the outer-core domain, i.e., roughly in the last third of the minor radius. Since then, this so-called shortfall issue has been subject to various speculations on possible reasons and furthermore motivation for a number of dedicated comparisons for L-mode plasmas in comparable machines. However, only a rather limited number of simulations and gyrokinetic codes has been applied to the original scenario, thus calling for further dedicated investigations in order to broaden the scientific basis. The present work contributes along these lines by employing another well-established gyrokinetic code in a numerically and physically comprehensive manner. Contrary to the previous studies, only a mild underprediction is observed at the outer radial positions which can furthermore be overcome by varying the ion temperature gradient within the error bars associated with the experimental measurement. The significance and reliability of these simulations are demonstrated by benchmarks, numerical convergence tests, and furthermore by extensive validation studies. The latter involve cross-phase and cross-power spectra analyses of various fluctuating quantities and confirm a high degree of realism. The code discrepancies come as a surprise since the involved software packages had been benchmarked repeatedly and very successfully in the past. Further collaborative effort in identifying the underlying difference is hence required.

  16. Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection

    Science.gov (United States)

    Munoz Sepulveda, Patricio Alejandro; Büchner, Jörg; Kilian, Patrick; Told, Daniel; Jenko, Frank

    2016-07-01

    Fully kinetic Particle-in-Cell (PIC) simulations of (strong) guide-field reconnection can be computationally very demanding, due to the intrinsic stability and accuracy conditions required by this numerical method. One convenient approach to circumvent this issue is using gyrokinetic theory, an approximation of the Vlasov-Maxwell equations for strongly magnetized plasmas that eliminates the fast gyromotion, and thus reduces the computational cost. Although previous works have started to compare the features of reconnection between both approaches, a complete understanding of the differences is far from being complete. This knowledge is essential to discern the limitations of the gyrokinetic simulations of magnetic reconnection when applied to scenarios with moderate guide fields, such as the Solar corona, in contrast to most of the fusion/laboratory plasmas. We extend a previous work by our group, focused in the differences in the macroscopic flows, by analyzing the heating processes and non-thermal features developed by reconnection between both plasma approximations. We relate these processes by identifying some high-frequency cross-streaming instabilities appearing only in the fully kinetic approach. We characterize the effects of these phenonema such as anisotropic electron heating, beam formation and turbulence under different parameter regimes. And finally, we identify the conditions under which these instabilities tends to become negligible in the fully kinetic model, and thus a comparison with gyrokinetic theory becomes more reliable.

  17. Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

    Science.gov (United States)

    Sung, C.; White, A. E.; Mikkelsen, D. R.; Greenwald, M.; Holland, C.; Howard, N. T.; Churchill, R.; Theiler, C.

    2016-04-01

    Long wavelength turbulent electron temperature fluctuations (kyρs 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (kyρs ≲ 1.7) performed at r/a ˜ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the "Transport Shortfall" [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].

  18. Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

    Energy Technology Data Exchange (ETDEWEB)

    Sung, C., E-mail: csung@physics.ucla.edu [University of California, Los Angeles, Los Angeles, California 90095 (United States); White, A. E.; Greenwald, M.; Howard, N. T. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Mikkelsen, D. R.; Churchill, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Holland, C. [University of California, San Diego, La Jolla, California 92093 (United States); Theiler, C. [Ecole Polytechnique Fédérale de Lausanne, SPC, Lausanne 1015 (Switzerland)

    2016-04-15

    Long wavelength turbulent electron temperature fluctuations (k{sub y}ρ{sub s} < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (k{sub y}ρ{sub s} ≲ 1.7) performed at r/a ∼ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the “Transport Shortfall” [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].

  19. 331 Models Facing the Tensions in $\\Delta F=2$ Processes with the Impact on $\\varepsilon^\\prime/\\varepsilon$, $B_s\\to\\mu^+\\mu^-$ and $B\\to K^*\\mu^+\\mu^-$

    CERN Document Server

    Buras, Andrzej J

    2016-01-01

    Motivated by the recently improved lattice QCD results on the hadronic matrix elements entering $\\Delta M_{s,d}$ in $B_{s,d}^0-\\bar B_{s,d}^0$ mixings and the resulting increased tensions between $\\Delta M_{s,d}$ and $\\varepsilon_K$ in the Standard Model and CMFV models, we demonstrate that these tensions can be removed in 331 models based on the gauge group $SU(3)_C\\times SU(3)_L\\times U(1)_X$ both for $M_{Z^\\prime}$ in the LHC reach and well beyond it. But the implied new physics (NP) patterns in $\\Delta F=1$ observables depend sensitively on the value of $|V_{cb}|$. Concentrating the analysis on three 331 models that have been selected by us previously on the basis of their performance in electroweak precision tests and $\\varepsilon^\\prime/\\varepsilon$ we illustrate this for $|V_{cb}|=0.042$ and $|V_{cb}|=0.040$. We find that these new lattice data still allow for positive shifts in $\\varepsilon^\\prime/\\varepsilon$ up to $6\\times 10^{-4}$ for $M_{Z^\\prime}=3~TeV$ for both values of $$|V_{cb}|$ but for $M_{...

  20. On the relation between the effective ferromagnetic resonance linewidth {delta}f{sub eff} and damping parameter {alpha}{sub eff} in ferromagnetic Fe-Co-Hf-N nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, K. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Material forschung I, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)], E-mail: klaus.seemann@imf.fzk.de; Leiste, H.; Klever, Ch. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Material forschung I, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2009-10-15

    Ferromagnetic Fe-Co-Hf-N nanocomposite films were investigated concerning their microstructure-dependent frequency behaviour. To modify the composition, the films were deposited by reactive RF magnetron sputtering by using three different 6 in. targets with various Hf fractions. The films were post-annealed up to 600 deg. C in a static magnetic field to induce an in-plane uniaxial anisotropy and to obtain different crystal sizes. Depending on the annealing temperature, high-frequency losses were investigated by considering the full-width at half-maximum (FWHM) {delta}f{sub eff} of the imaginary part of the frequency-dependent permeability which showed a resonance frequency f{sub FMR} of 2.3 GHz for an in-plane uniaxial anisotropy field H{sub u} of 4 mT. The FWHM in correlation with the damping parameter {alpha}{sub eff} is discussed, e.g., in terms of two-magnon scattering. Damping occurs due to film inhomogeneity in magnetisation and uniaxial anisotropy caused by a magnetocrystalline anisotropy H{sub a} and/or non-magnetic phases. This will result in homogenous or even inhomogeneous resonance line broadening if additional and resonance as well as precession frequencies of independent grains arise.

  1. Fluid and gyrokinetic simulations of impurity transport at JET

    DEFF Research Database (Denmark)

    Nordman, H; Skyman, A; Strand, P

    2011-01-01

    Impurity transport coefficients due to ion-temperature-gradient (ITG) mode and trapped-electron mode turbulence are calculated using profile data from dedicated impurity injection experiments at JET. Results obtained with a multi-fluid model are compared with quasi-linear and nonlinear gyrokineti...

  2. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    Energy Technology Data Exchange (ETDEWEB)

    McClenaghan, J.; Lin, Z.; Holod, I.; Deng, W.; Wang, Z. [University of California, Irvine, California 92697 (United States)

    2014-12-15

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  3. Gyro-Kinetic Electron and Fully-Kinetic Ion Simulations of Fast Magnetosonic Waves in the Magnetosphere

    Science.gov (United States)

    Gao, X.; Liu, K.; Wang, X.; Min, K.; Lin, Y.

    2016-12-01

    Two-dimensional simulations using a gyro-kinetic electron and fully-kinetic ion (GeFi) scheme are preformed to study the excitation of fast magnetosonic waves in the magnetosphere, which arise from the ion Bernstein instability driven by ring-like proton velocity distributions (with a positive slope with respect to the perpendicular velocity). Since both ion and electron kinetics are relevant, particle-in-cell (PIC) simulations have often been employed to study the wave excitation. However, such simulations are limited to reduced ion-to-electron mass ratio (mi/me) and light-to-Alfvén speed ratio (c/VA) due to the computationally expensive nature of PIC codes. The present study exploits a GeFi scheme that can break through these limitations and use larger/more realistic mi/me and c/VA. The capability of the GeFi code in simulating the ion Bernstein instability is first demonstrated by comparing a GeFi simulation using reduced mass ratio (mi/me=100) and speed ratio (c/VA=15) to a corresponding PIC simulation. A realistic speed ratio (c/VA=400) and a larger mass ratio (mi/me=400) are then adopted in the GeFi code to explore how the results vary. It is shown that the increased mi/me and c/VA lead to a larger lower hybrid frequency and allow waves to arise at more ion cyclotron harmonics, consistent with the general prediction of linear dispersion theory.

  4. Interplay between Gyrokinetic Turbulence, Flows, and Collisions: Perspectives on Transport and Poloidal Rotation

    Science.gov (United States)

    Dif-Pradalier, G.; Grandgirard, V.; Sarazin, Y.; Garbet, X.; Ghendrih, Ph.

    2009-08-01

    The impact of ion-ion collisions on confinement is investigated with the full-f and global gyrokinetic Gysela code through a series of nonlinear turbulence simulations for tokamak parameters. A twofold scan in the turbulence drive and in collisionality is performed, highlighting (i) a heat transport expressed in terms of critical quantities—threshold and exponent, (ii) a first evidence of turbulent generation of poloidal momentum, and (iii) the dominance of mean flow shear, mediated through the turbulent corrugation of the mean profiles, with regard to the oft-invoked zonal flow shear.

  5. Verification of a magnetic island in gyro-kinetics by comparison with analytic theory

    Energy Technology Data Exchange (ETDEWEB)

    Zarzoso, D., E-mail: david.zarzoso-fernandez@polytechnique.org; Casson, F. J.; Poli, E. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Hornsby, W. A. [Theoretical Physics V, Department of Physics, Universitaet Bayreuth, Bayreuth, Germany D-95447 (Germany); Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Peeters, A. G. [Theoretical Physics V, Department of Physics, Universitaet Bayreuth, Bayreuth, Germany D-95447 (Germany)

    2015-02-15

    A rotating magnetic island is imposed in the gyrokinetic code GKW, when finite differences are used for the radial direction, in order to develop the predictions of analytic tearing mode theory and understand its limitations. The implementation is verified against analytics in sheared slab geometry with three numerical tests that are suggested as benchmark cases for every code that imposes a magnetic island. The convergence requirements to properly resolve physics around the island separatrix are investigated. In the slab geometry, at low magnetic shear, binormal flows inside the island can drive Kelvin-Helmholtz instabilities which prevent the formation of the steady state for which the analytic theory is formulated.

  6. The Hamiltonian Structure and Euler-Poincare Formulation of the Valsov-Maxwell and Gyrokinetic System

    Energy Technology Data Exchange (ETDEWEB)

    J. Squire, H. Qin and W.M. Tang

    2012-09-25

    We present a new variational principle for the gyrokinetic system, similar to the Maxwell-Vlasov action presented in Ref. 1. The variational principle is in the Eulerian frame and based on constrained variations of the phase space fluid velocity and particle distribution function. Using a Legendre transform, we explicitly derive the field theoretic Hamiltonian structure of the system. This is carried out with the Dirac theory of constraints, which is used to construct meaningful brackets from those obtained directly from Euler-Poincare theory. Possible applications of these formulations include continuum geometric integration techniques, large-eddy simulation models and Casimir type stability methods. __________________________________________________

  7. Validating a quasi-linear transport model versus nonlinear simulations

    Science.gov (United States)

    Casati, A.; Bourdelle, C.; Garbet, X.; Imbeaux, F.; Candy, J.; Clairet, F.; Dif-Pradalier, G.; Falchetto, G.; Gerbaud, T.; Grandgirard, V.; Gürcan, Ö. D.; Hennequin, P.; Kinsey, J.; Ottaviani, M.; Sabot, R.; Sarazin, Y.; Vermare, L.; Waltz, R. E.

    2009-08-01

    In order to gain reliable predictions on turbulent fluxes in tokamak plasmas, physics based transport models are required. Nonlinear gyrokinetic electromagnetic simulations for all species are still too costly in terms of computing time. On the other hand, interestingly, the quasi-linear approximation seems to retain the relevant physics for fairly reproducing both experimental results and nonlinear gyrokinetic simulations. Quasi-linear fluxes are made of two parts: (1) the quasi-linear response of the transported quantities and (2) the saturated fluctuating electrostatic potential. The first one is shown to follow well nonlinear numerical predictions; the second one is based on both nonlinear simulations and turbulence measurements. The resulting quasi-linear fluxes computed by QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501) are shown to agree with the nonlinear predictions when varying various dimensionless parameters, such as the temperature gradients, the ion to electron temperature ratio, the dimensionless collisionality, the effective charge and ranging from ion temperature gradient to trapped electron modes turbulence.

  8. Introduction to Gyrokinetic Theory with Applications in Magnetic Confinement Research in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    W.M. Tang

    2005-01-03

    The present lecture provides an introduction to the subject of gyrokinetic theory with applications in the area of magnetic confinement research in plasma physics--the research arena from which this formalism was originally developed. It was presented as a component of the ''Short Course in Kinetic Theory within the Thematic Program in Partial Differential Equations'' held at the Fields Institute for Research in Mathematical Science (24 March 2004). This lecture also discusses the connection between the gyrokinetic formalism and powerful modern numerical simulations. Indeed, simulation, which provides a natural bridge between theory and experiment, is an essential modern tool for understanding complex plasma behavior. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modeling. This was enabled by two key factors: (i) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (ii) access to powerful new computational resources.

  9. Proposal of a brand-new gyrokinetic algorithm for global MHD simulation

    Science.gov (United States)

    Naitou, Hiroshi; Kobayashi, Kenichi; Hashimoto, Hiroki; Andachi, Takehisa; Lee, Wei-Li; Tokuda, Shinji; Yagi, Masatoshi

    2009-11-01

    A new algorithm for the gyrokinetic PIC code is proposed. The basic equations are energy conserving and composed of (1) the gyrokinetic Vlasov (GKV) equation, (2) the Vortex equation, and (3) the generalized Ohm's law along the magnetic field. Equation (2) is used to advance electrostatic potential in time. Equation (3) is used to advance longitudinal component of vector potential in time as well as estimating longitudinal induced electric field to accelerate charged particles. The particle information is used to estimate pressure terms in equation (3). The idea was obtained in the process of reviewing the split-weight-scheme formalism. This algorithm was incorporated in the Gpic-MHD code. Preliminary results for the m=1/n=1 internal kink mode simulation in the cylindrical geometry indicate good energy conservation, quite low noise due to particle discreteness, and applicability to larger spatial scale and higher beta regimes. The advantage of new Gpic-MHD is that the lower order moments of the GKV equation are estimated by the moment equation while the particle information is used to evaluate the second order moment.

  10. Transport processes and entropy production in toroidal plasmas with gyrokinetic electromagnetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H.; Okamoto, M.; Horton, W.; Wakatani, M.

    1996-01-01

    Transport processes and resultant entropy production in magnetically confined plasmas are studied in detail for toroidal systems with gyrokinetic electromagnetic turbulence. The kinetic equation including the turbulent fluctuations are double-averaged over the ensemble and the gyrophase. The entropy balance equation is derived from the double-averaged kinetic equation with the nonlinear gyrokinetic equation for the fluctuating distribution function. The result clarifies the spatial transport and local production of the entropy due to the classical, neoclassical and anomalous transport processes, respectively. For the anomalous transport process due to the electromagnetic turbulence as well as the classical and neoclassical processes, the kinetic form of the entropy production is rewritten as the thermodynamic form, from which the conjugate pairs of the thermodynamic forces and the transport fluxes are identified. The Onsager symmetry for the anomalous transport equations is shown to be valid within the quasilinear framework. The complete energy balance equation, which takes account of the anomalous transport and exchange of energy due to the fluctuations, is derived from the ensemble-averaged kinetic equation. The intrinsic ambipolarity of the anomalous particle fluxes is shown to hold for the self-consistent turbulent electromagnetic fields satisfying Poisson`s equation and Ampere`s law. (author).

  11. Fully Nonlinear Edge Gyrokinetic Simulations of Kinetic Geodesic-Acoustic Modes and Boundary Flows

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X Q; Belli, E; Bodi, K; Candy, J; Chang, C S; Cohen, B I; Cohen, R H; Colella, P; Dimits, A M; Dorr, M R; Gao, Z; Hittinger, J A; Ko, S; Krasheninnikov, S; McKee, G R; Nevins, W M; Rognlien, T D; Snyder, P B; Suh, J; Umansky, M V

    2008-09-18

    We present edge gyrokinetic neoclassical simulations of tokamak plasmas using the fully nonlinear (full-f) continuum code TEMPEST. A nonlinear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson Equation. We demonstrate the following: (1) High harmonic resonances (n > 2) significantly enhance geodesic-acoustic mode (GAM) damping at high-q (tokamak safety factor), and are necessary to explain both the damping observed in our TEMPEST q-scans and experimental measurements of the scaling of the GAM amplitude with edge q{sub 95} in the absence of obvious evidence that there is a strong q dependence of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation, and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and flow characteristics qualitatively like those observed in experiments.

  12. Fluid and gyrokinetic modelling of particle transport in plasmas with hollow density profiles

    Science.gov (United States)

    Tegnered, D.; Oberparleiter, M.; Nordman, H.; Strand, P.

    2016-11-01

    Hollow density profiles occur in connection with pellet fuelling and L to H transitions. A positive density gradient could potentially stabilize the turbulence or change the relation between convective and diffusive fluxes, thereby reducing the turbulent transport of particles towards the center, making the fuelling scheme inefficient. In the present work, the particle transport driven by ITG/TE mode turbulence in regions of hollow density profiles is studied by fluid as well as gyrokinetic simulations. The fluid model used, an extended version of the Weiland transport model, Extended Drift Wave Model (EDWM), incorporates an arbitrary number of ion species in a multi-fluid description, and an extended wavelength spectrum. The fluid model, which is fast and hence suitable for use in predictive simulations, is compared to gyrokinetic simulations using the code GENE. Typical tokamak parameters are used based on the Cyclone Base Case. Parameter scans in key plasma parameters like plasma β, R/LT , and magnetic shear are investigated. It is found that β in particular has a stabilizing effect in the negative R/Ln region, both nonlinear GENE and EDWM show a decrease in inward flux for negative R/Ln and a change of direction from inward to outward for positive R/Ln . This might have serious consequences for pellet fuelling of high β plasmas.

  13. Effect of magnetic islands on profiles, flows, turbulence and transport in nonlinear gyrokinetic simulations

    Science.gov (United States)

    Bañón Navarro, A.; Bardóczi, L.; Carter, T. A.; Jenko, F.; Rhodes, T. L.

    2017-03-01

    Neoclassical tearing modes have deleterious effects on plasma confinement and, if they grow large enough, they can lead to discharge termination. Therefore, they impose a major barrier in the development of operating scenarios of present-day tokamaks. Gyrokinetics offers a path toward studying multi-scale interactions with turbulence and the effect on plasma confinement. As a first step toward this goal, we have implemented static magnetic islands in nonlinear gyrokinetic simulations with the GENE code. We investigate the effect of the islands on profiles, flows, turbulence and transport and the scaling of these effects with respect to island size. We find a clear threshold island width, below which the islands have little or no effect while beyond this point the islands significantly perturb flows, increase turbulence and transport. Additionally, we study the effect of radially asymmetric islands on shear flows for the first time. We find that island induced shear flows can regulate turbulent fluctuation levels in the vicinity of the island separatrices. Throughout this work, we focus on experimentally relevant quantities, such as rms levels of density and electron temperature fluctuations, as well as amplitude and phasing of turbulence modulation. These simulations aim to provide guidelines for interpreting experimental results by comparing qualitative trends in the simulations with those obtained in tokamak experiments.

  14. Grid-based Parallel Data Streaming Implemented for the Gyrokinetic Toroidal Code

    Energy Technology Data Exchange (ETDEWEB)

    S. Klasky; S. Ethier; Z. Lin; K. Martins; D. McCune; R. Samtaney

    2003-09-15

    We have developed a threaded parallel data streaming approach using Globus to transfer multi-terabyte simulation data from a remote supercomputer to the scientist's home analysis/visualization cluster, as the simulation executes, with negligible overhead. Data transfer experiments show that this concurrent data transfer approach is more favorable compared with writing to local disk and then transferring this data to be post-processed. The present approach is conducive to using the grid to pipeline the simulation with post-processing and visualization. We have applied this method to the Gyrokinetic Toroidal Code (GTC), a 3-dimensional particle-in-cell code used to study microturbulence in magnetic confinement fusion from first principles plasma theory.

  15. The implementation of a toroidal limiter model into the gyrokinetic code ELMFIRE

    Energy Technology Data Exchange (ETDEWEB)

    Leerink, S.; Janhunen, S.J.; Kiviniemi, T.P.; Nora, M. [Euratom-Tekes Association, Helsinki University of Technology (Finland); Heikkinen, J.A. [Euratom-Tekes Association, VTT, P.O. Box 1000, FI-02044 VTT (Finland); Ogando, F. [Universidad Nacional de Educacion a Distancia, Madrid (Spain)

    2008-03-15

    The ELMFIRE full nonlinear gyrokinetic simulation code has been developed for calculations of plasma evolution and dynamics of turbulence in tokamak geometry. The code is applicable for calculations of strong perturbations in particle distribution function, rapid transients and steep gradients in plasma. Benchmarking against experimental reflectometry data from the FT2 tokamak is being discussed and in this paper a model for comparison and studying poloidal velocity is presented. To make the ELMFIRE code suitable for scrape-off layer simulations a simplified toroidal limiter model has been implemented. The model is be discussed and first results are presented. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Whole-volume integrated gyrokinetic simulation of plasma turbulence in realistic diverted-tokamak geometry

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C S; Ku, S; Greengard, L; Park, G [Courant Institute of Mathematical Sciences, New York University, NY 10012 (United States); Diamond, P; Dif-Pradalier, G [University of California at San Diego, La Jolla, CA 92093 (United States); Adams, M; Keyes, D [Columbia University, New York, NY 10027 (United States); Barreto, R; D' Azevedo, E; Klasky, S; Podhorszki, N [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Chen, Y; Parker, S [University of Colorado at Boulder, Boulder, CO 80309 (United States); Cummings, J [California Institute of Technology, Pasadena, CA 91125 (United States); Ethier, S; Hahm, T S [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Hinton, F [Hinton Associates, Escondido, CA 92029 (United States); Lin, Z [University of California at Irvine, Irvine, CA 92697 (United States); Lofstead, J, E-mail: cschang@cims.nyu.ed [Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2009-07-01

    Performance prediction for ITER is based upon the ubiquitous experimental observation that the plasma energy confinement in the device core is strongly coupled to the edge confinement for an unknown reason. The coupling time-scale is much shorter than the plasma transport time-scale. In order to understand this critical observation, a multi-scale turbulence-neoclassical simulation of integrated edge-core plasma in a realistic diverted geometry is a necessity, but has been a formidable task. Thanks to the recent development in high performance computing, we have succeeded in the integrated multiscale gyrokinetic simulation of the ion-temperature-gradient driven turbulence in realistic diverted tokamak geometry for the first time. It is found that modification of the self-organized criticality in the core plasma by nonlocal core-edge coupling of ITG turbulence can be responsible for the core-edge confinement coupling.

