Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots
Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.
2013-01-01
Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…
Non-linear Growth Models in Mplus and SAS
Grimm, Kevin J.; Ram, Nilam
2013-01-01
Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134
Predicting Madura cattle growth curve using non-linear model
Widyas, N.; Prastowo, S.; Widi, T. S. M.; Baliarti, E.
2018-03-01
Madura cattle is Indonesian native. It is a composite breed that has undergone hundreds of years of selection and domestication to reach nowadays remarkable uniformity. Crossbreeding has reached the isle of Madura and the Madrasin, a cross between Madura cows and Limousine semen emerged. This paper aimed to compare the growth curve between Madrasin and one type of pure Madura cows, the common Madura cattle (Madura) using non-linear models. Madura cattles are kept traditionally thus reliable records are hardly available. Data were collected from small holder farmers in Madura. Cows from different age classes (5years) were observed, and body measurements (chest girth, body length and wither height) were taken. In total 63 Madura and 120 Madrasin records obtained. Linear model was built with cattle sub-populations and age as explanatory variables. Body weights were estimated based on the chest girth. Growth curves were built using logistic regression. Results showed that within the same age, Madrasin has significantly larger body compared to Madura (plogistic models fit better for Madura and Madrasin cattle data; with the estimated MSE for these models were 39.09 and 759.28 with prediction accuracy of 99 and 92% for Madura and Madrasin, respectively. Prediction of growth curve using logistic regression model performed well in both types of Madura cattle. However, attempts to administer accurate data on Madura cattle are necessary to better characterize and study these cattle.
Testing linear growth rate formulas of non-scale endogenous growth models
Ziesemer, Thomas
2017-01-01
Endogenous growth theory has produced formulas for steady-state growth rates of income per capita which are linear in the growth rate of the population. Depending on the details of the models, slopes and intercepts are positive, zero or negative. Empirical tests have taken over the assumption of
Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William
2016-01-01
Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19
Model for predicting non-linear crack growth considering load sequence effects (LOSEQ)
Fuehring, H.
1982-01-01
A new analytical model for predicting non-linear crack growth is presented which takes into account the retardation as well as the acceleration effects due to irregular loading. It considers not only the maximum peak of a load sequence to effect crack growth but also all other loads of the history according to a generalised memory criterion. Comparisons between crack growth predicted by using the LOSEQ-programme and experimentally observed data are presented. (orig.) [de
Searle, Shayle R
2012-01-01
This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
The Relationship between Economic Growth and Money Laundering – a Linear Regression Model
Daniel Rece
2009-09-01
Full Text Available This study provides an overview of the relationship between economic growth and money laundering modeled by a least squares function. The report analyzes statistically data collected from USA, Russia, Romania and other eleven European countries, rendering a linear regression model. The study illustrates that 23.7% of the total variance in the regressand (level of money laundering is “explained” by the linear regression model. In our opinion, this model will provide critical auxiliary judgment and decision support for anti-money laundering service systems.
Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.
Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine
2010-09-01
Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.
Evaluating Non-Linear Regression Models in Analysis of Persian Walnut Fruit Growth
I. Karamatlou
2016-02-01
Full Text Available Introduction: Persian walnut (Juglans regia L. is a large, wind-pollinated, monoecious, dichogamous, long lived, perennial tree cultivated for its high quality wood and nuts throughout the temperate regions of the world. Growth model methodology has been widely used in the modeling of plant growth. Mathematical models are important tools to study the plant growth and agricultural systems. These models can be applied for decision-making anddesigning management procedures in horticulture. Through growth analysis, planning for planting systems, fertilization, pruning operations, harvest time as well as obtaining economical yield can be more accessible.Non-linear models are more difficult to specify and estimate than linear models. This research was aimed to studynon-linear regression models based on data obtained from fruit weight, length and width. Selecting the best models which explain that fruit inherent growth pattern of Persian walnut was a further goal of this study. Materials and Methods: The experimental material comprising 14 Persian walnut genotypes propagated by seed collected from a walnut orchard in Golestan province, Minoudasht region, Iran, at latitude 37◦04’N; longitude 55◦32’E; altitude 1060 m, in a silt loam soil type. These genotypes were selected as a representative sampling of the many walnut genotypes available throughout the Northeastern Iran. The age range of walnut trees was 30 to 50 years. The annual mean temperature at the location is16.3◦C, with annual mean rainfall of 690 mm.The data used here is the average of walnut fresh fruit and measured withgram/millimeter/day in2011.According to the data distribution pattern, several equations have been proposed to describesigmoidal growth patterns. Here, we used double-sigmoid and logistic–monomolecular models to evaluate fruit growth based on fruit weight and4different regression models in cluding Richards, Gompertz, Logistic and Exponential growth for evaluation
Describing Growth Pattern of Bali Cows Using Non-linear Regression Models
Mohd. Hafiz A.W
2016-12-01
Full Text Available The objective of this study was to evaluate the best fit non-linear regression model to describe the growth pattern of Bali cows. Estimates of asymptotic mature weight, rate of maturing and constant of integration were derived from Brody, von Bertalanffy, Gompertz and Logistic models which were fitted to cross-sectional data of body weight taken from 74 Bali cows raised in MARDI Research Station Muadzam Shah Pahang. Coefficient of determination (R2 and residual mean squares (MSE were used to determine the best fit model in describing the growth pattern of Bali cows. Von Bertalanffy model was the best model among the four growth functions evaluated to determine the mature weight of Bali cattle as shown by the highest R2 and lowest MSE values (0.973 and 601.9, respectively, followed by Gompertz (0.972 and 621.2, respectively, Logistic (0.971 and 648.4, respectively and Brody (0.932 and 660.5, respectively models. The correlation between rate of maturing and mature weight was found to be negative in the range of -0.170 to -0.929 for all models, indicating that animals of heavier mature weight had lower rate of maturing. The use of non-linear model could summarize the weight-age relationship into several biologically interpreted parameters compared to the entire lifespan weight-age data points that are difficult and time consuming to interpret.
Mandys, Frantisek; Dolan, Conor V.; Molenaar, Peter C. M.
1994-01-01
Studied the conditions under which the quasi-Markov simplex model fits a linear growth curve covariance structure and determined when the model is rejected. Presents a quasi-Markov simplex model with structured means and gives an example. (SLD)
McAneney, H; O'Rourke, S F C
2007-01-01
The standard linear-quadratic survival model for radiotherapy is used to investigate different schedules of radiation treatment planning to study how these may be affected by different tumour repopulation kinetics between treatments. The laws for tumour cell repopulation include the logistic and Gompertz models and this extends the work of Wheldon et al (1977 Br. J. Radiol. 50 681), which was concerned with the case of exponential re-growth between treatments. Here we also consider the restricted exponential model. This has been successfully used by Panetta and Adam (1995 Math. Comput. Modelling 22 67) in the case of chemotherapy treatment planning.Treatment schedules investigated include standard fractionation of daily treatments, weekday treatments, accelerated fractionation, optimized uniform schedules and variation of the dosage and α/β ratio, where α and β are radiobiological parameters for the tumour tissue concerned. Parameters for these treatment strategies are extracted from the literature on advanced head and neck cancer, prostate cancer, as well as radiosensitive parameters. Standardized treatment protocols are also considered. Calculations based on the present analysis indicate that even with growth laws scaled to mimic initial growth, such that growth mechanisms are comparable, variation in survival fraction to orders of magnitude emerged. Calculations show that the logistic and exponential models yield similar results in tumour eradication. By comparison the Gompertz model calculations indicate that tumours described by this law result in a significantly poorer prognosis for tumour eradication than either the exponential or logistic models. The present study also shows that the faster the tumour growth rate and the higher the repair capacity of the cell line, the greater the variation in outcome of the survival fraction. Gaps in treatment, planned or unplanned, also accentuate the differences of the survival fraction given alternative growth
Numerical computation of the linear stability of the diffusion model for crystal growth simulation
Yang, C.; Sorensen, D.C. [Rice Univ., Houston, TX (United States); Meiron, D.I.; Wedeman, B. [California Institute of Technology, Pasadena, CA (United States)
1996-12-31
We consider a computational scheme for determining the linear stability of a diffusion model arising from the simulation of crystal growth. The process of a needle crystal solidifying into some undercooled liquid can be described by the dual diffusion equations with appropriate initial and boundary conditions. Here U{sub t} and U{sub a} denote the temperature of the liquid and solid respectively, and {alpha} represents the thermal diffusivity. At the solid-liquid interface, the motion of the interface denoted by r and the temperature field are related by the conservation relation where n is the unit outward pointing normal to the interface. A basic stationary solution to this free boundary problem can be obtained by writing the equations of motion in a moving frame and transforming the problem to parabolic coordinates. This is known as the Ivantsov parabola solution. Linear stability theory applied to this stationary solution gives rise to an eigenvalue problem of the form.
Ignition-and-Growth Modeling of NASA Standard Detonator and a Linear Shaped Charge
Oguz, Sirri
2010-01-01
The main objective of this study is to quantitatively investigate the ignition and shock sensitivity of NASA Standard Detonator (NSD) and the shock wave propagation of a linear shaped charge (LSC) after being shocked by NSD flyer plate. This combined explosive train was modeled as a coupled Arbitrary Lagrangian-Eulerian (ALE) model with LS-DYNA hydro code. An ignition-and-growth (I&G) reactive model based on unreacted and reacted Jones-Wilkins-Lee (JWL) equations of state was used to simulate the shock initiation. Various NSD-to-LSC stand-off distances were analyzed to calculate the shock initiation (or failure to initiate) and detonation wave propagation along the shaped charge. Simulation results were verified by experimental data which included VISAR tests for NSD flyer plate velocity measurement and an aluminum target severance test for LSC performance verification. Parameters used for the analysis were obtained from various published data or by using CHEETAH thermo-chemical code.
Periosteal PTHrP regulates cortical bone modeling during linear growth in mice.
Wang, Meina; VanHouten, Joshua N; Nasiri, Ali R; Tommasini, Steven M; Broadus, Arthur E
2014-07-01
The modeling of long bone surfaces during linear growth is a key developmental process, but its regulation is poorly understood. We report here that parathyroid hormone-related peptide (PTHrP) expressed in the fibrous layer of the periosteum (PO) drives the osteoclastic (OC) resorption that models the metaphyseal-diaphyseal junction (MDJ) in the proximal tibia and fibula during linear growth. PTHrP was conditionally deleted (cKO) in the PO via Scleraxis gene targeting (Scx-Cre). In the lateral tibia, cKO of PTHrP led to a failure of modeling, such that the normal concave MDJ was replaced by a mound-like deformity. This was accompanied by a failure to induce receptor activator of NF-kB ligand (RANKL) and a 75% reduction in OC number (P ≤ 0.001) on the cortical surface. The MDJ also displayed a curious threefold increase in endocortical osteoblast mineral apposition rate (P ≤ 0.001) and a thickened cortex, suggesting some form of coupling of endocortical bone formation to events on the PO surface. Because it fuses distally, the fibula is modeled only proximally and does so at an extraordinary rate, with an anteromedial cortex in CD-1 mice that was so moth-eaten that a clear PO surface could not be identified. The cKO fibula displayed a remarkable phenotype, with a misshapen club-like metaphysis and an enlargement in the 3D size of the entire bone, manifest as a 40-45% increase in the PO circumference at the MDJ (P ≤ 0.001) as well as the mid-diaphysis (P ≤ 0.001). These tibial and fibular phenotypes were reproduced in a Scx-Cre-driven RANKL cKO mouse. We conclude that PTHrP in the fibrous PO mediates the modeling of the MDJ of long bones during linear growth, and that in a highly susceptible system such as the fibula this surface modeling defines the size and shape of the entire bone. © 2014 Anatomical Society.
von Secker, Clare Elaine
The study of students at risk is a major topic of science education policy and discussion. Much research has focused on describing conditions and problems associated with the statistical risk of low science achievement among individuals who are members of groups characterized by problems such as poverty and social disadvantage. But outcomes attributed to these factors do not explain the nature and extent of mechanisms that account for differences in performance among individuals at risk. There is ample theoretical and empirical evidence that demographic differences should be conceptualized as social contexts, or collections of variables, that alter the psychological significance and social demands of life events, and affect subsequent relationships between risk and resilience. The hierarchical linear growth models used in this dissertation provide greater specification of the role of social context and the protective effects of attitude, expectations, parenting practices, peer influences, and learning opportunities on science achievement. While the individual influences of these protective factors on science achievement were small, their cumulative effect was substantial. Meta-analysis conducted on the effects associated with psychological and environmental processes that mediate risk mechanisms in sixteen social contexts revealed twenty-two significant differences between groups of students. Positive attitudes, high expectations, and more intense science course-taking had positive effects on achievement of all students, although these factors were not equally protective in all social contexts. In general, effects associated with authoritative parenting and peer influences were negative, regardless of social context. An evaluation comparing the performance and stability of hierarchical linear growth models with traditional repeated measures models is included as well.
Howe, Laura D; Tilling, Kate; Matijasevich, Alicia; Petherick, Emily S; Santos, Ana Cristina; Fairley, Lesley; Wright, John; Santos, Iná S; Barros, Aluísio Jd; Martin, Richard M; Kramer, Michael S; Bogdanovich, Natalia; Matush, Lidia; Barros, Henrique; Lawlor, Debbie A
2016-10-01
Childhood growth is of interest in medical research concerned with determinants and consequences of variation from healthy growth and development. Linear spline multilevel modelling is a useful approach for deriving individual summary measures of growth, which overcomes several data issues (co-linearity of repeat measures, the requirement for all individuals to be measured at the same ages and bias due to missing data). Here, we outline the application of this methodology to model individual trajectories of length/height and weight, drawing on examples from five cohorts from different generations and different geographical regions with varying levels of economic development. We describe the unique features of the data within each cohort that have implications for the application of linear spline multilevel models, for example, differences in the density and inter-individual variation in measurement occasions, and multiple sources of measurement with varying measurement error. After providing example Stata syntax and a suggested workflow for the implementation of linear spline multilevel models, we conclude with a discussion of the advantages and disadvantages of the linear spline approach compared with other growth modelling methods such as fractional polynomials, more complex spline functions and other non-linear models. © The Author(s) 2013.
Granita; Bahar, A.
2015-01-01
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found
Granita, E-mail: granitafc@gmail.com [Dept. Mathematical Education, State Islamic University of Sultan Syarif Kasim Riau, 28293 Indonesia and Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor (Malaysia); Bahar, A. [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor Malaysia and UTM Center for Industrial and Applied Mathematics (UTM-CIAM) (Malaysia)
2015-03-09
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.
Tanwiwat Jaikuna
2017-02-01
Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.
Dietary arginine and linear growth
van Vught, Anneke J A H; Dagnelie, Pieter C; Arts, Ilja C W
2013-01-01
Child Intervention Study during 2001-2 (baseline), and at 3-year and 7-year follow-up, were used. Arginine intake was estimated via a 7 d precoded food diary at baseline and 3-year follow-up. Data were analysed in a multilevel structure in which children were embedded within schools. Random intercept......The amino acid arginine is a well-known growth hormone (GH) stimulator and GH is an important modulator of linear growth. The aim of the present study was to investigate the effect of dietary arginine on growth velocity in children between 7 and 13 years of age. Data from the Copenhagen School...... and slopes were defined to estimate the association between arginine intake and growth velocity, including the following covariates: sex; age; baseline height; energy intake; puberty stage at 7-year follow-up and intervention/control group. The association between arginine intake and growth velocity...
Linear-stability theory of thermocapillary convection in a model of float-zone crystal growth
Neitzel, G. P.; Chang, K.-T.; Jankowski, D. F.; Mittelmann, H. D.
1992-01-01
Linear-stability theory has been applied to a basic state of thermocapillary convection in a model half-zone to determine values of the Marangoni number above which instability is guaranteed. The basic state must be determined numerically since the half-zone is of finite, O(1) aspect ratio with two-dimensional flow and temperature fields. This, in turn, means that the governing equations for disturbance quantities will remain partial differential equations. The disturbance equations are treated by a staggered-grid discretization scheme. Results are presented for a variety of parameters of interest in the problem, including both terrestrial and microgravity cases.
Faraway, Julian J
2014-01-01
A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition.New to the Second EditionReorganiz
Foundations of linear and generalized linear models
Agresti, Alan
2015-01-01
A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,
Business model engineering: creating non-linear growth effects for service innovations
Kijl, Björn; Ehrenhard, Michel Léon; Wijnhoven, Alphonsus B.J.M.; Nieuwenhuis, Lambertus Johannes Maria; Boersma, D.
2012-01-01
Every service innovation needs a viable business model in order to create and capture value. Strikingly, most of the current literature is focused on business model design only, whereas almost no attention is given to business model validation and implementation – let alone experimentation with
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....
Trujillo, Michael; Perrin, Paul B; Doser, Karoline
2016-01-01
Objective: No studies have examined the impact of personality traits on mental health among caregivers of individuals with severe brain injury. Therefore, the purpose of the current study was to construct linear growth models to examine whether the personality traits of family members...... neuroticism had lower anxiety and depression over time, as well as a more accelerated decrease in anxiety and depression. Conclusions: Caregivers' personality traits were strongly associated over time with mental HRQoL, anxiety, and depression, with neuroticism being especially important for trajectories...... the Short Form-36 assessing mental HRQoL (vitality, social functioning, role limitations-emotional, mental health), anxiety, and depression across 5 time points during the 1st year after injury. The measure of personality was administered 3 months after the patients' discharge. Results: All mental HRQo...
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....... of these criteria are widely used ones, while the remaining four are ones derived from the H-principle of mathematical modeling. Many examples from practice show that the criteria derived from the H-principle function better than the known and popular criteria for the number of components. We shall briefly review...
Chakra B. Budhathoki; Thomas B. Lynch; James M. Guldin
2010-01-01
Nonlinear mixed-modeling methods were used to estimate parameters in an individual-tree basal area growth model for shortleaf pine (Pinus echinata Mill.). Shortleaf pine individual-tree growth data were available from over 200 permanently established 0.2-acre fixed-radius plots located in naturally-occurring even-aged shortleaf pine forests on the...
Sullivan, Adam John
In chapter 1, we consider the biases that may arise when an unmeasured confounder is omitted from a structural equation model (SEM) and sensitivity analysis techniques to correct for such biases. We give an analysis of which effects in an SEM are and are not biased by an unmeasured confounder. It is shown that a single unmeasured confounder will bias not just one but numerous effects in an SEM. We present sensitivity analysis techniques to correct for biases in total, direct, and indirect effects when using SEM analyses, and illustrate these techniques with a study of aging and cognitive function. In chapter 2, we consider longitudinal mediation with latent growth curves. We define the direct and indirect effects using counterfactuals and consider the assumptions needed for identifiability of those effects. We develop models with a binary treatment/exposure followed by a model where treatment/exposure changes with time allowing for treatment/exposure-mediator interaction. We thus formalize mediation analysis with latent growth curve models using counterfactuals, makes clear the assumptions and extends these methods to allow for exposure mediator interactions. We present and illustrate the techniques with a study on Multiple Sclerosis(MS) and depression. In chapter 3, we report on a pilot study in blended learning that took place during the Fall 2013 and Summer 2014 semesters here at Harvard. We blended the traditional BIO 200: Principles of Biostatistics and created ID 200: Principles of Biostatistics and epidemiology. We used materials from the edX course PH207x: Health in Numbers: Quantitative Methods in Clinical & Public Health Research and used. These materials were used as a video textbook in which students would watch a given number of these videos prior to class. Using surveys as well as exam data we informally assess these blended classes from the student's perspective as well as a comparison of these students with students in another course, BIO 201
Non linear viscoelastic models
Agerkvist, Finn T.
2011-01-01
Viscoelastic eects are often present in loudspeaker suspensions, this can be seen in the displacement transfer function which often shows a frequency dependent value below the resonance frequency. In this paper nonlinear versions of the standard linear solid model (SLS) are investigated....... The simulations show that the nonlinear version of the Maxwell SLS model can result in a time dependent small signal stiness while the Kelvin Voight version does not....
Trujillo, Michael; Perrin, Paul B; Doser, Karoline; Norup, Anne
2016-11-01
No studies have examined the impact of personality traits on mental health among caregivers of individuals with severe brain injury. Therefore, the purpose of the current study was to construct linear growth models to examine whether the personality traits of family members of individuals with severe brain injury could predict the trajectories of their own mental health-related quality of life (HRQoL), anxiety, and depression beginning in a neurointensive care unit through 1 year after injury. Danish family members of individuals with severe brain injury (n = 52) completed the Short Form-36 assessing mental HRQoL (vitality, social functioning, role limitations-emotional, mental health), anxiety, and depression across 5 time points during the 1st year after injury. The measure of personality was administered 3 months after the patients' discharge. All mental HRQoL, anxiety, and depression variables improved significantly over time. Caregivers who were less neurotic and less conscientious had higher vitality, social functioning, and mental health over time, whereas caregivers who were more agreeable had higher social functioning over time. Caregivers with lower neuroticism had lower anxiety and depression over time, as well as a more accelerated decrease in anxiety and depression. Caregivers' personality traits were strongly associated over time with mental HRQoL, anxiety, and depression, with neuroticism being especially important for trajectories of anxiety and depression. These results suggest that personality assessments for caregivers of individuals with severe brain injury could help identify those most at risk for poor mental health over the course of rehabilitation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
On conjugacy growth of linear groups
Breuillard, Emmanuel; de Cornulier, Yves; Lubotzky, Alexander; Meiri, Chen
2011-01-01
We investigate the conjugacy growth of finitely generated linear groups. We show that finitely generated non-virtually-solvable subgroups of GL_d have uniform exponential conjugacy growth and in fact that the number of distinct polynomials arising as characteristic polynomials of the elements of the ball of radius n for the word metric has exponential growth rate bounded away from 0 in terms of the dimension d only.
Wang, Zheng-Xin; Hao, Peng; Yao, Pei-Yi
2017-12-13
The non-linear relationship between provincial economic growth and carbon emissions is investigated by using panel smooth transition regression (PSTR) models. The research indicates that, on the condition of separately taking Gross Domestic Product per capita (GDPpc), energy structure (Es), and urbanisation level (Ul) as transition variables, three models all reject the null hypothesis of a linear relationship, i.e., a non-linear relationship exists. The results show that the three models all contain only one transition function but different numbers of location parameters. The model taking GDPpc as the transition variable has two location parameters, while the other two models separately considering Es and Ul as the transition variables both contain one location parameter. The three models applied in the study all favourably describe the non-linear relationship between economic growth and CO₂ emissions in China. It also can be seen that the conversion rate of the influence of Ul on per capita CO₂ emissions is significantly higher than those of GDPpc and Es on per capita CO₂ emissions.
Convex variational problems linear, nearly linear and anisotropic growth conditions
Bildhauer, Michael
2003-01-01
The author emphasizes a non-uniform ellipticity condition as the main approach to regularity theory for solutions of convex variational problems with different types of non-standard growth conditions. This volume first focuses on elliptic variational problems with linear growth conditions. Here the notion of a "solution" is not obvious and the point of view has to be changed several times in order to get some deeper insight. Then the smoothness properties of solutions to convex anisotropic variational problems with superlinear growth are studied. In spite of the fundamental differences, a non-uniform ellipticity condition serves as the main tool towards a unified view of the regularity theory for both kinds of problems.
Monahan, John F
2008-01-01
Preface Examples of the General Linear Model Introduction One-Sample Problem Simple Linear Regression Multiple Regression One-Way ANOVA First Discussion The Two-Way Nested Model Two-Way Crossed Model Analysis of Covariance Autoregression Discussion The Linear Least Squares Problem The Normal Equations The Geometry of Least Squares Reparameterization Gram-Schmidt Orthonormalization Estimability and Least Squares Estimators Assumptions for the Linear Mean Model Confounding, Identifiability, and Estimability Estimability and Least Squares Estimators F
Campagnoli, Patrizia; Petris, Giovanni
2009-01-01
State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.
On Associative Conformal Algebras of Linear Growth
Retakh, Alexander
2000-01-01
Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...
Introduction to generalized linear models
Dobson, Annette J
2008-01-01
Introduction Background Scope Notation Distributions Related to the Normal Distribution Quadratic Forms Estimation Model Fitting Introduction Examples Some Principles of Statistical Modeling Notation and Coding for Explanatory Variables Exponential Family and Generalized Linear Models Introduction Exponential Family of Distributions Properties of Distributions in the Exponential Family Generalized Linear Models Examples Estimation Introduction Example: Failure Times for Pressure Vessels Maximum Likelihood Estimation Poisson Regression Example Inference Introduction Sampling Distribution for Score Statistics Taylor Series Approximations Sampling Distribution for MLEs Log-Likelihood Ratio Statistic Sampling Distribution for the Deviance Hypothesis Testing Normal Linear Models Introduction Basic Results Multiple Linear Regression Analysis of Variance Analysis of Covariance General Linear Models Binary Variables and Logistic Regression Probability Distributions ...
Lundström, T; Jonas, T; Volkwein, A
2008-01-01
Thirteen Norway spruce [Picea abies (L.) Karst.] trees of different size, age, and social status, and grown under varying conditions, were investigated to see how they react to complex natural static loading under summer and winter conditions, and how they have adapted their growth to such combinations of load and tree state. For this purpose a non-linear finite-element model and an extensive experimental data set were used, as well as a new formulation describing the degree to which the exploitation of the bending stress capacity is uniform. The three main findings were: material and geometric non-linearities play important roles when analysing tree deflections and critical loads; the strengths of the stem and the anchorage mutually adapt to the local wind acting on the tree crown in the forest canopy; and the radial stem growth follows a mechanically high-performance path because it adapts to prevailing as well as acute seasonal combinations of the tree state (e.g. frozen or unfrozen stem and anchorage) and load (e.g. wind and vertical and lateral snow pressure). Young trees appeared to adapt to such combinations in a more differentiated way than older trees. In conclusion, the mechanical performance of the Norway spruce studied was mostly very high, indicating that their overall growth had been clearly influenced by the external site- and tree-specific mechanical stress.
(Non) linear regression modelling
Cizek, P.; Gentle, J.E.; Hardle, W.K.; Mori, Y.
2012-01-01
We will study causal relationships of a known form between random variables. Given a model, we distinguish one or more dependent (endogenous) variables Y = (Y1,…,Yl), l ∈ N, which are explained by a model, and independent (exogenous, explanatory) variables X = (X1,…,Xp),p ∈ N, which explain or
Explorative methods in linear models
Høskuldsson, Agnar
2004-01-01
The author has developed the H-method of mathematical modeling that builds up the model by parts, where each part is optimized with respect to prediction. Besides providing with better predictions than traditional methods, these methods provide with graphic procedures for analyzing different feat...... features in data. These graphic methods extend the well-known methods and results of Principal Component Analysis to any linear model. Here the graphic procedures are applied to linear regression and Ridge Regression....
Generalized, Linear, and Mixed Models
McCulloch, Charles E; Neuhaus, John M
2011-01-01
An accessible and self-contained introduction to statistical models-now in a modernized new editionGeneralized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed m
Sparse Linear Identifiable Multivariate Modeling
Henao, Ricardo; Winther, Ole
2011-01-01
and bench-marked on artificial and real biological data sets. SLIM is closest in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian network structure learning and model comparison. Experimentally, SLIM performs equally well or better than LiNGAM with comparable......In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...
Luz A. Melo Varela
2013-01-01
Full Text Available This paper shows a study, both analytical and numerical, of a continuous-time dynamical system associated with a simple model of a wastewater biorreactor. Nonsmooth phenomena and border-collision local bifurcations appear when the main parameters (dilution and biomass concentration at the inflow are varied. We apply the Filippov methods following Kuznetsov’s work.
Parameterized Linear Longitudinal Airship Model
Kulczycki, Eric; Elfes, Alberto; Bayard, David; Quadrelli, Marco; Johnson, Joseph
2010-01-01
A parameterized linear mathematical model of the longitudinal dynamics of an airship is undergoing development. This model is intended to be used in designing control systems for future airships that would operate in the atmospheres of Earth and remote planets. Heretofore, the development of linearized models of the longitudinal dynamics of airships has been costly in that it has been necessary to perform extensive flight testing and to use system-identification techniques to construct models that fit the flight-test data. The present model is a generic one that can be relatively easily specialized to approximate the dynamics of specific airships at specific operating points, without need for further system identification, and with significantly less flight testing. The approach taken in the present development is to merge the linearized dynamical equations of an airship with techniques for estimation of aircraft stability derivatives, and to thereby make it possible to construct a linearized dynamical model of the longitudinal dynamics of a specific airship from geometric and aerodynamic data pertaining to that airship. (It is also planned to develop a model of the lateral dynamics by use of the same methods.) All of the aerodynamic data needed to construct the model of a specific airship can be obtained from wind-tunnel testing and computational fluid dynamics
Decomposable log-linear models
Eriksen, Poul Svante
can be characterized by a structured set of conditional independencies between some variables given some other variables. We term the new model class decomposable log-linear models, which is illustrated to be a much richer class than decomposable graphical models.It covers a wide range of non...... The present paper considers discrete probability models with exact computational properties. In relation to contingency tables this means closed form expressions of the maksimum likelihood estimate and its distribution. The model class includes what is known as decomposable graphicalmodels, which......-hierarchical models, models with structural zeroes, models described by quasi independence and models for level merging. Also, they have a very natural interpretation as they may be formulated by a structured set of conditional independencies between two events given some other event. In relation to contingency...
Linear and Generalized Linear Mixed Models and Their Applications
Jiang, Jiming
2007-01-01
This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models, and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it has included recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested
Multicollinearity in hierarchical linear models.
Yu, Han; Jiang, Shanhe; Land, Kenneth C
2015-09-01
This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model. Copyright © 2015 Elsevier Inc. All rights reserved.
The effects of oestrogens on linear bone growth
Juul, A
2001-01-01
Regulation of linear bone growth in children and adolescents comprises a complex interaction of hormones and growth factors. Growth hormone (GH) is considered to be the key hormone regulator of linear growth in childhood. The pubertal increase in growth velocity associated with GH has traditionally...... been attributed to testicular androgen secretion in boys, and to oestrogens or adrenal androgen secretion in girls. Research data indicating that oestrogen may be the principal hormone stimulating the pubertal growth spurt in boys as well as girls is reviewed. Such an action is mediated by oestrogen...... female growth spurt despite lack of androgen action. Oestrogens may also influence linear bone growth indirectly via modulation of the GH-insulin-like growth factor-I (IGF-I) axis. Thus, ER blockade diminishes endogenous GH secretion, androgen receptor (AR) blockade increases GH secretion in peripubertal...
Modelling Loudspeaker Non-Linearities
Agerkvist, Finn T.
2007-01-01
This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...
Multivariate covariance generalized linear models
Bonat, W. H.; Jørgensen, Bent
2016-01-01
are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...
Linear ubiquitin chain induces apoptosis and inhibits tumor growth.
Qin, Zhoushuai; Jiang, Wandong; Wang, Guifen; Sun, Ying; Xiao, Wei
2018-01-01
Ubiquitination of proliferating cell nuclear antigen (PCNA) plays an important role in DNA damage response. Ectopic expression of PCNA fused at either terminus with ubiquitin (Ub) lacking two C-terminal glycine residues induces translesion DNA synthesis which resembles synthesis mediated by PCNA monoubiquitination. PCNA fused with Ub containing the C-terminal Gly residues at the C-terminus can be further polyubiquitinated in a Gly-dependent manner, which inhibits cell proliferation and induces ATR-dependent replication checkpoint. In this study, we surprisingly found that PCNA fused to a head-to-tail linear Ub chain induces apoptosis in a Ub chain length-dependent manner. Further investigation revealed that the apoptotic effect is actually induced by the linear Ub chain independently from PCNA, as the Ub chain fused to GFP or an epitope tag still efficiently induces apoptosis. It is revealed that the artificial linear Ub chain differs from endogenously encoded linear Ub chains in that its Ubs contain a Ub-G76S substitution, making the Ub chain resistant to cleavage by deubiquitination enzymes. We demonstrated in this study that ectopic expression of the artificial Ub chain alone in cultured human cancer cells is sufficient to inhibit tumor growth in a xenograft mouse model, making the linear Ub chain a putative anti-cancer agent.
Beneficial effect of physical activity on linear growth rate of ...
It is not known if nutritional and/or other interventions could improve linear growth in adolescents. The purpose of this study was to assess the role of physical activity in promoting linear growth velocity of black adolescents in a low-income shanty town in South Africa. Two schools in a disadvantaged shanty town participated ...
Matrix algebra for linear models
Gruber, Marvin H J
2013-01-01
Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f
Nonabelian Gauged Linear Sigma Model
Yongbin RUAN
2017-01-01
The gauged linear sigma model (GLSM for short) is a 2d quantum field theory introduced by Witten twenty years ago.Since then,it has been investigated extensively in physics by Hori and others.Recently,an algebro-geometric theory (for both abelian and nonabelian GLSMs) was developed by the author and his collaborators so that he can start to rigorously compute its invariants and check against physical predications.The abelian GLSM was relatively better understood and is the focus of current mathematical investigation.In this article,the author would like to look over the horizon and consider the nonabelian GLSM.The nonabelian case possesses some new features unavailable to the abelian GLSM.To aid the future mathematical development,the author surveys some of the key problems inspired by physics in the nonabelian GLSM.
The effects of oestrogens on linear bone growth
Juul, A
2001-01-01
receptors (ER-alpha and ER-beta) in the human growth plate, and polymorphisms in the ER gene may influence adult height in healthy subjects. Prepubertal oestradiol concentrations are significantly higher in girls than in boys, explaining sex-related differences in pubertal onset. Men with a disruptive......Regulation of linear bone growth in children and adolescents comprises a complex interaction of hormones and growth factors. Growth hormone (GH) is considered to be the key hormone regulator of linear growth in childhood. The pubertal increase in growth velocity associated with GH has traditionally...... been attributed to testicular androgen secretion in boys, and to oestrogens or adrenal androgen secretion in girls. Research data indicating that oestrogen may be the principal hormone stimulating the pubertal growth spurt in boys as well as girls is reviewed. Such an action is mediated by oestrogen...
Direct and Maternal Additive Effects on Rabbit Growth and Linear ...
Growth and linear body measurements of rabbits which consisted of 17 ew Zealand White (ZW), 19 Chinchilla (CH), 29 ZW x CH and 33 CH x ZW kittens were compared. The aim of the experiment was to evaluate the crossbreeding effects (i.e direct and maternal additive effect) for growth (individual body weight, IBW) and ...
E. Gregory McPherson; Paula J. Peper
2012-01-01
This paper describes three long-term tree growth studies conducted to evaluate tree performance because repeated measurements of the same trees produce critical data for growth model calibration and validation. Several empirical and process-based approaches to modeling tree growth are reviewed. Modeling is more advanced in the fields of forestry and...
Multivariate generalized linear mixed models using R
Berridge, Damon Mark
2011-01-01
Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R. A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model...
Wenlan Ke
2016-02-01
Full Text Available Water resource and environment capacity have become two of the most important restrictions for sustainable development in resource-based cities whose leading industries are the exploitation and processing of resources. Taking Ordos in China as an example, this article constructs an integrated model combining a multi-objective optimization model with input–output analysis to achieve the tradeoffs between economic growth, water utilization and environmental protection. This dynamic model includes socioeconomic, water supply–demand, water quality control, air quality control, energy consumption control and integrated policy sub-models. These six sub-models interact with each other. After simulation, this article proposes efficient solutions on industrial restructuring by maximizing the Gross Regional Product of Ordos from 394.3 in 2012 to 785.1 billion RMB in 2025 with a growth rate of 6.4% annually; and presents a water supply plan by maximizing the proportion of reclaimed water from 2% to 6.3% through sewage treatment technology selection and introduction, and effective water allocation. Meanwhile, the environmental impacts are all in line with the planning targets. This study illustrates that the integrated modeling is generic and can be applied to any region suffering uncoordinated development issues and can serve as a pre-evaluation approach for conducting early warning research to offer suggestions for government decision-making.
Nonlinear Modeling by Assembling Piecewise Linear Models
Yao, Weigang; Liou, Meng-Sing
2013-01-01
To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.
Linear Logistic Test Modeling with R
Baghaei, Purya; Kubinger, Klaus D.
2015-01-01
The present paper gives a general introduction to the linear logistic test model (Fischer, 1973), an extension of the Rasch model with linear constraints on item parameters, along with eRm (an R package to estimate different types of Rasch models; Mair, Hatzinger, & Mair, 2014) functions to estimate the model and interpret its parameters. The…
Core seismic behaviour: linear and non-linear models
Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.
1981-08-01
The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here
Composite Linear Models | Division of Cancer Prevention
By Stuart G. Baker The composite linear models software is a matrix approach to compute maximum likelihood estimates and asymptotic standard errors for models for incomplete multinomial data. It implements the method described in Baker SG. Composite linear models for incomplete multinomial data. Statistics in Medicine 1994;13:609-622. The software includes a library of thirty
Actuarial statistics with generalized linear mixed models
Antonio, K.; Beirlant, J.
2007-01-01
Over the last decade the use of generalized linear models (GLMs) in actuarial statistics has received a lot of attention, starting from the actuarial illustrations in the standard text by McCullagh and Nelder [McCullagh, P., Nelder, J.A., 1989. Generalized linear models. In: Monographs on Statistics
Linear Stability of Binary Alloy Solidification for Unsteady Growth Rates
Mazuruk, K.; Volz, M. P.