  17. The Structure of Plasma Heating in Gyrokinetic Alfv\\'enic Turbulence

    CERN Document Server

    Navarro, A B; Told, D; Groselj, D; Crandall, P; Jenko, F

    2016-01-01

    We analyze plasma heating in weakly collisional kinetic Alfv\\'en wave (KAW) turbulence using high resolution gyrokinetic simulations spanning the range of scales between the ion and the electron gyroradii. Real space structures that have a higher than average heating rate are shown not to be confined to current sheets. This novel result is at odds with previous studies, which use the electromagnetic work in the local electron fluid frame, i.e. $\\mathbf{J} \\!\\cdot\\! (\\mathbf{E} + \\mathbf{v}_e\\times\\mathbf{B})$, as a proxy for turbulent dissipation to argue that heating follows the intermittent spatial structure of the electric current. Furthermore, we show that electrons are dominated by parallel heating while the ions prefer the perpendicular heating route. We comment on the implications of the results presented here.

  18. Extended gyrokinetic field theory for time-dependent magnetic confinement fields

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H.; Watanabe, T.-H.; Nunami, M. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2014-01-15

    A gyrokinetic system of equations for turbulent toroidal plasmas in time-dependent axisymmetric background magnetic fields is derived from the variational principle. Besides governing equations for gyrocenter distribution functions and turbulent electromagnetic fields, the conditions which self-consistently determine the background magnetic fields varying on a transport time scale are obtained by using the Lagrangian, which includes the constraint on the background fields. Conservation laws for energy and toroidal angular momentum of the whole system in the time-dependent background magnetic fields are naturally derived by applying Noether's theorem. It is shown that the ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work agree with the results from the conventional recursive formulation with the WKB representation except that collisional effects are disregarded here.

  19. Defining an equilibrium state in global full-f gyrokinetic models

    Energy Technology Data Exchange (ETDEWEB)

    Dif-Pradalier, G.; Grandgirard, V.; Sarazin, Y.; Garbet, X.; Ghendrih, Ph. [CEA Cadarache, CEA/DSM/DRFC, EURATOM Assoc, F-13108 St Paul Les Durance, (France)

    2008-07-01

    This paper tackles the delicate choice of the initial distribution function in full-f gyrokinetic codes such as GYSELA 5D, aiming at predicting the turbulent transport level in low collisional tokamak plasmas. It is found, both analytically and numerically, that a Maxwellian distribution function with constant profiles on magnetic flux surfaces leads to the fast generation of a large scale electric field. Such a field opposes the up-down charge separation governed by the inhomogeneity of the equilibrium magnetic field. If large enough, the shearing rate induced by the resulting poloidal E * B velocity could efficiently reduce the plasma micro-instabilities which account for the development of the turbulence. Starting in the ab initio code GYSELA 5D from an equilibrium distribution function depending on motion invariants only is shown to cure such a problem. In this case, charge separation is counter-balanced by parallel flow, and the standard fluid force balance is recovered. (authors)

  20. Whole-volume integrated gyrokinetic simulation of plasma turbulence in realistic diverted-tokamak geometry

    Science.gov (United States)

    Chang, C. S.; Ku, S.; Diamond, P.; Adams, M.; Barreto, R.; Chen, Y.; Cummings, J.; D'Azevedo, E.; Dif-Pradalier, G.; Ethier, S.; Greengard, L.; Hahm, T. S.; Hinton, F.; Keyes, D.; Klasky, S.; Lin, Z.; Lofstead, J.; Park, G.; Parker, S.; Podhorszki, N.; Schwan, K.; Shoshani, A.; Silver, D.; Wolf, M.; Worley, P.; Weitzner, H.; Yoon, E.; Zorin, D.

    2009-07-01

    Performance prediction for ITER is based upon the ubiquitous experimental observation that the plasma energy confinement in the device core is strongly coupled to the edge confinement for an unknown reason. The coupling time-scale is much shorter than the plasma transport time-scale. In order to understand this critical observation, a multi-scale turbulence-neoclassical simulation of integrated edge-core plasma in a realistic diverted geometry is a necessity, but has been a formidable task. Thanks to the recent development in high performance computing, we have succeeded in the integrated multiscale gyrokinetic simulation of the ion-temperature-gradient driven turbulence in realistic diverted tokamak geometry for the first time. It is found that modification of the self-organized criticality in the core plasma by nonlocal core-edge coupling of ITG turbulence can be responsible for the core-edge confinement coupling.

  1. Defining an equilibrium state in global full-f gyrokinetic models

    Science.gov (United States)

    Dif-Pradalier, G.; Grandgirard, V.; Sarazin, Y.; Garbet, X.; Ghendrih, Ph.

    2008-02-01

    This paper tackles the delicate choice of the initial distribution function in full-f gyrokinetic codes such as G YSELA 5D, aiming at predicting the turbulent transport level in low collisional tokamak plasmas. It is found, both analytically and numerically, that a Maxwellian distribution function with constant profiles on magnetic flux surfaces leads to the fast generation of a large scale electric field. Such a field opposes the up-down charge separation governed by the inhomogeneity of the equilibrium magnetic field. If large enough, the shearing rate induced by the resulting poloidal E×B velocity could efficiently reduce the plasma micro-instabilities which account for the development of the turbulence. Starting in the ab initio code G YSELA 5 D from an equilibrium distribution function depending on motion invariants only is shown to cure such a problem. In this case, charge separation is counter-balanced by parallel flow, and the standard fluid force balance is recovered.

  2. Comprehensive comparisons of geodesic acoustic mode characteristics and dynamics between Tore Supra experiments and gyrokinetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Storelli, A., E-mail: alexandre.storelli@lpp.polytechnique.fr; Vermare, L.; Hennequin, P.; Gürcan, Ö. D.; Singh, Rameswar; Morel, P. [Laboratoire de Physique des Plasmas, École Polytechnique, CNRS, UPMC, UPSud, 91128 Palaiseau (France); Dif-Pradalier, G.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Ghendrih, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Görler, T. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-06-15

    In a dedicated collisionality scan in Tore Supra, the geodesic acoustic mode (GAM) is detected and identified with the Doppler backscattering technique. Observations are compared to the results of a simulation with the gyrokinetic code GYSELA. We found that the GAM frequency in experiments is lower than predicted by simulation and theory. Moreover, the disagreement is higher in the low collisionality scenario. Bursts of non harmonic GAM oscillations have been characterized with filtering techniques, such as the Hilbert-Huang transform. When comparing this dynamical behaviour between experiments and simulation, the probability density function of GAM amplitude and the burst autocorrelation time are found to be remarkably similar. In the simulation, where the radial profile of GAM frequency is continuous, we observed a phenomenon of radial phase mixing of the GAM oscillations, which could influence the burst autocorrelation time.

  3. Comprehensive comparisons of geodesic acoustic mode characteristics and dynamics between Tore Supra experiments and gyrokinetic simulations

    Science.gov (United States)

    Storelli, A.; Vermare, L.; Hennequin, P.; Gürcan, Ö. D.; Dif-Pradalier, G.; Sarazin, Y.; Garbet, X.; Görler, T.; Singh, Rameswar; Morel, P.; Grandgirard, V.; Ghendrih, P.

    2015-06-01

    In a dedicated collisionality scan in Tore Supra, the geodesic acoustic mode (GAM) is detected and identified with the Doppler backscattering technique. Observations are compared to the results of a simulation with the gyrokinetic code GYSELA. We found that the GAM frequency in experiments is lower than predicted by simulation and theory. Moreover, the disagreement is higher in the low collisionality scenario. Bursts of non harmonic GAM oscillations have been characterized with filtering techniques, such as the Hilbert-Huang transform. When comparing this dynamical behaviour between experiments and simulation, the probability density function of GAM amplitude and the burst autocorrelation time are found to be remarkably similar. In the simulation, where the radial profile of GAM frequency is continuous, we observed a phenomenon of radial phase mixing of the GAM oscillations, which could influence the burst autocorrelation time.

  4. Whole-volume integrated gyrokinetic simulation of plasma turbulence in realistic diverted-tokamak geometry

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C S [New York University; Ku, Seung-Hoe [New York University; Diamond, P. H. [University of California, San Diego; Adams, Mark [Columbia University; Tchoua, Roselyne B [ORNL; Chen, Yang [University of Colorado, Boulder; Cummings, J. [California Institute of Technology, University of California, Davis; D' Azevedo, Ed F [ORNL; Dif-Pradalier, Guilhem [University of California, San Diego; Ethier, Stephane [Princeton Plasma Physics Laboratory (PPPL); Greengard, Leslie [New York University; Hahm, Taik Soo [Princeton Plasma Physics Laboratory (PPPL); Hinton, Fred [University of California, San Diego; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Lin, Z. [University of California, Irvine; Lofstead, J. [Georgia Institute of Technology; Park, G. [New York University; Podhorszki, Norbert [ORNL; Schwan, Karsten [Georgia Institute of Technology; Shoshani, A. [Lawrence Berkeley National Laboratory (LBNL); Silver, D. [Rutgers University; Wolf, M. [Georgia Institute of Technology; Worley, Patrick H [ORNL; Zorin, Denis [New York University

    2009-01-01

    Performance prediction for ITER is based upon the ubiquitous experimental observation that the plasma energy confinement in the device core is strongly coupled to the edge confinement for an unknown reason. The coupling time-scale is much shorter than the plasma transport time-scale. In order to understand this critical observation, a multi-scale turbulence-neoclassical simulation of integrated edge-core plasma in a realistic diverted geometry is a necessity, but has been a formidable task. Thanks to the recent development in high performance computing, we have succeeded in the integrated multiscale gyrokinetic simulation of the ion-temperature-gradient driven turbulence in realistic diverted tokamak geometry for the first time. It is found that modification of the self-organized criticality in the core plasma by nonlocal core-edge coupling of ITG turbulence can be responsible for the core-edge confinement coupling.

  5. Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade

    CERN Document Server

    Casson, F J; Angioni, C; Camenen, Y; Dux, R; Fable, E; Fischer, R; Geiger, B; Manas, P; Menchero, L; Tardini, G

    2013-01-01

    Upgraded spectroscopic hardware and an improved impurity concentration calculation allow accurate determination of boron density in the ASDEX Upgrade tokamak. A database of boron measurements is compared to quasilinear and nonlinear gyrokinetic simulations including Coriolis and centrifugal rotational effects over a range of H-mode plasma regimes. The peaking of the measured boron profiles shows a strong anti-correlation with the plasma rotation gradient, via a relationship explained and reproduced by the theory. It is demonstrated that the rotodiffusive impurity flux driven by the rotation gradient is required for the modelling to reproduce the hollow boron profiles at higher rotation gradients. The nonlinear simulations validate the quasilinear approach, and, with the addition of perpendicular flow shear, demonstrate that each symmetry breaking mechanism that causes momentum transport also couples to rotodiffusion. At lower rotation gradients, the parallel compressive convection is required to match the mos...

  6. The Hamiltonian structure and Euler-Poincare formulation of the Vlasov-Maxwell and gyrokinetic systems

    Energy Technology Data Exchange (ETDEWEB)

    Squire, J.; Tang, W. M. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Qin, H. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Chandre, C. [Centre de Physique Theorique, CNRS - Aix-Marseille Universite, Campus de Luminy, Marseille 13009 (France)

    2013-02-15

    We present a new variational principle for the gyrokinetic system, similar to the Maxwell-Vlasov action presented in H. Cendra et al., [J. Math. Phys. 39, 3138 (1998)]. The variational principle is in the Eulerian frame and based on constrained variations of the phase space fluid velocity and particle distribution function. Using a Legendre transform, we explicitly derive the field theoretic Hamiltonian structure of the system. This is carried out with a modified Dirac theory of constraints, which is used to construct meaningful brackets from those obtained directly from Euler-Poincare theory. Possible applications of these formulations include continuum geometric integration techniques, large-eddy simulation models, and Casimir type stability methods.

  7. Recent advances in gyrokinetic full-f particle simulation of medium sized Tokamaks with ELMFIRE

    Energy Technology Data Exchange (ETDEWEB)

    Janhunen, S.J.; Kiviniemi, T.P.; Korpio, T.; Leerink, S.; Nora, M. [Helsinki University of Technology, Euratom-Tekes Association, Espoo (Finland); Heikkinen, J.A. [VTT, Euratom-Tekes Association, Espoo (Finland); Ogando, F. [Helsinki University of Technology, Euratom-Tekes Association, Espoo (Finland); Universidad Nacional de Educacion a Distancia, Madrid (Spain)

    2010-05-15

    Large-scale kinetic simulations of toroidal plasmas based on first principles are called for in studies of transition from low to high confinement mode and internal transport barrier formation in the core plasma. Such processes are best observed and diagnosed in detached plasma conditions in mid-sized tokamaks, so gyrokinetic simulations for these conditions are warranted. A first principles test-particle based kinetic model ELMFIRE[1] has been developed and used in interpretation[1,2] of FT-2 and DIII-D experiments. In this work we summarize progress in Cyclone (DIII-D core) and ASDEX Upgrade pedestal region simulations, and show that in simulations the choice of adiabatic electrons results in quenching of turbulence (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Gyrokinetic turbulence cascade via predator-prey interactions between different scales

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gurcan, Ozgur D., E-mail: ozgur.gurcan@lpp.polytechnique.fr [Laboratoire de Physique des Plasmas, CNRS, Paris-Sud, Ecole Polytechnique, UMR7648, F-91128 Palaiseau (France)

    2015-05-15

    Gyrokinetic simulations in a closed fieldline geometry are presented to explore the physics of nonlinear transfer in plasma turbulence. As spontaneously formed zonal flows and small-scale turbulence demonstrate “predator-prey” dynamics, a particular cascade spectrum emerges. The electrostatic potential and the density spectra appear to be in good agreement with the simple theoretical prediction based on Charney-Hasegawa-Mima equation | ϕ{sup ~}{sub k} |{sup 2}∼| n{sup ~}{sub k} |{sup 2}∝k{sup −3}/(1+k{sup 2}){sup 2}, with the spectra becoming anisotropic at small scales. The results indicate that the disparate scale interactions, in particular, the refraction and shearing of larger scale eddies by the self-consistent zonal flows, dominate over local interactions, and contrary to the common wisdom, the comprehensive scaling relation is created even within the energy injection region.

  9. Multiscale Gyrokinetics for Rotating Tokamak Plasmas II: Reduced Models for Electron Dynamics

    CERN Document Server

    Abel, I G

    2012-01-01

    In this paper, we extend the multiscale approch developed in [Abel et. al., Rep. Prog. Phys., in press] by exploiting the scale separation between ions and the electrons. The gyrokinetic equation is expanded in powers of the electron to ion mass ratio, which provides a rigorous method for deriving the reduced electron model. We prove that ion-scale electromagnetic turbulence cannot change the magnetic topology, and argue that to lowest order the magnetic field lies on fluctuating flux surfaces. These flux surfaces are used to construct magnetic coordinates, and in these coordinates a closed system of equations for the electron response to ion-scale turbulence is derived. All fast electron timescales have been eliminated from these equations. We also use these magnetic surfaces to construct transport equations for electrons and for electron heat in terms of the reduced electron model.

  10. Modern Gyrokinetic Particle-In-Cell Simulation of Fusion Plasmas on Top Supercomputers

    CERN Document Server

    Wang, Bei; Tang, William; Ibrahim, Khaled; Madduri, Kamesh; Williams, Samuel; Oliker, Leonid

    2015-01-01

    The Gyrokinetic Toroidal Code at Princeton (GTC-P) is a highly scalable and portable particle-in-cell (PIC) code. It solves the 5D Vlasov-Poisson equation featuring efficient utilization of modern parallel computer architectures at the petascale and beyond. Motivated by the goal of developing a modern code capable of dealing with the physics challenge of increasing problem size with sufficient resolution, new thread-level optimizations have been introduced as well as a key additional domain decomposition. GTC-P's multiple levels of parallelism, including inter-node 2D domain decomposition and particle decomposition, as well as intra-node shared memory partition and vectorization have enabled pushing the scalability of the PIC method to extreme computational scales. In this paper, we describe the methods developed to build a highly parallelized PIC code across a broad range of supercomputer designs. This particularly includes implementations on heterogeneous systems using NVIDIA GPU accelerators and Intel Xeon...

  11. Nonlinear Gyrokinetics: A Powerful Tool for the Description of Microturbulence in Magnetized Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    John E. Krommes

    2010-09-27

    Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a "pull-back" (a concept from differential geometry) of the gyrocenter distribution to the laboratory coordinate system. A natural truncation then leads to the closed GK dynamical system. Important properties such as GK energy conservation and fluctuation noise will be mentioned briefly, as will the possibility (and diffculties) of deriving nonlinear gyro fluid equations suitable for rapid numerical solution -- although it is probably best to directly simulate the GKE. By the end of the tutorial, students should appreciate the GKE as an extremely powerful tool and will be prepared for later lectures describing its applications to physical problems.

  12. Impact of a hollow density profile on turbulent particle fluxes: Gyrokinetic and fluid simulations

    Science.gov (United States)

    Tegnered, D.; Oberparleiter, M.; Strand, P.; Nordman, H.

    2017-07-01

    Hollow density profiles may occur in connection with pellet fuelling and L to H transitions. A positive density gradient could potentially stabilize the turbulence or change the relation between convective and diffusive fluxes, thereby reducing the turbulent transport of particles towards the center, making the pellet fuelling scheme inefficient. In the present work, the particle transport driven by Ion Temperature Gradient/Trapped Electron (ITG/TE) mode turbulence in hollow density profiles is studied by fluid as well as gyrokinetic simulations. The fluid model used, an extended version of the Weiland transport model, Extended Drift Wave Model (EDWM), incorporates an arbitrary number of ion species in a multi-fluid description and an extended wavelength spectrum. The fluid model, which is fast and hence suitable for use in predictive simulations, is compared to gyrokinetic simulations using the code GENE. Typical tokamak parameters are used based on the Cyclone Base Case. Parameter scans in key plasma parameters like plasma β, R/LT, and magnetic shear are investigated. In addition, the effects of a fast species are studied and global ITG simulations in a simplified physics description are performed in order to investigate nonlocal effects. It is found that β in particular, has a stabilizing effect in the negative R/Ln region. Both nonlinear GENE and EDWM simulations show a decrease in inward flux for negative R/Ln and a change in the direction from inward to outward for positive R/Ln. Moreover, the addition of fast particles was shown to decrease the inward main ion particle flux in the positive gradient region further. This might have serious consequences for pellet fuelling of high β plasmas. Additionally, the heat flux in global ITG turbulence simulations indicates that nonlocal effects can play a different role from usual in connection with pellet fuelling.

  13. First-principle description of collisional gyrokinetic turbulence in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Dif-Pradalier, G

    2008-10-15

    This dissertation starts in chapter 1 with a comprehensive introduction to nuclear fusion, its basic physics, goals and means. It especially defines the concept of a fusion plasma and some of its essential physical properties. The following chapter 2 discusses some fundamental concepts of statistical physics. It introduces the kinetic and the fluid frameworks, compares them and highlights their respective strengths and limitations. The end of the chapter is dedicated to the fluid theory. It presents two new sets of closure relations for fluid equations which retain important pieces of physics, relevant in the weakly collisional tokamak regimes: collective resonances which lead to Landau damping and entropy production. Nonetheless, since the evolution of the turbulence is intrinsically nonlinear and deeply influenced by velocity space effects, a kinetic collisional description is most relevant. First focusing on the kinetic aspect, chapter 3 introduces the so-called gyrokinetic framework along with the numerical solver - the GYSELA code - which will be used throughout this dissertation. Very generically, code solving is an initial value problem. The impact on turbulent nonlinear evolution of out of equilibrium initial conditions is discussed while studying transient flows, self-organizing dynamics and memory effects due to initial conditions. This dissertation introduces an operational definition, now of routine use in the GYSELA code, for the initial state and concludes on the special importance of the accurate calculation of the radial electric field. The GYSELA framework is further extended in chapter 4 to describe Coulomb collisions. The implementation of a collision operator acting on the full distribution function is presented. Its successful confrontation to collisional theory (neoclassical theory) is also shown. GYSELA is now part of the few gyrokinetic codes which can self-consistently address the interplay between turbulence and collisions. While

  14. Spectral redistribution of energy and the origin of inverse cascade for gyrokinetics in the sub-Larmor range

    CERN Document Server

    Plunk, G G

    2010-01-01

    It is known that an inverse cascade of energy occurs in two-dimensional neutral fluid turbulence and also, under certain conditions, in magnetized plasma turbulence. The reason for this phenomenon in both cases is due to the existence of two quadratic invariants. The crucial feature of these invariants is that they are {\\em mutually-constraining} in the sense that the spectral redistribution of one is constrained by the other. The gyrokinetic equation, a kinetic equation for magnetized plasma dynamics, has two collisionless quadratic invariants when restricted to two dimensions (in position-space). In this paper, we consider the consequences of this fact for scales smaller than the thermal Larmor radius, where turbulent fluctuations exist, with equal importance, in the position and velocity space dependence of the kinetic distribution function. Using a spectral formalism for position and velocity space, we find that the gyrokinetic invariants are mutually constraining with respect to spectral redistribution o...

  15. Development of a fully implicit particle-in-cell scheme for gyrokinetic electromagnetic turbulence simulation in XGC1

    Science.gov (United States)

    Ku, Seung-Hoe; Hager, R.; Chang, C. S.; Chacon, L.; Chen, G.; EPSI Team

    2016-10-01

    The cancelation problem has been a long-standing issue for long wavelengths modes in electromagnetic gyrokinetic PIC simulations in toroidal geometry. As an attempt of resolving this issue, we implemented a fully implicit time integration scheme in the full-f, gyrokinetic PIC code XGC1. The new scheme - based on the implicit Vlasov-Darwin PIC algorithm by G. Chen and L. Chacon - can potentially resolve cancelation problem. The time advance for the field and the particle equations is space-time-centered, with particle sub-cycling. The resulting system of equations is solved by a Picard iteration solver with fixed-point accelerator. The algorithm is implemented in the parallel velocity formalism instead of the canonical parallel momentum formalism. XGC1 specializes in simulating the tokamak edge plasma with magnetic separatrix geometry. A fully implicit scheme could be a way to accurate and efficient gyrokinetic simulations. We will test if this numerical scheme overcomes the cancelation problem, and reproduces the dispersion relation of Alfven waves and tearing modes in cylindrical geometry. Funded by US DOE FES and ASCR, and computing resources provided by OLCF through ALCC.

  16. Linearization Techniques

    Directory of Open Access Journals (Sweden)

    Gildeberto S. Cardoso

    2011-01-01

    Full Text Available This paper presents a study of linear control systems based on exact feedback linearization and approximate feedback linearization. As exact feedback linearization is applied, a linear controller can perform the control objectives. The approximate feedback linearization is required when a nonlinear system presents a noninvolutive property. It uses a Taylor series expansion in order to compute a nonlinear transformation of coordinates to satisfy the involutivity conditions.

  17. Linear algebra

    CERN Document Server

    Shilov, Georgi E

    1977-01-01

    Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.