2010-01-01
An extension of the Mullins and Sekerka (MS) linear stability analysis to the unsteady growth rate case is considered for dilute binary alloys. In particular, the stability of the planar interface during the initial solidification transient is studied in detail numerically. The rapid solidification case, when the system is traversing through the unstable region defined by the MS criterion, has also been treated. It has been observed that the onset of instability is quite accurately defined by the "quasi-stationary MS criterion", when the growth rate and other process parameters are taken as constants at a particular time of the growth process. A singular behavior of the governing equations for the perturbed quantities at the constitutional supercooling demarcation line has been observed. However, when the solidification process, during its transient, crosses this demarcation line, a planar interface is stable according to the linear analysis performed.
Comparing linear probability model coefficients across groups
Holm, Anders; Ejrnæs, Mette; Karlson, Kristian Bernt
2015-01-01
of the following three components: outcome truncation, scale parameters and distributional shape of the predictor variable. These results point to limitations in using linear probability model coefficients for group comparisons. We also provide Monte Carlo simulations and real examples to illustrate......This article offers a formal identification analysis of the problem in comparing coefficients from linear probability models between groups. We show that differences in coefficients from these models can result not only from genuine differences in effects, but also from differences in one or more...... these limitations, and we suggest a restricted approach to using linear probability model coefficients in group comparisons....
Influence of magnetic flutter on tearing growth in linear and nonlinear theory
Kreifels, L.; Hornsby, W. A.; Weikl, A.; Peeters, A. G.
2018-06-01
Recent simulations of tearing modes in turbulent regimes show an unexpected enhancement in the growth rate. In this paper the effect is investigated analytically. The enhancement is linked to the influence of turbulent magnetic flutter, which is modelled by diffusion terms in magnetohydrodynamics (MHD) momentum balance and Ohm’s law. Expressions for the linear growth rate as well as the island width in nonlinear theory for small amplitudes are derived. The results indicate an enhanced linear growth rate and a larger linear layer width compared with resistive MHD. Also the island width in the nonlinear regime grows faster in the diffusive model. These observations correspond well to simulations in which the effect of turbulence on the magnetic island width and tearing mode growth is analyzed.
Spaghetti Bridges: Modeling Linear Relationships
Kroon, Cindy D.
2016-01-01
Mathematics and science are natural partners. One of many examples of this partnership occurs when scientific observations are made, thus providing data that can be used for mathematical modeling. Developing mathematical relationships elucidates such scientific principles. This activity describes a data-collection activity in which students employ…
Non-linear finite element modeling
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...
Correlations and Non-Linear Probability Models
Breen, Richard; Holm, Anders; Karlson, Kristian Bernt
2014-01-01
the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....
Extended Linear Models with Gaussian Priors
Quinonero, Joaquin
2002-01-01
In extended linear models the input space is projected onto a feature space by means of an arbitrary non-linear transformation. A linear model is then applied to the feature space to construct the model output. The dimension of the feature space can be very large, or even infinite, giving the model...... a very big flexibility. Support Vector Machines (SVM's) and Gaussian processes are two examples of such models. In this technical report I present a model in which the dimension of the feature space remains finite, and where a Bayesian approach is used to train the model with Gaussian priors...... on the parameters. The Relevance Vector Machine, introduced by Tipping, is a particular case of such a model. I give the detailed derivations of the expectation-maximisation (EM) algorithm used in the training. These derivations are not found in the literature, and might be helpful for newcomers....
Linear mixed models for longitudinal data
Molenberghs, Geert
2000-01-01
This paperback edition is a reprint of the 2000 edition. This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Several variations to the conventional linear mixed model are discussed (a heterogeity model, conditional linear mixed models). This book will be of interest to applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematically rigorous. Most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated. However, some other commerc...
Linear mixed models in sensometrics
Kuznetsova, Alexandra
quality of decision making in Danish as well as international food companies and other companies using the same methods. The two open-source R packages lmerTest and SensMixed implement and support the methodological developments in the research papers as well as the ANOVA modelling part of the Consumer...... an open-source software tool ConsumerCheck was developed in this project and now is available for everyone. will represent a major step forward when concerns this important problem in modern consumer driven product development. Standard statistical software packages can be used for some of the purposes......Today’s companies and researchers gather large amounts of data of different kind. In consumer studies the objective is the collection of the data to better understand consumer acceptance of products. In such studies a number of persons (generally not trained) are selected in order to score products...
Linear causal modeling with structural equations
Mulaik, Stanley A
2009-01-01
Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal
Statistical Tests for Mixed Linear Models
Khuri, André I; Sinha, Bimal K
2011-01-01
An advanced discussion of linear models with mixed or random effects. In recent years a breakthrough has occurred in our ability to draw inferences from exact and optimum tests of variance component models, generating much research activity that relies on linear models with mixed and random effects. This volume covers the most important research of the past decade as well as the latest developments in hypothesis testing. It compiles all currently available results in the area of exact and optimum tests for variance component models and offers the only comprehensive treatment for these models a
Matrix Tricks for Linear Statistical Models
Puntanen, Simo; Styan, George PH
2011-01-01
In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple "tricks" which simplify and clarify the treatment of a problem - both for the student and
Modeling digital switching circuits with linear algebra
Thornton, Mitchell A
2014-01-01
Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transf
Updating Linear Schedules with Lowest Cost: a Linear Programming Model
Biruk, Sławomir; Jaśkowski, Piotr; Czarnigowska, Agata
2017-10-01
Many civil engineering projects involve sets of tasks repeated in a predefined sequence in a number of work areas along a particular route. A useful graphical representation of schedules of such projects is time-distance diagrams that clearly show what process is conducted at a particular point of time and in particular location. With repetitive tasks, the quality of project performance is conditioned by the ability of the planner to optimize workflow by synchronizing the works and resources, which usually means that resources are planned to be continuously utilized. However, construction processes are prone to risks, and a fully synchronized schedule may expire if a disturbance (bad weather, machine failure etc.) affects even one task. In such cases, works need to be rescheduled, and another optimal schedule should be built for the changed circumstances. This typically means that, to meet the fixed completion date, durations of operations have to be reduced. A number of measures are possible to achieve such reduction: working overtime, employing more resources or relocating resources from less to more critical tasks, but they all come at a considerable cost and affect the whole project. The paper investigates the problem of selecting the measures that reduce durations of tasks of a linear project so that the cost of these measures is kept to the minimum and proposes an algorithm that could be applied to find optimal solutions as the need to reschedule arises. Considering that civil engineering projects, such as road building, usually involve less process types than construction projects, the complexity of scheduling problems is lower, and precise optimization algorithms can be applied. Therefore, the authors put forward a linear programming model of the problem and illustrate its principle of operation with an example.
Stochastic ontogenetic growth model
West, B. J.; West, D.
2012-02-01
An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.
A linear model of ductile plastic damage
Lemaitre, J.
1983-01-01
A three-dimensional model of isotropic ductile plastic damage based on a continuum damage variable on the effective stress concept and on thermodynamics is derived. As shown by experiments on several metals and alloys, the model, integrated in the case of proportional loading, is linear with respect to the accumulated plastic strain and shows a large influence of stress triaxiality [fr
Kinetics of nickel silicide growth in silicon nanowires: From linear to square root growth
Yaish, Y. E.; Beregovsky, M.; Katsman, A.; Cohen, G. M.
2011-01-01
The common practice for nickel silicide formation in silicon nanowires (SiNWs) relies on axial growth of silicide along the wire that is initiated from nickel reservoirs at the source and drain contacts. In the present work the silicide intrusions were studied for various parameters including wire diameter (25-50 nm), annealing time (15-120 s), annealing temperature (300-440 deg. C), and the quality of the initial Ni/Si interface. The silicide formation was investigated by high-resolution scanning electron microscopy, high-resolution transmission electron microscopy (TEM), and atomic force microscopy. The main part of the intrusion formed at 420 deg. C consists of monosilicide NiSi, as was confirmed by energy dispersive spectroscopy STEM, selected area diffraction TEM, and electrical resistance measurements of fully silicided SiNWs. The kinetics of nickel silicide axial growth in the SiNWs was analyzed in the framework of a diffusion model through constrictions. The model calculates the time dependence of the intrusion length, L, and predicts crossover from linear to square root time dependency for different wire parameters, as confirmed by the experimental data.
Ker, H. W.
2014-01-01
Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…
Faraway, Julian J
2005-01-01
Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...
Ground Motion Models for Future Linear Colliders
Seryi, Andrei
2000-01-01
Optimization of the parameters of a future linear collider requires comprehensive models of ground motion. Both general models of ground motion and specific models of the particular site and local conditions are essential. Existing models are not completely adequate, either because they are too general, or because they omit important peculiarities of ground motion. The model considered in this paper is based on recent ground motion measurements performed at SLAC and at other accelerator laboratories, as well as on historical data. The issues to be studied for the models to become more predictive are also discussed
Waterman, T.E.; Takata, A.N.
1983-01-01
The IITRI Urban Fire Spread Model as well as others of similar vintage were constrained by computer size and running costs such that many approximations/generalizations were introduced to reduce program complexity and data storage requirements. Simplifications were introduced both in input data and in fire growth and spread calculations. Modern computational capabilities offer the means to introduce greater detail and to examine its practical significance on urban fire predictions. Selected portions of the model are described as presently configured, and potential modifications are discussed. A single tract model is hypothesized which permits the importance of various model details to be assessed, and, other model applications are identified
Modelling female fertility traits in beef cattle using linear and non-linear models.
Naya, H; Peñagaricano, F; Urioste, J I
2017-06-01
Female fertility traits are key components of the profitability of beef cattle production. However, these traits are difficult and expensive to measure, particularly under extensive pastoral conditions, and consequently, fertility records are in general scarce and somehow incomplete. Moreover, fertility traits are usually dominated by the effects of herd-year environment, and it is generally assumed that relatively small margins are kept for genetic improvement. New ways of modelling genetic variation in these traits are needed. Inspired in the methodological developments made by Prof. Daniel Gianola and co-workers, we assayed linear (Gaussian), Poisson, probit (threshold), censored Poisson and censored Gaussian models to three different kinds of endpoints, namely calving success (CS), number of days from first calving (CD) and number of failed oestrus (FE). For models involving FE and CS, non-linear models overperformed their linear counterparts. For models derived from CD, linear versions displayed better adjustment than the non-linear counterparts. Non-linear models showed consistently higher estimates of heritability and repeatability in all cases (h 2 linear models; h 2 > 0.23 and r > 0.24, for non-linear models). While additive and permanent environment effects showed highly favourable correlations between all models (>0.789), consistency in selecting the 10% best sires showed important differences, mainly amongst the considered endpoints (FE, CS and CD). In consequence, endpoints should be considered as modelling different underlying genetic effects, with linear models more appropriate to describe CD and non-linear models better for FE and CS. © 2017 Blackwell Verlag GmbH.
The Non-Linear Effect of Corporate Taxes on Economic Growth
Huňady Ján
2015-03-01
Full Text Available The paper deals with the problem of taxation and its potential impact on economic growth and presents some new empirical insights into this topic. The main aim of the paper is to verify an assumed nonlinear impact of corporate tax rates on economic growth. Based on the theory of public finance and taxation, we hypothesize that at relatively low tax rates it is possible that the impact of taxation on economic growth become slightly positive. On the other hand when the tax rates are higher a negative impact of taxation on economic growth could be expected. Despite the fact that the most of the existing studies find a negative linear relationship between these variables, we can also find strong support for a non-linear relationship from several theoretical models as well as some empirical studies. Based on panel data fixed-effects econometric models, we, as well, find empirical evidence for a non-linear relationship between nominal and effective corporate tax rates and economic growth. Our data consists of annual observations for the period 1999 to 2011 for EU Member States. Based on the results, we also estimated the optimal level of the corporate tax rate in terms of maximizing economic growth in the average of the EU countries.
Numerical modelling in non linear fracture mechanics
Viggo Tvergaard
2007-07-01
Full Text Available Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence, and a model for intergranular creep failure with diffusive growth of grain boundary cavities leading to micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damage mechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesive zone models to represent the fracture process is discussed.
Modelling point patterns with linear structures
Møller, Jesper; Rasmussen, Jakob Gulddahl
2009-01-01
processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....
Modelling point patterns with linear structures
Møller, Jesper; Rasmussen, Jakob Gulddahl
processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....
Optimal designs for linear mixture models
Mendieta, E.J.; Linssen, H.N.; Doornbos, R.
1975-01-01
In a recent paper Snee and Marquardt [8] considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of this
Optimal designs for linear mixture models
Mendieta, E.J.; Linssen, H.N.; Doornbos, R.
1975-01-01
In a recent paper Snee and Marquardt (1974) considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of
A linear model of population dynamics
Lushnikov, A. A.; Kagan, A. I.
2016-08-01
The Malthus process of population growth is reformulated in terms of the probability w(n,t) to find exactly n individuals at time t assuming that both the birth and the death rates are linear functions of the population size. The master equation for w(n,t) is solved exactly. It is shown that w(n,t) strongly deviates from the Poisson distribution and is expressed in terms either of Laguerre’s polynomials or a modified Bessel function. The latter expression allows for considerable simplifications of the asymptotic analysis of w(n,t).
Linear factor copula models and their properties
Krupskii, Pavel; Genton, Marc G.
2018-01-01
We consider a special case of factor copula models with additive common factors and independent components. These models are flexible and parsimonious with O(d) parameters where d is the dimension. The linear structure allows one to obtain closed form expressions for some copulas and their extreme‐value limits. These copulas can be used to model data with strong tail dependencies, such as extreme data. We study the dependence properties of these linear factor copula models and derive the corresponding limiting extreme‐value copulas with a factor structure. We show how parameter estimates can be obtained for these copulas and apply one of these copulas to analyse a financial data set.
Linear factor copula models and their properties
Krupskii, Pavel
2018-04-25
We consider a special case of factor copula models with additive common factors and independent components. These models are flexible and parsimonious with O(d) parameters where d is the dimension. The linear structure allows one to obtain closed form expressions for some copulas and their extreme‐value limits. These copulas can be used to model data with strong tail dependencies, such as extreme data. We study the dependence properties of these linear factor copula models and derive the corresponding limiting extreme‐value copulas with a factor structure. We show how parameter estimates can be obtained for these copulas and apply one of these copulas to analyse a financial data set.
Diagnostics for Linear Models With Functional Responses
Xu, Hongquan; Shen, Qing
2005-01-01
Linear models where the response is a function and the predictors are vectors are useful in analyzing data from designed experiments and other situations with functional observations. Residual analysis and diagnostics are considered for such models. Studentized residuals are defined and their properties are studied. Chi-square quantile-quantile plots are proposed to check the assumption of Gaussian error process and outliers. Jackknife residuals and an associated test are proposed to det...
Non-linear Loudspeaker Unit Modelling
Pedersen, Bo Rohde; Agerkvist, Finn T.
2008-01-01
Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....
溫福星 Fur-Hsing Wen
2012-03-01
Full Text Available 本研究利用「台灣教育長期追蹤資料庫」的一般分析能力與數學分析能力的四波調查結果，配合男、女學生樣本進行多群體多條追蹤資料的線性成長模式估計。在考慮重複觀測資料誤差項在不同時點的變異數非同質與不同時點間的共變數非獨立情況下，以及男、女學生的不同成長軌跡，將誤差項結構設為無限制結構，利用虛擬變項交互項法與虛擬變項多樣本法同時估計不同性別、不同能力的線性成長軌跡變化。由於全部追蹤資料樣本存在遺失值的情形，本研究以階層線性模式（hierarchical linear modeling, HLM）軟體對完整資料2,806位學生進行分析，其估計結果發現，在完整資料的兩條成長軌跡模式中，男、女學生誤差項共變異數矩陣結構相同，但線性成長軌跡不恆等。除此之外，本文並對競爭模式比較的結果在文章最後進行討論並提出相關的建議。 This paper demonstrates the data analysis of the repeated measures from the Taiwan Education Panel Survey (TEPS. Based on the four data waves on the TEPS, we consider two abilities (general and mathematic and two population groups (male and female students to construct a multi-group multivariate linear growth model. Because the two-group multivariate repeated measures belong to the different populations and the different research variables, the residual terms of linear growth models may imply heterogeneity of the error covariance structure. We treat the error covariance structure as an unrestricted structure to compare the various types of models. The results from the HLM on the complete data (2,806 students reveal that the male and female students in this study have the same error covariance structure but have distinct linear growth trajectories. In addition, comparisons of the competitive models and related suggestions are discussed in the results and conclusion
Stochastic modeling of mode interactions via linear parabolized stability equations
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo
2017-11-01
Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.
Economic Growth Models Transition
Coralia Angelescu
2006-03-01
Full Text Available The transitional recession in countries of Eastern Europe has been much longer than expected. The legacy and recent policy mistakes have both contributed to the slow progress. As structural reforms and gradual institution building have taken hold, the post-socialist economics have started to recover, with some leading countries building momentum toward faster growth. There is a possibility that in wider context of globalization several of these emerging market economies will be able to catch up with the more advanced industrial economies in a matter of one or two generations. Over the past few years, most candidate countries have made progress in the transition to a competitive market economy, macroeconomic stabilization and structural reform. However their income levels have remained far below those in the Member States. Measured by per capita income in purchasing power standards, there has been a very limited amount of catching up over the past fourteen years. Prior, the distinctions between Solow-Swan model and endogenous growth model. The interdependence between transition and integration are stated in this study. Finally, some measures of macroeconomic policy for sustainable growth are proposed in correlation with real macroeconomic situation of the Romanian economy. Our study would be considered the real convergence for the Romanian economy and the recommendations for the adequate policies to achieve a fast real convergence and sustainable growth.
Economic Growth Models Transition
Coralia Angelescu
2006-01-01
Full Text Available The transitional recession in countries of Eastern Europe has been much longer than expected. The legacy and recent policy mistakes have both contributed to the slow progress. As structural reforms and gradual institution building have taken hold, the post-socialist economics have started to recover, with some leading countries building momentum toward faster growth. There is a possibility that in wider context of globalization several of these emerging market economies will be able to catch up with the more advanced industrial economies in a matter of one or two generations. Over the past few years, most candidate countries have made progress in the transition to a competitive market economy, macroeconomic stabilization and structural reform. However their income levels have remained far below those in the Member States. Measured by per capita income in purchasing power standards, there has been a very limited amount of catching up over the past fourteen years. Prior, the distinctions between Solow-Swan model and endogenous growth model. The interdependence between transition and integration are stated in this study. Finally, some measures of macroeconomic policy for sustainable growth are proposed in correlation with real macroeconomic situation of the Romanian economy. Our study would be considered the real convergence for the Romanian economy and the recommendations for the adequate policies to achieve a fast real convergence and sustainable growth.
[From clinical judgment to linear regression model.
Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O
2013-01-01
When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.
Testing Parametric versus Semiparametric Modelling in Generalized Linear Models
Härdle, W.K.; Mammen, E.; Müller, M.D.
1996-01-01
We consider a generalized partially linear model E(Y|X,T) = G{X'b + m(T)} where G is a known function, b is an unknown parameter vector, and m is an unknown function.The paper introduces a test statistic which allows to decide between a parametric and a semiparametric model: (i) m is linear, i.e.
Modeling of Volatility with Non-linear Time Series Model
Kim Song Yon; Kim Mun Chol
2013-01-01
In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.
Thresholding projection estimators in functional linear models
Cardot, Hervé; Johannes, Jan
2010-01-01
We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits to get easily mean squ...
Decomposed Implicit Models of Piecewise - Linear Networks
J. Brzobohaty
1992-05-01
Full Text Available The general matrix form of the implicit description of a piecewise-linear (PWL network and the symbolic block diagram of the corresponding circuit model are proposed. Their decomposed forms enable us to determine quite separately the existence of the individual breakpoints of the resultant PWL characteristic and their coordinates using independent network parameters. For the two-diode and three-diode cases all the attainable types of the PWL characteristic are introduced.
From spiking neuron models to linear-nonlinear models.
Ostojic, Srdjan; Brunel, Nicolas
2011-01-20
Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.
Stochastic linear programming models, theory, and computation
Kall, Peter
2011-01-01
This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...
Díaz-Gómez, N Marta; Doménech, Eduardo; Barroso, Flora; Castells, Silvia; Cortabarria, Carmen; Jiménez, Alejandro
2003-05-01
The aim of our study was to evaluate the effect of zinc supplementation on linear growth, body composition, and growth factors in premature infants. Thirty-six preterm infants (gestational age: 32.0 +/- 2.1 weeks, birth weight: 1704 +/- 364 g) participated in a longitudinal double-blind, randomized clinical trial. They were randomly allocated either to the supplemental (S) group fed with a standard term formula supplemented with zinc (final content 10 mg/L) and a small quantity of copper (final content 0.6 mg/L), or to the placebo group fed with the same formula without supplementation (final content of zinc: 5 mg/L and copper: 0.4 mg/L), from 36 weeks postconceptional age until 6 months corrected postnatal age. At each evaluation, anthropometric variables and bioelectrical impedance were measured, a 3-day dietary record was collected, and a blood sample was taken. We analyzed serum levels of total alkaline phosphatase, skeletal alkaline phosphatase (sALP), insulin growth factor (IGF)-I, IGF binding protein-3, IGF binding protein-1, zinc and copper, and the concentrations of zinc in erythrocytes. The S group had significantly higher zinc levels in serum and erythrocytes and lower serum copper levels with respect to the placebo group. We found that the S group had a greater linear growth (from baseline to 3 months corrected age: Delta score deviation standard length: 1.32 +/-.8 vs.38 +/-.8). The increase in total body water and in serum levels of sALP was also significantly higher in the S group (total body water: 3 months; corrected age: 3.8 +/-.5 vs 3.5 +/-.4 kg, 6 months; corrected age: 4.5 +/-.5 vs 4.2 +/-.4 kg; sALP: 3 months; corrected age: 140.2 +/- 28.7 vs 118.7 +/- 18.8 micro g/L). Zinc supplementation has a positive effect on linear growth in premature infants.
Linear accelerator modeling: development and application
Jameson, R.A.; Jule, W.D.
1977-01-01
Most of the parameters of a modern linear accelerator can be selected by simulating the desired machine characteristics in a computer code and observing how the parameters affect the beam dynamics. The code PARMILA is used at LAMPF for the low-energy portion of linacs. Collections of particles can be traced with a free choice of input distributions in six-dimensional phase space. Random errors are often included in order to study the tolerances which should be imposed during manufacture or in operation. An outline is given of the modifications made to the model, the results of experiments which indicate the validity of the model, and the use of the model to optimize the longitudinal tuning of the Alvarez linac
Running vacuum cosmological models: linear scalar perturbations
Perico, E.L.D. [Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP (Brazil); Tamayo, D.A., E-mail: elduartep@usp.br, E-mail: tamayo@if.usp.br [Departamento de Astronomia, Universidade de São Paulo, Rua do Matão 1226, CEP 05508-900, São Paulo, SP (Brazil)
2017-08-01
In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ( H {sup 2}) or Λ( R ). Such models assume an equation of state for the vacuum given by P-bar {sub Λ} = - ρ-bar {sub Λ}, relating its background pressure P-bar {sub Λ} with its mean energy density ρ-bar {sub Λ} ≡ Λ/8π G . This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely ρ-bar {sub Λ} = Σ {sub i} ρ-bar {sub Λ} {sub i} . Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ( H {sup 2}) scenario the vacuum is coupled with every matter component, whereas the Λ( R ) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.
Linear Parametric Model Checking of Timed Automata
Hune, Tohmas Seidelin; Romijn, Judi; Stoelinga, Mariëlle
2001-01-01
We present an extension of the model checker Uppaal capable of synthesize linear parameter constraints for the correctness of parametric timed automata. The symbolic representation of the (parametric) state-space is shown to be correct. A second contribution of this paper is the identication...... of a subclass of parametric timed automata (L/U automata), for which the emptiness problem is decidable, contrary to the full class where it is know to be undecidable. Also we present a number of lemmas enabling the verication eort to be reduced for L/U automata in some cases. We illustrate our approach...
Ana Paula Muraro
Full Text Available ABSTRACT: Objective: To assess the effect of socioeconomic position (SEP in childhood and social mobility on linear growth through adolescence in a population-based cohort. Methods: Children born in Cuiabá-MT, central-western Brazil, were evaluated during 1994 - 1999. They were first assessed during 1999 - 2000 (0 - 5 years and again during 2009 - 2011 (10 - 17 years, and their height-for-age was evaluated during these two periods.Awealth index was used to classify the SEP of each child’s family as low, medium, or high. Social mobility was categorized as upward mobility or no upward mobility. Linear mixed models were used. Results: We evaluated 1,716 children (71.4% of baseline after 10 years, and 60.6% of the families showed upward mobility, with a higher percentage among the lowest economic classes. A higher height-for-age was also observed among those from families with a high SEP both in childhood (low SEP= -0.35 z-score; high SEP= 0.15 z-score, p < 0.01 and adolescence (low SEP= -0.01 z-score; high SEP= 0.45 z-score, p < 0.01, whereas upward mobility did not affect their linear growth. Conclusion: Expressive social mobility was observed, but SEP in childhood and social mobility did not greatly influence linear growth through childhood in this central-western Brazilian cohort.
Wavelength dependence of the linear growth rate of the Es layer instability
R. B. Cosgrove
2007-06-01
Full Text Available It has recently been shown, by computation of the linear growth rate, that midlatitude sporadic-E (Es layers are subject to a large scale electrodynamic instability. This instability is a logical candidate to explain certain frontal structuring events, and polarization electric fields, which have been observed in Es layers by ionosondes, by coherent scatter radars, and by rockets. However, the original growth rate derivation assumed an infinitely thin Es layer, and therefore did not address the short wavelength cutoff. Also, the same derivation ignored the effects of F region loading, which is a significant wavelength dependent effect. Herein is given a generalized derivation that remedies both these short comings, and thereby allows a computation of the wavelength dependence of the linear growth rate, as well as computations of various threshold conditions. The wavelength dependence of the linear growth rate is compared with observed periodicities, and the role of the zeroth order meridional wind is explored. A three-dimensional paper model is used to explain the instability geometry, which has been defined formally in previous works.
Dynamic generalized linear models for monitoring endemic diseases
Lopes Antunes, Ana Carolina; Jensen, Dan; Hisham Beshara Halasa, Tariq
2016-01-01
The objective was to use a Dynamic Generalized Linear Model (DGLM) based on abinomial distribution with a linear trend, for monitoring the PRRS (Porcine Reproductive and Respiratory Syndrome sero-prevalence in Danish swine herds. The DGLM was described and its performance for monitoring control...... and eradication programmes based on changes in PRRS sero-prevalence was explored. Results showed a declining trend in PRRS sero-prevalence between 2007 and 2014 suggesting that Danish herds are slowly eradicating PRRS. The simulation study demonstrated the flexibility of DGLMs in adapting to changes intrends...... in sero-prevalence. Based on this, it was possible to detect variations in the growth model component. This study is a proof-of-concept, demonstrating the use of DGLMs for monitoring endemic diseases. In addition, the principles stated might be useful in general research on monitoring and surveillance...
Aspects of general linear modelling of migration.
Congdon, P
1992-01-01
"This paper investigates the application of general linear modelling principles to analysing migration flows between areas. Particular attention is paid to specifying the form of the regression and error components, and the nature of departures from Poisson randomness. Extensions to take account of spatial and temporal correlation are discussed as well as constrained estimation. The issue of specification bears on the testing of migration theories, and assessing the role migration plays in job and housing markets: the direction and significance of the effects of economic variates on migration depends on the specification of the statistical model. The application is in the context of migration in London and South East England in the 1970s and 1980s." excerpt
Mudcake growth: Model and implications
Liu, Q.
2017-12-15
Oil and gas account for 60% of the world\\'s energy consumption. Drilling muds that are used to advance oil and gas wells must be engineered to avoid wellbore integrity problems associated with mud cake formation, to favor cake erosion during cementing, and to prevent partial differential sticking. We developed a robust mud cake growth model for water-based mud based on wide stress-range constitutive equations within a Lagrangian reference system to avoid non-natural moving boundary solutions. The comprehensive mud cake growth model readily accommodates environmental factors (e.g., temperature, pH, and ionic concentration) and defines the yield stress distribution for displacement-erosion analyses. Results show that the mud cake thickness is more sensitive to time than to filtration pressure, therefore, time controls the non-uniform distribution of mudcake thickness during drilling. Long filtration time, high permeability, high salinity, high in-situ temperature and low viscosity exacerbate fluid loss and give rise to thick filter cakes. The analysis of residual cake thickness during cement displacement must take into account the effective stress dependent mudcake formation and the time-dependent mud thixotropy. Thixotropy dominates the mud yield stress at high void ratios, e.g. e > 20. The offsetting force that causes differential pressure sticking increases sub-linearly as a power function of the still-time.
Model Selection with the Linear Mixed Model for Longitudinal Data
Ryoo, Ji Hoon
2011-01-01
Model building or model selection with linear mixed models (LMMs) is complicated by the presence of both fixed effects and random effects. The fixed effects structure and random effects structure are codependent, so selection of one influences the other. Most presentations of LMM in psychology and education are based on a multilevel or…
Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models.
de Jesus, Karla; Ayala, Helon V H; de Jesus, Kelly; Coelho, Leandro Dos S; Medeiros, Alexandre I A; Abraldes, José A; Vaz, Mário A P; Fernandes, Ricardo J; Vilas-Boas, João Paulo
2018-03-01
Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances.
Modeling patterns in data using linear and related models
Engelhardt, M.E.
1996-06-01
This report considers the use of linear models for analyzing data related to reliability and safety issues of the type usually associated with nuclear power plants. The report discusses some of the general results of linear regression analysis, such as the model assumptions and properties of the estimators of the parameters. The results are motivated with examples of operational data. Results about the important case of a linear regression model with one covariate are covered in detail. This case includes analysis of time trends. The analysis is applied with two different sets of time trend data. Diagnostic procedures and tests for the adequacy of the model are discussed. Some related methods such as weighted regression and nonlinear models are also considered. A discussion of the general linear model is also included. Appendix A gives some basic SAS programs and outputs for some of the analyses discussed in the body of the report. Appendix B is a review of some of the matrix theoretic results which are useful in the development of linear models
Electron Model of Linear-Field FFAG
Koscielniak, Shane R
2005-01-01
A fixed-field alternating-gradient accelerator (FFAG) that employs only linear-field elements ushers in a new regime in accelerator design and dynamics. The linear-field machine has the ability to compact an unprecedented range in momenta within a small component aperture. With a tune variation which results from the natural chromaticity, the beam crosses many strong, uncorrec-table, betatron resonances during acceleration. Further, relativistic particles in this machine exhibit a quasi-parabolic time-of-flight that cannot be addressed with a fixed-frequency rf system. This leads to a new concept of bucketless acceleration within a rotation manifold. With a large energy jump per cell, there is possibly strong synchro-betatron coupling. A few-MeV electron model has been proposed to demonstrate the feasibility of these untested acceleration features and to investigate them at length under a wide range of operating conditions. This paper presents a lattice optimized for a 1.3 GHz rf, initial technology choices f...
Linear models in the mathematics of uncertainty
Mordeson, John N; Clark, Terry D; Pham, Alex; Redmond, Michael A
2013-01-01
The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data is difficult to measure and an assumption of randomness and/or statistical validity is questionable. We apply our methods to real world issues in international relations such as nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and fail...
Generalized Linear Models in Vehicle Insurance
Silvie Kafková
2014-01-01
Full Text Available Actuaries in insurance companies try to find the best model for an estimation of insurance premium. It depends on many risk factors, e.g. the car characteristics and the profile of the driver. In this paper, an analysis of the portfolio of vehicle insurance data using a generalized linear model (GLM is performed. The main advantage of the approach presented in this article is that the GLMs are not limited by inflexible preconditions. Our aim is to predict the relation of annual claim frequency on given risk factors. Based on a large real-world sample of data from 57 410 vehicles, the present study proposed a classification analysis approach that addresses the selection of predictor variables. The models with different predictor variables are compared by analysis of deviance and Akaike information criterion (AIC. Based on this comparison, the model for the best estimate of annual claim frequency is chosen. All statistical calculations are computed in R environment, which contains stats package with the function for the estimation of parameters of GLM and the function for analysis of deviation.
Non-linear pattern formation in bone growth and architecture.
Salmon, Phil
2014-01-01
The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent
Non-compliance with growth hormone treatment in children is common and impairs linear growth.
Wayne S Cutfield
Full Text Available BACKGROUND: GH therapy requires daily injections over many years and compliance can be difficult to sustain. As growth hormone (GH is expensive, non-compliance is likely to lead to suboptimal growth, at considerable cost. Thus, we aimed to assess the compliance rate of children and adolescents with GH treatment in New Zealand. METHODS: This was a national survey of GH compliance, in which all children receiving government-funded GH for a four-month interval were included. Compliance was defined as ≥ 85% adherence (no more than one missed dose a week on average to prescribed treatment. Compliance was determined based on two parameters: either the number of GH vials requested (GHreq by the family or the number of empty GH vials returned (GHret. Data are presented as mean ± SEM. FINDINGS: 177 patients were receiving GH in the study period, aged 12.1 ± 0.6 years. The rate of returned vials, but not number of vials requested, was positively associated with HVSDS (p < 0.05, such that patients with good compliance had significantly greater linear growth over the study period (p<0.05. GHret was therefore used for subsequent analyses. 66% of patients were non-compliant, and this outcome was not affected by sex, age or clinical diagnosis. However, Maori ethnicity was associated with a lower rate of compliance. INTERPRETATION: An objective assessment of compliance such as returned vials is much more reliable than compliance based on parental or patient based information. Non-compliance with GH treatment is common, and associated with reduced linear growth. Non-compliance should be considered in all patients with apparently suboptimal response to GH treatment.
The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay
Corvianawatie, Corry; Putri, Mutiara R.; Cahyarini, Sri Y.
2015-01-01
Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth
The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay
Corvianawatie, Corry, E-mail: corvianawatie@students.itb.ac.id; Putri, Mutiara R., E-mail: mutiara.putri@fitb.itb.ac.id [Oceanography Study Program, Bandung Institute of Technology (ITB), Jl. Ganesha 10 Bandung (Indonesia); Cahyarini, Sri Y., E-mail: yuda@geotek.lipi.go.id [Research Center for Geotechnology, Indonesian Institute of Sciences (LIPI), Bandung (Indonesia)
2015-09-30
Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth.
Nonlinear price impact from linear models
Patzelt, Felix; Bouchaud, Jean-Philippe
2017-12-01
The impact of trades on asset prices is a crucial aspect of market dynamics for academics, regulators, and practitioners alike. Recently, universal and highly nonlinear master curves were observed for price impacts aggregated on all intra-day scales (Patzelt and Bouchaud 2017 arXiv:1706.04163). Here we investigate how well these curves, their scaling, and the underlying return dynamics are captured by linear ‘propagator’ models. We find that the classification of trades as price-changing versus non-price-changing can explain the price impact nonlinearities and short-term return dynamics to a very high degree. The explanatory power provided by the change indicator in addition to the order sign history increases with increasing tick size. To obtain these results, several long-standing technical issues for model calibration and testing are addressed. We present new spectral estimators for two- and three-point cross-correlations, removing the need for previously used approximations. We also show when calibration is unbiased and how to accurately reveal previously overlooked biases. Therefore, our results contribute significantly to understanding both recent empirical results and the properties of a popular class of impact models.
Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.
2009-01-01
This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…
From linear to generalized linear mixed models: A case study in repeated measures
Compared to traditional linear mixed models, generalized linear mixed models (GLMMs) can offer better correspondence between response variables and explanatory models, yielding more efficient estimates and tests in the analysis of data from designed experiments. Using proportion data from a designed...
Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A
2017-02-01
This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r = 0.71-0.88, RMSE: 1.11-1.61 METs; p > 0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r = 0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r = 0.88, RMSE: 1.10-1.11 METs; p > 0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r = 0.88, RMSE: 1.12 METs. Linear models-correlations: r = 0.86, RMSE: 1.18-1.19 METs; p linear models for the wrist-worn accelerometers (ANN-correlations: r = 0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r = 0.71-0.73, RMSE: 1.55-1.61 METs; p models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh
Linear perturbation growth at the trailing edge of a rarefaction wave
Wouchuk, J.G.; Carretero, R.