  18. Linear Psoriasis

    Directory of Open Access Journals (Sweden)

    Agarwalla Arun

    2001-01-01

    Full Text Available Linear psoriasis, inflammatory linear varrucous epidermal naevus (ILVEN. Lichen straitus, linear lichen planus and invasion of epidermal naevi by psoriasis have clinical and histopathological overlap. We report two young male patients of true linear psoriasis without classical lesions elsewhere which were proved histopathologically. Seasonal variation and good response to topical antipsoriatic treatment supported the diagnosis.

  19. Diagnosing collisionless energy transfer using field-particle correlations: gyrokinetic turbulence

    Science.gov (United States)

    Klein, Kristopher G.; Howes, Gregory G.; Tenbarge, Jason M.

    2017-08-01

    Determining the physical mechanisms that extract energy from turbulent fluctuations in weakly collisional magnetized plasmas is necessary for a more complete characterization of the behaviour of a variety of space and astrophysical plasmas. Such a determination is complicated by the complex nature of the turbulence as well as observational constraints, chiefly that in situ measurements of such plasmas are typically only available at a single point in space. Recent work has shown that correlations between electric fields and particle velocity distributions constructed from single-point measurements produce a velocity-dependent signature of the collisionless damping mechanism. We extend this work by constructing field-particle correlations using data sets drawn from single points in strongly driven, turbulent, electromagnetic gyrokinetic simulations to demonstrate that this technique can identify the collisionless mechanisms operating in such systems. The velocity-space structure of the correlation between proton distributions and parallel electric fields agrees with expectations of resonant mechanisms transferring energy collisionlessly in turbulent systems. This work motivates the eventual application of field-particle correlations to spacecraft measurements in the solar wind, with the ultimate goal to determine the physical mechanisms that dissipate magnetized plasma turbulence.

  20. Unraveling Quasiperiodic Relaxations of Transport Barriers with Gyrokinetic Simulations of Tokamak Plasmas

    Science.gov (United States)

    Strugarek, A.; Sarazin, Y.; Zarzoso, D.; Abiteboul, J.; Brun, A. S.; Cartier-Michaud, T.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, Ph.; Grandgirard, V.; Latu, G.; Passeron, C.; Thomine, O.

    2013-10-01

    The generation and dynamics of transport barriers governed by sheared poloidal flows are analyzed in flux-driven 5D gyrokinetic simulations of ion temperature gradient driven turbulence in tokamak plasmas. The transport barrier is triggered by a vorticity source that polarizes the system. The chosen source captures characteristic features of some experimental scenarios, namely, the generation of a sheared electric field coupled to anisotropic heating. For sufficiently large shearing rates, turbulent transport is suppressed and a transport barrier builds up, in agreement with the common understanding of transport barriers. The vorticity source also governs a secondary instability— driven by the temperature anisotropy (T∥≠T⊥). Turbulence and its associated zonal flows are generated in the vicinity of the barrier, destroying the latter due to the screening of the polarization source by the zonal flows. These barrier relaxations occur quasiperiodically, and generically result from the decoupling between the dynamics of the barrier generation, triggered by the source driven sheared flow, and that of the crash, triggered by the secondary instability. This result underlines that barriers triggered by sheared flows are prone to relaxations whenever secondary instabilities come into play.

  1. From charge motion in general magnetic fields to the non perturbative gyrokinetic equation

    Energy Technology Data Exchange (ETDEWEB)

    Di Troia, C., E-mail: claudio.ditroia@enea.it [ENEA Unità tecnica Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Rome (Italy)

    2015-04-15

    The exact analytical description of non relativistic charge motion in general magnetic fields is, apparently, a simple problem, even if it has not been solved until now, apart for rare cases. The key feature of the present derivation is to adopt a non perturbative magnetic field description to find new solutions of motion. Among all solutions, two are particularly important: guiding particle and gyro-particle solutions. The guiding particle has been characterized to be minimally coupled to the magnetic field; the gyro-particle has been defined to be maximally coupled to the magnetic field and, also, to move on a closed orbit. The generic charged particle motion is shown to be expressed as the sum of such particular solutions. This non perturbative approach corresponds to the description of the particle motion in the gyro-center and/or guiding center reference frame obtained at all the orders of the modern gyro-center transformation. The Boltzmann equation is analyzed with the described exact guiding center coordinates. The obtained gyrokinetic equation is solved for the Boltzmann equation at marginal stability conditions.

  2. The anisotropic redistribution of free energy for gyrokinetic plasma turbulence in a Z-pinch

    CERN Document Server

    Navarro, Alejandro Banon; Jenko, Frank

    2015-01-01

    For a Z-pinch geometry, we report on the nonlinear redistribution of free energy across scales perpendicular to the magnetic guide field, for a turbulent plasma described in the framework of gyrokinetics. The analysis is performed using a local flux-surface approximation, in a regime dominated by electrostatic fluctuations driven by the entropy mode, with both ion and electron species being treated kinetically. To explore the anisotropic nature of the free energy redistribution caused by the emergence of zonal flows, we use a polar coordinate representation for the field-perpendicular directions and define an angular density for the scale flux. Positive values for the classically defined (angle integrated) scale flux, which denote a direct energy cascade, are shown to be also composed of negative angular sections, a fact that impacts our understanding of the backscatter of energy and the way in which it enters the modeling of sub-grid scales for turbulence. A definition for the flux of free energy across each...

  3. An analytical solution of the gyrokinetic equation for the calculation of neoclassical effects

    CERN Document Server

    Casolari, Andrea

    2016-01-01

    The purpose of this document is to find an analytical solution for the gyrokinetic equation under specific, simplificative hypotheses. The case I am considering is that of a collisional plasma in the presence of a chain of magnetic islands. The presence of the magnetic islands causes the onset of perturbative fields, in particular an electrostatic field, with a gradient length-scale comparable with the island's width. When the island's width w becomes comparable with the ion Larmor radius rho_i , the drift-kinetic equation is inadequate to treat the transport and the calculation of the neoclassical effects. Nevertheless, I'm going to solve the equation with the methods described by S. P. Hirshman and D. J. Sigmar in the review paper "Neoclassical transport of impurities in tokamak plasmas", which was developed to solve the drift-kinetic equation in different regimes of collisionality. I'm going to remind first the drift-kinetic theory, which was largely used to study classical and neoclassical transport in ma...

  4. Gyrokinetic particle simulations of reversed shear Alfvén eigenmode in DIII-D tokamak

    Science.gov (United States)

    Deng, Wenjun

    2011-10-01

    Simulations of reversed shear Alfvén eigenmode (RSAE) in DIII-D discharge 142111 near 750 ms have been successfully performed using the global gyrokinetic toroidal code (GTC). The background plasma pressure raises the mode frequency due to the elevation of the Alfvén continuum by the geodesic compressibility. The non-perturbative contributions from the fast ions and kinetic thermal ions modify the mode structure relative to the ideal magnetohydrodynamic (MHD) theory due to the breaking of radial symmetry, in qualitative agreement with XHMGC and TAEFL simulations and recent 2D imaging of RSAE mode structure in DIII- D tokamak. Various RSAE damping mechanisms are identified and measured in the simulations. The mode structure, frequency, and growth rate obtained from GTC simulations are close to those given by GYRO and TAEFL simulations. The frequency up-chirping of the RSAE and the mode transition from RSAE to toroidal Alfvén eigenmode (TAE) are revealed to be close to the experimental results when scanning qmin values in our simulations. Study of nonlinear effects of the RSAE is in progress. This work is in collaboration with Z. Lin, I. Holod, X. Wang, Z. Wang, Y. Xiao, H. Zhang, W. Zhang, E. Bass, D. Spong, and M. Van Zeeland and is supported by SciDAC GSEP Center.

  5. Gyrokinetic studies of the outer core region in DIII-D and ASDEX Upgrade discharges

    Science.gov (United States)

    Goerler, Tobias; Told, Daniel; White, Anne; Angioni, Clemente; Fable, Emiliano; Hammett, Greg; Jenko, Frank; Viezzer, Eleonora

    2012-10-01

    In order to study the outer core region in DIII-D and ASDEX Upgrade discharges, radially local and non-local gyrokinetic simulations with the GENE code are carried out. Using actual plasma parameters and MHD equilibria and employing as much physics as available, particular focus is placed on the degree to which turbulent features can be validated against the experiments. In the recent years, careful and systematic comparisons have largely demonstrated very good agreement with experiment--except for L-mode discharges where a shortfall of almost one order of magnitude has been reported in the outer core ion heat transport, e.g. in [C. Holland et al., Phys. Plasmas 16, 052301 (2009)]. Therefore, special emphasis is given to confirm or extend these transport underpredictions and explore possible solutions as, e.g., effects of the highly nonlinear nature of the neighbouring edge turbulence [B.D. Scott, Phys. Plasmas 12, 062314 (2005)] or contributions from neighbouring scales (low-k microtearing, short wavelength ITG/TEM/ETG). Comparisons with measured cross phases [A. White et al., Phys. Plasmas 17, 056103 (2010)] will help to attribute a possible shortfall either to a corresponding drop in the fluctuation amplitudes or to differing turbulence types in simulations and experiments.

  6. Comparison of linear modes in kinetic plasma models

    CERN Document Server

    Camporeale, Enrico

    2016-01-01

    We compare, in an extensive and systematic way, linear theory results obtained with the hybrid (ion-kinetic and electron-fluid), the gyrokinetic and the fully-kinetic plasma models. We present a test case with parameters that are relevant for solar wind turbulence at small scales, which is a topic now recognized to need a kinetic treatment, to a certain extent. We comment on the comparison of low-frequency single modes (Alfv\\'{e}n/ion-cyclotron, ion-acoustic, and fast modes) for a wide range of propagation angles, and on the overall spectral properties of the linear operators, for quasi-perpendicular propagation. The methodology and the results presented in this paper will be valuable when choosing which model should be used in regimes where the assumptions of each model are not trivially satisfied.

  7. SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhihong [Univ. of California, Irvine, CA (United States)

    2013-12-18

    During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDAC GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.

  8. Multispecies density peaking in gyrokinetic turbulence simulations of low collisionality Alcator C-Mod plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, D. R., E-mail: dmikkelsen@pppl.gov; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); Reinke, M. L. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Podpaly, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); AAAS S and T Fellow placed in the Directorate for Engineering, NSF, 4201 Wilson Blvd., Arlington, Virginia 22230 (United States); Ma, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Candy, J.; Waltz, R. E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2015-06-15

    Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.

  9. Monte Carlo particle-in-cell methods for the simulation of the Vlasov-Maxwell gyrokinetic equations

    Science.gov (United States)

    Bottino, A.; Sonnendrücker, E.

    2015-10-01

    > The particle-in-cell (PIC) algorithm is the most popular method for the discretisation of the general 6D Vlasov-Maxwell problem and it is widely used also for the simulation of the 5D gyrokinetic equations. The method consists of coupling a particle-based algorithm for the Vlasov equation with a grid-based method for the computation of the self-consistent electromagnetic fields. In this review we derive a Monte Carlo PIC finite-element model starting from a gyrokinetic discrete Lagrangian. The variations of the Lagrangian are used to obtain the time-continuous equations of motion for the particles and the finite-element approximation of the field equations. The Noether theorem for the semi-discretised system implies a certain number of conservation properties for the final set of equations. Moreover, the PIC method can be interpreted as a probabilistic Monte Carlo like method, consisting of calculating integrals of the continuous distribution function using a finite set of discrete markers. The nonlinear interactions along with numerical errors introduce random effects after some time. Therefore, the same tools for error analysis and error reduction used in Monte Carlo numerical methods can be applied to PIC simulations.

  10. Impact of the neoclassical distribution function on turbulent impurity and momentum fluxes: fluid model and gyrokinetic simulations

    Science.gov (United States)

    Manas, P.; Hornsby, W. A.; Angioni, C.; Camenen, Y.; Peeters, A. G.

    2017-03-01

    The impact of the neoclassical background on turbulent impurity transport is investigated by means of gyrokinetic simulations supported by fluid equations. The latter are derived, using a Laguerre polynomials expansion of the first order neoclassical distribution function, and analytical expressions of the turbulent momentum flux and impurity transport coefficients are assessed. Comparisons of gyrokinetic simulations including this neoclassical background (coupling between the codes GKW and NEO) and the fluid model are used to identify the main mechanisms behind the modification of the turbulent transport channels and benchmark the numerical implementation. These mechanisms include a modification of the parallel dynamics of the main ions and direct contributions stemming from the asymmetry in the parallel velocity space of the neoclassical distribution function. The latter which is found dominant for turbulent impurity transport, increases with increasing collisionality, R/{L}{Ti}, R/{L}n, impurity mass, safety factor and aspect ratio. These contributions to momentum and impurity fluxes are also found to depend on the directions of the toroidal magnetic field and plasma current.

  11. Towards the optimization of a gyrokinetic Particle-In-Cell (PIC) code on large-scale hybrid architectures

    Science.gov (United States)

    Ohana, N.; Jocksch, A.; Lanti, E.; Tran, T. M.; Brunner, S.; Gheller, C.; Hariri, F.; Villard, L.

    2016-11-01

    With the aim of enabling state-of-the-art gyrokinetic PIC codes to benefit from the performance of recent multithreaded devices, we developed an application from a platform called the “PIC-engine” [1, 2, 3] embedding simplified basic features of the PIC method. The application solves the gyrokinetic equations in a sheared plasma slab using B-spline finite elements up to fourth order to represent the self-consistent electrostatic field. Preliminary studies of the so-called Particle-In-Fourier (PIF) approach, which uses Fourier modes as basis functions in the periodic dimensions of the system instead of the real-space grid, show that this method can be faster than PIC for simulations with a small number of Fourier modes. Similarly to the PIC-engine, multiple levels of parallelism have been implemented using MPI+OpenMP [2] and MPI+OpenACC [1], the latter exploiting the computational power of GPUs without requiring complete code rewriting. It is shown that sorting particles [3] can lead to performance improvement by increasing data locality and vectorizing grid memory access. Weak scalability tests have been successfully run on the GPU-equipped Cray XC30 Piz Daint (at CSCS) up to 4,096 nodes. The reduced time-to-solution will enable more realistic and thus more computationally intensive simulations of turbulent transport in magnetic fusion devices.

  12. Linear Systems.

    Science.gov (United States)

    The report documents a series of seminars at Rome Air Development Center with the content equivalent to an intense course in Linear Systems . Material...is slanted toward the practicing engineer and introduces some of the fundamental concepts and techniques for analyzing linear systems . Techniques for

  13. Linear algebra

    CERN Document Server

    Stoll, R R

    1968-01-01

    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  14. Linear Models

    CERN Document Server

    Searle, Shayle R

    2012-01-01

    This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.

  15. Linear programming

    CERN Document Server

    Solow, Daniel

    2014-01-01

    This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.

  16. Linear algebra

    CERN Document Server

    Berberian, Sterling K

    2014-01-01

    Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.

  17. Linear algebra

    CERN Document Server

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  18. Gyrokinetic particle simulation of neoclassical transport in the pedestal/scrape-off region of a tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ku, S [Courant Institute of Mathematical Sciences, New York University (United States); Chang, C-S [Courant Institute of Mathematical Sciences, New York University (United States); Adams, M [Columbia University (United States); Cummings, J [California Institute of Technology (United States); Hinton, F [Hinton Associates (United States); Keyes, D [Columbia University (United States); Klasky, S [Oak Ridge National Laboratory (United States); Lee, W [Princeton Plasma Physics Laboratory (United States); Lin, Z [University of California at Irvine (United States); Parker, S [University of Colorado at Boulder (United States)

    2006-09-15

    A gyrokinetic neoclassical solution for a diverted tokamak edge plasma has been obtained for the first time using the massively parallel Jaguar XT3 computer at Oak Ridge National Laboratory. The solutions show similar characteristics to the experimental observations: electric potential is positive in the scrape-off layer and negative in the H-mode layer, and the parallel rotation is positive in the scrape-off layer and at the inside boundary of the H-mode layer. However, the solution also makes a new physical discovery that there is a strong ExB convective flow in the scrape-off plasma. A general introduction to the edge simulation problem is also presented.

  19. Toroidal Electromagnetic Particle-in-Cell Code with Gyro-kinetic Electron and Fully-kinetic ion

    Science.gov (United States)

    Lin, Jingbo; Zhang, Wenlu; Liu, Pengfei; Li, Ding

    2016-10-01

    A kinetic simulation model has been developed using gyro-kinetic electron and fully-kinetic ion by removing fast gyro motion of electrons using the Lie-transform perturbation theory. A particle-in-cell kinetic code is developed based on this model in general magnetic flux coordinate systems, which is particularly suitable for simulations of toroidally confined plasma. Single particle motion and field solver are successfully verified respectively. Integrated electrostatic benchmark, for example the lower-hybrid wave (LHW) and ion Bernstein wave (IBW), shows a good agreement with theoretical results. Preliminary electromagnetic benchmark of fast wave at lower hybrid frequency range is also presented. This code can be a first-principal tool to investigate high frequency nonlinear phenomenon, such as parametric decay instability, during lower-hybrid current drive (LHCD) and ion cyclotron radio frequency heating (ICRF) with complex geometry effect included. Supported by National Special Research Program of China For ITER and National Natural Science Foundation of China.

  20. Linear regression

    CERN Document Server

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  1. Linear algebra

    CERN Document Server

    Sahai, Vivek

    2013-01-01

    Beginning with the basic concepts of vector spaces such as linear independence, basis and dimension, quotient space, linear transformation and duality with an exposition of the theory of linear operators on a finite dimensional vector space, this book includes the concept of eigenvalues and eigenvectors, diagonalization, triangulation and Jordan and rational canonical forms. Inner product spaces which cover finite dimensional spectral theory and an elementary theory of bilinear forms are also discussed. This new edition of the book incorporates the rich feedback of its readers. We have added new subject matter in the text to make the book more comprehensive. Many new examples have been discussed to illustrate the text. More exercises have been included. We have taken care to arrange the exercises in increasing order of difficulty. There is now a new section of hints for almost all exercises, except those which are straightforward, to enhance their importance for individual study and for classroom use.

  2. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  3. Linear algebra

    CERN Document Server

    Allenby, Reg

    1995-01-01

    As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin

  4. Response to Comment on "On Higher-Order Corrections to Gyrokinetic Vlasov-Poisson Equations in the Long Wavelength Limit [Phys. Plasmas 16, 044506 (2009)]"

    Energy Technology Data Exchange (ETDEWEB)

    W. W. Lee, and R. A. Kolesnikov

    2009-11-20

    We show in this Response that the nonlinear Poisson's equation in our original paper derived from the drift kinetic approach can be verified by using the nonlinear gyrokinetic Poisson's equation of Dubin et al. [Phys. Fluids 26, 3524 (1983)]. This nonlinear contribution in φ2 is indeed of the order of k4⊥ in the long wavelength limit and remains finite for zero ion temperature, in contrast to the nonlinear term by Parra and Catto [Plasma Phys. Control. Fusion 50, 065014 (2008)], which is of the order of k2⊥ and diverges for Ti → 0. For comparison, the leading term for the gyrokinetic Poisson's equation in this limit is of the order of k2⊥φ,

  5. Linear programming

    CERN Document Server

    Karloff, Howard

    1991-01-01

    To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming from the Simplex Method…via the Ellipsoid algorithm to Karmarkar’s algorithm. Moreover, its point of view is algorithmic and thus it provides both a history and a case history of work in complexity theory. The presentation is admirable; Karloff's style is informal (even humorous at times) without sacrificing anything necessary for understanding. Diagrams (including horizontal brackets that group terms) aid in providing clarity. The end-of-chapter notes are helpful...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews The reader will be well served by reading the monograph from cover to cover. The author succeeds in providing a concise, readable, understandable introduction to modern linear programming. —Mathematics of Computing This is a textbook intend...

  6. Linear systems

    CERN Document Server

    Bourlès, Henri

    2013-01-01

    Linear systems have all the necessary elements (modeling, identification, analysis and control), from an educational point of view, to help us understand the discipline of automation and apply it efficiently. This book is progressive and organized in such a way that different levels of readership are possible. It is addressed both to beginners and those with a good understanding of automation wishing to enhance their knowledge on the subject. The theory is rigorously developed and illustrated by numerous examples which can be reproduced with the help of appropriate computation software. 60 exe

  7. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    Science.gov (United States)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-01

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me . In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me . The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where k →.B → =0 , consistent with previous analytical and simulation studies. Here, B → is the equilibrium magnetic field and k → is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at k →.B → ≠0 . In addition, the simulation results indicate that varying mi/me , the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.

  8. Gyrokinetic simulation of particle and heat transport in the presence of Wide orbits and strong profile variations in the Edge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, J.A. [Euratom-Tekes Association, VTT, P.O. Box 1000, FI-02044 VTT (Finland); Henriksson, S.; Janhunen, S.; Kiviniemi, T.P. [Euratom-Tekes Association, Helsinki University of Technology, P.O. Box 2200, FI-02015 TKK (Finland); Ogando, F. [Euratom-Tekes Association, Helsinki University of Technology, P.O. Box 2200, FI-02015 TKK (Finland); Universidad Nacional de Educacion a Distancia, C/ Juan del Rosal, 12 28040 Madrid (Spain)

    2006-09-15

    A full f nonlinear 5D gyrokinetic electrostatic particle-in-cell code ELMFIRE using an implicit direct solution method for ion polarization drift and electron parallel velocity response to electric field and its validation are described. The developed code is applied for transport analysis in a tokamak plasma at steep pressure gradient. The role of turbulence and neoclassical equilibrium in determining the flux surface averaged radial electric field component are investigated, as well as the role of the latter in affecting the saturation level of the turbulence. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. LINEAR SYSTEMS AND LINEAR INTERPOLATION I

    Institute of Scientific and Technical Information of China (English)

    丁立峰

    2001-01-01

    he linear interpolation of linear system on a family of linear systems is introduced and discussed. Some results and examples on singly generated systems on a finite dimensional vector space are given.

  10. Black hole nonmodal linear stability: the Reissner-Nordstr\\"om case

    CERN Document Server

    Tío, Julián M Fernández

    2016-01-01

    Following a program on black hole nonmodal linear stability initiated in \\cite{Dotti:2013uxa}, we study odd linear perturbations of the Einstein-Maxwell equations around a Reissner-Nordstr\\"om (A)dS black hole. We show that all the gauge invariant information in the metric and Maxwell field perturbations is encoded in the spacetime scalars $\\mathcal{F} =\\delta (F^*_{\\alpha \\beta} F^{\\alpha \\beta})$ and $\\mathcal{Q} =\\delta (\\tfrac{1}{48} C^*_{\\alpha \\beta \\gamma \\delta} C^{\\alpha \\beta \\gamma \\delta})$, where $C_{\\alpha \\beta \\gamma \\delta}$ is the Weyl tensor, $F_{\\alpha \\beta}$ the Maxwell field, a star denotes Hodge dual and $\\delta$ means first order variation. We show that the linearized Einstein-Maxwell equations are equivalent to a coupled system of wave equations for the fields$\\mathcal{F}$ and $\\mathcal{Q}$. For nonnegative cosmological constant we prove that $\\mathcal{F}$ and $\\mathcal{Q}$ are pointwise bounded on the static outer region. In the asymptotically AdS casethe dynamics depends on the bou...