2003-01-01
An analytic model for the perturbation growth inside a rarefaction wave is presented. The objective of the work is to calculate the growth of the perturbations at the trailing edge of a simple expanding wave in planar geometry. Previous numerical and analytical works have shown that the ripples at the rarefaction tail exhibit linear growth asymptotically in time [Yang et al., Phys. Fluids 6, 1856 (1994), A. Velikovich and L. Phillips, ibid. 8, 1107 (1996)]. However, closed expressions for the asymptotic value of the perturbed velocity of the trailing edge have not been reported before, except for very weak rarefactions. Explicit analytic solutions for the perturbations growing at the rarefaction trailing edge as a function of time and also for the asymptotic perturbed velocity are given, for fluids with γ<3. The limits of weak and strong rarefactions are considered and the corresponding scaling laws are given. A semi-qualitative discussion of the late time linear growth at the trailing edge ripple is presented and it is seen that the lateral mass flow induced by the sound wave fluctuations is solely responsible for that behavior. Only the rarefactions generated after the interaction of a shock wave with a contact discontinuity are considered
Admassu Wossen, Bitiya; Ritz, Christian; Wells, Jonathan C K
2018-01-01
Background: We have previously shown that fat-free mass (FFM) at birth is associated with height at 2 y of age in Ethiopian children. However, to our knowledge, the relation between changes in body composition during early infancy and later linear growth has not been studied. Objective: This study...... examined the associations of early infancy fat mass (FM) and FFM accretion with linear growth from 1 to 5 y of age in Ethiopian children. Methods: In the infant Anthropometry and Body Composition (iABC) study, a prospective cohort study was carried out in children in Jimma, Ethiopia, followed from birth...... to 5 y of age. FM and FFM were measured ≤6 times from birth to 6 mo by using air-displacement plethysmography. Linear mixed-effects models were used to identify associations between standardized FM and FFM accretion rates during early infancy and linear growth from 1 to 5 y of age. Standardized...
Non-linear self-reinforced growth of tearing modes with multiple rational surfaces
Maschke, E.K.; Persson, M.; Dewar, R.L.; Australian National Univ., Canberra, ACT
1993-06-01
The non-linear evolution of tearing modes with multiple rational surfaces is discussed. It is demonstrated that, in the presence of small differential rotation, the non-linear growth might be faster than exponential. This growth occurs as the rotation frequencies of the plasma at the different rational surfaces go into equilibrium
Modeling Exponential Population Growth
McCormick, Bonnie
2009-01-01
The concept of population growth patterns is a key component of understanding evolution by natural selection and population dynamics in ecosystems. The National Science Education Standards (NSES) include standards related to population growth in sections on biological evolution, interdependence of organisms, and science in personal and social…
Evaluating the double Poisson generalized linear model.
Zou, Yaotian; Geedipally, Srinivas Reddy; Lord, Dominique
2013-10-01
The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been investigated and applied since its first introduction two decades ago. The hurdle for applying the DP is related to its normalizing constant (or multiplicative constant) which is not available in closed form. This study proposed a new method to approximate the normalizing constant of the DP with high accuracy and reliability. The DP GLM and COM-Poisson GLM were developed using two observed over-dispersed datasets and one observed under-dispersed dataset. The modeling results indicate that the DP GLM with its normalizing constant approximated by the new method can handle crash data characterized by over- and under-dispersion. Its performance is comparable to the COM-Poisson GLM in terms of goodness-of-fit (GOF), although COM-Poisson GLM provides a slightly better fit. For the over-dispersed data, the DP GLM performs similar to the NB GLM. Considering the fact that the DP GLM can be easily estimated with inexpensive computation and that it is simpler to interpret coefficients, it offers a flexible and efficient alternative for researchers to model count data. Copyright © 2013 Elsevier Ltd. All rights reserved.
Petri Nets as Models of Linear Logic
Engberg, Uffe Henrik; Winskel, Glynn
1990-01-01
The chief purpose of this paper is to appraise the feasibility of Girad's linear logic as a specification language for parallel processes. To this end we propose an interpretation of linear logic in Petri nets, with respect to which we investigate the expressive power of the logic...
CSR-induced emittance growth in achromats: Linear formalism revisited
Venturini, M.
2015-09-11
We review the R-matrix formalism used to describe Coherent Synchrotron Radiation (CSR)-induced projected emittance growth in electron beam transport lines and establish the connection with a description in terms of the dispersion-invariant function.
Comparative study of growth and linear body measurements in Anak ...
The study was designed to compare the performance of two different breeds of broilers (Anak and Hubbard) using body weight and body linear measurements. Data on a total of 200 (100 each) Anak and Hubbard broiler breeds were collected weekly and the experiment lasted for 8 weeks. The parameters investigated ...
Linear approximation model network and its formation via ...
To overcome the deficiency of `local model network' (LMN) techniques, an alternative `linear approximation model' (LAM) network approach is proposed. Such a network models a nonlinear or practical system with multiple linear models fitted along operating trajectories, where individual models are simply networked ...
Muraro, Ana Paula; Souza, Rita Adriana Gomes de; Rodrigues, Paulo Rogério Melo; Ferreira, Márcia Gonçalves; Sichieri, Rosely
2017-01-01
To assess the effect of socioeconomic position (SEP) in childhood and social mobility on linear growth through adolescence in a population-based cohort. Children born in Cuiabá-MT, central-western Brazil, were evaluated during 1994 - 1999. They were first assessed during 1999 - 2000 (0 - 5 years) and again during 2009 - 2011 (10 - 17 years), and their height-for-age was evaluated during these two periods.Awealth index was used to classify the SEP of each child's family as low, medium, or high. Social mobility was categorized as upward mobility or no upward mobility. Linear mixed models were used. We evaluated 1,716 children (71.4% of baseline) after 10 years, and 60.6% of the families showed upward mobility, with a higher percentage among the lowest economic classes. A higher height-for-age was also observed among those from families with a high SEP both in childhood (low SEP= -0.35 z-score; high SEP= 0.15 z-score, p childhood and social mobility did not greatly influence linear growth through childhood in this central-western Brazilian cohort.
Stepanova, Larisa; Bronnikov, Sergej
2018-03-01
The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.
Linear regression crash prediction models : issues and proposed solutions.
2010-05-01
The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...
Game Theory and its Relationship with Linear Programming Models ...
Game Theory and its Relationship with Linear Programming Models. ... This paper shows that game theory and linear programming problem are closely related subjects since any computing method devised for ... AJOL African Journals Online.
Effect of milk proteins on linear growth and IGF variables in overweight adolescents
Larnkjær, Anni; Arnberg, Karina; Michaelsen, Kim F
2014-01-01
Milk may stimulate growth acting via insulin-like growth factor-I (IGF-I) secretion but the effect in adolescents is less examined. This study investigates the effect of milk proteins on linear growth, IGF-I, IGF binding protein-3 (IGFBP-3) and IGF-I/IGFBP-3 ratio in overweight adolescents....
Linear analysis on the growth of non-spherical perturbations in supersonic accretion flows
Takahashi, Kazuya; Yamada, Shoichi, E-mail: ktakahashi@heap.phys.waseda.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku 169-8555 (Japan)
2014-10-20
We analyzed the growth of non-spherical perturbations in supersonic accretion flows. We have in mind an application to the post-bounce phase of core-collapse supernovae (CCSNe). Such non-spherical perturbations have been suggested by a series of papers by Arnett, who has numerically investigated violent convections in the outer layers of pre-collapse stars. Moreover, Couch and Ott demonstrated in their numerical simulations that such perturbations may lead to a successful supernova even for a progenitor that fails to explode without fluctuations. This study investigated the linear growth of perturbations during the infall onto a stalled shock wave. The linearized equations are solved as an initial and boundary value problem with the use of a Laplace transform. The background is a Bondi accretion flow whose parameters are chosen to mimic the 15 M {sub ☉} progenitor model by Woosley and Heger, which is supposed to be a typical progenitor of CCSNe. We found that the perturbations that are given at a large radius grow as they flow down to the shock radius; the density perturbations can be amplified by a factor of 30, for example. We analytically show that the growth rate is proportional to l, the index of the spherical harmonics. We also found that the perturbations oscillate in time with frequencies that are similar to those of the standing accretion shock instability. This may have an implication for shock revival in CCSNe, which will be investigated in our forthcoming paper in more detail.
The effects of oestrogens on linear bone growth
Juul, A
2001-01-01
boys, and non-aromatizable androgens [oxandrolone or dihydrotestosterone (DHT)] have no effect on GH secretion. Treatment with aromatase inhibitors reduces circulating IGF-I concentrations in healthy males, and reduces growth in boys with testotoxicosis. Taken together, these findings suggest...
Caregiver perceptions of children's linear growth in Bangladesh: a qualitative analysis.
Hossain, Muttaquina; Ickes, Scott; Rice, Lauren; Ritter, Gaelen; Naila, Nurun Nahar; Zia, Tasnia; Nahar, Baitun; Mahfuz, Mustafa; Denno, Donna M; Ahmed, Tahmeed; Walson, Judd
2018-03-26
To understand caregivers' perceptions of children's linear growth and to identify the cultural meanings and perceptions of risk associated with poor height attainment. Three investigators from Bangladesh conducted twelve focus group discussions. The study was conducted in rural and slum settings in Bangladesh. Participants included mothers and alternative caregivers (n 81) who were recruited by household screening. No eligible, recruited subjects refused participation. Caregivers reported limited experience with growth monitoring services from the health system. Caregivers mainly use visual cues and developmental milestones to understand if children are growing properly, and recognize that children normally experience both weight gain and linear growth with age. Mothers expressed concern over children's malnutrition and short stature, but did not discuss children's failure to attain a 'growth potential' or distinguish inherited short stature from stunting. Caregivers interpret the consequences of poor height attainment as primarily social and economic and cite few health risks. Linear growth interpretation is determined more by community norms than by guidance from nutrition programming or the health system. Interventions to prevent or reduce linear growth failure may be perceived to have limited value where appropriate linear growth in children is determined by comparison to peers and siblings. Such perceptions may be significant barriers to programmes addressing stunting prevention in settings where many children are stunted. Efforts to raise awareness about the risks of linear growth faltering may need to consider delivering messages to caregivers that emphasize the social and economic consequences of stunting.
A Note on the Identifiability of Generalized Linear Mixed Models
Labouriau, Rodrigo
2014-01-01
I present here a simple proof that, under general regularity conditions, the standard parametrization of generalized linear mixed model is identifiable. The proof is based on the assumptions of generalized linear mixed models on the first and second order moments and some general mild regularity...... conditions, and, therefore, is extensible to quasi-likelihood based generalized linear models. In particular, binomial and Poisson mixed models with dispersion parameter are identifiable when equipped with the standard parametrization...
Linear control theory for gene network modeling.
Shin, Yong-Jun; Bleris, Leonidas
2010-09-16
Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.
LINEAR MODEL FOR NON ISOSCELES ABSORBERS.
BERG,J.S.
2003-05-12
Previous analyses have assumed that wedge absorbers are triangularly shaped with equal angles for the two faces. In this case, to linear order, the energy loss depends only on the position in the direction of the face tilt, and is independent of the incoming angle. One can instead construct an absorber with entrance and exit faces facing rather general directions. In this case, the energy loss can depend on both the position and the angle of the particle in question. This paper demonstrates that and computes the effect to linear order.
Modeling Population Growth and Extinction
Gordon, Sheldon P.
2009-01-01
The exponential growth model and the logistic model typically introduced in the mathematics curriculum presume that a population grows exclusively. In reality, species can also die out and more sophisticated models that take the possibility of extinction into account are needed. In this article, two extensions of the logistic model are considered,…
Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.
Ovesy, Marzieh; Nazari, Mohammad Ali; Mahdavian, Mohammad
2016-02-01
In the current research, the muscle equivalent linear damping coefficient which is introduced as the force-velocity relation in a muscle model and the corresponding time constant are investigated. In order to reach this goal, a 1D skeletal muscle model was used. Two characterizations of this model using a linear force-stiffness relationship (Hill-type model) and a nonlinear one have been implemented. The OpenSim platform was used for verification of the model. The isometric activation has been used for the simulation. The equivalent linear damping and the time constant of each model were extracted by using the results obtained from the simulation. The results provide a better insight into the characteristics of each model. It is found that the nonlinear models had a response rate closer to the reality compared to the Hill-type models.
Modelling non-linear effects of dark energy
Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis
2018-04-01
We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.
An online re-linearization scheme suited for Model Predictive and Linear Quadratic Control
Henriksen, Lars Christian; Poulsen, Niels Kjølstad
This technical note documents the equations for primal-dual interior-point quadratic programming problem solver used for MPC. The algorithm exploits the special structure of the MPC problem and is able to reduce the computational burden such that the computational burden scales with prediction...... horizon length in a linear way rather than cubic, which would be the case if the structure was not exploited. It is also shown how models used for design of model-based controllers, e.g. linear quadratic and model predictive, can be linearized both at equilibrium and non-equilibrium points, making...
Stochastic models for tumoral growth
Escudero, Carlos
2006-02-01
Strong experimental evidence has indicated that tumor growth belongs to the molecular beam epitaxy universality class. This type of growth is characterized by the constraint of cell proliferation to the tumor border and the surface diffusion of cells at the growing edge. Tumor growth is thus conceived as a competition for space between the tumor and the host, and cell diffusion at the tumor border is an optimal strategy adopted for minimizing the pressure and helping tumor development. Two stochastic partial differential equations are reported in this paper in order to correctly model the physical properties of tumoral growth in (1+1) and (2+1) dimensions. The advantage of these models is that they reproduce the correct geometry of the tumor and are defined in terms of polar variables. An analysis of these models allows us to quantitatively estimate the response of the tumor to an unfavorable perturbation during growth.
Tried and True: Springing into Linear Models
Darling, Gerald
2012-01-01
In eighth grade, students usually learn about forces in science class and linear relationships in math class, crucial topics that form the foundation for further study in science and engineering. An activity that links these two fundamental concepts involves measuring the distance a spring stretches as a function of how much weight is suspended…
Stochastic process corrosion growth models for pipeline reliability
Bazán, Felipe Alexander Vargas; Beck, André Teófilo
2013-01-01
Highlights: •Novel non-linear stochastic process corrosion growth model is proposed. •Corrosion rate modeled as random Poisson pulses. •Time to corrosion initiation and inherent time-variability properly represented. •Continuous corrosion growth histories obtained. •Model is shown to precisely fit actual corrosion data at two time points. -- Abstract: Linear random variable corrosion models are extensively employed in reliability analysis of pipelines. However, linear models grossly neglect well-known characteristics of the corrosion process. Herein, a non-linear model is proposed, where corrosion rate is represented as a Poisson square wave process. The resulting model represents inherent time-variability of corrosion growth, produces continuous growth and leads to mean growth at less-than-one power of time. Different corrosion models are adjusted to the same set of actual corrosion data for two inspections. The proposed non-linear random process corrosion growth model leads to the best fit to the data, while better representing problem physics
Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems
Bambang Riyanto
2005-11-01
Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.
Towards Sustainable Growth Business Models
Kamp-Roelands, N.; Balkenende, J.P.; Van Ommen, P.
2012-03-15
The Dutch Sustainable Growth Coalition (DSGC) has the following objectives: The DSGC aims to pro-actively drive sustainable growth business models along three lines: (1) Shape. DSGC member companies aim to connect economic profitability with environmental and social progress on the basis of integrated sustainable growth business models; (2) Share. DSGC member companies aim for joint advocacy of sustainable growth business models both internationally and nationally; and (3) Stimulate. DSGC member companies aim to stimulate and influence the policy debate on enabling sustainable growth - with a view to finding solutions to the environmental and social challenges we are facing. This is their first report. The vision, actions and mission of DSGC are documented in the Manifesto in Chapter 2 of this publication. Chapter 3 contains an overview of key features of an integrated sustainable growth business model and the roadmap towards such a model. In Chapter 4, project examples of DSGC members are presented, providing insight into the hands-on reality of implementing the good practices. Chapter 5 offers an overview of how the Netherlands provides an enabling environment for sustainable growth business models. Chapter 6 offers the key conclusions.
Ordinal Log-Linear Models for Contingency Tables
Brzezińska Justyna
2016-12-01
Full Text Available A log-linear analysis is a method providing a comprehensive scheme to describe the association for categorical variables in a contingency table. The log-linear model specifies how the expected counts depend on the levels of the categorical variables for these cells and provide detailed information on the associations. The aim of this paper is to present theoretical, as well as empirical, aspects of ordinal log-linear models used for contingency tables with ordinal variables. We introduce log-linear models for ordinal variables: linear-by-linear association, row effect model, column effect model and RC Goodman’s model. Algorithm, advantages and disadvantages will be discussed in the paper. An empirical analysis will be conducted with the use of R.
Chapman, Robin S.; Hesketh, Linda J.; Kistler, Doris J.
2002-01-01
Longitudinal change in syntax comprehension and production skill, measured over six years, was modeled in 31 individuals (ages 5-20) with Down syndrome. The best fitting Hierarchical Linear Modeling model of comprehension uses age and visual and auditory short-term memory as predictors of initial status, and age for growth trajectory. (Contains…
Recent Updates to the GEOS-5 Linear Model
Holdaway, Dan; Kim, Jong G.; Errico, Ron; Gelaro, Ronald; Mahajan, Rahul
2014-01-01
Global Modeling and Assimilation Office (GMAO) is close to having a working 4DVAR system and has developed a linearized version of GEOS-5.This talk outlines a series of improvements made to the linearized dynamics, physics and trajectory.Of particular interest is the development of linearized cloud microphysics, which provides the framework for 'all-sky' data assimilation.
Severe linear growth retardation in rural Zambian children: the influence of biological variables.
Hautvast, J.L.A.; Tolboom, J.J.M.; Kaftwembe, E.M.; Musonda, R.M.; Mwanakasale, V.; Staveren, W.A. van; Hof, M.A. van 't; Sauerwein, R.W.; Willems, J.L.; Monnens, L.A.H.
2000-01-01
BACKGROUND: The prevalence of stunting in preschool children in Zambia is high; stunting has detrimental effects on concurrent psychomotor development and later working capacity. OBJECTIVE: Our objective was to investigate biological variables that may contribute to linear growth retardation in
Double generalized linear compound poisson models to insurance claims data
Andersen, Daniel Arnfeldt; Bonat, Wagner Hugo
2017-01-01
This paper describes the specification, estimation and comparison of double generalized linear compound Poisson models based on the likelihood paradigm. The models are motivated by insurance applications, where the distribution of the response variable is composed by a degenerate distribution...... implementation and illustrate the application of double generalized linear compound Poisson models using a data set about car insurances....
Determining Predictor Importance in Hierarchical Linear Models Using Dominance Analysis
Luo, Wen; Azen, Razia
2013-01-01
Dominance analysis (DA) is a method used to evaluate the relative importance of predictors that was originally proposed for linear regression models. This article proposes an extension of DA that allows researchers to determine the relative importance of predictors in hierarchical linear models (HLM). Commonly used measures of model adequacy in…
Mamatsashvili, George; Dong, Siwei; Jiménez, Javier; Khujadze, George; Chagelishvili, George; Foysi, Holger
2016-01-01
We performed direct numerical simulations of homogeneous shear turbulence to study the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows. For this purpose, we analyzed the turbulence dynamics in Fourier/wavenumber/spectral space based on the simulation data for the domain aspect ratio 1 : 1 : 1. Specifically, we examined the interplay of linear transient growth of Fourier harmonics and nonlinear processes. The transient growth of harmonics is strongly anisotropic in spectral space. This, in turn, leads to anisotropy of nonlinear processes in spectral space and, as a result, the main nonlinear process appears to be not a direct/inverse, but rather a transverse/angular redistribution of harmonics in Fourier space referred to as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by the interplay of the linear transient, or nonmodal growth and the transverse cascade. This course of events reliably exemplifies the wellknown bypass scenario of subcritical turbulence in spectrally stable shear flows. These processes mainly operate at large length scales, comparable to the box size. Consequently, the central, small wavenumber area of Fourier space (the size of which is determined below) is crucial in the self-sustenance and is labeled the vital area. Outside the vital area, the transient growth and the transverse cascade are of secondary importance - Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. The number of harmonics actively participating in the self-sustaining process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) is quite large - it is equal to 36 for the considered box aspect ratio - and obviously cannot be described by low-order models. (paper)
Thurstonian models for sensory discrimination tests as generalized linear models
Brockhoff, Per B.; Christensen, Rune Haubo Bojesen
2010-01-01
as a so-called generalized linear model. The underlying sensory difference 6 becomes directly a parameter of the statistical model and the estimate d' and it's standard error becomes the "usual" output of the statistical analysis. The d' for the monadic A-NOT A method is shown to appear as a standard......Sensory discrimination tests such as the triangle, duo-trio, 2-AFC and 3-AFC tests produce binary data and the Thurstonian decision rule links the underlying sensory difference 6 to the observed number of correct responses. In this paper it is shown how each of these four situations can be viewed...
Linear control theory for gene network modeling.
Yong-Jun Shin
Full Text Available Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain and linear state-space (time domain can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.
Forecasting Volatility of Dhaka Stock Exchange: Linear Vs Non-linear models
Masudul Islam
2012-10-01
Full Text Available Prior information about a financial market is very essential for investor to invest money on parches share from the stock market which can strengthen the economy. The study examines the relative ability of various models to forecast daily stock indexes future volatility. The forecasting models that employed from simple to relatively complex ARCH-class models. It is found that among linear models of stock indexes volatility, the moving average model ranks first using root mean square error, mean absolute percent error, Theil-U and Linex loss function criteria. We also examine five nonlinear models. These models are ARCH, GARCH, EGARCH, TGARCH and restricted GARCH models. We find that nonlinear models failed to dominate linear models utilizing different error measurement criteria and moving average model appears to be the best. Then we forecast the next two months future stock index price volatility by the best (moving average model.
Andersen, Per Kragh; Klein, John P.; Rosthøj, Susanne
2003-01-01
Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model......Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model...
Linear and non-linear autoregressive models for short-term wind speed forecasting
Lydia, M.; Suresh Kumar, S.; Immanuel Selvakumar, A.; Edwin Prem Kumar, G.
2016-01-01
Highlights: • Models for wind speed prediction at 10-min intervals up to 1 h built on time-series wind speed data. • Four different multivariate models for wind speed built based on exogenous variables. • Non-linear models built using three data mining algorithms outperform the linear models. • Autoregressive models based on wind direction perform better than other models. - Abstract: Wind speed forecasting aids in estimating the energy produced from wind farms. The soaring energy demands of the world and minimal availability of conventional energy sources have significantly increased the role of non-conventional sources of energy like solar, wind, etc. Development of models for wind speed forecasting with higher reliability and greater accuracy is the need of the hour. In this paper, models for predicting wind speed at 10-min intervals up to 1 h have been built based on linear and non-linear autoregressive moving average models with and without external variables. The autoregressive moving average models based on wind direction and annual trends have been built using data obtained from Sotavento Galicia Plc. and autoregressive moving average models based on wind direction, wind shear and temperature have been built on data obtained from Centre for Wind Energy Technology, Chennai, India. While the parameters of the linear models are obtained using the Gauss–Newton algorithm, the non-linear autoregressive models are developed using three different data mining algorithms. The accuracy of the models has been measured using three performance metrics namely, the Mean Absolute Error, Root Mean Squared Error and Mean Absolute Percentage Error.
Neutrino mass, dark energy, and the linear growth factor
Kiakotou, Angeliki; Lahav, Ofer; Elgaroey, Oystein
2008-01-01
We study the degeneracies between neutrino mass and dark energy as they manifest themselves in cosmological observations. In contradiction to a popular formula in the literature, the suppression of the matter power spectrum caused by massive neutrinos is not just a function of the ratio of neutrino to total mass densities f ν =Ω ν /Ω m , but also each of the densities independently. We also present a fitting formula for the logarithmic growth factor of perturbations in a flat universe, f(z,k;f ν ,w,Ω DE )≅[1-A(k)Ω DE f ν +B(k)f ν 2 -C(k)f ν 3 ]Ω m α (z), where α depends on the dark energy equation of state parameter w. We then discuss cosmological probes where the f factor directly appears: peculiar velocities, redshift distortion, and the integrated Sachs-Wolfe effect. We also modify the approximation of Eisenstein and Hu [Astrophys. J. 511, 5 (1999)] for the power spectrum of fluctuations in the presence of massive neutrinos and provide a revised code [http://www.star.ucl.ac.uk/∼lahav/nu m atter p ower.f].
Applicability of linear and non-linear potential flow models on a Wavestar float
Bozonnet, Pauline; Dupin, Victor; Tona, Paolino
2017-01-01
as a model based on non-linear potential flow theory and weakscatterer hypothesis are successively considered. Simple tests, such as dip tests, decay tests and captive tests enable to highlight the improvements obtained with the introduction of nonlinearities. Float motion under wave actions and without...... control action, limited to small amplitude motion with a single float, is well predicted by the numerical models, including the linear one. Still, float velocity is better predicted by accounting for non-linear hydrostatic and Froude-Krylov forces.......Numerical models based on potential flow theory, including different types of nonlinearities are compared and validated against experimental data for the Wavestar wave energy converter technology. Exact resolution of the rotational motion, non-linear hydrostatic and Froude-Krylov forces as well...
A test for the parameters of multiple linear regression models ...
A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...
Modeling Non-Linear Material Properties in Composite Materials
2016-06-28
Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions
Linear models for sound from supersonic reacting mixing layers
Chary, P. Shivakanth; Samanta, Arnab
2016-12-01
We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.
Admassu, Bitiya; Ritz, Christian; Wells, Jonathan C K; Girma, Tsinuel; Andersen, Gregers S; Belachew, Tefera; Owino, Victor; Michaelsen, Kim F; Abera, Mubarek; Wibaek, Rasmus; Friis, Henrik; Kæstel, Pernille
2018-04-01
We have previously shown that fat-free mass (FFM) at birth is associated with height at 2 y of age in Ethiopian children. However, to our knowledge, the relation between changes in body composition during early infancy and later linear growth has not been studied. This study examined the associations of early infancy fat mass (FM) and FFM accretion with linear growth from 1 to 5 y of age in Ethiopian children. In the infant Anthropometry and Body Composition (iABC) study, a prospective cohort study was carried out in children in Jimma, Ethiopia, followed from birth to 5 y of age. FM and FFM were measured ≤6 times from birth to 6 mo by using air-displacement plethysmography. Linear mixed-effects models were used to identify associations between standardized FM and FFM accretion rates during early infancy and linear growth from 1 to 5 y of age. Standardized accretion rates were obtained by dividing FM and FFM accretion by their respective SD. FFM accretion from 0 to 6 mo of age was positively associated with length at 1 y (β = 0.64; 95% CI: 0.19, 1.09; P = 0.005) and linear growth from 1 to 5 y (β = 0.63; 95% CI: 0.19, 1.07; P = 0.005). The strongest association with FFM accretion was observed at 1 y. The association with linear growth from 1 to 5 y was mainly engendered by the 1-y association. FM accretion from 0 to 4 mo was positively associated with linear growth from 1 to 5 y (β = 0.45; 95% CI: 0.02, 0.88; P = 0.038) in the fully adjusted model. In Ethiopian children, FFM accretion was associated with linear growth at 1 y and no clear additional longitudinal effect from 1 to 5 y was observed. FM accretion showed a weak association from 1 to 5 y. This trial was registered at www.controlled-trials.com as ISRCTN46718296.
Reliability modelling and simulation of switched linear system ...
Reliability modelling and simulation of switched linear system control using temporal databases. ... design of fault-tolerant real-time switching systems control and modelling embedded micro-schedulers for complex systems maintenance.
Linear growth patterns in small for gestational age and preterm infants after zinc supplementation
Caecilia Nancy Setiawan
2015-03-01
Full Text Available Background Low birth weight (LBW infants are at risk for growth disturbances due to intrauterine zinc deficiency. Zinc supplementation is expected to improve the linear growth of LBW babies. Objective To assess the effect of zinc supplementation on linear growth in preterm and small for gestational age (SGA infants. Methods This quasi-experimental study had a pre- and post-test design. Subjects were LBW infants hospitalized in Kariadi Hospital during March-December 2011, consisted of SGA and preterm neonates. All subjects were given 5 mg of zinc syrup daily for 3 months. Subjects’ head circumference, weight, and length were measured monthly. Serum zinc levels were measured before and after supplementation. Data were analyzed with Chi-square test, independent T-test, and general linear model repeated measure. Results A total of 61 subjects were enrolled consisted of 31 preterm and 30 SGA neonates. Mean serum zinc levels in the preterm group were 168.2 (SD 54.5 μg/dL pre-supplementation and 163.6 (SD 50.7 μg/dL post-supplementation (P=0.049, while mean serum zinc levels in the SGA group were 174.8 (SD 46.6 μg/dL pre-supplementation and 167.4 (SD 49.4 μg/dL post-supplementation (P=0.271. Median percentage preterm weight and length increased from 87.3 to 102.4% in the third month (P<0.001 and from 95.8 to 103.9% in the third month (P<0.001, respectively. Median percentage SGA weight and length increased from 73.5 to 98.3% in the third month (P<0.001 and from 94.5 to 102.2% in the third month (P<0.001, respectively. Conclusion Both, the preterm and SGA infants exhibit catch-up growth after three months of zinc supplementation. [
Model uncertainty in growth empirics
Prüfer, P.
2008-01-01
This thesis applies so-called Bayesian model averaging (BMA) to three different economic questions substantially exposed to model uncertainty. Chapter 2 addresses a major issue of modern development economics: the analysis of the determinants of pro-poor growth (PPG), which seeks to combine high
Multivariate statistical modelling based on generalized linear models
Fahrmeir, Ludwig
1994-01-01
This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...
Approximating chiral quark models with linear σ-models
Broniowski, Wojciech; Golli, Bojan
2003-01-01
We study the approximation of chiral quark models with simpler models, obtained via gradient expansion. The resulting Lagrangian of the type of the linear σ-model contains, at the lowest level of the gradient-expanded meson action, an additional term of the form ((1)/(2))A(σ∂ μ σ+π∂ μ π) 2 . We investigate the dynamical consequences of this term and its relevance to the phenomenology of the soliton models of the nucleon. It is found that the inclusion of the new term allows for a more efficient approximation of the underlying quark theory, especially in those cases where dynamics allows for a large deviation of the chiral fields from the chiral circle, such as in quark models with non-local regulators. This is of practical importance, since the σ-models with valence quarks only are technically much easier to treat and simpler to solve than the quark models with the full-fledged Dirac sea
Growth rate in the dynamical dark energy models
Avsajanishvili, Olga; Arkhipova, Natalia A.; Samushia, Lado; Kahniashvili, Tina
2014-01-01
Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter α that describes the steepness of the scalar field potential. (orig.)
Growth rate in the dynamical dark energy models.
Avsajanishvili, Olga; Arkhipova, Natalia A; Samushia, Lado; Kahniashvili, Tina
Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter [Formula: see text] that describes the steepness of the scalar field potential.
Latent log-linear models for handwritten digit classification.
Deselaers, Thomas; Gass, Tobias; Heigold, Georg; Ney, Hermann
2012-06-01
We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional flexibility within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers image deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating optimization. For certain variants, convergence to a stationary point is guaranteed and, in practice, even variants without this guarantee converge and find models that perform well. We tune the methods on the USPS data set and evaluate on the MNIST data set, demonstrating the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters, are able to obtain competitive results with models proposed in the literature.
Rossi, Sergio; Anfodillo, Tommaso; Cufar, Katarina; Cuny, Henri E; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gricar, Jozica; Gruber, Andreas; King, Gregory M; Krause, Cornelia; Morin, Hubert; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B K
2013-12-01
Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1-9 years per site from 1998 to 2011. The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern. The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.
Bressan, Alberto; Lewicka, Marta
2018-03-01
We consider a free boundary problem for a system of PDEs, modeling the growth of a biological tissue. A morphogen, controlling volume growth, is produced by specific cells and then diffused and absorbed throughout the domain. The geometric shape of the growing tissue is determined by the instantaneous minimization of an elastic deformation energy, subject to a constraint on the volumetric growth. For an initial domain with C}^{2,α boundary, our main result establishes the local existence and uniqueness of a classical solution, up to a rigid motion.
Linear growth of children on a ketogenic diet: does the protein-to-energy ratio matter?
Nation, Judy; Humphrey, Maureen; MacKay, Mark; Boneh, Avihu
2014-11-01
Ketogenic diet is a structured effective treatment for children with intractable epilepsy. Several reports have indicated poor linear growth in children on the diet but the mechanism of poor growth has not been elucidated. We aimed to explore whether the protein to energy ratio plays a role in linear growth of children on ketogenic diet. Data regarding growth and nutrition were, retrospectively, collected from the clinical histories of 35 children who were treated with ketogenic diet for at least 6 months between 2002 and 2010. Patients were stratified into groups according to periods of satisfactory or poor linear growth. Poor linear growth was associated with protein or caloric intake of <80% recommended daily intake, and with a protein-to-energy ratio consistently ≤1.4 g protein/100 kcal even when protein and caloric intakes were adequate. We recommend a protein-to-energy ratio of 1.5 g protein/100 kcal be prescribed to prevent growth retardation. © The Author(s) 2013.
Linear Regression Models for Estimating True Subsurface ...
47
The objective is to minimize the processing time and computer memory required. 10 to carry out inversion .... to the mainland by two long bridges. .... term. In this approach, the model converges when the squared sum of the differences. 143.
de Beer, M.; Vrijkotte, T. G. M.; Fall, C. H. D.; van Eijsden, M.; Osmond, C.; Gemke, R. J. B. J.
2015-01-01
Growth and feeding during infancy have been associated with later life body mass index. However, the associations of infant feeding, linear growth and weight gain relative to linear growth with separate components of body composition remain unclear. Of 5551 children with collected growth and
Berngard, Samuel Clark; Berngard, Jennifer Bishop; Krebs, Nancy F; Garcés, Ana; Miller, Leland V; Westcott, Jamie; Wright, Linda L; Kindem, Mark; Hambidge, K Michael
2013-12-01
Stunting is prevalent by the age of 6 months in the indigenous population of the Western Highlands of Guatemala. The objective of this study was to determine the time course and predictors of linear growth failure and weight-for-age in early infancy. One hundred and forty eight term newborns had measurements of length and weight in their homes, repeated at 3 and 6 months. Maternal measurements were also obtained. Mean ± SD length-for-age Z-score (LAZ) declined from newborn -1.0 ± 1.01 to -2.20 ± 1.05 and -2.26 ± 1.01 at 3 and 6 months respectively. Stunting rates for newborn, 3 and 6 months were 47%, 53% and 56% respectively. A multiple regression model (R(2) = 0.64) demonstrated that the major predictor of LAZ at 3 months was newborn LAZ with the other predictors being newborn weight-for-age Z-score (WAZ), gender and maternal education∗maternal age interaction. Because WAZ remained essentially constant and LAZ declined during the same period, weight-for-length Z-score (WLZ) increased from -0.44 to +1.28 from birth to 3 months. The more severe the linear growth failure, the greater WAZ was in proportion to the LAZ. The primary conclusion is that impaired fetal linear growth is the major predictor of early infant linear growth failure indicating that prevention needs to start with maternal interventions. © 2013.
Random effect selection in generalised linear models
Denwood, Matt; Houe, Hans; Forkman, Björn
We analysed abattoir recordings of meat inspection codes with possible relevance to onfarm animal welfare in cattle. Random effects logistic regression models were used to describe individual-level data obtained from 461,406 cattle slaughtered in Denmark. Our results demonstrate that the largest...
Model Order Reduction for Non Linear Mechanics
Pinillo, Rubén
2017-01-01
Context: Automotive industry is moving towards a new generation of cars. Main idea: Cars are furnished with radars, cameras, sensors, etc… providing useful information about the environment surrounding the car. Goals: Provide an efficient model for the radar input/output. Reducing computational costs by means of big data techniques.
Identification of Influential Points in a Linear Regression Model
Jan Grosz
2011-03-01
Full Text Available The article deals with the detection and identification of influential points in the linear regression model. Three methods of detection of outliers and leverage points are described. These procedures can also be used for one-sample (independentdatasets. This paper briefly describes theoretical aspects of several robust methods as well. Robust statistics is a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. A simulation model of the simple linear regression is presented.
Heterotic sigma models and non-linear strings
Hull, C.M.
1986-01-01
The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)
Linear latent variable models: the lava-package
Holst, Klaus Kähler; Budtz-Jørgensen, Esben
2013-01-01
are implemented including robust standard errors for clustered correlated data, multigroup analyses, non-linear parameter constraints, inference with incomplete data, maximum likelihood estimation with censored and binary observations, and instrumental variable estimators. In addition an extensive simulation......An R package for specifying and estimating linear latent variable models is presented. The philosophy of the implementation is to separate the model specification from the actual data, which leads to a dynamic and easy way of modeling complex hierarchical structures. Several advanced features...
On-line control models for the Stanford Linear Collider
Sheppard, J.C.; Helm, R.H.; Lee, M.J.; Woodley, M.D.
1983-03-01
Models for computer control of the SLAC three-kilometer linear accelerator and damping rings have been developed as part of the control system for the Stanford Linear Collider. Some of these models have been tested experimentally and implemented in the control program for routine linac operations. This paper will describe the development and implementation of these models, as well as some of the operational results
Bayesian Subset Modeling for High-Dimensional Generalized Linear Models
Liang, Faming
2013-06-01
This article presents a new prior setting for high-dimensional generalized linear models, which leads to a Bayesian subset regression (BSR) with the maximum a posteriori model approximately equivalent to the minimum extended Bayesian information criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening and consistency with the existing sure independence screening (SIS) and iterative sure independence screening (ISIS) procedures. However, since the proposed procedure makes use of joint information from all predictors, it generally outperforms SIS and ISIS in real applications. This article also makes extensive comparisons of BSR with the popular penalized likelihood methods, including Lasso, elastic net, SIS, and ISIS. The numerical results indicate that BSR can generally outperform the penalized likelihood methods. The models selected by BSR tend to be sparser and, more importantly, of higher prediction ability. In addition, the performance of the penalized likelihood methods tends to deteriorate as the number of predictors increases, while this is not significant for BSR. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Generalized Linear Models with Applications in Engineering and the Sciences
Myers, Raymond H; Vining, G Geoffrey; Robinson, Timothy J
2012-01-01
Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities."-Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Ma
Modelling a linear PM motor including magnetic saturation
Polinder, H.; Slootweg, J.G.; Compter, J.C.; Hoeijmakers, M.J.
2002-01-01
The use of linear permanent-magnet (PM) actuators increases in a wide variety of applications because of the high force density, robustness and accuracy. The paper describes the modelling of a linear PM motor applied in, for example, wafer steppers, including magnetic saturation. This is important
Application of the simplex method of linear programming model to ...
This work discussed how the simplex method of linear programming could be used to maximize the profit of any business firm using Saclux Paint Company as a case study. It equally elucidated the effect variation in the optimal result obtained from linear programming model, will have on any given firm. It was demonstrated ...
Genetic parameters for racing records in trotters using linear and generalized linear models.
Suontama, M; van der Werf, J H J; Juga, J; Ojala, M
2012-09-01
Heritability and repeatability and genetic and phenotypic correlations were estimated for trotting race records with linear and generalized linear models using 510,519 records on 17,792 Finnhorses and 513,161 records on 25,536 Standardbred trotters. Heritability and repeatability were estimated for single racing time and earnings traits with linear models, and logarithmic scale was used for racing time and fourth-root scale for earnings to correct for nonnormality. Generalized linear models with a gamma distribution were applied for single racing time and with a multinomial distribution for single earnings traits. In addition, genetic parameters for annual earnings were estimated with linear models on the observed and fourth-root scales. Racing success traits of single placings, winnings, breaking stride, and disqualifications were analyzed using generalized linear models with a binomial distribution. Estimates of heritability were greatest for racing time, which ranged from 0.32 to 0.34. Estimates of heritability were low for single earnings with all distributions, ranging from 0.01 to 0.09. Annual earnings were closer to normal distribution than single earnings. Heritability estimates were moderate for annual earnings on the fourth-root scale, 0.19 for Finnhorses and 0.27 for Standardbred trotters. Heritability estimates for binomial racing success variables ranged from 0.04 to 0.12, being greatest for winnings and least for breaking stride. Genetic correlations among racing traits were high, whereas phenotypic correlations were mainly low to moderate, except correlations between racing time and earnings were high. On the basis of a moderate heritability and moderate to high repeatability for racing time and annual earnings, selection of horses for these traits is effective when based on a few repeated records. Because of high genetic correlations, direct selection for racing time and annual earnings would also result in good genetic response in racing success.
Stochastic growth logistic model with aftereffect for batch fermentation process
Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md
2014-06-01
In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.
Stochastic growth logistic model with aftereffect for batch fermentation process
Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md
2014-01-01
In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits
Stochastic growth logistic model with aftereffect for batch fermentation process
Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)
2014-06-19
In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.
Mudcake growth: Model and implications
Liu, Q.; Santamarina, Carlos
2017-01-01
cementing, and to prevent partial differential sticking. We developed a robust mud cake growth model for water-based mud based on wide stress-range constitutive equations within a Lagrangian reference system to avoid non-natural moving boundary solutions
Linear approximation model network and its formation via ...
niques, an alternative `linear approximation model' (LAM) network approach is .... network is LPV, existing LTI theory is difficult to apply (Kailath 1980). ..... Beck J V, Arnold K J 1977 Parameter estimation in engineering and science (New York: ...
Sphaleron in a non-linear sigma model
Sogo, Kiyoshi; Fujimoto, Yasushi.
1989-08-01
We present an exact classical saddle point solution in a non-linear sigma model. It has a topological charge 1/2 and mediates the vacuum transition. The quantum fluctuations and the transition rate are also examined. (author)
On D-branes from gauged linear sigma models
Govindarajan, S.; Jayaraman, T.; Sarkar, T.
2001-01-01
We study both A-type and B-type D-branes in the gauged linear sigma model by considering worldsheets with boundary. The boundary conditions on the matter and vector multiplet fields are first considered in the large-volume phase/non-linear sigma model limit of the corresponding Calabi-Yau manifold, where we find that we need to add a contact term on the boundary. These considerations enable to us to derive the boundary conditions in the full gauged linear sigma model, including the addition of the appropriate boundary contact terms, such that these boundary conditions have the correct non-linear sigma model limit. Most of the analysis is for the case of Calabi-Yau manifolds with one Kaehler modulus (including those corresponding to hypersurfaces in weighted projective space), though we comment on possible generalisations
Optimization for decision making linear and quadratic models
Murty, Katta G
2010-01-01
While maintaining the rigorous linear programming instruction required, Murty's new book is unique in its focus on developing modeling skills to support valid decision-making for complex real world problems, and includes solutions to brand new algorithms.
Study of linear induction motor characteristics : the Mosebach model
1976-05-31
This report covers the Mosebach theory of the double-sided linear induction motor, starting with the ideallized model and accompanying assumptions, and ending with relations for thrust, airgap power, and motor efficiency. Solutions of the magnetic in...
Study of linear induction motor characteristics : the Oberretl model
1975-05-30
The Oberretl theory of the double-sided linear induction motor (LIM) is examined, starting with the idealized model and accompanying assumptions, and ending with relations for predicted thrust, airgap power, and motor efficiency. The effect of varyin...
Optimization Research of Generation Investment Based on Linear Programming Model
Wu, Juan; Ge, Xueqian
Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.
Mohammed, Shimels Hussien; Esmaillzadeh, Ahmad
2017-11-01
Growth faltering and anaemia remain unacceptably high among infants and young children in Ethiopia. In this study, we investigated the relationships among Fe supplement use (ISU), Hb concentration and linear growth, hypothesising positive relationships between ISU and Hb, ISU and linear growth and Hb and linear growth. We used a nationally representative data of 2400 children aged 6-24 months from the Ethiopian Demographic and Health Survey (EDHS) 2011, conducted following a stratified, two-stage cluster sampling. We examined the links by Pearson's correlation, bivariate and multivariate linear regression analyses and reported adjusted estimates. We found that ISU was not significantly associated with either Hb (β=1·09; 95 % CI -2·73, 5·01, P=0·567) or linear growth (β=0·07; 95 % CI -0·06, 0·21, P=0·217). We found a positive, however, weak, correlation between Hb and linear growth (r 0·09; 95 % CI 0·06, 0·11, PHb predicted linear growth independent of a variety dietary and non-dietary factors (β=0·08; 95 % CI 0·04, 0·11, PHb; age, birth type, size at birth, sex, breast-feeding duration, dietary diversity and deworming were independently associated with linear growth, indicating that Hb and linear growth are multifactorial with both nutritional and non-nutritional factors implicated. Further studies, with better design and exposure assessment, are warranted on the relation of ISU with Hb or linear growth.
Generalized linear mixed models modern concepts, methods and applications
Stroup, Walter W
2012-01-01
PART I The Big PictureModeling BasicsWhat Is a Model?Two Model Forms: Model Equation and Probability DistributionTypes of Model EffectsWriting Models in Matrix FormSummary: Essential Elements for a Complete Statement of the ModelDesign MattersIntroductory Ideas for Translating Design and Objectives into ModelsDescribing ""Data Architecture"" to Facilitate Model SpecificationFrom Plot Plan to Linear PredictorDistribution MattersMore Complex Example: Multiple Factors with Different Units of ReplicationSetting the StageGoals for Inference with Models: OverviewBasic Tools of InferenceIssue I: Data
Mechanical model for filament buckling and growth by phase ordering.
Rey, Alejandro D; Abukhdeir, Nasser M
2008-02-05
A mechanical model of open filament shape and growth driven by phase ordering is formulated. For a given phase-ordering driving force, the model output is the filament shape evolution and the filament end-point kinematics. The linearized model for the slope of the filament is the Cahn-Hilliard model of spinodal decomposition, where the buckling corresponds to concentration fluctuations. Two modes are predicted: (i) sequential growth and buckling and (ii) simultaneous buckling and growth. The relation among the maximum buckling rate, filament tension, and matrix viscosity is given. These results contribute to ongoing work in smectic A filament buckling.
A comparison of linear tyre models for analysing shimmy
Besselink, I.J.M.; Maas, J.W.L.H.; Nijmeijer, H.
2011-01-01
A comparison is made between three linear, dynamic tyre models using low speed step responses and yaw oscillation tests. The match with the measurements improves with increasing complexity of the tyre model. Application of the different tyre models to a two degree of freedom trailing arm suspension
Unification of three linear models for the transient visual system
Brinker, den A.C.
1989-01-01
Three different linear filters are considered as a model describing the experimentally determined triphasic impulse responses of discs. These impulse responses arc associated with the transient visual system. Each model reveals a different feature of the system. Unification of the models is
A BEHAVIORAL-APPROACH TO LINEAR EXACT MODELING
ANTOULAS, AC; WILLEMS, JC
1993-01-01
The behavioral approach to system theory provides a parameter-free framework for the study of the general problem of linear exact modeling and recursive modeling. The main contribution of this paper is the solution of the (continuous-time) polynomial-exponential time series modeling problem. Both
Linearized models for a new magnetic control in MAST
Artaserse, G., E-mail: giovanni.artaserse@enea.it [Associazione Euratom-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Maviglia, F.; Albanese, R. [Associazione Euratom-ENEA-CREATE sulla Fusione, Via Claudio 21, I-80125 Napoli (Italy); McArdle, G.J.; Pangione, L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)
2013-10-15
Highlights: ► We applied linearized models for a new magnetic control on MAST tokamak. ► A suite of procedures, conceived to be machine independent, have been used. ► We carried out model-based simulations, taking into account eddy currents effects. ► Comparison with the EFIT flux maps and the experimental magnetic signals are shown. ► A current driven model for the dynamic simulations of the experimental data have been performed. -- Abstract: The aim of this work is to provide reliable linearized models for the design and assessment of a new magnetic control system for MAST (Mega Ampère Spherical Tokamak) using rtEFIT, which can easily be exported to MAST Upgrade. Linearized models for magnetic control have been obtained using the 2D axisymmetric finite element code CREATE L. MAST linearized models include equivalent 2D axisymmetric schematization of poloidal field (PF) coils, vacuum vessel, and other conducting structures. A plasmaless and a double null configuration have been chosen as benchmark cases for the comparison with experimental data and EFIT reconstructions. Good agreement has been found with the EFIT flux map and the experimental signals coming from magnetic probes with only few mismatches probably due to broken sensors. A suite of procedures (equipped with a user friendly interface to be run even remotely) to provide linearized models for magnetic control is now available on the MAST linux machines. A new current driven model has been used to obtain a state space model having the PF coil currents as inputs. Dynamic simulations of experimental data have been carried out using linearized models, including modelling of the effects of the passive structures, showing a fair agreement. The modelling activity has been useful also to reproduce accurately the interaction between plasma current and radial position control loops.
Linearized models for a new magnetic control in MAST
Artaserse, G.; Maviglia, F.; Albanese, R.; McArdle, G.J.; Pangione, L.
2013-01-01
Highlights: ► We applied linearized models for a new magnetic control on MAST tokamak. ► A suite of procedures, conceived to be machine independent, have been used. ► We carried out model-based simulations, taking into account eddy currents effects. ► Comparison with the EFIT flux maps and the experimental magnetic signals are shown. ► A current driven model for the dynamic simulations of the experimental data have been performed. -- Abstract: The aim of this work is to provide reliable linearized models for the design and assessment of a new magnetic control system for MAST (Mega Ampère Spherical Tokamak) using rtEFIT, which can easily be exported to MAST Upgrade. Linearized models for magnetic control have been obtained using the 2D axisymmetric finite element code CREATE L. MAST linearized models include equivalent 2D axisymmetric schematization of poloidal field (PF) coils, vacuum vessel, and other conducting structures. A plasmaless and a double null configuration have been chosen as benchmark cases for the comparison with experimental data and EFIT reconstructions. Good agreement has been found with the EFIT flux map and the experimental signals coming from magnetic probes with only few mismatches probably due to broken sensors. A suite of procedures (equipped with a user friendly interface to be run even remotely) to provide linearized models for magnetic control is now available on the MAST linux machines. A new current driven model has been used to obtain a state space model having the PF coil currents as inputs. Dynamic simulations of experimental data have been carried out using linearized models, including modelling of the effects of the passive structures, showing a fair agreement. The modelling activity has been useful also to reproduce accurately the interaction between plasma current and radial position control loops
de Beer, M.; Vrijkotte, T.G.M.; Fall, C.H.D.; Eijsden, M.; Osmond, C.; Gemke, R.J.B.J.
2015-01-01
Background:Growth and feeding during infancy have been associated with later life body mass index. However, the associations of infant feeding, linear growth and weight gain relative to linear growth with separate components of body composition remain unclear.Methods:Of 5551 children with collected
H∞ /H2 model reduction through dilated linear matrix inequalities
Adegas, Fabiano Daher; Stoustrup, Jakob
2012-01-01
This paper presents sufficient dilated linear matrix inequalities (LMI) conditions to the $H_{infty}$ and $H_{2}$ model reduction problem. A special structure of the auxiliary (slack) variables allows the original model of order $n$ to be reduced to an order $r=n/s$ where $n,r,s in field{N}$. Arb......This paper presents sufficient dilated linear matrix inequalities (LMI) conditions to the $H_{infty}$ and $H_{2}$ model reduction problem. A special structure of the auxiliary (slack) variables allows the original model of order $n$ to be reduced to an order $r=n/s$ where $n,r,s in field...
Hartono Gunardi
2018-02-01
Full Text Available Background: In Indonesia, approximately 35.5% of children under five years old were stunted. Stunting is related to shorter adult stature, poor cognition and educational performance, low adult wages, lost productivity, and higher risk of nutrition-related chronic disease. The aim of this study was to identify parental socio-demographic risk factors of declined linear growth in children younger than 2 years old.Methods: This was a cohort-prospective study between August 2012 and May 2014 at three primary community health care centers (Puskesmas in Jakarta, Indonesia, namely Puskesmas Jatinegara, Mampang, and Tebet. Subjects were healthy children under 2 years old, in which their weight and height were measured serially (at 6–11 weeks old and 18–24 months old. The length-for-age based on those data was used to determine stature status. The serial measurement was done to detect growth pattern. Parental socio-demographic data were obtained from questionnairesResults: From the total of 160 subjects, 14 (8.7% showed declined growth pattern from normal to stunted and 10 (6.2% to severely stunted. As many as 134 (83.8% subjects showed consistent normal growth pattern. Only 2 (1.2% showed improvement in the linear growth. Maternal education duration less than 9 years (RR=2.60, 95% CI=1.23–5.46; p=0.02 showed statistically significant association with declined linear growth in children.Conclusion: Mother with education duration less than 9 years was the determining socio-demographic risk factor that contributed to the declined linear growth in children less than 2 years of age.
Variance Function Partially Linear Single-Index Models1.
Lian, Heng; Liang, Hua; Carroll, Raymond J
2015-01-01
We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function.
Comparison between linear quadratic and early time dose models
Chougule, A.A.; Supe, S.J.
1993-01-01
During the 70s, much interest was focused on fractionation in radiotherapy with the aim of improving tumor control rate without producing unacceptable normal tissue damage. To compare the radiobiological effectiveness of various fractionation schedules, empirical formulae such as Nominal Standard Dose, Time Dose Factor, Cumulative Radiation Effect and Tumour Significant Dose, were introduced and were used despite many shortcomings. It has been claimed that a recent linear quadratic model is able to predict the radiobiological responses of tumours as well as normal tissues more accurately. We compared Time Dose Factor and Tumour Significant Dose models with the linear quadratic model for tumour regression in patients with carcinomas of the cervix. It was observed that the prediction of tumour regression estimated by the Tumour Significant Dose and Time Dose factor concepts varied by 1.6% from that of the linear quadratic model prediction. In view of the lack of knowledge of the precise values of the parameters of the linear quadratic model, it should be applied with caution. One can continue to use the Time Dose Factor concept which has been in use for more than a decade as its results are within ±2% as compared to that predicted by the linear quadratic model. (author). 11 refs., 3 figs., 4 tabs
Phylogenetic mixtures and linear invariants for equal input models.
Casanellas, Marta; Steel, Mike
2017-04-01
The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).
Non-linear calibration models for near infrared spectroscopy
Ni, Wangdong; Nørgaard, Lars; Mørup, Morten
2014-01-01
by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear...... models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS......-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration...
[Linear growth retardation in children under five years of age: a baseline study].
Rissin, Anete; Figueiroa, José Natal; Benício, Maria Helena D'Aquino; Batista Filho, Malaquias
2011-10-01
The scope of this study was to describe the prevalence of, and analyze factors associated with, linear growth retardation in children. The baseline study analyzed 2040 children under the age of five, establishing a possible association between growth delay (height/age index non-binary variables, there was a positive association with roof type and number of inhabitants per room and a negative association with income per capita, mother's schooling and birth weight. The adjusted analysis also indicated water supply, visit from the community health agent, birth delivery location, internment for diarrhea, or for pneumonia and birth weight as significant variables. Several risk factors were identified for linear growth retardation pointing to the multi-causal aspects of the problem and highlighting the need for control measures by the various hierarchical government agents.
Estimation and variable selection for generalized additive partial linear models
Wang, Li
2011-08-01
We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.
Matrix model and time-like linear dila ton matter
Takayanagi, Tadashi
2004-01-01
We consider a matrix model description of the 2d string theory whose matter part is given by a time-like linear dilaton CFT. This is equivalent to the c=1 matrix model with a deformed, but very simple Fermi surface. Indeed, after a Lorentz transformation, the corresponding 2d spacetime is a conventional linear dila ton background with a time-dependent tachyon field. We show that the tree level scattering amplitudes in the matrix model perfectly agree with those computed in the world-sheet theory. The classical trajectories of fermions correspond to the decaying D-boranes in the time-like linear dilaton CFT. We also discuss the ground ring structure. Furthermore, we study the properties of the time-like Liouville theory by applying this matrix model description. We find that its ground ring structure is very similar to that of the minimal string. (author)
Vortices, semi-local vortices in gauged linear sigma model
Kim, Namkwon
1998-11-01
We consider the static (2+1)D gauged linear sigma model. By analyzing the governing system of partial differential equations, we investigate various aspects of the model. We show the existence of energy finite vortices under a partially broken symmetry on R 2 with the necessary condition suggested by Y. Yang. We also introduce generalized semi-local vortices and show the existence of energy finite semi-local vortices under a certain condition. The vacuum manifold for the semi-local vortices turns out to be graded. Besides, with a special choice of a representation, we show that the O(3) sigma model of which target space is nonlinear is a singular limit of the gauged linear sigma model of which target space is linear. (author)
TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS
Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.
2017-01-01
Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971
Linear mixed models a practical guide using statistical software
West, Brady T; Galecki, Andrzej T
2006-01-01
Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-navigate reference details the use of procedures for fitting LMMs in five popular statistical software packages: SAS, SPSS, Stata, R/S-plus, and HLM. The authors introduce basic theoretical concepts, present a heuristic approach to fitting LMMs based on bo
Low temperature diamond growth by linear antenna plasma CVD over large area
Izak, Tibor; Babchenko, Oleg; Potocky, Stepan; Kromka, Alexander; Varga, Marian
2012-01-01
Recently, there is a great effort to increase the deposition area and decrease the process temperature for diamond growth which will enlarge its applications including use of temperature sensitive substrates. In this work, we report on the large area (20 x 30 cm 2 ) and low temperature (250 C) polycrystalline diamond growth by pulsed linear antenna microwave plasma system. The influence of substrate temperature varied from 250 to 680 C, as controlled by the table heater and/or by microwave power, is studied. It was found that the growth rate, film morphology and diamond to non-diamond phases (sp 3 /sp 2 carbon bonds) are influenced by the growth temperature, as confirmed by SEM and Raman measurements. The surface chemistry and growth processes were studied in terms of activation energies (E a ) calculated from Arrhenius plots. The activation energies of growth processes were very low (1.7 and 7.8 kcal mol -1 ) indicating an energetically favourable growth process from the CO 2 -CH 4 -H 2 gas mixture. In addition, from activation energies two different growth regimes were observed at low and high temperatures, indicating different growth mechanism. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
Optical linear algebra processors - Noise and error-source modeling
Casasent, D.; Ghosh, A.
1985-01-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Optical linear algebra processors: noise and error-source modeling.
Casasent, D; Ghosh, A
1985-06-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
CONTRIBUTIONS TO THE FINITE ELEMENT MODELING OF LINEAR ULTRASONIC MOTORS
Oana CHIVU
2013-05-01
Full Text Available The present paper is concerned with the main modeling elements as produced by means of thefinite element method of linear ultrasonic motors. Hence, first the model is designed and then a modaland harmonic analysis are carried out in view of outlining the main outcomes
Linear and Nonlinear Career Models: Metaphors, Paradigms, and Ideologies.
Buzzanell, Patrice M.; Goldzwig, Steven R.
1991-01-01
Examines the linear or bureaucratic career models (dominant in career research, metaphors, paradigms, and ideologies) which maintain career myths of flexibility and individualized routes to success in organizations incapable of offering such versatility. Describes nonlinear career models which offer suggestive metaphors for re-visioning careers…
Pernilla Svefors
Full Text Available Few studies in low-income settings analyse linear growth trajectories from foetal life to pre-adolescence. The aim of this study is to describe linear growth and stunting from birth to 10 years in rural Bangladesh and to analyse whether maternal and environmental determinants at conception are associated with linear growth throughout childhood and stunting at 10 years.Pregnant women participating in the MINIMat trial were identified in early pregnancy and a birth cohort (n = 1054 was followed with 19 growth measurements from birth to 10 years. Analyses of baseline predictors and mean height-for-age Z-scores (HAZ over time were modelled using GLMM. Logistic regression analysis was used to investigate the associations between baseline predictors and stunting (HAZ<-2 at 10 years. HAZ decreased to 2 years, followed by an increase up to 10 years, while the average height-for-age difference in cm (HAD to the WHO reference median continued to increase up to 10 years. Prevalence of stunting was highest at 2 years (50% decreasing to 29% at 10 years. Maternal height, maternal educational level and season of conception were all independent predictors of HAZ from birth to pre-adolescence (p<0.001 and stunting at 10 years. The highest probability to be stunted at 10 years was for children born by short mothers (<147.5 cm (ORadj 2.93, 95% CI: 2.06-4.20, mothers with no education (ORadj 1.74, 95% CI 1.17-2.81 or those conceived in the pre-monsoon season (ORadj 1.94, 95% CI 1.37-2.77.Height growth trajectories and prevalence of stunting in pre-adolescence showed strong intergenerational associations, social differentials, and environmental influence from foetal life. Targeting women before and during pregnancy is needed for the prevention of impaired child growth.
Kohli, Nidhi; Sullivan, Amanda L; Sadeh, Shanna; Zopluoglu, Cengiz
2015-04-01
Effective instructional planning and intervening rely heavily on accurate understanding of students' growth, but relatively few researchers have examined mathematics achievement trajectories, particularly for students with special needs. We applied linear, quadratic, and piecewise linear mixed-effects models to identify the best-fitting model for mathematics development over elementary and middle school and to ascertain differences in growth trajectories of children with learning disabilities relative to their typically developing peers. The analytic sample of 2150 students was drawn from the Early Childhood Longitudinal Study - Kindergarten Cohort, a nationally representative sample of United States children who entered kindergarten in 1998. We first modeled students' mathematics growth via multiple mixed-effects models to determine the best fitting model of 9-year growth and then compared the trajectories of students with and without learning disabilities. Results indicate that the piecewise linear mixed-effects model captured best the functional form of students' mathematics trajectories. In addition, there were substantial achievement gaps between students with learning disabilities and students with no disabilities, and their trajectories differed such that students without disabilities progressed at a higher rate than their peers who had learning disabilities. The results underscore the need for further research to understand how to appropriately model students' mathematics trajectories and the need for attention to mathematics achievement gaps in policy. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Sanz, Luis; Alonso, Juan Antonio
2017-12-01
In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.
Low-energy limit of the extended Linear Sigma Model
Divotgey, Florian [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Kovacs, Peter [Wigner Research Center for Physics, Hungarian Academy of Sciences, Institute for Particle and Nuclear Physics, Budapest (Hungary); GSI Helmholtzzentrum fuer Schwerionenforschung, ExtreMe Matter Institute, Darmstadt (Germany); Giacosa, Francesco [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Jan-Kochanowski University, Institute of Physics, Kielce (Poland); Rischke, Dirk H. [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); University of Science and Technology of China, Interdisciplinary Center for Theoretical Study and Department of Modern Physics, Hefei, Anhui (China)
2018-01-15
The extended Linear Sigma Model is an effective hadronic model based on the linear realization of chiral symmetry SU(N{sub f}){sub L} x SU(N{sub f}){sub R}, with (pseudo)scalar and (axial-)vector mesons as degrees of freedom. In this paper, we study the low-energy limit of the extended Linear Sigma Model (eLSM) for N{sub f} = flavors by integrating out all fields except for the pions, the (pseudo-)Nambu-Goldstone bosons of chiral symmetry breaking. The resulting low-energy effective action is identical to Chiral Perturbation Theory (ChPT) after choosing a representative for the coset space generated by chiral symmetry breaking and expanding it in powers of (derivatives of) the pion fields. The tree-level values of the coupling constants of the effective low-energy action agree remarkably well with those of ChPT. (orig.)
Linear Power-Flow Models in Multiphase Distribution Networks: Preprint
Bernstein, Andrey; Dall' Anese, Emiliano
2017-05-26
This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.
Multibunch emittance growth and its corrections in S-Band linear collider
Gao, J.
1994-11-01
Multibunch emittance growths caused by long range wake fields with the misalignments of accelerating structures and quadrupoles in S-Band linear collider are studied. Tolerances for the misalignment errors of accelerating structures and quadrupoles are given corresponding to different detuned+damped structures. At the end of main linac, emittance corrector (EC) is proposed to be used to reduce further the multibunch emittance. Numerical simulations show that the effect of EC is obvious (multibunch emittance can be reduced about one order of magnitude), and it is believed that this kind of EC will be necessary for future linear colliders. (author). 16 refs., 21 figs., 4 tabs
Gompertzian stochastic model with delay effect to cervical cancer growth
Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah
2015-01-01
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits
Gompertzian stochastic model with delay effect to cervical cancer growth
Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor and UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)
2015-02-03
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.
Modelling and measurement of a moving magnet linear compressor performance
Liang, Kun; Stone, Richard; Davies, Gareth; Dadd, Mike; Bailey, Paul
2014-01-01
A novel moving magnet linear compressor with clearance seals and flexure bearings has been designed and constructed. It is suitable for a refrigeration system with a compact heat exchanger, such as would be needed for CPU cooling. The performance of the compressor has been experimentally evaluated with nitrogen and a mathematical model has been developed to evaluate the performance of the linear compressor. The results from the compressor model and the measurements have been compared in terms of cylinder pressure, the ‘P–V’ loop, stroke, mass flow rate and shaft power. The cylinder pressure was not measured directly but was derived from the compressor dynamics and the motor magnetic force characteristics. The comparisons indicate that the compressor model is well validated and can be used to study the performance of this type of compressor, to help with design optimization and the identification of key parameters affecting the system transients. The electrical and thermodynamic losses were also investigated, particularly for the design point (stroke of 13 mm and pressure ratio of 3.0), since a full understanding of these can lead to an increase in compressor efficiency. - Highlights: • Model predictions of the performance of a novel moving magnet linear compressor. • Prototype linear compressor performance measurements using nitrogen. • Reconstruction of P–V loops using a model of the dynamics and electromagnetics. • Close agreement between the model and measurements for the P–V loops. • The design point motor efficiency was 74%, with potential improvements identified
The minimal linear σ model for the Goldstone Higgs
Feruglio, F.; Gavela, M.B.; Kanshin, K.; Machado, P.A.N.; Rigolin, S.; Saa, S.
2016-01-01
In the context of the minimal SO(5) linear σ-model, a complete renormalizable Lagrangian -including gauge bosons and fermions- is considered, with the symmetry softly broken to SO(4). The scalar sector describes both the electroweak Higgs doublet and the singlet σ. Varying the σ mass would allow to sweep from the regime of perturbative ultraviolet completion to the non-linear one assumed in models in which the Higgs particle is a low-energy remnant of some strong dynamics. We analyze the phenomenological implications and constraints from precision observables and LHC data. Furthermore, we derive the d≤6 effective Lagrangian in the limit of heavy exotic fermions.
A variational formulation for linear models in coupled dynamic thermoelasticity
Feijoo, R.A.; Moura, C.A. de.
1981-07-01
A variational formulation for linear models in coupled dynamic thermoelasticity which quite naturally motivates the design of a numerical scheme for the problem, is studied. When linked to regularization or penalization techniques, this algorithm may be applied to more general models, namely, the ones that consider non-linear constraints associated to variational inequalities. The basic postulates of Mechanics and Thermodynamics as well as some well-known mathematical techniques are described. A thorough description of the algorithm implementation with the finite-element method is also provided. Proofs for existence and uniqueness of solutions and for convergence of the approximations are presented, and some numerical results are exhibited. (Author) [pt
Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian
2014-01-01
In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...
Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables
Henson, Robert A.; Templin, Jonathan L.; Willse, John T.
2009-01-01
This paper uses log-linear models with latent variables (Hagenaars, in "Loglinear Models with Latent Variables," 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between many common models is explicitly defined and discussed. In addition, because the log-linear model with latent variables is a general model for…
Viscoelastic model of tungsten 'fuzz' growth
Krasheninnikov, S I
2011-01-01
A viscoelastic model of fuzz growth is presented. The model describes the main features of tungsten fuzz observed in experiments. It gives estimates of fuzz growth rate and temperature range close to experimental ones.
Functional linear models for association analysis of quantitative traits.
Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao
2013-11-01
Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY
Practical likelihood analysis for spatial generalized linear mixed models
Bonat, W. H.; Ribeiro, Paulo Justiniano
2016-01-01
We investigate an algorithm for maximum likelihood estimation of spatial generalized linear mixed models based on the Laplace approximation. We compare our algorithm with a set of alternative approaches for two datasets from the literature. The Rhizoctonia root rot and the Rongelap are......, respectively, examples of binomial and count datasets modeled by spatial generalized linear mixed models. Our results show that the Laplace approximation provides similar estimates to Markov Chain Monte Carlo likelihood, Monte Carlo expectation maximization, and modified Laplace approximation. Some advantages...... of Laplace approximation include the computation of the maximized log-likelihood value, which can be used for model selection and tests, and the possibility to obtain realistic confidence intervals for model parameters based on profile likelihoods. The Laplace approximation also avoids the tuning...
Haslinger, Jaroslav; Repin, S.; Sysala, Stanislav
2016-01-01
Roč. 61, č. 5 (2016), s. 527-564 ISSN 0862-7940 R&D Projects: GA MŠk LQ1602 Institutional support: RVO:68145535 Keywords : functionals with linear growth * limit load * truncation method * perfect plasticity Subject RIV: BA - General Mathematics Impact factor: 0.618, year: 2016 http://link.springer.com/article/10.1007/s10492-016-0146-6
Yang, Cheng-Lang; Lin, Hung-Pin; Chang, Chih-Heng
2010-01-01
This study investigates the linear and nonlinear causality between the total electricity consumption (TEC) and real gross domestic production (RGDP). Unlike previous literature, we solve the undetermined relation between RGDP and electricity consumption by classifying TEC into industrial sector consumption (ISC) and residential sector consumption (RSC) as well as investigating how TEC, ISC, and RSC influence Taiwan's RGDP. By using the Granger's linear causality test, it is shown that (i) there is a bidirectional causality among TEC, ISC, and RGDP, but a neutrality between RSC and RGDP with regard to the linear causality and (ii) there is still a bidirectional causality between TEC and RGDP, but a unidirectional causality between RSC and RGDP with regard to the nonlinear causality. On the basis of (i) and (ii), we suggest that the electricity policy formulators loosen the restriction on ISC and limit RSC in order to achieve the goal of economic growth.
Non-destructive linear model for leaf area estimation in Vernonia ferruginea Less
MC. Souza
Full Text Available Leaf area estimation is an important biometrical trait for evaluating leaf development and plant growth in field and pot experiments. We developed a non-destructive model to estimate the leaf area (LA of Vernonia ferruginea using the length (L and width (W leaf dimensions. Different combinations of linear equations were obtained from L, L2, W, W2, LW and L2W2. The linear regressions using the product of LW dimensions were more efficient to estimate the LA of V. ferruginea than models based on a single dimension (L, W, L2 or W2. Therefore, the linear regression “LA=0.463+0.676WL” provided the most accurate estimate of V. ferruginea leaf area. Validation of the selected model showed that the correlation between real measured leaf area and estimated leaf area was very high.
Linear modeling of possible mechanisms for parkinson tremor generation
Lohnberg, P.
1978-01-01
The power of Parkinson tremor is expressed in terms of possibly changed frequency response functions between relevant variables in the neuromuscular system. The derivation starts out from a linear loopless equivalent model of mechanisms for general tremor generation. Hypothetical changes in this
Current algebra of classical non-linear sigma models
Forger, M.; Laartz, J.; Schaeper, U.
1992-01-01
The current algebra of classical non-linear sigma models on arbitrary Riemannian manifolds is analyzed. It is found that introducing, in addition to the Noether current j μ associated with the global symmetry of the theory, a composite scalar field j, the algebra closes under Poisson brackets. (orig.)
Mathematical modelling and linear stability analysis of laser fusion cutting
Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich
2016-01-01
A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.
Non Linear signa models probing the string structure
Abdalla, E.
1987-01-01
The introduction of a term depending on the extrinsic curvature to the string action, and related non linear sigma models defined on a symmetric space SO(D)/SO(2) x SO(d-2) is descussed . Coupling to fermions are also treated. (author) [pt
Confidence Intervals for Assessing Heterogeneity in Generalized Linear Mixed Models
Wagler, Amy E.
2014-01-01
Generalized linear mixed models are frequently applied to data with clustered categorical outcomes. The effect of clustering on the response is often difficult to practically assess partly because it is reported on a scale on which comparisons with regression parameters are difficult to make. This article proposes confidence intervals for…
Penalized Estimation in Large-Scale Generalized Linear Array Models
Lund, Adam; Vincent, Martin; Hansen, Niels Richard
2017-01-01
Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension...
Expressions for linearized perturbations in ideal-fluid cosmological models
Ratra, B.
1988-01-01
We present closed-form solutions of the relativistic linear perturbation equations (in synchronous gauge) that govern the evolution of inhomogeneities in homogeneous, spatially flat, ideal-fluid, cosmological models. These expressions, which are valid for irregularities on any scale, allow one to analytically interpolate between the known approximate solutions which are valid at early times and at late times
S-AMP for non-linear observation models
Cakmak, Burak; Winther, Ole; Fleury, Bernard H.
2015-01-01
Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...
Plane answers to complex questions the theory of linear models
Christensen, Ronald
1987-01-01
This book was written to rigorously illustrate the practical application of the projective approach to linear models. To some, this may seem contradictory. I contend that it is possible to be both rigorous and illustrative and that it is possible to use the projective approach in practical applications. Therefore, unlike many other books on linear models, the use of projections and sub spaces does not stop after the general theory. They are used wherever I could figure out how to do it. Solving normal equations and using calculus (outside of maximum likelihood theory) are anathema to me. This is because I do not believe that they contribute to the understanding of linear models. I have similar feelings about the use of side conditions. Such topics are mentioned when appropriate and thenceforward avoided like the plague. On the other side of the coin, I just as strenuously reject teaching linear models with a coordinate free approach. Although Joe Eaton assures me that the issues in complicated problems freq...
A simulation model of a coordinated decentralized linear supply chain
Ashayeri, Jalal; Cannella, S.; Lopez Campos, M.; Miranda, P.A.
2015-01-01
This paper presents a simulation-based study of a coordinated, decentralized linear supply chain (SC) system. In the proposed model, any supply tier considers its successors as part of its inventory system and generates replenishment orders on the basis of its partners’ operational information. We
Mathematical modelling and linear stability analysis of laser fusion cutting
Hermanns, Torsten; Schulz, Wolfgang [RWTH Aachen University, Chair for Nonlinear Dynamics, Steinbachstr. 15, 52047 Aachen (Germany); Vossen, Georg [Niederrhein University of Applied Sciences, Chair for Applied Mathematics and Numerical Simulations, Reinarzstr.. 49, 47805 Krefeld (Germany); Thombansen, Ulrich [RWTH Aachen University, Chair for Laser Technology, Steinbachstr. 15, 52047 Aachen (Germany)
2016-06-08
A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.
Performances Of Estimators Of Linear Models With Autocorrelated ...
The performances of five estimators of linear models with Autocorrelated error terms are compared when the independent variable is autoregressive. The results reveal that the properties of the estimators when the sample size is finite is quite similar to the properties of the estimators when the sample size is infinite although ...
Performances of estimators of linear auto-correlated error model ...