  11. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...

  12. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...

  13. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magentized Weakly Collisional Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.

    2009-04-23

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  14. Linearly constrained minimax optimization

    DEFF Research Database (Denmark)

    Madsen, Kaj; Schjær-Jacobsen, Hans

    1978-01-01

    We present an algorithm for nonlinear minimax optimization subject to linear equality and inequality constraints which requires first order partial derivatives. The algorithm is based on successive linear approximations to the functions defining the problem. The resulting linear subproblems...

  15. Foundations of linear and generalized linear models

    CERN Document Server

    Agresti, Alan

    2015-01-01

    A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,

  16. Feedback linearization of piecewise linear systems

    NARCIS (Netherlands)

    Camlibel, Kanat; Ustoglu, Ilker

    2005-01-01

    One of the classical problems of nonlinear systems and control theory is feedback linearization. Its obvious motivation is that one can utilize linear control theory if the nonlinear system at hand is linearizable by feedback. This problem is well-understood for the smooth nonlinear systems. In the

  17. Linear benchmarks between the hybrid codes HYMAGYC and HMGC to study energetic particle driven Alfvénic modes

    Science.gov (United States)

    Fogaccia, G.; Vlad, G.; Briguglio, S.

    2016-11-01

    Resonant interaction between energetic particles (EPs), produced by fusion reactions and/or additional heating systems, and shear Alfvén modes can destabilize global Alfvénic modes enhancing the EP transport. In order to investigate the EP transport in present and next generation fusion devices, numerical simulations are recognized as a very important tool. Among the various numerical models, the hybrid MHD gyrokinetic one has shown to be a valid compromise between a sufficiently accurate wave-particle interaction description and affordable computational resource requirements. This paper presents a linear benchmark between the hybrid codes HYMAGYC and HMGC. The HYMAGYC code solves the full, linear MHD equations in general curvilinear geometry for the bulk plasma and describes the EP population by the nonlinear gyrokinetic Vlasov equation. On the other side, HMGC solves the nonlinear, reduced O≤ft(ε 03\\right) , pressureless MHD equations ({ε0} being the inverse aspect ratio) for the bulk plasma and the drift kinetic Vlasov equation for the EPs. The results of the HYMAGYC and HMGC codes have been compared both in the MHD limit and in a wide range of the EP parameter space for two test cases (one of which being the so-called TAE n  =  6 ITPA Energetic Particle Group test case), both characterized by {ε0}\\ll 1 . In the first test case (test case A), good qualitative agreement is found w.r.t. real frequencies, growth rates and spatial structures of the most unstable modes, with some quantitative differences for the growth rates. For the so-called ITPA test case (test case B), at the nominal energetic particle density value, the disagreement between the two codes is, on the contrary, also qualitative, as a different mode is found as the most unstable one.

  18. A linear programming manual

    Science.gov (United States)

    Tuey, R. C.

    1972-01-01

    Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.

  19. Classifying Linear Canonical Relations

    OpenAIRE

    Lorand, Jonathan

    2015-01-01

    In this Master's thesis, we consider the problem of classifying, up to conjugation by linear symplectomorphisms, linear canonical relations (lagrangian correspondences) from a finite-dimensional symplectic vector space to itself. We give an elementary introduction to the theory of linear canonical relations and present partial results toward the classification problem. This exposition should be accessible to undergraduate students with a basic familiarity with linear algebra.

  20. Linear shaped charge

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  1. On Regular Linear Relations

    Institute of Scientific and Technical Information of China (English)

    T. (A)LVAREZ

    2012-01-01

    For a closed linear relation in a Banach space the concept of regularity is introduced and studied.It is shown that many of the results of Mbekhta and other authors for operators remain valid in the context of multivalued linear operators.We also extend the punctured neighbourhood theorem for operators to linear relations and as an application we obtain a characterization of semiFredholm linear relations which are regular.

  2. Linear-Algebra Programs

    Science.gov (United States)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  3. Linear-Algebra Programs

    Science.gov (United States)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  4. Advanced linear algebra

    CERN Document Server

    Cooperstein, Bruce

    2010-01-01

    Vector SpacesFieldsThe Space FnVector Spaces over an Arbitrary Field Subspaces of Vector SpacesSpan and IndependenceBases and Finite Dimensional Vector SpacesBases and Infinite Dimensional Vector SpacesCoordinate VectorsLinear TransformationsIntroduction to Linear TransformationsThe Range and Kernel of a Linear TransformationThe Correspondence and Isomorphism TheoremsMatrix of a Linear TransformationThe Algebra of L(V, W) and Mmn(F)Invertible Transformations and MatricesPolynomialsThe Algebra of PolynomialsRoots of PolynomialsTheory of a Single Linear OperatorInvariant Subspaces of an Operator

  5. Non linear system become linear system

    Directory of Open Access Journals (Sweden)

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  6. Linear collider: a preview

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  7. Basic linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  8. Linearity in Process Languages

    DEFF Research Database (Denmark)

    Nygaard, Mikkel; Winskel, Glynn

    2002-01-01

    The meaning and mathematical consequences of linearity (managing without a presumed ability to copy) are studied for a path-based model of processes which is also a model of affine-linear logic. This connection yields an affine-linear language for processes, automatically respecting open-map bisi......The meaning and mathematical consequences of linearity (managing without a presumed ability to copy) are studied for a path-based model of processes which is also a model of affine-linear logic. This connection yields an affine-linear language for processes, automatically respecting open......-map bisimulation, in which a range of process operations can be expressed. An operational semantics is provided for the tensor fragment of the language. Different ways to make assemblies of processes lead to different choices of exponential, some of which respect bisimulation....

  9. Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. Part I: macroscopic effects of the electron flows

    CERN Document Server

    Muñoz, P A; Kilian, P; Büchner, J; Jenko, F

    2015-01-01

    In this work, we extend a comparison between gyrokinetic (GK) and fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field started by TenBarge et al. [Phys. Plasmas 21, 020708 (2014)]. By using a different set of kinetic PIC and GK simulation codes (ACRONYM and GENE, respectively), we analyze the limits of applicability of the GK approach when comparing to the force free kinetic simulations in the low guide field (bg) regime. Here we report the first part of a much more extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (beta_i = 0.01), it is shown that magnetic reconnection only displays similar features between both plasma models for higher kinetic PIC guide fields (bg>30) in the secondary magnetic islands than in the region close to the X points or separatrices (bg>5). Kinetic PIC low guide field runs (53) to be negligible due to the reduced reconnection rate and fluctuation level.

  10. Study of the L-mode tokamak plasma "shortfall" with local and global nonlinear gyrokinetic δf particle-in-cell simulation

    Science.gov (United States)

    Chowdhury, J.; Wan, Weigang; Chen, Yang; Parker, Scott E.; Groebner, Richard J.; Holland, C.; Howard, N. T.

    2014-11-01

    The δ f particle-in-cell code GEM is used to study the transport "shortfall" problem of gyrokinetic simulations. In local simulations, the GEM results confirm the previously reported simulation results of DIII-D [Holland et al., Phys. Plasmas 16, 052301 (2009)] and Alcator C-Mod [Howard et al., Nucl. Fusion 53, 123011 (2013)] tokamaks with the continuum code GYRO. Namely, for DIII-D the simulations closely predict the ion heat flux at the core, while substantially underpredict transport towards the edge; while for Alcator C-Mod, the simulations show agreement with the experimental values of ion heat flux, at least within the range of experimental error. Global simulations are carried out for DIII-D L-mode plasmas to study the effect of edge turbulence on the outer core ion heat transport. The edge turbulence enhances the outer core ion heat transport through turbulence spreading. However, this edge turbulence spreading effect is not enough to explain the transport underprediction.

  11. Matrices and linear transformations

    CERN Document Server

    Cullen, Charles G

    1990-01-01

    ""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first

  12. Adding linear orders

    CERN Document Server

    Shelah, Saharon

    2011-01-01

    We address the following question: Can we expand an NIP theory by adding a linear order such that the expansion is still NIP? Easily, if acl(A)=A for all A, then this is true. Otherwise, we give counterexamples. More precisely, there is a totally categorical theory for which every expansion by a linear order has IP. There is also an \\omega-stable NDOP theory for which every expansion by a linear order interprets bounded arithmetic.

  13. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....

  14. Linear integrated circuits

    CERN Document Server

    Carr, Joseph

    1996-01-01

    The linear IC market is large and growing, as is the demand for well trained technicians and engineers who understand how these devices work and how to apply them. Linear Integrated Circuits provides in-depth coverage of the devices and their operation, but not at the expense of practical applications in which linear devices figure prominently. This book is written for a wide readership from FE and first degree students, to hobbyists and professionals.Chapter 1 offers a general introduction that will provide students with the foundations of linear IC technology. From chapter 2 onwa

  15. Charges for linearized gravity

    CERN Document Server

    Aksteiner, Steffen

    2013-01-01

    Maxwell test fields as well as solutions of linearized gravity on the Kerr exterior admit non-radiating modes, i.e. non-trivial time-independent solutions. These are closely related to conserved charges. In this paper we discuss the non-radiating modes for linearized gravity, which may be seen to correspond to the Poincare Lie-algebra. The 2-dimensional isometry group of Kerr corresponds to a 2-parameter family of gauge-invariant non-radiating modes representing infinitesimal perturbations of mass and azimuthal angular momentum. We calculate the linearized mass charge in terms of linearized Newman-Penrose scalars.

  16. Recombineering linear BACs.

    Science.gov (United States)

    Chen, Qingwen; Narayanan, Kumaran

    2015-01-01

    Recombineering is a powerful genetic engineering technique based on homologous recombination that can be used to accurately modify DNA independent of its sequence or size. One novel application of recombineering is the assembly of linear BACs in E. coli that can replicate autonomously as linear plasmids. A circular BAC is inserted with a short telomeric sequence from phage N15, which is subsequently cut and rejoined by the phage protelomerase enzyme to generate a linear BAC with terminal hairpin telomeres. Telomere-capped linear BACs are protected against exonuclease attack both in vitro and in vivo in E. coli cells and can replicate stably. Here we describe step-by-step protocols to linearize any BAC clone by recombineering, including inserting and screening for presence of the N15 telomeric sequence, linearizing BACs in vivo in E. coli, extracting linear BACs, and verifying the presence of hairpin telomere structures. Linear BACs may be useful for functional expression of genomic loci in cells, maintenance of linear viral genomes in their natural conformation, and for constructing innovative artificial chromosome structures for applications in mammalian and plant cells.

  17. Fault tolerant linear actuator

    Science.gov (United States)

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  18. Linear models with R

    CERN Document Server

    Faraway, Julian J

    2014-01-01

    A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition.New to the Second EditionReorganiz

  19. Linear Rogue waves

    CERN Document Server

    Yuce, C

    2015-01-01

    We predict the existence of linear discrete rogue waves. We discuss that Josephson effect is the underlying reason for the formation of such waves. We study linear rogue waves in continuous system and present an exact analytical rogue wave solution of the Schrodinger-like equation.

  20. Linearized Wenger graphs

    OpenAIRE

    2014-01-01

    © 2015 Elsevier B.V. Motivated by recent extensive studies on Wenger graphs, we introduce a new infinite class of bipartite graphs of a similar type, called linearized Wenger graphs. The spectrum, diameter and girth of these linearized Wenger graphs are determined.

  1. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption.......Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...

  2. Linear algebra done right

    CERN Document Server

    Axler, Sheldon

    2015-01-01

    This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

  3. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  4. Applied linear regression

    CERN Document Server

    Weisberg, Sanford

    2013-01-01

    Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus

  5. Elements of linear space

    CERN Document Server

    Amir-Moez, A R; Sneddon, I N

    1962-01-01

    Elements of Linear Space is a detailed treatment of the elements of linear spaces, including real spaces with no more than three dimensions and complex n-dimensional spaces. The geometry of conic sections and quadric surfaces is considered, along with algebraic structures, especially vector spaces and transformations. Problems drawn from various branches of geometry are given.Comprised of 12 chapters, this volume begins with an introduction to real Euclidean space, followed by a discussion on linear transformations and matrices. The addition and multiplication of transformations and matrices a

  6. Applied linear regression

    CERN Document Server

    Weisberg, Sanford

    2005-01-01

    Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: ""I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression."" -Technometrics, February 1987 ""Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis."" -American Scientist, May-June 1987

  7. Linear associative algebras

    CERN Document Server

    Abian, Alexander

    1973-01-01

    Linear Associative Algebras focuses on finite dimensional linear associative algebras and the Wedderburn structure theorems.The publication first elaborates on semigroups and groups, rings and fields, direct sum and tensor product of rings, and polynomial and matrix rings. The text then ponders on vector spaces, including finite dimensional vector spaces and matrix representation of vectors. The book takes a look at linear associative algebras, as well as the idempotent and nilpotent elements of an algebra, ideals of an algebra, total matrix algebras and the canonical forms of matrices, matrix

  8. Unsupervised Linear Discriminant Analysis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-nearest neighbor samples. The experimental results show our algorithm is effective.

  9. Isolated linear blaschkoid psoriasis.

    Science.gov (United States)

    Nasimi, M; Abedini, R; Azizpour, A; Nikoo, A

    2016-10-01

    Linear psoriasis (LPs) is considered a rare clinical presentation of psoriasis, which is characterized by linear erythematous and scaly lesions along the lines of Blaschko. We report the case of a 20-year-old man who presented with asymptomatic linear and S-shaped erythematous, scaly plaques on right side of his trunk. The plaques were arranged along the lines of Blaschko with a sharp demarcation at the midline. Histological examination of a skin biopsy confirmed the diagnosis of psoriasis. Topical calcipotriol and betamethasone dipropionate ointments were prescribed for 2 months. A good clinical improvement was achieved, with reduction in lesion thickness and scaling. In patients with linear erythematous and scaly plaques along the lines of Blaschko, the diagnosis of LPs should be kept in mind, especially in patients with asymptomatic lesions of late onset. © 2016 British Association of Dermatologists.

  10. Linear systems theory revisited

    NARCIS (Netherlands)

    Willigenburg, van L.G.; Koning, de W.L.

    2008-01-01

    This paper investigates and clarifies how different definitions of reachability, observability, controllability, reconstructability and minimality that appear in the control literature, may be equivalent or different, depending on the type of linear system. The differences are caused by (1) whether

  11. Elementary linear algebra

    CERN Document Server

    Andrilli, Stephen

    2010-01-01

    Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study. The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, expl

  12. Linear system theory

    Science.gov (United States)

    Callier, Frank M.; Desoer, Charles A.

    1991-01-01

    The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.

  13. Linear Resonance Cooler.

    Science.gov (United States)

    1985-04-01

    7.0 % % o the testing of an experimental linear motor driven expander using a standard production 1/4W split Stirling Common Module compressor. . - o...3 2.2 Expander Design CTI-CRYOGENICS has long recognized the potential of employing a linear drive motor to assist regenerator displacement and...assessment of the expander’s performance with lip seals and clearance seals for a regenerator comprised of nickel balls. Further comparison of a stainless

  14. Dimension of linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    1996-01-01

    Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....

  15. Further linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Most of the introductory courses on linear algebra develop the basic theory of finite­ dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num­ ber of illustrative and worked examples, as well as many exercises that are strategi­ cally placed throughout the text. Solutions to the ex...

  16. On Linear Algebra Education

    Directory of Open Access Journals (Sweden)

    Sinan AYDIN

    2009-04-01

    Full Text Available Linear algebra is a basic course followed in mathematics, science, and engineering university departments.Generally, this course is taken in either the first or second year but there have been difficulties in teachingand learning. This type of active algebra has resulted in an increase in research by mathematics educationresearchers. But there is insufficient information on this subject in Turkish and therefore it has not beengiven any educational status. This paper aims to give a general overview of this subject in teaching andlearning. These education studies can be considered quadruple: a the history of linear algebra, b formalismobstacles of linear algebra and cognitive flexibility to improve teaching and learning, c the relation betweenlinear algebra and geometry, d using technology in the teaching and learning linear algebra.Mathematicseducation researchers cannot provide an absolute solution to overcome the teaching and learning difficultiesof linear algebra. Epistemological analyses and experimental teaching have shown the learning difficulties.Given these results, further advice and assistance can be offered locally.

  17. Theory of linear operations

    CERN Document Server

    Banach, S

    1987-01-01

    This classic work by the late Stefan Banach has been translated into English so as to reach a yet wider audience. It contains the basics of the algebra of operators, concentrating on the study of linear operators, which corresponds to that of the linear forms a1x1 + a2x2 + ... + anxn of algebra.The book gathers results concerning linear operators defined in general spaces of a certain kind, principally in Banach spaces, examples of which are: the space of continuous functions, that of the pth-power-summable functions, Hilbert space, etc. The general theorems are interpreted in various mathematical areas, such as group theory, differential equations, integral equations, equations with infinitely many unknowns, functions of a real variable, summation methods and orthogonal series.A new fifty-page section (``Some Aspects of the Present Theory of Banach Spaces'''') complements this important monograph.

  18. Handbook of linear algebra

    CERN Document Server

    Hogben, Leslie

    2013-01-01

    With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

  19. Linear Algebra Thoroughly Explained

    CERN Document Server

    Vujičić, Milan

    2008-01-01

    Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.

  20. Advanced linear algebra

    CERN Document Server

    Cooperstein, Bruce

    2015-01-01

    Advanced Linear Algebra, Second Edition takes a gentle approach that starts with familiar concepts and then gradually builds to deeper results. Each section begins with an outline of previously introduced concepts and results necessary for mastering the new material. By reviewing what students need to know before moving forward, the text builds a solid foundation upon which to progress. The new edition of this successful text focuses on vector spaces and the maps between them that preserve their structure (linear transformations). Designed for advanced undergraduate and beginning graduate stud

  1. Linear- rubbing Manipulation

    Institute of Scientific and Technical Information of China (English)

    SHEN Guo-quan; XIAO Yuan-chun

    2003-01-01

    @@ Linear-rubbing is a characteristic technique in the academic school of internal exercise massage in Shanghai. It was known as "flat pushing method" in the past times. The academic school of internal exercise Tuina finds, in the clinical practice of flat pushing, that if the internal exercise accumuhtes in the palm and one-way movement is replaced by two-way movement, the kinetic energy may be transformed into heat energy, bringing about a new unique manipulating technique, which is rather different from the usual flat pushing no longer and now called linear-rubbing therapy.

  2. Linear Logical Voting Protocols

    DEFF Research Database (Denmark)

    DeYoung, Henry; Schürmann, Carsten

    2012-01-01

    . In response, we promote linear logic as a high-level language for both specifying and implementing voting protocols. Our linear logical specifications of the single-winner first-past-the-post (SW- FPTP) and single transferable vote (STV) protocols demonstrate that this approach leads to concise......Current approaches to electronic implementations of voting protocols involve translating legal text to source code of an imperative programming language. Because the gap between legal text and source code is very large, it is difficult to trust that the program meets its legal specification...... implementations that closely correspond to their legal specification, thereby increasing trust....

  3. Analysis of exact linearization and aproximate feedback linearization techniques

    OpenAIRE

    Schnitman, Leizer; Cardoso, Gildeberto de Souza

    2011-01-01

    p. 1-17 This paper presents a study of linear control systems based on exact feedback linearization and approximate feedback linearization. As exact feedback linearization is applied, a linear controller can perform the control objectives. The approximate feedback linearization is required when a nonlinear system presents a noninvolutive property. It uses a Taylor series expansion in order to compute a nonlinear transformation of coordinates to satisfy the involutivity conditions.

  4. Analysis of Exact Linearization and Aproximate Feedback Linearization Techniques

    OpenAIRE

    Cardoso, Gildeberto S.; Leizer Schnitman

    2011-01-01

    This paper presents a study of linear control systems based on exact feedback linearization and approximate feedback linearization. As exact feedback linearization is applied, a linear controller can perform the control objectives. The approximate feedback linearization is required when a nonlinear system presents a noninvolutive property. It uses a Taylor series expansion in order to compute a nonlinear transformation of coordinates to satisfy the involutivity conditions.

  5. Linear Projective Program Syntax

    NARCIS (Netherlands)

    Bergstra, J.A.; Bethke, I.

    2004-01-01

    Based on an extremely simple program notation more advanced program features can be developed in linear projective program syntax such as conditional statements, while loops, recursion, use of an evaluation stack, object classes, method calls etc. Taking care of a cumulative and bottom up

  6. About Some Linear Operators

    Directory of Open Access Journals (Sweden)

    Ovidiu T. Pop

    2007-01-01

    Full Text Available Using the method of Jakimovski and Leviatan from their work in 1969, we construct a general class of linear positive operators. We study the convergence, the evaluation for the rate of convergence in terms of the first modulus of smoothness and we give a Voronovskaja-type theorem for these operators.

  7. Linear Mappings of Quaternion Algebra

    OpenAIRE

    Kleyn, Aleks

    2011-01-01

    In the paper I considered linear and antilinear automorphisms of quaternion algebra. I proved the theorem that there is unique expansion of R-linear mapping of quaternion algebra relative to the given set of linear and antilinear automorphisms.

  8. Finite-dimensional linear algebra

    CERN Document Server

    Gockenbach, Mark S

    2010-01-01

    Some Problems Posed on Vector SpacesLinear equationsBest approximationDiagonalizationSummaryFields and Vector SpacesFields Vector spaces Subspaces Linear combinations and spanning sets Linear independence Basis and dimension Properties of bases Polynomial interpolation and the Lagrange basis Continuous piecewise polynomial functionsLinear OperatorsLinear operatorsMore properties of linear operatorsIsomorphic vector spaces Linear operator equations Existence and uniqueness of solutions The fundamental theorem; inverse operatorsGaussian elimination Newton's method Linear ordinary differential eq

  9. Simulation of the interaction between Alfven waves and fast particles

    Energy Technology Data Exchange (ETDEWEB)

    Feher, Tamas Bela

    2014-02-18

    There is a wide variety of Alfven waves in tokamak and stellarator plasmas. While most of them are damped, some of the global eigenmodes can be driven unstable when they interact with energetic particles. By coupling the MHD code CKA with the gyrokinetic code EUTERPE, a hybrid kinetic-MHD model is created to describe this wave-particle interaction in stellarator geometry. In this thesis, the CKA-EUTERPE code package is presented. This numerical tool can be used for linear perturbative stability analysis of Alfven waves in the presence of energetic particles. The equations for the hybrid model are based on the gyrokinetic equations. The fast particles are described with linearized gyrokinetic equations. The reduced MHD equations are derived by taking velocity moments of the gyrokinetic equations. An equation for describing the Alfven waves is derived by combining the reduced MHD equations. The Alfven wave equation can retain kinetic corrections. Considering the energy transfer between the particles and the waves, the stability of the waves can be calculated. Numerically, the Alfven waves are calculated using the CKA code. The equations are solved as an eigenvalue problem to determine the frequency spectrum and the mode structure of the waves. The results of the MHD model are in good agreement with other sophisticated MHD codes. CKA results are shown for a JET and a W7-AS example. The linear version of the EUTERPE code is used to study the motion of energetic particles in the wavefield with fixed spatial structure, and harmonic oscillations in time. In EUTERPE, the gyrokinetic equations are discretized with a PIC scheme using the delta-f method, and both full orbit width and finite Larmor radius effects are included. The code is modified to be able to use the wavefield calculated externally by CKA. Different slowing-down distribution functions are also implemented. The work done by the electric field on the particles is measured to calculate the energy transfer

  10. Topics in computational linear optimization

    DEFF Research Database (Denmark)

    Hultberg, Tim Helge

    2000-01-01

    . Linear optimization problems covers both linear programming problems, which are polynomially solvable, and mixed integer linear programming problems, which belong to the class of NP-hard problems. The three main reasons for the practical succes of linear optimization are: wide applicability, availabilty...... of high quality solvers and the use of algebraic modelling systems to handle the communication between the modeller and the solver. This dissertation features four topics in computational linear optimization: A) automatic reformulation of mixed 0/1 linear programs, B) direct solution of sparse unsymmetric...... systems of linear equations, C) reduction of linear programs and D) integration of algebraic modelling of linear optimization problems in C++. Each of these topics is treated in a separate paper included in this dissertation. The efficiency of solving mixed 0-1 linear programs by linear programming based...