The performances of five estimators of linear models with autocorrelated disturbance terms are compared when the independent variable is exponential. The results reveal that for both small and large samples, the Ordinary Least Squares (OLS) compares favourably with the Generalized least Squares (GLS) estimators in ...
A non-linear dissipative model of magnetism
Durand, P.; Paidarová, Ivana
2010-01-01
Roč. 89, č. 6 (2010), s. 67004 ISSN 1286-4854 R&D Projects: GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : non-linear dissipative model of magnetism * thermodynamics * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry http://epljournal.edpsciences.org/
Modeling and verifying non-linearities in heterodyne displacement interferometry
Cosijns, S.J.A.G.; Haitjema, H.; Schellekens, P.H.J.
2002-01-01
The non-linearities in a heterodyne laser interferometer system occurring from the phase measurement system of the interferometer andfrom non-ideal polarization effects of the optics are modeled into one analytical expression which includes the initial polarization state ofthe laser source, the
Holst, René; Jørgensen, Bent
2015-01-01
The paper proposes a versatile class of multiplicative generalized linear longitudinal mixed models (GLLMM) with additive dispersion components, based on explicit modelling of the covariance structure. The class incorporates a longitudinal structure into the random effects models and retains...... a marginal as well as a conditional interpretation. The estimation procedure is based on a computationally efficient quasi-score method for the regression parameters combined with a REML-like bias-corrected Pearson estimating function for the dispersion and correlation parameters. This avoids...... the multidimensional integral of the conventional GLMM likelihood and allows an extension of the robust empirical sandwich estimator for use with both association and regression parameters. The method is applied to a set of otholit data, used for age determination of fish....
Identifiability Results for Several Classes of Linear Compartment Models.
Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa
2015-08-01
Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.
Finite element modeling of nanotube structures linear and non-linear models
Awang, Mokhtar; Muhammad, Ibrahim Dauda
2016-01-01
This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.
Linear Dynamics Model for Steam Cooled Fast Power Reactors
Vollmer, H
1968-04-15
A linear analytical dynamic model is developed for steam cooled fast power reactors. All main components of such a plant are investigated on a general though relatively simple basis. The model is distributed in those parts concerning the core but lumped as to the external plant components. Coolant is considered as compressible and treated by the actual steam law. Combined use of analogue and digital computer seems most attractive.
Deterministic operations research models and methods in linear optimization
Rader, David J
2013-01-01
Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations resear
One-loop dimensional reduction of the linear σ model
Malbouisson, A.P.C.; Silva-Neto, M.B.; Svaiter, N.F.
1997-05-01
We perform the dimensional reduction of the linear σ model at one-loop level. The effective of the reduced theory obtained from the integration over the nonzero Matsubara frequencies is exhibited. Thermal mass and coupling constant renormalization constants are given, as well as the thermal renormalization group which controls the dependence of the counterterms on the temperature. We also recover, for the reduced theory, the vacuum instability of the model for large N. (author)
Artificial Neural Network versus Linear Models Forecasting Doha Stock Market
Yousif, Adil; Elfaki, Faiz
2017-12-01
The purpose of this study is to determine the instability of Doha stock market and develop forecasting models. Linear time series models are used and compared with a nonlinear Artificial Neural Network (ANN) namely Multilayer Perceptron (MLP) Technique. It aims to establish the best useful model based on daily and monthly data which are collected from Qatar exchange for the period starting from January 2007 to January 2015. Proposed models are for the general index of Qatar stock exchange and also for the usages in other several sectors. With the help of these models, Doha stock market index and other various sectors were predicted. The study was conducted by using various time series techniques to study and analyze data trend in producing appropriate results. After applying several models, such as: Quadratic trend model, double exponential smoothing model, and ARIMA, it was concluded that ARIMA (2,2) was the most suitable linear model for the daily general index. However, ANN model was found to be more accurate than time series models.
A linearized dispersion relation for orthorhombic pseudo-acoustic modeling
Song, Xiaolei; Alkhalifah, Tariq Ali
2012-01-01
Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen's parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.
Non-linear sigma model on the fuzzy supersphere
Kurkcuoglu, Seckin
2004-01-01
In this note we develop fuzzy versions of the supersymmetric non-linear sigma model on the supersphere S (2,2) . In hep-th/0212133 Bott projectors have been used to obtain the fuzzy C P 1 model. Our approach utilizes the use of supersymmetric extensions of these projectors. Here we obtain these (super)-projectors and quantize them in a fashion similar to the one given in hep-th/0212133. We discuss the interpretation of the resulting model as a finite dimensional matrix model. (author)
Optimal difference-based estimation for partially linear models
Zhou, Yuejin; Cheng, Yebin; Dai, Wenlin; Tong, Tiejun
2017-01-01
Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.
Modeling and analysis of linear hyperbolic systems of balance laws
Bartecki, Krzysztof
2016-01-01
This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...
Optimal difference-based estimation for partially linear models
Zhou, Yuejin
2017-12-16
Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.
A penalized framework for distributed lag non-linear models.
Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G
2017-09-01
Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.
General mirror pairs for gauged linear sigma models
Aspinwall, Paul S.; Plesser, M. Ronen [Departments of Mathematics and Physics, Duke University,Box 90320, Durham, NC 27708-0320 (United States)
2015-11-05
We carefully analyze the conditions for an abelian gauged linear σ-model to exhibit nontrivial IR behavior described by a nonsingular superconformal field theory determining a superstring vacuum. This is done without reference to a geometric phase, by associating singular behavior to a noncompact space of (semi-)classical vacua. We find that models determined by reflexive combinatorial data are nonsingular for generic values of their parameters. This condition has the pleasant feature that the mirror of a nonsingular gauged linear σ-model is another such model, but it is clearly too strong and we provide an example of a non-reflexive mirror pair. We discuss a weaker condition inspired by considering extremal transitions, which is also mirror symmetric and which we conjecture to be sufficient. We apply these ideas to extremal transitions and to understanding the way in which both Berglund-Hübsch mirror symmetry and the Vafa-Witten mirror orbifold with discrete torsion can be seen as special cases of the general combinatorial duality of gauged linear σ-models. In the former case we encounter an example showing that our weaker condition is still not necessary.
General mirror pairs for gauged linear sigma models
Aspinwall, Paul S.; Plesser, M. Ronen
2015-01-01
We carefully analyze the conditions for an abelian gauged linear σ-model to exhibit nontrivial IR behavior described by a nonsingular superconformal field theory determining a superstring vacuum. This is done without reference to a geometric phase, by associating singular behavior to a noncompact space of (semi-)classical vacua. We find that models determined by reflexive combinatorial data are nonsingular for generic values of their parameters. This condition has the pleasant feature that the mirror of a nonsingular gauged linear σ-model is another such model, but it is clearly too strong and we provide an example of a non-reflexive mirror pair. We discuss a weaker condition inspired by considering extremal transitions, which is also mirror symmetric and which we conjecture to be sufficient. We apply these ideas to extremal transitions and to understanding the way in which both Berglund-Hübsch mirror symmetry and the Vafa-Witten mirror orbifold with discrete torsion can be seen as special cases of the general combinatorial duality of gauged linear σ-models. In the former case we encounter an example showing that our weaker condition is still not necessary.
Robust Linear Models for Cis-eQTL Analysis.
Rantalainen, Mattias; Lindgren, Cecilia M; Holmes, Christopher C
2015-01-01
Expression Quantitative Trait Loci (eQTL) analysis enables characterisation of functional genetic variation influencing expression levels of individual genes. In outbread populations, including humans, eQTLs are commonly analysed using the conventional linear model, adjusting for relevant covariates, assuming an allelic dosage model and a Gaussian error term. However, gene expression data generally have noise that induces heavy-tailed errors relative to the Gaussian distribution and often include atypical observations, or outliers. Such departures from modelling assumptions can lead to an increased rate of type II errors (false negatives), and to some extent also type I errors (false positives). Careful model checking can reduce the risk of type-I errors but often not type II errors, since it is generally too time-consuming to carefully check all models with a non-significant effect in large-scale and genome-wide studies. Here we propose the application of a robust linear model for eQTL analysis to reduce adverse effects of deviations from the assumption of Gaussian residuals. We present results from a simulation study as well as results from the analysis of real eQTL data sets. Our findings suggest that in many situations robust models have the potential to provide more reliable eQTL results compared to conventional linear models, particularly in respect to reducing type II errors due to non-Gaussian noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are often noisy and frequently contain atypical observations. Robust statistical models have the potential to provide more reliable results and increased statistical power under non-Gaussian conditions. The results presented here suggest that robust models should be considered routinely alongside other commonly used methodologies for eQTL analysis.
Mathematical modeling of microbial growth in milk
Jhony Tiago Teleken
2011-12-01
Full Text Available A mathematical model to predict microbial growth in milk was developed and analyzed. The model consists of a system of two differential equations of first order. The equations are based on physical hypotheses of population growth. The model was applied to five different sets of data of microbial growth in dairy products selected from Combase, which is the most important database in the area with thousands of datasets from around the world, and the results showed a good fit. In addition, the model provides equations for the evaluation of the maximum specific growth rate and the duration of the lag phase which may provide useful information about microbial growth.
Linear models for joint association and linkage QTL mapping
Fernando Rohan L
2009-09-01
Full Text Available Abstract Background Populational linkage disequilibrium and within-family linkage are commonly used for QTL mapping and marker assisted selection. The combination of both results in more robust and accurate locations of the QTL, but models proposed so far have been either single marker, complex in practice or well fit to a particular family structure. Results We herein present linear model theory to come up with additive effects of the QTL alleles in any member of a general pedigree, conditional to observed markers and pedigree, accounting for possible linkage disequilibrium among QTLs and markers. The model is based on association analysis in the founders; further, the additive effect of the QTLs transmitted to the descendants is a weighted (by the probabilities of transmission average of the substitution effects of founders' haplotypes. The model allows for non-complete linkage disequilibrium QTL-markers in the founders. Two submodels are presented: a simple and easy to implement Haley-Knott type regression for half-sib families, and a general mixed (variance component model for general pedigrees. The model can use information from all markers. The performance of the regression method is compared by simulation with a more complex IBD method by Meuwissen and Goddard. Numerical examples are provided. Conclusion The linear model theory provides a useful framework for QTL mapping with dense marker maps. Results show similar accuracies but a bias of the IBD method towards the center of the region. Computations for the linear regression model are extremely simple, in contrast with IBD methods. Extensions of the model to genomic selection and multi-QTL mapping are straightforward.
Latent Growth and Dynamic Structural Equation Models.
Grimm, Kevin J; Ram, Nilam
2018-05-07
Latent growth models make up a class of methods to study within-person change-how it progresses, how it differs across individuals, what are its determinants, and what are its consequences. Latent growth methods have been applied in many domains to examine average and differential responses to interventions and treatments. In this review, we introduce the growth modeling approach to studying change by presenting different models of change and interpretations of their model parameters. We then apply these methods to examining sex differences in the development of binge drinking behavior through adolescence and into adulthood. Advances in growth modeling methods are then discussed and include inherently nonlinear growth models, derivative specification of growth models, and latent change score models to study stochastic change processes. We conclude with relevant design issues of longitudinal studies and considerations for the analysis of longitudinal data.
A Graphical User Interface to Generalized Linear Models in MATLAB
Peter Dunn
1999-07-01
Full Text Available Generalized linear models unite a wide variety of statistical models in a common theoretical framework. This paper discusses GLMLAB-software that enables such models to be fitted in the popular mathematical package MATLAB. It provides a graphical user interface to the powerful MATLAB computational engine to produce a program that is easy to use but with many features, including offsets, prior weights and user-defined distributions and link functions. MATLAB's graphical capacities are also utilized in providing a number of simple residual diagnostic plots.
MAGDM linear-programming models with distinct uncertain preference structures.
Xu, Zeshui S; Chen, Jian
2008-10-01
Group decision making with preference information on alternatives is an interesting and important research topic which has been receiving more and more attention in recent years. The purpose of this paper is to investigate multiple-attribute group decision-making (MAGDM) problems with distinct uncertain preference structures. We develop some linear-programming models for dealing with the MAGDM problems, where the information about attribute weights is incomplete, and the decision makers have their preferences on alternatives. The provided preference information can be represented in the following three distinct uncertain preference structures: 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first establish some linear-programming models based on decision matrix and each of the distinct uncertain preference structures and, then, develop some linear-programming models to integrate all three structures of subjective uncertain preference information provided by the decision makers and the objective information depicted in the decision matrix. Furthermore, we propose a simple and straightforward approach in ranking and selecting the given alternatives. It is worth pointing out that the developed models can also be used to deal with the situations where the three distinct uncertain preference structures are reduced to the traditional ones, i.e., utility values, fuzzy preference relations, and multiplicative preference relations. Finally, we use a practical example to illustrate in detail the calculation process of the developed approach.
Linear Growth and Child Development in Burkina Faso, Ghana, and Malawi.
Prado, Elizabeth L; Abbeddou, Souheila; Adu-Afarwuah, Seth; Arimond, Mary; Ashorn, Per; Ashorn, Ulla; Brown, Kenneth H; Hess, Sonja Y; Lartey, Anna; Maleta, Kenneth; Ocansey, Eugenia; Ouédraogo, Jean-Bosco; Phuka, John; Somé, Jérôme W; Vosti, Steve A; Yakes Jimenez, Elizabeth; Dewey, Kathryn G
2016-08-01
We aimed to produce quantitative estimates of the associations between 4 domains of child development and linear growth during 3 periods: before birth, early infancy, and later infancy. We also aimed to determine whether several factors attenuated these associations. In 3700 children in Burkina Faso, Ghana, and Malawi, growth was measured several times from birth to age 18 months. At 18 months, language, motor, socioemotional, and executive function development were assessed. In Burkina Faso (n = 1111), personal-social development was assessed rather than the latter 2 domains. Linear growth was significantly associated with language, motor, and personal-social development but not socioemotional development or executive function. For language, the pooled adjusted estimate of the association with length-for-age z score (LAZ) at 6 months was 0.13 ± 0.02 SD, and with ΔLAZ from 6 to 18 months it was 0.11 ± 0.03 SD. For motor, these estimates were 0.16 ± 0.02 SD and 0.22 ± 0.03 SD, respectively. In 1412 children measured at birth, estimates of the association with LAZ at birth were similar (0.07-0.16 SD for language and 0.09-0.18 SD for motor development). These associations were weaker or absent in certain subsets of children with high levels of developmental stimulation or mothers who received nutritional supplementation. Growth faltering during any period from before birth to 18 months is associated with poor development of language and motor skills. Interventions to provide developmental stimulation or maternal supplementation may protect children who are faltering in growth from poor language and motor development. Copyright © 2016 by the American Academy of Pediatrics.
Kooths, Stefan; Mitze, Timo Friedel; Ringhut, Eric
2004-01-01
This paper compares the predictive power of linear econometric and non-linear computational models for forecasting the inflation rate in the European Monetary Union (EMU). Various models of both types are developed using different monetary and real activity indicators. They are compared according...
Sorini, D.
2017-01-01
Measuring the clustering of galaxies from surveys allows us to estimate the power spectrum of matter density fluctuations, thus constraining cosmological models. This requires careful modelling of observational effects to avoid misinterpretation of data. In particular, signals coming from different distances encode information from different epochs. This is known as ''light-cone effect'' and is going to have a higher impact as upcoming galaxy surveys probe larger redshift ranges. Generalising the method by Feldman, Kaiser and Peacock (1994) [1], I define a minimum-variance estimator of the linear power spectrum at a fixed time, properly taking into account the light-cone effect. An analytic expression for the estimator is provided, and that is consistent with the findings of previous works in the literature. I test the method within the context of the Halofit model, assuming Planck 2014 cosmological parameters [2]. I show that the estimator presented recovers the fiducial linear power spectrum at present time within 5% accuracy up to k ∼ 0.80 h Mpc −1 and within 10% up to k ∼ 0.94 h Mpc −1 , well into the non-linear regime of the growth of density perturbations. As such, the method could be useful in the analysis of the data from future large-scale surveys, like Euclid.
A thermodynamic model for growth mechanisms of multiwall carbon nanotubes.
Kaatz, Forrest H.; Overmyer, Donald L.; Siegal, Michael P.
2006-02-01
Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830 C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60 eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.
Thermodynamic model for growth mechanisms of multiwall carbon nanotubes
Kaatz, F. H.; Siegal, M. P.; Overmyer, D. L.; Provencio, P. P.; Tallant, D. R.
2006-12-01
Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830°C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.
Linear growth and child development in low- and middle-income countries: a meta-analysis.
Sudfeld, Christopher R; McCoy, Dana Charles; Danaei, Goodarz; Fink, Günther; Ezzati, Majid; Andrews, Kathryn G; Fawzi, Wafaie W
2015-05-01
The initial years of life are critical for physical growth and broader cognitive, motor, and socioemotional development, but the magnitude of the link between these processes remains unclear. Our objective was to produce quantitative estimates of the cross-sectional and prospective association of height-for-age z score (HAZ) with child development. Observational studies conducted in low- and middle-income countries (LMICs) presenting data on the relationship of linear growth with any measure of child development among children children ≤ 2 years old was +0.24 (95% confidence interval [CI], 0.14-0.33; I(2) = 53%) and +0.09 for children > 2 years old (95% CI, 0.05-0.12; I(2) = 78%). Prospectively, each unit increase in HAZ for children ≤ 2 years old was associated with a +0.22-SD increase in cognition at 5 to 11 years after multivariate adjustment (95% CI, 0.17-0.27; I(2) = 0%). HAZ was also significantly associated with earlier walking age and better motor scores (P development. Effective interventions that reduce linear growth restriction may improve developmental outcomes; however, integration with environmental, educational, and stimulation interventions may produce larger positive effects. Copyright © 2015 by the American Academy of Pediatrics.
Modelling of Asphalt Concrete Stiffness in the Linear Viscoelastic Region
Mazurek, Grzegorz; Iwański, Marek
2017-10-01
Stiffness modulus is a fundamental parameter used in the modelling of the viscoelastic behaviour of bituminous mixtures. On the basis of the master curve in the linear viscoelasticity range, the mechanical properties of asphalt concrete at different loading times and temperatures can be predicted. This paper discusses the construction of master curves under rheological mathematical models i.e. the sigmoidal function model (MEPDG), the fractional model, and Bahia and co-workers’ model in comparison to the results from mechanistic rheological models i.e. the generalized Huet-Sayegh model, the generalized Maxwell model and the Burgers model. For the purposes of this analysis, the reference asphalt concrete mix (denoted as AC16W) intended for the binder coarse layer and for traffic category KR3 (5×105 controlled strain mode. The fixed strain level was set at 25με to guarantee that the stiffness modulus of the asphalt concrete would be tested in a linear viscoelasticity range. The master curve was formed using the time-temperature superposition principle (TTSP). The stiffness modulus of asphalt concrete was determined at temperatures 10°C, 20°C and 40°C and at loading times (frequency) of 0.1, 0.3, 1, 3, 10, 20 Hz. The model parameters were fitted to the rheological models using the original programs based on the nonlinear least squares sum method. All the rheological models under analysis were found to be capable of predicting changes in the stiffness modulus of the reference asphalt concrete to satisfactory accuracy. In the cases of the fractional model and the generalized Maxwell model, their accuracy depends on a number of elements in series. The best fit was registered for Bahia and co-workers model, generalized Maxwell model and fractional model. As for predicting the phase angle parameter, the largest discrepancies between experimental and modelled results were obtained using the fractional model. Except the Burgers model, the model matching quality was
A Non-Gaussian Spatial Generalized Linear Latent Variable Model
Irincheeva, Irina
2012-08-03
We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.
Linear Model for Optimal Distributed Generation Size Predication
Ahmed Al Ameri
2017-01-01
Full Text Available This article presents a linear model predicting optimal size of Distributed Generation (DG that addresses the minimum power loss. This method is based fundamentally on strong coupling between active power and voltage angle as well as between reactive power and voltage magnitudes. This paper proposes simplified method to calculate the total power losses in electrical grid for different distributed generation sizes and locations. The method has been implemented and tested on several IEEE bus test systems. The results show that the proposed method is capable of predicting approximate optimal size of DG when compared with precision calculations. The method that linearizes a complex model showed a good result, which can actually reduce processing time required. The acceptable accuracy with less time and memory required can help the grid operator to assess power system integrated within large-scale distribution generation.
A non-linear model of economic production processes
Ponzi, A.; Yasutomi, A.; Kaneko, K.
2003-06-01
We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.
A Non-Gaussian Spatial Generalized Linear Latent Variable Model
Irincheeva, Irina; Cantoni, Eva; Genton, Marc G.
2012-01-01
We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.
NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS
Hasan YILDIZ
2004-03-01
Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.
Kosek, Margaret; Haque, Rashidul; Lima, Aldo; Babji, Sudhir; Shrestha, Sanjaya; Qureshi, Shahida; Amidou, Samie; Mduma, Estomih; Lee, Gwenyth; Yori, Pablo Peñataro; Guerrant, Richard L.; Bhutta, Zulfiqar; Mason, Carl; Kang, Gagandeep; Kabir, Mamun; Amour, Caroline; Bessong, Pascal; Turab, Ali; Seidman, Jessica; Olortegui, Maribel Paredes; Quetz, Josiane; Lang, Dennis; Gratz, Jean; Miller, Mark; Gottlieb, Michael
2013-01-01
Enteric infections are associated with linear growth failure in children. To quantify the association between intestinal inflammation and linear growth failure three commercially available enzyme-linked immunosorbent assays (neopterin [NEO], alpha-anti-trypsin [AAT], and myeloperoxidase [MPO]) were performed in a structured sampling of asymptomatic stool from children under longitudinal surveillance for diarrheal illness in eight countries. Samples from 537 children contributed 1,169 AAT, 916 MPO, and 954 NEO test results that were significantly associated with linear growth. When combined to form a disease activity score, children with the highest score grew 1.08 cm less than children with the lowest score over the 6-month period following the tests after controlling for the incidence of diarrheal disease. This set of affordable non-invasive tests delineates those at risk of linear growth failure and may be used for the improved assessments of interventions to optimize growth during a critical period of early childhood. PMID:23185075
Estimation and Inference for Very Large Linear Mixed Effects Models
Gao, K.; Owen, A. B.
2016-01-01
Linear mixed models with large imbalanced crossed random effects structures pose severe computational problems for maximum likelihood estimation and for Bayesian analysis. The costs can grow as fast as $N^{3/2}$ when there are N observations. Such problems arise in any setting where the underlying factors satisfy a many to many relationship (instead of a nested one) and in electronic commerce applications, the N can be quite large. Methods that do not account for the correlation structure can...
Using Quartile-Quartile Lines as Linear Models
Gordon, Sheldon P.
2015-01-01
This article introduces the notion of the quartile-quartile line as an alternative to the regression line and the median-median line to produce a linear model based on a set of data. It is based on using the first and third quartiles of a set of (x, y) data. Dynamic spreadsheets are used as exploratory tools to compare the different approaches and…
NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS
TOMAS, R.; FISCHER, W.; JAIN, A.; LUO, Y.; PILAT, F.
2004-01-01
For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability
Electromagnetic axial anomaly in a generalized linear sigma model
Fariborz, Amir H.; Jora, Renata
2017-06-01
We construct the electromagnetic anomaly effective term for a generalized linear sigma model with two chiral nonets, one with a quark-antiquark structure, the other one with a four-quark content. We compute in the leading order of this framework the decays into two photons of six pseudoscalars: π0(137 ), π0(1300 ), η (547 ), η (958 ), η (1295 ) and η (1760 ). Our results agree well with the available experimental data.
Jónsdóttir, Kristjana Ýr; Schmiegel, Jürgen; Jensen, Eva Bjørn Vedel
2008-01-01
In the present paper, we give a condensed review, for the nonspecialist reader, of a new modelling framework for spatio-temporal processes, based on Lévy theory. We show the potential of the approach in stochastic geometry and spatial statistics by studying Lévy-based growth modelling of planar o...... objects. The growth models considered are spatio-temporal stochastic processes on the circle. As a by product, flexible new models for space–time covariance functions on the circle are provided. An application of the Lévy-based growth models to tumour growth is discussed....
Comparison of Linear Prediction Models for Audio Signals
2009-03-01
Full Text Available While linear prediction (LP has become immensely popular in speech modeling, it does not seem to provide a good approach for modeling audio signals. This is somewhat surprising, since a tonal signal consisting of a number of sinusoids can be perfectly predicted based on an (all-pole LP model with a model order that is twice the number of sinusoids. We provide an explanation why this result cannot simply be extrapolated to LP of audio signals. If noise is taken into account in the tonal signal model, a low-order all-pole model appears to be only appropriate when the tonal components are uniformly distributed in the Nyquist interval. Based on this observation, different alternatives to the conventional LP model can be suggested. Either the model should be changed to a pole-zero, a high-order all-pole, or a pitch prediction model, or the conventional LP model should be preceded by an appropriate frequency transform, such as a frequency warping or downsampling. By comparing these alternative LP models to the conventional LP model in terms of frequency estimation accuracy, residual spectral flatness, and perceptual frequency resolution, we obtain several new and promising approaches to LP-based audio modeling.
A quasi-linear gyrokinetic transport model for tokamak plasmas
Casati, A.
2009-10-01
After a presentation of some basics around nuclear fusion, this research thesis introduces the framework of the tokamak strategy to deal with confinement, hence the main plasma instabilities which are responsible for turbulent transport of energy and matter in such a system. The author also briefly introduces the two principal plasma representations, the fluid and the kinetic ones. He explains why the gyro-kinetic approach has been preferred. A tokamak relevant case is presented in order to highlight the relevance of a correct accounting of the kinetic wave-particle resonance. He discusses the issue of the quasi-linear response. Firstly, the derivation of the model, called QuaLiKiz, and its underlying hypotheses to get the energy and the particle turbulent flux are presented. Secondly, the validity of the quasi-linear response is verified against the nonlinear gyro-kinetic simulations. The saturation model that is assumed in QuaLiKiz, is presented and discussed. Then, the author qualifies the global outcomes of QuaLiKiz. Both the quasi-linear energy and the particle flux are compared to the expectations from the nonlinear simulations, across a wide scan of tokamak relevant parameters. Therefore, the coupling of QuaLiKiz within the integrated transport solver CRONOS is presented: this procedure allows the time-dependent transport problem to be solved, hence the direct application of the model to the experiment. The first preliminary results regarding the experimental analysis are finally discussed
Linear theory for filtering nonlinear multiscale systems with model error.
Berry, Tyrus; Harlim, John
2014-07-08
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online , as part of a filtering
Technical note: A linear model for predicting δ13 Cprotein.
Pestle, William J; Hubbe, Mark; Smith, Erin K; Stevenson, Joseph M
2015-08-01
Development of a model for the prediction of δ(13) Cprotein from δ(13) Ccollagen and Δ(13) Cap-co . Model-generated values could, in turn, serve as "consumer" inputs for multisource mixture modeling of paleodiet. Linear regression analysis of previously published controlled diet data facilitated the development of a mathematical model for predicting δ(13) Cprotein (and an experimentally generated error term) from isotopic data routinely generated during the analysis of osseous remains (δ(13) Cco and Δ(13) Cap-co ). Regression analysis resulted in a two-term linear model (δ(13) Cprotein (%) = (0.78 × δ(13) Cco ) - (0.58× Δ(13) Cap-co ) - 4.7), possessing a high R-value of 0.93 (r(2) = 0.86, P analysis of human osseous remains. These predicted values are ideal for use in multisource mixture modeling of dietary protein source contribution. © 2015 Wiley Periodicals, Inc.
Rate-Independent Processes with Linear Growth Energies and Time-Dependent Boundary Conditions
Kružík, Martin; Zimmer, J.
2012-01-01
Roč. 5, č. 3 (2012), s. 591-604 ISSN 1937-1632 R&D Projects: GA AV ČR IAA100750802 Grant - others:GA ČR(CZ) GAP201/10/0357 Institutional research plan: CEZ:AV0Z10750506 Keywords : concentrations * oscillations * time - dependent boundary conditions * rate-independent evolution Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2011/MTR/kruzik-rate-independent processes with linear growth energies and time - dependent boundary conditions.pdf
Stochastic models for tumoral growth
Escudero, Carlos
2006-01-01
Strong experimental evidence has indicated that tumor growth belongs to the molecular beam epitaxy universality class. This type of growth is characterized by the constraint of cell proliferation to the tumor border, and surface diffusion of cells at the growing edge. Tumor growth is thus conceived as a competition for space between the tumor and the host, and cell diffusion at the tumor border is an optimal strategy adopted for minimizing the pressure and helping tumor development. Two stoch...
Neutron stars in non-linear coupling models
Taurines, Andre R.; Vasconcellos, Cesar A.Z.; Malheiro, Manuel; Chiapparini, Marcelo
2001-01-01
We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, ∼ 0.72M s un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)
Neutron stars in non-linear coupling models
Taurines, Andre R.; Vasconcellos, Cesar A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil); Malheiro, Manuel [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Chiapparini, Marcelo [Universidade do Estado, Rio de Janeiro, RJ (Brazil)
2001-07-01
We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, {approx} 0.72M{sub s}un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)
Modelling of Rotational Capacity in Reinforced Linear Elements
Hestbech, Lars; Hagsten, Lars German; Fisker, Jakob
2011-01-01
on the rotational capacity of the plastic hinges. The documentation of ductility can be a difficult task as modelling of rotational capacity in plastic hinges of frames is not fully developed. On the basis of the Theory of Plasticity a model is developed to determine rotational capacity in plastic hinges in linear......The Capacity Design Method forms the basis of several seismic design codes. This design philosophy allows plastic deformations in order to decrease seismic demands in structures. However, these plastic deformations must be localized in certain zones where ductility requirements can be documented...... reinforced concrete elements. The model is taking several important parameters into account. Empirical values is avoided which is considered an advantage compared to previous models. Furthermore, the model includes force variations in the reinforcement due to moment distributions and shear as well...
Sahin, Rubina; Tapadia, Kavita
2015-01-01
The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area.
Network Traffic Monitoring Using Poisson Dynamic Linear Models
Merl, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2011-05-09
In this article, we discuss an approach for network forensics using a class of nonstationary Poisson processes with embedded dynamic linear models. As a modeling strategy, the Poisson DLM (PoDLM) provides a very flexible framework for specifying structured effects that may influence the evolution of the underlying Poisson rate parameter, including diurnal and weekly usage patterns. We develop a novel particle learning algorithm for online smoothing and prediction for the PoDLM, and demonstrate the suitability of the approach to real-time deployment settings via a new application to computer network traffic monitoring.
On the chiral phase transition in the linear sigma model
Tran Huu Phat; Nguyen Tuan Anh; Le Viet Hoa
2003-01-01
The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)
Bayesian Subset Modeling for High-Dimensional Generalized Linear Models
Liang, Faming; Song, Qifan; Yu, Kai
2013-01-01
criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening
Mechanistic model for microbial growth on hydrocarbons
Mallee, F M; Blanch, H W
1977-12-01
Based on available information describing the transport and consumption of insoluble alkanes, a mechanistic model is proposed for microbial growth on hydrocarbons. The model describes the atypical growth kinetics observed, and has implications in the design of large scale equipment for single cell protein (SCP) manufacture from hydrocarbons. The model presents a framework for comparison of the previously published experimental kinetic data.
Application of linearized model to the stability analysis of the pressurized water reactor
Li Haipeng; Huang Xiaojin; Zhang Liangju
2008-01-01
A Linear Time-Invariant model of the Pressurized Water Reactor is formulated through the linearization of the nonlinear model. The model simulation results show that the linearized model agrees well with the nonlinear model under small perturbation. Based upon the Lyapunov's First Method, the linearized model is applied to the stability analysis of the Pressurized Water Reactor. The calculation results show that the methodology of linearization to stability analysis is conveniently feasible. (authors)
Esteley, Cristina B.; Villarreal, Monica E.; Alagia, Humberto R.
2010-01-01
Over the past several years, we have been exploring and researching a phenomenon that occurs among undergraduate students that we called extension of linear models to non-linear contexts or overgeneralization of linear models. This phenomenon appears when some students use linear representations in situations that are non-linear. In a first phase,…
A Linear Viscoelastic Model Calibration of Sylgard 184.
Long, Kevin Nicholas; Brown, Judith Alice
2017-04-01
We calibrate a linear thermoviscoelastic model for solid Sylgard 184 (90-10 formulation), a lightly cross-linked, highly flexible isotropic elastomer for use both in Sierra / Solid Mechanics via the Universal Polymer Model as well as in Sierra / Structural Dynamics (Salinas) for use as an isotropic viscoelastic material. Material inputs for the calibration in both codes are provided. The frequency domain master curve of oscillatory shear was obtained from a report from Los Alamos National Laboratory (LANL). However, because the form of that data is different from the constitutive models in Sierra, we also present the mapping of the LANL data onto Sandia’s constitutive models. Finally, blind predictions of cyclic tension and compression out to moderate strains of 40 and 20% respectively are compared with Sandia’s legacy cure schedule material. Although the strain rate of the data is unknown, the linear thermoviscoelastic model accurately predicts the experiments out to moderate strains for the slower strain rates, which is consistent with the expectation that quasistatic test procedures were likely followed. This good agreement comes despite the different cure schedules between the Sandia and LANL data.
A non-linear model of information seeking behaviour
Allen E. Foster
2005-01-01
Full Text Available The results of a qualitative, naturalistic, study of information seeking behaviour are reported in this paper. The study applied the methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling combined purposive and snowball methods, and led to a final sample of 45 inter-disciplinary researchers from the University of Sheffield. In-depth semi-structured interviews were used to elicit detailed examples of information seeking. Coding of interview transcripts took place in multiple iterations over time and used Atlas-ti software to support the process. The results of the study are represented in a non-linear Model of Information Seeking Behaviour. The model describes three core processes (Opening, Orientation, and Consolidation and three levels of contextual interaction (Internal Context, External Context, and Cognitive Approach, each composed of several individual activities and attributes. The interactivity and shifts described by the model show information seeking to be non-linear, dynamic, holistic, and flowing. The paper concludes by describing the whole model of behaviours as analogous to an artist's palette, in which activities remain available throughout information seeking. A summary of key implications of the model and directions for further research are included.
Effect Displays in R for Generalised Linear Models
John Fox
2003-07-01
Full Text Available This paper describes the implementation in R of a method for tabular or graphical display of terms in a complex generalised linear model. By complex, I mean a model that contains terms related by marginality or hierarchy, such as polynomial terms, or main effects and interactions. I call these tables or graphs effect displays. Effect displays are constructed by identifying high-order terms in a generalised linear model. Fitted values under the model are computed for each such term. The lower-order "relatives" of a high-order term (e.g., main effects marginal to an interaction are absorbed into the term, allowing the predictors appearing in the high-order term to range over their values. The values of other predictors are fixed at typical values: for example, a covariate could be fixed at its mean or median, a factor at its proportional distribution in the data, or to equal proportions in its several levels. Variations of effect displays are also described, including representation of terms higher-order to any appearing in the model.
Global numerical modeling of magnetized plasma in a linear device
Magnussen, Michael Løiten
Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion dev...... with simulations performed at different ionization levels, using a simple model for plasma interaction with neutrals. It is found that the steady state and the saturated state of the system bifurcates when the neutral interaction dominates the electron-ion collisions.......Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion...... devices, and are easier to diagnose due to lower temperatures and a better access to the plasma. In order to gain greater insight into this complex turbulent behavior, numerical simulations of plasma in a linear device are performed in this thesis. Here, a three-dimensional drift-fluid model is derived...
Predicting birth weight with conditionally linear transformation models.
Möst, Lisa; Schmid, Matthias; Faschingbauer, Florian; Hothorn, Torsten
2016-12-01
Low and high birth weight (BW) are important risk factors for neonatal morbidity and mortality. Gynecologists must therefore accurately predict BW before delivery. Most prediction formulas for BW are based on prenatal ultrasound measurements carried out within one week prior to birth. Although successfully used in clinical practice, these formulas focus on point predictions of BW but do not systematically quantify uncertainty of the predictions, i.e. they result in estimates of the conditional mean of BW but do not deliver prediction intervals. To overcome this problem, we introduce conditionally linear transformation models (CLTMs) to predict BW. Instead of focusing only on the conditional mean, CLTMs model the whole conditional distribution function of BW given prenatal ultrasound parameters. Consequently, the CLTM approach delivers both point predictions of BW and fetus-specific prediction intervals. Prediction intervals constitute an easy-to-interpret measure of prediction accuracy and allow identification of fetuses subject to high prediction uncertainty. Using a data set of 8712 deliveries at the Perinatal Centre at the University Clinic Erlangen (Germany), we analyzed variants of CLTMs and compared them to standard linear regression estimation techniques used in the past and to quantile regression approaches. The best-performing CLTM variant was competitive with quantile regression and linear regression approaches in terms of conditional coverage and average length of the prediction intervals. We propose that CLTMs be used because they are able to account for possible heteroscedasticity, kurtosis, and skewness of the distribution of BWs. © The Author(s) 2014.
Linear growth rates of resistive tearing modes with sub-Alfvénic streaming flow
Wu, L. N.; Ma, Z. W.