  11. Linearizing nonlinear optics

    CERN Document Server

    Schmidt, Bruno E; Ernotte, Guilmot; Clerici, Matteo; Morandotti, Roberto; Ibrahim, Heide; Legare, Francois

    2016-01-01

    In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second har...

  12. Extended linear chain compounds

    CERN Document Server

    Linear chain substances span a large cross section of contemporary chemistry ranging from covalent polymers, to organic charge transfer com­ plexes to nonstoichiometric transition metal coordination complexes. Their commonality, which coalesced intense interest in the theoretical and exper­ imental solid state physics/chemistry communities, was based on the obser­ vation that these inorganic and organic polymeric substrates exhibit striking metal-like electrical and optical properties. Exploitation and extension of these systems has led to the systematic study of both the chemistry and physics of highly and poorly conducting linear chain substances. To gain a salient understanding of these complex materials rich in anomalous aniso­ tropic electrical, optical, magnetic, and mechanical properties, the conver­ gence of diverse skills and talents was required. The constructive blending of traditionally segregated disciplines such as synthetic and physical organic, inorganic, and polymer chemistry, crystallog...

  13. Linear recursive distributed representations.

    Science.gov (United States)

    Voegtlin, Thomas; Dominey, Peter F

    2005-09-01

    Connectionist networks have been criticized for their inability to represent complex structures with systematicity. That is, while they can be trained to represent and manipulate complex objects made of several constituents, they generally fail to generalize to novel combinations of the same constituents. This paper presents a modification of Pollack's Recursive Auto-Associative Memory (RAAM), that addresses this criticism. The network uses linear units and is trained with Oja's rule, in which it generalizes PCA to tree-structured data. Learned representations may be linearly combined, in order to represent new complex structures. This results in unprecedented generalization capabilities. Capacity is orders of magnitude higher than that of a RAAM trained with back-propagation. Moreover, regularities of the training set are preserved in the new formed objects. The formation of new structures displays developmental effects similar to those observed in children when learning to generalize about the argument structure of verbs.

  14. Piecewise Linear Wilson lines

    CERN Document Server

    Van der Veken, Frederik F

    2014-01-01

    Wilson lines, being comparators that render non-local operator products gauge invariant, are extensively used in QCD calculations, especially in small-$x$ calculations, calculations concerning validation of factorisation schemes and in calculations for constructing or modelling parton density functions. We develop an algorithm to express piecewise path ordered exponentials as path ordered integrals over the separate segments, and apply it on linear segments, reducing the number of diagrams needed to be calculated. We show how different linear path topologies can be related using their colour structure. This framework allows one to easily switch results between different Wilson line structures, which is especially useful when testing different structures against each other, e.g. when checking universality properties of non-perturbative objects.

  15. Scaled Sparse Linear Regression

    CERN Document Server

    Sun, Tingni

    2011-01-01

    Scaled sparse linear regression jointly estimates the regression coefficients and noise level in a linear model. It chooses an equilibrium with a sparse regression method by iteratively estimating the noise level via the mean residual squares and scaling the penalty in proportion to the estimated noise level. The iterative algorithm costs nearly nothing beyond the computation of a path of the sparse regression estimator for penalty levels above a threshold. For the scaled Lasso, the algorithm is a gradient descent in a convex minimization of a penalized joint loss function for the regression coefficients and noise level. Under mild regularity conditions, we prove that the method yields simultaneously an estimator for the noise level and an estimated coefficient vector in the Lasso path satisfying certain oracle inequalities for the estimation of the noise level, prediction, and the estimation of regression coefficients. These oracle inequalities provide sufficient conditions for the consistency and asymptotic...

  16. Linear network theory

    CERN Document Server

    Sander, K F

    1964-01-01

    Linear Network Theory covers the significant algebraic aspect of network theory, with minimal reference to practical circuits. The book begins the presentation of network analysis with the exposition of networks containing resistances only, and follows it up with a discussion of networks involving inductance and capacity by way of the differential equations. Classification and description of certain networks, equivalent networks, filter circuits, and network functions are also covered. Electrical engineers, technicians, electronics engineers, electricians, and students learning the intricacies

  17. Linear abdominal trauma.

    Science.gov (United States)

    Danto, L A; Wolfman, E F

    1976-03-01

    Three cases of blunt abdominal trauma are presented to exemplify the mechanism of trauma and the problems of diagnosis associated with any linear blow to the abdomen. The mechanisms of visceral injury are reviewed, and special attention is directed to the abdominal wall injury that can be present in these patients. This injury has special implications in directing the operative approach and repair. An unusual aortic occlusion is described which is peculiar to this type of injury.

  18. Redesigning linear algebra algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J.

    1983-01-01

    Many of the standard algorithms in linear algebra as implemented in FORTRAN do not achieve maximum performance on today's large-scale vector computers. The author examines the problem and constructs alternative formulations of algorithms that do not lose the clarity of the original algorithm or sacrifice the FORTRAN portable environment, but do gain the performance attainable on these supercomputers. The resulting implementation not only performs well on vector computers but also increases performance on conventional sequential computers. 13 references.

  19. Redesigning linear algebra algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J.

    1983-01-01

    Many of the standard algorithms in linear algebra as implemented in FORTRAN do not achieve maximum performance on today's large-scale vector computers. In this paper we examine the problem and construct alternative formulations of algorithms that do not lose the clarity of the original algorithm or sacrifice the Fortran portable environment, but do gain the performance attainable on these supercomputers. The resulting implementation not only performs well on vector computers but also increases performance on conventional sequential computers.

  20. Fundamentals of linear algebra

    CERN Document Server

    Dash, Rajani Ballav

    2008-01-01

    FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.

  1. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  2. Linear algebraic groups

    CERN Document Server

    Springer, T A

    1998-01-01

    "[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...

  3. The International Linear Collider

    CERN Document Server

    Barish, Barry

    2013-01-01

    In this article, we describe the key features of the recently completed technical design for the International Linear Collider (ILC), a 200-500 GeV linear electron-positron collider (expandable to 1 TeV) that is based on 1.3 GHz superconducting radio-frequency (SCRF) technology. The machine parameters and detector characteristics have been chosen to complement the Large Hadron Collider physics, including the discovery of the Higgs boson, and to further exploit this new particle physics energy frontier with a precision instrument. The linear collider design is the result of nearly twenty years of R&D, resulting in a mature conceptual design for the ILC project that reflects an international consensus. We summarize the physics goals and capability of the ILC, the enabling R&D and resulting accelerator design, as well as the concepts for two complementary detectors. The ILC is technically ready to be proposed and built as a next generation lepton collider, perhaps to be built in stages beginning as a Hig...

  4. Linearized Kernel Dictionary Learning

    Science.gov (United States)

    Golts, Alona; Elad, Michael

    2016-06-01

    In this paper we present a new approach of incorporating kernels into dictionary learning. The kernel K-SVD algorithm (KKSVD), which has been introduced recently, shows an improvement in classification performance, with relation to its linear counterpart K-SVD. However, this algorithm requires the storage and handling of a very large kernel matrix, which leads to high computational cost, while also limiting its use to setups with small number of training examples. We address these problems by combining two ideas: first we approximate the kernel matrix using a cleverly sampled subset of its columns using the Nystr\\"{o}m method; secondly, as we wish to avoid using this matrix altogether, we decompose it by SVD to form new "virtual samples," on which any linear dictionary learning can be employed. Our method, termed "Linearized Kernel Dictionary Learning" (LKDL) can be seamlessly applied as a pre-processing stage on top of any efficient off-the-shelf dictionary learning scheme, effectively "kernelizing" it. We demonstrate the effectiveness of our method on several tasks of both supervised and unsupervised classification and show the efficiency of the proposed scheme, its easy integration and performance boosting properties.

  5. Differential Equations with Linear Algebra

    CERN Document Server

    Boelkins, Matthew R; Potter, Merle C

    2009-01-01

    Linearity plays a critical role in the study of elementary differential equations; linear differential equations, especially systems thereof, demonstrate a fundamental application of linear algebra. In Differential Equations with Linear Algebra, we explore this interplay between linear algebra and differential equations and examine introductory and important ideas in each, usually through the lens of important problems that involve differential equations. Written at a sophomore level, the text is accessible to students who have completed multivariable calculus. With a systems-first approach, t

  6. Matlab linear algebra

    CERN Document Server

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to

  7. Linear right ideal nearrings

    Directory of Open Access Journals (Sweden)

    Kenneth D. Magill

    2001-01-01

    Full Text Available We determine, up to isomorphism, all those topological nearrings n whose additive groups are the n-dimensional Euclidean groups, n>1, and which contain n one-dimensional linear subspaces {Ji}i=1n which are also right ideals of the nearring satisfying several additional properties. Specifically, for each w∈n, we require that there exist wi∈Ji, 1≤i≤n, such that w=w1+w2+⋯+wn and multiplication on the left of w yields the same result as multiplication by the same element on the left of wn. That is, vw=vwn for each v∈n.

  8. Optical linear algebra

    Energy Technology Data Exchange (ETDEWEB)

    Casasent, D.; Ghosh, A.

    1983-01-01

    Many of the linear algebra operations and algorithms possible on optical matrix-vector processors are reviewed. Emphasis is given to the use of direct solutions and their realization on systolic optical processors. As an example, implicit and explicit solutions to partial differential equations are considered. The matrix-decomposition required is found to be the major operation recommended for optical realization. The pipelining and flow of data and operations are noted to be key issues in the realization of any algorithm on an optical systolic array processor. A realization of the direct solution by householder qr decomposition is provided as a specific case study. 19 references.

  9. Linear atomic quantum coupler

    CERN Document Server

    El-Orany, Faisal A A

    2009-01-01

    In this paper, we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of them includes a localized and/or a trapped atom. These waveguides are placed close enough to allow exchanging energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way, i.e. as the Jaynes-Cummings model (JCM), and with the atom-mode in the second waveguide via evanescent wave. We present the Hamiltonian for the system and deduce the exact form for the wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional linear coupler, the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions, the system can yield the results of the two-m...

  10. Topics in computational linear optimization

    DEFF Research Database (Denmark)

    Hultberg, Tim Helge

    2000-01-01

    of high quality solvers and the use of algebraic modelling systems to handle the communication between the modeller and the solver. This dissertation features four topics in computational linear optimization: A) automatic reformulation of mixed 0/1 linear programs, B) direct solution of sparse unsymmetric...... systems of linear equations, C) reduction of linear programs and D) integration of algebraic modelling of linear optimization problems in C++. Each of these topics is treated in a separate paper included in this dissertation. The efficiency of solving mixed 0-1 linear programs by linear programming based...... reductions. In the fourth and last paper, a prototype implementation of a C++ class library, FLOPC++, for formulating linear optimization problems is presented. Using FLOPC++, linear optimization models can be specified in a declarative style, similar to algebraic modelling languages such as GAMS and AMPL...

  11. Comet LINEAR Splits Further

    Science.gov (United States)

    2001-05-01

    Third Nucleus Observed with the VLT Summary New images from the VLT show that one of the two nuclei of Comet LINEAR (C/2001 A2), now about 100 million km from the Earth, has just split into at least two pieces . The three fragments are now moving through space in nearly parallel orbits while they slowly drift apart. This comet will pass through its perihelion (nearest point to the Sun) on May 25, 2001, at a distance of about 116 million kilometres. It has brightened considerably due to the splitting of its "dirty snowball" nucleus and can now be seen with the unaided eye by observers in the southern hemisphere as a faint object in the southern constellation of Lepus (The Hare). PR Photo 18a/01 : Three nuclei of Comet LINEAR . PR Photo 18b/01 : The break-up of Comet LINEAR (false-colour). Comet LINEAR splits and brightens ESO PR Photo 18a/01 ESO PR Photo 18a/01 [Preview - JPEG: 400 x 438 pix - 55k] [Normal - JPEG: 800 x 875 pix - 136k] ESO PR Photo 18b/01 ESO PR Photo 18b/01 [Preview - JPEG: 367 x 400 pix - 112k] [Normal - JPEG: 734 x 800 pix - 272k] Caption : ESO PR Photo 18a/01 shows the three nuclei of Comet LINEAR (C/2001 A2). It is a reproduction of a 1-min exposure in red light, obtained in the early evening of May 16, 2001, with the 8.2-m VLT YEPUN (UT4) telescope at Paranal. ESO PR Photo 18b/01 shows the same image, but in a false-colour rendering for more clarity. The cometary fragment "B" (right) has split into "B1" and "B2" (separation about 1 arcsec, or 500 km) while fragment "A" (upper left) is considerably fainter. Technical information about these photos is available below. Comet LINEAR was discovered on January 3, 2001, and designated by the International Astronomical Union (IAU) as C/2001 A2 (see IAU Circular 7564 [1]). Six weeks ago, it was suddenly observed to brighten (IAUC 7605 [1]). Amateurs all over the world saw the comparatively faint comet reaching naked-eye magnitude and soon thereafter, observations with professional telescopes indicated

  12. On the linear programming bound for linear Lee codes.

    Science.gov (United States)

    Astola, Helena; Tabus, Ioan

    2016-01-01

    Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.

  13. Linear algebra, geometry and transformation

    CERN Document Server

    Solomon, Bruce

    2014-01-01

    Vectors, Mappings and Linearity Numeric Vectors Functions Mappings and Transformations Linearity The Matrix of a Linear Transformation Solving Linear Systems The Linear SystemThe Augmented Matrix and RRE Form Homogeneous Systems in RRE Form Inhomogeneous Systems in RRE Form The Gauss-Jordan Algorithm Two Mapping Answers Linear Geometry Geometric Vectors Geometric/Numeric Duality Dot-Product Geometry Lines, Planes, and Hyperplanes System Geometry and Row/Column Duality The Algebra of Matrices Matrix Operations Special Matrices Matrix Inversion A Logical Digression The Logic of the Inversion Alg

  14. Linear geometry thyratron

    Science.gov (United States)

    Byron, S.

    1985-03-01

    The low pressure gas-filled thyratron is scalable in the long dimension. Internally the tube is formed as a tetrode, with an auxiliary grid placed between the cathode and the control grid. A dc or pulsed power source drives the auxiliary grid both to insure uniform cathode emission and to provide a grid-cathode plasma prior to commutation. The high voltage holdoff structure consists of the anode, the control grid and its electrostatic shielding baffles, and a main quartz insulator. A small gas flow supply and exhaust system is used that eliminates the need for a hydrogen reservoir and permits other gases, such as helium, to be used. The thyratron provides a low inductance, high current, long lifetime switch configuration: useful for switch-on applications involving large scale lasers and other similar loads that are distributed in a linear geometry.

  15. Introduction to linear elasticity

    CERN Document Server

    Gould, Phillip L

    2013-01-01

    Introduction to Linear Elasticity, 3rd Edition, provides an applications-oriented grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical, and biomedical engineering, as well as materials and earth science. The book is distinct from the traditional text aimed at graduate students in solid mechanics by introducing the subject at a level appropriate for advanced undergraduate and beginning graduate students. The author's presentation allows students to apply the basic notions of stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials, viscoelasticity and finite method analysis. This book also:  Emphasizes tensor-based approach while still distilling down to explicit notation Provides introduction to theory of plates, theory of shells, wave propagation, viscoelasticity and plasticity accessible to advanced undergraduate students Appropriate for courses following emerging trend of teaching solid mechan...

  16. Recursive Algorithm For Linear Regression

    Science.gov (United States)

    Varanasi, S. V.

    1988-01-01

    Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.

  17. Computer Program For Linear Algebra

    Science.gov (United States)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  18. Linear connections on matrix geometries

    CERN Document Server

    Madore, J; Mourad, J; Madore, John; Masson, Thierry; Mourad, Jihad

    1994-01-01

    A general definition of a linear connection in noncommutative geometry has been recently proposed. Two examples are given of linear connections in noncommutative geometries which are based on matrix algebras. They both possess a unique metric connection.

  19. Computer Program For Linear Algebra

    Science.gov (United States)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  20. A primer on linear models

    CERN Document Server

    Monahan, John F

    2008-01-01

    Preface Examples of the General Linear Model Introduction One-Sample Problem Simple Linear Regression Multiple Regression One-Way ANOVA First Discussion The Two-Way Nested Model Two-Way Crossed Model Analysis of Covariance Autoregression Discussion The Linear Least Squares Problem The Normal Equations The Geometry of Least Squares Reparameterization Gram-Schmidt Orthonormalization Estimability and Least Squares Estimators Assumptions for the Linear Mean Model Confounding, Identifiability, and Estimability Estimability and Least Squares Estimators F

  1. Templates for Linear Algebra Problems

    NARCIS (Netherlands)

    Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der

    2001-01-01

    The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and eig

  2. Linear Logic on Petri Nets

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...

  3. Linear dilaton black holes

    CERN Document Server

    Clément, G; Leygnac, C; Clement, Gerard; Gal'tsov, Dmitri; Leygnac, Cedric

    2003-01-01

    We present new solutions to Einstein-Maxwell-dilaton-axion (EMDA) gravity in four dimensions describing black holes which asymptote to the linear dilaton background. In the non-rotating case they can be obtained as the limiting geometry of dilaton black holes. The rotating solutions (possibly endowed with a NUT parameter) are constructed using a generating technique based on the Sp(4,R) duality of the EMDA system. In a certain limit (with no event horizon present) our rotating solutions coincide with supersymmetric Israel-Wilson-Perjes type dilaton-axion solutions. In presence of an event horizon supersymmetry is broken. The temperature of the static black holes is constant, and their mass does not depend on it, so the heat capacity is zero. We investigate geodesics and wave propagation in these spacetimes and find superradiance in the rotating case. Because of the non-asymptotically flat nature of the geometry, certain modes are reflected from infinity, in particular, all superradiant modes are confined. Thi...

  4. Generalized Linear Covariance Analysis

    Science.gov (United States)

    Carpenter, James R.; Markley, F. Landis

    2014-01-01

    This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.

  5. Linear Rogowski coil

    Science.gov (United States)

    Nassisi, V.; Delle Side, D.

    2017-02-01

    Nowadays, the employment and development of fast current pulses require sophisticated systems to perform measurements. Rogowski coils are used to diagnose cylindrical shaped beams; therefore, they are designed and built with a toroidal structure. Recently, to perform experiments of radiofrequency biophysical stresses, flat transmission lines have been developed. Therefore, in this work we developed a linear Rogowski coil to detect current pulses inside flat conductors. The system is first approached by means of transmission line theory. We found that, if the pulse width to be diagnosed is comparable with the propagation time of the signal in the detector, it is necessary to impose a uniform current as input pulse, or to use short coils. We further analysed the effect of the resistance of the coil and the influence of its magnetic properties. As a result, the device we developed is able to record pulses lasting for some hundreds of nanoseconds, depending on the inductance, load impedance, and resistance of the coil. Furthermore, its response is characterized by a sub-nanosecond rise time (˜100 ps). The attenuation coefficient depends mainly on the turn number of the coil, while the fidelity of the response depends both on the magnetic core characteristics and on the current distribution along the plane conductors.

  6. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  7. Random linear codes in steganography

    Directory of Open Access Journals (Sweden)

    Kamil Kaczyński

    2016-12-01

    Full Text Available Syndrome coding using linear codes is a technique that allows improvement in the steganographic algorithms parameters. The use of random linear codes gives a great flexibility in choosing the parameters of the linear code. In parallel, it offers easy generation of parity check matrix. In this paper, the modification of LSB algorithm is presented. A random linear code [8, 2] was used as a base for algorithm modification. The implementation of the proposed algorithm, along with practical evaluation of algorithms’ parameters based on the test images was made.[b]Keywords:[/b] steganography, random linear codes, RLC, LSB

  8. On constructing disjoint linear codes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Weiguo; CAI Mian; XIAO Guozhen

    2007-01-01

    To produce a highly nonlinear resilient function,the disjoint linear codes were originally proposed by Johansson and Pasalic in IEEE Trans.Inform.Theory,2003,49(2):494-501.In this paper,an effective method for finding a set of such disjoint linear codes is presented.When n≥2k,we can find a set of[n,k] disjoint linear codes with joint linear codes exists with cardinality at least 2.We also describe a result on constructing a set of [n,k] disjoint linear codes with minimum distance at least some fixed positive integer.

  9. Gyrokinetic approach in particle simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.W.

    1981-10-01

    A new scheme for particle simulation based on the gyrophase-averaged Vlasov equation has been developed. It is suitable for studying low-frequency microinstabilities and the associated anomalous transport in magnetically confined plasmas. The scheme retains the gyroradius effects but not the gyromotion; it is, therefore, far more efficient and versatile than the conventional ones. Furthermore, the reduced Vlasov equation is also amenable to analytical studies.

  10. Linear Algebraic Method for Non-Linear Map Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yu,L.; Nash, B.

    2009-05-04

    We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

  11. Feature-Weighted Linear Stacking

    CERN Document Server

    Sill, Joseph; Mackey, Lester; Lin, David

    2009-01-01

    Ensemble methods, such as stacking, are designed to boost predictive accuracy by blending the predictions of multiple machine learning models. Recent work has shown that the use of meta-features, additional inputs describing each example in a dataset, can boost the performance of ensemble methods, but the greatest reported gains have come from nonlinear procedures requiring significant tuning and training time. Here, we present a linear technique, Feature-Weighted Linear Stacking (FWLS), that incorporates meta-features for improved accuracy while retaining the well-known virtues of linear regression regarding speed, stability, and interpretability. FWLS combines model predictions linearly using coefficients that are themselves linear functions of meta-features. This technique was a key facet of the solution of the second place team in the recently concluded Netflix Prize competition. Significant increases in accuracy over standard linear stacking is demonstrated on the Netflix Prize collaborative filtering da...

  12. Linearization of CIF Through SOS

    CERN Document Server

    Agut, Damian Nadales; 10.4204/EPTCS.64.6

    2011-01-01

    Linearization is the procedure of rewriting a process term into a linear form, which consist only of basic operators of the process language. This procedure is interesting both from a theoretical and a practical point of view. In particular, a linearization algorithm is needed for the Compositional Interchange Format (CIF), an automaton based modeling language. The problem of devising efficient linearization algorithms is not trivial, and has been already addressed in literature. However, the linearization algorithms obtained are the result of an inventive process, and the proof of correctness comes as an afterthought. Furthermore, the semantic specification of the language does not play an important role on the design of the algorithm. In this work we present a method for obtaining an efficient linearization algorithm, through a step-wise refinement of the SOS rules of CIF. As a result, we show how the semantic specification of the language can guide the implementation of such a procedure, yielding a simple ...