2014-01-01
The tearing instability with sub-Alfvénic streaming flow along the external magnetic field is investigated using resistive MHD simulation. It is found that the growth rate of the tearing mode instability is larger than that without the streaming flow. With the streaming flow, there exist two Alfvén resonance layers near the central current sheet. The larger perturbation of the magnetic field in two closer Alfvén resonance layers could lead to formation of the observed cone structure and can largely enhance the development of the tearing mode for a narrower streaming flow. For a broader streaming flow, a larger separation of Alfvén resonance layers reduces the magnetic reconnection. The linear growth rate decreases with increase of the streaming flow thickness. The growth rate of the tearing instability also depends on the plasma beta (β). When the streaming flow is embedded in the current sheet, the growth rate increases with β if β s , but decreases if β > β s . The existence of the specific value β s can be attributed to competition between the suppressing effect of β and the enhancing effect of the streaming flow on the magnetic reconnection. The critical value β s increases with increase of the streaming flow strength
Wavefront Sensing for WFIRST with a Linear Optical Model
Jurling, Alden S.; Content, David A.
2012-01-01
In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.
Testing mechanistic models of growth in insects.
Maino, James L; Kearney, Michael R
2015-11-22
Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. © 2015 The Author(s).
A linearized dispersion relation for orthorhombic pseudo-acoustic modeling
Song, Xiaolei
2012-11-04
Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen\\'s parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.
Research & development and growth: A Bayesian model averaging analysis
Horváth, Roman
2011-01-01
Roč. 28, č. 6 (2011), s. 2669-2673 ISSN 0264-9993. [Society for Non-linear Dynamics and Econometrics Annual Conferencen. Washington DC, 16.03.2011-18.03.2011] R&D Projects: GA ČR GA402/09/0965 Institutional research plan: CEZ:AV0Z10750506 Keywords : Research and development * Growth * Bayesian model averaging Subject RIV: AH - Economic s Impact factor: 0.701, year: 2011 http://library.utia.cas.cz/separaty/2011/E/horvath-research & development and growth a bayesian model averaging analysis.pdf
Linearized vector radiative transfer model MCC++ for a spherical atmosphere
Postylyakov, O.V.
2004-01-01
Application of radiative transfer models has shown that optical remote sensing requires extra characteristics of radiance field in addition to the radiance intensity itself. Simulation of spectral measurements, analysis of retrieval errors and development of retrieval algorithms are in need of derivatives of radiance with respect to atmospheric constituents under investigation. The presented vector spherical radiative transfer model MCC++ was linearized, which allows the calculation of derivatives of all elements of the Stokes vector with respect to the volume absorption coefficient simultaneously with radiance calculation. The model MCC++ employs Monte Carlo algorithm for radiative transfer simulation and takes into account aerosol and molecular scattering, gas and aerosol absorption, and Lambertian surface albedo. The model treats a spherically symmetrical atmosphere. Relation of the estimated derivatives with other forms of radiance derivatives: the weighting functions used in gas retrieval and the air mass factors used in the DOAS retrieval algorithms, is obtained. Validation of the model against other radiative models is overviewed. The computing time of the intensity for the MCC++ model is about that for radiative models treating sphericity of the atmosphere approximately and is significantly shorter than that for the full spherical models used in the comparisons. The simultaneous calculation of all derivatives (i.e. with respect to absorption in all model atmosphere layers) and the intensity is only 1.2-2 times longer than the calculation of the intensity only
Hamid, Ka; Yusoff, An; Rahman, Mza; Mohamad, M; Hamid, Aia
2012-04-01
This fMRI study is about modelling the effective connectivity between Heschl's gyrus (HG) and the superior temporal gyrus (STG) in human primary auditory cortices. MATERIALS #ENTITYSTARTX00026; Ten healthy male participants were required to listen to white noise stimuli during functional magnetic resonance imaging (fMRI) scans. Statistical parametric mapping (SPM) was used to generate individual and group brain activation maps. For input region determination, two intrinsic connectivity models comprising bilateral HG and STG were constructed using dynamic causal modelling (DCM). The models were estimated and inferred using DCM while Bayesian Model Selection (BMS) for group studies was used for model comparison and selection. Based on the winning model, six linear and six non-linear causal models were derived and were again estimated, inferred, and compared to obtain a model that best represents the effective connectivity between HG and the STG, balancing accuracy and complexity. Group results indicated significant asymmetrical activation (p(uncorr) Model comparison results showed strong evidence of STG as the input centre. The winning model is preferred by 6 out of 10 participants. The results were supported by BMS results for group studies with the expected posterior probability, r = 0.7830 and exceedance probability, ϕ = 0.9823. One-sample t-tests performed on connection values obtained from the winning model indicated that the valid connections for the winning model are the unidirectional parallel connections from STG to bilateral HG (p model comparison between linear and non-linear models using BMS prefers non-linear connection (r = 0.9160, ϕ = 1.000) from which the connectivity between STG and the ipsi- and contralateral HG is gated by the activity in STG itself. We are able to demonstrate that the effective connectivity between HG and STG while listening to white noise for the respective participants can be explained by a non-linear dynamic causal model with
Exactly soluble two-state quantum models with linear couplings
Torosov, B T; Vitanov, N V
2008-01-01
A class of exact analytic solutions of the time-dependent Schroedinger equation is presented for a two-state quantum system coherently driven by a nonresonant external field. The coupling is a linear function of time with a finite duration and the detuning is constant. Four special models are considered in detail, namely the shark, double-shark, tent and zigzag models. The exact solution is derived by rotation of the Landau-Zener propagator at an angle of π/4 and is expressed in terms of Weber's parabolic cylinder function. Approximations for the transition probabilities are derived for all four models by using the asymptotics of the Weber function; these approximations demonstrate various effects of physical interest for each model
Trajectories and models of individual growth
Arseniy Karkach
2006-11-01
Full Text Available It has long been recognized that the patterns of growth play an important role in the evolution of age trajectories of fertility and mortality (Williams, 1957. Life history studies would benefit from a better understanding of strategies and mechanisms of growth, but still no comparative research on individual growth strategies has been conducted. Growth patterns and methods have been shaped by evolution and a great variety of them are observed. Two distinct patterns - determinate and indeterminate growth - are of a special interest for these studies since they present qualitatively different outcomes of evolution. We attempt to draw together studies covering growth in plant and animal species across a wide range of phyla focusing primarily on the noted qualitative features. We also review mathematical descriptions of growth, namely empirical growth curves and growth models, and discuss the directions of future research.
Parametric Linear Hybrid Automata for Complex Environmental Systems Modeling
Samar Hayat Khan Tareen
2015-07-01
Full Text Available Environmental systems, whether they be weather patterns or predator-prey relationships, are dependent on a number of different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of these systems. Towards this end, we have applied a logical modeling approach to model and analyze the behavioral trends and systematic trajectories that these systems exhibit without delving into their quantification. This approach, formalized by René Thomas for discrete logical modeling of Biological Regulatory Networks (BRNs and further extended in our previous studies as parametric biological linear hybrid automata (Bio-LHA, has been previously employed for the analyses of different molecular regulatory interactions occurring across various cells and microbial species. As relationships between different interacting components of a system can be simplified as positive or negative influences, we can employ the Bio-LHA framework to represent different components of the environmental system as positive or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete/continuous modeling which lead to refinements among the fore-casted behaviors in order to find out which ones are actually possible. We have taken two case studies: an interaction of three microbial species in a freshwater pond, and a more complex atmospheric system, to show the applications of the Bio-LHA methodology for the timed hybrid modeling of environmental systems. Results show that the approach using the Bio-LHA is a viable method for behavioral modeling of complex environmental systems by finding timing constraints while keeping the complexity of the model
Linear models for multivariate, time series, and spatial data
Christensen, Ronald
1991-01-01
This is a companion volume to Plane Answers to Complex Questions: The Theory 0/ Linear Models. It consists of six additional chapters written in the same spirit as the last six chapters of the earlier book. Brief introductions are given to topics related to linear model theory. No attempt is made to give a comprehensive treatment of the topics. Such an effort would be futile. Each chapter is on a topic so broad that an in depth discussion would require a book-Iength treatment. People need to impose structure on the world in order to understand it. There is a limit to the number of unrelated facts that anyone can remem ber. If ideas can be put within a broad, sophisticatedly simple structure, not only are they easier to remember but often new insights become avail able. In fact, sophisticatedly simple models of the world may be the only ones that work. I have often heard Arnold Zellner say that, to the best of his knowledge, this is true in econometrics. The process of modeling is fundamental to understand...
Linear mixed models a practical guide using statistical software
West, Brady T; Galecki, Andrzej T
2014-01-01
Highly recommended by JASA, Technometrics, and other journals, the first edition of this bestseller showed how to easily perform complex linear mixed model (LMM) analyses via a variety of software programs. Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition continues to lead readers step by step through the process of fitting LMMs. This second edition covers additional topics on the application of LMMs that are valuable for data analysts in all fields. It also updates the case studies using the latest versions of the software procedures and provides up-to-date information on the options and features of the software procedures available for fitting LMMs in SAS, SPSS, Stata, R/S-plus, and HLM.New to the Second Edition A new chapter on models with crossed random effects that uses a case study to illustrate software procedures capable of fitting these models Power analysis methods for longitudinal and clustered study designs, including software options for power analyses and suggest...
Environmental enteropathy is subclinical inflammation of the upper gastrointestinal tract associated with reduced linear growth in developing countries. Usually investigators have used biopsy or a dual sugar absorption test to assess environmental enteropathy. Such tests are time and resource intens...
Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1.
Dobie, Ross; Ahmed, Syed F; Staines, Katherine A; Pass, Chloe; Jasim, Seema; MacRae, Vicky E; Farquharson, Colin
2015-11-01
Growth hormone (GH) signaling is essential for postnatal linear bone growth, but the relative importance of GHs actions on the liver and/or growth plate cartilage remains unclear. The importance of liver derived insulin like-growth factor-1 (IGF-1) for endochondral growth has recently been challenged. Here, we investigate linear growth in Suppressor of Cytokine Signaling-2 (SOCS2) knockout mice, which have enhanced growth despite normal systemic GH/IGF-1 levels. Wild-type embryonic ex vivo metatarsals failed to exhibit increased linear growth in response to GH, but displayed increased Socs2 transcript levels (P growth over a 12 day period. Despite this increase, IGF-1 transcript and protein levels were not increased in response to GH. In accordance with these data, IGF-1 levels were unchanged in GH-challenged postnatal Socs2(-/-) conditioned medium despite metatarsals showing enhanced linear growth. Growth-plate Igf1 mRNA levels were not elevated in juvenile Socs2(-/-) mice. GH did however elevate IGF-binding protein 3 levels in conditioned medium from GH challenged metatarsals and this was more apparent in Socs2(-/-) metatarsals. GH did not enhance the growth of Socs2(-/-) metatarsals when the IGF receptor was inhibited, suggesting that IGF receptor mediated mechanisms are required. IGF-2 may be responsible as IGF-2 promoted metatarsal growth and Igf2 expression was elevated in Socs2(-/-) (but not WT) metatarsals in response to GH. These studies emphasise the critical importance of SOCS2 in regulating GHs ability to promote bone growth. Also, GH appears to act directly on the metatarsals of Socs2(-/-) mice, promoting growth via a mechanism that is independent of IGF-1. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing
2018-05-01
We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.
Surface-bounded growth modeling applied to human mandibles
Andresen, Per Rønsholt
1999-01-01
This thesis presents mathematical and computational techniques for three dimensional growth modeling applied to human mandibles. The longitudinal shape changes make the mandible a complex bone. The teeth erupt and the condylar processes change direction, from pointing predominantly backward...... of the common features. 3.model the process that moves the matched points (growth modeling). A local shape feature called crest line has shown itself to be structurally stable on mandibles. Registration of crest lines (from different mandibles) results in a sparse deformation field, which must be interpolated...... old mandible based on the 3 month old scan. When using successively more recent scans as basis for the model the error drops to 2.0 mm for the 11 years old scan. Thus, it seems reasonable to assume that the mandibular growth is linear....
Bayesian uncertainty quantification in linear models for diffusion MRI.
Sjölund, Jens; Eklund, Anders; Özarslan, Evren; Herberthson, Magnus; Bånkestad, Maria; Knutsson, Hans
2018-03-29
Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification. Copyright © 2018 Elsevier Inc. All rights reserved.
Nonconvex Model of Material Growth: Mathematical Theory
Ganghoffer, J. F.; Plotnikov, P. I.; Sokolowski, J.
2018-06-01
The model of volumetric material growth is introduced in the framework of finite elasticity. The new results obtained for the model are presented with complete proofs. The state variables include the deformations, temperature and the growth factor matrix function. The existence of global in time solutions for the quasistatic deformations boundary value problem coupled with the energy balance and the evolution of the growth factor is shown. The mathematical results can be applied to a wide class of growth models in mechanics and biology.
The non-linear growth of the magnetic Rayleigh-Taylor instability
Carlyle, Jack; Hillier, Andrew
2017-09-01
This work examines the effect of the embedded magnetic field strength on the non-linear development of the magnetic Rayleigh-Taylor instability (RTI) (with a field-aligned interface) in an ideal gas close to the incompressible limit in three dimensions. Numerical experiments are conducted in a domain sufficiently large so as to allow the predicted critical modes to develop in a physically realistic manner. The ratio between gravity, which drives the instability in this case (as well as in several of the corresponding observations), and magnetic field strength is taken up to a ratio which accurately reflects that of observed astrophysical plasma, in order to allow comparison between the results of the simulations and the observational data which served as inspiration for this work. This study finds reduced non-linear growth of the rising bubbles of the RTI for stronger magnetic fields, and that this is directly due to the change in magnetic field strength, rather than the indirect effect of altering characteristic length scales with respect to domain size. By examining the growth of the falling spikes, the growth rate appears to be enhanced for the strongest magnetic field strengths, suggesting that rather than affecting the development of the system as a whole, increased magnetic field strengths in fact introduce an asymmetry to the system. Further investigation of this effect also revealed that the greater this asymmetry, the less efficiently the gravitational energy is released. By better understanding the under-studied regime of such a major phenomenon in astrophysics, deeper explanations for observations may be sought, and this work illustrates that the strength of magnetic fields in astrophysical plasmas influences observed RTI in subtle and complex ways.
Spatial generalised linear mixed models based on distances.
Melo, Oscar O; Mateu, Jorge; Melo, Carlos E
2016-10-01
Risk models derived from environmental data have been widely shown to be effective in delineating geographical areas of risk because they are intuitively easy to understand. We present a new method based on distances, which allows the modelling of continuous and non-continuous random variables through distance-based spatial generalised linear mixed models. The parameters are estimated using Markov chain Monte Carlo maximum likelihood, which is a feasible and a useful technique. The proposed method depends on a detrending step built from continuous or categorical explanatory variables, or a mixture among them, by using an appropriate Euclidean distance. The method is illustrated through the analysis of the variation in the prevalence of Loa loa among a sample of village residents in Cameroon, where the explanatory variables included elevation, together with maximum normalised-difference vegetation index and the standard deviation of normalised-difference vegetation index calculated from repeated satellite scans over time. © The Author(s) 2013.
Linear system identification via backward-time observer models
Juang, Jer-Nan; Phan, Minh
1993-01-01
This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.
Linear mixing model applied to AVHRR LAC data
Holben, Brent N.; Shimabukuro, Yosio E.
1993-01-01
A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55 - 3.93 microns channel was extracted and used with the two reflective channels 0.58 - 0.68 microns and 0.725 - 1.1 microns to run a Constraine Least Squares model to generate vegetation, soil, and shade fraction images for an area in the Western region of Brazil. The Landsat Thematic Mapper data covering the Emas National park region was used for estimating the spectral response of the mixture components and for evaluating the mixing model results. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse resolution data for global studies.
Accelerating transient simulation of linear reduced order models.
Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad
2011-10-01
Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.
Pollution externalities in a Schumpeterian growth model
Koesler, Simon
2010-01-01
This paper extends a standard Schumpeterian growth model to include an environmental dimension. Thereby, it explicitly links the pollution intensity of economic activity to technological progress. In a second step, it investigates the effect of pollution on economic growth under the assumption that pollution intensities are related to technological progress. Several conclusions emerge from the model. In equilibrium, the economy follows a balanced growth path. The effect of pollution on the ec...
Behavioral modeling of the dominant dynamics in input-output transfer of linear(ized) circuits
Beelen, T.G.J.; Maten, ter E.J.W.; Sihaloho, H.J.; Eijndhoven, van S.J.L.
2010-01-01
We present a powerful procedure for determining both the dominant dynamics of the inputoutput transfer and the corresponding most influential circuit parameters of a linear(ized) circuit. The procedure consists of several steps in which a specific (sub)problem is solved and its solution is used in
Non Linear Modelling and Control of Hydraulic Actuators
B. Šulc
2002-01-01
Full Text Available This paper deals with non-linear modelling and control of a differential hydraulic actuator. The nonlinear state space equations are derived from basic physical laws. They are more powerful than the transfer function in the case of linear models, and they allow the application of an object oriented approach in simulation programs. The effects of all friction forces (static, Coulomb and viscous have been modelled, and many phenomena that are usually neglected are taken into account, e.g., the static term of friction, the leakage between the two chambers and external space. Proportional Differential (PD and Fuzzy Logic Controllers (FLC have been applied in order to make a comparison by means of simulation. Simulation is performed using Matlab/Simulink, and some of the results are compared graphically. FLC is tuned in a such way that it produces a constant control signal close to its maximum (or minimum, where possible. In the case of PD control the occurrence of peaks cannot be avoided. These peaks produce a very high velocity that oversteps the allowed values.
Modeling Pan Evaporation for Kuwait by Multiple Linear Regression
Almedeij, Jaber
2012-01-01
Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values. PMID:23226984
A linear model for flow over complex terrain
Frank, H P [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1999-03-01
A linear flow model similar to WA{sup s}P or LINCOM has been developed. Major differences are an isentropic temperature equation which allows internal gravity waves, and vertical advection of the shear of the mean flow. The importance of these effects are illustrated by examples. Resource maps are calculated from a distribution of geostrophic winds and stratification for Pyhaetunturi Fell in northern Finland and Acqua Spruzza in Italy. Stratification becomes important if the inverse Froude number formulated with the width of the hill becomes of order one or greater. (au) EU-JOULE-3. 16 refs.
Linear-quadratic model predictions for tumor control probability
Yaes, R.J.
1987-01-01
Sigmoid dose-response curves for tumor control are calculated from the linear-quadratic model parameters α and Β, obtained from human epidermoid carcinoma cell lines, and are much steeper than the clinical dose-response curves for head and neck cancers. One possible explanation is the presence of small radiation-resistant clones arising from mutations in an initially homogeneous tumor. Using the mutation theory of Delbruck and Luria and of Goldie and Coldman, the authors discuss the implications of such radiation-resistant clones for clinical radiation therapy
Inventory model using bayesian dynamic linear model for demand forecasting
Marisol Valencia-Cárdenas
2014-12-01
Full Text Available An important factor of manufacturing process is the inventory management of terminated product. Constantly, industry is looking for better alternatives to establish an adequate plan of production and stored quantities, with optimal cost, getting quantities in a time horizon, which permits to define resources and logistics with anticipation, needed to distribute products on time. Total absence of historical data, required by many statistical models to forecast, demands the search for other kind of accurate techniques. This work presents an alternative that not only permits to forecast, in an adjusted way, but also, to provide optimal quantities to produce and store with an optimal cost, using Bayesian statistics. The proposal is illustrated with real data. Palabras clave: estadística bayesiana, optimización, modelo de inventarios, modelo lineal dinámico bayesiano. Keywords: Bayesian statistics, opti
Sami Saafi
2017-12-01
Full Text Available The aim of the paper is to investigate the linear and nonlinear causality between a set of alternative tax burden ratios and economic growth in 23 OECD countries. To that end, the linear causality approach of Toda– Yamamoto (1995 and the nonparametric causality method of Kyrtsou and Labys (2006 are applied to annual data spanning from 1970 to 2014. Results obtained from the nonlinear causality test tend to reject the neutrality hypothesis for the tax structure–growth relationship in 19 of the 23 OECD countries. In the majority of the countries under investigation, the evidence is in line with the growth hypothesis where causality running from economic growth to tax burden ratios was detected in Australia, Denmark, Finland, Japan, New Zealand, and Norway. The opposite causality running from tax structure to economic growth was found in Germany, Netherlands, Portugal, and Sweden. In contrast, the neutrality hypothesis was supported in Austria, Italy, Luxembourg, and the USA, whereas the feedback hypothesis was supported in Turkey and the UK. Additional robustness checks show that when the signs of variations are taken into account, there is an asymmetric causality running from positive tax burden shocks to positive per capita GDP shocks for Belgium, France, and Turkey. Overall, our findings suggest that policy implications of the tax structure-economic growth relationships should be interpreted with caution, taking into account the test-dependent and country-specific results.
Phenomenology of non-minimal supersymmetric models at linear colliders
Porto, Stefano
2015-06-01
The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics
A new model for simulating growth in fish
Johannes Hamre
2014-01-01
Full Text Available A real dynamic population model calculates change in population sizes independent of time. The Beverton & Holt (B&H model commonly used in fish assessment includes the von Bertalanffy growth function which has age or accumulated time as an independent variable. As a result the B&H model has to assume constant fish growth. However, growth in fish is highly variable depending on food availability and environmental conditions. We propose a new growth model where the length increment of fish living under constant conditions and unlimited food supply, decreases linearly with increasing fish length until it reaches zero at a maximal fish length. The model is independent of time and includes a term which accounts for the environmental variation. In the present study, the model was validated in zebrafish held at constant conditions. There was a good fit of the model to data on observed growth in Norwegian spring spawning herring, capelin from the Barents Sea, North Sea herring and in farmed coastal cod. Growth data from Walleye Pollock from the Eastern Bering Sea and blue whiting from the Norwegian Sea also fitted reasonably well to the model, whereas data from cod from the North Sea showed a good fit to the model only above a length of 70 cm. Cod from the Barents Sea did not grow according to the model. The last results can be explained by environmental factors and variable food availability in the time under study. The model implicates that the efficiency of energy conversion from food decreases as the individual animal approaches its maximal length and is postulated to represent a natural law of fish growth.
Non-Linear Slosh Damping Model Development and Validation
Yang, H. Q.; West, Jeff
2015-01-01
Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can
Non linear permanent magnets modelling with the finite element method
Chavanne, J.; Meunier, G.; Sabonnadiere, J.C.
1989-01-01
In order to perform the calculation of permanent magnets with the finite element method, it is necessary to take into account the anisotropic behaviour of hard magnetic materials (Ferrites, NdFeB, SmCo5). In linear cases, the permeability of permanent magnets is a tensor. This one is fully described with the permeabilities parallel and perpendicular to the easy axis of the magnet. In non linear cases, the model uses a texture function which represents the distribution of the local easy axis of the cristallytes of the magnet. This function allows a good representation of the angular dependance of the coercitive field of the magnet. As a result, it is possible to express the magnetic induction B and the tensor as functions of the field and the texture parameter. This model has been implemented in the software FLUX3D where the tensor is used for the Newton-Raphson procedure. 3D demagnetization of a ferrite magnet by a NdFeB magnet is a suitable representative example. They analyze the results obtained for an ideally oriented ferrite magnet and a real one using a measured texture parameter
Linear collider signal of anomaly mediated supersymmetry breaking model
Ghosh Dilip Kumar; Kundu, Anirban; Roy, Probir; Roy, Sourov
2001-01-01
Though the minimal model of anomaly mediated supersymmetry breaking has been significantly constrained by recent experimental and theoretical work, there are still allowed regions of the parameter space for moderate to large values of tan β. We show that these regions will be comprehensively probed in a √s = 1 TeV e + e - linear collider. Diagnostic signals to this end are studied by zeroing in on a unique and distinct feature of a large class of models in this genre: a neutral winolike Lightest Supersymmetric Particle closely degenerate in mass with a winolike chargino. The pair production processes e + e - → e tilde L ± e tilde L ± , e tilde R ± e tilde R ± , e tilde L ± e tilde R ± , ν tilde anti ν tilde, χ tilde 1 0 χ tilde 2 0 , χ tilde 2 0 χ tilde 2 0 are all considered at √s = 1 TeV corresponding to the proposed TESLA linear collider in two natural categories of mass ordering in the sparticle spectra. The signals analysed comprise multiple combinations of fast charged leptons (any of which can act as the trigger) plus displaced vertices X D (any of which can be identified by a heavy ionizing track terminating in the detector) and/or associated soft pions with characteristic momentum distributions. (author)
Linear versus quadratic portfolio optimization model with transaction cost
Razak, Norhidayah Bt Ab; Kamil, Karmila Hanim; Elias, Siti Masitah
2014-06-01
Optimization model is introduced to become one of the decision making tools in investment. Hence, it is always a big challenge for investors to select the best model that could fulfill their goal in investment with respect to risk and return. In this paper we aims to discuss and compare the portfolio allocation and performance generated by quadratic and linear portfolio optimization models namely of Markowitz and Maximin model respectively. The application of these models has been proven to be significant and popular among others. However transaction cost has been debated as one of the important aspects that should be considered for portfolio reallocation as portfolio return could be significantly reduced when transaction cost is taken into consideration. Therefore, recognizing the importance to consider transaction cost value when calculating portfolio' return, we formulate this paper by using data from Shariah compliant securities listed in Bursa Malaysia. It is expected that, results from this paper will effectively justify the advantage of one model to another and shed some lights in quest to find the best decision making tools in investment for individual investors.
Examining secular trend and seasonality in count data using dynamic generalized linear modelling
Lundbye-Christensen, Søren; Dethlefsen, Claus; Gorst-Rasmussen, Anders
series regression model for Poisson counts. It differs in allowing the regression coefficients to vary gradually over time in a random fashion. Data In the period January 1980 to 1999, 17,989 incidents of acute myocardial infarction were recorded in the county of Northern Jutland, Denmark. Records were......Aims Time series of incidence counts often show secular trends and seasonal patterns. We present a model for incidence counts capable of handling a possible gradual change in growth rates and seasonal patterns, serial correlation and overdispersion. Methods The model resembles an ordinary time...... updated daily. Results The model with a seasonal pattern and an approximately linear trend was fitted to the data, and diagnostic plots indicate a good model fit. The analysis with the dynamic model revealed peaks coinciding with influenza epidemics. On average the peak-to-trough ratio is estimated...
Probabilistic model of ligaments and tendons: Quasistatic linear stretching
Bontempi, M.
2009-03-01
Ligaments and tendons have a significant role in the musculoskeletal system and are frequently subjected to injury. This study presents a model of collagen fibers, based on the study of a statistical distribution of fibers when they are subjected to quasistatic linear stretching. With respect to other methodologies, this model is able to describe the behavior of the bundle using less ad hoc hypotheses and is able to describe all the quasistatic stretch-load responses of the bundle, including the yield and failure regions described in the literature. It has two other important results: the first is that it is able to correlate the mechanical behavior of the bundle with its internal structure, and it suggests a methodology to deduce the fibers population distribution directly from the tensile-test data. The second is that it can follow fibers’ structure evolution during the stretching and it is possible to study the internal adaptation of fibers in physiological and pathological conditions.
Linear mixing model applied to coarse resolution satellite data
Holben, Brent N.; Shimabukuro, Yosio E.
1992-01-01
A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.
Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics
Wang, John T.
2010-01-01
The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.
Locally supersymmetric D=3 non-linear sigma models
Wit, B. de; Tollsten, A.K.; Nicolai, H.
1993-01-01
We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is riemannian or Kaehler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it generally decomposes, into two separate quaternionic spaces, associated with inequivalent supermultiplets. For N=5, 6, 8 there is a unique (symmetric) space for any given number of supermultiplets. Beyond that there are only theories based on a single supermultiplet for N=9, 10, 12 and 16, associated with coset spaces with the exceptional isometry groups F 4(-20) , E 6(-14) , E 7(-5) and E 8(+8) , respectively. For N=3 and N ≥ 5 the D=2 theories obtained by dimensional reduction are two-loop finite. (orig.)
Explicit estimating equations for semiparametric generalized linear latent variable models
Ma, Yanyuan
2010-07-05
We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.
Synthetic Domain Theory and Models of Linear Abadi & Plotkin Logic
Møgelberg, Rasmus Ejlers; Birkedal, Lars; Rosolini, Guiseppe
2008-01-01
Plotkin suggested using a polymorphic dual intuitionistic/linear type theory (PILLY) as a metalanguage for parametric polymorphism and recursion. In recent work the first two authors and R.L. Petersen have defined a notion of parametric LAPL-structure, which are models of PILLY, in which one can...... reason using parametricity and, for example, solve a large class of domain equations, as suggested by Plotkin.In this paper, we show how an interpretation of a strict version of Bierman, Pitts and Russo's language Lily into synthetic domain theory presented by Simpson and Rosolini gives rise...... to a parametric LAPL-structure. This adds to the evidence that the notion of LAPL-structure is a general notion, suitable for treating many different parametric models, and it provides formal proofs of consequences of parametricity expected to hold for the interpretation. Finally, we show how these results...
Modelling asymmetric growth in crowded plant communities
Damgaard, Christian
2010-01-01
A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size......-asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....
Growth and Zeros of Meromorphic Solutions to Second-Order Linear Differential Equations
Maamar Andasmas
2016-04-01
Full Text Available The main purpose of this article is to investigate the growth of meromorphic solutions to homogeneous and non-homogeneous second order linear differential equations f00+Af0+Bf = F, where A(z, B (z and F (z are meromorphic functions with finite order having only finitely many poles. We show that, if there exist a positive constants σ > 0, α > 0 such that |A(z| ≥ eα|z|σ as |z| → +∞, z ∈ H, where dens{|z| : z ∈ H} > 0 and ρ = max{ρ(B, ρ(F} < σ, then every transcendental meromorphic solution f has an infinite order. Further, we give some estimates of their hyper-order, exponent and hyper-exponent of convergence of distinct zeros.
Child feeding style is associated with food intake and linear growth in rural Ethiopia.
Abebe, Zeweter; Haki, Gulelat Desse; Baye, Kaleab
2017-09-01
Little is known about mother-child feeding interactions and how this is associated with food intake and linear growth. To characterize mother-child feeding styles and investigate their associations with accepted mouthful and linear growth in west Gojam, rural Ethiopia. Two, in-home, meal observations of children aged 12-23 months (n = 100) were video-taped. The number of mouthful accepted was counted and the caregiver/child feeding styles were coded into positive/negative categories of self-feeding, responsive-feeding, active-feeding, social-behavior and distraction. Data on socio-demographic characteristics, child feeding practices, perception about child's overall appetite, and strategies adopted to overcome food refusal were collected through questionnaire-based interviews. Child and mothers' anthropometric measurements were also taken. Stunting was highly prevalent (48%) and the number of mouthful accepted was very low. Offering breastmilk and threatening to harm were the main strategies adopted to overcome food refusal. Although all forms of feeding style were present, active positive feeding style was dominant (90%) and was positively associated with mouthful accepted. Talking with non-feeding partner (64%), and domestic animals (24%) surrounding the feeding place were common distractions of feeding. Feeding was mostly terminated by caregivers (75%), often prematurely. Overall, caregivers of stunted children had poorer complementary- and breast-feeding practices and were less responsive to child's hunger and satiation cues (P responsive feeding behaviors were associated with child's number of mouthful accepted (r = 0.27; P = 0.007) and stunting (r = 0.4; P feeding style and stunting. Nutrition interventions that reinforce messages of optimal infant and young child feeding and integrate the promotion of responsive feeding behaviors are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fernanda Gomes da Silveira
2011-04-01
Full Text Available Este estudo teve como objetivo utilizar a análise de agrupamento para classificar modelos de regressão não-lineares usados para descrever a curva de crescimento de ovinos cruzados, tendo em vista os resultados de diferentes avaliadores de qualidade de ajuste. Para tanto, utilizaram-se dados de peso-idade dos seguintes cruzamentos entre raças de ovinos de corte: Dorper x Morada Nova, Dorper x Rabo Largo e Dorper x Santa Inês. Após a indicação do melhor modelo, objetivou-se ainda aplicar a técnica de identidade de modelos a fim de identificar o cruzamento mais produtivo. Foram ajustados doze modelos não-lineares, cuja qualidade de ajuste foi medida pelo coeficiente de determinação ajustado, critérios de informação de Akaike e Bayesiano, erro quadrático médio de predição e coeficiente de determinação de predição. A análise de agrupamento indicou o modelo Richards como o mais adequado para descrever as curvas de crescimento dos três grupos genéticos considerados, e os testes de identidade de modelos indicaram o cruzamento Dorper x Santa Inês como sendo o mais indicado para a pecuária local.This study had the objectives to use the cluster analysis in order to classify nonlinear regression models used to describe the growth curve in relation to different quality fit evaluators. Were utilized weight-age data from the following crossbred beef lambs Dorper x Morada Nova, Dorper x Rabo Largo e Dorper x Santa Inês. After the choice of the best model, we aimed also to apply the model identity in order to identify the most efficient crossbred group. Eleven nonlinear models were used, whose fit quality was measured by determination coefficient, Akaike information criterion, Bayesian information criterion, mean quadratic error of prediction and predicted determination coefficient. The cluster analysis indicated the Richards as the best model for the three data sets, and the model identity tests revealed that the Dorper x Santa In
Holdaway, Daniel; Kent, James
2015-01-01
The linearity of a selection of common advection schemes is tested and examined with a view to their use in the tangent linear and adjoint versions of an atmospheric general circulation model. The schemes are tested within a simple offline one-dimensional periodic domain as well as using a simplified and complete configuration of the linearised version of NASA's Goddard Earth Observing System version 5 (GEOS-5). All schemes which prevent the development of negative values and preserve the shape of the solution are confirmed to have nonlinear behaviour. The piecewise parabolic method (PPM) with certain flux limiters, including that used by default in GEOS-5, is found to support linear growth near the shocks. This property can cause the rapid development of unrealistically large perturbations within the tangent linear and adjoint models. It is shown that these schemes with flux limiters should not be used within the linearised version of a transport scheme. The results from tests using GEOS-5 show that the current default scheme (a version of PPM) is not suitable for the tangent linear and adjoint model, and that using a linear third-order scheme for the linearised model produces better behaviour. Using the third-order scheme for the linearised model improves the correlations between the linear and non-linear perturbation trajectories for cloud liquid water and cloud liquid ice in GEOS-5.
Agapova, Sophia E; Stephenson, Kevin B; Divala, Oscar; Kaimila, Yankho; Maleta, Kenneth M; Thakwalakwa, Chrissie; Ordiz, M Isabel; Trehan, Indi; Manary, Mark J
2018-02-01
Chronic malnutrition, as manifested by linear growth faltering, is pervasive among rural African children. Improvements in complementary feeding may decrease the burden of environmental enteric dysfunction (EED) and thus improve growth in children during the critical first 1000 d of development. We tested the hypothesis that systematically including common bean or cowpea into complementary feeding would reduce EED and growth faltering among children in rural Malawi. This was a double-blind clinical trial in which children 12-23 mo of age were randomly assigned to receive complementary feeding with 1 of 3 foods: roasted cowpea or common bean flour, or an isoenergetic amount of corn-soy blend as a control food for 48 wk. Children aged 12-23 mo received 155 kcal/d and thereafter until 35 mo received 200 kcal/d. The primary outcomes were change in length-for-age z score (LAZ) and improvements in a biomarker of EED, the percentage of lactulose (%L) excreted as part of the lactulose:mannitol dual-sugar absorption test. Anthropometric measurements and urinary %L excretion were compared between the 2 intervention groups and the control group separately with the use of linear mixed model analyses for repeated measures. A total of 331 children completed the clinical trial. Compliance with the study interventions was excellent, with >90% of the intervention flour consumed as intended. No significant effects on LAZ, change in LAZ, or weight-for-length z score were observed due to either intervention legume, compared to the control. %L was reduced with common bean consumption (effect estimate was -0.07 percentage points of lactulose, P = 0.0007). The lactulose:mannitol test was not affected by the legume intervention. The addition of common bean to complementary feeding of rural Malawian children during the second year of life led to an improvement in a biomarker of gut health, although this did not directly translate into improved linear growth. This trial was registered at
Belfort, Mandy B; Gillman, Matthew W; Buka, Stephen L; Casey, Patrick H; McCormick, Marie C
2013-12-01
To examine trade-offs between cognitive outcome and overweight/obesity in preterm-born infants at school age and young adulthood in relation to weight gain and linear growth during infancy. We studied 945 participants in the Infant Health and Development Program, an 8-center study of preterm (≤37 weeks gestational age), low birth weight (≤2500 g) infants from birth to age 18 years. Adjusting for maternal and child factors in logistic regression, we estimated the odds of overweight/obesity (body mass index [BMI] ≥85th percentile at age 8 or ≥25 kg/m(2) at age 18) and in separate models, low IQ (growth from term to 4 months was associated with lower odds of IQ growth soon after term was associated with better cognition, but also with a greater risk of overweight/obesity at age 8 years and 18 years. BMI gain over the entire 18 months after term was associated with later risk of overweight/obesity, with less evidence of a benefit for IQ. Copyright © 2013 Mosby, Inc. All rights reserved.
Growth curve models and statistical diagnostics
Pan, Jian-Xin
2002-01-01
Growth-curve models are generalized multivariate analysis-of-variance models. These models are especially useful for investigating growth problems on short times in economics, biology, medical research, and epidemiology. This book systematically introduces the theory of the GCM with particular emphasis on their multivariate statistical diagnostics, which are based mainly on recent developments made by the authors and their collaborators. The authors provide complete proofs of theorems as well as practical data sets and MATLAB code.
Solving large mixed linear models using preconditioned conjugate gradient iteration.
Strandén, I; Lidauer, M
1999-12-01
Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.
Linear mixed-effects modeling approach to FMRI group analysis.
Chen, Gang; Saad, Ziad S; Britton, Jennifer C; Pine, Daniel S; Cox, Robert W
2013-06-01
Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity
Direction of Effects in Multiple Linear Regression Models.
Wiedermann, Wolfgang; von Eye, Alexander
2015-01-01
Previous studies analyzed asymmetric properties of the Pearson correlation coefficient using higher than second order moments. These asymmetric properties can be used to determine the direction of dependence in a linear regression setting (i.e., establish which of two variables is more likely to be on the outcome side) within the framework of cross-sectional observational data. Extant approaches are restricted to the bivariate regression case. The present contribution extends the direction of dependence methodology to a multiple linear regression setting by analyzing distributional properties of residuals of competing multiple regression models. It is shown that, under certain conditions, the third central moments of estimated regression residuals can be used to decide upon direction of effects. In addition, three different approaches for statistical inference are discussed: a combined D'Agostino normality test, a skewness difference test, and a bootstrap difference test. Type I error and power of the procedures are assessed using Monte Carlo simulations, and an empirical example is provided for illustrative purposes. In the discussion, issues concerning the quality of psychological data, possible extensions of the proposed methods to the fourth central moment of regression residuals, and potential applications are addressed.
Linear model applied to the evaluation of pharmaceutical stability data
Renato Cesar Souza
2013-09-01
Full Text Available The expiry date on the packaging of a product gives the consumer the confidence that the product will retain its identity, content, quality and purity throughout the period of validity of the drug. The definition of this term in the pharmaceutical industry is based on stability data obtained during the product registration. By the above, this work aims to apply the linear regression according to the guideline ICH Q1E, 2003, to evaluate some aspects of a product undergoing in a registration phase in Brazil. With this propose, the evaluation was realized with the development center of a multinational company in Brazil, with samples of three different batches composed by two active principal ingredients in two different packages. Based on the preliminary results obtained, it was possible to observe the difference of degradation tendency of the product in two different packages and the relationship between the variables studied, added knowledge so new models of linear equations can be applied and developed for other products.
Fourth standard model family neutrino at future linear colliders
Ciftci, A.K.; Ciftci, R.; Sultansoy, S.
2005-01-01
It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac (ν 4 ) and Majorana (N 1 ) neutrinos at future linear colliders with √(s)=500 GeV, 1 TeV, and 3 TeV are considered. The cross section for the process e + e - →ν 4 ν 4 (N 1 N 1 ) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels (ν 4 (N 1 )→μ ± W ± ) provide cleanest signature at e + e - colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at √(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures
Influence of the void fraction in the linear reactivity model
Castillo, J.A.; Ramirez, J.R.; Alonso, G.
2003-01-01
The linear reactivity model allows the multicycle analysis in pressurized water reactors in a simple and quick way. In the case of the Boiling water reactors the void fraction it varies axially from 0% of voids in the inferior part of the fuel assemblies until approximately 70% of voids to the exit of the same ones. Due to this it is very important the determination of the average void fraction during different stages of the reactor operation to predict the burnt one appropriately of the same ones to inclination of the pattern of linear reactivity. In this work a pursuit is made of the profile of power for different steps of burnt of a typical operation cycle of a Boiling water reactor. Starting from these profiles it builds an algorithm that allows to determine the voids profile and this way to obtain the average value of the same one. The results are compared against those reported by the CM-PRESTO code that uses another method to carry out this calculation. Finally, the range in which is the average value of the void fraction during a typical cycle is determined and an estimate of the impact that it would have the use of this value in the prediction of the reactivity produced by the fuel assemblies is made. (Author)
Successive 1-Month Weight Increments in Infancy Can Be Used to Screen for Faltering Linear Growth.
Onyango, Adelheid W; Borghi, Elaine; de Onis, Mercedes; Frongillo, Edward A; Victora, Cesar G; Dewey, Kathryn G; Lartey, Anna; Bhandari, Nita; Baerug, Anne; Garza, Cutberto
2015-12-01
Linear growth faltering in the first 2 y contributes greatly to a high stunting burden, and prevention is hampered by the limited capacity in primary health care for timely screening and intervention. This study aimed to determine an approach to predicting long-term stunting from consecutive 1-mo weight increments in the first year of life. By using the reference sample of the WHO velocity standards, the analysis explored patterns of consecutive monthly weight increments among healthy infants. Four candidate screening thresholds of successive increments that could predict stunting were considered, and one was selected for further testing. The selected threshold was applied in a cohort of Bangladeshi infants to assess its predictive value for stunting at ages 12 and 24 mo. Between birth and age 12 mo, 72.6% of infants in the WHO sample tracked within 1 SD of their weight and length. The selected screening criterion ("event") was 2 consecutive monthly increments below the 15th percentile. Bangladeshi infants were born relatively small and, on average, tracked downward from approximately age 6 to strategy is effective, the estimated preventable proportion in the group who experienced the event would be 34% at 12 mo and 24% at 24 mo. This analysis offers an approach for frontline workers to identify children at risk of stunting, allowing for timely initiation of preventive measures. It opens avenues for further investigation into evidence-informed application of the WHO growth velocity standards. © 2015 American Society for Nutrition.
Analytical prediction model for non-symmetric fatigue crack growth in Fibre Metal Laminates
Wang, W.; Rans, C.D.; Benedictus, R.
2017-01-01
This paper proposes an analytical model for predicting the non-symmetric crack growth and accompanying delamination growth in FMLs. The general approach of this model applies Linear Elastic Fracture Mechanics, the principle of superposition, and displacement compatibility based on the
On a Versatile Stochastic Growth Model
Samiur Arif
2012-06-01
Full Text Available Growth phenomena are ubiquitous and pervasive not only in biology and the medical sciences, but also in economics, marketing and the computer and social sciences. We introduce a three-parameter version of the classic pure-birth process growth model when suitably instantiated, can be used to model growth phenomena in many seemingly unrelated application domains. We point out that the model is computationally attractive since it admits of conceptually simple, closed form solutions for the time-dependent probabilities.
Characteristics and Properties of a Simple Linear Regression Model
Kowal Robert
2016-12-01
Full Text Available A simple linear regression model is one of the pillars of classic econometrics. Despite the passage of time, it continues to raise interest both from the theoretical side as well as from the application side. One of the many fundamental questions in the model concerns determining derivative characteristics and studying the properties existing in their scope, referring to the first of these aspects. The literature of the subject provides several classic solutions in that regard. In the paper, a completely new design is proposed, based on the direct application of variance and its properties, resulting from the non-correlation of certain estimators with the mean, within the scope of which some fundamental dependencies of the model characteristics are obtained in a much more compact manner. The apparatus allows for a simple and uniform demonstration of multiple dependencies and fundamental properties in the model, and it does it in an intuitive manner. The results were obtained in a classic, traditional area, where everything, as it might seem, has already been thoroughly studied and discovered.
A simple non-linear model of immune response
Gutnikov, Sergei; Melnikov, Yuri
2003-01-01
It is still unknown why the adaptive immune response in the natural immune system based on clonal proliferation of lymphocytes requires interaction of at least two different cell types with the same antigen. We present a simple mathematical model illustrating that the system with separate types of cells for antigen recognition and patogen destruction provides more robust adaptive immunity than the system where just one cell type is responsible for both recognition and destruction. The model is over-simplified as we did not have an intention of describing the natural immune system. However, our model provides a tool for testing the proposed approach through qualitative analysis of the immune system dynamics in order to construct more sophisticated models of the immune systems that exist in the living nature. It also opens a possibility to explore specific features of highly non-linear dynamics in nature-inspired computational paradigms like artificial immune systems and immunocomputing . We expect this paper to be of interest not only for mathematicians but also for biologists; therefore we made effort to explain mathematics in sufficient detail for readers without professional mathematical background
Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.
Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J
2016-10-03
Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.
Recent advances in modelling creep crack growth
Riedel, H.
1988-08-01
At the time of the previous International Conference on Fracture, the C* integral had long been recognized as a promising load parameter for correlating crack growth rates in creep-ductile materials. The measured crack growth rates as a function of C* and of the temperature could be understood on the basis of micromechanical models. The distinction between C*-controlled and K I -controlled creep crack growth had been clarified and first attempts had been made to describe creep crack growth in the transient regime between elastic behavior and steady-state creep. This paper describes the progress in describing transient crack growth including the effect of primary creep. The effect of crack-tip geometry changes by blunting and by crack growth on the crack-tip fields and on the validity of C* is analyzed by idealizing the growing-crack geometry by a sharp notch and using recent solutions for the notch-tip fields. A few new three-dimensional calculations of C* are cited and important theoretical points are emphasized regarding the three-dimensional fields at crack tips. Finally, creep crack growth is described by continuum-damage models for which similarity solutions can be obtained. Crack growth under small-scale creep conditions turns out to be difficult to understand. Slightly different models yield very different crack growth rates. (orig.) With 4 figs
A mathematical model of the growth of uterine myomas.
Chen, C Y; Ward, J P
2014-12-01
Uterine myomas or fibroids are common, benign smooth muscle tumours that can grow to 10 cm or more in diameter and are routinely removed surgically. They are typically slow- growing, well-vascularised, spherical tumours that, on a macro-scale, are a structurally uniform, hard elastic material. We present a multi-phase mathematical model of a fully vascularised myoma growing within a surrounding elastic tissue. Adopting a continuum approach, the model assumes the conservation of mass and momentum of four phases, namely cells/collagen, extracellular fluid, arterial and venous phases. The cell/collagen phase is treated as a poro-elastic material, based on a linear stress-strain relationship, and Darcy's law is applied to describe flow in the extracellular fluid and the two vascular phases. The supply of extracellular fluid is dependent on the capillary flow rate and mean capillary pressure expressed in terms of the arterial and venous pressures. Cell growth and division is limited to the myoma domain and dependent on the local stress in the material. The resulting model consists of a system of nonlinear partial differential equations with two moving boundaries. Numerical solutions of the model successfully reproduce qualitatively the clinically observed three-phase "fast-slow-fast" growth profile that is typical for myomas. The results suggest that this growth profile requires stress-induced resistance to growth by the surrounding tissue and a switch-like cell growth response to stress. Analysis of large-time solutions reveal that while there is a functioning vasculature throughout the myoma, exponential growth results, otherwise power-law growth is predicted. An extensive survey of the effect of parameters on model solutions is also presented, and in particular, the enhanced growth caused by factors such as oestrogen is predicted by the model.
Linear growth and final height characteristics in adolescent females with anorexia nervosa.
Dalit Modan-Moses
Full Text Available OBJECTIVE: Growth retardation is an established complication of anorexia nervosa (AN. However, findings concerning final height of AN patients are inconsistent. The aim of this study was to assess these phenomena in female adolescent inpatients with AN. METHODS: We retrospectively studied all 211 female adolescent AN patients hospitalized in an inpatient eating disorders department from 1/1/1987 to 31/12/99. Height and weight were assessed at admission and thereafter routinely during hospitalization and follow-up. Final height was measured in 69 patients 2-10 years after discharge. Pre-morbid height data was available in 29 patients. RESULTS: Patients' height standard deviation scores (SDS on admission (-0.285±1.0 and discharge (-0.271±1.02 were significantly (p<0.001 lower than expected in normal adolescents. Patients admitted at age ≤13 years, or less than 1 year after menarche, were more severely growth-impaired than patients admitted at an older age, (p = 0.03. Final height SDS, available for 69 patients, was -0.258±1.04, significantly lower than expected in a normal population (p = 0.04, and was more severely compromised in patients who were admitted less than 1 year from their menarche. In a subgroup of 29 patients with complete growth data (pre-morbid, admission, discharge, and final adult height, the pre-morbid height SDS was not significantly different from the expected (-0.11±1.1, whereas heights at the other time points were significantly (p = 0.001 lower (-0.56±1.2, -0.52±1.2, and -0.6±1.2, respectively. CONCLUSIONS: Our findings suggest that whereas the premorbid height of female adolescent AN patients is normal, linear growth retardation is a prominent feature of their illness. Weight restoration is associated with catch-up growth, but complete catch-up is often not achieved.
A Non-linear Stochastic Model for an Office Building with Air Infiltration
Thavlov, Anders; Madsen, Henrik
2015-01-01
This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model...
Technical report on micro-mechanical versus conventional modelling in non-linear fracture mechanics
2001-07-01
While conventional fracture mechanics is capable of predicting crack growth behaviour if sufficient experimental observations are available, micro-mechanical modelling can both increase the accuracy of these predictions and model phenomena that are inaccessible by the conventional theory such as the ductile-cleavage temperature transition. A common argument against micro-mechanical modelling is that it is too complicated for use in routine engineering applications. This is both a computational and an educational problem. That micro-mechanical modelling is unnecessarily complicated is certainly true in many situations. The on-going development of micro-mechanical models, computational algorithms and computer speed will however most probably diminish the computational problem rather rapidly. Compare for instance the rate of development of computational methods for structural analysis. Meanwhile micro-mechanical modelling may serve as a tool by which more simplified engineering methods can be validated. The process of receiving a wide acceptance of the new methods is probably much slower. This involves many steps. First the research community must be in reasonable agreement on the methods and their use. Then the methods have to be implemented into computer software and into code procedures. The development and acceptance of conventional fracture mechanics may serve as an historical example of the time required before a new methodology has received a wide usage. The CSNI Working Group on Integrity and Ageing (IAGE) decided to carry out a report on micro-mechanical modeling to promote this promising and valuable technique. The report presents a comparison with non-linear fracture mechanics and highlights key aspects that could lead to a better knowledge and accurate predictions. Content: - 1. Introduction; - 2. Concepts of non-linear fracture mechanics with point crack tip modelling; - 3. Micro-mechanical models for cleavage fracture; - 4, Micro-mechanical modelling of
Rossi, Sergio; Anfodillo, Tommaso; Čufar, Katarina; Cuny, Henri E.; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gričar, Jožica; Gruber, Andreas; King, Gregory M.; Krause, Cornelia; Morin, Hubert; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B. K.
2017-01-01
Background and Aims Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-l...
Assessing ozone and nitrogen impact on net primary productivity with a Generalised non-Linear Model
De Marco, Alessandra; Screpanti, Augusto; Attorre, Fabio; Proietti, Chiara; Vitale, Marcello
2013-01-01
Some studies suggest that in Europe the majority of forest growth increment can be accounted for N deposition and very little by elevated CO 2 . High ozone (O 3 ) concentrations cause reductions in carbon fixation in native plants by offsetting the effects of elevated CO 2 or N deposition. The cause-effect relationships between primary productivity (NPP) of Quercus cerris, Q. ilex and Fagus sylvatica plant species and climate and pollutants (O 3 and N deposition) in Italy have been investigated by application of Generalised Linear/non-Linear regression model (GLZ model). The GLZ model highlighted: i) cumulative O 3 concentration-based indicator (AOT40F) did not significantly affect NPP; ii) a differential action of oxidised and reduced nitrogen depositions to NPP was linked to the geographical location; iii) the species-specific variation of NPP caused by combination of pollutants and climatic variables could be a potentially important drive-factor for the plant species' shift as response to the future climate change. - Highlights: ► GLZ Models emphasized the role of combination of variables affecting NPP. ► A differential action of ox-N and red-N deposition to NPP was observed for plants. ► Different responses to climate and pollutants could affect the plant species' shift. - Ozone and nitrogen depositions have non-linear effects on primary productivity of tree species differently distributed in Italy.
Distributing Correlation Coefficients of Linear Structure-Activity/Property Models
Sorana D. BOLBOACA
2011-12-01
Full Text Available Quantitative structure-activity/property relationships are mathematical relationships linking chemical structure and activity/property in a quantitative manner. These in silico approaches are frequently used to reduce animal testing and risk-assessment, as well as to increase time- and cost-effectiveness in characterization and identification of active compounds. The aim of our study was to investigate the pattern of correlation coefficients distribution associated to simple linear relationships linking the compounds structure with their activities. A set of the most common ordnance compounds found at naval facilities with a limited data set with a range of toxicities on aquatic ecosystem and a set of seven properties was studied. Statistically significant models were selected and investigated. The probability density function of the correlation coefficients was investigated using a series of possible continuous distribution laws. Almost 48% of the correlation coefficients proved fit Beta distribution, 40% fit Generalized Pareto distribution, and 12% fit Pert distribution.
Modeling and analysis of linearized wheel-rail contact dynamics
Soomro, Z.
2014-01-01
The dynamics of the railway vehicles are nonlinear and depend upon several factors including vehicle speed, normal load and adhesion level. The presence of contaminants on the railway track makes them unpredictable too. Therefore in order to develop an effective control strategy it is important to analyze the effect of each factor on dynamic response thoroughly. In this paper a linearized model of a railway wheel-set is developed and is later analyzed by varying the speed and adhesion level by keeping the normal load constant. A wheel-set is the wheel-axle assembly of a railroad car. Patch contact is the study of the deformation of solids that touch each other at one or more points. (author)
Human visual modeling and image deconvolution by linear filtering
Larminat, P. de; Barba, D.; Gerber, R.; Ronsin, J.
1978-01-01
The problem is the numerical restoration of images degraded by passing through a known and spatially invariant linear system, and by the addition of a stationary noise. We propose an improvement of the Wiener's filter to allow the restoration of such images. This improvement allows to reduce the important drawbacks of classical Wiener's filter: the voluminous data processing, the lack of consideration of the vision's characteristivs which condition the perception by the observer of the restored image. In a first paragraph, we describe the structure of the visual detection system and a modelling method of this system. In the second paragraph we explain a restoration method by Wiener filtering that takes the visual properties into account and that can be adapted to the local properties of the image. Then the results obtained on TV images or scintigrams (images obtained by a gamma-camera) are commented [fr
Convergence diagnostics for Eigenvalue problems with linear regression model
Shi, Bo; Petrovic, Bojan
2011-01-01
Although the Monte Carlo method has been extensively used for criticality/Eigenvalue problems, a reliable, robust, and efficient convergence diagnostics method is still desired. Most methods are based on integral parameters (multiplication factor, entropy) and either condense the local distribution information into a single value (e.g., entropy) or even disregard it. We propose to employ the detailed cycle-by-cycle local flux evolution obtained by using mesh tally mechanism to assess the source and flux convergence. By applying a linear regression model to each individual mesh in a mesh tally for convergence diagnostics, a global convergence criterion can be obtained. We exemplify this method on two problems and obtain promising diagnostics results. (author)
A Dynamic Linear Modeling Approach to Public Policy Change
Loftis, Matthew; Mortensen, Peter Bjerre
2017-01-01
Theories of public policy change, despite their differences, converge on one point of strong agreement. The relationship between policy and its causes can and does change over time. This consensus yields numerous empirical implications, but our standard analytical tools are inadequate for testing...... them. As a result, the dynamic and transformative relationships predicted by policy theories have been left largely unexplored in time-series analysis of public policy. This paper introduces dynamic linear modeling (DLM) as a useful statistical tool for exploring time-varying relationships in public...... policy. The paper offers a detailed exposition of the DLM approach and illustrates its usefulness with a time series analysis of U.S. defense policy from 1957-2010. The results point the way for a new attention to dynamics in the policy process and the paper concludes with a discussion of how...
Baryon and meson phenomenology in the extended Linear Sigma Model
Giacosa, Francesco; Habersetzer, Anja; Teilab, Khaled; Eshraim, Walaa; Divotgey, Florian; Olbrich, Lisa; Gallas, Susanna; Wolkanowski, Thomas; Janowski, Stanislaus; Heinz, Achim; Deinet, Werner; Rischke, Dirk H. [Institute for Theoretical Physics, J. W. Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Kovacs, Peter; Wolf, Gyuri [Institute for Particle and Nuclear Physics, Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525 Budapest (Hungary); Parganlija, Denis [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)
2014-07-01
The vacuum phenomenology obtained within the so-called extended Linear Sigma Model (eLSM) is presented. The eLSM Lagrangian is constructed by including from the very beginning vector and axial-vector d.o.f., and by requiring dilatation invariance and chiral symmetry. After a general introduction of the approach, particular attention is devoted to the latest results. In the mesonic sector the strong decays of the scalar and the pseudoscalar glueballs, the weak decays of the tau lepton into vector and axial-vector mesons, and the description of masses and decays of charmed mesons are shown. In the baryonic sector the omega production in proton-proton scattering and the inclusion of baryons with strangeness are described.
Non Abelian T-duality in Gauged Linear Sigma Models
Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto
2018-04-01
Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.
A comparison of linear interpolation models for iterative CT reconstruction.
Hahn, Katharina; Schöndube, Harald; Stierstorfer, Karl; Hornegger, Joachim; Noo, Frédéric
2016-12-01
Recent reports indicate that model-based iterative reconstruction methods may improve image quality in computed tomography (CT). One difficulty with these methods is the number of options available to implement them, including the selection of the forward projection model and the penalty term. Currently, the literature is fairly scarce in terms of guidance regarding this selection step, whereas these options impact image quality. Here, the authors investigate the merits of three forward projection models that rely on linear interpolation: the distance-driven method, Joseph's method, and the bilinear method. The authors' selection is motivated by three factors: (1) in CT, linear interpolation is often seen as a suitable trade-off between discretization errors and computational cost, (2) the first two methods are popular with manufacturers, and (3) the third method enables assessing the importance of a key assumption in the other methods. One approach to evaluate forward projection models is to inspect their effect on discretized images, as well as the effect of their transpose on data sets, but significance of such studies is unclear since the matrix and its transpose are always jointly used in iterative reconstruction. Another approach is to investigate the models in the context they are used, i.e., together with statistical weights and a penalty term. Unfortunately, this approach requires the selection of a preferred objective function and does not provide clear information on features that are intrinsic to the model. The authors adopted the following two-stage methodology. First, the authors analyze images that progressively include components of the singular value decomposition of the model in a reconstructed image without statistical weights and penalty term. Next, the authors examine the impact of weights and penalty on observed differences. Image quality metrics were investigated for 16 different fan-beam imaging scenarios that enabled probing various aspects
Kinetic Model of Growth of Arthropoda Populations
Ershov, Yu. A.; Kuznetsov, M. A.
2018-05-01
Kinetic equations were derived for calculating the growth of crustacean populations ( Crustacea) based on the biological growth model suggested earlier using shrimp ( Caridea) populations as an example. The development cycle of successive stages for populations can be represented in the form of quasi-chemical equations. The kinetic equations that describe the development cycle of crustaceans allow quantitative prediction of the development of populations depending on conditions. In contrast to extrapolation-simulation models, in the developed kinetic model of biological growth the kinetic parameters are the experimental characteristics of population growth. Verification and parametric identification of the developed model on the basis of the experimental data showed agreement with experiment within the error of the measurement technique.
Compatible growth models and stand density diagrams
Smith, N.J.; Brand, D.G.
1988-01-01
This paper discusses a stand average growth model based on the self-thinning rule developed and used to generate stand density diagrams. Procedures involved in testing are described and results are included
Optimizing Biorefinery Design and Operations via Linear Programming Models
Talmadge, Michael; Batan, Liaw; Lamers, Patrick; Hartley, Damon; Biddy, Mary; Tao, Ling; Tan, Eric
2017-03-28
The ability to assess and optimize economics of biomass resource utilization for the production of fuels, chemicals and power is essential for the ultimate success of a bioenergy industry. The team of authors, consisting of members from the National Renewable Energy Laboratory (NREL) and the Idaho National Laboratory (INL), has developed simple biorefinery linear programming (LP) models to enable the optimization of theoretical or existing biorefineries. The goal of this analysis is to demonstrate how such models can benefit the developing biorefining industry. It focuses on a theoretical multi-pathway, thermochemical biorefinery configuration and demonstrates how the biorefinery can use LP models for operations planning and optimization in comparable ways to the petroleum refining industry. Using LP modeling tools developed under U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) funded efforts, the authors investigate optimization challenges for the theoretical biorefineries such as (1) optimal feedstock slate based on available biomass and prices, (2) breakeven price analysis for available feedstocks, (3) impact analysis for changes in feedstock costs and product prices, (4) optimal biorefinery operations during unit shutdowns / turnarounds, and (5) incentives for increased processing capacity. These biorefinery examples are comparable to crude oil purchasing and operational optimization studies that petroleum refiners perform routinely using LPs and other optimization models. It is important to note that the analyses presented in this article are strictly theoretical and they are not based on current energy market prices. The pricing structure assigned for this demonstrative analysis is consistent with $4 per gallon gasoline, which clearly assumes an economic environment that would favor the construction and operation of biorefineries. The analysis approach and examples provide valuable insights into the usefulness of analysis tools for
Modelling of tomato stem diameter growth rate based on physiological responses
Li, L.; Tan, J.; Lv, T.
2017-01-01
The stem diameter is an important parameter describing the growth of tomato plant during vegetative growth stage. A stem diameter growth model was developed to predict the response of plant growth under different conditions. By analyzing the diurnal variations of stem diameter in tomato (Solanum lycopersicum L.), it was found that the stem diameter measured at 3:00 am was the representative value as the daily basis of tomato stem diameter. Based on the responses of growth rate in stem diameter to light and temperature, a linear regression relationship was applied to establish the stem diameter growth rate prediction model for the vegetative growth stage in tomato and which was further validated by experiment. The root mean square error (RMSE) and relative error (RE) were used to test the correlation between measured and modeled stem diameter variations. Results showed that the model can be used in prediction for stem diameter growth rate at vegetative growth stage in tomato. (author)
Value function in economic growth model
Bagno, Alexander; Tarasyev, Alexandr A.; Tarasyev, Alexander M.
2017-11-01
Properties of the value function are examined in an infinite horizon optimal control problem with an unlimited integrand index appearing in the quality functional with a discount factor. Optimal control problems of such type describe solutions in models of economic growth. Necessary and sufficient conditions are derived to ensure that the value function satisfies the infinitesimal stability properties. It is proved that value function coincides with the minimax solution of the Hamilton-Jacobi equation. Description of the growth asymptotic behavior for the value function is provided for the logarithmic, power and exponential quality functionals and an example is given to illustrate construction of the value function in economic growth models.
Tax Evasion and Economic Growth in an Endogenous Growth Model
加藤, 秀弥; KATO, Hideya
2004-01-01
This paper presents an endogenous growth model with tax evasion where government expenditures affect production. An individual evades a tax so as to maximize his or her utility, the tax authority controls the detection probability to maximize net tax revenue, and the government chooses the income tax rate to maximize individuals’ utility. The main conclusions are as follows. First, the optical income tax rate with tax evasion is higher than that without tax evasion. Second, the rise in a ...
Linear programming model can explain respiration of fermentation products
Möller, Philip; Liu, Xiaochen; Schuster, Stefan
2018-01-01
Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the “Warburg effect”. The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited. PMID:29415045
Linear programming model can explain respiration of fermentation products.
Möller, Philip; Liu, Xiaochen; Schuster, Stefan; Boley, Daniel
2018-01-01
Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the "Warburg effect". The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited.
Transport coefficients from SU(3) Polyakov linear-σ model
Tawfik, A.; Diab, A.
2015-01-01
In the mean field approximation, the grand potential of SU(3) Polyakov linear-σ model (PLSM) is analyzed for the order parameter of the light and strange chiral phase-transitions, σ l and σ s , respectively, and for the deconfinement order parameters φ and φ*. Furthermore, the subtracted condensate Δ l,s and the chiral order-parameters M b are compared with lattice QCD calculations. By using the dynamical quasiparticle model (DQPM), which can be considered as a system of noninteracting massive quasiparticles, we have evaluated the decay width and the relaxation time of quarks and gluons. In the framework of LSM and with Polyakov loop corrections included, the interaction measure Δ/T 4 , the specific heat c v and speed of sound squared c s 2 have been determined, as well as the temperature dependence of the normalized quark number density n q /T 3 and the quark number susceptibilities χ q /T 2 at various values of the baryon chemical potential. The electric and heat conductivity, σ e and κ, and the bulk and shear viscosities normalized to the thermal entropy, ζ/s and η/s, are compared with available results of lattice QCD calculations.
Generalized Functional Linear Models With Semiparametric Single-Index Interactions
Li, Yehua
2010-06-01
We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.
Sparse linear models: Variational approximate inference and Bayesian experimental design
Seeger, Matthias W
2009-01-01
A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.
Sparse linear models: Variational approximate inference and Bayesian experimental design
Seeger, Matthias W [Saarland University and Max Planck Institute for Informatics, Campus E1.4, 66123 Saarbruecken (Germany)
2009-12-01
A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.
Generalized Functional Linear Models With Semiparametric Single-Index Interactions
Li, Yehua; Wang, Naisyin; Carroll, Raymond J.
2010-01-01
We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.
Modeling containment of large wildfires using generalized linear mixed-model analysis
Mark Finney; Isaac C. Grenfell; Charles W. McHugh
2009-01-01
Billions of dollars are spent annually in the United States to contain large wildland fires, but the factors contributing to suppression success remain poorly understood. We used a regression model (generalized linear mixed-model) to model containment probability of individual fires, assuming that containment was a repeated-measures problem (fixed effect) and...
Stochastic linear hybrid systems: Modeling, estimation, and application
Seah, Chze Eng
Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS
Identification of an Equivalent Linear Model for a Non-Linear Time-Variant RC-Structure
Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune
are investigated and compared with ARMAX models used on a running window. The techniques are evaluated using simulated data generated by the non-linear finite element program SARCOF modeling a 10-storey 3-bay concrete structure subjected to amplitude modulated Gaussian white noise filtered through a Kanai......This paper considers estimation of the maximum softening for a RC-structure subjected to earthquake excitation. The so-called Maximum Softening damage indicator relates the global damage state of the RC-structure to the relative decrease of the fundamental eigenfrequency in an equivalent linear...
Lu, Yi
2016-01-01
To model students' math growth trajectory, three conventional growth curve models and three growth mixture models are applied to the Early Childhood Longitudinal Study Kindergarten-Fifth grade (ECLS K-5) dataset in this study. The results of conventional growth curve model show gender differences on math IRT scores. When holding socio-economic…
Ho, Yuh-Shan
2006-01-01
A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.
Mario Gómez
2018-03-01
Full Text Available This paper analyzes the causal link between aggregated and disaggregated levels of energy consumption and economic growth in Mexico between 1965 and 2014, with the presence of structural breaks stemming from the series. To that end, unit root with structural breaks, cointegration, and linear and nonlinear causality tests are employed. The results show that there is a long-run relationship between production, capital, labor, and energy, and linear causal links from total and disaggregated energy consumption to economic growth. A nonlinear causality also exists from energy consumption, the transport sector, capital, and labor to output. These results support the growth hypothesis, which maintains that energy is an important input factor for economic activity and that energy conservation policies impact the economic growth in Mexico.
Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate
Bianchi, Eugenio; Hackl, Lucas; Yokomizo, Nelson
2018-03-01
The rate of entropy production in a classical dynamical system is characterized by the Kolmogorov-Sinai entropy rate h KS given by the sum of all positive Lyapunov exponents of the system. We prove a quantum version of this result valid for bosonic systems with unstable quadratic Hamiltonian. The derivation takes into account the case of time-dependent Hamiltonians with Floquet instabilities. We show that the entanglement entropy S A of a Gaussian state grows linearly for large times in unstable systems, with a rate Λ A ≤ h KS determined by the Lyapunov exponents and the choice of the subsystem A. We apply our results to the analysis of entanglement production in unstable quadratic potentials and due to periodic quantum quenches in many-body quantum systems. Our results are relevant for quantum field theory, for which we present three applications: a scalar field in a symmetry-breaking potential, parametric resonance during post-inflationary reheating and cosmological perturbations during inflation. Finally, we conjecture that the same rate Λ A appears in the entanglement growth of chaotic quantum systems prepared in a semiclassical state.
Casellas, J; Bach, R
2012-06-01
Lambing interval is a relevant reproductive indicator for sheep populations under continuous mating systems, although there is a shortage of selection programs accounting for this trait in the sheep industry. Both the historical assumption of small genetic background and its unorthodox distribution pattern have limited its implementation as a breeding objective. In this manuscript, statistical performances of 3 alternative parametrizations [i.e., symmetric Gaussian mixed linear (GML) model, skew-Gaussian mixed linear (SGML) model, and piecewise Weibull proportional hazard (PWPH) model] have been compared to elucidate the preferred methodology to handle lambing interval data. More specifically, flock-by-flock analyses were performed on 31,986 lambing interval records (257.3 ± 0.2 d) from 6 purebred Ripollesa flocks. Model performances were compared in terms of deviance information criterion (DIC) and Bayes factor (BF). For all flocks, PWPH models were clearly preferred; they generated a reduction of 1,900 or more DIC units and provided BF estimates larger than 100 (i.e., PWPH models against linear models). These differences were reduced when comparing PWPH models with different number of change points for the baseline hazard function. In 4 flocks, only 2 change points were required to minimize the DIC, whereas 4 and 6 change points were needed for the 2 remaining flocks. These differences demonstrated a remarkable degree of heterogeneity across sheep flocks that must be properly accounted for in genetic evaluation models to avoid statistical biases and suboptimal genetic trends. Within this context, all 6 Ripollesa flocks revealed substantial genetic background for lambing interval with heritabilities ranging between 0.13 and 0.19. This study provides the first evidence of the suitability of PWPH models for lambing interval analysis, clearly discarding previous parametrizations focused on mixed linear models.
McNeish, Daniel; Dumas, Denis
2017-01-01
Recent methodological work has highlighted the promise of nonlinear growth models for addressing substantive questions in the behavioral sciences. In this article, we outline a second-order nonlinear growth model in order to measure a critical notion in development and education: potential. Here, potential is conceptualized as having three components-ability, capacity, and availability-where ability is the amount of skill a student is estimated to have at a given timepoint, capacity is the maximum amount of ability a student is predicted to be able to develop asymptotically, and availability is the difference between capacity and ability at any particular timepoint. We argue that single timepoint measures are typically insufficient for discerning information about potential, and we therefore describe a general framework that incorporates a growth model into the measurement model to capture these three components. Then, we provide an illustrative example using the public-use Early Childhood Longitudinal Study-Kindergarten data set using a Michaelis-Menten growth function (reparameterized from its common application in biochemistry) to demonstrate our proposed model as applied to measuring potential within an educational context. The advantage of this approach compared to currently utilized methods is discussed as are future directions and limitations.
Behavioral and macro modeling using piecewise linear techniques
Kruiskamp, M.W.; Leenaerts, D.M.W.; Antao, B.
1998-01-01
In this paper we will demonstrate that most digital, analog as well as behavioral components can be described using piecewise linear approximations of their real behavior. This leads to several advantages from the viewpoint of simulation. We will also give a method to store the resulting linear
Simultaneous Balancing and Model Reduction of Switched Linear Systems
Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.
2011-01-01
In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not
Forest growth modeling in the Southern Region, National Forest System
Belcher, D.M.
1988-01-01
This paper discusses an attempt to combine individual tree growth models and stand level growth models currently available for the Region into one computer program. Operation of the program is explained and growth models are included
Genomic prediction based on data from three layer lines using non-linear regression models.
Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L
2014-11-06
Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional
Sotnikov, V.I.; Paraschiv, I.; Makhin, V.; Bauer, B.S.; Leboeuf, J.N.; Dawson, J.M.
2002-01-01
A systematic study of the linear stage of sheared flow stabilization of Z-pinch plasmas based on the Hall fluid model with equilibrium that contains sheared flow and an axial magnetic field is presented. In the study we begin with the derivation of a general set of equations that permits the evaluation of the combined effect of sheared flow and axial magnetic field on the development of the azimuthal mode number m=0 sausage and m=1 kink magnetohydrodynamic (MHD) instabilities, with the Hall term included in the model. The incorporation of sheared flow, axial magnetic field, and the Hall term allows the Z-pinch system to be taken away from the region in parameter space where ideal MHD is applicable to a regime where nonideal effects tend to govern stability. The problem is then treated numerically by following the linear development in time of an initial perturbation. The numerical results for linear growth rates as a function of axial sheared flow, an axial magnetic field, and the Hall term are reported
Sampled-data models for linear and nonlinear systems
Yuz, Juan I
2014-01-01
Sampled-data Models for Linear and Nonlinear Systems provides a fresh new look at a subject with which many researchers may think themselves familiar. Rather than emphasising the differences between sampled-data and continuous-time systems, the authors proceed from the premise that, with modern sampling rates being as high as they are, it is becoming more appropriate to emphasise connections and similarities. The text is driven by three motives: · the ubiquity of computers in modern control and signal-processing equipment means that sampling of systems that really evolve continuously is unavoidable; · although superficially straightforward, sampling can easily produce erroneous results when not treated properly; and · the need for a thorough understanding of many aspects of sampling among researchers and engineers dealing with applications to which they are central. The authors tackle many misconceptions which, although appearing reasonable at first sight, are in fact either p...