  13. Linear Programming and Network Flows

    CERN Document Server

    Bazaraa, Mokhtar S; Sherali, Hanif D

    2011-01-01

    The authoritative guide to modeling and solving complex problems with linear programming-extensively revised, expanded, and updated The only book to treat both linear programming techniques and network flows under one cover, Linear Programming and Network Flows, Fourth Edition has been completely updated with the latest developments on the topic. This new edition continues to successfully emphasize modeling concepts, the design and analysis of algorithms, and implementation strategies for problems in a variety of fields, including industrial engineering, management science, operations research

  14. Linear algebra and projective geometry

    CERN Document Server

    Baer, Reinhold

    2005-01-01

    Geared toward upper-level undergraduates and graduate students, this text establishes that projective geometry and linear algebra are essentially identical. The supporting evidence consists of theorems offering an algebraic demonstration of certain geometric concepts. These focus on the representation of projective geometries by linear manifolds, of projectivities by semilinear transformations, of collineations by linear transformations, and of dualities by semilinear forms. These theorems lead to a reconstruction of the geometry that constituted the discussion's starting point, within algebra

  15. Improvement of Hartman's linearization theorem

    Institute of Scientific and Technical Information of China (English)

    SHI; Jinlin(史金麟)

    2003-01-01

    Hartman's linearization theorem tells us that if matrix A has no zero real part and f(x) isbounded and satisfies Lipchitz condition with small Lipchitzian constant, then there exists a homeomorphismof Rn sending the solutions of nonlinear system x' = Ax + f(x) onto the solutions of linear system x' = Ax.In this paper, some components of the nonlinear item f(x) are permitted to be unbounded and we provethe result of global topological linearization without any special limitation and adding any condition. Thus,Hartman's linearization theorem is improved essentially.

  16. Elementary linear programming with applications

    CERN Document Server

    Kolman, Bernard

    1995-01-01

    Linear programming finds the least expensive way to meet given needs with available resources. Its results are used in every area of engineering and commerce: agriculture, oil refining, banking, and air transport. Authors Kolman and Beck present the basic notions of linear programming and illustrate how they are used to solve important common problems. The software on the included disk leads students step-by-step through the calculations. The Second Edition is completely revised and provides additional review material on linear algebra as well as complete coverage of elementary linear program

  17. The art of linear electronics

    CERN Document Server

    Hood, John Linsley

    2013-01-01

    The Art of Linear Electronics presents the principal aspects of linear electronics and techniques in linear electronic circuit design. The book provides a wide range of information on the elucidation of the methods and techniques in the design of linear electronic circuits. The text discusses such topics as electronic component symbols and circuit drawing; passive and active semiconductor components; DC and low frequency amplifiers; and the basic effects of feedback. Subjects on frequency response modifying circuits and filters; audio amplifiers; low frequency oscillators and waveform generato

  18. Linear collider development at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.

    1993-08-01

    Linear collider R&D at SLAC comprises work on the present Stanford Linear Collider (SLC) and work toward the next linear collider (NLC). Recent SLC developments are summarized. NLC studies are divided into hardware-based and theoretical. We report on the status of the NLC Test Accelerator (NLCTA) and the final focus test beam (FFTB), describe plans for ASSET, an installation to measure accelerator structure wakefields, and mention IR design developments. Finally we review recent NLC theoretical studies, ending with the author`s view of next linear collider parameter sets.

  19. Plasma detachment in linear devices

    Science.gov (United States)

    Ohno, N.

    2017-03-01

    Plasma detachment research in linear devices, sometimes called divertor plasma simulators, is reviewed. Pioneering works exploring the concept of plasma detachment were conducted in linear devices. Linear devices have contributed greatly to the basic understanding of plasma detachment such as volume plasma recombination processes, detached plasma structure associated with particle and energy transport, and other related issues including enhancement of convective plasma transport, dynamic response of plasma detachment, plasma flow reversal, and magnetic field effect. The importance of plasma detachment research using linear devices will be highlighted aimed at the design of future DEMO.

  20. Linear operators for quantum mechanics

    CERN Document Server

    Jordan, Thomas F

    2006-01-01

    This compact treatment highlights the logic and simplicity of the mathematical structure of quantum mechanics. Suitable for advanced undergraduates and graduate students, it treats the language of quantum mechanics as expressed in the mathematics of linear operators.Originally oriented toward atomic physics, quantum mechanics became a basic language for solid-state, nuclear, and particle physics. Its grammar consists of the mathematics of linear operators, and with this text, students will find it easier to understand and use the language of physics. Topics include linear spaces and linear fun

  1. Linear operator inequalities for strongly stable weakly regular linear systems

    NARCIS (Netherlands)

    Curtain, RF

    2001-01-01

    We consider the question of the existence of solutions to certain linear operator inequalities (Lur'e equations) for strongly stable, weakly regular linear systems with generating operators A, B, C, 0. These operator inequalities are related to the spectral factorization of an associated Popov funct

  2. Can linear superiorization be useful for linear optimization problems?

    Science.gov (United States)

    Censor, Yair

    2017-04-01

    Linear superiorization (LinSup) considers linear programming problems but instead of attempting to solve them with linear optimization methods it employs perturbation resilient feasibility-seeking algorithms and steers them toward reduced (not necessarily minimal) target function values. The two questions that we set out to explore experimentally are: (i) does LinSup provide a feasible point whose linear target function value is lower than that obtained by running the same feasibility-seeking algorithm without superiorization under identical conditions? (ii) How does LinSup fare in comparison with the Simplex method for solving linear programming problems? Based on our computational experiments presented here, the answers to these two questions are: ‘yes’ and ‘very well’, respectively.

  3. Non-Linear Mixed Logit

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Hole, Arne Risa

    2012-01-01

    We develop an extension of the familiar linear mixed logit model to allow for the direct estimation of parametric non-linear functions defined over structural parameters. Classic applications include the estimation of coefficients of utility functions to characterize risk attitudes and discountin...

  4. Linear Algebra and Image Processing

    Science.gov (United States)

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  5. Dynamic Linear Models with R

    CERN Document Server

    Campagnoli, Patrizia; Petris, Giovanni

    2009-01-01

    State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.

  6. Linear Patterns and Their Equations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>A linear pattern,the points plotted all lie on the same straight line.In this section we will be looking further into such linear patterns. In this figure,by plotting the points B to F and joining them,

  7. Linear Programming across the Curriculum

    Science.gov (United States)

    Yoder, S. Elizabeth; Kurz, M. Elizabeth

    2015-01-01

    Linear programming (LP) is taught in different departments across college campuses with engineering and management curricula. Modeling an LP problem is taught in every linear programming class. As faculty teaching in Engineering and Management departments, the depth to which teachers should expect students to master this particular type of…

  8. Linear-programming Decoding of Non-binary Linear Codes

    CERN Document Server

    Flanagan, Mark F; Byrne, Eimear; Greferath, Marcus

    2007-01-01

    We develop a framework for linear-programming (LP) decoding of non-binary linear codes over rings. We prove that the resulting LP decoder has the `maximum likelihood certificate' property, and we show that the decoder output is the lowest cost pseudocodeword. Equivalence between pseudocodewords of the linear program and pseudocodewords of graph covers is proved. LP decoding performance is illustrated for the (11,6,5) ternary Golay code with ternary PSK modulation over AWGN, and in this case it is shown that the LP decoder performance is comparable to codeword-error-rate-optimum hard-decision based decoding.

  9. Negative Feedback, Linearity and Parameter Invariance in Linear Electronics

    CERN Document Server

    Costa, Luciano da F; Comin, Cesar H

    2016-01-01

    Negative feedback is a powerful approach capable of improving several aspects of a system. In linear electronics, it has been critical for allowing invariance to device properties. Negative feedback is also known to enhance linearity in amplification, which is one of the most important foundations of linear electronics. At the same time, thousands of transistors types have been made available, suggesting that these devices, in addition to their known variability of parameters, have distinguishing properties. The current work reports a systematic approach to quantifying the potential of negative feedback, with respect to bipolar transistors, as a means to providing device invariance and linearity. Several methods, including concepts from multivariate statistics and complex systems, are applied at the theoretical as well as experimental levels, and a number of interesting results are obtained and discussed. For instance, it has been verified that the transistors types indeed have well-defined characteristics wh...

  10. The linear-non-linear frontier for the Goldstone Higgs

    CERN Document Server

    Gavela, M B; Machado, P A N; Saa, S

    2016-01-01

    The minimal $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $\\sigma$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic compl...

  11. Linear control design for guaranteed stability of uncertain linear systems

    Science.gov (United States)

    Yedavalli, R. K.

    1986-01-01

    In this paper, a linear control design algorithm based on the elemental perturbation bounds developed recently is presented for a simple second order linear uncertain system satisfying matching conditions. The proposed method is compared with Guaranteed Cost Control (GCC), Multistep Guaranteed Cost Control (MGCC) and the Matching Condition (MC) methods and is shown to give guaranteed stability with lesser values for the control gains than some of the existing methods for the example considered.

  12. Primordial black holes in linear and non-linear regimes

    CERN Document Server

    Allahyari, Alireza; Abolhasani, Ali Akbar

    2016-01-01

    Using the concept of apparent horizon for dynamical black holes, we revisit the formation of primordial black holes (PBH) in the early universe for both linear and non-linear regimes. First, we develop the perturbation theory for spherically symmetric spacetimes to study the formation of spherical PBHs in linear regime and we fix two gauges. We also introduce a well defined gauge invariant quantity for the expansion. Using this quantity, we argue that PBHs do not form in the linear regime. Finally, we study the non-linear regime. We adopt the spherical collapse picture by taking a closed FRW model in the radiation dominated era to investigate PBH formation. Taking the initial condition of the spherical collapse from the linear theory of perturbations, we allow for both density and velocity perturbations. Our model gives a constraint on the velocity perturbation. This model also predicts that the apparent horizon of PBHs forms when $\\delta > 3$. Applying the sound horizon constraint, we have shown the threshol...

  13. Dynamics of multivalued linear operators

    Directory of Open Access Journals (Sweden)

    Chen Chung-Chuan

    2017-07-01

    Full Text Available We introduce several notions of linear dynamics for multivalued linear operators (MLO’s between separable Fréchet spaces, such as hypercyclicity, topological transitivity, topologically mixing property, and Devaney chaos. We also consider the case of disjointness, in which any of these properties are simultaneously satisfied by several operators. We revisit some sufficient well-known computable criteria for determining those properties. The analysis of the dynamics of extensions of linear operators to MLO’s is also considered.

  14. Manipulator control by exact linearization

    Science.gov (United States)

    Kruetz, K.

    1987-01-01

    Comments on the application to rigid link manipulators of geometric control theory, resolved acceleration control, operational space control, and nonlinear decoupling theory are given, and the essential unity of these techniques for externally linearizing and decoupling end effector dynamics is discussed. Exploiting the fact that the mass matrix of a rigid link manipulator is positive definite, a consequence of rigid link manipulators belonging to the class of natural physical systems, it is shown that a necessary and sufficient condition for a locally externally linearizing and output decoupling feedback law to exist is that the end effector Jacobian matrix be nonsingular. Furthermore, this linearizing feedback is easy to produce.

  15. The Theory of Linear Prediction

    CERN Document Server

    Vaidyanathan, PP

    2007-01-01

    Linear prediction theory has had a profound impact in the field of digital signal processing. Although the theory dates back to the early 1940s, its influence can still be seen in applications today. The theory is based on very elegant mathematics and leads to many beautiful insights into statistical signal processing. Although prediction is only a part of the more general topics of linear estimation, filtering, and smoothing, this book focuses on linear prediction. This has enabled detailed discussion of a number of issues that are normally not found in texts. For example, the theory of vecto

  16. Control linear motor with DSP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Han

    2003-06-15

    This book consists of control linear motor with DSP, which is composed of two parts. The title of the first part is control Algorithm and software with introduction and tracking controller, drive profile on decision of motion time, floating point DSP and quantization effect, motion override Algorithm and drive profile summary, design of digital controller on design for controller structure and analysis of PID control Loop and Motor turning, design for IIR digital filter and protocol structure for communication wit host. The second part describes control hardware, which mentions Linear motor and Amplifier, motor and power supply, DSP board and interface, control of Micro Linear Stepping Motor and conclusion.

  17. Coherence in Linear Predicate Logic

    CERN Document Server

    Dosen, K

    2007-01-01

    Coherence with respect to Kelly-Mac Lane graphs is proved for categories that correspond to the multiplicative fragment without constant propositions of classical linear first-order predicate logic without or with mix. To obtain this result, coherence is first established for categories that correspond to the multiplicative conjunction-disjunction fragment with first-order quantifiers of classical linear logic, a fragment lacking negation. These results extend results published in previous two books by the authors, where coherence was established for categories of the corresponding fragments of propositional classical linear logic, which are related to proof nets, and which could be described as star-autonomous categories without unit objects.

  18. Mechanized derivation of linear invariants.

    Science.gov (United States)

    Cavender, J A

    1989-05-01

    Linear invariants, discovered by Lake, promise to provide a versatile way of inferring phylogenies on the basis of nucleic acid sequences (the method that he called "evolutionary parsimony"). A semigroup of Markov transition matrices embodies the assumptions underlying the method, and alternative semigroups exist. The set of all linear invariants may be derived from the semigroup by using an algorithm described here. Under assumptions no stronger than Lake's, there are greater than 50 independent linear invariants for each of the 15 rooted trees linking four species.

  19. Practical approach to linear algebra

    CERN Document Server

    Choudhary, Prabhat

    2009-01-01

    ""Linear Algebra is the heart of applied science but there are divergent views concerning its meaning. The field of Linear Algebra is more beautiful and more fundamental than its rather dull name may suggest. More beautiful because it is full of powerful ideas that are quite unlike those normally emphasized in a linear algebra course in a mathematics department. Throughout the book the author follows the practice of first presenting required background material, which is then used to develop the results. The book is divided in ten chapters. Relevant material is included in each chapter from ot

  20. Optimal control linear quadratic methods

    CERN Document Server

    Anderson, Brian D O

    2007-01-01

    This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the

  1. Linearization via the Lie Derivative

    Directory of Open Access Journals (Sweden)

    Carmen Chicone

    2000-11-01

    Full Text Available The standard proof of the Grobman-Hartman linearization theorem for a flow at a hyperbolic rest point proceeds by first establishing the analogous result for hyperbolic fixed points of local diffeomorphisms. In this exposition we present a simple direct proof that avoids the discrete case altogether. We give new proofs for Hartman's smoothness results: A ${cal C}^2$ flow is ${cal C}^1$ linearizable at a hyperbolic sink, and a ${cal C}^2$ flow in the plane is ${cal C}^1$ linearizable at a hyperbolic rest point. Also, we formulate and prove some new results on smooth linearization for special classes of quasi-linear vector fields where either the nonlinear part is restricted or additional conditions on the spectrum of the linear part (not related to resonance conditions are imposed.

  2. Scheduling Linearly Indexed Assignment Codes

    Science.gov (United States)

    Kailath, Thomas; Roychowdhury, Vwani P.

    1989-05-01

    It has been recently shown that linearly indexed Assignment Codes can be efficiently used for coding several problems especially in signal processing and matrix algebra. In fact, mathematical expressions for many algorithms are directly in the form of linearly indexed codes, and examples include the formulas for matrix multiplication, any m-dimensional convolution/correlation, matrix transposition, and solving matrix Lyapunov's equation. Systematic procedures for converting linearly indexed Assignment Codes to localized algorithms that are closely related to Regular Iterative Algorithms (RIAs) have also been developed. These localized algorithms can be often efficiently scheduled by modeling them as RIAs; however, it is not always efficient to do so. In this paper we shall analyze and develop systematic procedures for determining efficient schedules directly for the linearly indexed ACs and the localized algorithms. We shall also illustrate our procedures by determining schedules for examples such as matrix transposition and Gauss-Jordan elimination algorithm.

  3. Non-linear Ultrasound Imaging

    DEFF Research Database (Denmark)

    Du, Yigang

    without iteration steps. The ASA is implemented in combination with Field II and extended to simulate the pulsed ultrasound fields. The simulated results from a linear array transducer are made by the ASA based on Field II, and by a released non-linear simulation program- Abersim, respectively....... The calculation speed of the ASA is increased approximately by a factor of 140. For the second harmonic point spread function the error of the full width is 1.5% at -6 dB and 6.4% at -12 dB compared to Abersim. To further investigate the linear and non-linear ultrasound fields, hydrophone measurements.......3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS...

  4. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  5. Linearity Testing of Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pinegar, S.; Nalley, D.; Emery, K.

    2006-01-01

    Photovoltaic devices are rated in terms of their power output or efficiency with respect to a specific spectrum, total irradiance, and temperature. In order to rate photovoltaic devices, a reference detector whose response is linear with total irradiance is needed. This procedure documents a procedure to determine if a detector is linear over the irradiance range of interest. Testing the short circuit current versus the total irradiance is done by illuminating a reference cell candidate with two lamps that are fitted with programmable filter wheels. The purpose is to reject nonlinear samples as determined by national and international standards from being used as primary reference cells. A calibrated linear reference cell tested by the two lamp method yields a linear result.

  6. Ada Linear-Algebra Program

    Science.gov (United States)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  7. Linear And Whorled Nevoid Hypermelanosis

    Directory of Open Access Journals (Sweden)

    Uppal Monica

    2003-01-01

    Full Text Available A case of linear and whorled nevoid hypermelanosis in a 7 month old infant is reported. In addition to the cutaneous findings he also had dextrocardia, mental retardation, high arched palate, simian crease, undescended testis and craniostenosis.

  8. Forms and Linear Network Codes

    DEFF Research Database (Denmark)

    Hansen, Johan P.

    spaces of Veronese varieties. Linear network coding transmits information in terms of a basis of a vector space and the information is received as a basis of a possibly altered vector space. Ralf Koetter and Frank R. Kschischang introduced a metric on the set af vector spaces and showed that a minimal......We present a general theory to obtain linear network codes utilizing forms and obtain explicit families of equidimensional vector spaces, in which any pair of distinct vector spaces intersect in the same small dimension. The theory is inspired by the methods of the author utilizing the osculating...... them suitable for linear network coding. The parameters of the resulting linear network codes are determined....

  9. Acoustic emission linear pulse holography

    Science.gov (United States)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  10. Iterative solution of linear systems

    Science.gov (United States)

    Freund, Roland W.; Golub, Gene H.; Nachtigal, Noel M.

    1992-01-01

    Recent advances in the field of iterative methods for solving large linear systems are reviewed. The main focus is on developments in the area of conjugate gradient-type algorithms and Krylov subspace methods for nonHermitian matrices.

  11. [New technology for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, P.M.

    1992-08-12

    This report discusses the following topics on research of microwave amplifiers for linear colliders: Context in current microwave technology development; gated field emission for microwave cathodes; cathode fabrication and tests; microwave cathode design using field emitters; and microwave localization.

  12. Linearity Testing of Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pinegar, S.; Nalley, D.; Emery, K.

    2006-01-01

    Photovoltaic devices are rated in terms of their power output or efficiency with respect to a specific spectrum, total irradiance, and temperature. In order to rate photovoltaic devices, a reference detector whose response is linear with total irradiance is needed. This procedure documents a procedure to determine if a detector is linear over the irradiance range of interest. Testing the short circuit current versus the total irradiance is done by illuminating a reference cell candidate with two lamps that are fitted with programmable filter wheels. The purpose is to reject nonlinear samples as determined by national and international standards from being used as primary reference cells. A calibrated linear reference cell tested by the two lamp method yields a linear result.

  13. An introduction to linear algebra

    CERN Document Server

    Mirsky, L

    2003-01-01

    Rigorous, self-contained coverage of determinants, vectors, matrices and linear equations, quadratic forms, more. Elementary, easily readable account with numerous examples and problems at the end of each chapter.

  14. Linear Positivity and Virtual Probability

    CERN Document Server

    Hartle, J B

    2004-01-01

    We investigate the quantum theory of closed systems based on the linear positivity decoherence condition of Goldstein and Page. A quantum theory of closed systems requires two elements; 1) a condition specifying which sets of histories may be assigned probabilities that are consistent with the rules of probability theory, and 2) a rule for those probabilities. The linear positivity condition of Goldstein and Page is the weakest of the general conditions proposed so far. Its general properties relating to exact probability sum rules, time-neutrality, and conservation laws are explored. Its inconsistency with the usual notion of independent subsystems in quantum mechanics is reviewed. Its relation to the stronger condition of medium decoherence necessary for classicality is discussed. The linear positivity of histories in a number of simple model systems is investigated with the aim of exhibiting linearly positive sets of histories that are not decoherent. The utility of extending the notion of probability to i...

  15. Ada Linear-Algebra Program

    Science.gov (United States)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  16. Linear immunoglobulin A bullous dermatosis.

    Science.gov (United States)

    Fortuna, Giulio; Marinkovich, M Peter

    2012-01-01

    Linear immunoglobulin A (IgA) bullous dermatosis, also known as linear IgA disease, is an autoimmune mucocutaneous disorder characterized by subepithelial bullae, with IgA autoantibodies directed against several different antigens in the basement membrane zone. Its immunopathologic characteristic resides in the presence of a continuous linear IgA deposit along the basement membrane zone, which is clearly visible on direct immunofluorescence. This disorder shows different clinical features and distribution when adult-onset of linear IgA disease is compared with childhood-onset. Diagnosis is achieved via clinical, histopathologic, and immunopathologic examinations. Two common therapies are dapsone and sulfapyridine, which reduce the inflammatory response and achieve disease remission in a variable period of time.

  17. CERN balances linear collider studies

    CERN Multimedia

    ILC Newsline

    2011-01-01

    The forces behind the two most mature proposals for a next-generation collider, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) study, have been steadily coming together, with scientists from both communities sharing ideas and information across the technology divide. In a support of cooperation between the two, CERN in Switzerland, where most CLIC research takes place, recently converted the project-specific position of CLIC Study Leader to the concept-based Linear Collider Study Leader.   The scientist who now holds this position, Steinar Stapnes, is charged with making the linear collider a viable option for CERN’s future, one that could include either CLIC or the ILC. The transition to more involve the ILC must be gradual, he said, and the redefinition of his post is a good start. Though not very much involved with superconducting radiofrequency (SRF) technology, where ILC researchers have made significant advances, CERN participates in many aspect...

  18. Efficient Searching with Linear Constraints

    DEFF Research Database (Denmark)

    Agarwal, Pankaj K.; Arge, Lars Allan; Erickson, Jeff

    2000-01-01

    We show how to preprocess a set S of points in d into an external memory data structure that efficiently supports linear-constraint queries. Each query is in the form of a linear constraint xd a0+∑d−1i=1 aixi; the data structure must report all the points of S that satisfy the constraint. This pr......We show how to preprocess a set S of points in d into an external memory data structure that efficiently supports linear-constraint queries. Each query is in the form of a linear constraint xd a0+∑d−1i=1 aixi; the data structure must report all the points of S that satisfy the constraint...