Dynamics of edge currents in a linearly quenched Haldane model
Mardanya, Sougata; Bhattacharya, Utso; Agarwal, Amit; Dutta, Amit
2018-03-01
In a finite-time quantum quench of the Haldane model, the Chern number determining the topology of the bulk remains invariant, as long as the dynamics is unitary. Nonetheless, the corresponding boundary attribute, the edge current, displays interesting dynamics. For the case of sudden and adiabatic quenches the postquench edge current is solely determined by the initial and the final Hamiltonians, respectively. However for a finite-time (τ ) linear quench in a Haldane nanoribbon, we show that the evolution of the edge current from the sudden to the adiabatic limit is not monotonic in τ and has a turning point at a characteristic time scale τ =τ0 . For small τ , the excited states lead to a huge unidirectional surge in the edge current of both edges. On the other hand, in the limit of large τ , the edge current saturates to its expected equilibrium ground-state value. This competition between the two limits lead to the observed nonmonotonic behavior. Interestingly, τ0 seems to depend only on the Semenoff mass and the Haldane flux. A similar dynamics for the edge current is also expected in other systems with topological phases.
Parameter estimation and hypothesis testing in linear models
Koch, Karl-Rudolf
1999-01-01
The necessity to publish the second edition of this book arose when its third German edition had just been published. This second English edition is there fore a translation of the third German edition of Parameter Estimation and Hypothesis Testing in Linear Models, published in 1997. It differs from the first English edition by the addition of a new chapter on robust estimation of parameters and the deletion of the section on discriminant analysis, which has been more completely dealt with by the author in the book Bayesian In ference with Geodetic Applications, Springer-Verlag, Berlin Heidelberg New York, 1990. Smaller additions and deletions have been incorporated, to im prove the text, to point out new developments or to eliminate errors which became apparent. A few examples have been also added. I thank Springer-Verlag for publishing this second edition and for the assistance in checking the translation, although the responsibility of errors remains with the author. I also want to express my thanks...
Linear multivariate evaluation models for spatial perception of soundscape.
Deng, Zhiyong; Kang, Jian; Wang, Daiwei; Liu, Aili; Kang, Joe Zhengyu
2015-11-01
Soundscape is a sound environment that emphasizes the awareness of auditory perception and social or cultural understandings. The case of spatial perception is significant to soundscape. However, previous studies on the auditory spatial perception of the soundscape environment have been limited. Based on 21 native binaural-recorded soundscape samples and a set of auditory experiments for subjective spatial perception (SSP), a study of the analysis among semantic parameters, the inter-aural-cross-correlation coefficient (IACC), A-weighted-equal sound-pressure-level (L(eq)), dynamic (D), and SSP is introduced to verify the independent effect of each parameter and to re-determine some of their possible relationships. The results show that the more noisiness the audience perceived, the worse spatial awareness they received, while the closer and more directional the sound source image variations, dynamics, and numbers of sound sources in the soundscape are, the better the spatial awareness would be. Thus, the sensations of roughness, sound intensity, transient dynamic, and the values of Leq and IACC have a suitable range for better spatial perception. A better spatial awareness seems to promote the preference slightly for the audience. Finally, setting SSPs as functions of the semantic parameters and Leq-D-IACC, two linear multivariate evaluation models of subjective spatial perception are proposed.
Form factors in the projected linear chiral sigma model
Alberto, P.; Coimbra Univ.; Bochum Univ.; Ruiz Arriola, E.; Fiolhais, M.; Urbano, J.N.; Coimbra Univ.; Goeke, K.; Gruemmer, F.; Bochum Univ.
1990-01-01
Several nucleon form factors are computed within the framework of the linear chiral soliton model. To this end variational means and projection techniques applied to generalized hedgehog quark-boson Fock states are used. In this procedure the Goldberger-Treiman relation and a virial theorem for the pion-nucleon form factor are well fulfilled demonstrating the consistency of the treatment. Both proton and neutron charge form factors are correctly reproduced, as well as the proton magnetic one. The shapes of the neutron magnetic and of the axial form factors are good but their absolute values at the origin are too large. The slopes of all the form factors at zero momentum transfer are in good agreement with the experimental data. The pion-nucleon form factor exhibits to great extent a monopole shape with a cut-off mass of Λ=690 MeV. Electromagnetic form factors for the vertex γNΔ and the nucleon spin distribution are also evaluated and discussed. (orig.)
Localisation in a Growth Model with Interaction
Costa, M.; Menshikov, M.; Shcherbakov, V.; Vachkovskaia, M.
2018-05-01
This paper concerns the long term behaviour of a growth model describing a random sequential allocation of particles on a finite cycle graph. The model can be regarded as a reinforced urn model with graph-based interaction. It is motivated by cooperative sequential adsorption, where adsorption rates at a site depend on the configuration of existing particles in the neighbourhood of that site. Our main result is that, with probability one, the growth process will eventually localise either at a single site, or at a pair of neighbouring sites.
Residual Structures in Latent Growth Curve Modeling
Grimm, Kevin J.; Widaman, Keith F.
2010-01-01
Several alternatives are available for specifying the residual structure in latent growth curve modeling. Two specifications involve uncorrelated residuals and represent the most commonly used residual structures. The first, building on repeated measures analysis of variance and common specifications in multilevel models, forces residual variances…
Thermal models pertaining to continental growth
Morgan, P.; Ashwal, L.
1988-01-01
Thermal models are important to understanding continental growth as the genesis, stabilization, and possible recycling of continental crust are closely related to the tectonic processes of the earth which are driven primarily by heat. The thermal energy budget of the earth was slowly decreasing since core formation, and thus the energy driving the terrestrial tectonic engine was decreasing. This fundamental observation was used to develop a logic tree defining the options for continental growth throughout earth history
Structural modelling of economic growth: Technological changes
Sukharev Oleg
2016-01-01
Full Text Available Neoclassical and Keynesian theories of economic growth assume the use of Cobb-Douglas modified functions and other aggregate econometric approaches to growth dynamics modelling. In that case explanations of economic growth are based on the logic of the used mathematical ratios often including the ideas about aggregated values change and factors change a priori. The idea of assessment of factor productivity is the fundamental one among modern theories of economic growth. Nevertheless, structural parameters of economic system, institutions and technological changes are practically not considered within known approaches, though the latter is reflected in the changing parameters of production function. At the same time, on the one hand, the ratio of structural elements determines the future value of the total productivity of the factors and, on the other hand, strongly influences the rate of economic growth and its mode of innovative dynamics. To put structural parameters of economic system into growth models with the possibility of assessment of such modes under conditions of interaction of new and old combinations is an essential step in the development of the theory of economic growth/development. It allows forming stimulation policy of economic growth proceeding from the structural ratios and relations recognized for this economic system. It is most convenient in such models to use logistic functions demonstrating the resource change for old and new combination within the economic system. The result of economy development depends on starting conditions, and on institutional parameters of velocity change of resource borrowing in favour of a new combination and creation of its own resource. Model registration of the resource is carried out through the idea of investments into new and old combinations.
R. Barbiero
2007-05-01
Full Text Available Model Output Statistics (MOS refers to a method of post-processing the direct outputs of numerical weather prediction (NWP models in order to reduce the biases introduced by a coarse horizontal resolution. This technique is especially useful in orographically complex regions, where large differences can be found between the NWP elevation model and the true orography. This study carries out a comparison of linear and non-linear MOS methods, aimed at the prediction of minimum temperatures in a fruit-growing region of the Italian Alps, based on the output of two different NWPs (ECMWF T511–L60 and LAMI-3. Temperature, of course, is a particularly important NWP output; among other roles it drives the local frost forecast, which is of great interest to agriculture. The mechanisms of cold air drainage, a distinctive aspect of mountain environments, are often unsatisfactorily captured by global circulation models. The simplest post-processing technique applied in this work was a correction for the mean bias, assessed at individual model grid points. We also implemented a multivariate linear regression on the output at the grid points surrounding the target area, and two non-linear models based on machine learning techniques: Neural Networks and Random Forest. We compare the performance of all these techniques on four different NWP data sets. Downscaling the temperatures clearly improved the temperature forecasts with respect to the raw NWP output, and also with respect to the basic mean bias correction. Multivariate methods generally yielded better results, but the advantage of using non-linear algorithms was small if not negligible. RF, the best performing method, was implemented on ECMWF prognostic output at 06:00 UTC over the 9 grid points surrounding the target area. Mean absolute errors in the prediction of 2 m temperature at 06:00 UTC were approximately 1.2°C, close to the natural variability inside the area itself.
Growth Modeling of Human Mandibles using Non-Euclidean Metrics
Hilger, Klaus Baggesen; Larsen, Rasmus; Wrobel, Mark
2003-01-01
From a set of 31 three-dimensional CT scans we model the temporal shape and size of the human mandible. Each anatomical structure is represented using 14851 semi-landmarks, and mapped into Procrustes tangent space. Exploratory subspace analyses are performed leading to linear models of mandible...... shape evolution in Procrustes space. The traditional variance analysis results in a one-dimensional growth model. However, working in a non-Euclidean metric results in a multimodal model with uncorrelated modes of biological variation. The applied non-Euclidean metric is governed by the correlation...... structure of the estimated noise in the data. The generative models are compared, and evaluated on the basis of a cross validation study. The new non-Euclidean analysis is completely data driven. It not only gives comparable results w.r.t. to previous studies of the mean modelling error, but in addition...
In silico modeling for tumor growth visualization.
Jeanquartier, Fleur; Jean-Quartier, Claire; Cemernek, David; Holzinger, Andreas
2016-08-08
Cancer is a complex disease. Fundamental cellular based studies as well as modeling provides insight into cancer biology and strategies to treatment of the disease. In silico models complement in vivo models. Research on tumor growth involves a plethora of models each emphasizing isolated aspects of benign and malignant neoplasms. Biologists and clinical scientists are often overwhelmed by the mathematical background knowledge necessary to grasp and to apply a model to their own research. We aim to provide a comprehensive and expandable simulation tool to visualizing tumor growth. This novel Web-based application offers the advantage of a user-friendly graphical interface with several manipulable input variables to correlate different aspects of tumor growth. By refining model parameters we highlight the significance of heterogeneous intercellular interactions on tumor progression. Within this paper we present the implementation of the Cellular Potts Model graphically presented through Cytoscape.js within a Web application. The tool is available under the MIT license at https://github.com/davcem/cpm-cytoscape and http://styx.cgv.tugraz.at:8080/cpm-cytoscape/ . In-silico methods overcome the lack of wet experimental possibilities and as dry method succeed in terms of reduction, refinement and replacement of animal experimentation, also known as the 3R principles. Our visualization approach to simulation allows for more flexible usage and easy extension to facilitate understanding and gain novel insight. We believe that biomedical research in general and research on tumor growth in particular will benefit from the systems biology perspective.
Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses
Martinez-Luaces, Victor
2009-01-01
In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…
An improved robust model predictive control for linear parameter-varying input-output models
Abbas, H.S.; Hanema, J.; Tóth, R.; Mohammadpour, J.; Meskin, N.
2018-01-01
This paper describes a new robust model predictive control (MPC) scheme to control the discrete-time linear parameter-varying input-output models subject to input and output constraints. Closed-loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal
Costamagna, A.C.; Werf, van der W.; Bianchi, F.J.J.A.; Landis, D.A.
2007-01-01
1 There is ample evidence that the life history and population dynamics of aphids are closely linked to plant phenology. Based on life table studies, it has been proposed that the growth of aphid populations could be modeled with an exponential growth model, with r decreasing linearly with time.
2014-01-01
M.Com. (Financial Economics) Recently, there has been a growth in the bond market. This growth has brought with it an ever-increasing volume and range of interest rate depended derivative products known as interest rate derivatives. Amongst the variables used in pricing these derivative products is the short-term interest rate. A numbers of short-term interest rate models that are used to fit the short-term interest rate exist. Therefore, understanding the features characterised by various...
A non-linear state space approach to model groundwater fluctuations
Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.
2006-01-01
A non-linear state space model is developed for describing groundwater fluctuations. Non-linearity is introduced by modeling the (unobserved) degree of water saturation of the root zone. The non-linear relations are based on physical concepts describing the dependence of both the actual
Half-trek criterion for generic identifiability of linear structural equation models
Foygel, R.; Draisma, J.; Drton, M.
2012-01-01
A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations
Half-trek criterion for generic identifiability of linear structural equation models
Foygel, R.; Draisma, J.; Drton, M.
2011-01-01
A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations
On-line validation of linear process models using generalized likelihood ratios
Tylee, J.L.
1981-12-01
A real-time method for testing the validity of linear models of nonlinear processes is described and evaluated. Using generalized likelihood ratios, the model dynamics are continually monitored to see if the process has moved far enough away from the nominal linear model operating point to justify generation of a new linear model. The method is demonstrated using a seventh-order model of a natural circulation steam generator
Developmental trajectories of adolescent popularity: a growth curve modelling analysis.
Cillessen, Antonius H N; Borch, Casey
2006-12-01
Growth curve modelling was used to examine developmental trajectories of sociometric and perceived popularity across eight years in adolescence, and the effects of gender, overt aggression, and relational aggression on these trajectories. Participants were 303 initially popular students (167 girls, 136 boys) for whom sociometric data were available in Grades 5-12. The popularity and aggression constructs were stable but non-overlapping developmental dimensions. Growth curve models were run with SAS MIXED in the framework of the multilevel model for change [Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis. Oxford, UK: Oxford University Press]. Sociometric popularity showed a linear change trajectory; perceived popularity showed nonlinear change. Overt aggression predicted low sociometric popularity but an increase in perceived popularity in the second half of the study. Relational aggression predicted a decrease in sociometric popularity, especially for girls, and continued high-perceived popularity for both genders. The effect of relational aggression on perceived popularity was the strongest around the transition from middle to high school. The importance of growth curve models for understanding adolescent social development was discussed, as well as specific issues and challenges of growth curve analyses with sociometric data.
Simultaneous Balancing and Model Reduction of Switched Linear Systems
Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.
2011-01-01
In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not limited to a certain type of balancing, and they are applicable for different types of balancing corresponding to different equations, like Lyapunov or Riccati equations. The results obtained are ...
Developing ontological model of computational linear algebra - preliminary considerations
Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Lirkov, I.
2013-10-01
The aim of this paper is to propose a method for application of ontologically represented domain knowledge to support Grid users. The work is presented in the context provided by the Agents in Grid system, which aims at development of an agent-semantic infrastructure for efficient resource management in the Grid. Decision support within the system should provide functionality beyond the existing Grid middleware, specifically, help the user to choose optimal algorithm and/or resource to solve a problem from a given domain. The system assists the user in at least two situations. First, for users without in-depth knowledge about the domain, it should help them to select the method and the resource that (together) would best fit the problem to be solved (and match the available resources). Second, if the user explicitly indicates the method and the resource configuration, it should "verify" if her choice is consistent with the expert recommendations (encapsulated in the knowledge base). Furthermore, one of the goals is to simplify the use of the selected resource to execute the job; i.e., provide a user-friendly method of submitting jobs, without required technical knowledge about the Grid middleware. To achieve the mentioned goals, an adaptable method of expert knowledge representation for the decision support system has to be implemented. The selected approach is to utilize ontologies and semantic data processing, supported by multicriterial decision making. As a starting point, an area of computational linear algebra was selected to be modeled, however, the paper presents a general approach that shall be easily extendable to other domains.
Symmetry conservation in the linear chiral soliton model
Goeke, K.
1988-01-01
The linear chiral soliton model with quark fields and elementary pion- and sigma-fields is solved in order to describe static properties of the nucleon and the delta resonance. To this end a Fock-state of the system is constructed consisting out of three valence quarks in a first orbit with a generalized hedgehog spin-flavour configuration. Coherent states are used to provide a quantum description for the mesonic parts of the total wave function. The corresponding classical pion field also exhibit a generalized hedgehog structure. In a pure mean field approximation the variation of the total energy results in the ordinary hedgehog form. In a quantized approach the generalized hedgehog-baryon is projected onto states with good spin and isospin and then noticeable deviations from the simple hedgehog form, if the relevant degrees of freedom of the wave function are varied after the projection. Various nucleon properties are calculated. These include proton and neutron charge radii, and the magnetic moment of the proton for which good agreement with experiment is obtained. The absolute value of the neutron magnetic moment comes out too large, similarly as the axial vector coupling constant and the pion-nucleon-nucleon coupling constant.To the generalization of the hedgehog the Goldberger-Treiman relation and a corresponding virial theorem are fulfilled. Variation of the quark-meson coupling parameter g and the sigma mass m σ shows that the g A is always at least 40 % too large compared to experiment. Hence it is concluded that either the inclusion of the polarization of the Dirac sea and/or further mesons with may be vector character or the consideration of intrinsic deformation is necessary. The concepts and results of the projections are compared with the semiclassical collective quantization method. 6 tabs., 14 figs., 43 refs
Krishnaveni, Ghattu V; Veena, Sargoor R; Srinivasan, Krishnamachari; Osmond, Clive; Fall, Caroline H D
2015-01-01
We aimed to determine how linear growth and fat and lean tissue gain during discrete age periods from birth to adolescence are related to adolescent cardiometabolic risk factors and cognitive ability. Adolescents born to mothers with normal glucose tolerance during pregnancy from an Indian birth cohort (N = 486, age 13.5 years) had detailed anthropometry and measurements of body fat (fat%), fasting plasma glucose, insulin and lipid concentrations, blood pressure and cognitive function. Insulin resistance (HOMA-IR) was calculated. These outcomes were examined in relation to birth measurements and statistically independent measures (conditional SD scores) representing linear growth, and fat and lean tissue gain during birth-1, 1-2, 2-5, 5-9.5 and 9.5-13.5 years in 414 of the children with measurements at all these ages. Birth length and linear growth at all ages were positively associated with current height. Fat gain, particularly during 5-9.5 years was positively associated with fat% at 13.5 years (0.44 SD per SD [99.9% confidence interval: 0.29,0.58]). Greater fat gain during mid-late childhood was associated with higher systolic blood pressure (5-9.5 years: 0.23 SD per SD [0.07,0.40]) and HOMA-IR (5-9.5 years: 0.24 [0.08,0.40], 9.5-13.5 years: 0.22 [0.06,0.38]). Greater infant growth (up to age 2 years) in linear, fat or lean components was unrelated to cardiometabolic risk factors or cognitive function. This study suggests that factors that increase linear, fat and lean growth in infancy have no adverse cardiometabolic effects in this population. Factors that increase fat gain in mid-late childhood may increase cardiometabolic risk, without any benefit to cognitive abilities.
Ghattu V Krishnaveni
Full Text Available We aimed to determine how linear growth and fat and lean tissue gain during discrete age periods from birth to adolescence are related to adolescent cardiometabolic risk factors and cognitive ability.Adolescents born to mothers with normal glucose tolerance during pregnancy from an Indian birth cohort (N = 486, age 13.5 years had detailed anthropometry and measurements of body fat (fat%, fasting plasma glucose, insulin and lipid concentrations, blood pressure and cognitive function. Insulin resistance (HOMA-IR was calculated. These outcomes were examined in relation to birth measurements and statistically independent measures (conditional SD scores representing linear growth, and fat and lean tissue gain during birth-1, 1-2, 2-5, 5-9.5 and 9.5-13.5 years in 414 of the children with measurements at all these ages.Birth length and linear growth at all ages were positively associated with current height. Fat gain, particularly during 5-9.5 years was positively associated with fat% at 13.5 years (0.44 SD per SD [99.9% confidence interval: 0.29,0.58]. Greater fat gain during mid-late childhood was associated with higher systolic blood pressure (5-9.5 years: 0.23 SD per SD [0.07,0.40] and HOMA-IR (5-9.5 years: 0.24 [0.08,0.40], 9.5-13.5 years: 0.22 [0.06,0.38]. Greater infant growth (up to age 2 years in linear, fat or lean components was unrelated to cardiometabolic risk factors or cognitive function.This study suggests that factors that increase linear, fat and lean growth in infancy have no adverse cardiometabolic effects in this population. Factors that increase fat gain in mid-late childhood may increase cardiometabolic risk, without any benefit to cognitive abilities.
Zolotarev, Vladimir A
2009-01-01
Functional models are constructed for commutative systems {A 1 ,A 2 } of bounded linear non-self-adjoint operators which do not contain dissipative operators (which means that ξ 1 A 1 +ξ 2 A 2 is not a dissipative operator for any ξ 1 , ξ 2 element of R). A significant role is played here by the de Branges transform and the function classes occurring in this context. Classes of commutative systems of operators {A 1 ,A 2 } for which such a construction is possible are distinguished. Realizations of functional models in special spaces of meromorphic functions on Riemann surfaces are found, which lead to reasonable analogues of de Branges spaces on these Riemann surfaces. It turns out that the functions E(p) and E-tilde(p) determining the order of growth in de Branges spaces on Riemann surfaces coincide with the well-known Baker-Akhiezer functions. Bibliography: 11 titles.
Nonlinear Structured Growth Mixture Models in M"plus" and OpenMx
Grimm, Kevin J.; Ram, Nilam; Estabrook, Ryne
2010-01-01
Growth mixture models (GMMs; B. O. Muthen & Muthen, 2000; B. O. Muthen & Shedden, 1999) are a combination of latent curve models (LCMs) and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. GMMs are often fit with linear, latent basis, multiphase, or polynomial change models…
Log-normal frailty models fitted as Poisson generalized linear mixed models.
Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver
2016-12-01
The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Modelling the growth of a methanotrophic biofilm
Arcangeli, J.-P.; Arvin, E.
1999-01-01
This article discusses the growth of methanotrophic biofilms. Several independent biofilm growths scenarios involving different inocula were examined. Biofilm growth, substrate removal and product formation were monitored throughout the experiments. Based on the oxygen consumption it was concluded...... that heterotrophs and nitrifiers co-existed with methanotrophs in the biofilm. Heterotrophic biomass grew on soluble polymers formed by the hydrolysis of dead biomass entrapped in the biofilm. Nitrifier populations developed because of the presence of ammonia in the mineral medium. Based on these experimental...... was performed on this model. It indicated that the most influential parameters were those related to the biofilm (i.e. density; solid-volume fraction; thickness). This suggests that in order to improve the model, further research regarding the biofilm structure and composition is needed....
The Linearity of Optical Tomography: Sensor Model and Experimental Verification
Siti Zarina MOHD. MUJI
2011-09-01
Full Text Available The aim of this paper is to show the linearization of optical sensor. Linearity of the sensor response is a must in optical tomography application, which affects the tomogram result. Two types of testing are used namely, testing using voltage parameter and testing with time unit parameter. For the former, the testing is by measuring the voltage when the obstacle is placed between transmitter and receiver. The obstacle diameters are between 0.5 until 3 mm. The latter is also the same testing but the obstacle is bigger than the former which is 59.24 mm and the testing purpose is to measure the time unit spend for the ball when it cut the area of sensing circuit. Both results show a linear relation that proves the optical sensors is suitable for process tomography application.
Modeling Fish Growth in Low Dissolved Oxygen
Neilan, Rachael Miller
2013-01-01
This article describes a computational project designed for undergraduate students as an introduction to mathematical modeling. Students use an ordinary differential equation to describe fish weight and assume the instantaneous growth rate depends on the concentration of dissolved oxygen. Published laboratory experiments suggest that continuous…
Stochastic Growth Models with No Discounting
Sladký, Karel
2007-01-01
Roč. 15, č. 4 (2007), s. 88-98 ISSN 0572-3043 R&D Projects: GA ČR(CZ) GA402/06/0990; GA ČR GA402/05/0115 Institutional research plan: CEZ:AV0Z10750506 Keywords : economic dynamics * stochastic version of the Ramsey growth model * Markov decision processes Subject RIV: AH - Economics
Robust Comparison of the Linear Model Structures in Self-tuning Adaptive Control
Zhou, Jianjun; Conrad, Finn
1989-01-01
The Generalized Predictive Controller (GPC) is extended to the systems with a generalized linear model structure which contains a number of choices of linear model structures. The Recursive Prediction Error Method (RPEM) is used to estimate the unknown parameters of the linear model structures...... to constitute a GPC self-tuner. Different linear model structures commonly used are compared and evaluated by applying them to the extended GPC self-tuner as well as to the special cases of the GPC, the GMV and MV self-tuners. The simulation results show how the choice of model structure affects the input......-output behaviour of self-tuning controllers....
Gørgens, Tue; Skeels, Christopher L.; Wurtz, Allan
This paper explores estimation of a class of non-linear dynamic panel data models with additive unobserved individual-specific effects. The models are specified by moment restrictions. The class includes the panel data AR(p) model and panel smooth transition models. We derive an efficient set...... of moment restrictions for estimation and apply the results to estimation of panel smooth transition models with fixed effects, where the transition may be determined endogenously. The performance of the GMM estimator, both in terms of estimation precision and forecasting performance, is examined in a Monte...
A wild model of linear arithmetic and discretely ordered modules
Glivický, Petr; Pudlák, Pavel
2017-01-01
Roč. 63, č. 6 (2017), s. 501-508 ISSN 0942-5616 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : linear arithmetics Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.250, year: 2016
Evaluation of linear induction motor characteristics : the Yamamura model
1975-04-30
The Yamamura theory of the double-sided linear induction motor (LIM) excited by a constant current source is discussed in some detail. The report begins with a derivation of thrust and airgap power using the method of vector potentials and theorem of...
Model structure learning: A support vector machine approach for LPV linear-regression models
Toth, R.; Laurain, V.; Zheng, W-X.; Poolla, K.
2011-01-01
Accurate parametric identification of Linear Parameter-Varying (LPV) systems requires an optimal prior selection of a set of functional dependencies for the parametrization of the model coefficients. Inaccurate selection leads to structural bias while over-parametrization results in a variance
Beardsell, Alec; Collier, William; Han, Tao
2016-09-01
There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.
Mathematical modelling of the growth of human fetus anatomical structures.
Dudek, Krzysztof; Kędzia, Wojciech; Kędzia, Emilia; Kędzia, Alicja; Derkowski, Wojciech
2017-09-01
The goal of this study was to present a procedure that would enable mathematical analysis of the increase of linear sizes of human anatomical structures, estimate mathematical model parameters and evaluate their adequacy. Section material consisted of 67 foetuses-rectus abdominis muscle and 75 foetuses- biceps femoris muscle. The following methods were incorporated to the study: preparation and anthropologic methods, image digital acquisition, Image J computer system measurements and statistical analysis method. We used an anthropologic method based on age determination with the use of crown-rump length-CRL (V-TUB) by Scammon and Calkins. The choice of mathematical function should be based on a real course of the curve presenting growth of anatomical structure linear size Ύ in subsequent weeks t of pregnancy. Size changes can be described with a segmental-linear model or one-function model with accuracy adequate enough for clinical purposes. The interdependence of size-age is described with many functions. However, the following functions are most often considered: linear, polynomial, spline, logarithmic, power, exponential, power-exponential, log-logistic I and II, Gompertz's I and II and von Bertalanffy's function. With the use of the procedures described above, mathematical models parameters were assessed for V-PL (the total length of body) and CRL body length increases, rectus abdominis total length h, its segments hI, hII, hIII, hIV, as well as biceps femoris length and width of long head (LHL and LHW) and of short head (SHL and SHW). The best adjustments to measurement results were observed in the exponential and Gompertz's models.
Shangli Zhang
2009-01-01
Full Text Available By using the methods of linear algebra and matrix inequality theory, we obtain the characterization of admissible estimators in the general multivariate linear model with respect to inequality restricted parameter set. In the classes of homogeneous and general linear estimators, the necessary and suffcient conditions that the estimators of regression coeffcient function are admissible are established.
Preisach hysteresis model for non-linear 2D heat diffusion
Jancskar, Ildiko; Ivanyi, Amalia
2006-01-01
This paper analyzes a non-linear heat diffusion process when the thermal diffusivity behaviour is a hysteretic function of the temperature. Modelling this temperature dependence, the discrete Preisach algorithm as general hysteresis model has been integrated into a non-linear multigrid solver. The hysteretic diffusion shows a heating-cooling asymmetry in character. The presented type of hysteresis speeds up the thermal processes in the modelled systems by a very interesting non-linear way
Wood, Phillip Karl; Jackson, Kristina M
2013-08-01
Researchers studying longitudinal relationships among multiple problem behaviors sometimes characterize autoregressive relationships across constructs as indicating "protective" or "launch" factors or as "developmental snares." These terms are used to indicate that initial or intermediary states of one problem behavior subsequently inhibit or promote some other problem behavior. Such models are contrasted with models of "general deviance" over time in which all problem behaviors are viewed as indicators of a common linear trajectory. When fit of the "general deviance" model is poor and fit of one or more autoregressive models is good, this is taken as support for the inhibitory or enhancing effect of one construct on another. In this paper, we argue that researchers consider competing models of growth before comparing deviance and time-bound models. Specifically, we propose use of the free curve slope intercept (FCSI) growth model (Meredith & Tisak, 1990) as a general model to typify change in a construct over time. The FCSI model includes, as nested special cases, several statistical models often used for prospective data, such as linear slope intercept models, repeated measures multivariate analysis of variance, various one-factor models, and hierarchical linear models. When considering models involving multiple constructs, we argue the construct of "general deviance" can be expressed as a single-trait multimethod model, permitting a characterization of the deviance construct over time without requiring restrictive assumptions about the form of growth over time. As an example, prospective assessments of problem behaviors from the Dunedin Multidisciplinary Health and Development Study (Silva & Stanton, 1996) are considered and contrasted with earlier analyses of Hussong, Curran, Moffitt, and Caspi (2008), which supported launch and snare hypotheses. For antisocial behavior, the FCSI model fit better than other models, including the linear chronometric growth curve
Feingold, Alan
2009-01-01
The use of growth-modeling analysis (GMA)--including hierarchical linear models, latent growth models, and general estimating equations--to evaluate interventions in psychology, psychiatry, and prevention science has grown rapidly over the last decade. However, an effect size associated with the difference between the trajectories of the…
Study of the critical behavior of the O(N) linear and nonlinear sigma models
Graziani, F.R.
1983-01-01
A study of the large N behavior of both the O(N) linear and nonlinear sigma models is presented. The purpose is to investigate the relationship between the disordered (ordered) phase of the linear and nonlinear sigma models. Utilizing operator product expansions and stability analyses, it is shown that for 2 - (lambda/sub R/(M) is the dimensionless renormalized quartic coupling and lambda* is the IR fixed point) limit of the linear sigma model which yields the nonlinear sigma model. It is also shown that stable large N linear sigma models with lambda 0) and nonlinear models are trivial. This result (i.e., triviality) is well known but only for one and two component models. Interestingly enough, the lambda< d = 4 linear sigma model remains nontrivial and tachyonic free
Mathematical foundations of the dendritic growth models.
Villacorta, José A; Castro, Jorge; Negredo, Pilar; Avendaño, Carlos
2007-11-01
At present two growth models describe successfully the distribution of size and topological complexity in populations of dendritic trees with considerable accuracy and simplicity, the BE model (Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997) and the S model (Van Pelt and Verwer in Bull. Math. Biol. 48:197-211, 1986). This paper discusses the mathematical basis of these models and analyzes quantitatively the relationship between the BE model and the S model assumed in the literature by developing a new explicit equation describing the BES model (a dendritic growth model integrating the features of both preceding models; Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997). In numerous studies it is implicitly presupposed that the S model is conditionally linked to the BE model (Granato and Van Pelt in Brain Res. Dev. Brain Res. 142:223-227, 2003; Uylings and Van Pelt in Network 13:397-414, 2002; Van Pelt, Dityatev and Uylings in J. Comp. Neurol. 387:325-340, 1997; Van Pelt and Schierwagen in Math. Biosci. 188:147-155, 2004; Van Pelt and Uylings in Network. 13:261-281, 2002; Van Pelt, Van Ooyen and Uylings in Modeling Dendritic Geometry and the Development of Nerve Connections, pp 179, 2000). In this paper we prove the non-exactness of this assumption, quantify involved errors and determine the conditions under which the BE and S models can be separately used instead of the BES model, which is more exact but considerably more difficult to apply. This study leads to a novel expression describing the BE model in an analytical closed form, much more efficient than the traditional iterative equation (Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997) in many neuronal classes. Finally we propose a new algorithm in order to obtain the values of the parameters of the BE model when this growth model is matched to experimental data, and discuss its advantages and improvements over the more commonly used procedures.
Non-linear nuclear engineering models as genetic programming application
Domingos, Roberto P.; Schirru, Roberto; Martinez, Aquilino S.
1997-01-01
This work presents a Genetic Programming paradigm and a nuclear application. A field of Artificial Intelligence, based on the concepts of Species Evolution and Natural Selection, can be understood as a self-programming process where the computer is the main agent responsible for the discovery of a program able to solve a given problem. In the present case, the problem was to find a mathematical expression in symbolic form, able to express the existent relation between equivalent ratio of a fuel cell, the enrichment of fuel elements and the multiplication factor. Such expression would avoid repeatedly reactor physics codes execution for core optimization. The results were compared with those obtained by different techniques such as Neural Networks and Linear Multiple Regression. Genetic Programming has shown to present a performance as good as, and under some features superior to Neural Network and Linear Multiple Regression. (author). 10 refs., 8 figs., 1 tabs
Non-linear growth in tree ferns, Dicksonia antarctica and Cyathea australis
Blair, David P.; Blanchard, Wade; Banks, Sam C.; Lindenmayer, David B.
2017-01-01
Tree ferns are an important structural component of forests in many countries. However, because their regeneration is often unrelated to major disturbances, their age is often difficult to determine. In addition, rates of growth may not be uniform, which further complicates attempts to determine their age. In this study, we measured 5 years of growth of Cyathea australis and Dicksonia antarctica after a large wildfire in 2009 in south-eastern Australia. We found growth rates of these two spec...
AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S
Klumpp, A. R.
1994-01-01
This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
Generation companies decision-making modeling by linear control theory
Gutierrez-Alcaraz, G.; Sheble, Gerald B.
2010-01-01
This paper proposes four decision-making procedures to be employed by electric generating companies as part of their bidding strategies when competing in an oligopolistic market: naive, forward, adaptive, and moving average expectations. Decision-making is formulated in a dynamic framework by using linear control theory. The results reveal that interactions among all GENCOs affect market dynamics. Several numerical examples are reported, and conclusions are presented. (author)
Modeling error distributions of growth curve models through Bayesian methods.
Zhang, Zhiyong
2016-06-01
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is proposed to flexibly model normal and non-normal data through the explicit specification of the error distributions. A simulation study shows when the distribution of the error is correctly specified, one can avoid the loss in the efficiency of standard error estimates. A real example on the analysis of mathematical ability growth data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 is used to show the application of the proposed methods. Instructions and code on how to conduct growth curve analysis with both normal and non-normal error distributions using the the MCMC procedure of SAS are provided.
Inertial and viscous effects in the non linear growth of the tearing mode
Edery, D.; Frey, M.; Tagger, M.; Soule, J.L.; Pellat, R.; Bussac, M.N.; Somon, J.P.
1982-08-01
The non linear self similar Tearing mode solution of Rutherford is revisited. We compute explicitly the stream function for the plasma flow including inertia, convection and viscosity. In all cases, Rutherford's solution is asymptotically valid
A Comparison of Alternative Estimators of Linearly Aggregated Macro Models
Fikri Akdeniz
2012-07-01
Full Text Available Normal 0 false false false TR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman","serif"; mso-ansi-language:TR; mso-fareast-language:TR;} This paper deals with the linear aggregation problem. For the true underlying micro relations, which explain the micro behavior of the individuals, no restrictive rank conditions are assumed. Thus the analysis is presented in a framework utilizing generalized inverses of singular matrices. We investigate several estimators for certain linear transformations of the systematic part of the corresponding macro relations. Homogeneity of micro parameters is discussed. Best linear unbiased estimation for micro parameters is described.
Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel
2015-09-10
Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. Copyright © 2015 John Wiley & Sons, Ltd.
Growth of meromorphic solutions of higher-order linear differential equations
Wenjuan Chen
2009-01-01
Full Text Available In this paper, we investigate the higher-order linear differential equations with meromorphic coefficients. We improve and extend a result of M.S. Liu and C.L. Yuan, by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen, and the extended Winman-Valiron theory which proved by J. Wang and H.X. Yi. In addition, we also consider the nonhomogeneous linear differential equations.
Inflammation and linear bone growth: the inhibitory role of SOCS2 on GH/IGF-1 signaling.
Farquharson, Colin; Ahmed, S Faisal
2013-04-01
Linear bone growth is widely recognized to be adversely affected in children with chronic kidney disease (CKD) and other chronic inflammatory disorders. The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) pathway is anabolic to the skeleton and inflammatory cytokines compromise bone growth through a number of different mechanisms, which include interference with the systemic as well as the tissue-level GH/IGF-1 axis. Despite attempts to promote growth and control disease, there are an increasing number of reports of the persistence of poor growth in a substantial proportion of patients receiving rhGH and/or drugs that block cytokine action. Thus, there is an urgent need to consider better and alternative forms of therapy that are directed specifically at the mechanism of the insult which leads to abnormal bone health. Suppressor of cytokine signaling 2 (SOCS2) expression is increased in inflammatory conditions including CKD, and is a recognized inhibitor of GH signaling. Therefore, in this review, we will focus on the premise that SOCS2 signaling represents a critical pathway in growth plate chondrocytes through which pro-inflammatory cytokines alter both GH/IGF-1 signaling and cellular function.