  19. BILINEAR FORMS AND LINEAR CODES

    Institute of Scientific and Technical Information of China (English)

    高莹

    2004-01-01

    Abraham Lempel et al[1] made a connection between linear codes and systems of bilinear forms over finite fields. In this correspondence, a new simple proof of a theorem in [1] is presented; in addition, the encoding process and the decoding procedure of RS codes are simplified via circulant matrices. Finally, the results show that the correspondence between bilinear forms and linear codes is not unique.

  20. Chaotic synchronization via linear controller

    Institute of Scientific and Technical Information of China (English)

    Chen Feng-Xiang; Zhang Wei-Dong

    2007-01-01

    A technical framework of constructing a linear controller for chaotic synchronization by utilizing the stability theory of cascade-connected system is presented. Based on the method developed in the paper, two simple and linear feedback controllers, as examples, are derived for the synchronization of Liu chaotic system and Duffing oscillator, respectively.This method is quite flexible in constructing a control law. Its effectiveness is also illustrated by the simulation results.

  1. Teaching Linear Algebra at University

    OpenAIRE

    Dorier, Jean-Luc

    1997-01-01

    Linear algebra represents, with calculus, the two main mathematical subjects taught in science universities. However this teaching has always been difficult. In the last two decades, it became an active area for research works in mathematics education in several countries. Our goal is to give a synthetic overview of the main results of these works focusing on the most recent developments. The main issues we will address concern: • the epistemological specificity of linear algebra and the inte...

  2. Linear isometries of Hardy spaces

    Institute of Scientific and Technical Information of China (English)

    Edoardo VESENTINI

    2008-01-01

    According to results established by DeLeeuw-Rudin-Wermer and by Forelli,all linear isometries of any Hardy space Hp (p ≥ 1,p ≠ 2) on the open unit disc △ of C are represented by weighted composition operators defined by inner functions on △.After reviewing (and completing when p = ∞) some of those results,the present report deals with a characterization of periodic and almost periodic semigroups of linear isometries of Hp.

  3. LINEAR AND NONLINEAR SEMIDEFINITE PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Walter Gómez Bofill

    2014-12-01

    Full Text Available This paper provides a short introduction to optimization problems with semidefinite constraints. Basic duality and optimality conditions are presented. For linear semidefinite programming some advances by dealing with degeneracy and the semidefinite facial reduction are discussed. Two relatively recent areas of application are presented. Finally a short overview of relevant literature on algorithmic approaches for efficiently solving linear and nonlinear semidefinite programming is provided.

  4. Some new ternary linear codes

    Directory of Open Access Journals (Sweden)

    Rumen Daskalov

    2017-07-01

    Full Text Available Let an $[n,k,d]_q$ code be a linear code of length $n$, dimension $k$ and minimum Hamming distance $d$ over $GF(q$. One of the most important problems in coding theory is to construct codes with optimal minimum distances. In this paper 22 new ternary linear codes are presented. Two of them are optimal. All new codes improve the respective lower bounds in [11].

  5. Explorative methods in linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2004-01-01

    The author has developed the H-method of mathematical modeling that builds up the model by parts, where each part is optimized with respect to prediction. Besides providing with better predictions than traditional methods, these methods provide with graphic procedures for analyzing different feat...... features in data. These graphic methods extend the well-known methods and results of Principal Component Analysis to any linear model. Here the graphic procedures are applied to linear regression and Ridge Regression....

  6. Explorative methods in linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2004-01-01

    The author has developed the H-method of mathematical modeling that builds up the model by parts, where each part is optimized with respect to prediction. Besides providing with better predictions than traditional methods, these methods provide with graphic procedures for analyzing different...... features in data. These graphic methods extend the well-known methods and results of Principal Component Analysis to any linear model. Here the graphic procedures are applied to linear regression and Ridge Regression....

  7. Properties of blocked linear systems.

    Science.gov (United States)

    Chen, Weitian; Anderson, Brian D O; Deistler, Manfred; Filler, Alexander

    2012-10-01

    This paper presents a systematic study on the properties of blocked linear systems that have resulted from blocking discrete-time linear time invariant systems. The main idea is to explore the relationship between the blocked and the unblocked systems. Existing results are reviewed and a number of important new results are derived. Focus is given particularly on the zero properties of the blocked system as no such study has been found in the literature.

  8. Polarized Electrons for Linear Colliders

    CERN Document Server

    Clendenin, J E; Garwin, E L; Kirby, R E; Luh, D A; Maruyama, T; Prescott, C Y; Sheppard, J C; Turner, J; Prepost, R

    2005-01-01

    Future electron-positron linear colliders require a highly polarized electron beam with a pulse structure that depends primarily on whether the acceleration utilizes warm or superconducting rf structures. The International Linear Collider (ILC) will use cold structures for the main linac. It is shown that a dc-biased polarized photoelectron source such as successfully used for the SLC can meet the charge requirements for the ILC micropulse with a polarization approaching 90%.

  9. Linear isotherm determination from linear gradient elution experiments.

    Science.gov (United States)

    Pfister, David; Steinebach, Fabian; Morbidelli, Massimo

    2015-01-02

    A procedure to estimate equilibrium adsorption parameters as a function of the modifier concentration in linear gradient elution chromatography is proposed and its reliability is investigated by comparison with experimental data. Over the past decades, analytical solutions of the so-called equilibrium model under linear gradient elution conditions were derived assuming that proteins and modifier molecules access the same fraction of the pore size distribution of the porous particles. The present approach developed in this work accounts for the size exclusion effect resulting in different exclusions for proteins and modifier. A new analytical solution was derived by applying perturbation theory for differential equations, and the 1st-order approximated solution is presented in this work. Eventually, a turnkey and reliable procedure to efficiently estimate isotherm parameters as a function of modifier concentration from linear gradient elution experiments is proposed.

  10. Linear and non-linear bias: predictions vs. measurements

    CERN Document Server

    Hoffmann, Kai; Gaztanaga, Enrique

    2016-01-01

    We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Accociating galaxies with dark matter haloes in the MICE Grand Challenge N-body simulation we directly measure the bias parameters by comparing the smoothed density fluctuations of halos and matter in the same region at different positions as a function of smoothing scale. Alternatively we measure the bias parameters by matching the probablility distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous articles using the same data. We find an overall variation of the linear bias measurements and predictions of $\\sim 5 \\%$ with respect to results from two-point corr...

  11. A nanoscale linear-to-linear motion converter of graphene.

    Science.gov (United States)

    Dai, Chunchun; Guo, Zhengrong; Zhang, Hongwei; Chang, Tienchong

    2016-08-14

    Motion conversion plays an irreplaceable role in a variety of machinery. Although many macroscopic motion converters have been widely used, it remains a challenge to convert motion at the nanoscale. Here we propose a nanoscale linear-to-linear motion converter, made of a flake-substrate system of graphene, which can convert the out-of-plane motion of the substrate into the in-plane motion of the flake. The curvature gradient induced van der Waals potential gradient between the flake and the substrate provides the driving force to achieve motion conversion. The proposed motion converter may have general implications for the design of nanomachinery and nanosensors.

  12. Linear and non-linear perturbations in dark energy models

    CERN Document Server

    Escamilla-Rivera, Celia; Fabris, Julio C; Alcaniz, Jailson S

    2016-01-01

    In this work we discuss observational aspects of three time-dependent parameterisations of the dark energy equation of state $w(z)$. In order to determine the dynamics associated with these models, we calculate their background evolution and perturbations in a scalar field representation. After performing a complete treatment of linear perturbations, we also show that the non-linear contribution of the selected $w(z)$ parameterisations to the matter power spectra is almost the same for all scales, with no significant difference from the predictions of the standard $\\Lambda$CDM model.

  13. Linear Programming建模研讨%Modeling of Linear Programming

    Institute of Scientific and Technical Information of China (English)

    宋占奎; 於全收; 范光; 燕嬿; 胡杰军

    2007-01-01

    研究用图解法、simplexmethod和匈牙利法建立Linear Programming的数学模型并求得了最优解.结果表明:对仅有两个变量的Linear Programming,既可通过图解法求得最优解;也可用单纯形表简便地求得最优解;而对任务和人数不等的assignment problem,则用匈牙利法求最优解.

  14. Linear Minimum variance estimation fusion

    Institute of Scientific and Technical Information of China (English)

    ZHU Yunmin; LI Xianrong; ZHAO Juan

    2004-01-01

    This paper shows that a general mulitisensor unbiased linearly weighted estimation fusion essentially is the linear minimum variance (LMV) estimation with linear equality constraint, and the general estimation fusion formula is developed by extending the Gauss-Markov estimation to the random paramem of distributed estimation fusion in the LMV setting.In this setting ,the fused estimator is a weighted sum of local estimatess with a matrix quadratic optimization problem subject to a convex linear equality constraint. Second, we present a unique solution to the above optimization problem, which depends only on the covariance matrixCK. Third, if a priori information, the expectation and covariance, of the estimated quantity is unknown, a necessary and sufficient condition for the above LMV fusion becoming the best unbiased LMV estimation with dnown prior information as the above is presented. We also discuss the generality and usefulness of the LMV fusion formulas developed. Finally, we provied and off-line recursion of Ck for a class of multisensor linear systems with coupled measurement noises.

  15. The Linear-Non-Linear Frontier for the Goldstone Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Gavela, M. B. [Madrid, IFT; Kanshin, K. [Padua U.; Machado, P. A.N. [Madrid, IFT; Saa, S. [Madrid, IFT

    2016-10-25

    The minimal $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $\\sigma$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators.

  16. Uniqueness theorems in linear elasticity

    CERN Document Server

    Knops, Robin John

    1971-01-01

    The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...

  17. Linear methods in band theory

    DEFF Research Database (Denmark)

    Andersen, O. Krogh

    1975-01-01

    and they specify the boundary conditions on a single MT or atomic sphere in the most convenient way. This method is very well suited for self-consistent calculations. The empty-lattice test is applied to the linear-MTO method and the free-electron energy bands are accurately reproduced. Finally, it is shown how......Two approximate methods for solving the band-structure problem in an efficient and physically transparent way are presented and discussed in detail. The variational principle for the one-electron Hamiltonian is used in both schemes, and the trial functions are linear combinations of energy......-independent augmented plane waves (APW) and muffin-tin orbitals (MTO), respectively. The secular equations are therefore eigenvalue equations, linear in energy. The trial functions are defined with respect to a muffin-tin (MT) potential and the energy bands depend on the potential in the spheres through potential...

  18. Topics in quaternion linear algebra

    CERN Document Server

    Rodman, Leiba

    2014-01-01

    Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses...

  19. Linear Tabling Strategies and Optimizations

    CERN Document Server

    Zhou, Neng-Fa; Shen, Yi-Dong

    2007-01-01

    Recently, the iterative approach named linear tabling has received considerable attention because of its simplicity, ease of implementation, and good space efficiency. Linear tabling is a framework from which different methods can be derived based on the strategies used in handling looping subgoals. One decision concerns when answers are consumed and returned. This paper describes two strategies, namely, {\\it lazy} and {\\it eager} strategies, and compares them both qualitatively and quantitatively. The results indicate that, while the lazy strategy has good locality and is well suited for finding all solutions, the eager strategy is comparable in speed with the lazy strategy and is well suited for programs with cuts. Linear tabling relies on depth-first iterative deepening rather than suspension to compute fixpoints. Each cluster of inter-dependent subgoals as represented by a top-most looping subgoal is iteratively evaluated until no subgoal in it can produce any new answers. Naive re-evaluation of all loopi...

  20. Sparse Linear Identifiable Multivariate Modeling

    DEFF Research Database (Denmark)

    Henao, Ricardo; Winther, Ole

    2011-01-01

    In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...... Bayesian hierarchy for sparse models using slab and spike priors (two-component δ-function and continuous mixtures), non-Gaussian latent factors and a stochastic search over the ordering of the variables. The framework, which we call SLIM (Sparse Linear Identifiable Multivariate modeling), is validated...... and bench-marked on artificial and real biological data sets. SLIM is closest in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian network structure learning and model comparison. Experimentally, SLIM performs equally well or better than LiNGAM with comparable...

  1. Linear spaces with few lines

    CERN Document Server

    Metsch, Klaus

    1991-01-01

    A famous theorem in the theory of linear spaces states that every finite linear space has at least as many lines as points. This result of De Bruijn and Erd|s led to the conjecture that every linear space with "few lines" canbe obtained from a projective plane by changing only a small part of itsstructure. Many results related to this conjecture have been proved in the last twenty years. This monograph surveys the subject and presents several new results, such as the recent proof of the Dowling-Wilsonconjecture. Typical methods used in combinatorics are developed so that the text can be understood without too much background. Thus the book will be of interest to anybody doing combinatorics and can also help other readers to learn the techniques used in this particular field.

  2. Linear programming foundations and extensions

    CERN Document Server

    Vanderbei, Robert J

    2001-01-01

    Linear Programming: Foundations and Extensions is an introduction to the field of optimization. The book emphasizes constrained optimization, beginning with a substantial treatment of linear programming, and proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. The book is carefully written. Specific examples and concrete algorithms precede more abstract topics. Topics are clearly developed with a large number of numerical examples worked out in detail. Moreover, Linear Programming: Foundations and Extensions underscores the purpose of optimization: to solve practical problems on a computer. Accordingly, the book is coordinated with free efficient C programs that implement the major algorithms studied: -The two-phase simplex method; -The primal-dual simplex method; -The path-following interior-point method; -The homogeneous self-dual methods. In addition, there are online JAVA applets that illustrate various pivot rules and variants of the simplex m...

  3. Scalar-tensor linear inflation

    CERN Document Server

    Artymowski, Michal

    2016-01-01

    We investigate two approaches to non minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for any form of the non-minimal coupling to gravity of the form of $f(\\varphi)R/2$; b) the particle physics approach, where we motivate the form of the Jordan frame potential by the loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced inflation, but instead of the Starobinsky attractor they lead to the linear inflation in the strong coupling limit.

  4. Scalar-tensor linear inflation

    Science.gov (United States)

    Artymowski, Michał; Racioppi, Antonio

    2017-04-01

    We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f(varphi)R/2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead to linear inflation in the strong coupling limit.

  5. Quantization via Linear homotopy types

    CERN Document Server

    Schreiber, Urs

    2014-01-01

    In the foundational logical framework of homotopy-type theory we discuss a natural formalization of secondary integral transforms in stable geometric homotopy theory. We observe that this yields a process of non-perturbative cohomological quantization of local pre-quantum field theory; and show that quantum anomaly cancellation amounts to realizing this as the boundary of a field theory that is given by genuine (primary) integral transforms, hence by linear polynomial functors. Recalling that traditional linear logic has semantics in symmetric monoidal categories and serves to formalize quantum mechanics, what we consider is its refinement to linear homotopy-type theory with semantics in stable infinity-categories of bundles of stable homotopy types (generalized cohomology theories) formalizing Lagrangian quantum field theory, following Nuiten and closely related to recent work by Haugseng and Hopkins-Lurie. For the reader interested in technical problems of quantization we provide non-perturbative quantizati...

  6. Linearization: Geometric, Complex, and Conditional

    Directory of Open Access Journals (Sweden)

    Asghar Qadir

    2012-01-01

    Full Text Available Lie symmetry analysis provides a systematic method of obtaining exact solutions of nonlinear (systems of differential equations, whether partial or ordinary. Of special interest is the procedure that Lie developed to transform scalar nonlinear second-order ordinary differential equations to linear form. Not much work was done in this direction to start with, but recently there have been various developments. Here, first the original work of Lie (and the early developments on it, and then more recent developments based on geometry and complex analysis, apart from Lie’s own method of algebra (namely, Lie group theory, are reviewed. It is relevant to mention that much of the work is not linearization but uses the base of linearization.

  7. The linear multiplet and ectoplasm

    CERN Document Server

    Butter, Daniel; Novak, Joseph

    2012-01-01

    In the framework of the superconformal tensor calculus for 4D N=2 supergravity, locally supersymmetric actions are often constructed using the linear multiplet. We provide a superform formulation for the linear multiplet and derive the corresponding action functional using the ectoplasm method (also known as the superform approach to the construction of supersymmetric invariants). We propose a new locally supersymmetric action which makes use of a deformed linear multiplet. The novel feature of this multiplet is that it corresponds to the case of a gauged central charge using a one-form potential not annihilated by the central charge (unlike the standard N=2 vector multiplet). Such a gauge one-form can be chosen to describe a variant nonlinear vector-tensor multiplet. As a byproduct of our construction, we also find a variant realization of the tensor multiplet in supergravity where one of the auxiliaries is replaced by the field strength of a gauge three-form.

  8. Window observers for linear systems

    Directory of Open Access Journals (Sweden)

    Utkin Vadim

    2000-01-01

    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  9. Accelerating structure with linear excitation

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J.; Srinivasan-Rao, T.

    1988-03-01

    The switched power linac (SPL) structures require a ring-shaped laser beam pulse of uniform intensity to avoid transverse field components of the accelerating field at the center. In order to also utilize the reflection of the outgoing EM wave, the switching element has to be very close to the outer edge of the structure to ensure nearly synchronous superposition at the beam hole with the original inward going wave. It is sometimes easier to produce linear (flat) laser beams, e.g., from powerful excimer lasers which have beams of rectangular cross section. Such flat beams could be used to excite linear photocathode switches or be used to produce flat electron beam pulses in electron sources. In this paper, an accelerator structure is proposed which may be considered a variant of the SPL disk structure, but could be used with linear beams. The structure utilizes a double parabolic horn. 8 refs., 9 figs.

  10. Bayes linear statistics, theory & methods

    CERN Document Server

    Goldstein, Michael

    2007-01-01

    Bayesian methods combine information available from data with any prior information available from expert knowledge. The Bayes linear approach follows this path, offering a quantitative structure for expressing beliefs, and systematic methods for adjusting these beliefs, given observational data. The methodology differs from the full Bayesian methodology in that it establishes simpler approaches to belief specification and analysis based around expectation judgements. Bayes Linear Statistics presents an authoritative account of this approach, explaining the foundations, theory, methodology, and practicalities of this important field. The text provides a thorough coverage of Bayes linear analysis, from the development of the basic language to the collection of algebraic results needed for efficient implementation, with detailed practical examples. The book covers:The importance of partial prior specifications for complex problems where it is difficult to supply a meaningful full prior probability specification...

  11. Inferential Models for Linear Regression

    Directory of Open Access Journals (Sweden)

    Zuoyi Zhang

    2011-09-01

    Full Text Available Linear regression is arguably one of the most widely used statistical methods in applications.  However, important problems, especially variable selection, remain a challenge for classical modes of inference.  This paper develops a recently proposed framework of inferential models (IMs in the linear regression context.  In general, an IM is able to produce meaningful probabilistic summaries of the statistical evidence for and against assertions about the unknown parameter of interest and, moreover, these summaries are shown to be properly calibrated in a frequentist sense.  Here we demonstrate, using simple examples, that the IM framework is promising for linear regression analysis --- including model checking, variable selection, and prediction --- and for uncertain inference in general.

  12. Permafrost Hazards and Linear Infrastructure

    Science.gov (United States)

    Stanilovskaya, Julia; Sergeev, Dmitry

    2014-05-01

    The international experience of linear infrastructure planning, construction and exploitation in permafrost zone is being directly tied to the permafrost hazard assessment. That procedure should also consider the factors of climate impact and infrastructure protection. The current global climate change hotspots are currently polar and mountain areas. Temperature rise, precipitation and land ice conditions change, early springs occur more often. The big linear infrastructure objects cross the territories with different permafrost conditions which are sensitive to the changes in air temperature, hydrology, and snow accumulation which are connected to climatic dynamics. One of the most extensive linear structures built on permafrost worldwide are Trans Alaskan Pipeline (USA), Alaska Highway (Canada), Qinghai-Xizang Railway (China) and Eastern Siberia - Pacific Ocean Oil Pipeline (Russia). Those are currently being influenced by the regional climate change and permafrost impact which may act differently from place to place. Thermokarst is deemed to be the most dangerous process for linear engineering structures. Its formation and development depend on the linear structure type: road or pipeline, elevated or buried one. Zonal climate and geocryological conditions are also of the determining importance here. All the projects are of the different age and some of them were implemented under different climatic conditions. The effects of permafrost thawing have been recorded every year since then. The exploration and transportation companies from different countries maintain the linear infrastructure from permafrost degradation in different ways. The highways in Alaska are in a good condition due to governmental expenses on annual reconstructions. The Chara-China Railroad in Russia is under non-standard condition due to intensive permafrost response. Standards for engineering and construction should be reviewed and updated to account for permafrost hazards caused by the

  13. Preconditioned quantum linear system algorithm.

    Science.gov (United States)

    Clader, B D; Jacobs, B C; Sprouse, C R

    2013-06-21

    We describe a quantum algorithm that generalizes the quantum linear system algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] to arbitrary problem specifications. We develop a state preparation routine that can initialize generic states, show how simple ancilla measurements can be used to calculate many quantities of interest, and integrate a quantum-compatible preconditioner that greatly expands the number of problems that can achieve exponential speedup over classical linear systems solvers. To demonstrate the algorithm's applicability, we show how it can be used to compute the electromagnetic scattering cross section of an arbitrary target exponentially faster than the best classical algorithm.

  14. Passive longitudinal phase space linearizer

    Directory of Open Access Journals (Sweden)

    P. Craievich

    2010-03-01

    Full Text Available We report on the possibility to passively linearize the bunch compression process in electron linacs for the next generation x-ray free electron lasers. This can be done by using the monopole wakefields in a dielectric-lined waveguide. The optimum longitudinal voltage loss over the length of the bunch is calculated in order to compensate both the second-order rf time curvature and the second-order momentum compaction terms. Thus, the longitudinal phase space after the compression process is linearized up to a fourth-order term introduced by the convolution between the bunch and the monopole wake function.

  15. Generalized, Linear, and Mixed Models

    CERN Document Server

    McCulloch, Charles E; Neuhaus, John M

    2011-01-01

    An accessible and self-contained introduction to statistical models-now in a modernized new editionGeneralized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed m

  16. Smoothing of Piecewise Linear Paths

    Directory of Open Access Journals (Sweden)

    Michel Waringo

    2008-11-01

    Full Text Available We present an anytime-capable fast deterministic greedy algorithm for smoothing piecewise linear paths consisting of connected linear segments. With this method, path points with only a small influence on path geometry (i.e. aligned or nearly aligned points are successively removed. Due to the removal of less important path points, the computational and memory requirements of the paths are reduced and traversing the path is accelerated. Our algorithm can be used in many different applications, e.g. sweeping, path finding, programming-by-demonstration in a virtual environment, or 6D CNC milling. The algorithm handles points with positional and orientational coordinates of arbitrary dimension.

  17. Linear contextual modal type theory

    DEFF Research Database (Denmark)

    Schack-Nielsen, Anders; Schürmann, Carsten

    Abstract. When one implements a logical framework based on linear type theory, for example the Celf system [?], one is immediately con- fronted with questions about their equational theory and how to deal with logic variables. In this paper, we propose linear contextual modal type theory that giv...... a mathematical account of the nature of logic variables. Our type theory is conservative over intuitionistic contextual modal type theory proposed by Nanevski, Pfenning, and Pientka. Our main contributions include a mechanically checked proof of soundness and a working implementation....

  18. Linear feedback controls the essentials

    CERN Document Server

    Haidekker, Mark A

    2013-01-01

    The design of control systems is at the very core of engineering. Feedback controls are ubiquitous, ranging from simple room thermostats to airplane engine control. Helping to make sense of this wide-ranging field, this book provides a new approach by keeping a tight focus on the essentials with a limited, yet consistent set of examples. Analysis and design methods are explained in terms of theory and practice. The book covers classical, linear feedback controls, and linear approximations are used when needed. In parallel, the book covers time-discrete (digital) control systems and juxtapos

  19. Linear isometries of Hardy spaces

    Institute of Scientific and Technical Information of China (English)

    Edoardo; VESENTINI

    2008-01-01

    According to results established by DeLeeuw-Rudin-Wermer and by Forelli,all linear isometries of any Hardy space H~p(p≥1,p≠2)on the open unit discΔof C are represented by weighted composition operators defined by inner functions onΔ.After reviewing(and completing when p=∞)some of those results,the present report deals with a characterization of periodic and almost periodic semigroups of linear isometries of H~p.

  20. Basic linear partial differential equations

    CERN Document Server

    Treves, Francois

    2006-01-01

    Focusing on the archetypes of linear partial differential equations, this text for upper-level undergraduates and graduate students features most of the basic classical results. The methods, however, are decidedly nontraditional: in practically every instance, they tend toward a high level of abstraction. This approach recalls classical material to contemporary analysts in a language they can understand, as well as exploiting the field's wealth of examples as an introduction to modern theories.The four-part treatment covers the basic examples of linear partial differential equations and their

  1. Introduction to computational linear algebra

    CERN Document Server

    Nassif, Nabil; Erhel, Jocelyne

    2015-01-01

    Introduction to Computational Linear Algebra introduces the reader with a background in basic mathematics and computer programming to the fundamentals of dense and sparse matrix computations with illustrating examples. The textbook is a synthesis of conceptual and practical topics in ""Matrix Computations."" The book's learning outcomes are twofold: to understand state-of-the-art computational tools to solve matrix computations problems (BLAS primitives, MATLAB® programming) as well as essential mathematical concepts needed to master the topics of numerical linear algebra. It is suitable for s

  2. Correct Linearization of Einstein's Equations

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-06-01

    Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.

  3. Linear evolution of sandwave packets

    NARCIS (Netherlands)

    Roos, Pieter C.; Blondeaux, P.; Hulscher, Suzanne J.M.H.; Vittori, G.

    2005-01-01

    We investigate how a local topographic disturbance of a flat seabed may become morphodynamically active, according to the linear instability mechanism which gives rise to sandwave formation. The seabed evolution follows from a Fourier integral, which can generally not be evaluated in closed form. As

  4. Non-linear canonical correlation

    NARCIS (Netherlands)

    van der Burg, Eeke; de Leeuw, Jan

    1983-01-01

    Non-linear canonical correlation analysis is a method for canonical correlation analysis with optimal scaling features. The method fits many kinds of discrete data. The different parameters are solved for in an alternating least squares way and the corresponding program is called CANALS. An

  5. Decomposable log-linear models

    DEFF Research Database (Denmark)

    Eriksen, Poul Svante

    can be characterized by a structured set of conditional independencies between some variables given some other variables. We term the new model class decomposable log-linear models, which is illustrated to be a much richer class than decomposable graphical models.It covers a wide range of non...

  6. Quantum Computing: Linear Optics Implementations

    CERN Document Server

    Sundsøy, Pål

    2016-01-01

    One of the main problems that optical quantum computing has to overcome is the efficient construction of two-photon gates. Theoretically these gates can be realized using Kerr-nonlinearities, but the techniques involved are experimentally very difficult. We therefore employ linear optics with projective measurements to generate these non-linearities. The downside is that the measurement-induced nonlinearities achieved with linear optics are less versatile and the success rate can be quite low. This project is mainly the result of a literature study but also a theoretical work on the physics behind quantum optical multiports which is essential for realizing two-photon gates. By applying different postcorrection techniques we increase the probability of success in a modifed non-linear sign shift gate which is foundational for the two photon controlled-NOT gate. We prove that it's not possible to correct the states by only using a single beam splitter. We show that it might be possible to increase the probabilit...

  7. Parameterized Linear Longitudinal Airship Model

    Science.gov (United States)

    Kulczycki, Eric; Elfes, Alberto; Bayard, David; Quadrelli, Marco; Johnson, Joseph

    2010-01-01

    A parameterized linear mathematical model of the longitudinal dynamics of an airship is undergoing development. This model is intended to be used in designing control systems for future airships that would operate in the atmospheres of Earth and remote planets. Heretofore, the development of linearized models of the longitudinal dynamics of airships has been costly in that it has been necessary to perform extensive flight testing and to use system-identification techniques to construct models that fit the flight-test data. The present model is a generic one that can be relatively easily specialized to approximate the dynamics of specific airships at specific operating points, without need for further system identification, and with significantly less flight testing. The approach taken in the present development is to merge the linearized dynamical equations of an airship with techniques for estimation of aircraft stability derivatives, and to thereby make it possible to construct a linearized dynamical model of the longitudinal dynamics of a specific airship from geometric and aerodynamic data pertaining to that airship. (It is also planned to develop a model of the lateral dynamics by use of the same methods.) All of the aerodynamic data needed to construct the model of a specific airship can be obtained from wind-tunnel testing and computational fluid dynamics

  8. Linear accelerators of the future

    Energy Technology Data Exchange (ETDEWEB)

    Loew, G.A.

    1986-07-01

    Some of the requirements imposed on future linear accelerators to be used in electron-positron colliders are reviewed, as well as some approaches presently being examined for meeting those requirements. RF sources for use in these linacs are described, as well as wakefields, single bunches, and multiple-bunch trains. (LEW)

  9. Diversity of MIMO Linear Precoding

    CERN Document Server

    Mehana, Ahmed Hesham

    2012-01-01

    Linear precoding is a relatively simple method of MIMO signaling that can also be optimal in certain special cases. This paper is dedicated to high-SNR analysis of MIMO linear precoding. The Diversity-Multiplexing Tradeoff (DMT) of a number of linear precoders is analyzed. Furthermore, since the diversity at finite rate (also known as the fixed-rate regime, corresponding to multiplexing gain of zero) does not always follow from the DMT, linear precoders are also analyzed for their diversity at fixed rates. In several cases, the diversity at multiplexing gain of zero is found not to be unique, but rather to depend on spectral efficiency. The analysis includes the zero-forcing (ZF), regularized ZF, matched filtering and Wiener filtering precoders. We calculate the DMT of ZF precoding under two common design approaches, namely maximizing the throughput and minimizing the transmit power. It is shown that regularized ZF (RZF) or Matched filter (MF) suffer from error floors for all positive multiplexing gains. Howe...

  10. Linearized theory of peridynamic states.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew

    2009-04-01

    A state-based peridynamic material model describes internal forces acting on a point in terms of the collective deformation of all the material within a neighborhood of the point. In this paper, the response of a state-based peridynamic material is investigated for a small deformation superposed on a large deformation. The appropriate notion of a small deformation restricts the relative displacement between points, but it does not involve the deformation gradient (which would be undefined on a crack). The material properties that govern the linearized material response are expressed in terms of a new quantity called the modulus state. This determines the force in each bond resulting from an incremental deformation of itself or of other bonds. Conditions are derived for a linearized material model to be elastic, objective, and to satisfy balance of angular momentum. If the material is elastic, then the modulus state is obtainable from the second Frechet derivative of the strain energy density function. The equation of equilibrium with a linearized material model is a linear Fredholm integral equation of the second kind. An analogue of Poincare's theorem is proved that applies to the infinite dimensional space of all peridynamic vector states, providing a condition similar to irrotationality in vector calculus.

  11. Data Compression with Linear Algebra

    OpenAIRE

    Etler, David

    2015-01-01

    A presentation on the applications of linear algebra to image compression. Covers entropy, the discrete cosine transform, thresholding, quantization, and examples of images compressed with DCT. Given in Spring 2015 at Ocean County College as part of the honors program.

  12. Linear Systems on Tropical Curves

    CERN Document Server

    Haase, Christian; Yu, Josephine

    2009-01-01

    A tropical curve \\Gamma is a metric graph with possibly unbounded edges, and tropical rational functions are continuous piecewise linear functions with integer slopes. We define the complete linear system |D| of a divisor D on a tropical curve \\Gamma analogously to the classical counterpart. We investigate the structure of |D| as a cell complex and show that linear systems are quotients of tropical modules, finitely generated by vertices of the cell complex. Using a finite set of generators, |D| defines a map from \\Gamma to a tropical projective space, and the image can be extended to a tropical curve of degree equal to \\deg(D). The tropical convex hull of the image realizes the linear system |D| as a polyhedral complex. We show that curves for which the canonical divisor is not very ample are hyperelliptic. We also show that the Picard group of a \\Q-tropical curve is a direct limit of critical groups of finite graphs converging to the curve.

  13. Linear electric field mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McComas, D.J.; Nordholt, J.E.

    1991-03-29

    A mass spectrometer is described having a low weight and low power requirement, for use in space. It can be used to analyze the ionized particles in the region of the spacecraft on which it is mounted. High mass resolution measurements are made by timing ions moving through a gridless cylindrically sysmetric linear electric field.

  14. Directivity of basic linear arrays

    DEFF Research Database (Denmark)

    Bach, Henning

    1970-01-01

    For a linear uniform array ofnelements, an expression is derived for the directivity as a function of the spacing and the phase constants. The cases of isotropic elements, collinear short dipoles, and parallel short dipoles are included. The formula obtained is discussed in some detail and contour...

  15. Linearized theory of peridynamic states.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew

    2009-04-01

    A state-based peridynamic material model describes internal forces acting on a point in terms of the collective deformation of all the material within a neighborhood of the point. In this paper, the response of a state-based peridynamic material is investigated for a small deformation superposed on a large deformation. The appropriate notion of a small deformation restricts the relative displacement between points, but it does not involve the deformation gradient (which would be undefined on a crack). The material properties that govern the linearized material response are expressed in terms of a new quantity called the modulus state. This determines the force in each bond resulting from an incremental deformation of itself or of other bonds. Conditions are derived for a linearized material model to be elastic, objective, and to satisfy balance of angular momentum. If the material is elastic, then the modulus state is obtainable from the second Frechet derivative of the strain energy density function. The equation of equilibrium with a linearized material model is a linear Fredholm integral equation of the second kind. An analogue of Poincare's theorem is proved that applies to the infinite dimensional space of all peridynamic vector states, providing a condition similar to irrotationality in vector calculus.

  16. Linear or Exponential Number Lines

    Science.gov (United States)

    Stafford, Pat

    2011-01-01

    Having decided to spend some time looking at one's understanding of numbers, the author was inspired by "Alex's Adventures in Numberland," by Alex Bellos to look at one's innate appreciation of number. Bellos quotes research studies suggesting that an individual's natural appreciation of numbers is more likely to be exponential rather than linear,…

  17. Linear evolution of sandwave packets

    NARCIS (Netherlands)

    Roos, P.C.; Blondeaux, P.; Hulscher, S.J.M.H.; Vittori, G.

    2005-01-01

    We investigate how a local topographic disturbance of a flat seabed may become morphodynamically active, according to the linear instability mechanism which gives rise to sandwave formation. The seabed evolution follows from a Fourier integral, which can generally not be evaluated in closed form. As

  18. Quantized, piecewise linear filter network

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    1993-01-01

    A quantization based piecewise linear filter network is defined. A method for the training of this network based on local approximation in the input space is devised. The training is carried out by repeatedly alternating between vector quantization of the training set into quantization classes an...

  19. Inequality constrained normal linear models

    NARCIS (Netherlands)

    Klugkist, I.G.

    2005-01-01

    This dissertation deals with normal linear models with inequality constraints among model parameters. It consists of an introduction and four chapters that are papers submitted for publication. The first chapter introduces the use of inequality constraints. Scientists often have one or more theories

  20. Dietary arginine and linear growth

    DEFF Research Database (Denmark)

    van Vught, Anneke J A H; Dagnelie, Pieter C; Arts, Ilja C W

    2013-01-01

    The amino acid arginine is a well-known growth hormone (GH) stimulator and GH is an important modulator of linear growth. The aim of the present study was to investigate the effect of dietary arginine on growth velocity in children between 7 and 13 years of age. Data from the Copenhagen School...

  1. Linear and non-linear bias: predictions versus measurements

    Science.gov (United States)

    Hoffmann, K.; Bel, J.; Gaztañaga, E.

    2017-02-01

    We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Associating galaxies with dark matter haloes in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge N-body simulation, we directly measure the bias parameters by comparing the smoothed density fluctuations of haloes and matter in the same region at different positions as a function of smoothing scale. Alternatively, we measure the bias parameters by matching the probability distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous papers using the same data. We find an overall variation of the linear bias measurements and predictions of ˜5 per cent with respect to results from two-point correlations for different halo samples with masses between ˜1012and1015 h-1 M⊙ at the redshifts z = 0.0 and 0.5. Variations between the second- and third-order bias parameters from the different methods show larger variations, but with consistent trends in mass and redshift. The various bias measurements reveal a tight relation between the linear and the quadratic bias parameters, which is consistent with results from the literature based on simulations with different cosmologies. Such a universal relation might improve constraints on cosmological models, derived from second-order clustering statistics at small scales or higher order clustering statistics.

  2. Non-linear index coding outperforming the linear optimum

    CERN Document Server

    Lubetzky, Eyal

    2008-01-01

    The following source coding problem was introduced by Birk and Kol: a sender holds a word $x\\in\\{0,1\\}^n$, and wishes to broadcast a codeword to $n$ receivers, $R_1,...,R_n$. The receiver $R_i$ is interested in $x_i$, and has prior \\emph{side information} comprising some subset of the $n$ bits. This corresponds to a directed graph $G$ on $n$ vertices, where $i j$ is an edge iff $R_i$ knows the bit $x_j$. An \\emph{index code} for $G$ is an encoding scheme which enables each $R_i$ to always reconstruct $x_i$, given his side information. The minimal word length of an index code was studied by Bar-Yossef, Birk, Jayram and Kol (FOCS 2006). They introduced a graph parameter, $\\minrk_2(G)$, which completely characterizes the length of an optimal \\emph{linear} index code for $G$. The authors of BBJK showed that in various cases linear codes attain the optimal word length, and conjectured that linear index coding is in fact \\emph{always} optimal. In this work, we disprove the main conjecture of BBJK in the following s...

  3. Computational linear and commutative algebra

    CERN Document Server

    Kreuzer, Martin

    2016-01-01

    This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...

  4. Challenges in future linear colliders

    CERN Document Server

    Chattopadhyay, S

    2002-01-01

    For decades, electron-positron colliders have been complementing proton-proton colliders. But the circular LEP, the largest e/sup -/e /sup +/ collider, represented an energy limit beyond which energy losses to synchrotron radiation necessitate moving to e/sup -/e/sup + / linear colliders (LCs), thereby raising new challenges for accelerator builders. Japanese-American, German, and European collaborations have presented options for the "Future Linear Collider " (FLC). Key accelerator issues for any FLC option are the achievement of high enough energy and luminosity. Damping rings, taking advantage of the phenomenon of synchrotron radiation, have been developed as the means for decreasing beam size, which is crucial for ensuring a sufficiently high rate of particle-particle collisions. Related challenges are alignment and stability in an environment where even minute ground motion can disrupt performance, and the ability to monitor beam size. The technical challenges exist within a wider context of socioeconomi...

  5. Linear inflation from quartic potential

    Science.gov (United States)

    Kannike, Kristjan; Racioppi, Antonio; Raidal, Martti

    2016-01-01

    We show that if the inflaton has a non-minimal coupling to gravity and the Planck scale is dynamically generated, the results of Coleman-Weinberg inflation are confined in between two attractor solutions: quadratic inflation, which is ruled out by the recent measurements, and linear inflation which, instead, is in the experimental allowed region. The minimal scenario has only one free parameter — the inflaton's non-minimal coupling to gravity — that determines all physical parameters such as the tensor-to-scalar ratio and the reheating temperature of the Universe. Should the more precise future measurements of inflationary parameters point towards linear inflation, further interest in scale-invariant scenarios would be motivated.

  6. Correct Linearization of Einstein's Equations

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-04-01

    Full Text Available Routinely, Einstein’s equations are be reduced to a wave form (linearly independent of the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel’s symbols. As shown herein, the origin of the problem is the use of the general covariant theory of measurement. Herein the wave form of Einstein’s equations is obtained in terms of Zelmanov’s chronometric invariants (physically observable projections on the observer’s time line and spatial section. The equations so obtained depend solely upon the second derivatives, even for gravitation, the space rotation and Christoffel’s symbols. The correct linearization proves that the Einstein equations are completely compatible with weak waves of the metric.

  7. Linear regression in astronomy. II

    Science.gov (United States)

    Feigelson, Eric D.; Babu, Gutti J.

    1992-01-01

    A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.

  8. Multivariate covariance generalized linear models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Jørgensen, Bent

    2016-01-01

    We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...... are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions...

  9. Linear accelerator for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-..mu..A source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-..mu..A beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-..mu..A beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons.

  10. Squares of Random Linear Codes

    DEFF Research Database (Denmark)

    Cascudo Pueyo, Ignacio; Cramer, Ronald; Mirandola, Diego

    2015-01-01

    a positive answer, for codes of dimension $k$ and length roughly $\\frac{1}{2}k^2$ or smaller. Moreover, the convergence speed is exponential if the difference $k(k+1)/2-n$ is at least linear in $k$. The proof uses random coding and combinatorial arguments, together with algebraic tools involving the precise......Given a linear code $C$, one can define the $d$-th power of $C$ as the span of all componentwise products of $d$ elements of $C$. A power of $C$ may quickly fill the whole space. Our purpose is to answer the following question: does the square of a code ``typically'' fill the whole space? We give...

  11. Bayes linear covariance matrix adjustment

    CERN Document Server

    Wilkinson, Darren J

    1995-01-01

    In this thesis, a Bayes linear methodology for the adjustment of covariance matrices is presented and discussed. A geometric framework for quantifying uncertainties about covariance matrices is set up, and an inner-product for spaces of random matrices is motivated and constructed. The inner-product on this space captures aspects of our beliefs about the relationship between covariance matrices of interest to us, providing a structure rich enough for us to adjust beliefs about unknown matrices in the light of data such as sample covariance matrices, exploiting second-order exchangeability and related specifications to obtain representations allowing analysis. Adjustment is associated with orthogonal projection, and illustrated with examples of adjustments for some common problems. The problem of adjusting the covariance matrices underlying exchangeable random vectors is tackled and discussed. Learning about the covariance matrices associated with multivariate time series dynamic linear models is shown to be a...

  12. Logistic systems with linear feedback

    Science.gov (United States)

    Son, Leonid; Shulgin, Dmitry; Ogluzdina, Olga

    2016-08-01

    A wide variety of systems may be described by specific dependence, which is known as logistic curve, or S-curve, between the internal characteristic and the external parameter. Linear feedback between these two values may be suggested for a wide set of systems also. In present paper, we suggest a bifurcation behavior for systems with both features, and discuss it for two cases, which are the Ising magnet in external field, and the development of manufacturing enterprise.

  13. Linearized supergravity from Matrix theory

    CERN Document Server

    Kabat, D; Kabat, Daniel; Taylor, Washington

    1998-01-01

    We show that the linearized supergravity potential between two objects arising from the exchange of quanta with zero longitudinal momentum is reproduced to all orders in 1/r by terms in the one-loop Matrix theory potential. The essential ingredient in the proof is the identification of the Matrix theory quantities corresponding to moments of the stress tensor and membrane current. We also point out that finite-N Matrix theory violates the Equivalence Principle.

  14. Linear morphea with secondary mucinosis

    Directory of Open Access Journals (Sweden)

    Khandpur Sujay

    2009-01-01

    Full Text Available Secondary mucin deposition in the skin is a common feature of lupus erythematosus and dermatomyositis. In scleroderma, it occurs uncommonly or in small amount. We describe a 7-year-old boy with progressive, linear, bound-down plaques involving the thighs, lower abdomen and back with no systemic involvement. Histopathology showed features of scleroderma with abundant mucin deposition in the reticular dermis. This report highlights excessive mucin deposition in lesions of morphea.

  15. Interpretability in Linear Brain Decoding

    OpenAIRE

    Kia, Seyed Mostafa; Passerini, Andrea

    2016-01-01

    Improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of brain decoding models. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, we present a simple definition for interpretability of linear brain decoding models. Then, we propose to combine the...

  16. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  17. Quasi-linear Dialectica Extraction

    Science.gov (United States)

    Trifonov, Trifon

    Gödel's functional interpretation [1] can be used to extract programs from non-constructive proofs. Though correct by construction, the obtained terms can be computationally inefficient. One reason for slow execution is the re-evaluation of equal subterms due to the use of substitution during the extraction process. In the present paper we define a variant of the interpretation, which avoids subterm repetition and achieves an almost linear bound on the size of extracted programs.

  18. Linearization of conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E; Pascual, I [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2009-03-11

    A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for the complete range of oscillation amplitudes. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of the technique.

  19. Linear algebra step by step

    CERN Document Server

    Singh, Kuldeep

    2013-01-01

    Linear algebra is a fundamental area of mathematics, and is arguably the most powerful mathematical tool ever developed. It is a core topic of study within fields as diverse as: business, economics, engineering, physics, computer science, ecology, sociology, demography and genetics. For an example of linear algebra at work, one needs to look no further than the Google search engine, which relies upon linear algebra to rank the results of a search with respect to relevance. The strength of the text is in the large number of examples and the step-by-step explanation of each topic as it is introduced. It is compiled in a way that allows distance learning, with explicit solutions to set problems freely available online. The miscellaneous exercises at the end of each chapter comprise questions from past exam papers from various universities, helping to reinforce the reader's confidence. Also included, generally at the beginning of sections, are short historicalbiographies of the leading players in the field of lin...

  20. Improved Linear Parallel Interference Cancellers

    CERN Document Server

    Srikanth, T; Chockalingam, A; Milstein, L B

    2007-01-01

    In this paper, taking the view that a linear parallel interference canceller (LPIC) can be seen as a linear matrix filter, we propose new linear matrix filters that can result in improved bit error performance compared to other LPICs in the literature. The motivation for the proposed filters arises from the possibility of avoiding the generation of certain interference and noise terms in a given stage that would have been present in a conventional LPIC (CLPIC). In the proposed filters, we achieve such avoidance of the generation of interference and noise terms in a given stage by simply making the diagonal elements of a certain matrix in that stage equal to zero. Hence, the proposed filters do not require additional complexity compared to the CLPIC, and they can allow achieving a certain error performance using fewer LPIC stages. We also extend the proposed matrix filter solutions to a multicarrier DS-CDMA system, where we consider two types of receivers. In one receiver (referred to as Type-I receiver), LPIC...